

Annexes

Reference manual

August 2023

Annexes

Reference manual

August 2023

Dirk RAES, Pasquale STEDUTO, Theodore C. HSIAO, and Elias FERERES with the contribution of the AquaCrop Network

Food and Agriculture Organization of the United Nations Rome, 2023

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.

© FAO, 2023

FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO's endorsement of users' views, products or services is not implied in any way.

All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to copyright@fao.org.

FAO information products are available on the FAO website (www.fao.org/publications) and can be purchased through <u>publications-</u> sales@fao.org. Chapter 1. AquaCrop – FAO crop-water productivity model to simulate yield response to water

Chapter 2. Users guide

Chapter 3. Calculation procedures

Chapter 4. Calibration guidance

Chapter 5. Training videos

Annexes

Table of contents

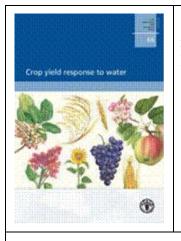
Annex I: Crop parameters	1
I.1 Cotton	
I.2 Maize	
I.3 Potato	
I.4 Quinoa	
I.5 Rice	
I.6 Soybean	
I.7 Sugar Beet	
I.8 Sunflower	
I.9 Tomato	35
I.10 Wheat	39
I.11 Barley	43
I.12 Sugar Cane	
I.13 Sorghum	
I.14 Tef	55
I.15 Dry beans	59
I.16 Casava	61
I.17 Alfalfa	64
Annex II: Indicative values for lengths of crop development stages	66
Annex III: Indicative values for soil salinity tolerance for some agriculture	
crops	
-	
Annex IV: ETo calculation procedures	
1. Atmospheric parameters	
2. Air temperature	
3. Air humidity	
4. Radiation	
5. Wind speed	
6. Reference evapotranspiration (FAO Penman-Monteith)	
7. Conversion to standard metric unit	
References	86

Annex I: Crop parameters

Note

The recommended values provided for the crop parameters in the tables below represent estimates obtained in calibration/validation exercises of AquaCrop with experimental data. How good these estimates are, depends on how extensive and thorough were the calibration and validation, and varies with the crop species listed. The experimental data used for a crop might have been taken in one to many locations, with or without water and temperature as limiting factors, and representing a few to many years of experiments. The notes and symbols before each table provide indications of the thoroughness of the calibration/validation process with respect to optimal and water stress conditions, as well as with respect to the coverage of major production areas of that crop around the world. Note that if a crop is important in many geographical areas, even if testing with data from four or five diverse locations for a crop limited to one geographical area may be considered as adequate.

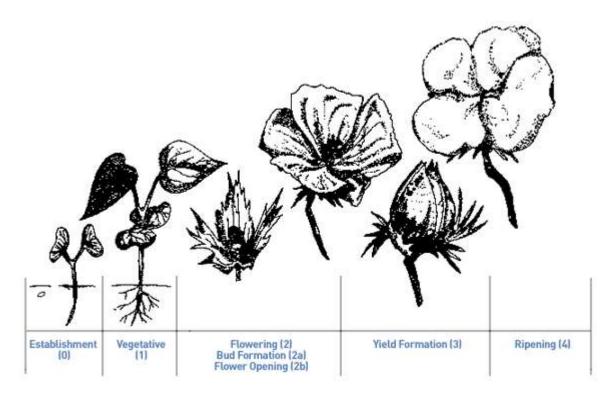
The experiments used for calibration and validation were generally conducted under high levels of management, with the control treatments aimed at production levels close to the maximum potential achievable in that location. All the data used were obtained under conditions of good soil mineral nutrient status. The soil fertility feature of AquaCrop is just beginning to be tested now with data.


In using the tables the differences in thoroughness of calibration and validation of the parameters for the different crops should be considered. For the better tested crops, the values provided should yield reasonable results, although small adjustments in the parameter values may prove to be desirable. For the less tested crops, the user may want to consider the values provided as preliminary and starting values subject to revision, either by user calibration or by revision in future versions of AquaCrop, as more experimental data are brought to bear. We encourage users to contact AquaCrop Help-desk <u>aquacrop@fao.org</u>, in order to contribute to the calibration and validation of AquaCrop either for crops not yet in the list of tables or for those in the tables, for future revisions of the current version.

In the simulation output crop yield is always reported as dry matter, although the calibration for grain crops was performed against yield measurements that had water contents not too far from the water content of commercial grain (10-15 %). For potato and sugar beet, the simulated dry matter yield can be converted to fresh weight (usual way commercial yields are reported) best by using the measured water or dry matter content of the product. If that information is not available, a general conversion factor, in terms of kg of dry matter per kg fresh weight, of 0.20 to 0.25 may be used.

AquaCrop is a relatively simple model by design, yet suitable for the simulation of most herbaceous species. The decision was made to keep the model simple and more general. The model can be modified to account for some unusual characteristic specific for a particular crop, but to do that for a number of crops each with its own special characteristics would make the model too complex. The user should be aware of this limitation of the model. Examples of such special characteristics are: (1) The cut-out phenomenon exhibited by cotton under some conditions, when additional flowers (squares) and young fruits (bolls) no longer form when the fruit load is already large; but once the existing fruits mature and conditions are favourable, new flowers and fruits are produced again. Cut-out can be induced by mild to moderate water stress but is simulated only indirectly in a limited way by the model. (2) Low land (flooded) rice can experience substantial variations in the water level of the field. This would determine how much of the canopy is submerged and not transpiring or photosynthesizing, and hence not producing biomass. The model does not consider submergence and assumes only a very small part of the canopy is submerged and this has no effect on transpiration or biomass production.

FAO Irrigation and Drainage Paper Nr. 66 Crop yield response to water


In this handbook, a general description, growth and development, water use and productivity, responses to stresses, irrigation practices and crop yield for the listed crops are provided.

Steduto, P., Hsiao, T.C., Fereres, E., Raes, D. 2012. Crop yield response to water. Irrigation and Drainage Paper Nr. 66, FAO, Rome, Italy. 500 pages.

Download from website: http://www.fao.org/docrep/016/i2800e/i2800e00.htm

I.1 Cotton

Goodness of the calibration

•	Non-limiting conditions	\odot	0
•	Water stress conditions	\odot	\odot
•	Geographical coverage (with respect to the world cropped areas)	\odot	\odot
•	Overall	\odot	\odot
	No calibration		

- No calibration
 Minimum degree of calibration
 Medium degree of calibration
 Good degree of calibration
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

Note - The cut-out phenomenon exhibited by cotton under some conditions, when additional flowers (squares) and young fruits (bolls) no longer form when the fruit load is already large; but once the existing fruits mature and conditions are favourable, new flowers and fruits are produced again. Cut-out can be induced by mild to moderate water stress but is simulated only indirectly in a limited way by the model.

I.1 Cotton

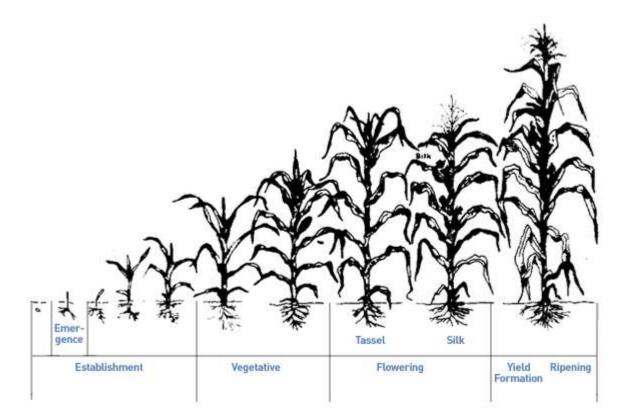
1. Cro	1. Crop Phenology				
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges		
1.1 Thre	shold air temperatures				
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	12.0		
T _{upper}	Upper temperature (°C)	Conservative ⁽¹⁾	35.0		
1.2 Deve	lopment of green canopy cover				
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	5.00 - 7.00		
	Number of plants per hectare	Management ⁽³⁾	60,000 - 150,000		
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	10 - 80		
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.006 - 0.008		
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	Almost entirely covered		
			- Entirely covered		
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1000 - 1800		
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.002 - 0.003		
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1200 - 2000		
1.3 Flow	ering				
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+450 - 700$		
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	450 - 750		
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	No		
1.4 Deve	lopment of root zone				
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30		
Z _x	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 2.50		
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5		

I.1 Cotton continued

2. Crop transpiration				
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges	
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10	
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc.	Conservative ⁽¹⁾	0.30	
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60	
3. Bio	mass production and yield formation	·		
3.1 Crop	o water productivity			
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	15.0	
	Water productivity normalized for ETo and CO ₂ during yield formation (as percent WP* before yield formation)	Conservative ⁽¹⁾	70	
3.2 Harv	vest Index			
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	25 - 40	
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	Small	
	Excess of potential fruits (%)	Conservative ⁽²⁾	Large	
	Coefficient describing positive impact of restricted vegetative growth during yield formation on HI	Conservative ⁽¹⁾	Moderate	
	Coefficient describing negative impact of stomatal closure during yield formation on HI	Conservative ⁽¹⁾	Small	
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	30	

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific


(3) Dependent on environment and/or management

(4) Cultivar specific

I.1 Cotton continued

4. Stresses				
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges	
4.1 Soil v	water stresses			
p _{exp,lower}	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.20	
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.70	
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0	
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.75	
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	2.5	
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.75	
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	2.5	
p_{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.85 (Estimate)	
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Moderately tolerant to water	
		Environment ⁽³⁾	logging	
4.2 Air t	emperature stress			
	Minimum air temperature below which pollination starts to fail (cold stress) ($^{\circ}C$)	Conservative ⁽¹⁾	15.0 (Estimate)	
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	40.0 to 45.0 (Estimate)	
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	Not considered	
4.3 Salin	ity stress			
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	7.7	
EC.	lower threshold (at which soil salinity stress starts to occur)	C	26.0	
ECe _x	Electrical conductivity of the saturated soil-paste extract: upper threshold (at which soil salinity stress has reached its maximum effect)	Conservative ⁽¹⁾	26.9	

I.2 Maize

Goodness of the calibration

٠	Non-limiting conditions	\odot	\odot	\odot
٠	Water stress conditions	\odot	\odot	
٠	Geographical coverage (with respect to the world cropped areas)	\odot	\odot	\odot
٠	Overall	\odot	\odot	\odot
	No calibration			

- Minimum degree of calibration
 Medium degree of calibration
 Good degree of calibration
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

Note - Maize parameters have been mostly generated from the calibration reported by Hsiao et al., 2009. AquaCrop — the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 101 (3): 448-459.

I.2 Maize

1. Cro	1. Crop Phenology				
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges		
1.1 Thre	shold air temperatures				
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	8.0		
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	30.0		
1.2 Deve	lopment of green canopy cover				
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	6.50		
	Number of plants per hectare	Management ⁽³⁾	50,000 - 100,000		
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	60 - 100		
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.012 - 0.013		
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	65 – 99 %		
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+ 1150 - 1500$		
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.010		
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+ 1450 - 1850$		
1.3 Flow	ering				
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 600 - 900		
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	150 - 200		
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	Yes		
1.4 Deve	1.4 Development of root zone				
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30		
Z _x	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 2.80		
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.3		

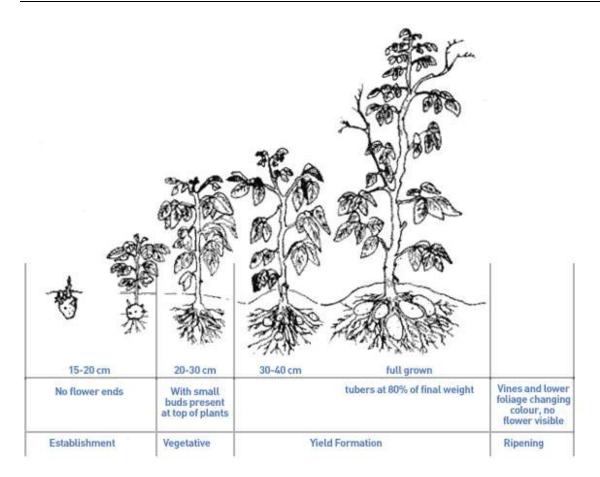
I.2 Maize continued

2. Cro	p transpiration		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.05
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.30
	etc.		
	Effect of canopy cover on reducing soil evaporation in late season stage	Management ⁽³⁾	50
3. Bior	nass production and yield formation		
3.1 Crop	water productivity		
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	33.7
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	100
	percent WP* before yield formation)		
3.2 Harv	vest Index		
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	48 - 52
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	None
	Excess of potential fruits (%)	Conservative ⁽²⁾	Small
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	Small
	yield formation on HI		
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	Strong
	formation on HI		
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	15

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management


(4) Cultivar specific

Note - Maize yield is considered having water content not far from that of commercial grain (10-15 %).

I.2 Maize continued

4. Stresses			
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
4.1 Soil	water stresses		
p _{exp,lower}	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.14
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.72
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	2.9
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.69
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	6.0
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.69
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	2.7
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.80 (Estimate)
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Moderately tolerant to water
		Environment ⁽³⁾	logging
4.2 Air t	emperature stress		
	Minimum air temperature below which pollination starts to fail (cold stress) (°C)	Conservative ⁽¹⁾	10.0 (Estimate)
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	40.0 (Estimate)
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	12.0 (Estimated)
4.3 Salin	ity stress		
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	1.7
	lower threshold (at which soil salinity stress starts to occur)		
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	10.0
	upper threshold (at which soil salinity stress has reached its maximum effect)		

I.3 Potato

Goodness of the calibration

٠	Non-limiting conditions	\odot
•	Water stress conditions	\odot
•	Geographical coverage (with respect to the world cropped areas)	\odot
•	Overall	\odot

	No calibration
\odot	Minimum degree of calibration
\odot \odot	Medium degree of calibration
\odot \odot \odot	Good degree of calibration

© © © © ○ Optimum degree of calibration

I.3 Potato

1. Cro	1. Crop Phenology			
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges	
1.1 Thre	shold air temperatures			
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	2.0	
T _{upper}	Upper temperature (°C)	Conservative ⁽¹⁾	26.0	
1.2 Deve	lopment of green canopy cover			
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	10 - 20	
		Management ⁽³⁾		
	Number of plants per hectare	Management ⁽³⁾	30,000 - 60,000	
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	150 - 250	
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.017 - 0.020	
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	Almost entirely covered	
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 850 - 1000	
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.002	
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 800 - 1800	
1.3 Yield	l formation			
	Time from sowing to start yield formation (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+350 - 650$	
1.4 Development of root zone				
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30	
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 1.80	
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5	

I.3 Potato continued

2. Crop transpiration				
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges	
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10	
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.15	
	etc.			
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60	
3. Bior	mass production and yield formation			
3.1 Crop	water productivity			
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	18.0 - 20.0	
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	100	
	percent WP* before yield formation)			
3.2 Harv	vest Index			
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	70 - 85	
	Possible increase (%) of HI due to water stress before starting yield formation	Conservative ⁽¹⁾	Small	
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	None	
	yield formation on HI			
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	Small	
	formation on HI			
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	5	

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

Note - Potato yield is expressed as dry matter. Simulated dry matter yield can be converted to fresh weight best by using the measured water or dry matter content of the product. A general conversion factor of 20% to 25%, in terms of kg of dry matter per kg fresh weight, may be used.

I.3 Potato continued

4. Stresses				
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges	
4.1 Soil v	water stresses	· · · ·		
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.20	
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.60	
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0	
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.60	
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0	
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.70	
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0	
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Moderately tolerant to water	
		Environment ⁽³⁾	logging	
4.2 Air t	emperature stress			
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	5.0 - 9.0 (Estimated)	
4.3 Salin	ity stress			
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	1.7	
	lower threshold (at which soil salinity stress starts to occur)			
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	10.0	
	upper threshold (at which soil salinity stress has reached its maximum effect)			

I.4 Quinoa

Goodness of the calibration

Non-limiting conditions	\odot	\odot	
• Water stress conditions	\odot	\odot	
• Geographical coverage (with respect to the world cropped areas)	\odot	\odot	\odot
• Overall	\odot	\odot	
No calibration			

•	No canoration
\odot	Minimum degree of calibration
\odot \odot	Medium degree of calibration
\odot \odot \odot	Good degree of calibration
\odot \odot \odot \odot	Optimum degree of calibration

Note - Quinoa parameters have been generated from the calibration reported by Geerts et al., 2009. Simulating Yield Response to Water of Quinoa (Chenopodium quinoa Willd.) with FAO-AquaCrop. Agron. J. 101 (3): 499-508.

Note - Calendar days instead of growing degree day mode is herein suggested in order to keep the calibration more generic for different varieties with unknown growing degree days sums for different phenological stages.

I.4 Quinoa

III Qui					
1. Crop Phenology					
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges		
1.1 Thre	shold air temperatures				
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	0.0 – 3.0 (Estimate)		
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	Not calibrated		
1.2 Deve	lopment of green canopy cover				
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	6.50 (Estimate)		
	Number of plants per hectare	Management ⁽³⁾	5,000 - 300,000		
	Time from sowing to emergence (days)	Management ⁽³⁾	$5 - 10^{-1}$		
CGC	Canopy growth coefficient (fraction per day)	Conservative ⁽¹⁾	0.100		
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	50 - 100		
	Time from sowing to start senescence (days)	Cultivar ⁽⁴⁾	Time to emergence $+$ 135 - 170		
CDC	Canopy decline coefficient (fraction per day)	Conservative ⁽¹⁾	0.100		
	Time from sowing to maturity, i.e. length of crop cycle (days)	Cultivar ⁽⁴⁾	Time to emergence + 165 - 195		
1.3 Flow	ering				
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 65 - 110		
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	15 - 20		
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	No ²		
1.4 Development of root zone					
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30		
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 1.00		
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5^{-3}		

 ¹ In Crop Program settings, Germination reduce the Minimum soil water content required for germination from the default 20% to 10% of TAW.
 ² Artificial measure to account for the flexible phenology of quinoa in response to drought stress.
 ³ In Crop Program settings, Root zone put the effect of water stress on root development as Not considered.

I.4 Quinoa continued

2. Cro	p transpiration		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc.	Conservative ⁽¹⁾	0.15
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60
3. Bior	mass production and yield formation		
3.1 Crop	o water productivity		
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	10.5
	Water productivity normalized for ETo and CO ₂ during yield formation (as percent WP* before yield formation)	Conservative ⁽¹⁾	90
3.2 Harv	vest Index		
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	50
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	None
	Excess of potential fruits (%)	Conservative ⁽²⁾	Small
	Coefficient describing positive impact of restricted vegetative growth during yield formation on HI	Conservative ⁽¹⁾	None
	Coefficient describing negative impact of stomatal closure during yield formation on HI	Conservative ⁽¹⁾	Small
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	10 (Estimate)

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

I.4 Quinoa continued

4. Stresses				
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges	
4.1 Soil v	water stresses			
p _{exp,lower}	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.50	
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.80	
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	4.0	
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.60	
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	4.0	
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.98	
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	4.0	
	Sum(ETo) during stress period to be exceeded before senescence is triggered	Conservative ⁽¹⁾	200	
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.90 (Estimate)	
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Sensitive to water logging	
		Environment ⁽³⁾		
4.2 Air t	emperature stress			
	Minimum air temperature below which pollination starts to fail (cold stress) (°C)	Conservative ⁽¹⁾	Not considered	
	Maximum air temperature above which pollination starts to fail (heat stress) ($^{\circ}C$)	Conservative ⁽¹⁾	Not considered	
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	Not considered	
4.3 Salin	ity stress			
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	5.0 (Estimated)	
	lower threshold (at which soil salinity stress starts to occur)			
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	18.0 (Estimated)	
	upper threshold (at which soil salinity stress has reached its maximum effect)			

I.5 Rice

Goodness of the calibration

	•	Non-limiting conditions	\odot \odot
	•	Water stress conditions	
	•	Geographical coverage (with respect to the world cropped area	us) 😳
	•	Overall	\odot
		No calibration	
\odot		Minimum degree of calibration	
\odot	\odot	Medium degree of calibration	
\odot	\odot	Good degree of calibration	

 $\odot \odot \odot \odot \odot$ Optimum degree of calibration

Note – The present AquaCrop calibration applies to Paddy (flooded) rice only. Simulate puddled soil (e.g. default soil file PADDY.SOL) and soil bunds (e.g. default Field management file BUNDS.MAN)

I.5 Rice

1. Crop Phenology				
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges	
1.1 Thre	shold air temperatures			
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	8.0	
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	30.0	
1.2 Deve	lopment of green canopy cover			
cc_0	Soil surface covered by an individual seedling at 90% recover (cm2/plant)	Conservative ⁽²⁾	3.00 - 8.00	
		Management ⁽³⁾		
	Number of plants per hectare	Management ⁽³⁾	300,000 - 1,500,000	
	Time from transplanting to recover (growing degree day)	Management ⁽³⁾	35 - 100	
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.006 - 0.008	
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	Almost entirely covered	
	Time from transplanting to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to recover + 1000 - 1500	
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.005	
	Time from transplanting to maturity, i.e. length of crop cycle (GD day)	Cultivar ⁽⁴⁾	Time to recover + 1500 - 2000	
1.3 Flow	rering			
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	Time to recover + 1000 - 1300	
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	300 - 400	
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	Yes	
1.4 Deve	lopment of root zone			
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30	
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 0.60	
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	2.0 - 3.0	

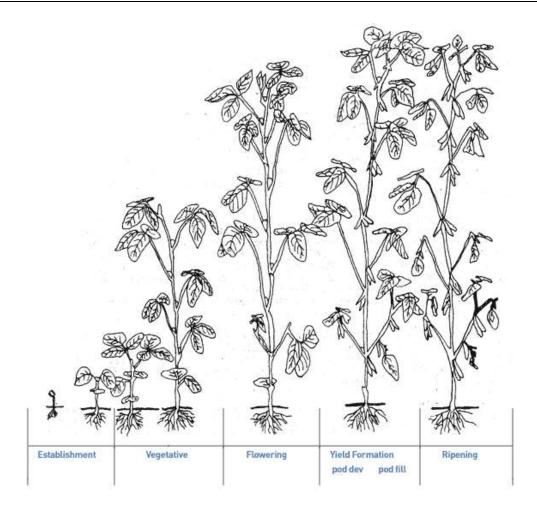
I.5 Rice continued

2. Crop transpiration				
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges	
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10	
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.15	
	etc.			
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	50	
3. Bio	mass production and yield formation			
3.1 Crop	o water productivity			
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	19.0	
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	100	
	percent WP* before yield formation)			
3.2 Harv	vest Index			
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	35 - 50	
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	None	
	Excess of potential fruits (%)	Conservative ⁽²⁾	Large	
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	Small	
	yield formation on HI			
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	Moderate	
	formation on HI			
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	15	

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management


(4) Cultivar specific

Note - Rice yield is considered having water content not far from that of commercial grain (10-15 %).

I.5 Rice continued

4. Stresses				
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges	
4.1 Soil	water stresses			
p _{exp,lower}	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.00	
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.40	
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0	
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.50	
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0	
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.55	
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0	
p_{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.75 (Estimate)	
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Not stressed when water logged	
		Environment ⁽³⁾		
4.2 Air t	emperature stress			
	Minimum air temperature below which pollination starts to fail (cold stress) (°C)	Conservative ⁽¹⁾	8.0	
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	35.0	
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	10.0 (Estimated)	
4.3 Salin	ity stress			
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	3.0	
	lower threshold (at which soil salinity stress starts to occur)			
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	11.3	
	upper threshold (at which soil salinity stress has reached its maximum effect)			

I.6 Soybean

Goodness of the calibration

- \odot \odot Non-limiting conditions • \odot Water stress conditions • Geographical coverage (with respect to the world cropped areas) \odot \odot • \odot \odot Overall • No calibration Minimum degree of calibration 0 Medium degree of calibration · · Good degree of calibration \odot \odot \odot
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

 \odot

I.6 Soybean

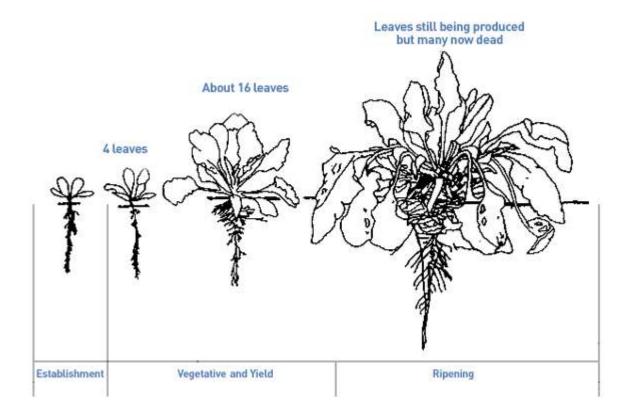
1. Crop Phenology				
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges	
1.1 Thre	shold air temperatures			
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	5.0	
T _{upper}	Upper temperature (°C)	Conservative ⁽¹⁾	30.0	
1.2 Deve	lopment of green canopy cover			
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	5.00	
	Number of plants per hectare	Management ⁽³⁾	250,000 - 450,000	
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	150 - 300	
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.004 - 0.005	
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	Almost entirely covered	
			- Entirely covered	
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1600 - 2400	
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.015	
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 2000 $-$ 3000	
1.3 Flow	ering			
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1000 - 1500	
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	400 - 800	
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	Yes	
1.4 Deve	lopment of root zone			
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30	
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 2.40	
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5	

I.6 Soybean continued

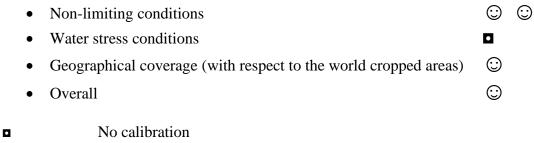
2. Cro	p transpiration		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.30
	etc.		
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	25
3. Bio	mass production and yield formation		
3.1 Crop	o water productivity		
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	15.0
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	60
	percent WP* before yield formation)		
3.2 Harv	vest Index		
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	40
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	Small
	Excess of potential fruits (%)	Conservative ⁽²⁾	Medium
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	None
	yield formation on HI		
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	Strong
	formation on HI		
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	10

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific


(3) Dependent on environment and/or management

(4) Cultivar specific


I.6 Soybean continued

4. Stre	esses		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
4.1 Soil	water stresses		
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.15
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.65
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.60
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.70
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.85 (Estimate)
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Moderately tolerant to water
		Environment ⁽³⁾	logging
4.2 Air t	emperature stress		
	Minimum air temperature below which pollination starts to fail (cold stress)	Conservative ⁽¹⁾	8.0 (Estimate)
	(°C)	\tilde{a} (1)	
	Maximum air temperature above which pollination starts to fail (heat stress) ($^{\circ}C$)	Conservative ⁽¹⁾	40.0 (Estimate)
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	10.0 (Estimate)
4.3 Salin	nity stress		
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	5.0
	lower threshold (at which soil salinity stress starts to occur)		
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	10.0
	upper threshold (at which soil salinity stress has reached its maximum effect)		

I.7 Sugar Beet

Goodness of the calibration

- © Minimum degree of calibration
- © © Medium degree of calibration
- $\odot \odot \odot \odot$ Good degree of calibration
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

I.7 Sugar Beet

1. Crop Phenology					
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges		
1.1 Thre	shold air temperatures				
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	5.0		
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	30.0		
1.2 Deve	lopment of green canopy cover				
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	1.00		
	Number of plants per hectare	Management ⁽³⁾	80,000 - 120,000		
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	20 - 50		
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.010 - 0.012		
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	Up to Almost entirely covered		
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+ 1700 - 2300$		
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.003 - 0.004		
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 2000 - 2800		
1.3 Yield	l formation				
	Time from sowing to start yield formation (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 800 - 1000		
1.4 Deve	lopment of root zone				
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30		
Z _x	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 2.40		
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5		

I.7 Sugar Beet continued

2. Crop transpiration					
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges		
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10		
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.15		
	etc.				
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60		
3. Bior	mass production and yield formation				
3.1 Crop	water productivity				
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	17.0		
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	100		
	percent WP* before yield formation)				
3.2 Harv	yest Index				
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	65 - 75		
	Possible increase (%) of HI due to water stress before starting yield formation	Conservative ⁽¹⁾	None		
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	Small		
	yield formation on HI				
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	None		
	formation on HI				
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	20		

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

Note - Sugarbeet yield is expressed as dry matter. Simulated dry matter yield can be converted to fresh weight best by using the measured water or dry matter content of the product. A general conversion factor of 25 to 20%, in terms of kg of dry matter per kg fresh weight, may be used.

I.7 Sugar Beet continued

4. Stre	sses		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
4.1 Soil v	water stresses	· · · ·	-
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.20
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.60
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.65
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.75
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Moderately tolerant to water
		Environment ⁽³⁾	logging
4.2 Air t	emperature stress		
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	9.0 (Estimated)
4.3 Salin	ity stress		
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	7.0
	lower threshold (at which soil salinity stress starts to occur)		
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	24.0
	upper threshold (at which soil salinity stress has reached its maximum effect)		

I.8 Sunflower

		×		NO .	5
ф .		A CONTRACTOR			
• ¥ Establishment (0)	Veget	ative (1)	Flowering (2)	Yield Formation [3]	Ripening (4)
20 days	early (1a) 30 days	late (1b) 25 days	30 days	25 days	15 days

Goodness of the calibration

□ ⊙

•	Non-limiting conditions	\odot	\odot
•	Water stress conditions	\odot	\odot
•	Geographical coverage (with respect to the world cropped areas)	\odot	
•	Overall	\odot	\odot
	No calibration Minimum degree of calibration		

	e			
00	Medium degree of calibration			

- © © © Good degree of calibration
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

Note -There is more variation in season length in sunflower than in many other crops. Commercial varieties range from very early to very late maturing, differing by more than 50 % in season length. The parameters in the Table are recommended for medium to late maturing cultivars .

I.8 Sunflower

1. Crop Phenology			
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges
1.1 Thre	shold air temperatures		
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	4.0
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	30.0
1.2 Deve	lopment of green canopy cover		
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	5.00
	Number of plants per hectare	Management ⁽³⁾	50,000 - 70,000
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	150 - 200
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.015
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	Entirely covered
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1400 - 1800
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.006
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 2200 - 2800
1.3 Flow	ering		
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1000 - 1300
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	300 - 400
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	Yes
1.4 Deve	lopment of root zone		
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30
Z _x	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 3.00
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.3

I.8 Sunflower continued

2. Cro	p transpiration		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.30
	etc.		
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60
3. Bior	mass production and yield formation		
3.1 Crop	o water productivity		
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	18.0
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	60
	percent WP* before yield formation)		
3.2 Harv	vest Index		
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	35
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	Small
	Excess of potential fruits (%)	Conservative ⁽²⁾	Large
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	None
	yield formation on HI		
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	Strong
	formation on HI		
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	10

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

I.8 Sunflower continued

4. Stre	esses		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
4.1 Soil	water stresses		
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.15
pexp,upper	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.65
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	2.5
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.60
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	2.5
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.70
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	2.5
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.85 (Estimate)
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Moderately tolerant to water
		Environment ⁽³⁾	logging
4.2 Air t	emperature stress		
	Minimum air temperature below which pollination starts to fail (cold stress) ($^{\circ}C$)	Conservative ⁽¹⁾	10
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	40
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	12
4.3 Salir	ity stress		
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	2.0 (Estimate)
	lower threshold (at which soil salinity stress starts to occur)		
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	12.0 (Estimate)
	upper threshold (at which soil salinity stress has reached its maximum effect)		

I.9 Tomato

Goodness of the calibration

	•	Non-limiting conditions		\odot	
	•	Water stress conditions			
	•	Geographical coverage (with respect to the world cropped areas)			
	•	Overall		\odot	
-	00	0 0 0	No calibration Minimum degree of calibration Medium degree of calibration Good degree of calibration Optimum degree of calibration		

Note – The present AquaCrop calibration applies to Processing tomato only.

I.9 Tomato

1. Cro	p Phenology		
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges
1.1 Thre	shold air temperatures		
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	7.0
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	28.0
	lopment of green canopy cover		
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	1.0 (direct seeding) 5.0 to 20.0 (transplant)
	Number of plants per hectare	Management (3)	15,000 - 80,000
	Time from sowing to emergence / transplant to recovery (growing degree day)	Management ⁽³⁾	40 - 80
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.0075
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	Fairly to almost entirely covered
	Time from sowing / transplant to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Recovery + 1300 - 1600
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.004
	Time from sowing / transplant to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Recovery + 1500 - 2000
1.3 Flow	rering		
	Time from sowing / transplant to flowering (growing degree day)	Cultivar ⁽⁴⁾	Recovery + 250 - 400
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	600 - 900
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	No
	lopment of root zone		
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30
Z _x	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 2.00
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5

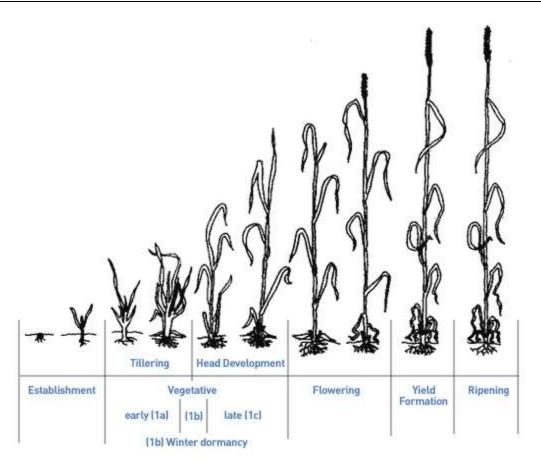
I.9 Tomato continued

2. Cro	p transpiration		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc.	Conservative ⁽¹⁾	0.15
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60
3. Bior	mass production and yield formation		
3.1 Crop	water productivity		
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	18.0
	Water productivity normalized for ETo and CO ₂ during yield formation (as percent WP* before yield formation)	Conservative ⁽¹⁾	100
3.2 Harv	vest Index		
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	55 - 65
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	None (Estimated)
	Excess of potential fruits (%)	Conservative ⁽²⁾	Large
	Coefficient describing positive impact of restricted vegetative growth during yield formation on HI	Conservative ⁽¹⁾	None (Estimated)
	Coefficient describing negative impact of stomatal closure during yield formation on HI	Conservative ⁽¹⁾	Strong (Estimated)
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	15 (Estimated)

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management


(4) Cultivar specific

Note - Harvest Index refers to the ratio between the dry yield (including red, green, and rotten production) and dry above ground biomass. To convert dry into fresh yield, 93 to 95% water content should be considered. Red production compared to the total one varies with management.

I.9 Tomato continued

4. Stre	esses		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
4.1 Soil	water stresses		
p _{exp,lower}	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.15 (Estimated)
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.55 (Estimated)
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0 (Estimated)
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.50 (Estimated)
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0 (Estimated)
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.70 (Estimated)
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0 (Estimated)
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.92
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	5.0
		Environment ⁽³⁾	
4.2 Air t	temperature stress		
	Minimum air temperature below which pollination starts to fail (cold stress) (°C)	Conservative ⁽¹⁾	10.0 (Estimated)
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	40.0 (Estimated)
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	Not considered
4.3 Salir	nity stress		
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	1.7
	lower threshold (at which soil salinity stress starts to occur)		
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	12.8
	upper threshold (at which soil salinity stress has reached its maximum effect)		

I.10 Wheat

Goodness of the calibration

- Non-limiting conditions
 Water stress conditions
 Geographical coverage (with respect to the world cropped areas)
 Overall
 Overall
 Overall
- No calibration
- © Minimum degree of calibration
- \odot \odot Medium degree of calibration
- $\odot \odot \odot \odot$ Good degree of calibration
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

Note - The present AquaCrop calibration applies to Wheat grown as spring wheat in northern latitudes or grown as winter wheat in temperatures latitudes in the absence of a cold period below 5 GDD.

Reference Manual, Annex I – AquaCrop, Version 7.1 August 2023

I.10 Wheat

1. Cro	1. Crop Phenology		
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges
1.1 Thre	shold air temperatures		
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	0.0
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	26.0
	lopment of green canopy cover		
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	1.50
	Number of plants per hectare	Management ⁽³⁾	2,000,000 - 7,000,000
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	100 - 250
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.005 - 0.007
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	80 - 99 %
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1000 - 2000
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.004
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1500 - 2900
1.3 Flow	ering		
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	Time to emergence $+$ 1000 - 1300
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	150 - 280
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	Yes
1.4 Deve	lopment of root zone		
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 2.40
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5

I.10 Wheat continued

2. Cro	p transpiration		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.15
	etc.		
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	50
3. Bior	mass production and yield formation		
3.1 Crop	water productivity		
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	15.0
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	100
	percent WP* before yield formation)		
3.2 Harv	vest Index		
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	45 - 50
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	Small
	Excess of potential fruits (%)	Conservative ⁽²⁾	Medium
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	Small
	yield formation on HI		
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	Moderate
	formation on HI		
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	15

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

Note - Wheat yield is considered having water content not far from that of commercial grain (10-15 %).

I.10 Wheat continued

4. Stre	esses		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
4.1 Soil	water stresses	**	
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.20
pexp,upper	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.65
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	5.0
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.65
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	2.5
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.70
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	2.5
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.85 (Estimate)
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	Moderately tolerant to water
		Environment ⁽³⁾	logging
4.2 Air t	emperature stress		
	Minimum air temperature below which pollination starts to fail (cold stress) (°C)	Conservative ⁽¹⁾	5.0 (Estimate)
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	35.0 (Estimate)
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	13.0 - 15.0 (Estimated)
4.3 Salir	nity stress		
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	6.0
	lower threshold (at which soil salinity stress starts to occur)		
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	20.1
	upper threshold (at which soil salinity stress has reached its maximum effect)		

I.11 Barley

Goodness of the calibration

•	Non-limiting conditions	0
•	Water stress conditions	\odot
•	Geographical coverage (with respect to the world cropped areas)	\odot
•	Overall	\odot

	No calibration
\odot	Minimum degree of calibration
\odot \odot	Medium degree of calibration
\odot \odot \odot	Good degree of calibration

 $\odot \odot \odot \odot \odot$ Optimum degree of calibration

I.11 Barley

1. Crop Phenology						
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges			
1.1 Three	shold air temperatures	· · · · · · · · · · · · · · · · · · ·				
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	0			
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	15			
1.2 Deve	lopment of green canopy cover					
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	1.50			
	Number of plants per hectare	Management ⁽³⁾	1,500,000 - 3,000,000			
	Time from sowing to emergence (growing degree day)	Management ⁽³⁾	90 - 200			
CGC	Canopy growth coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.008			
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	50 - 99			
	Time from sowing to start senescence (growing degree day)	Cultivar ⁽⁴⁾	900 - 2,000			
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.006			
	Time from sowing to maturity, i.e. length of crop cycle (growing degree day)	Cultivar ⁽⁴⁾	1296			
1.3 Flow	ering					
	Time from sowing to flowering (growing degree day)	Cultivar ⁽⁴⁾	700 - 1,300			
	Length of the flowering stage (growing degree day)	Cultivar ⁽⁴⁾	150 - 250			
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	Yes			
1.4 Deve	1.4 Development of root zone					
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30			
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	up to 2.50 m			
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	15			

I.11 Barley continued

2. Cro	2. Crop transpiration					
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges			
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10			
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc.	Conservative ⁽¹⁾	0.15			
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	50			
3. Bior	mass production and yield formation					
3.1 Crop	o water productivity					
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	15.0			
	Water productivity normalized for ETo and CO ₂ during yield formation (as percent WP* before yield formation)	Conservative ⁽¹⁾	100			
3.2 Harv	vest Index					
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	30 - 50			
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	Small			
	Excess of potential fruits (%)	Conservative ⁽²⁾	Medium			
	Coefficient describing positive impact of restricted vegetative growth during yield formation on HI	Conservative ⁽¹⁾	Small			
	Coefficient describing negative impact of stomatal closure during yield formation on HI	Conservative ⁽¹⁾	Moderate			
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	15			

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

I.11 Barley continued

4. Stresses					
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges		
4.1 Soil v	water stresses				
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.20		
pexp,upper	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.65		
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0		
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.60		
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0		
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.55		
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0		
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.85		
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	15		
		Environment ⁽³⁾			
4.2 Air t	emperature stress				
	Minimum air temperature below which pollination starts to fail (cold stress)	Conservative ⁽¹⁾	5		
	(°C)				
	Maximum air temperature above which pollination starts to fail (heat stress)	Conservative ⁽¹⁾	35		
	(°C)				
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	14		
4.3 Salin	ity stress				
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	6.0		
	lower threshold (at which soil salinity stress starts to occur)				
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	20.1		
	upper threshold (at which soil salinity stress has reached its maximum effect)				

I.12 Sugar Cane

Goodness of the calibration

- Non-limiting conditions
- Water stress conditions
- Geographical coverage (with respect to the world cropped areas)
- Overall
- No calibration
- Minimum degree of calibration
- © © Medium degree of calibration
- \odot \odot \odot Good degree of calibration
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

I.12 Sugar cane

1. Cro	1. Crop Phenology								
Symbol	I Description Type ^{(1), (2), (3), (4)} Values / ranges								
1.1 Threshold air temperatures									
T _{base}	Base temperature (°C) Conservative ⁽¹⁾								
T _{upper}	Upper temperature (°C)	Conservative ⁽¹⁾	32						
1.2 Deve	lopment of green canopy cover								
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	6.50						
	Number of plants per hectare	Management ⁽³⁾	140,000						
	Time from transplanting to emergence (day)	Management ⁽³⁾	7						
CGC	Canopy growth coefficient (fraction per day)	Conservative ⁽¹⁾	0.12548						
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	95						
	Time from transplanting to start senescence (day)	Cultivar ⁽⁴⁾	330						
CDC	Canopy decline coefficient (fraction per day)	Conservative ⁽¹⁾	0.07615						
	Time from transplanting to maturity, i.e. length of crop cycle (day)	Cultivar ⁽⁴⁾	365						
1.3 Deve	1.3 Development of root zone								
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30						
Z _x	Maximum effective rooting depth (m)	Management ⁽³⁾	1.80						
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.3						

I.12 Sugar Cane continued

2. Crop transpiration								
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges					
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10					
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.15					
	etc.							
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60					
3. Bior	nass production and yield formation							
3.1 Crop	water productivity							
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	30					
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	100					
	percent WP* before yield formation)							
3.2 Harv	rest Index							
HIo	Reference harvest index (%) - sucrose	Cultivar ⁽⁴⁾	35					
HIo	Reference harvest index (%) - sucrose	Cultivar ⁽⁴⁾	35					

(1) Conservative generally applicable(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

I.12 Sugar Cane continued

4. Stresses					
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges		
4.1 Soil v	water stresses				
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.25		
pexp,upper	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.55		
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0		
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.50		
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0		
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.60		
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0		
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	5		
		Environment ⁽³⁾			
4.2 Air t	emperature stress				
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	12.0		
4.3 Salin	ity stress				
ECen	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	1.7		
	lower threshold (at which soil salinity stress starts to occur)				
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	18.6		
	upper threshold (at which soil salinity stress has reached its maximum effect)				

I.13 Sorghum

Goodness of the calibration

- Non-limiting conditions
- Water stress conditions
- Geographical coverage (with respect to the world cropped areas)
- Overall
- No calibration
- S Minimum degree of calibration
- © © Medium degree of calibration
- \odot \odot \odot Good degree of calibration
- $\odot \odot \odot \odot \odot$ Optimum degree of calibration

I.13 Sorghum

1. Crop Phenology						
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges			
1.1 Thre	shold air temperatures					
T _{base}	Base temperature (°C)	8				
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	30			
1.2 Deve	lopment of green canopy cover					
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	3			
	Number of plants per hectare	Management ⁽³⁾	200,000			
	Time from sowing to emergence (day)	Management ⁽³⁾	7 - 13			
CGC	Canopy growth coefficient (fraction per day)	Conservative ⁽¹⁾	0.16			
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	60 - 98			
	Time from sowing to start senescence (day)	Cultivar ⁽⁴⁾	91			
CDC	Canopy decline coefficient (fraction per growing degree day)	Conservative ⁽¹⁾	0.01			
	Time from sowing to maturity, i.e. length of crop cycle (day)	Cultivar ⁽⁴⁾	102			
1.3 Flow	ering					
	Time from sowing to flowering (day)	Cultivar ⁽⁴⁾	65			
	Length of the flowering stage (day)	Cultivar ⁽⁴⁾	20			
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	YES			
1.4 Deve	1.4 Development of root zone					
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30			
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	Up to 2.8 m			
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.3			

I.13 Sorghum continued

2. Cro	2. Crop transpiration					
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges			
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.07			
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency,	Conservative ⁽¹⁾	0.3			
	etc.	(1)				
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	50			
3. Bio	mass production and yield formation					
3.1 Crop	o water productivity					
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	33.7			
	Water productivity normalized for ETo and CO ₂ during yield formation (as	Conservative ⁽¹⁾	100			
	percent WP* before yield formation)					
3.2 Harv	vest Index					
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	45			
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	Small			
	Excess of potential fruits (%)	Conservative ⁽²⁾	Medium - Large			
	Coefficient describing positive impact of restricted vegetative growth during	Conservative ⁽¹⁾	Very strong			
	yield formation on HI					
	Coefficient describing negative impact of stomatal closure during yield	Conservative ⁽¹⁾	Moderate			
	formation on HI					
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	25			

(1) Conservative generally applicable

(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

I.13 Sorghum continued

4. Stresses					
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges		
4.1 Soil v	water stresses				
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.15		
pexp,upper	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.70		
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0		
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.75		
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0		
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.70		
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0		
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.80		
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	5		
		Environment ⁽³⁾			
4.2 Air t	emperature stress				
	Minimum air temperature below which pollination starts to fail (cold stress)	Conservative ⁽¹⁾	10		
	(°C)	(1)			
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	40		
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	12.0		
4.3 Salin	ity stress				
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	6.8		
	lower threshold (at which soil salinity stress starts to occur)				
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	13.1		
	upper threshold (at which soil salinity stress has reached its maximum effect)				

I.14 Tef

Goodness of the calibration

٠	Non-limiting conditions	\odot	\odot
٠	Water stress conditions	\odot	\odot
٠	Geographical coverage (with respect to the world cropped areas)	\odot	
٠	Overall	\odot	

				No calibration
\odot				Minimum degree of calibration
\odot	\odot			Medium degree of calibration
\odot	\odot	\odot		Good degree of calibration
\odot	\odot	\odot	\odot	Optimum degree of calibration

I.14 Tef

1. Crop Phenology							
Symbol	Description	Type ^{(1), (2), (3), (4)}	Values / ranges				
1.1 Thre	shold air temperatures	· · · · ·					
T _{base}	Base temperature (°C)	Conservative ⁽¹⁾	10				
Tupper	Upper temperature (°C)	Conservative ⁽¹⁾	30				
1.2 Deve	lopment of green canopy cover						
cc_0	Soil surface covered by an individual seedling at 90% emergence (cm2/plant)	Conservative ⁽²⁾	0.25				
	Number of plants per hectare	Management ⁽³⁾	10,000,000				
	Time from sowing to emergence (day)	Management ⁽³⁾	14				
CGC	Canopy growth coefficient (fraction per day)	Conservative ⁽¹⁾	0.146				
CC _x	Maximum canopy cover (%)	Management ⁽³⁾	80 - 90				
	Time from sowing to start senescence (day)	Cultivar ⁽⁴⁾	75				
CDC	Canopy decline coefficient (fraction per day)	Conservative ⁽¹⁾	0.116				
	Time from sowing to maturity, i.e. length of crop cycle (day)	Cultivar ⁽⁴⁾	99				
1.3 Flow	ering						
	Time from sowing to flowering (day)	Cultivar ⁽⁴⁾	55				
	Length of the flowering stage (day)	Cultivar ⁽⁴⁾	11				
	Crop determinacy linked with flowering	Conservative ⁽¹⁾	YES				
1.4 Deve	1.4 Development of root zone						
Zn	Minimum effective rooting depth (m)	Management ⁽³⁾	0.30				
Zx	Maximum effective rooting depth (m)	Management ⁽³⁾	0.60				
	Shape factor describing root zone expansion	Conservative ⁽¹⁾	1.5				

I.14 Tef continued

2. Cro	p transpiration		
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges
Kc _{Tr,x}	Crop coefficient when canopy is complete but prior to senescence	Conservative ⁽¹⁾	1.10
	Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc.	Conservative ⁽¹⁾	0.30
	Effect of canopy cover on reducing soil evaporation in late season stage	Conservative ⁽¹⁾	60
3. Bior	mass production and yield formation		
3.1 Crop	o water productivity		
WP*	Water productivity normalized for ETo and CO ₂ (gram/m ²)	Conservative ⁽¹⁾	14.0
	Water productivity normalized for ETo and CO_2 during yield formation (as	Conservative ⁽¹⁾	100
2.2.11	percent WP* before yield formation)		
	vest Index	~ (1)	
HIo	Reference harvest index (%)	Cultivar ⁽⁴⁾	27
	Possible increase (%) of HI due to water stress before flowering	Conservative ⁽¹⁾	None
	Excess of potential fruits (%)	Conservative ⁽²⁾	Small
	Coefficient describing positive impact of restricted vegetative growth during yield formation on HI	Conservative ⁽¹⁾	Very strong
	Coefficient describing negative impact of stomatal closure during yield formation on HI	Conservative ⁽¹⁾	Small
	Allowable maximum increase (%) of specified HI	Conservative ⁽¹⁾	40

(1) Conservative generally applicable(2) Conservative for a given specie but can or may be cultivar specific

(3) Dependent on environment and/or management

(4) Cultivar specific

I.14 Tef continued

4. Stresses							
Symbol		Type ^{(1), (2), (3), (4)}	Values / ranges				
4.1 Soil water stresses							
pexp,lower	Soil water depletion threshold for canopy expansion - Upper threshold	Conservative ⁽¹⁾	0.32				
p _{exp,upper}	Soil water depletion threshold for canopy expansion - Lower threshold	Conservative ⁽¹⁾	0.66				
	Shape factor for Water stress coefficient for canopy expansion	Conservative ⁽¹⁾	3.0				
p _{sto}	Soil water depletion threshold for stomatal control - Upper threshold	Conservative ⁽¹⁾	0.60				
	Shape factor for Water stress coefficient for stomatal control	Conservative ⁽¹⁾	3.0				
p _{sen}	Soil water depletion threshold for canopy senescence - Upper threshold	Conservative ⁽¹⁾	0.58				
	Shape factor for Water stress coefficient for canopy senescence	Conservative ⁽¹⁾	3.0				
p _{pol}	Soil water depletion threshold for failure of pollination - Upper threshold	Conservative ⁽¹⁾	0.92				
	Vol% at anaerobiotic point (with reference to saturation)	Cultivar ⁽⁴⁾	6				
		Environment ⁽³⁾					
4.2 Air t	emperature stress						
	Minimum air temperature below which pollination starts to fail (cold stress) (°C)	Conservative ⁽¹⁾	8				
	Maximum air temperature above which pollination starts to fail (heat stress) (°C)	Conservative ⁽¹⁾	40				
	Minimum growing degrees required for full biomass production (°C - day)	Conservative ⁽¹⁾	11.1				
4.3 Salin	ity stress						
ECe _n	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	2 (estimated)				
	lower threshold (at which soil salinity stress starts to occur)						
ECe _x	Electrical conductivity of the saturated soil-paste extract:	Conservative ⁽¹⁾	12 (estimated)				
	upper threshold (at which soil salinity stress has reached its maximum effect)						

I.15 Dry beans

Table 15. – Calibration values for selected parameters of the Crop Data file

Description	Value	Unit			
□ Temperature					
Base temperature (T _{base})	9	°C			
Cut-off temperature (T _{upper})	30	°C			
Canopy development					
Canopy cover per seedling at 90% emergence (cc_0)	10	cm ² /plant			
Canopy growth coefficient (CGC)	11.8	%/day			
Maximum canopy cover (CC _x)	99	%			
Crop coefficient for transpiration (Kc _{Tr,x})	1.05				
Canopy decline coefficient (CDC)	0.881	%/GDD			
Time from DAP ^[1] to emergence	59	GDD			
Time from DAP to maximum Canopy	752	GDD			
Time from DAP to senescence	903	GDD			
Time from DAP to maturity	1298	GDD			
□ Flowering					
Duration of flowering	233	GDD			
Time from DAP to flowering	556	GDD			
Length building up Harvest Index	668	GDD			
Root development					
Maximum rooting depth (Zr _x)	1.7	m			
Time from DAP to maximum rooting depth	888	GDD			

□ Water stress response					
Canopy expansion p(upper)	0.15	%TAW			
Canopy expansion p(lower)	0.65	%TAW			
Canopy expansion shape factor	2.5				
Stomatal closure p(upper)	0.6	%TAW			
Stomatal closure shape factor	3.0				
Early canopy senescence p(upper)	0.7	%TAW			
Early canopy senescence shape factor	2.5				
Maximum positive effect on HI	10%				
Before flowering (+)	small				
During flowering (-)	moderate				
During yield formation (+)	none				
During yield formation (-)	very strong				
□ Production					
Reference harvest index (HI)	40	%			
Normalized water productivity (WP*)	15	g/m2			
Adjustment for yield formation	90	%			

^[1] DAP: day after planting

I.16 Casava

Reference:

Wellens, J., Raes, D., Fereres, E., Diels, J., Coppye, C., Adiele, J.G., Ezui, K.S.G., Becerra, L.A., Gomez Selvaraj, M., Dercon, G., Heng, L.K. 2022. Calibration and validation of the FAO AquaCrop water productivity model for cassava (*Manihot esculenta* Crantz). Agricultural Water Management (263), 107491.

Crop parameter	Value	Method ⁽¹⁾ of Determination
A. Conservative and/or crop specific parameters		
Base temperature (°C)	10.0	L
Upper temperature (°C)	30.0	L
Soil water depletion factor for canopy expansion (p-exp) - Upper threshold	0.25	С
Soil water depletion factor for canopy expansion (p-exp) - Lower threshold	0.60	С
Shape factor for water stress coefficient for canopy expansion	3.0	D
Soil water depletion fraction for stomatal control (p-sto) - Upper threshold	0.50	С
Shape factor for water stress coefficient for stomatal control	3.0	D
Soil water depletion factor for canopy senescence (p-sen) - Upper threshold	0.50	С
Shape factor for water stress coefficient for canopy senescence	3.0	D
vol% for Anaerobiotic point (* (SAT - [vol%]) at which deficient aeration occurs *)	5	D
Canopy growth coefficient (CGC): Increase in canopy cover (fraction soil cover per day)	0.10425	С
Canopy decline coefficient (CDC): Decrease in canopy cover (in fraction per day)	0.04100	С
Crop coefficient when canopy is complete but prior to senescence $(K_{c,Tr,x})$	0.85	С
Decline of crop coefficient (%/day) as a result of ageing, nitrogen deficiency, etc.	0.050	С
Water Productivity normalized for ETo and	17.0	С

61

Crop parameter	Value	Method ⁽¹⁾ of Determination
CO_2 (WP*) (gram/m ²)		
Possible increase (%) of HI due to water stress before start of yield formation	4	С
Coefficient of positive impact on HI of restricted vegetative growth during yield formation	4.0	С
Coefficient of negative impact on HI of stomatal closure during yield formation	10.0	С
Allowable maximum increase (%) of specified HI	15	С
B. Non-tested crop specific parameters		
Minimum growing degrees required for full crop transpiration (°C - day)	11.1	С
Minimum and maximum air temperature below which pollination starts to fail	_	NA
Response to soil fertility	-	NA
Soil salinity stress	—	NA
C. Non-conservatives and/or cultivar specific param	eters	
Calendar Days from transplanting to recovered transplant	10	E
Calendar Days from transplanting to maximum rooting depth	70	E
Calendar Days from transplanting to start senescence	300	E
Calendar Days from transplanting to maturity	360	Е
Calendar Days from transplanting to start of yield formation	80	E
Minimum effective rooting depth (m)	0.30	D
Maximum effective rooting depth (m)	1.00	L
Shape factor describing root zone expansion	1.50	D
Maximum root water extraction (m ³ water/m ³ soil.day) in top quarter of root zone	0.048	D
Maximum root water extraction (m ³ water/m ³ soil.day) in bottom quarter of root zone	0.013	D
Effect of canopy cover in reducing soil evaporation in late season stage	60	E
Soil surface covered by an individual seedling at	10.00	М

Crop parameter	Value	Method ⁽¹⁾ of Determination
90% emergence (cm ²)		
Number of plants per hectare	10,000– 15,625	М
Maximum canopy cover (CCx) in fraction soil cover	0.77-0.99	М
Building up of Harvest Index starting at root/tuber enlargement (days)	250	С
Reference Harvest Index (HIo) (%)	60	С

⁽¹⁾ Code: C: calibration; D: AquaCrop default; E: estimation; L: literature; M: measured; NA: not applicable.

I.17 Alfalfa

Reference: Raes, D., Fereres, E., García Vila, M., Curnel, Y., Knoden, D., Kale Çelik, S., Ucar, Y., Türk, M., Wellens, J. 2023. Simulation of alfalfa yield with AquaCrop. Agricultural Water Management (284), 108341. https://doi.org/10.1016/j.agwat.2023.108341.

Crop parameter	Value	Source
A. Conservative and/or crop specific parameters		
 Air temperature stress 		
T_{base} : Base temperature (°C)	5	Lit
T_{upper} : Upper temperature (°C)	30	Est
Minimum growing degrees required for full crop transpiration (GDD.day ⁻¹)	8	Est
Soil water stress		
Soil water depletion for canopy expansion - Upper threshold (fraction of TAW)	0.15	Est
Soil water depletion for canopy expansion - Lower threshold (fraction of TAW)	0.55	Est
Shape factor for water stress coefficient for canopy expansion	3.0	Default
Soil water depletion for stomatal control - Upper threshold (fraction of TAW)	0.60	Est
Shape factor for water stress coefficient for stomatal control	3.0	Default
Soil water depletion for canopy senescence - Upper threshold (fraction of TAW)	0.70	Est
Shape factor for water stress coefficient for canopy senescence	3.0	Default
Soil water stress at which deficient aeration occurs (vol% below saturation)	5	Default
Soil salinity stress		
Electrical Conductivity of soil saturation extract at which crop starts to be	2	FAO29
affected by soil salinity (dS/m)	_	
Electrical Conductivity of soil saturation extract at which crop can no longer	16	FAO29
grow (dS/m)		
Development of Crop Canopy Cover		
Canopy growth coefficient (CGC) (increase of the fraction soil cover per	0.012	Est
growing degree)		
Canopy decline coefficient (CDC) (decrease of the fraction soil cover per	0.006	Est
growing degree)		
Soil surface covered by an individual seedling at 90 % emergence (cm ²)	2.0	Est
Crop transpiration and biomass production		
Kc _{Trx} : Crop coefficient when canopy is complete but prior to senescence	1.15	Est
f_{age} : Decline of crop coefficient as a result of ageing, nitrogen deficiency, etc.	0.050	Est
(%/day)		
Water Productivity normalized for ETo and CO ₂ (gram/m ²)	15.0	Cal
	•	•
B. Non-conservatives and/or cultivar specific parameters		
Minimum effective rooting depth (m)	0.30	Default
Maximum effective rooting depth (m)	3.00	Lit
Shape factor describing root zone expansion	15	Default
Maximum root water extraction in top quarter of root zone (m ³ water/m ³	0.020	Default
soil.day)		
Maximum root water extraction in bottom quarter of root zone (m ³ water/m ³	0.010	Default
soil.day)		
Effect of canopy cover in reducing soil evaporation in late season stage	60	Default

Number of plants per hectare	2,500,000	
Maximum canopy cover (CCx) in fraction soil cover	0.95	Est

Lit: literature; Est: estimation based on authors' experience with AquaCrop; FAO56: FAO Irrigation and Drainage paper N° 56 (Allen et al., 1998); FAO29: FAO Irrigation and Drainage Paper N° 29 (Ayers and Westcot, 1985); Default: AquaCrop default values.

Annex II: Indicative values for lengths of crop development stages

Reference

Allen, R., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper N° 56. Rome, Italy. 300 p.

Crop	lnit.	Dev.	Mid	Late	Total	Plant Date	Region
	(L _{ini})	(L _{dev})	(L _{mid})	(L _{late})			
a. Small Veget	ables						
Broccoli	35	45	40	15	135	Sept	Calif. Desert, USA
Cabbage	40	60	50	15	165	Sept	Calif. Desert, USA
Carrots	20	30	50/30	20	100	Oct/Jan	Arid climate
	30	40	60	20	150	Feb/Mar	Mediterranean
	30	50	90	30	200	Oct	Calif. Desert, USA
Cauliflower	35	50	40	15	140	Sept	Calif. Desert, USA
Celery	25	40	95	20	180	Oct	(Semi)Arid
-	25	40	45	15	125	April	Mediterranean
	30	55	105	20	210	Jan	(Semi)Arid
Crucifers ¹	20	30	20	10	80	April	Mediterranean
	25	35	25	10	95	February	Mediterranean
	30	35	90	40	195	Oct/Nov	Mediterranean
Lettuce	20	30	15	10	75	April	Mediterranean
	30	40	25	10	105	Nov/Jan	Mediterranean
	25	35	30	10	100	Oct/Nov	Arid Region
	35	50	45	10	140	Feb	Mediterranean
Onion (dry)	15	25	70	40	150	April	Mediterranean
	20	35	110	45	210	Oct; Jan.	Arid Region; Calif.
Onion (green)	25	30	10	5	70	April/May	Mediterranean
-	20	45	20	10	95	October	Arid Region
	30	55	55	40	180	March	Calif., USA
Onion (seed)	20	45	165	45	275	Sept	Calif. Desert, USA
Spinach	20	20	15/25	5	60/70	Apr; Sep/Oct	Mediterranean
	20	30	40	10	100	November	Arid Region
Radish	5	10	15	5	35	Mar/Apr	Medit.; Europe
	10	10	15	5	40	Winter	Arid Region
b. Vegetables -	- Solanı	ım Family	(Solanac	eae)			
Egg plant	30	40	40	20	130\14	October	Arid Region
001	30	45	40	25	0	May/June	Mediterranean
Sweet	25/30	35	40	20	125	April/June	Europe and Medit.
peppers (bell)	30	40	110	30	210	October	Arid Region
Tomato	30	40	40	25	135	January	Arid Region
	35	40	50	30	155	Apr/May	Calif., USA
	25	40	60	30	155	Jan	Calif. Desert, USA
	35	45	70	30	180	Oct/Nov	Arid Region
	30	40	45	30	145	April/May	Mediterranean
c. Vegetables	- Cucum	ber Fami	y <i>(Cucurb</i>	oitaceae)			
Cantaloupe	30	45	35	10	120	Jan	Calif., USA
	10	60	25	25	120	Aug	Calif., USA
Cucumber	20	30	40	15	105	June/Aug	Arid Region
	25	35	50	20	130	Nov; Feb	Arid Region
Pumpkin,	20	30	30	20	100	Mar, Aug	Mediterranean
Winter	25	35	35	25	120	June	Europe
squash							
Squash,	25	35	25	15	100	Apr; Dec.	Medit.; Arid Reg.
Zucchini	20	30	25	15	90	May/June	Medit.; Europe

Table II.1 Indicative values for lengths of crop development stages for various planting periods and climatic regions

* Lengths of crop development stages provided in this table are indicative of general conditions, but may vary substantially from region to region, with climate and cropping conditions, and with crop variety. The user is strongly encouraged to obtain appropriate local information.

¹ Crucifers include cabbage, cauliflower, broccoli, and Brussel sprouts. The wide range in lengths of seasons is due to varietal and species differences.

Table II.1 continued

Crop	lnit.	Dev.	Mid	Late	Total	Plant	Region
	(L _{ini})	(L _{dev})	(L _{mid})	(L _{late})		Date	
Sweet melons	25	35	40	20	120	May	Mediterranean
	30	30	50	30	140	March	Calif., USA
	15	40	65	15	135	Aug	Calif. Desert, USA
	30	45	65	20	160	Dec/Jan	Arid Region
Water melons	20	30	30	30	110	April	Italy
water meions	10	20	20	30	80	Mat/Aug	Near East (desert)
d. Roots and Tub		20	20	30	80	Mat/Aug	Nedi Edst (desert)
Beets, table	15	25	20	10	70	Apr/May	Mediterranean
	25	30	25	10	90	Feb/Mar	Mediterranean & Arid
Conner 1	20	40	90	60	210	Rainy	Tropical regions
Cassava: year 1							ropical regions
year 2	150	40	110	60	360	season	
Potato	25	30	30/45	30	115/130	Jan/Nov	(Semi)Arid Climate
	25	30	45	30	130	May	Continental Climate
	30	35	50	30	145	April	Europe
	45	30	70	20	165	Apr/May	Idaho, USA
	30	35	50	25	140	Dec	Calif. Desert, USA
Sweet potato	20	30	60	40	150	April	Mediterranean
	15	30	50	30	125	Rainy	Tropical regions
						seas.	
Sugarbeet	30	45	90	15	180	March	Calif., USA
Sugarbeet							
	25	30	90	10	155	June	Calif., USA
	25	65	100	65	255	Sept	Calif. Desert, USA
	50	40	50	40	180	April	Idaho, USA
	25	35	50	50	160	May	Mediterranean
	45	75	80	30	230	Novembe	Mediterranean
	35	60	70	40	205	r	Arid Regions
	30	00	70	40	200	1	And neglons
	30	00	70	40	200	Novembe	
	35	00	70	40	200	-	
e. Legumes (<i>Leg</i>		ne)		40	200	Novembe r	
e. Legumes (<i>Leg</i> Beans (green)		ae) 30	30	10	90	Novembe	Calif., Mediterranean
	uminosa	ne)				Novembe r	
Beans (green)	20	ae) 30	30	10	90	Novembe r Feb/Mar Aug/Sep	Calif., Mediterranean
	20 15 20	ae) 30 25 30	30 25 40	10 10 20	90 75 110	Novembe r Feb/Mar	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates
Beans (green)	20 15 20 15	ae) 30 25 30 25	30 25 40 35	10 10 20 20	90 75 110 95	Novembe r Feb/Mar Aug/Sep May/June June	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif.
Beans (green) Beans (dry)	20 15 20 15 20 15 25	ae) 30 25 30 25 25 25	30 25 40 35 30	10 10 20 20 20	90 75 110 95 100	Novembe r Feb/Mar Aug/Sep May/June June June	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA
Beans (green) Beans (dry) Faba bean,	20 15 20 15 20 15 25 15	ae) 30 25 30 25 25 25 25 25	30 25 40 35 30 35	10 10 20 20 20 15	90 75 110 95 100 90	Novembe r Feb/Mar Aug/Sep May/June June June May	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe
Beans (green) Beans (dry) Faba bean, broad bean	20 15 20 15 25 15 25 15 20	ae) 30 25 30 25 25 25 25 30	30 25 40 35 30 35 35 35	10 10 20 20 20 15 15	90 75 110 95 100 90 100	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean
Beans (green) Beans (dry) Faba bean, broad bean - dry	20 15 20 15 25 15 25 15 20 90	ae) 30 25 30 25 25 25 30 45	30 25 40 35 30 35 35 35 40	10 10 20 20 15 15 60	90 75 110 95 100 90 100 235	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry - green	20 15 20 15 25 15 25 15 20 90 90 90	ae) 30 25 30 25 25 25 30 45 45	30 25 40 35 30 35 35 40 40	10 10 20 20 20 15 15 60 0	90 75 110 95 100 90 100 235 175	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr Nov Nov	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry	20 15 20 15 25 15 25 15 20 90	ae) 30 25 30 25 25 25 30 45	30 25 40 35 30 35 35 35 40	10 10 20 20 15 15 60	90 75 110 95 100 90 100 235	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry - green	20 15 20 15 25 15 25 15 20 90 90 90	ae) 30 25 30 25 25 25 30 45 45	30 25 40 35 30 35 35 40 40	10 10 20 20 20 15 15 60 0	90 75 110 95 100 90 100 235 175	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr Nov Nov	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram,	20 15 20 15 25 15 25 15 20 90 90 90	ae) 30 25 30 25 25 25 30 45 45	30 25 40 35 30 35 35 40 40	10 10 20 20 20 15 15 60 0	90 75 110 95 100 90 100 235 175	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr Nov Nov	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas	20 15 20 15 25 15 20 90 90 20 25	ae) 30 25 30 25 25 25 30 45 45 30 30 35	30 25 40 35 30 35 35 40 40 30 30	10 10 20 20 20 15 15 60 0 20 20 25	90 75 110 95 100 90 100 235 175 110 130	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr Nov Nov Nov March Dry	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe Mediterranean West Africa
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas	20 15 20 15 25 15 20 90 90 20 25 35	ae) 30 25 30 25 25 25 30 45 45 30 35 35	30 25 40 35 30 35 35 40 40 40 30 45 35	10 10 20 20 20 15 15 15 60 0 20 225 35	90 75 110 95 100 90 100 235 175 110 130 140	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr Nov Nov Nov March Dry season	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe Mediterranean West Africa High Latitudes
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas	20 15 20 15 25 15 20 90 90 20 25	ae) 30 25 30 25 25 25 30 45 45 30 30 35	30 25 40 35 30 35 35 40 40 30 30	10 10 20 20 20 15 15 60 0 20 20 25	90 75 110 95 100 90 100 235 175 110 130	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov Nov Nov March Dry season May	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe Mediterranean West Africa
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas Groundnut	20 15 20 15 25 15 20 90 90 20 25 35 35 35	30 25 30 25 25 25 30 45 45 30 35 35 45	30 25 40 35 30 35 35 40 40 40 30 45 35 35	10 10 20 20 15 15 60 0 20 20 20 20 25 35 25	90 75 110 95 100 90 100 235 175 110 130 140 140	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov Nov March Dry season May May/June	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe Mediterranean West Africa High Latitudes Mediterranean
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas	20 15 20 15 25 15 20 90 90 20 25 35 35 35 20	30 25 30 25 25 25 30 45 45 30 35 35 35 30	30 25 40 35 30 35 35 40 40 40 30 45 35 35 35 60	10 10 20 20 15 15 15 60 0 20 20 20 25 35 25 40	90 75 110 95 100 90 100 235 175 110 130 140 140 140	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov Nov March Dry season May May/June April	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe Mediterranean West Africa High Latitudes Mediterranean Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas Groundnut	20 15 20 15 25 15 25 15 20 90 90 90 20 20 25 35 35 35 20 25	ae) 30 25 30 25 25 25 30 45 45 30 35 35 45 30 35 35 35 35 35 35 35 35 35 35	30 25 40 35 30 35 35 40 40 40 30 30 45 35 35 60 70	10 10 20 20 20 15 15 15 60 0 20 20 20 25 35 25 40 40	90 75 110 95 100 90 100 235 175 110 130 140 140 140 140 150 170	Novembe r Feb/Mar Aug/Sep May/June June June May/Mar/Apr Nov Nov Nov March Dry season May May/June April Oct/Nov	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Europe Mediterranean West Africa High Latitudes Mediterranean Europe Arid Region
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas Groundnut	20 15 20 15 25 15 25 15 20 90 90 90 20 20 25 35 35 35 20 25 15	ae) 30 25 30 25 25 25 30 45 45 30 35 35 45 30 35 25 25 25 30 45 45 30 25 25 30 45 45 30 25 25 30 45 45 30 25 25 30 45 45 30 25 25 30 45 45 45 30 25 25 25 25 25 25 30 45 45 45 45 30 25 25 25 25 25 30 45 45 45 45 45 45 45 45 45 45	30 25 40 35 30 35 35 40 40 40 30 45 35 35 60 70 35	10 10 20 20 20 15 15 60 0 20 20 25 35 25 40 40 40 15	90 75 110 95 100 90 100 235 175 110 130 140 140 140 140 150 170 90	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr Nov Nov Nov March Dry season May May/June April Oct/Nov May	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Mediterranean West Africa High Latitudes Mediterranean Europe Arid Region Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas Groundnut	20 15 20 15 25 15 25 15 20 90 90 90 20 25 35 35 35 20 25 15 20 25 15 20 25 35 35	ae) 30 25 30 25 25 25 30 45 45 30 35 35 45 30 35 35 45 30 35 35 35 45 30 35 35 35 30 35 35 30 35 30 35 30 35 30 30 30 30 30 30 30 30 30 30	30 25 40 35 30 35 35 40 40 30 35 35 35 60 70 35 35 35	10 10 20 20 20 15 15 15 60 0 20 20 25 35 25 40 40 40 15 15	90 75 110 95 100 90 100 91 100 90 100 90 100 100 110 130 140 150 170 90 100	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov Nov March Dry season May May/June April Oct/Nov May May/Apr	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Mediterranean West Africa High Latitudes Mediterranean Europe Arid Region Europe Mediterranean
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas Groundnut	20 15 20 15 25 15 25 15 20 90 90 20 20 25 35 35 35 20 25 15 20 25 35 35	30 25 30 25 25 25 30 45 45 30 35 35 35 30 35 30 25 30 25 30 25	30 25 40 35 30 35 35 40 40 40 30 40 30 45 35 35 35 35 35 35 35 30	10 10 20 20 20 15 15 15 60 0 20 20 25 35 25 25 40 40 40 15 15 15 20	90 75 110 95 100 90 100 235 175 110 130 140 150 170 90 100 110	Novembe r Feb/Mar Aug/Sep May/June June June May Mar/Apr Nov Nov Nov March Dry season May May/June April Oct/Nov May	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Mediterranean West Africa High Latitudes Mediterranean Europe Arid Region Europe
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas Groundnut	20 15 20 15 25 15 25 15 20 90 90 90 20 25 35 35 35 20 25 15 20 25 15 20 25 35 35	ae) 30 25 30 25 25 25 30 45 45 30 35 35 45 30 35 35 45 30 35 35 35 45 30 35 35 35 30 35 35 30 35 30 35 30 35 30 30 30 30 30 30 30 30 30 30	30 25 40 35 30 35 35 40 40 30 35 35 35 60 70 35 35 35	10 10 20 20 20 15 15 15 60 0 20 20 25 35 25 40 40 40 15 15	90 75 110 95 100 90 100 91 100 90 100 100 100 110 130 140 150 170 90 100	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov Nov March Dry season May May/June April Oct/Nov May May/Apr	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Mediterranean West Africa High Latitudes Mediterranean Europe Arid Region Europe Mediterranean
Beans (green) Beans (dry) Faba bean, broad bean - dry - green Green gram, cowpeas Groundnut Lentil Peas	20 15 20 15 25 15 25 15 20 90 90 20 20 25 35 35 35 20 25 15 20 25 35 35	30 25 30 25 25 25 30 45 45 30 35 35 35 30 35 30 25 30 25 30 25	30 25 40 35 30 35 35 40 40 40 30 40 30 45 35 35 35 35 35 35 35 30	10 10 20 20 20 15 15 15 60 0 20 20 25 35 25 25 40 40 40 15 15 15 20	90 75 110 95 100 90 100 235 175 110 130 140 150 170 90 100 110	Novembe r Feb/Mar Aug/Sep May/June June May Mar/Apr Nov Nov March Dry season May May/June April Oct/Nov May May/Apr April	Calif., Mediterranean Calif., Egypt, Lebanon Continental Climates Pakistan, Calif. Idaho, USA Europe Mediterranean Europe Mediterranean West Africa High Latitudes Mediterranean Europe Arid Region Europe Mediterranean Idaho, USA

continued...

Table II.1 continued.

Сгор	Init.	Dev.	Mid	Late	Total	Plant Date	Region
	(L _{ini})	(L _{dev})	(L _{mid})	(L _{late})			
f. Perennial Vege	etables (v	vith wint	ter dorm	ancy and	d initially	y bare or mulo	hed soil)
Artichoke	40	40	250	30	360	Apr (1 st yr)	California
	20	25	250	30	325	May (2 nd yr)	(cut in May)
Asparagus	50	30	100	50	230	Feb	Warm Winter
	90	30	200	45	365	Feb	Mediterranean
g. Fibre Crops						·	
Cotton	30	50	60	55	195	Mar-May	Egypt; Pakistan; Calif.
	45	90	45	45	225	, Mar	Calif. Desert, USA
	30	50	60	55	195	Sept	Yemen
	30	50	55	45	180	April	Texas
Flax	25	35	50	40	150	April	Europe
	30	40	100	50	220	October	Arizona
h. Oil Crops							
Castor beans	25	40	65	50	180	March	(Semi)Arid Climates
	20	40	50	25	135	Nov.	Indonesia
Safflower	20	35	45	25	125	April	California, USA
	25	35	55	30	145	Mar	High Latitudes
	35	55	60	40	190	Oct/Nov	Arid Region
Sesame	20	30	40	20	100	June	China
Sunflower	25	35	45	25	130	April/May	Medit.; California
i. Cereals	-					1	
Barley/Oats/	15	25	50	30	120	Novembe	Central India
Wheat	20	25	60	30	135	r	35-45 °L
villeat	15	30	65	40	150	' March/Ap	East Africa
				-			East Amea
	40	30	40	20	130	r	
	40	60	60	40	200	July	
	20	50	60	30	160	Apr	Calif. Desert, USA
						Nov	
	0	0				Dec	
Winter Wheat	20 ²	60 ²	70	30	180	December	Calif., USA
	30	140	40	30	240	Novembe	Mediterranean
	160	75	75	25	335	r	Idaho, USA
						October	
Grains (small)	20	30	60	40	150	April	Mediterranean
	25	35	65	40	165	Oct/Nov	Pakistan; Arid Reg.
Maize (grain)	30	50	60	40	180	April	East Africa (alt.)
	25	40	45	30	140	Dec/Jan	Arid Climate
	20	35	40	30	125	June	Nigeria (humid)
	20	35	40	30	125	October	India (dry, cool)
	30	40	50	30	150	April	Spain (spr, sum.); Calif.
	30	40	50	50	170	April	Idaho, USA
Maize (sweet)	20	20	30	10	80	March	Philippines
	20	25	25	10	80	May/June	Mediterranean
	20	30	50/30	10	90	Oct/Dec	Arid Climate
	30	30	30	10 ³	110	April	Idaho, USA
	20	40	70	10	140	Jan	Calif. Desert, USA
Millet	15	25	40	25	105	June	Pakistan
	20	30	55	35	140	April	Central USA

continued...

² These periods for winter wheat will lengthen in frozen climates according to days having zero growth potential and wheat dormancy. Under general conditions and in the absence of local data, fall planting of winter wheat can be presumed to occur in northern temperate climates when the 10-day running average of mean daily air temperature decreases to 17° C or December 1, whichever comes first. Planting of spring wheat can be presumed to occur when the 10-day running average of mean daily air temperature increases to 5° C. Spring planting of maize-grain can be presumed to occur when the 10-day running average of mean daily air temperature increases to 13° C.

³ The late season for sweet maize will be about 35 days if the grain is allowed to mature and dry.

Crop	lnit.	Dev.	Mid	Late	Total	Plant Date	Region
-	(L _{ini})	(L _{dev})	(L _{mid})	(L _{late})			-
Sorghum	20	35	40	30	130	May/June	USA, Pakis., Med.
	20	35	45	30	140	Mar/April	Arid Region
Rice	30	30	60	30	150	Dec; May	Tropics; Mediterranean
	30	30	80	40	180	May	Tropics
j. Forages							
Alfalfa, total season⁴	10	30	var.	var.	var.		last -4°C in spring until first -4°C in fall
Alfalfa ⁴	10	20	20	10	60	Jan	Calif., USA.
1 st cutting cycle	10	30	25	10	75	Apr (last -4° C)	Idaho, USA.
Alfalfa ⁴ , other	5	10	10	5	30	Mar	Calif., USA.
cutting cycles	5	20	10	10	45	Jun	Idaho, USA.
Bermuda for seed	10	25	35	35	105	March	Calif. Desert, USA
Bermuda for hay (several cuttings)	10	15	75	35	135		Calif. Desert, USA
Grass Pasture ⁴	10	20					7 days before last -4°C in spring until 7 days after first -4°C in fall
Sudan, 1 st cutting cycle	25	25	15	10	75	Apr	Calif. Desert, USA
Sudan, other	3	15	12	7	37	June	Calif. Desert, USA
cutting cycles							
k. Sugar Cane							
Sugarcane,	35	60	190	120	405		Low Latitudes
virgin	50	70	220	140	480		Tropics
	75	105	330	210	720		Hawaii, USA
Sugarcane,	25	70	135	50	280		Low Latitudes
ratoon	30	50	180	60	320		Tropics
	35	105	210	70	420		Hawaii, USA
I. Tropical Fruits a	and Tre	es					
Banana, 1 st yr	120	90	120	60	390	Mar	Mediterranean
Banana, 2 nd yr	120	60	180	5	365	Feb	Mediterranean
Pineapple	60	120	600	10	790		Hawaii, USA
m. Grapes and Be	erries						
Grapes	20	40	120	60	240	April	Low Latitudes
	20	50	75	60	205	Mar	Calif., USA
	20	50	90	20	180	May	High Latitudes
	30	60	40	80	210	April	Mid Latitudes (wine)
Hops	25	40	80	10	155	April	Idaho, USA
n. Fruit Trees							
Citrus	60	90	120	95	365	Jan	Mediterranean
Deciduous	20	70	90	30	210	March	High Latitudes
Orchard	20	70	120	60	270	March	Low Latitudes
	30	50	130	30	240	March	Calif., USA

Table II.1 continued

continued...

⁴ In climates having killing frosts, growing seasons can be estimated for alfalfa and grass as: <u>alfalfa</u>: last -4°C in spring until first -4°C in fall (Everson, D.O., M. Faubion and D.E. Amos 1978. "Freezing temperatures and growing seasons in Idaho." Univ. Idaho Agric. Exp. station bulletin 494. 18 p.) <u>grass</u>: 7 days before last -4°C in spring and 7 days after last -4°C in fall (Kruse E.G. and Haise, H.R. 1974. "Water use by native grasses in high altitude Colorado meadows." USDA Agric. Res. Service, Western Region report ARS-W-6-1974. 60 pages)

Crop	lnit.	Dev.	Mid	Late	Total	Plant Date	Region
	(L _{ini})	(L _{dev})	(L _{mid})	(L _{late})			
Olives	30	90	60	90	270 ⁵	March	Mediterranean
Pistachios	20	60	30	40	150	Feb	Mediterranean
Walnuts	20	10	130	30	190	April	Utah, USA
o. Wetlands - Te	emperat	e Climat	е				
Wetlands	10	30	80	20	140	May	Utah, USA; killing frost
(Cattails,	180	60	90	35	365	November	Florida, USA
Bulrush)							
Wetlands	180	60	90	35	365	November	frost-free climate
(short veg.)							

Table II.1 continued

 5 Olive trees gain new leaves in March. See footnote 24 of Table 12 for additional information, where the K_c continues outside of the "growing period".

Primary source: FAO Irrigation and Drainage Paper 24 (Doorenbos and Pruitt, 1977), Table 22.

Annex III: Indicative values for soil salinity tolerance for some agriculture crops

References

Ayers, R.S. and D.W. Westcot. 1985. Water quality for agriculture. FAO Irrigation and Drainage Paper N° 29. Rome, Italy. 174 p.

Allen, R., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper N° 56. Rome, Italy. 300 p.

Agriculture crop	ECen	ECex	Yield decline
	dS/m	dS/m	%/(dS/m)
Extremely sensitive crops			
Apricot	1.6	5.8	24.0
Blackberry	1.5	6.0	22.0
Boysenberry	1.5	6.0	22.0
Peaches	1.7	6.5	21.0
Beans	1.0	6.3	19.0
Almonds	1.5	6.8	19.0
Sensitive crops			
Plum, prune	1.5	7.1	18.0
Strawberries	1.3	7.3	17.0
Onions	1.2	7.5	16.0
Citrus (Grapefruit)	1.8	8.1	16.0
Citrus (Orange)	1.7	8.0	16.0
Carrots	1.0	8.1	14.0
Peas	1.5	8.6	14.0
Rice	3.0	11.3	12.0
Moderately sensitive crops			
Groundnut (Peanut)	3.2	6.6	29.0
Trefoil, big	2.3	7.6	19.0
Squash (scallop)	3.2	9.5	16.0
Peppers	1.6	9.3	13.0
Pumpkin, winter squash	1.2	8.9	13.0
Lettuce	1.5	9.8	12.0
Potato	1.7	10.0	12.0
Flax	1.7	10.0	12.0
Maize	1.7	10.0	12.0
Maize, sweet corn	1.7	10.0	12.0

Table III-1. Salt tolerance⁴ of common agriculture crops with indication of the lower (ECe_n) and upper (ECe_x) thresholds⁵ for salinity stress, and the slope of reduction in crop yield with increasing salinity beyond ECe_n

⁴ The ranking is based on the ECe of the upper and lower threshold (Gullentops, C. 2010 – Introducing soil salinity in AquaCrop. Master research, Interuniversity programme in water Resources Engineering (IUPWARE), Belgium).

⁵ ECe means average root zone salinity as measured by electrical conductivity of the saturation extract of the soil. ECe_n is the lower thresholds at which crop growth starts to be affected and ECe_x is the upper threshold at which crop growth ceases.

Clover (alsike, ladino, red)	1.5	9.8	12.0
Cabbage	1.4	10.1	11.9
Spinach	2.6	12.2	11.9
Cowpea (forage)	2.5	11.6	11.0
Vetch, common	3.0	12.1	11.0
Radishes	1.6	12.0	10.3
Cucumber	1.8	12.8	10.0
Sweet potato	2.0	12.0	10.0
Brussels sprouts	1.8	12.1	9.7
Celery	2.2	14.1	9.6
Broadbean (fababean)	1.6	12.0	9.6
Foxtail	1.5	11.9	9.6
Grapes	1.5	12.0	9.6
Broccoli	2.8	13.7	9.2
Tomato	1.7	12.8	9.0
Turnip	0.9	12.0	9.0
Lovegrass	2.0	13.9	8.4
Maize (forage)	1.8	15.3	7.4
Alfalfa	2.0	15.7	7.3
Sesbania	2.3	16.6	7.0
Sphaerophysa	2.2	16.5	7.0
Cauliflower	1.8	17.9	6.2
Orchardgrass	1.5	17.6	6.2
Sugar cane	1.7	18.6	5.9
Clover, Berseem	1.5	19.0	5.7
Moderately tolerant crops			
Soybeans	5.0	10.0	20.0
Sorghum	6.8	13.1	16.0
Cowpea	4.9	13.2	12.0
Squash, Zucchini	4.7	14.7	10.0
Trefoil, narrowleaf birdsfoot	5.0	15.0	10.0
Beets, red	4.0	15.1	9.0
Hardinggrass	4.6	17.8	7.6
Rye-grass (perennial)	5.6	18.8	7.6
Wheat (Triticum aestivum)	6.0	20.1	7.1
Barley (forage)	6.0	20.1	7.1
Wildrye, beardless	2.7	19.4	6.0
Fescue	3.9	21.4	5.8

Sudangrass	2.8	26.1	4.3
Wheatgrass, standard crested	3.5	28.5	4.0
Tolerant crops			
Wheatgrass, fairway crested	7.5	22.0	6.9
Bermuda	6.9	22.5	6.4
Sugar beet	7.0	24.0	5.9
Cotton	7.7	26.9	5.2
Barley	8.0	28.0	5.0
Extremely tolerant crops			
Wheat, durum (Triticum turgidum)	5.8	28.0	4.7
Wheatgrass, tall	7.5	31.3	4.2
Date Palms	4.0	31.8	3.6
Wheat, semidwarf (T. aestivum)	8.6	41.9	3.0
Asparagus	4.1	54.1	2.0

Annex IV: ETo calculation procedures

Calculation methods listed in this annex are outlined in the FAO Irrigation and Drainage Paper n° 56 (Allen et al., 1998).

1. Atmospheric parameters

• Atmospheric pressure (P)

The atmospheric pressure, P, is the pressure exerted by the weight of the earth's atmosphere:

$$P = 101.3 \left(\frac{293 - 0.0065 z}{293}\right)^{5.26}$$
(Eq. 1)

where

P atmospheric pressure [kPa],

z elevation above sea level [m].

• Psychrometric contant (γ)

γ

The psychrometric constant, γ , is given by:

$$\gamma = \frac{c_p P}{\varepsilon \lambda} = 0.664742 x 10^{-3} P$$
 (Eq. 2)

psychrometric constant [kPa °C⁻¹], atmospheric pressure [kPa],

P atmospheric pressure [kPa], λ latent heat of vaporization, 2.45 [MJ kg⁻¹],

 c_p specific heat at constant pressure, 1.013 10⁻³ [MJ kg⁻¹ °C⁻¹],

 ε ratio molecular weight of water vapour/dry air = 0.622.

The value of the latent heat varies as a function of temperature. As λ varies only slightly over normal temperature ranges a single value of 2.45 MJ kg⁻¹ is considered in the program. This corresponds with the calculation procedure for the FAO Penman-Monteith equation. The fixed value for λ is the latent heat for an air temperature of about 20°C.

2. Air temperature

• Mean air temperature (T_{mean})

The mean air temperature is given by:

$$\Gamma_{\text{mean}} = \frac{T_{\text{max}} + T_{\text{min}}}{2}$$
(Eq. 3)

where	T_{mean}	mean air temperature [°C],
	T_{min}	minimum air temperature [°C],
	T_{max}	maximum air temperature [°C].

• Calculation rules

- if T_{max} and T_{min} are available, the mean air temperature (T_{mean}) is calculated by Eq. 3 and the specified mean air temperature is disregarded,
- if T_{mean} and only T_{max} or T_{min} are available, the missing minimum or maximum air temperature is estimated by rearranging Eq. 3,
- if T_{max} or T_{min} is missing and cannot be derived, ET₀ cannot be calculated, _
- if no temperature data is available, ETo can not be calculated.

3. Air humidity

• Saturation vapour pressure as a function of air temperature $(e^{\circ}(T))$

$$e^{0}(T) = 0.6108 \exp\left[\frac{17.27 T}{T + 237.3}\right]$$
 (Eq. 4)

where

saturation vapour pressure at the air temperature T [kPa], $e^{\circ}(T)$ air temperature [$^{\circ}C$], Т 2.7183 (base of natural logarithm) raised to the power [..]. exp[..]

• Mean saturation vapour pressure for a day, 10-day, or month (e_s)

Due to the non-linearity of Eq. 4, the mean saturation vapour pressure for a day, 10-day or month is computed as the mean between the saturation vapour pressure at the mean daily maximum and minimum air temperatures for that period:

$$e_{s} = \frac{e^{o}(T_{max}) + e^{o}(T_{min})}{2}$$
 (Eq. 5)

where

es	saturation vapour pressure [kPa],
$e^{\circ}(T_{max})$	saturation vapour pressure at the mean daily maximum air
	temperature [kPa],
$e^{\circ}(T_{min})$	saturation vapour pressure at the mean daily minimum air
	temperature [kPa].

• Slope of saturation vapour pressure curve (Δ)

For the calculation of the reference evapotranspiration, the slope of the relationship between saturation vapour pressure and temperature, Δ , is required. The slope of the curve at a given temperature is given by:

$$\Delta = \frac{4098 \left[0.6108 \exp\left(\frac{17.27 \text{ T}}{\text{T} + 237.3}\right) \right]}{(\text{T} + 237.3)^2}$$
(Eq. 6)

where Δ slope of saturation vapour pressure curve at air temperature T [kPa °C⁻¹], T air temperature [°C],

exp[..] 2.7183 (base of natural logarithm) raised to the power [..].

• Actual vapour pressure (ea) derived from dewpoint temperature

$$e_a = e^o(T_{dew}) = 0.6108 \exp\left[\frac{17.27 T_{dew}}{T_{dew} + 237.3}\right]$$
 (Eq. 7)

where	ea	actual vapour pressure [kPa],
	T_{dew}	dew point temperature [°C].

• Actual vapour pressure (e_a) derived from psychrometric data

$$e_{a} = e^{o}(T_{wet}) - \gamma_{psy}(T_{dry} - T_{wet})$$
(Eq. 8)

where

 $\begin{array}{ll} e_{a} & \mbox{actual vapour pressure [kPa],} \\ e^{\circ}(T_{wet}) & \mbox{saturation vapour pressure at wet bulb temperature [kPa],} \\ \gamma_{psy} & \mbox{psychrometric constant of the instrument [kPa °C^{-1}],} \\ T_{dry} T_{wet} & \mbox{wet bulb depression, with T_{dry} the dry bulb and T_{wet} the wet bulb} \\ temperature [°C]. \end{array}$

The psychrometric constant of the instrument is given by:

$$\gamma_{\rm psy} = a_{\rm psy} P$$
 (Eq. 9)

where a_{psy} is a coefficient depending on the type of ventilation of the wet bulb [°C⁻¹], and P is the atmospheric pressure [kPa].

• Actual vapour pressure (ea) derived from relative humidity data

The actual vapour pressure can also be calculated from the relative humidity. Depending on the availability of the humidity data, different equations are used:

For RH_{max} and RH_{min}:

$$e_{a} = \frac{e^{o}(T_{min})\frac{RH_{max}}{100} + e^{o}(T_{max})\frac{RH_{min}}{100}}{2}$$
(Eq. 10)

where

ea	actual vapour pressure [kPa],
e°(T _{min})	saturation vapour pressure at daily minimum temperature [kPa],
$e^{\circ}(T_{max})$	saturation vapour pressure at daily maximum temperature [kPa],
RH _{max}	maximum relative humidity [%],
$\mathrm{RH}_{\mathrm{min}}$	minimum relative humidity [%].

. 1

For RH_{max}:

$$e_a = e^o (T_{\min}) \frac{RH_{\max}}{100}$$
 (Eq. 11)

For RH_{mean} (Smith, 1992):

$$e_a = e^o \left(T_{mean}\right) \frac{RH_{mean}}{100}$$
(Eq. 12)

Eq. 12 differs from the one presented in the FAO Irrigation and Drainage Paper N° 56. Analysis with several climatic data sets proved that more accurate estimates of e_a can be obtained with Eq. 12 than with the equation reported in the FAO paper if only mean relative humidity is available (G. Van Halsema and G. Muñoz, Personal communication).

• Vapour pressure deficit (e_s - e_a)

The vapour pressure deficit is the difference between the saturation (e_s) and actual vapour pressure (e_a) for a given time period.

• Calculation rules

If air humidity data are missing or if several climatic parameters are available with which the air humidity can be estimated, the following calculation rules exist:

- If the mean actual vapour pressure (e_a) is missing and air humidity is specified by means of another climatic parameter, e_a is estimated from (in descending order):
 - \circ the specified mean dew point temperature T_{dew} (Eq. 7),
 - \circ the specified mean dry (T_{dry}) and wet bulb (T_{wet}) temperature (Eq. 8),
 - \circ the specified maximum (RH_{max}) and minimum (RH_{min}) relative humidity, and the specified maximum (T_{max}) and minimum (T_{min}) air temperature (Eq. 10). In case RH_{mean} and only RH_{max} or RH_{min} are available, the program estimates the missing minimum or maximum relative humidity by rearranging Eq. 13:

$$RH_{mean} = \frac{RH_{max} + RH_{min}}{2}$$
(Eq. 13)

- \circ the specified maximum (RH_{max}) and minimum (T_{min}) air temperature (Eq. 11),
- \circ the specified mean (RH_{mean}) and mean (T_{mean}) air temperature (Eq. 12).
- If no air humidity data are available, e_a is estimated by assuming that the minimum air temperature (T_{min}) is a good estimate for the mean dew point temperature (T_{dew}). Before using T_{min} in Eq. 7, the number of degrees specified in the *Data and ETo menu* (Missing air humidity in the Input data description sheet) will be subtracted from T_{min} .

4. Radiation

• Extraterrestrial radiation (Ra)

The extraterrestrial radiation, R_a , for each day of the year and for different latitudes is estimated from the solar constant, the solar declination and the time of the year by:

$$R_{a} = \frac{24 \ (60)}{\pi} G_{sc} d_{r} \left[\omega_{s} \sin(\phi) \sin(\delta) + \cos(\phi) \cos(\delta) \sin(\omega_{s}) \right]$$
(Eq. 14)

where

- R_a extraterrestrial radiation [MJ m⁻² day⁻¹],
- G_{sc} solar constant = 0.0820 MJ m⁻² min⁻¹,

d_r inverse relative distance Earth-Sun (Eq. 16),

- ω_s sunset hour angle (Eq. 18) [rad],
- φ latitude [rad] (Eq. 15),
- δ solar declination (Eq. 17) [rad].

The latitude, ϕ , expressed in radians is positive for the northern hemisphere and negative for the southern hemisphere. The conversion from decimal degrees to radians is given by:

$$\left[\text{Radians}\right] = \frac{\pi}{180} \left[\text{decimal degrees}\right]$$
(Eq. 15)

The inverse relative distance Earth-Sun, d_r , and the solar declination, δ , are given by:

$$d_{\rm r} = 1 + 0.033 \cos\left(\frac{2\ \pi}{365}\ {\rm J}\right)$$
(Eq. 16)

$$\delta = 0.409 \, \sin\!\left(\frac{2 \,\pi}{365} \,\mathrm{J} - 1.39\right) \tag{Eq. 17}$$

where J is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December).

The sunset hour angle, ω_s , is given by:

$$\omega_{s} = \arccos\left[-\tan\left(\varphi\right)\tan\left(\delta\right)\right]$$
 (Eq. 18)

• Daylight hours (N)

Reference Manual, Annex IV – AquaCrop, Version 7.1, August 2023 80

The daylight hours, N, are given by:

$$\mathbf{R}_{s} = \left(\mathbf{a}_{s} + \mathbf{b}_{s} \ \frac{\mathbf{n}}{\mathbf{N}}\right) \mathbf{R}_{a} \tag{Eq. 19}$$

$$N = \frac{24}{\pi} \omega_s \tag{Eq. 20}$$

where sunset hour angle in radians given by Eq. 18. ωs

Solar radiation (R_s)

If the solar radiation, R_s, is not measured, it can be calculated with the Angstrom formula, which relates solar radiation to extraterrestrial radiation and relative sunshine duration:

where	R _s n	solar or shortwave radiation [MJ m ⁻² day ⁻¹], actual duration of sunshine [hour],
	N	maximum possible duration of sunshine or daylight hours [hour],
	n/N	relative sunshine duration [-],
	Ra	extraterrestrial radiation [MJ m ⁻² day ⁻¹],
	as	regression constant, expressing the fraction of extraterrestrial radiation
		reaching the earth on overcast days $(n = 0)$,
	a_s+b_s	fraction of extraterrestrial radiation reaching the earth on clear days (n =
		N).

The default values for as and bs are 0.25 and 0.50. If the user has site specific information, calibrated values for as and bs can be specified in the Data and ETo menu (Calculation method and coefficients).

Clear-sky solar radiation (\mathbf{R}_{so})

The calculation of the clear-sky radiation, R_{so} , when n = N, is required for computing net longwave radiation. Depending on the option selected in the Data and ETo menu (Calculation method and coefficients) Eq. 21 or 22 is used

When adjustment for station elevation is requested:

$$R_{so} = (0.75 + 2 \ 10^{-5} \ z) R_a$$
 (Eq. 21)

where

clear-sky solar radiation [MJ m⁻² day⁻¹], Rso Ζ

station elevation above sea level [m], extraterrestrial radiation [MJ m⁻² day⁻¹]. Ra

When no adjustment for station elevation is requested (calibrated values for as and bs are available):

$$\begin{array}{l} R_{sq} = (a_s + b_s) R_{ava} \\ Reference Manual, Annex IV - AquaCrop, Version 7.1, August 2023 \\ \end{array} \tag{Eq. 22} \\ \$1 \end{array}$$

 a_s+b_s fraction of extraterrestrial radiation reaching the earth on clear-sky days (n where = N).

Net solar or net shortwave radiation (**R**_{ns}) •

The net shortwave radiation resulting from the balance between incoming and reflected solar radiation is given by:

$$\mathbf{R}_{\mathrm{ns}} = (1 - \alpha) \mathbf{R}_{\mathrm{s}} \tag{Eq. 23}$$

where

net solar or shortwave radiation [MJ m⁻² day⁻¹],

albedo or canopy reflection coefficient for the reference crop [dimensionless], α

the incoming solar radiation [MJ m⁻² day⁻¹]. Rs

If net solar radiation needs to be calculated when computing ET_o, the fixed value of 0.23 is used for the albedo in Eq. 23.

Net longwave radiation (R_{nl})

R_{ns}

$$R_{nl} = \sigma \left[\frac{T_{max,K}^{4} + T_{min,K}^{4}}{2} \right] \left(0.34 - 0.14 \sqrt{e_a} \right) \left(1.35 \frac{R_s}{R_{so}} - 0.35 \right)$$
(Eq. 24)

where	\mathbf{R}_{nl}	net outgoing longwave radiation [MJ m ⁻² day ⁻¹],
	σ	Stefan-Boltzmann constant [4.903 10 ⁻⁹ MJ K ⁻⁴ m ⁻² day ⁻¹],
	T _{max,K}	maximum absolute temperature during the 24-hour period [K = $^{\circ}C$ +
		273.16],
	$T_{min,K}$	minimum absolute temperature during the 24-hour period [K = $^{\circ}C$ +
		273.16],
	ea	actual vapour pressure [kPa],
	R_s/R_{so}	relative shortwave radiation (limited to ≤ 1.0),
	Rs	measured or calculated (Eq. 20) solar radiation [MJ m ⁻² day ⁻¹],
	R _{so}	calculated (Eq. 21, or Eq. 22) clear-sky radiation [MJ m ⁻² day ⁻¹].

When maximum and minimum air temperature are missing, $\left[\frac{T_{\max,K}^4 + T_{\min,K}^4}{2}\right]$ in Eq. 24 is

replaced by $[T_{mean,K}^4]$.

• Net radiation (**R**_n)

The net radiation (R_n) is the difference between the incoming net shortwave radiation (R_{ns}) and the outgoing net longwave radiation (R_{nl}):

> Reference Manual, Annex IV – AquaCrop, Version 7.1, August 2023 82

$$\mathbf{R}_{n} = \mathbf{R}_{ns} - \mathbf{R}_{nl} \tag{Eq. 25}$$

• Calculation rules

If sunshine or radiation data are missing or if several climatic parameters are available with which radiation can be estimated, the following calculation rules exist:

- If net radiation (R_n) is missing, R_n is cacultated by Eq. 25,
- If Rn and solar radiation (R_s) are missing, R_s is derived from (in descending order):
 - \circ the specified hours of bright sunshine n (Eq. 20),
 - the specified relative sunshine hours n/N (Eq. 20),
 - \circ the maximum (T_{max}) and minimum (T_{min}) air temperature by means of the adjusted Hargreaves' radiation formula:

$$R_{s} = k_{Rs} \sqrt{(T_{max} - T_{min})} R_{a}$$
 (Eq. 26)

where

Ra

 T_{max} maximum air temperature [°C],

extraterrestrial radiation [MJ m⁻² d⁻¹],

 T_{min} minimum air temperature [°C],

 k_{Rs} adjustment coefficient [°C^{-0.5}].

The value for the adjustment coefficient k_{Rs} is specified in the *Data and ETo menu* (Missing radiation data in the Input data description sheet). Indicative default values are 0.16 for interior locations and 0.19 for coastal locations.

5. Wind speed

Adjustment of wind speed to standard height

To adjust wind speed data obtained from instruments placed at elevations other than the standard height of 2 m:

$$u_2 = u_z \frac{4.87}{\ln(67.8 z - 5.42)}$$
 (Eq. 27)

where

 u_2 wind speed at 2 m above ground surface [m s⁻¹],

 u_z measured wind speed at z m above ground surface [m s⁻¹],

z height of measurement above ground surface [m].

• Missing wind speed data

If wind speed data is missing, the default value for u_2 specified in the *Data and ETo menu* (Missing wind speed in the Input data description sheet) is used.

6. Reference evapotranspiration (FAO Penman-Monteith)

The relatively accurate and consistent performance of the Penman-Monteith approach in both arid and humid climates has been indicated in both the ASCE and European studies. The FAO Penman-Monteith equation (Allen et al., 1998) is given by:

$$ET_{o} = \frac{0.408\Delta(R_{n} - G) + \gamma \frac{900}{T + 273}u_{2}(e_{s} - e_{a})}{\Delta + \gamma(1 + 0.34u_{2})}$$
(Eq. 28)

where	ET_{o} R_{n} G T u_{2} e_{s} e_{a} $e_{s}-e_{a}$ Δ	reference evapotranspiration [mm day ⁻¹], net radiation at the crop surface [MJ m ⁻² day ⁻¹], soil heat flux density [MJ m ⁻² day ⁻¹], mean daily air temperature at 2 m height [°C], wind speed at 2 m height [m s ⁻¹], saturation vapour pressure [kPa], actual vapour pressure [kPa], saturation vapour pressure deficit [kPa], slope vapour pressure curve [kPa °C ⁻¹], psychrometric constant [kPa °C ⁻¹]
	γ	psychrometric constant [kPa °C ⁻¹].

In Eq. 28, the value 0.408 converts the net radiation R_n expressed in MJ/m².day to equivalent evaporation expressed in mm/day. Because soil heat flux is small compared to R_n , particularly when the surface is covered by vegetation and calculation time steps are 24 hours or longer, the estimation of G is ignored in the ETo calculator and assumed to be zero. This corresponds with the assumptions reported in the FAO Irrigation and Drainage Paper n° 56 for daily and 10-daily time periods. Allen et al. (1989) state that the soil heat flux beneath the grass reference surface is relatively small for that time period.

84

7. Conversion to standard metric unit

To convert a value (A) expressed in a non-standard unit to a value (Y) expressed in the standard metric unit, the following equations are used in the software:

• Temperature: standard unit is degree Celsius

Temperature unit	Equation to convert to standard unit (°C)
degree Fahrenheit (°F)	$Y \circ C = (A \circ F - 32) 5/9$

• Vapour pressure: standard unit is kilo Pascal

Vapour pressure unit	Equation to convert to standard unit (kPa)
millibar	\boldsymbol{Y} kPa = 0.1 \boldsymbol{A} mbar
pound per square inch (psi)	Y kPa = 6.89476 A psi
atmospheres (atm)	Y kPa = 101.325 A atm
millimetre of mercury (mmHg)	<i>Y</i> kPa = 0.133322 <i>A</i> mmHg

• Wind speed: standard unit is meter per second (m/s)

Wind speed unit	Equation to convert to standard unit (m/s)
kilometre per day (km/day)	Y m/s = (A / 86.40) km/day
nautical mile/hour (knot)	Y m/s = 0.5144 A knot
foot per second (ft/s)	Y m/s = 0.3048 A ft/sec

• Radiation: standard unit is megajoules per square meter per day (MJ/m².day)

Radiation unit	Equation to convert to standard unit (MJ/m ² .day)
watt per m^2 (W/m ²)	$Y \mathrm{MJ/m^2.day} = 0.0864 A \mathrm{W/m^2}$
joule per cm ² per day (J/cm ² .day)	Y MJ/m ² .day = 0.01 A J/cm ² .day
equivalent evaporation (mm/day)	$Y \text{ MJ/m}^2.\text{day} = 2.45 A \text{ mm/day}$
calorie per cm ² per day (cal/cm ² .day)	Y MJ/m ² .day = 4.1868 10 ⁻² A cal/cm2.day

• Evapotranspiration: standard unit is millimeter per day (mm/day)

Evaporation unit	Equation to convert to standard unit (mm/day)
equivalent radiation in megajoules per square metre per day (MJ/m ² .day)	Ymm/day = 0.408 A MJ/m ² .day

References

Allen, R., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper N° 56. Rome, Italy.

Hargreaves, G.H. 1994. Defining and using reference evapotranspiration. Journal of Irrigation and Drainage Engineering. Vol 120 (6): 1132 - 1139.

Smith, M. 1992. CROPWAT - a computer program for irrigation planning and management. FAO Irrigation and Drainage Paper N°46. Rome, Italy.

86