SYNOPSIS OF BIOLOGICAL DATA ON THE BREAM

Alopamis lorama (Linnaeus, 1758)

Prepared by
T. Backiel and J. Zawisza

DOCUMENTS OF THE FISHERY RESOURCES AND EXPLOITATION DIVISION OF FAO DEPARTMENT OF FISHERIES

Documents which are not official FAO publications are issued in several series. They are given a restricted distribution and this fact should be indicated if they are cited. Most of them are prepared as working papers for meetings, or are summaries of information for use of member governments, organizations, and specialists concerned.

Special groups of synopses are identified by symbols followed by classification numbers based on indexed code of "Current Bibliography":

SAST Data concerning certain species and fish stocks.

MAST Information on methods and subjects.

OT Oceanographic data.
IT Limnological data.
and
CART Information concerning fisheries and resources of certain countries and regions (FID/S).

DOCUMENTS DE LA DIVISION DES RESSOURCES ET DE L'EXPLOITATION DES PECHES DU DEpartement des peches de la FAO

Des documents qui ne figurent pas parmi les publications officielles de la FAO sont publiès dans diverses séries. ils font seulement l'objet d'une distribution restreinte, aussi convient-il de le préciser lorsque ces documents sont cités. Il s'agit le plus souvent de documents de travail préparés pour des réunions, ou de rèsumés d'information à l'intention des gouvernements des pays membres, ainsi que des organisations et spėcialistes intéressès. Ces sėries sont les suivantes:

FAO Fisheries Report	FR/R (No.)
FAO Fisheries Circular	FR/C (No.)
FAO Fisheries Synopsis	FR/S (No.)

Des catégories spéciales de synopses sont identifièes à l'aide de symboles suivis des chiffres de classification basés sur le code d'indexation de la "Current Bibliography":

SAST Donnėes sur certaines espėces et populations de poissons.

MAST Renseignements sur des méthodes et des sujets.

OT Donnėes ocėanographiques.
IT Données limnologiques. et

CART Renseignements sur les pêcheries et les ressources de certains pays et régions (FD / S).

DOCUMENTOS DE LA DIRECCION DE RECURSOS PESQUEROS Y EXPLOTACION DEL DEPARTAMENTO dE PESCA de la fao

Esta Subdirección publica varias series de documentos que no pueden considerarse como publicaciones oficiales de la FAO. Todos ellos tienen distribución limitada, circunstancia que debe indicarse en el caso de ser citados. La mayoria de los titulos que figuran en dichas series son documentos de trabajo preparados para reuniones o resúmenes de información destinados a los estados miembros, organizaciones y especialistas interesados.

Grupos especiales de sinopsis se distinguen con las siglas siguientes, seguidas por números de clasificación que se basan en las claves de los indices de la "Current Bibliography".

SAST Datos relativos a ciertas especies y poblaciones.

MAST Sinopsis sobre métodos y materias.

OT Sinopsis sobre oceanografia.
IT Sinopsis sobre limnologia. y

CART Información sobre los recursos acuaticos vivos de algunos paises y regiones (FID/S).

Special groups of Technical Papers are identified by:

RE Indexed lists of experts and institutions drawn from Registers maintained by the Fishery Resources and Exploitation Division.

CB Lists of periodicals, special sections of "Current Bibliography for Aquatic Sciences and Fisheries," special bibliographies and papers concerning documentation problems.

MFS Provisional editions of "FAO Manuals in Fisheries Science."

Some documents also have another identification, if, for example, they have been contributed to a meeting for which papers have been numbered according to another system.

Des catégories spéciales de documents techniques sont identifièes à l'aide des symboles suivants:

RE Listes indexees d'experts et institutions tirėes des registres tenus à jour par la Division des ressources et de l'exploitation des péches.
CB Listes de périodiques, des sections spéciales de la «Current Bibliography for Aquatic Sciences and Fisheries», des bibliographies particulières et des articles sur les problemes de documentation.

MFS Editions provisoires des "Manuels FAO de science halieutique".

Certains documents portent d'autres numèros d'identification, par exemple, s'ils ont èté prèparès pour une réunion dont les documents ont ète marquès à l'aide d'un autre système.

Grupos especiales de documentos técnicos se identifican por las siglas siguientes:

RE	Listas indices de expertos y de instituciones tomadas de los registros que se lievan en la Dirección de Recursos Pesqueros y Explotación.
CB	Listas de periódicos, secciones especiales de la «Current Bi bliography for Aquatic Sciences and Fisheries", bibliografias especiales y trabajos relativos a los problemas de documentación.
MFS	Ediciones provisionales de los "Manuales de la FAO de Ciencias Pesqueras".

Algunos documentos tienen también otra identificación si, por ejemplo, son contribuciones a una reunión cuyos documentos han sido marcados con arreglo a otros sistemas.

SYNOPSIS OF BIOLOGICAL DATA ON THE BREAM
Abramis brama (L_{0})

Prepared by

T. BACKIEL and Jo ZAWISZA

Inland Fisheries Institute
Poland

This synopsis of biological data on the bream has been prepared to fulfil the Program of Work established at the Second Session of EIFAC，Paris，May 1962．

The authors have the pleasure of acknowledging the cooperation of Dr．M．Gasowska， Zoological Institute，PoloAcoScie，who helped in writing chapters 1 and 2，and Dr．J．Grabda，Center for Combating Fish Diseases，Olsztyn，who prepared section 3．35． Special thanks should go to the persons listed below who have supplied valuable data， not published elsewhere，summarized in Tables XXII and XXVII．

Mr．K．Apostolski，
Fisheries Institute of S．A．Macedonia，Yugoslavia
Mr ．J．Dahl．
Dr．W．Einsele，
Dr。Entz Bela，
Mr．A．E．Hofstede，
Prof．Mo Huet，
Dr．I．Ivanov，
Denmarks Fiskeri－Og Havundersgelser，Denmark
Bundesinstitut fir Gewässerforschung und Fischereiwirtschaft， Austria
Biologisches Forschungsinstitut，Hungary
Inland Fisheries Inspection，Netherlands
Station des Recherches des Eaux et Forêts，Belgium
Mr．K．W．Jensen，
Institut za Rybarstro i Rybna Promyshlemnost，Bulgaria
Fisheries Research Officer，Norway
Mr．E。D。LeCren，
Freshwater Biological Association，England
Dro Ho Mann，
Mr．HoVe Mentzel，
Mr。K。A．Pyefinch，
Bundesforschungsanstalt fur Fischerej，Hamburg，FoRo Germany
Institut fur Binnenfischerei，Berlin，D．R．Germany
Freshwater Fisheries Laboratory，Scotland
Institute Freshwater Research，Sweden
Bureau of Fisheries Investigations，Finland
N．Io Sasserson
Miv．V．Sjöblom，
Dr．FoW．Tesch，
Mr．P．Tombleson，
Biologische Anstalt，Helgoland，FoR．Germany
＂Angling Times＂，Peterborough，England
Mr．E．D．Toner，Fisheries Division，Eire
Dro W。Bo Ziemiankowski，Statiunea Experimentala Stuficola Delta Dunarii，Malitic， Roumania

Our appreciation of Mr．and Mrs．W．Rumszewicz＇s translation must be expressed．
We also extend our thanks to Dr．DoI．Williamson of the Marine Biological Station， Port Erin，Isle of Man，for his help in the technical editing．

Distribution

Author
FAO Department of Fisheries
FAO Regional Fisheries Officers
Regional Fisheries Councils and Commissions Selector 2
＂Current Bibliography＂entry
Backiel，T．\＆J．Zawisza 13－6F084
（1968）
FAO Fish．Synops．，（36）：pag．var．
Synopsis of biological data on the bream Abramis brama（ I_{0} ）

Taxonomy．Morphology．Distribution． Lipe history．Population structure． Exploitation．Management．Culture．

CONTERTS

Page No.IDENTITY$1: 1$
1.1 Nomenclature 81
1:11 Valid names :1
1:12 Objective symonymy 81
1.2 Taxonomy :1
1.21 Affinities $: 1$
1.22 Taxonomic status : 1
1.23 Subspecies 85
1.24 Standard common names, vernacular names : 5
1.3 Morphology :7
2.31 External morphology :7
1.32 Cytomorphology :7
1.33 Protein specificity :7DISTRIBUTION2:1
2.1 Total area 81
2.2 Differential distribution :1
2.21 Spawa, larvae and juveniles : 1
2.22 Adults :1
2.3 Doterminants of distribution :1
2.4 Hybridization :1
2.41 Hybrids : 1
2.42 Influence of natural hybridization in ooology and morphology*
3 BIONOMICS AND LIFT HISTORY 3:1
3.1 Reproduction : 1
3.11 Sexuality :1
3.12 Maturity :1
3.13 Mating :1
3.14 Fertilization :1,
3.15 Gonads $: 1$
3.16 Spowning :4
3.17 Spawn 89
3.2 Pre-adult phase 3:9
3.21 Embryonic phase :9
3.22 Larval phase : 13
3.0 23 Adolescent phase :18
3.3 Adult phase, mature figh :18
3.31 Longevity : 18
3.32 Hardiness : 22
3.33 Competitors : 22
3.34 Predators : 22
3.35 Parasites, diseases, injuries and abnormalities 822
3.4 Nutrition and growth : 29
3.41 Feeding : 29
3.42 Food : 3I
3.43 Growth rate :31
3.44 Metabolism :46
3.5 Behaviour : 46
3.51 Migrations and local movements : 46
3.52 Schooling : 46
3.53 Responses to stimuli 846
4 POPULATION 4:1
4.1 Structure :1
4.11 Sex ratio :I
4.12 Age composition :1
4.13 Size composition $: 1$
4.2 Abundance and density $: 6$
4. 21 Average abundance $: 6$
4.22 Changes in abundance $: 6$
4.23 Average density : 8
4.24 Changes in density $: 8$
4.3 Natality and recruitment :10
4.31 Reproduction rate 810
4.32 Factors affecting reproduction : 10
4.33 Recrui tment :10
FRi/S36 Abramis brama iii.
4.4 Mortality and morbidity 4:10
4.41 Mortality rates $: 10$
4.42 Factors causing or affecting mortality : 14
4.43 Factors affecting morbidity :14
4.44 Relation of morbidity to mortality rates*
4.5 Dynamics of population (as a whole) $: 14$
4.6 The population in the community and the ecosystem :15
5 EXPLOITATION $5: 1$
5.1 Fishing equipment :1
5.11 Gears $: 1$
5.12 Boats $: 1$
5.2 Fishing areas 81
5.21 General geographic distribution $: 1$
5.22 Geographic ranges $: 1$
5.23 Depth ranges :1
5.24 Conditions of the grounds $: 1$
5.3 Fishing seasons $: 4$
5.31 General pattern of season(s) :4
5.32 Dates of beginning, peak and end of.season(s) $: 4$
5.33 Variation in date or duration of season $: 4$
5.4 Fishing operations and results $: 4$
5.41 Effort and intensity $: 4$
5.42 Selectivity $: 4$
5.43 Catches :4
PROTECTION AND MANAGEMENT $6: 1$
6.1 Regulatory (legislative) measures $: 1$
6.11 Limitation or reduction of total catch :1
6.12 Protection of portions of populations :1
6.2 Control or alternation of physical features of the environment 81
6.21 Regulation of flow $: 1$
6.22 Control of water levels :1
6.23 Control of erosion and silting :1
6.24 Fishways at artificial and natural obstructions : 1
6.25 Fish sereens 681
6.26 Improvement of spawning grounds 81
6.27 Habitat improvement*
6.3 Control or alteration of chemical features of the environment :4
6.31 Water pollution control :4
6.32 Salinity control :4
6.33 Artificial fertilization of waters*
6.4 Control or alteration of the biological featuxes of the environment $: 4$
6.41 Control of aquatic vegetation*
6.42 Introduction of fish foods, (plant, invertebrate, forage fishes) : 4
6.43 Control of parasites and diseases $: 4$
6.44 Control of predation and competition $: 4$
6.45 Population manipulation :4
6.5. Artificial stocking 84
6.51 Maintenance stocking 84
6.52 Transplantation and introduction 84
7 POND FISH CULTURE 781
7.1 Procurement of stock 81
7.2 Genetic selection of stocks 81
7.3 Sparming 81
7.4 Holding of stock :1
7.5 pond management :1
7.6 Foods and feoding*
7.7 Disease end parasite control :1
7.8 Harvost $: 1$
7.9 Trangnort $: 1$
8 REFERMNCES $8: 1$

1 IDENTITY
1．1 Nomenolature
1.11 Valid names

Cyprinus brama Limaeus，1758， Systema Naturae，10th Ed．

Abramis brama（Linnaeus）：Cuvier，1817， Regne Anim．，II

1.12 Objective synonymy

There are no junior objective synonyms of the name．

Abramis brama（I）．An objective synonym of one of its subspecies is given in section 2.23.

1．2 Taxonomy
1．21 Affinities
Suprageneric
Phylum Vertebrata
Subphylum Craniata Superclass Gnathostomata Series Pisces Class Teleostomi Subclass Actinopterygil Order Cypriniformes Suborder Cyprinoidei Family Cyprinidae

Generic
Abramis Cuvier， 1817
The generic cone opt adopted here is that of Berg（1949）。

Body laterally strongly compressed．Phe－ ryngeal teeth in one row 5－5，sporadically 6－5 or $5-6$ ，their crowns compressed and oblique with a groove on the masticating surface．A scale－ less keel on the belly；a scaleless furrow a－ long the edge of the back，from head to dorsal fin；no keel behind the dorsal fin．Dorsal fin begins behind the vertical line drawn from the base of ventral fins，ray formula D III 8－10； anal fin long，begins before a vertical line drawn from the end of the dorsal fin，ray form mula A III 15－44．Scales strongly attached to the skin．Lateral line slightly convex ven－ trally，without sharp curves．Mouth small，up－ per jaw protractile。

According to Berg（1949），this genus contains the four species：A．brama（L．），A．Sapa（Pallas） A．ballerus（ L_{0} ）and A．melanops Heckol ．How－ ever Karaman 1924 （in Berg，1949；in Drenski， 1951）put the last species in the genus Vimba； if this is done，the generic definition should be modified to．Anal fin III 21－44．

Specific
Abramis brama（Linnaeus，2758）（Fig．1）
Type locality：Gulf of Finland
Diagnosis：Fin formula D III $9(10)$ ， A III（23）24－30；L．I．49－60；gillraker count 17－25，vertebral count 38－46．Body deep，maximum height $35-40$ percent of stan－ dard length．（Tables I and II）．

Subjective synonymy

Cyprinus rarens Limnaeus，1758，placed in synonymy in Siebold（1863）as description of young specimens．

Abramis microlepidotus Agassiz，1835；and
Abramis argyreus Agassiz，1835，both placed in synonymy in Siebold（1863）；reasons dis－ cussed．

Abramis vetula，Heckel，1835，placed in syno－ nymy in Siebold（1863）and Blanchard（1880）： reasons discussed．

Abramis gehini Blancherd， 1880 ，placed in synonymy in Moreau（1881）as a＂variety＂of A． brame．

Key to the species of Abramis simplified （from Berg，1949）．

1 （6）Anal fin more than 20 soft rays．
2 （3）Anal fin less than 30 soft rays．La－ teral line less than 60 scales．．．

A．brama（L）

3 （2）Anal fin more than 30 soft rays．
4 （5）Lateral line less than 60 scales ．．．

> A.sapa (Pall.)

5 （4）Lateral line more than 60 scales ．．． A．ballerus（L．）
6 （1）Anal fin 20 or less soft says．
7 （8）Dorsal fin usually $9-10$ soft rays ．．． hybrid of bream and rozch

8 （7）Dorsal fin usually 8 soft reys．Balkan Peninsula ．．．A．nelanops Heckel．

1．22 Taxonomic status
This is a well defined species by morpho－ logical as well as by breedinc data（cf．hy－ brids，section 2．4）．It seens to be polytypic． No published analysis of this subjoct is avail－ able。

Figure 1. The bream, Abramis brama (Linnaeus).

Table II
Morphometric charsoters of Abramis brama (Lo), expressed as percentages of standard length; values in upper rom for males, in lower row for Semales
(After Shaposhnikova, 1948, and Paviov, 1956)

Features	Abramis brama brama (I_{0}) Gule of Finland	$\begin{aligned} & \frac{\text { Abramis }}{\text { Orientalis }} \frac{\text { brama }}{\text { Berg }} \\ & \text { Aral Sea } \end{aligned}$	```Abramis brama danubil Yalpukb Lake (males and females combined)```
Depth of body	$\begin{aligned} & 37.00 \\ & 37.62 \end{aligned}$	$\begin{aligned} & 38.84 \\ & 39.58 \end{aligned}$	34.77
Depth of caudal peduncle	$\begin{aligned} & 9.68 \\ & 9.56 \end{aligned}$	$\begin{aligned} & 10.72 \\ & 10.36 \end{aligned}$	9.79
Antedorsel distance	$\begin{aligned} & 56.63 \\ & 58.28 \end{aligned}$	$\begin{aligned} & 58.62 \\ & 58.50 \end{aligned}$	56.57
Distance $P=V$	$\begin{aligned} & 24.13 \\ & 24.95 \end{aligned}$	$\begin{aligned} & 22.96 \\ & 24.30 \end{aligned}$	22.57
Length of P	$\begin{aligned} & 19.37 \\ & 19.04 \end{aligned}$	$\begin{aligned} & 21.08 \\ & 20.14 \end{aligned}$	20.31
Base of D	$\begin{aligned} & 12.54 \\ & 12.28 \end{aligned}$	$\begin{aligned} & 13.54 \\ & 13.25 \end{aligned}$	13.30
Height of D	$\begin{aligned} & 20.05 \\ & 20.56 \end{aligned}$	$\begin{aligned} & 26.16 \\ & 24.92 \end{aligned}$	22.43
Length of head	$\begin{aligned} & 21.37 \\ & 21.38 \end{aligned}$	$\begin{aligned} & 22.20 \\ & 22.06 \end{aligned}$	21.76
Length of caudal peduncle	$\begin{aligned} & 15.19 \\ & 15.14 \end{aligned}$	$\begin{aligned} & 13.52 \\ & 13.68 \end{aligned}$	13.72

1.23 Subspecios

Abramis brama orientalis Bergg 1949。
Synonym (objective): Abramis brama bergi Grib and Vernidub, 1935, placed in synonymy in Berg (1949) as nomen preocupatum.

Type localitys Aral Sea.
It occurs in the basins of the Caspian and Aral Seas.

Abramis brama danubil Pavlov, 1956.
Typo locality: Yalpukh Lake and Kitai Lake in the Danube Estuary.

It ocours in the Danube Estuary, Balon (1961, 1962, 1964), Banarescu (1964) and Pacak (1962) used the name of this subspecies for the bream of the Danube River.

The atatistical analysis of bream's characters applied by Pavlov (1956) may raise reservations. He used Pravdin's (1939) methods, but, on the cxiteria of Mayx, Linsley and Usinger (1953), a number of features cannot be considered different enough to be subspecific (Gasowska, MS).

For subspecific characteristics see Tables I and II。

1.24 Standard common names; vernacular names

Table III
Standard common and vernacular names
(After Antipe, 1909, Stoinmann, 1948, and others)

Country	Standard common names	Vernacular names
Austria	Brachsen	Brasse, Scheibpleinzen
Belgium	Brème	
Bulgaria	Platika	Diverika
Czechoslovakia	Cejn velky	Pleskác vysoky, lesü
Denmark	Brasen	
Fngland	Bream	
Finland	Lahna	
France	Bréme commune	Brame, Bramme, Brasem
Greece	Lestia	Lestika
Germany	Bracksen	Blei, Brassen, Breitling
Hungary	Dévér Keszeg	Durda
Netherlands	Bley	
Nowway	Brasme	Brase
Poland	Leszcz	
Roumania	Platica	Platicuta, Carjanca, Carjencuta, Albitura, Ciabac, Leşt
Sweden	Brazen	
Switzerland	Brachsmen	Steibrachse, Blei, Breiteln, Braese, Blagge Brème, Cormontant, Platton, Bracsele
Turkey	Ciapac balac	
$\begin{aligned} & \text { U. S.S.R. } \\ & \text { (in Russian) } \end{aligned}$	Leshch	Tsebak, Liashch, Laskir

1.3 Morphology
1.31 External morphology

Some morphological data are given in Table II.

Geographic variation small
(Shaposhnikova, 1948).
Morphological changes with growth: in juvenile and adolescent phases length/depth ratio decreases with growth. Quantitative data not available (of. section 3.2).

1.32 Cytomorphology

Lieder (1954) studied chromosomes of roach (Rutilus rutilus) and of the hybrid roach x bream (male): since the hybrid had a similax chromosome count ($2 n=52$) to the roach he concluded that bream also had 52 diploid chromosomes.

1.33 Protein specificity

Schumann (1959) made use of electro phoresis to study haemoglobins of some fish species including bream. He found that bream Hb was dual and that the migration velocity of Hb fractions was specific.

2．1 Total area

Bream occurs in fresh and brackish waters of Iurope，off the northwestern part of Asia Minor and in the drainage areas of Caspian and Aral Seas．（Berg 1949； Banarescu，1964s Stephanidis，1937； Ladiges，1960\＆Nimann，1962）．The natural distribution area has been onlarged easto wards by transplantation（see section 6．52） Fig． 2.

2．2 Differential distribution

2． 21 Spawn，larvae and juveniles
Demersal oggs，adhesive，deposited on hydrophytes in shallow waters，mostly at the depths of $20-80 \mathrm{~cm}$ ．（for detail see section 3．16）。

Larvae remain in shallow water near their hatching place．When they are about 20 mm ，juveniles start feeding at the bottom and move away from the shore．At that time （June and July）Ao brama orientalis starts its downstream runs to bxeckish waters（cf． section 3．22）．

2．22 AduIts

Feeding individuals remain dispersed at the bottom，far from shores．Before winter they gather in schools．Early in spring A．brama orientalis and the bream of the Sea of Azov begin their spawning migration upstream （cf．sections 3.5 and 5．31）．

2．3 Determinants of distribution

The lethal temperature for southern bream is $33-34^{\circ} \mathrm{C}$（Shkorbatov，1964）．For larvae， 2 weeks old，raised in aquaria at $30^{\circ} \mathrm{C}$ ，the lethal temperature was $37-39^{\circ} \mathrm{C}$ （Horoszewicz，unpublished data）．During embryonic development the temperature of $28-31^{\circ} \mathrm{C}$ proved to be lethal（of section 3．21）．Alabaster（1964）recorded 50 percent survival for 1000 min at $30.2^{\circ} \mathrm{C}$ and 100 min at $31.8^{\circ} \mathrm{C}$ ，（Backiel）in bream acclimatized at $20^{\circ} \mathrm{C}$ 。

Oxygen．Lethal oxygen contents are $1.8-1.9 \mathrm{mg} \mathrm{O} / 1$ for Larvae（Kuznetsovas 1,958 ）and $5 \mathrm{mg} \mathrm{O}_{2} / 1$ for ombryos（Iurovitski1， 1961）．In the case of mature bream，accorm ding to Privolhev and Koroleva（1953），it is $0.3 \mathrm{mg} \mathrm{O}_{2} / 1$ at a temperature of $20^{\circ} \mathrm{C}$ ． Alabaster and Robertson（1961）observed prom nounced restlessness among bream at an oxycen content of $1-1.5 \mathrm{mg} / 2$.

Salinity．The highest salinity at which bream occur in the Soa of Azov is 12．90／00（Karpevich，1955）．Bream eges caa be fortilized in the Aral Sea at a salinity of 10.2%（cr．section 3.21 ）。

Water flow．Bream are not found in the rivers with strong currents（Backiel，1956： Berg 1949；Shaposhnikova，1950）．Aslanova （1952）found that bream $24-35 \mathrm{~cm}$ long could resist a current of $16 \mathrm{~cm} / \mathrm{sec}$ for up to 3 h 30 minutes when immature but only up to 30 minutes when fully mature．

It seems that the natural distribution of bream is limited by the conditions neces－ sary for their reproduction and embryonic development：maximum temperature not higher than $28^{\circ} \mathrm{C}$ ，high oxygen content，salinity up to 2.8% and up to $10 \% 0$ in the case of the A．b．orientalis，sentle water flow．

2.4 Hybridization

2．41 Hybrids

－frequency of hybridizationg species with which hybridization occurss methods of hybridization．

Rutilus rutilus（ L_{0} ）\times Abramis brama（ L_{0} ）
This cross was described by Heckel as Abramis leuckartili junior synonyms are Abramis heckelii Selys Lonschamps，1842， and Leuciscus buggenhagii（Valanciennes， 1844 （Nikoliuking 1952）．Siebold（1863） named this cross Abramidopsis leuckartij （Heckel）but he was aware that it was a hybrid of the roach and bream．Berg（1949） described it as a cross and gave its characteristics．Nikoliukin（1952）thorough Iy examined specimens of this hybrid from natural waters and from artificial fertilization．

Characteristics：D III（IV）9－10（II）， AIII（IV？）（13） $14-20$ ，P I $15-16$ ，V II 8 ， C 19，L． 1 44－55 2－12，pharyngeal teeth in 5－6
one or two rows，vertebrse usually 41－44． Keel complete or only half of it is present． Females preponderate over males among sexu－ ally mature individuals（Nikoliukin，1952）．

Abramis brame（ L_{0} ）I
 Scardinius erythrophthalmus（ L_{0} ）

Nikoliukin（1952）stated that Long champs found the above cross in ponds in 1887．Regan（1908）described this hybrid

Figura 2. Geographical distribution of bream (after Banaresou, 1960, supplemented by date in Wimann, 1962, and Ladiges, 1960 dotted line).
from 12 individuals from Ireland and England. Nikoliukin (1952) reared specimens of this cross to an age of five years. The characteristic features given by him are similar to those described by Longchamps and Regan.

Characteristics: externally the hybrid resembles something between the rudd and bream. D III (7) $8=9(10)$, A III (IV) $15-18$, L. 145^{-51} 9-11, vertebrae 41-43, pharyngeal $74 / 5-6$
teeth usually in two rows.
Blicca bjoeriena (L_{0}) x Abramis brama (L_{0})
According to Nikoliukin (1952) this hybrid was described by Knaute in 1896. Nikoliukin (1952) raised individuals from artificial fertilization until they were 5 years old. Zhukov (1958) obtained one specimen from the Nemen River. According to Nikoliukin (1952) the characteristics of the hybrid are: D 8(9), A (20) 21-25, L. 1 48-53, gill rakers 18-22, vertebrae 43, pharyngeal teeth $1.5=5.1$. In contrast to the bream, there is no scaleless furrow on the back.

Alburnus alburnus (L_{0}) x
Abramis brama (Lo)
Specimens obtained by Nikoliukin (1952) from axtificial fertilizations survived for up to two years. This hybrid can hardly be distinguished from that of

$$
\text { Ao alburnus } x \text { Blicca bjoerkna. }
$$

Nikoliukin (1952) also crossed the bream with Gobio gobio (L_{0}), Tinca tinca (L_{0}), Cyprinus carpio (L_{0}) and Carassius carassius (L.) but in each case either the embryos or larvae did not survive. He also unsuccesse fully crossed the bream with Perca fluviatilis (L_{0}) , Lucioperca lucioperca ($\overline{\mathrm{L}}$) and Acerina cernua (L.)。

3 BIONOMICS AND IIFE HISTORY

3．1 Reproduction

3．11 Sexuality．

The bream is heterosexual．No informa－ tion on hermaphroditism，even as an anomaly， is available．Sexual dimorphism of the sec－－ ondary sexual oharacters is weak：pearl or－ gans of males can be distinct in autumn（Ol－ iva，1952），and males have longer paired fins（Vladykov，1931，quoted by Oliva，1952）． On the spawning grounds，males can be distin－ guished by colour，spewning tubercles and in－ jured fins，especially the dorsal fin（Fabri－ cius，1951）．

3．12 Maturity．

The following data supplement Table IV ： Differences in the age at which first matu－ rity is reached can be considerable．In the Caspian Sea， 85 － 100 percent of four－year old bream are mature，in the Sea of Azov 52 percent of four－year old， 32 percent of five－year－old and 14 percent of six－yearmold bream are maturing for the first time（Demen－ teva，1952a，1955）．On the other hand，im－ mature bream of ten years or older have been found by Neubauer（1926）and Pecanlska（1963） in the Szczecin li irth（Lagoon）and by Ostrou－ mov（1956）in the Ribinskoe Reservoir．There are considerable differences in the length of the sexual activity period．Driagin（1952） quotes the data of Tereshchenko concerning the Volga Delta（Caspian Sea）where male bream older then eight years and females of 12 years appear to be sterile，whereas ac－ cording to Potapova（1954）female bream of 20－26 years from the lakes of the Karelo－ Finnish SSR are still sexually active，and in the Volga（Shaposhnikova，1943）13－year－ old males and 16－year－old females showed no signs of sterility．A male bream of the Kama River（Griazeva，1936）could still spawn at the age of 15 years．

The bream of the southernmost waters （the Dnepr Delta，Volvi Lake，Fertö Lake） mature earliest，i．e．at the ace of three－ four years．In the remaining area no clear－ cut recularity could be observed．The matu－ ring period rances from three to ton years， and，according to numerous observitions， males frequently reach maturity one year ear－ lier than females．

The geocraphio position and climate do not influence pronouncedly the size at which maturity is reached．The data of Table IV do not oonfirm the assumption of Laskar （1943）that the climate affects the size at which bream reaoh maturity．In the Aral Sea，according to Murnmove（1952），two popu－
lations of bream occur together and reach maturity at the same age，but they differ considerably in size。

The bream of the Aral Sea transferred to Lake Balkhash（Kazakh SSR）reaches matu－ rity at the same age as in its native waters although the fish are much smaller（Pet－ kevich，1953；Ivanov and Pechenikova，1960）．

Geyer（1939）pointed out the inter－ dependence of growth rate and maturity．He was of the opinion that，under conditions of rapid growth，males and females mature at the same time，and one year later than in lakes where growth is slow．On the con－ trary，Shaposhnikova（1948）linked earlier maturity with faster growth in the first years of life．These differences result largely from regional variations，as stated by Wundsch（1939），who confirmed the Sin－ dings of Geyer（1939）for the lakes studied by him．

Though the age of sexual maturity va－ ries from 3 to 10 years，the length at which maturity is reached is less diversified and lies between 14 cm and 30 cm （ratio 1 ：2）． Perhaps，as suggested by Alm（1959），matu－ rity is affected by＂physiological age＂， which is determined by absolute ase and growth rate．Zemskaia（1958）expressed a similar opinion。

3．23 Mating．

Male and female bream spawn repeatedly with different partners．Mating is there－ fore promiscuous．

3．14 Fertilization。

Fertilization is external．At a tem－ persture of $19-21^{\circ} \mathrm{C}$ sperm motility lasts for eight minutes in fresh water and for 10－13 minutes in brackish water（8．6－ 10．1\％0）．（Data for bream of Aral Sea，Gos－ teeva，1957）．According to Dziekoriska （1958），sperm motility lasts for $45-75$ se－ conds in the Vistula Lagoon．

3.15 Gonads．

The quantity of eggs produced annually by one female may differ considerably and it depends mainly on body size．Perg（1949） reported 941,000 eges as the highest fecun－ dity of the bream；socording to Bauch （1963）the lowest is 2,000 ．Different fec－ undities are recorded for different dist－ riots：for the middle reaches of the Don， the range is $98,000-713,000$ and the average 218，000 eggs per female（Syrovatskaia， 1949）；for the middle reaches of the Volga， $40,500-654,000$ ，zverase 176,500 （Shaposhnik－ ova，1948）；for the Aral Saz， 92,000
FRi/S36 Abramis brama

Azov, USSR	4-5		4-5	30		30	500	good	Dementeva, 1955
Ilmen Lake, USSR	6		6-7	26		27	400	grod	Morozova, 1952
Volga, USSR		6-7	7-8	(22) 28		30		good	Shaposhnikova, 1948
Rybinsk Reservoir, USSR	(7)9		(7) 10	30		30	500	average	Ostroumov, 1956 Poddubnyi, 1960
Caspian Sea, USSR	(3) 4		(3) 4	(19) 23		(20)24		good	Dementeva, 1952a
Siamozero, Karel SSR	7-8		8-9		27-30		600		Potapova, 1954
Niukozero, Karel SSR		8-10			28-30		600		Potapova, 1954
Ubinskoe, Novosibirskaia obl.			5-6					average	Petkevich, 1953
Balkhash, Kazakhstan			(3) 5					average	```Ivanov and Pechnikova, 1960```
1/ Figures in brackets give the youngest age and the smallest length of sexually mature bream. The remaining figure give the age and size when a considerable part of the population reaches serual maturity.									
2/ The length of Norfolk Broads bream is fork length, while for other water bodies it is standard length. When calculating standard length (lc) from total length (lt) the ratio le/1t $=0.78=0.80$ has been accepted (Bauch, 1963).									
3/ Growth rate scale is according to Geyer (1939)									
4) When no data on were made use of.	$g t h$	and	нөi	reava	le,	licati	the	rete	eam in a given water

338,500, average 205,000 (Morozova, 1952); for the lakes of the Karelo-Finnish SSR, 25,000-501,500 (Potapova, 1954); for Lake Mamry, Poland, 45,000-520,000 (authors' material).

Taking into account a small number of studies and differences in the methods applied, the data concerning the average fecundity of weight classes, as presented in Fig. 3, should be treated as tentative.

The number of eggs per gram of body weight and the relative weight of gonads are presented in Table V. Attention is drawn to the great variability of the re lative weight of female gonads from the same body of water, e.g. from 10 to 23.8 percent for the Aral Sea. After spawning this index diminishes in the case of $f e=$ males to 2.2-2.3 percent (Morozova, 1952). Seasonal changes in gonads were studied by Butskaia (1955) and Shilov (1962).

The quantity of eges which remain in the ovaries after spawning is inconsiderable; according to Dementeve (1952a) it is 1.4 percent.

The potential quantity of eggs which could be produced by one remale depends on the duration of its sexual activity and its rate of growth. From data referring to the middle reaches of the Volga (Shaposhnikovas 1948), it appears that a female which matures at the age of six years, weighing 680 g , may sparm for the last time at the age of 16 and a weight of $4,380 \mathrm{~g}$; such a fish could produce about 2.5 million eggs during these 10 years. Shpet (1964) gives an absolute potential fecundity of one pair of ${ }_{5}$ bream during nine years of life as 6×10^{5} pairs of progeny.

Griazeva (1936) carried out a histolom gical analysis of changes occuring in bream gonads.

3.16 Spawning.

Some orientative data concerning the spawning of bream are presented in Table VI.

In most water bodies bream spaw only once a year, but there are populations know in which females spawn twice or even three times (Papadopol, 1963). In the spawning period, the ovaries contain eces of two or three different sizes. (Driagin, 1949; Morozove, 1952; Syrovatskaia, 1949; Sych, 1955). Quantities of small ecgs found in bream from the Aral Soa and River Don make up 30 and 32 percent respectively of the total number of eges.

Repeated spawning can occur in the whol l_{θ} population or in part of it. According to Zakharova (1955) females with two egg fractions occasionally occur in the Rybinskoe Reservoir. In Lake Ilmen only seven percent spawn repeatediy but in the Don and in the Danube Delta the great majority of females spawn more than once a year. The fact should be stressed that repeated spawning occurs more frequently among the semi-migratory populations which spawn in the areas inundated by spring floods.

In the water bodies where female bream spawn only once a year, the population may often be divided into groups which spawn at various times; sometimes these groups are related to the size of the spawners. According to Järnefelt (1921) younger and smaller bream spawn first in Lake Tuusula, while according to Peczalska (1963) bigger and older individuals spawn first in the Szczecin Lagoon. In several water bodies the periods at which particular spawning groups appear are regular enough to have local names given. by fishermen, e.g. in Lake Ilmen (Driagin, 1949), in Szczecin Lagoon (Neubaur, 1926). They are often comnected with phenological observations. According to Bernatowicz (1962) the first period of spawing in Mazurian Lakes coincides with full blooming of apple trees (Malus domestica) and lilac (Syringa vulgaris); the second period begins with the flowering of Stratiotes aloides.

Males are ready to spawn first and they remain longer on the spawning grounds; they are therefore in a majority in the spawning schools (Peczalska, 1963; Shaposhnikova, 1948; and others).

Table VI also shows the spawing season. The data refor to different years of observation, and the season can differ by two-three weeks in successive years, depending on the woather.

The main factor influencing the beginning and course of spawning is temperature. Driagin (1949) stated $12-13^{\circ} \mathrm{C}$ to be the lowest temperature, at which bream have observed to spawn. The corresponding hishest temperature is $27^{\circ} \mathrm{C}$, recorded in the Aral Sea (Shaposhnikova, 1943). The most comnonly reported spawnine temperature is $16-18^{\circ} \mathrm{C}$. A sudden cooling may stop spawning (Zakharova, 1955). During warm and calm wather, bream spaw in masses in a short time (two-three days); under bid conditiuns spaming lasts longer. The maximum water level reached in spring and the time when it occurs are important factors influencing the populations of estuaries, rivors and retention rosorvoirs. These fictors affect the area of the

Figure 3. Fecundity of bream in relation to individual weight.
Table V

in somé bream stocks

Stock from	Ho of eggs		Gonad weight, percent				Author
	average	range	Pemales		Males		
			average	range	average	range	
a/Sparning once a season							
Volga River	125	102-156					
- age: 6-7		102-105					Shaposhnikova (1948)
- age: 12-14		151-156					
Szezecin Lagoon		150-200		13.3-19.4	2.8		Peczalska (1963)
Lake Ramry	150	140-170					authors ${ }^{\text {data }}$
b/Spaming repeated							
Dnepr River	113	97-138					Velikokhatko: (1947)
Danube delta	246		21				Papadopol (1962, 1963)
Aral Sea	260		16.8	10.0-23.8	3.4	2.4-4.6	Morozova: (1952)
Lake Ilmen				$8.4-16.8$		2.0-3.9	Driagin. (1949)

spawning ground and the spawning season e．gol in the Volga（Shaposhnikova，1948），in the Vistula（Sych，1955），in the Rybinskoe Reser－ voir（Zakharova，1955；Elizarova，1962）．

According to the observations of Sych （1955），spawning lasts day and night，beco－ ming more intensive at night。 Fabricius （1951）and Svärdson（1949）observed bream spawning in Lake Mälaren by dayo According to Shaposhnikova（1948），most intensive bream spaming lasted from 10.00 to 11.00 and after a break at noon from 16.00 to 17.00 hourso

－Location and type of spaming ground．

Bream deposit eges in sheltered places， where the water is either still or the our－ rent is weak．Depths at which eggs have been found vary from 9 cm （Sych，1955，Vistu－ la）to $3-3.5 \mathrm{~m}$（Driagin，1949）and oven 17 m in the Kakhovskoe Retention Reservoir（Belyi， 2962）．The most comon spawning depths are from 20 to 80 cm （Shaposhnikova，1948；Zukow－ ski，1962；Zakharova，1955）．When bream spawn at various times in the same body of water， the earliest spawning takes place on shallow grounds；and later spawnings are on deeper grounds（Driagin，1949）；the temperature of the water is probably important。 Sych（1955） observed that during calm weather eggs are laid at the minimum depth（ 9 cm ），when there are waves they are laid at a greater depth （ 30 cm ）．One body of water can have both shallow and deep spawning grounds（Driaging 1949；Korozova，1952；Dziekońske，1956）．

There is considerable variation in the areas of different spawning grounds．Sha－ poshnikova（1948）described particular spam－ inz areas in the Volga as occupying about $100 \mathrm{~m}^{2}$ ；Plizzka（1953a）reported a spawring area of 0.5 ha in a lake of 200 has Zakha－ rove（1955）stated the area of a spawning ground in the Rybinskoe Reservoir to be about 50 ha．In many Kazurian lakes fisherm men know the main spawning grounds which are relatively constant（Pliszka，1953e）and the same is true of the Szczecin Lagoon（Peczal－ ska，1963）．In retention reservoirs，rivers and estuaries，where bream spawn on inus－ dated areas，the locality and size of the sparming ground are changeable and they de－ pend on the hydrometeorological conditions （Zakharova，1955；Morozova，1952；Demen－ teva，1952a，and others）．

The bread is a＂generatively phytophilous species＂，a term applied by Kryzhanovskij （1949）；its eges adhere and develop on plants．The plant substratum may be quite diverse：flooded land plants，the remains of the previula year＇s aquatic vegetationg tree leaves，stems and roots of emergent plants，glecae（Cladophora），submerced hydrom
phytes．From among the latter the follo－ wing are often mentioned：Myriophyllum sp．，Chara sp．，Stratiotes aloides，Elodea Sp．，etc．In the Vistula，Sych（1955）found the eggs of bream on Rorippa amphibia，Buto－ mus umbellatus，Sagittaria sagittifolia and Glyceria aquatica．Bream eggs are deposited also on＂artificial＂spawning grounds，where the branches of conifers are used as a sub－ stratum（cf．section 6．26）。

The spaming of bream may coincide with the spawning of other species of fish．In the Szczecin Lagoon a part of the bream pop－ ulation spawn on the same breeding grounds and simul taneously with Blicca björkna（ L_{0} ）。 The eggs of bream，pikemerch and ruff were found at the same time on the artificial spawning grounds in the Don delta．

At time of spawning，bream are alert and shy．A splash of an oar or voices frighten them away，and they swim to deeper water（Shaposhnikova，1948）．

According to lake fishermen，bream spawn in great masses during calm weather． The spawning is stormy；the fish splash wa－ ter with their tails，making characteristic noises which can be heard from afar．The water of the spawning ground is turbid and vegetation tom out by the fish can be seen．

According to Svårdson（1949）and Fabri－ cius（1951），who observed the spawning of bream in Lake Mälaren，the spawning ground consists of a number of plots occupied by big males which are on the move．Their movements attract females and scare away males．The male defends its territory and when another male appears there is intensive splashing．According to Svårdson one terri－ toxy is a bout $5 \mathrm{~m}^{2}$ ；Fabricius observed smaller territories．Males did not abandon their territories during the whole time of observation（ 8 h ）。
，The data of Zakharova（1955）suggest that the spewning of bream may follow a similar course in other water bodies．In the Rybinskoe Reservoir she found bream eges deposited in patches，each covering about $1 \mathrm{~m}^{2}$ and containing about 1,200 eggs．The fact should be stressed，bowever，that eggs are orten not evenly distributed（Shaposhni－ kova，1948；Pliszka，1953a）and their great quantities suggest that many fish may spawn in the same area．Thus according to Potapo－ va（1954）from $60,000-2,300,000$ eggs were found on $1 \mathrm{~m}^{2}$ in Lake Vygozero．In the Vis－ tula Laçoon，Dziekońska（1956）found 30，000 $-738,000$ eggs per m^{2} on the shallow spawing grounds and，on the average，2，000 eces per m^{2} on the deep grounds．In Lake

Harsz，Pliszka（1953a）found 20，000－ 400,000 eggs per m^{2} 。

3．17 Spawn。

The polyplasmatic eggs show various shades of yellow and contain little perivitelline space．The diameter of a mature egg is $1.62=1.82 \mathrm{~mm}$ ，without membrane it is $0.97-1.30 \mathrm{~mm}$ ．The blastodise is from 0.325 to 1.30 mm high depending on the stage of development，in width it almost equals the diamter of the yolk sac．The membrene is transparent，and the filaments which attach the eges to the substratum are minute and thinly spread．The egg membrane is delicate and it breaks easily （Kryzhanovski1，1949）．Other authors give the egg size as followss Driagin（1949）： $1.3-1.9 \mathrm{~mm}_{2}$ av． 1.5 mm ，after swelling avo 2.1 mmg Morozova（1952）： $0.9-1.2 \mathrm{mmg}$ avo 1.0 mmg Sych（1955）：av． 1.3 mm ．

The average weight of a bream egg varies between different populations from 0.75 － 1.35 mg ．The differences in average weight of eggs of particular females may amount to 100 percent．Maximum ege meight of $l_{0} 25 \mathrm{~g}$ was found in females seven years old； younger and smaller fomales as well as older and heavier ones had lighter eggs （Privol＇nev，1964）。

The biochemistry of bream eggs and spawners has been studied by Maliarevskaia and Birger（1965）．

3．2 Pro－adult phase

3．21 Embryonic phase。

Developraental stages of bream ecegs are presented in Fig．4e The rate of embryonio development depends olearly on temperature （Table VII）。 Kryzhanovskii（1949）statod that the incubation period lasts from 3 － 13 days and data from other works are in agreement with this．

A temperature of $28^{\circ} \mathrm{C}$ was found to be lethal during cleavage and it caused heavy losses at other staces of development， $24^{8} C$ was responsible for heavy losses during cleavage and before hatching， $10-18^{\circ} \mathrm{C}$ gave similar results to the control（ $14-15^{\circ} \mathrm{C}$ ）， and the temperature of $6^{\circ} \mathrm{C}$ caused considerable losses only at cleavage（Volodin，1960）． The same author quotes the lethal temperature for the developing bream eggs from the Don River as $29-31^{\circ} \mathrm{C}$ 。 Dziekońska（1958）took developing bream eçs from the Vistula Lagroon at five defined developmental staces and placed them in water of $35,32,8$ and $4^{\circ} \mathrm{C}$ for 5 minutes．At the temperature of
$35^{\circ} \mathrm{C}$ all eggs，irrespective of the developo mental stage，perished，while at $32^{\circ} \mathrm{C}$ and $4^{\circ} \mathrm{C}, 10-20$ percent of eggs survived． At the temperature of $8^{\circ} \mathrm{C}$ the results were similar as in the control at $17^{\circ} \mathrm{C}$ ．

－Oxygen．

According to Iurovitskii and
Rosnichenko（1961）the critical oxygen content for brean egg development at $15^{\circ} \mathrm{C}$ is $5 \mathrm{mg} / \mathrm{l}_{0}$ At $3 \mathrm{mg} / \mathrm{l}$ Iosses were 100 percent． at $5 \mathrm{mg} / 1$ they amounted to 11 percent and there were 67 percent of abnormally developing embryos．At the control at $10 \mathrm{mg} / 1$ the losses were 7 percent and 7 percent of embryos vere developed abnormallyo According to Kuznetsova（1958） the critical oxygen content is $1.9 \mathrm{mg} / \mathrm{I}_{0}$
－Salinity。
Morozova（1952）and Gosteeva（1957） reported that in the Aral Sea，some bream spawning grounds，far from the shore and $4-5 \mathrm{~m}$ deep，show a salinity of $9 \mathrm{ma} 10 \%$ 。 Under experimental conditions（Gosteeva， 1954，1957）bream oggs from the Aral Ses developed normally at a salinity of $10.12 \% 0$ ． At $11.5-11.6 \% 0$ the development was abnormal，at $11.7 \% 0$ ombryos perished at the beginning of segmentation and at $12 \% 0$ the development stopped at the blastula stage． Changes in salinity from $5.4-10 . \% \mathrm{o}$ did not impair the development．

The survival of Bream embryos at different salinities is also given by Cherfas （1956）after Konovalov：

Bream eges from the Sea of Azov：
Salinity（\％） $0 \quad 2.7 \quad 4.5 \quad 5.4$
Survival（\％） $\begin{array}{llllll} & 60.1 & 32.3 & 21.5 & 25.1\end{array}$
Bream oggs from the Aral sea：
$\begin{array}{lrrrrr}\text { Salinity（\％）} & 0 & 4.3 & 5.7 & 7.1 & 10.2 \\ \text { Survival（\％）} & 88.4 & 86.3 & 80.0 & 67.3 & 38.4\end{array}$
Bream eggs from the brackish water of the Vistula Laçoon，do not develop at such a high salinity．Fertilization could bo carried out only at $2.8 \% 0$ but fertilimed ova could dovelop at a salinity of 5.6 䓵。
CO_{2} is harmful to the oges of bream only at the concentration of $50 \mathrm{mg} / 1$ or greater（Voloding 1960）．

Figure 40 Embryonic development of bream,
after Kryzhanovskii (1949).

Explanation of Fig． 4

1／Stage of two blastomeres；age 1 h 5 min ，yolk sac diameter 0.97 mm 。
2／Stage of four blastomeres，from above；age 1 h 27 min．
3／Eight blastomeres，from above；age 1 h 48 min ．
4／Two superimposed drawings of the same egg，at the stage of eight blastomeres（age 1 h 48 min 。） and at the stage of early morula（age 4 h 5 min ）．

5／Two superimposed drawings of the same egg at the age of 4 h 5 min and 5 h 55 min ．
6／Transitional stage between morula and blastula；age 6 h ，temperature $22^{\circ} \mathrm{C}$ 。
7／Blastula；age 6 h 30 min ，temperature $22^{\circ} \mathrm{C}$ ．
8／Beginning of gastrulation；age 8 h 15 min ，temperature $22^{\circ} \mathrm{C}$ 。
9／End of gastrulation，blastopore still partially open；age 16 h 40 min ，temperature $19.2^{\circ} \mathrm{C}$.
10／Blastopore closed but still visible；age 2 days 3 hrs ，temperature about $16^{\circ} \mathrm{C}$ ．
11／Cephalic mesoderm still linked with body mesoderm；age 21 h ，temperature $20.8^{\circ} \mathrm{C}$ ．
12／Cephalic mesoderm rudiment separated from body mesoderm，the latter begiming to divids whot segments；age 2 days 17 h ，temperature about $16^{\circ} \mathrm{C}$ 。

13／Three segments：rudiments of eyes and Kupfer＇s vesicle visible（the latter is situated in the future eleventh segment）；age 22 h 40 min ，temperature $20.8^{\circ} \mathrm{C}$ 。

14／ 8 segments；age 24 h 18 min ，temperature $21^{\circ} \mathrm{C}$ 。
15／ 12 segments：encephalomeres and ear vesicles can be seen；age 26 h 40 min 。
16／ 15 segments：gall bladder differentiating，Kupfer＇s vesicle has increased in size and its location now corresponds to that of 12 segment；age 28 h 10 min．

17／ 18 segments：the location of Kupffer＇s vesicle corresponds to that of 24 th segment；age 29 h 40 min．

18／ 20 segments；elongated head，encephalomeres have disappeared，Kupfer＇s vesiole has moved towards caudal kidney and its location corresponds to that of 27 th segment，embryo mores slightly．

19／ 22 segments：Kupffer＇s vesicle is very small，its location corresponds to that of 3lst seg ment；age 31 h 40 min ，temperature $20.4^{\circ} \mathrm{C}$ 。

20／ 35 segments（ 9 segments in the tail）：gall bladder pear－shaped，otoliths visible in oar ve－ sicles；age 42 h 24 min ，temperature $19.4^{\circ} \mathrm{C}$ 。

21／ 17 segments in tail；heart starts beating，beginning of blood circulationg age 48 h ，tem－ porature $20^{\circ} \mathrm{C}$ ．

Table VII
Number of "degreehours" of embryonal development, from fertilization to hatching

Temperature	No of degreehours	Source
$11^{\circ} \mathrm{C}$	2950	Kryzhanovskii, 1949
$18^{\circ} \mathrm{C}$	1300	Pliszka, 1953a
$18^{\circ} \mathrm{C}$	2600	Shaposhnikova, 1948
$19^{\circ} \mathrm{C}$	1501	Dziekońska, 1956
$20-22^{\circ} \mathrm{C}$	$1430-1890$	Kryzhanovskii, 1949
$23^{\circ} \mathrm{C}$	2208	Dementeva, 1952a

Developing bream eggs can withstand short (60 minute) periods of exposure to the air (without water). This does not disturb the process of development but irregularities during hatching must be mentioned (Dziekonska, 1958).

The percentage of fertilization of bream eggs on the natural spawing grounds is high (Driagin, 1949; Dmitreva, 1960). Pliszka (1953a) reported 98-100 percent fertilization in Lake Harsz, of which 70 90 percent hatched. Sych (1955) estimated the fertilization on the Vistula spawning grounds to be $91.2-96.7$ percent and the
losses to be 65\%. Zakharova (1955) described the losses on the spawning grounds of the Rybinskoe Reservoir as 32 percent, Dziekonska (1956) estimated the losses in the Vistula Lagoon, depending on the character of the spawning ground, to be $6.8-19.6$ percent. Potapova (1954) reported that 75-90 percent of eges are fertilized in Karelom Finnish lakes.

Different causes are responsible for losses in bream eges on natural spawning grounds. According to Dmitreva (1960) and authors quoted by Zakharova (1955) and Gosteeve (1957), they are (a) oxygen deficiency in poor water circulation, caused by decaying organic matter or, at night, by plant respiration; this can check the development of eggs deposited on the bottom, on vegetation near the bottom, or on decaying leaves (shallow inshore grounds of the Volga Delta, Aral Sea); (b) eggs not fertilized; (c) drying out due to a fall in water level (rivers, retention reservoirs); (d) infection with the mould Saprolegnia; (e) prodation by invertebrates and fishes. Zakharova (1955) found up to 400 bream eges per fish in perch caught on a spawning ground, and Gosteeva (1957) mentions Pungitius pungitius I. as a predator. It seems that fish $^{\text {g. a }}$ can cause considerable losses in bream eges. In the lower reaches of the Don River, Mikheev and Meisner (1954) observed bream eges deposited on artificial grounds, where pike-perch had spamed earlier. The bream eggs were protected by the male pike-perch. On those spawning grounds the losses in bream ecess were very small when compared with those on natural spawing grounds.

- Mode of hatching.

Glands containing a substance which weakens the egg membrane can be found on the head and back of the embryo. They are conspicuous and full in larvae taken from the egg-meapsule before hatching (Kryzhanovskii, 1949). From bigger egeg hatch bigeer larvae, from 4.57 to 5.30 mm , (Dmitreva, 1960).

3.22 Laxval phase.

General features of development. The post-embrionic development of the bream has been worked out in detail in a number of papers from the A. N. Severtsov Research Institute of Animal Morphology in Moscow (Vasnetsov, 1948; Vasnetsov et al. 1957; Eremeeva, 1960, 1960a; Dmitreva, 1960: Kryzhanovskii, 1949; Sablina, 1960).

Those works distinguish a number of developmental stages in the premand postlarval phases. These stages are illustrated in Fig. 5, and a sumarised description is given in the accompanying explanation.

The rate of development depends on temperature, hence the rate of development may change, but in principle the course of larval development is similar in lake bream, estuarine bream (semi-migratory) and in those of retention reservoirs (Dmitreva, 1960; Erem meeva, 1960, 1960a). The main difference is in the fact that at stage G, bream in estuaries, such as the deltas of the Volga, Don and Kuban, gather in schools and begin their migration towards the sea.

According to Vladimirov (1964), mortality at this phase resulting from hereditary factors may be very high and may differ greatly between the progeny of different females. His experiments lasted 30 days, under good environmental and feeding conditions; mortality among the progeny of 60 percent of the females was less than 20 percent, but among the progeny of 12 percent of females it was 90-100 percent. Vladimirov observed the hichest mortality of larvae on the 13 th -15 th and 20 th -23 rd days after hatching. Larvee shorter than the mean length perished. Abnormalities of the alimentary tract were the cause of losses. The results of breeding bream in ponds for the purpose of stocking (Nikolskii, 1955) show that at low densities, i.e. 200,000 pikeperch eges and about 1.5 million bream egess per 1 ha, the mortality of bream anounted to 95 percent in 60 days, and when the density was 2 - 3 times greater it rose to 93.5 99.6 percent in 30 days. In Poland, in fish-ponds near lakes where bream larvae were raised tocether with tench, the mortality of the bream amounted to 99 percent in 90 days, but the survivors grew excellently, and on average they measured 7.5 cm and weighed 4 g after three months, i.e. $2-3$ times higher gain than in the adjacent lakes.

According to Berg ot al. (1949) frogs sometimes do considerable damage to bream larvae.

Figure 50 Stages of bream development (after Dmitreva, 1960). See explanation on following page.

> Explanation to Fig. 5 (after Vasnetsov et al. 1957, and Dmitreva, 1960)

\begin{tabular}{|c|c|c|c|c|}
\hline Stage \& Length (mm) \& $$
\begin{gathered}
\text { Age } \\
\text { (days) }
\end{gathered}
$$ \& Structure \& Behaviour, Food

\hline A_{2}

A_{2} \& $4.5-5.3$
up to 6 \& 3

$2-3$ \& Yolk sac pear-shaped, head slightly bent down. Body surrounded with larval fin. Nouth inferior, immobile. Fyes slightly pigmented. Pectoral fin bases horizontal. Rudimentary gill cover. Glutinous glands under eyes for attachment of larva. Yolk sac cigar-shaped. Head straight. Mouth inferior, lower jaw movable. Pectoral fin bases oblique. Membranous gill cover reaching Pirst gill arch only. Few melanophores on yolk sac. \& ```
Larvae motionless,
attached to vegetation or
resting on bottom. Feed
only on yolk.

``` \\
\hline B & 5.2-6.4 & & Filled air bladder. Yolk sac small. Tail fin develops from larval fin。 Mouth inferior, not completely closing. Membranous gill cover leaves last three gill arches uncovered. Chorda straight. Pectoral fin bases vertical. Intestine resembles a straight tube. & Stay near shore, in vegetation. Swim obliquely, head upwards. Feed on yolk and small sluggish organisms such as rotifers and their eggs. \\
\hline \(C_{1}\) & 6.4-7.5 & 3 & Yolk disappears. Chorda straight. Dorsal and anal fins develop. Nesenchyme concentration can be seen in caudal fin. & Swim well and fast, chasing food. Feed on rotifers, diatoms, nauplif, copepodids and small copepods. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \(\mathrm{C}_{2}\) & 7.5-8.6 & 3 & Chorda end bent aliestily upward, cartilaginous hypural beneath it. Heterocercal tajl. Mesenchyma concentration in dorsal and anal fin Lobes. Membranous gill cover leaves last three gill arches uncovered. & Stay aeax shore (depth 0.5 m ), in surpace layer of waterg agile. Feod on rotifers, nauplil and copepodids. \\
\hline \(\mathrm{D}_{1}\) & 8.600 & 3 & Anterior cavity of air bladder filla with aife Posterior chorda end bending slightly upward. Tail almost homocercal. Bony fin rays in tail fis. Mesenchymal rays in dorsal and anal fins. Operculum still membranous, not covering last two srches. Mouth slightly protractile。 & Stay among plants. Feod ox small copepods, Cladocexe, rotifers and diatoms. \\
\hline \(D_{2}\) & 10-13.5 & 4 & Bony finrays developed in dorsal and anal fins. Tail homocercal. Caudal pia forked. Ventral fins developed as two horizontal folds without finm rays. & Stay near shore in vegotation Feod on large Cyclops and on rotifers and diatoms. \\
\hline E & 13.5-16 & 4 & \begin{tabular}{l}
Bony linsays developed in all fins. \\
Olfactory cavity resembles figure \\
of eight, septun starts forming. \\
First two intestinal ansae \\
developed. Gills covered.
\end{tabular} & Stay a little Purther from shore. Feed on zooplankton and periphyton. \\
\hline
\end{tabular}

Stay far from shore, in
places without vegetation,
not shallower than 1.5 ms
swim in upper water layers,
feeding on zooplankton
(large Daphnia, Cyclops,
rotifers, larvae of
Chironomidae).
Whole body covered with scales.
Mouth semiminferios. Tho nostrils.
Second pair of intestinal ansse
developed.

Stay at bottomg food on
Lerrae of Chironomidae,
lasger zooplanktong groen
algas and diatoms.

At a temperature of \(17=20^{\circ} \mathrm{C}\) ，the yolk sac resorbs between the sixth and eighth day， and the larvae then start foeding on minute organisms．The information on foeding habits is summarized in Table VIII．

A concentration of food organisms of 500 per liter provides good feoding conditions for larvae at stage \(\mathrm{C}_{1}\)（10 \(=7 \mathrm{~mm}\) ， weight 1.5 mg）according to the experiments of Panov（1960）．Zhel tenkova（1964）states that 227 － 275 organisms／litor is a sufficient food concentration．A plankton biomass of \(30-40 \mathrm{mg} / 1 \mathrm{iters}\) ， \(\mathrm{i}_{0} \theta_{0}\) about 1，000 organisms／liter，secure proper foeding conditions for bream larvae ot atage \(D_{2}\) （length 12 mm ，weight 15 mg ）aocording to Panov（1960）．Karzinkin（1952）gives the following dats on the amount of food eaten by larvae in a day：

16－day－01d，woighing 7．7 mg：
101． 9 percent of body weights
32－day－old，weighing 38.8 mgi
57.0 percent of body weight，

48－day－0ld，weighing 85.0 mg ：
35.0 percent of body weight．

Larvae were fed on tiny Cladocera in aquaria．
－Growth．
Body length reached in the first yoar of life is exemplified by the following data：（Table IX）．

Shaposhnikova（1948）expressed the opinion that the growth of juvenile bream responds readily to a number of factors and therefore it may be different in particular parts of a bigger water body and in particular years．This is illustrated by her data in the table IX，showing widely different growth rates for different parts of the Ural and Dresna rivers．

\section*{3．23 Adolescent phase．}

Depending on the population，the adolescent phase lasts from two to eight years （Table IV）．

The basic period of development and organogenesis ends at the length of 75 － 107 mm （Sablina，1960）．The bream ettains its final body shape when longer than 14 cm （Vasnetsov，1948）．
－Prodators．
Bream is seldom eaten in large quantitios by predatory fish．（Table X）．The data of Domanevaki1（1964），Eartley（1947）。

Filuk（1962a），Ivanova（ 1956,1960 ）
Makkoveeva（1956），Vashchenko（1958）， Romanova（1956）and Balagurova（1963）oonfirm the small proportion of bream in the food of prodatory fish，apart from those oxceptional cases where no buffer species are available and bream is practically the only available food for the predators（ef．Deiekonska， 1954）．Bream are also eaten by some birds， such as grebes（Podiceps spo），divers （Colymbus spe），herons and cormorants． （Authors＇material）．

Bream longer than 20 cm are attacked rarely and only by big predatory fish． Although detailed information is not availeble， it soems that，oxcept in the larval phase， predation is rarely a factor controliing the density of bream．In Polish lakes，where predatory fish are protected and common，no decrease in the abundance of adolescent bream has been observed．（Authors \({ }^{\text {g }}\) material）．

Parasites can probably affect the sux vival of bream in the adolescent phase（cr． section 3.35 ）．

\section*{3．3 Adult phase，mature fish}

\section*{3．31 Longevity。}

Segestrale（1933）published a photograph of a scale of a 32－yearmold female bream from Hajka Fjörd，Finland．It was 50.4 cm Ic and weighed 2.4 kg ．Potapova（ 1954 ）found 260 yearmold bream．A 23－yearmold female bream from Lake Sniardwy，Poland，weighed 5.2 kg and its le was 57 cm ．The oldest bream found during archeological excavations in Central Russia was 20 －years－old（Levedev， 1961）．Bigger bream and probably the older ones have been caught in Central and Northers Europe．Berg（1949）reported that a bream weighing 11.5 kg was caught in Lake Vestjarvi， Fizland．Wundsch（1939）quoted data according to which bream of German waters can be heavier than 10 kg ．

Maximum age is not older than 15 years in the case of the populations of the southermost areas of the distribution of the species（Berg；1949；Dementeva，19528 Bal os，1961，1963）．N⿰亻mans（1962）reported that he caught bream up to 2 kg in Spanca， an Anatolian lake，Turkey．

The interdependence between Iongevity and growth rate is not clear．Semi－migratory bream of the estuaries of the Caspian，Azov and Aral Seas are characterized by a fast growth rate and a short life cycle，but at the same time an ecological variety of a slow growing bream with a short life cycle also occurs in the Aral Sea，（Morozova，1952）．
\begin{tabular}{|c|c|c|c|}
\hline & & \begin{tabular}{l}
Table VIII \\
et in the first year of lifo
\end{tabular} & \\
\hline Wator body & Size or age of fish & Main sood & Author \\
\hline \multirow[t]{6}{*}{Tolga} & 6 days & Phytoplankton & Pankratova, 1948 \\
\hline & 10-11 days & Small Cladocera and & \\
\hline & & Copopoda found in & \\
\hline & & aggregations & \\
\hline & \(2-3.7\) cm & Tendipedidae and & \\
\hline & & zooplanktos & \\
\hline \multirow[t]{5}{*}{Tsimlanskoo Reservoix} & 4 cm & Zooplankton: Bosmina, & Lapitskaia, 1958 \\
\hline & & Daphnia, Moina, Cyclops & \\
\hline & 4.1 .6 cm & Forms found at the & \\
\hline & & bottom: Alona sp. & \\
\hline & & Pleuroxus, Harpacticidae & \\
\hline \multirow[t]{4}{*}{Mazurian Lakes (Poland)} & \(1.8-4.8 \mathrm{~cm}\) & Littoral forms of & Pliszka and Dziekoriska, \\
\hline & & Cladocera & 19530 \\
\hline & \(2.3-2.9 \mathrm{~cm}\) & Cladocera, Copopoda, & Leszozyriski, 1963 \\
\hline & & Nematocera puppae & \\
\hline \begin{tabular}{l}
Lake Bolshoi \\
Ivang (North.) USSR)
\end{tabular} & Age O+ & ```
60 percent = Alona Affinis,
12 percent - Bosmina sp.
``` & Bocatova, 1963 \\
\hline
\end{tabular}

Table IX
\begin{tabular}{|c|c|c|c|c|}
\hline Water body & Date & Length mm & \[
\begin{aligned}
& \text { Weight } \\
& \mathbb{E}
\end{aligned}
\] & Author \\
\hline Tsimlanskoe Reservoir & Sept. 1953 & 92.0 & 15.0 & Ginzburg, 1958 \\
\hline Tsimlanskoe Reservoir & Sept. 1954 & 86.1 & 12.6 & Ginzbuxg, 1958 \\
\hline Trsimlanskoe Reservoir & Sept. 2955 & 64.4 & 4.7 & Domanevakil, 1958 \\
\hline Vistula River & 0et.1952-1955 & 25.0 & & Backiel and Bontemps, 1958 \\
\hline Mazurian Lakes & sutumn & 32.0-37.0 & \(0.5-0.8\) & Zawisza, 1953 \\
\hline Oral River & Augus t & 29.0-59.0 & & Shaposhnikova, 1948 \\
\hline Desna River & August & 16.0-40.0 & & Shaposhnikova, 1948 \\
\hline
\end{tabular}

The growth rate of bream has been determined for several hundred Polish lakes， Z．Harciak，unpublished data），but no relation can be established between the longevity of a population and its growth rate。

It is almost a rule that females are more numerous in older year classes of bream （ef．section 4.41 ）．

\subsection*{3.32 Hardiness．}

Funder（1936）reported that at an oxigen content of \(2-2.5 \mathrm{me} / \mathrm{s}\) bream show the Pirst signs of aspyxia and at \(0.4-0.5\) \(\mathrm{mg} / \mathrm{l}\) they begin to dio．Similar rosults were obtained by Privol＇nev and Koroleva （1953）．Lethal temperatures for southera bream are； \(33-34^{\circ} \mathrm{C}\) ，for northern bream they are less than \(30^{\circ} \mathrm{C}\)（Shkorbatov，1964）．
\[
3.33 \text { Competitors. }
\]
- Reproduction．

Poczalska（1963）mentioned common spaming grounds of bream and white bream in the Szezecin Laceom．In the Don Delta bream spawned together with pikemperch and the males of the latter protected the ecgs of both species（Mikheev and Peissner，1954）． Sukhoivan（1959）reported similar observations．The hybrids described（cf． section 2．4）suggest that bream can spava together with a number of other apecies of Eish，thus competition for spaming grounds cannot be oxcluded．
－Competitors for food．
In lakes and rivers ruff，eol，white bream，roach，cary，Chonorostoma nasus and tench show comon pood items with bream （Aristovskaia，1954；Boratova，1963： Podarueva，1960：Fundsch，1939；Pliszks and Dziekonska，1953；Neuhaus，1934）． In the Azov，Aral and Caspian Seas，the food of bream is similar to that of Neogobius Pluviatilis（Pallas），N．melanostomus （Pallas），Rutilus mutilus caspius（Yakovlov）， Percarina demidofel maeotice Kuznetzov Aspius abnius，mild cerp，Abramis sapa（ \(L_{0}\) ） and Barbus brachycephalus（Kessler）（Berg ot alo．1949\％Shoryging 1952）．The latter calculated and compared a number of quantitative indexes referxing to the competition for food amone the fish of the Caspian Soa（cp．section 4．6）．

Vasnetsov（1348）was convinced that the stroncest competition betweon bream，wild carp and roach may take place when they start to foed on benthos（bream about 25 mm lones）．The older year classes of those specios have their own specific loeding
grounds and the competition for food occurs only in poorly differentiated water bodies containing not enough food．

Karzinkin（1952）gave a number of data on the availability of Tendipendidae laxvae as food for a number of fish species．These observations suggest that under similar conditions carp，crucian carp，tench and ruff are superior to bream in finding food．

\section*{3．34 Predators．}

Predators were discussed in section 3．23．Large bream are rarely preyed upon by fishes \({ }^{\text {big fisheeting birds attack }}\) them when on the spawning grounds（Berg et al．，1949）。

\subsection*{3.35 Parasites，diseases， injuries and abnormalities． \\ －Parasitio diseases．}

Ichthyophthiriosis
A disease caused by Ichthyophthirius multifilis Fouquet，1876，（Protozoa， Ciliata）。

A cosmopolitan parasite occurring in numercus fish species，including bream． The vegetative form of the parasite（up to 1 rmin diametor）is found under the gill epithelium and under the epidermis on the fins but also on the entire surface of the fish body．On heavily infested fish there are pound small，whitish nodules．The parasite couses an inflammation of the skin， increased mucus secretion，peeling of the sking and in more advanced cases even death． The parasite is dancerous to fish of all ages but especially so to fingerlings （Amlacher，1961；Markevich，1951； Sch\＆perclaus，1954）．
－Control．
Best results are obtained by keeping the infected fish for some time in a trough with a strong current of water，which washes off the parasites from the skin and also from the bottom of the trough．A thorough disinfection of the pond erradicates the invasive starges of the parasite accumulated on the bottom．

\section*{Bucephalosia}

A disease caused by an invasion of metacercariae of the fanily Bucephalidae （Trematoda）．In Europe and Asia two species of this family are found in breams Bucophalus polymorphus Baer，1827，and Rhipidocotyle illense（Ziegler，1883）．

Sexually mature forms of the parasite are found in the intestine of predatory fish (Esox lucius \(L_{0,}\) Lucioperca lucioperca \(L_{0}\) g Perca fluviatilis \(L_{0}\) and Acerina cornua \(L_{0}\))。 Cercariae develop in mussels (Unio and Anodonta), metacercariae are usually found under the gill epithelivm, in the eyes, subcutaneous tissue and in muscles of various species of Cyprinidae.

Pathogenic effects of both the species depend on their localization in the fish body. Kozicka (1958) reported fin damage, skin hyperaemia and even large wounds on the body, in bream infested with Rhipidocotyle illense. According to Kozicka metacercariae, by pressure on the blood vessels, cause circulatory disturbances. The resulting blood congestion may result in atrophy of particular parts of the organs.

The presence of metacercariae in the eyes may cause blindness. Grabda and Grabda (1961) observed a massive invasion of Bucephalus polymorphus metacercariae in the eye cornea (some 500 larvae in one eye) causing cloudiness of the comes and an increase in the amount of sluid in the interior chamber of the eye and exophthalmus.

Parasites pathogenic both to fry and to older bream.

\section*{Caryophyllaeosis}

A disease caused by Caryophyllaeus 1ai oops (Pallas, 1781) (Cestoda, Caryophyilaeidae), a parasite of Cyrpinidae, extremely common in bream.

The parasite is common all over Europe and also in the Asiatio part of the USSR. The adult tapeworm is found in the fish's intestine and its larvae develop in the body cavity of various species of Tubificidae.

A heavy invasion of the parasite causes on inflammation of the intestine. The intestine may be blocked by numerous tepe worms and heavy mortality may result. The heaviest infostation occurs in Aprilmay. The intensity of the invation increases with the age of the fish. According to Schäperclaus (1954), the degree of infestation inceases markedly from the fifth year onward, when the bream starts to feed at the bottom.
- Control.

Intensive catches of bream with the onset of the disease.

\section*{Ligulosis}

A disease caused by plerocercoids of the tapeworms (Cestoda, Ligulidae), Lisula
intestinalis (\(L_{0}\)) and Digramma intermpta (Rud., 1810), living in the body cavity of fish. The first intermediate hosts of the parasite are copepods (Cyclops strenuus, Diaptomus gracilis and others) in whose body cavity develop laxvae of the procercoid type which are infectious to fish. The development of the larvae (plerocercoidae) in the body cavity of rish takes about 12 14 months (Dubininag 1957). At this time the parasite attains the length of an adult tapeworm, the gonads develop but there is no egg production as Jet. Sexually mature tapeworms are found in the intestine of such piscivorous birds as gulls, grebes, mild ducks and others. The final host may be also the domestic duck. (E. Grabda, 1951). In the intestine of birds, Ligula matures in about two days and begins to produce eggs.

The parasites are very common in Burope and the Asiatic part of the USSR in many species of Cyrpinidae, the main host being the bream. In many lakes the extent os the infection exceeds 50 percent. Single tapeworms are usually found, but sometimes a few or even some dozen are present in the body cavity of a single fish. Adult plerom cercoids attain 1 m length and 1.5 cm width. A mixed simultaneous invasion of both species of cestode is sometimes encountered.

Ligulosis is most often found in palmsized bream. According to Schaperolaus (1954) the heaviest infestation is found among bream undar 17.5 cm . According to Zawisza (M. \(\mathrm{S}_{0}\)), the highest percentage of infestation is found in bream aged \(4-5\) years, which corresponds to the length of \(20-24 \mathrm{~cm}\). Dubinina (1957) reports that bream aged \(1+\) to \(3+\) are subject to the heaviest infestation. After the fish have started bottom feeding the incidence decreases.

Ligulosis causes heavy losses among fish. Reshetnikova (1959) estimated the annual losses in the Tsimlanskoe Reservoir at 1, 200 tons.

A heavy invasion is manifested by flatulence. This often results in bursting of the abdominal oavity and the parasites drop into the water. Infested fish become languid and may easily be attacked by predators. In ligulosis there is observed a substantial decrease in fat content of fish muscles, a ohronic peritonitis, and frequently there is a serum exudate in the body cavity. The internal organs of the fish are danaged owing to the pressure exerted by the parasites. The development of gonads is inhibited (Willex, 1912). According to Kerr (1948), infested fish show hypophysis changes and disturbances
in the secretion of gonadotropic hormones, which results in a decreased fecundity. The investigations of Kosheve (1957) shoved a lovering of the haemoglobin content and an increased blood sedimentation rate among infested bream. A slowing down of growth and a reduction in weight of bream infested with Digramma interrupta was found by Reshetnikove (1965).

Affected bream show low survival in tanks and during shipment.
- Control.

Intensive catches of infested fish and checking of the stocking material.

\section*{Ergasilosis}

A disease caused by Ergasilus sieboldi Nordmann, 1832 (Crustacea: Copepoda param sitica), a gill parasite of numerous species of fresh water fish, frequently found in brearn.

The parasite is very common in the lakes of Europe and Asia. The larval stages of the parasite devel op outside the fish body, in water. Only the females are parasitic.

Egieboldi injures the gill epithelium of the fish and causes respiratory difficulties. Heavily infested fish die of asphyxia, especially during summer heat. An emaciation of the fish is frequently observed. The intensity of the invasion is generally milder in bream than in Tinca tinca, the latter being the main bosto As many as five hundred parasitea have been reported on the gills of a single fish (Gnadeberg, 1948).

Control: an examination of the stocking material as well as intensive catches with the onset of the disease. Neuhaus (1929) recommended intensive catches during the winter season, when no juvenile forms of the parasite are found in the watar, thus the fomales of \(\mathrm{E}_{\mathrm{o}}\) sieboldi hibernating on the gills of fish are eradicated along with the fish.

Tracheliastosis
A disease caused by the parasitio copepod Tracheliastos maculatus Kollar, 1836 (Crustaceas Copepoda parasitice).

Only females which attach to the scales of fish, are known to be parasitio. Melea unkown.

Tomaculatus is found in Europe, mainly on bream, less frequently on other members of the family Cyrpinidae. It damages scales at the place of attachment and causes dermatitis, local at first and then diffuse. If the fish is heavily infested and the disease is more advanced, wounds form at the places of attachment. These may become portals of secondary infection through bacteria or fungio Dermatitis is accompanied by a profuse mucus secretiono The disease causes strong emaciation of fish resulting in death (Grabda and Grabda, 1957). According to Geyer (1939a), bream ranging from \(14=17 \mathrm{~cm}\) in length are most frequently subject to infestatione Grabda and Grabda (1957) found the heaviest infestation among fish over 20 cm It. The intensity of the invasion amounts frequently to 100 percente Usually only single parasites are found on a fish. When the invasion is heavy several parasites may be present.
- Control.

There are no means of eradicating the parasites themselves. They can be controlled through usual management practices, i.e. the control of stocking material and intensive catches of bream to thin the stock and to diminish the possibility of contact contamination.

Table XI summarizes data concerning the common parasites of bream.
- Infectious diseases.

\section*{Bream septicemia}

An infectious disease manifested by an inflammation of the skin accompanied by congestions and haemorrhages. Frequently there are local swellings of the skin due to serum exudate in scale pockets. On the skin there may form lesions, sometimes reaching deep into the muscles. The gills are usually psie, sometimes there is protrusion of the eyo-balls. Internal anato micropathalogic changes: serum fluid in the body cavity, a congestion of the intestine, liver, and swim bladder, necrosis of the kidneys.

The investigations of Flemming (1954) proved that in the initial phase of the disease there is an increase in the number of leucocytes of the blood. Among them there ere numerous sranulocytes. In more seriously affected fish complete destruction of erythrocytes is observed.

\section*{Table XI}

More frequently occuring parasites of the bream, Abramis brama (I).
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Species of parasite & Found in & \[
\begin{gathered}
\text { Distribution } \\
\text { area }
\end{gathered}
\] & Authors \\
\hline & \multicolumn{4}{|c|}{Protozoz} \\
\hline 1. & \[
\frac{\text { Cryptobia }}{\text { (Brumpt, }} 1 \frac{\text { abramidis }}{1906 \text {) }}
\] & blood & Europe & Markevich, 1951; Kosheva, 1957; Bykhovskii, 1962 \\
\hline 2. & \[
\frac{\text { Myxidium }}{\text { Auerbach }}, \frac{\text { ffeifferi }}{1908}
\] & gell-bladder & Europe, Asis & Markevich, 1951; Bogdam nova, 1957; Barysheva and Bauer, 1957 \\
\hline 3. & \[
\frac{\text { Myxobolus }}{\text { Thélohang }} \frac{\text { oviformis }}{1882}
\] & \[
\begin{aligned}
& \text { gills, } \\
& \text { musoles, } \\
& \text { viscera }
\end{aligned}
\] & Europe, Asia (Siberia) & Wegener, 1909; Marke vich, 1951; Akhmerov and Bogdenova, 1957\% Bykhovskii, 1962 \\
\hline 4. & \[
\frac{\text { myxobolus }}{\text { Thélohang }} \frac{\text { exigus }}{1895}
\] & \[
\begin{aligned}
& \text { gills, in } \\
& \text { testine, } \\
& \text { kidney }
\end{aligned}
\] & Europe & Wegener, 1909: Markerich 1951; Kogteva, 1957; Grabda and Grabda, 1961; Bykhovikii, 1962 \\
\hline 5. & \[
\frac{\text { Myxobolus }}{\text { Buttschlig }} \frac{\text { mülleri }}{1882}
\] & sking gills, kidneys & \[
\begin{aligned}
& \text { Furope, Asia } \\
& (\text { Siberia) }
\end{aligned}
\] & Markevich, 1951g Bogdanove, 1957: Rogteva, 1957; Grabda and Grabda. 1961, and others \\
\hline 6. & \[
\frac{\text { Myxobolua }}{\text { Gurley, } 1893}
\] & viscera & Europe & Wogener, 1909; Markevich, 1951; Grabda and Grabda, 1961 \\
\hline 7. & \[
\frac{\text { Chilodonella cyprini }}{(\text { Moroff } 1902)}
\] & gills, skin & Europe & Kozicka, 1951; Markevich, 1951; Bogdanova, 1957 \\
\hline \multirow[t]{2}{*}{8.} & \[
\frac{\text { Ichthyophthirius }}{\text { multifiliis }}
\] & skin, gills & Europe & Kozicka, 1951, 1959: Markevich, 1951; Bogdanove, 1957; Pacak, 1962 \\
\hline & & \multicolumn{3}{|l|}{Monogenoidea} \\
\hline 9. & \[
\frac{\text { Dactylogyrus }}{\frac{\text { auricum }}{\text { (Nardmann, }} \text { 1832) }}
\] & gills & Furope, Asia (Razakhstan) & Markevich, 1951; Prost, 1957, 1959; Bogdanova. 1957: Vojt枚, 1959; Margaritov, 1959; Bykhovskii, 1962; Agapova, 1962 \\
\hline 10. & \[
\frac{\text { Dactylogyrus }}{\text { Linstow, } 1878}
\] & gills & Europe & Markevich, 1951; Boidanova, 1957; Pacak, 1962; Bykhovskii, 1962; Lucky and Dyk, 1964 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 11. & \(\frac{\text { Dactylogyrus }}{(\text { Vedi, 1857) }}=\) & gills & Murope, Kazakhstan & Markevich, 1951; Prost, 1957, 1959; Bogdanova, 1957; Vostek, 1959; Agapova, 1962, Bykhovskii, 1962 \\
\hline 12. & Dactylogyrus erucifer Hageners 1857 & gills & Furope & Markevich, 1951; Bogdanova, 1957; Bykhovskiig 1962; Iucky and Dyk, 1964 \\
\hline 13. & \[
\frac{\text { Dactylogyrus sphyrna }}{\text { Linstow, } 1878}
\] & gills & Europe & Markevich, 1951; Prost, 1957, 1959; Bogdanova, 1957; Bykhovskii, 1962; Lucky and Dyk, 1964 \\
\hline 14. & \[
\frac{\text { Dactylogyrus }}{\text { Bykhovskii, }} 1931
\] & gills & Europe, Kazakhstan & Markevich, 1951; Bogdam nova, 1957; Kogteva, 1957; Vojtels, 1959: Agapova, 1962; Bykhovskii, 1962 \\
\hline 15. & \[
\frac{\text { Dactylogyrus }}{\text { Bykhovskii, }} 1933
\] & gills & Europe & Markevich, 1951; Prost, 1957, 1959; Bogdanova, 1957; Margaritov, 1959; Vojtëk, 1959 \\
\hline 16. & \[
\frac{\text { Gyrodactylus }}{\text { Bykhovskji, }} 1933
\] & gills & Europe, Kazakhstan & Prost, 1957; Bogdanova, 1957; Margaritov, 1959; Agapova, 1962; Bykhovskii, 1962 \\
\hline 17. & \[
\frac{\text { Gyrodactylus }}{\text { Kathariner }} 1893
\] & gills & Europe, North Asia, Kazkhstan & Markevich, 1951: Agapova, 1960; Lucky and Dyk, 1964 \\
\hline 18. & \[
\frac{\text { Diplozoon }}{\text { Nordmann, }} \frac{\text { paradoxum }}{1832}
\] & gills & Europe, Asia (Siberia, Kazakhatan) & Markevich, 1951: KOzicka, 1951, 1953: Prost 1957, 1959; Vojtø̈k, 1959; Margaritov, 1959; Pacak, 1962; Agapova, 1960; Bykhovskii, 1962; Lucky and Dyk, 1964 \\
\hline & & matoda - Dige & & \\
\hline 19. & \[
\frac{\text { Bucephalus }}{\text { Be.er, } 1827, \frac{\text { polymorphus }}{\text { larva }}}
\] & gills, eyes, skin & Europe, Asia & Markevich, 1951; K0zicka, 1951; Grabda and Grabda, 1961; Bogdanova, 1957; Vojtek, 1959; Agapova, 1960; Bykhovskii, 1962 \\
\hline 20. & \[
\frac{\text { Rhipidocotyle }}{\text { Ziegler, } 1883,} \frac{\text { illense }}{\text { larva }}
\] & skin, gills, Pins & Poland & Kozicka, 1953, 1958, 1959 \\
\hline 21. & \[
\frac{\text { Phyllodistomum folium }}{(01 \mathrm{fers}, 1916)}
\] & \begin{tabular}{l}
urinary \\
bladder, ureters
\end{tabular} & Europe & Markevich, 1951; Kosheva, 1957; Vojtkova, 1959; Bykhovskii, 1962 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline FRi/ & bramis brame & & & 3:27 \\
\hline 22. & \(\frac{\text { Phyllodistomum }}{\text { Mybelin, } 1926}\) & \begin{tabular}{l}
urinary \\
bladder
\end{tabular} & Europe, Asia & Markevich, 1951; Baxysheve and Bauer, 2957: Akhmerov and Bogdanova, 1957; Vojtkova, 1959; Bykhovskii, 1962 \\
\hline 23. & \[
\begin{aligned}
& \text { Sphaerostomum bramas } \\
& \text { (Mixiler, } 1776 \text {) }
\end{aligned}
\] & Intestine & Europe & Markevioh, 1951: Kom zicka, 1951, 19598 Grabda and Grabde, 1961: Pa cak, 1962; Bykhorskii, 1962, and others \\
\hline 24. & Asymphylodore imitans (Mihling, 1898) & intestine & Europe & Markevich, 1951; Kozicka, 1951; Vojtĕk, 1959; Wierzbicka, 1964; Bykhovekii, 1962 \\
\hline 25. & Diplostomum elavatum Nordmann, 1832, larva & vitroous body of eye & \begin{tabular}{l}
Furope, Asis \\
(Kazakhstan)
\end{tabular} & Markevich, 1951; K0zicka, 1953, 1958; Bogdanova, 1957: Vojtkova, 1959: Agapove, 1958; Grabde and Grabda, 1961: Bykhovskii, 1962 \\
\hline 26. & \[
\frac{\text { Diglostomum }}{(\text { Rudolphig }} \frac{\text { Bpathaceum }}{\text { 1819) } 1 \varepsilon r v a}
\] & eye lens & Europe, Asia (Kazakbstan) & Markevich, 1951; Kom zicka, 1951, 1953, 1959: Bogdanova, 1957; Engelbrecht, 1958; Grabda and Grabda, 1961, and others \\
\hline 27. & \[
\frac{\text { Posthodiplostomum }}{\frac{\text { cutico- }}{\text { (I Nordmann, 1832) 1axva }}}
\] & sking fins, gill & Furope & \begin{tabular}{l}
Kozicka, 1953, 1958; \\
Grabda and Grabda, 1961; \\
Pacak, 1962; Bogdanova, \\
1957, and others
\end{tabular} \\
\hline 28. & \[
\begin{aligned}
& \text { Apophallus muhlingi } \\
& \text { (Jägerakiel } \frac{1899)}{\text { larva }}
\end{aligned}
\] & gills, Pins & Europe & Markevich, 1951; Vojtëk, 1959; Bykhorskii, 1962 \\
\hline 29. & Metagonimus yokogawai Katsurada, 1912, lạra & scoles, Pins, gills & USSR, Czechoslovakia & Vojtěk, 1959; Zitman, 1960; Bykhovskii, 1962 \\
\hline & & Costoda & & \\
\hline 30. & \[
\frac{\text { Caryophylleus }}{(\text { Pallas, } 1781)}
\] & intestine & Europe, Asia, Siberia, (Razakhstan) & Markevich, 1951; Janism zewska, 1954; Kozicka, 1953, 1959; Engelbrecht. 1958; Agapova, 1960; Pacak, 1962, and others \\
\hline 31. & \[
\frac{\text { Caryophyllaeides }}{(\text { Schneider, 1902) }}
\] & intestine & Europe, Asia & Kozicka, 1959; Pacak, 1962; Bykhovskii, 1962 \\
\hline 32. & \[
\frac{\text { Ligula }}{\left(\mathrm{L}_{\mathrm{o}}, 175 \mathrm{f}\right. \text {) lestinalis }}
\] & body cavity & Europe & Markevich, 1951; KOzicka, 1958; Dubinina, 1957s Willer, 1912; Peoak, 1962; Kosheve, 1957, and others \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 33. & \[
\frac{\text { Digramma }}{(\text { Rudolphi }} \frac{\text { interrupta }}{1810)}, \frac{\text { larva }}{}
\] & body cavity & Europe, mainly East Furope & Kosheva, 1957; Dubinina, 1957; Bykhovskii, 1962 \\
\hline 34. & Proteocephalus torulosus (Batsch, 1786) & intestine & Europe & Markevich, 1951; Kosheva, 1957; Grabda and Grabda, 1961; Pacak, 1962, and others \\
\hline & \multicolumn{4}{|c|}{Tematoda} \\
\hline 35. & Rhaphidascaris acus (Bloch, 1779) 1arva & viscera & Europe & Markevich, 1951; Schäperclaus, 1954; Dyk, 1961; Bykhorskii, 1962, and others \\
\hline 36. & Philometra ovata (Zeder, 1803) & body cavity & Europe, Ka zakhstan & Bykhovskii, 1962; Agam pova, 1962 \\
\hline 37. & \[
\frac{\text { Philometra }}{\text { Nybeling }} 1928
\] & body cavity & Furope, Asiatic USSR & Maxkevich, 1951; Bykhovskí, 1962 \\
\hline & \multicolumn{4}{|c|}{Acanthocephala} \\
\hline 38. & \[
\frac{\text { Neochinorhynchus }}{\frac{\text { rutili }}{(\text { Müller }, ~ 1780)}}
\] & intestine & Northern holarctic region & Van Cleave and lynch, 1950; Grabde and Grabda, 1961; Bykhovskii, 1962, and otbere \\
\hline 39. & \[
\frac{\text { Acenthocenhalus }}{\text { (nguillae }}
\] & intestine & Holarctio region & Kozicka, 1951, 1953: Pacak, 1962; Lucky and Dyk, 1964; Bykhovski.i, 1962, and others \\
\hline 40. & \[
\frac{\text { Acanthocephalus }}{(\text { Müller, 1776) }}
\] & intestine & Europe & Kozicka; 1953, 1959; \(\mathrm{Pa}-\) cak, 1962; Bykhovskii, 1962, and others \\
\hline & \multicolumn{4}{|c|}{Crustacea parasitica} \\
\hline 41. & \[
\frac{\text { Ergasilus }}{\text { Nordmann, } \frac{\text { sieboldi }}{1832}}
\] & gills & Europe, Asia & Weuhaus, 1929; Markevich, 1956, Grabda and Grabda, 1961; J. Grabdá, 1962; Schäperclaus, 1954; Par cak, 1962, and otbers \\
\hline 42. & \begin{tabular}{l}
Caligus lacustris \\
Steenstrup et Lütcen, 1861
\end{tabular} & gills, skin & Furope, Asia (basins or the Baltic, Black, Caspian and Aral Seas) & Markevich, 1956; Kozikowska, 1957; J. Grabda, 1962; Bykhovskii, 1962 and others \\
\hline 43. & \[
\frac{\text { Tracheliastes maculatus }}{\text { Ko11ar, } 1835}
\] & skin & Central and Enst Europe & Schäperclaus, 1954; Markevich, 19568 Kozikowska, 1957\% Grabda and Grabda, 1957; J. Grabda, 1962; Bykhovakii, 1962, and others \\
\hline 44. & \[
\frac{\text { Argulus }}{\text { (Linnaeus }, 1758 \text {) }}
\] & skin, mouth cavity, gills & Europe, Asia & Bogdanova, 1957; Stammer, 1959; Pacak, 1962; Bykhovskii, 1962, and others \\
\hline
\end{tabular}

From the affected bream，Scheperclaus （1954）isolated Psoudomonas punctata（Syn． Aeromonas punctata）．The disease is quite common in Germany and Poland．

It is frequently found together with carp ssepticemía（Abdominal dropsy）． Although it has not been established that it is caused by the same germ as in oarp， utmost precautions should be taken when stocking lakes with the latter species．

\section*{Focal liquefactive necrosis}

An enzootic disease of bream found in Poland（Waluga，1962；Niewolak，1961）．

The disease occurs among lake bream woighing approximately \(1 \mathrm{~kg}_{\text {g }}\) in summer （August－September）．Weakened fish swim upside down near the surface．On the body of the fish there are found tumors of a soft consistency．

Histopathologic symptoms：a liquem factive necrosis of the skin and muscles， focal necrosis of the liver，spleen and kidney，fatty degeneration of the liver， peeling of the intestinal opithelium． In extreme cases there is a complete necrosis and loss of the caudal part of the fish（Waluga，1962）．

These changes are irreversible and usually lethal．

From the affected bream there has been isolated Pseudomonas chlororaphis（Guignard et Sauvageau，1894）（Niewolak，1961）。
－Diseases of unknown etiologyo

\section*{Epitheliome}

In the initial phase of the disease there is a proliferation of the opithelial cells in the form of soft，whitish patches which eventually harden．The disease may affeot the gills，causing their degeneration， or the skin．When the patches cover large portions of the surface of the fish body the fish become emaciated，the growth is retarded and death may eventually result．

Epithelioma is a disease common among carp．In bream the symptoms were observed by Schäperclauョ（1954）in Germany，by Liaiman（1949）in the USSR，in Poland by J．Grabde，（unpublished observation）．In older bream the disesse is found sporadically．

The otiology of the disease is not suffioiontly known．
－Poisoning．
Water pollution by industrial wastes contisining phenolo

Phenol poisoning causes disturbances of the circulatory system（congestions， haemorrhages），necrobiotio changes in the cells resulting in a destruction of the cytoplasm and nucleus，the presence of foci of coagulative nocrosis．Phenol affects the central nervous system causing abnormalities of respiration，motion and pigneatation o the bream become pale．Death results from respiratory paralysis（mors per aspbyxiam）or from paralysis of the heart（mors per syncopem）（Waluga，1966）．

Low concentrations of phenolg although not lethal to fish，cause changes in the peripheral blood of Sish，characterized by an increase in the number of non－typical and juvenile forms of blood corpuscles and a destruction of morphotic elements of blood （Waluga，1966a）．

\section*{3．4 Nutrition and geowth}

\subsection*{3.41 Feeding．}

According to Laskar（1948），in lakes \({ }_{9}\) younger bream feed by day and the older ones by day and night．Kogan（1963）and Mebolsina（1962），after studying the daily feoding rhythm of bream in retention reservoirs，came to the conclusion that they feed exclusively by daylight．Feeding is most intensive from 11.00 to 13.00 and then from 15.00 to 19.00 hours if the temperature is higher than \(27^{\circ} \mathrm{C}\) 。

Tendipedidae preponderate in the food when the light is strong，and Mollusca at dusk．Younger year classes feed in the littoral zone，the older ones in the sub＝ littoral and profundal regions of lakes （Laskax，1948；Pliszka，1953）．Feoding places depend on the limnological character of the water body（Table XII，and Plisaka and Dziekonsks 1953，1953a）．In the Vistula， bream feed in muddy places，at greater depths， where the current is weak（Pliszke ot al。？ 1951）．

Poddubnyi（1959）reported thats in the Rybinskoe Reservoir，onemo－two－yearmold bream feed inshore，two－to－threc－year－olds on the newly inundated areas，and older bream mainly in the former river beds bream schools were observed on rich feeding grounds， while，at the same time，single fish or small groups were feeding on the poorer ones．

The mouth of an adult bream is semi－ inferior it makes a lons snout directed downward，at an angle with the long axis of the body．The gill covers have strong muscles，which give the mouth considerable sucking power（Eremeova，1948，in Vasnetsov， 1948）．

According to Wunder (1936), the bream uses mainly its taste when looking for food; according to Kogan (1963) sight is most important. Disler (1948) proved that the sense organs of the lateral line may be helpful in finding food.

Bream can search for food in the upper mud layer only. According to Karzinkin (1952), bream 11.5 cm long can penetrate mud layers up to 5 cm thick, 16 cm fish up to 9 cm. Karzinkin (1952) is of the opinion that old bream (6 years old) can find their food even under a 15 cm mud layer. Changes in nutrition in older year classes of bream of the Caspian Sea are presented in Figo 6, is those of Central European lakes in Fig. 7. Many authors agree with the general rule that as bream grow older they move to deeper feoding grounds and feod on bigger organisms.

A typical pattern of feeding activity is shown in Figo 8 (after Hartley, 1947). The date of Laskar (1948) for German lakes, Pliszka (1953, 2953a) for Polish lakes and Morozove (1952) for the Aral Soa suggest that bream feed most intensively from June to August. Accordines to Pliszka ot al. (1951), however, in the Vistula there are two feeding maxima, \({ }^{\text {. }}\) in Hovember and May, and two minima, in Januaxy and July 3 the Latter is connected with the level of waters feeding is intensive at a lov water lovel.

The data of Hartley (1947), Laskas (1941, 1948), Pliszka (1951, 1953, 1953a) and Nebolsine (1962) suggest that there is a drop in the feeding intensity both during the spawning season and in winter. The observations of ZiemiankowskI and Cristea (1961) suggest that bream feed at a temperature of \(0.5^{\circ} \mathrm{C}\) but in the Gorki. Reservoir Zhiteneva (1960) noticed that feeding stopped in October at a temperature of \(4-5^{\circ} \mathrm{C}\) and in 1958 bream stopped. feeding at a temperature of \(8-9^{\circ} \mathrm{C}\).

\section*{- Abstention from feedingo}

During the spawning season bream hardly feed (Morozova, 1952; Pliszka ot a1. 1951). Ivlev (1955) studied the offect of starvation upon the biological reactions in fish. The data (Fig. 9) refer to bream weighi g 0.32 go Starvation clearly diminished the resistance to water pollution (phenol) and infection with mould (Saprolegnia).

\subsection*{3.42 Food.}

Data on brean food are numerous, Laskar (1948), Shorygin (1952), Aristovakaia (1954) and Pankratova (1948) made lists of appropriate references. Table XIII and

Figg 7 show the most important food components of bream.

Many authors confirm the pattern or food composition (Egereva, 1962; Volgin and Vertinin, 2964, and others already quoted).

Annual changes in food composition were observed in lakes (Pliszka, 1953, 1953a) and brackish waters (Shoryging 1952). It is believed that they reflect changes in availability of food animals. This explanation may be applied to differences in the sood of bream in diverse biotopes, and in various years in reservoirs (Aristovskaia, 1954 Ivanova, 1960; Kogan, 1958: Zhiteneva, 1960).

Detritus, or mineral particles from the bottom, are almost always found in bream feeding on demersal fauna. They may make up to \(80-90\) percent of the contents of the digestive tract by woight (Bogatova, 1963: Shoryging 1952). Gomazkov (1959) and Ananítchev (1959) discuss detritus as a source of rood for bream. They conclude that detritus cannot be sufficient food for bream although it contains comparatively large amounts of vitamin B12. The part playod by bacteria is not clear.

The daily pood intake (as percentage of body weight) is 19.5 percent in ponds, 38.4 percont in aquaria for small bream axid 5-9 percent for big ones. The annual food requirement is the body weight times 15 (Zheltenkova, 1964)。

Karzinkin (1952) found in experiments that onemear old bream had a daily food intake of 5.7 percent of body weight in June, 10.1 percent in July and 6.6 percent in August. During 92 days the bream ate 16.5 times its weight at the beginning of the experiment.

Kogan (1963) estimated the daily food intake of bream in the Tsymlanskoe Reservoir ss \(2.5-3\) percent of the body weight durins summer. Nobolaina (1962) obtained a simllar result of 2.5 percent for the bream of the Volgograd Reservoir. Shorygin (1952) reported the daily intake to be 7.4 percent in the case of bream aced onemplus in Lake Glubokoes the annual intake was equal to 15 times the body weight.

\subsection*{3.43 Growth rate.}

The growth in length and body weight of many bream populations has been established during the last 50 years. Most data were obtained from scale reading and

Figure 6. Food composition of Caspian bream, changing with growth (after Shorygin. 1952).

Groller Plöner Lake

Oberer Ausgraben Lake

Figure 7. Food composition of bream from two eutrophic lakes (after Lasker, 1948).

Pigure 8. Variation in feeding activity in the course of the yeare 1939 and 1940. Percentage of fish containing food (after Hartley, 1947)。

Time to 50 percent morpality days

Figure 9. Loss in weight (oolid line) and time to 50 percent mortelity (broken line) in bream in relation to the "foeding level" expressed as proportion of maintenance food retion (after Ivlev, 1955).

back calculations and they should be treated with caution. Numerous data on the growth rate of bream in European waters can be found in the works of Balon (1962), Bauch (1963), Berg (1949), Geyer (1939), Hartley (1947), Karpinska-Waluś (1961), Segestrale (1932, 1933), Shaposhnikova (1948) and Wundsch (1939).

Table XIV presents some available data to show differences in growth rate of bream. It is possible to di'stinguish two principal types of bream growth. The first is represented in Fig. 10 by the curve of the growth rate of bream in the Ural River delta and the Sea of Azovs in these cases, high growth rate during the first 3 - 4 years is followed by a pronounced slowdown at the time of attaining sexual maturity. The second type of growth rate is shown in Fig. 10 by the data referring to Lake Tuusula, Gr. Plôner See and averages for Polish and German lakes; here the growth rate is approximately uniform, and there is no slowing down after sexual maturity is reached. This type of growth is common in the water bodies of Central and Northern Turope。

Vasnetsov (1934) regarded the first type as representative of bream. He defined the relative growth index or "growth characteristic" as
\[
\frac{\log I_{t}=\log _{t-1}}{0.4343} I_{t-1}
\]
i.e. the difference between log of length at age \(t\) and \(\log\) of length at age \(t-1\), times length at age \(t m 1\). He considered the growth of bream to show two periods in most cases: the first, or juvenile, with rapid growth, and the second, after sexual maturity is reached, with low rate of growth. The data of Fig. 11 give the values for the "growth characteristic" index for three bream populations of various growth rates. Sharp differences in the index can be observed most frequently in the populations from the southernmost areas of the species distribution (Balon, 1963).

The relation of weight to age is presented in Table XV for three bream populations, For length/weight relation ship, Hartley (1947) gave the formula:
\[
3.296
\]
\[
W=0.0065 \mathrm{~L}
\]
for fork length of bream from English waters. Fig. 12 presents a relationship between body
weight and length for bream from Lake Godopiwo, Poland, after Karpin̂ska-Walus (1961), and data referring to a number of other water bodies. These show a similar trend, although they represeat extremely widely separated populations with different growth rates. This confirms the opinion of Geyer (1939) and Wundsch (1939) on a close correlation between body length and weight in bream, irrespective of growth rate。

The Fulton condition index does not show any greater differences in the case of populations from different lakes and of diverse growth rate. For instance, according to Savina et al. (1964) the Fulton index for seven lakes situated in the northo western part of the USSR varies from 1.73 in Lake Tiosto to 1.90 in Lake Ilmen. Shaposhnikova (1948) gave the Fulton inder as 2. 20 for the Volga, the highest value being for three-yearmolds, \(1.8-2.4\) for Lake Itkul, 2.00-2.21 for the Dneper deltas Other authors give similar values fox bream from a number of water bodies, (in Shaposhnikove, 1948). Starvation forms are, however, also known among bream, when body proportions and condition deviate from the mean (Luhmann and Mam, 1957).

No correlation has been found between growth rate of bream and limnological type of lake (Zawisza, 1961). Wundsch (1939) stated that when comparing the growth rate of different populations of European bream it was impossible to find any dependence on the geographic position or climatic conditions. Shaposhnikova (1948) also reported that the geographic position of a water body and climatic conditions are rather secondary factors, the effects of which may be alleviated by food abundance. The growth rate in different areas is shown in Fig. 13, from the work of Shaposhnikova (1948), supplemented by data from other authors.

The following classification of growth rate of bream follows Jarnefelt (1921), Geyer (1939 and Wundsch (1939):
\begin{tabular}{|c|c|c|}
\hline Rato of growth & standard (total) length at age 9 (cm) & Age (years) at which weight of 1 kg and standard length of 37 cm are reached \\
\hline good & 31.5 (37.5) & before 11 \\
\hline medium & \(25-31.5(30-37.5)\) & before 14 \\
\hline poor & less then 25 (30) & after 14 \\
\hline
\end{tabular}

In additiong a class of "very good" growth rate has been introduced, after Shaposhnilrova (1948), to denote those populations which reach the length of 31.5 cm at the age of five-tomsiz years and the weight of 1 kg and body length of 37 cm at the age of sixm to-eight years. Such growth rates have been observed not only in estuaries and brackish waters of southeastern Europe but also in the Bodensee (Haakh 1929, in Wundsch, 1939), the Vistula Lagoon (Filuk, 2957) and anong survivors in smaller lakes after winter-kill (Kex-piniska-Waluśg 1961)。

A number of euthors, from Jäsnefelt
(1921) to Laskar (1948), have drawn attention to the dependence of growth sate upon the quality and quantity of pood. This is very noticeable in retention reservoirs during the first period of their existence (Elizarova, 1962; Iliina, 1960; Marketova, 1958; Shaposhnikova, 1948). But in lakes no clearcut correlation between the abundance of the profundal fauna food and the growth rate of bream can be established if other factors are not taken into consideration (Kundsch, 1939: Karpiniska-Walus, 1961; Zawisza, 1961).

Some other opinions concerning growth relations may be summarized as follows:
\begin{tabular}{lll}
Stock in: & Factors affecting growth: & Author: \\
Finnish lakes & Temperature & Segestrale, 1932 \\
German lakes & Combination of factors & Geyer, 1939 \\
Folish lakes & Food abundance, combinetion & Karpinska-Walus, 1961, \\
& of factors & Zawisza, 1961 \\
Azov Sea & Food availability, length & Dementeva, 1955 \\
& of growing season \\
Caspian Sea & Abundance of bream and food & Zemskaia, 1958, 1961 \\
& availability
\end{tabular}

Figure 10. Growth in length of bream from some waters: 1. Ural River, 2. Sea of Azov, 30 Groosse Plöner Lake, 4o Average from 244 lakes of Poland, 5. Average Prom 36 lakes of Northern Germany, 6. Tuusula Lake, Finland.

Darrube near \(\begin{array}{llllllllllllllllllll} & 5.3 & 10.6 & 16.7 & 20.8 & 23.9 & 26.9 & 29.4 & 31.7 & 33.1 & 35.5 & 39.5\end{array}\) Damube near
Hedvedovo Damabe delta Papadopol (1960)
in Balon (1963) Belyi (1948) in
Balon (1963) Balon (1963)
Belyi (1948)
 Balon (1963) Shaposhnikova (1948)

\section*{Berg (1949)}

\section*{(SSST) AOUnoxiso} (296T) влохеztta
(676T) \(8 \mathrm{x} 日 \mathrm{~g}\)
 Berg et al. (1949)
Dementeva in
Shorygin (1952)
 Filuk (1957)
total length
(\(\varepsilon 96 \tau)\) पวกeg

Table XV
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lakes & Age group & I & II & III & IV & \[
\mathrm{V}
\] & VI & VII & VIII & IX & \[
\mathrm{x}
\] & XI & XII & XIII & XIV & XV & XVI & XVII \\
\hline \begin{tabular}{l}
Tuusula \\
(Jänefelt, \\
1921)
\end{tabular} & length (cm) weight (g) & 2.2 & \[
\begin{aligned}
& 4.1 \\
& 5.2
\end{aligned}
\] & 6.0 & 7.8 & \[
\begin{array}{r}
9.8 \\
11.5
\end{array}
\] & 11.8 & \[
\begin{array}{r}
13.9 \\
65
\end{array}
\] & \[
\begin{array}{r}
15.9 \\
122.5
\end{array}
\] & \[
\begin{array}{r}
18.5 \\
168.2
\end{array}
\] & \[
\begin{array}{r}
20.5 \\
217.2
\end{array}
\] & \[
\begin{array}{r}
22.0 \\
304.5
\end{array}
\] & \[
\begin{array}{r}
23.7 \\
343.3
\end{array}
\] & \[
\begin{aligned}
& 25.2 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 27.9 \\
& 475
\end{aligned}
\] & \[
\begin{aligned}
& 30.5 \\
& 575
\end{aligned}
\] & 32.5
683 & \[
\left\lvert\, \begin{aligned}
& 35.2 \\
& 950
\end{aligned}\right.
\] \\
\hline \[
\begin{aligned}
& \text { Gr.Plönөr } \\
& \text { (Geyer, } \\
& (1939) \text { (}
\end{aligned}
\] & length (cm) weight (g) & 5.1 & \[
\left.\begin{array}{r}
8.9 \\
12.5
\end{array} \right\rvert\,
\] & & & 21.3
225.0 & \[
\begin{array}{r}
27.4 \\
510.0
\end{array}
\] & 31.8
700 & 32.8
800 & 35.0
980 & \[
\begin{aligned}
& 40.7 \\
& 1500
\end{aligned}
\] & \[
\begin{aligned}
& 45.9 \\
& 2400
\end{aligned}
\] & \[
\begin{aligned}
& 48.0 \\
& 2850
\end{aligned}
\] & & & & & \\
\hline \begin{tabular}{l}
Thlul \\
(Berg et \\
21.9 \\
1949)
\end{tabular} & length (cm) weight
\((\mathrm{g})\) & & & \[
\left|\begin{array}{r}
22.5 \\
250
\end{array}\right|
\] & \[
\begin{array}{r}
29.0 \\
595
\end{array}
\] & 33.2
880 & 38.0
1310 & \[
\begin{aligned}
& 40.5 \\
& 1700
\end{aligned}
\] & \[
\begin{aligned}
& 44.0 \\
& 1960
\end{aligned}
\] & \[
\begin{aligned}
& 47.0 \\
& 2600
\end{aligned}
\] & \[
\begin{aligned}
& 52.5 \\
& 3700
\end{aligned}
\] & & & & & & & \\
\hline
\end{tabular}

Figure 11. Vasnetsov's growth index: (in \(\left.1_{t}-1 n 1_{t-1}\right)\). \(1_{t-1}\) 1. Ural River, 2. Tuusula Lake both from Pasnetsov (1934), 3. Charzykowo Lake (Stangenberg, 1950) calculated by Balon (1963).

Figure 12. Length/weight relationship in bream

Figure 13. Growth rates of bream in the area of its natural distribution. Triangles - some data from Table XIV.

\section*{3．44 Metabolism。}

The available data are presented in Table XVI and Figs． 14 and 150

Kuznetsova（1958）studied the oxygen requirement of bream from fextilization of oge until the laxvae attained a weight of 2 go According to Vinberg（1956）a rough estimate of the standard metabolism of bream at \(20^{\circ} \mathrm{C}\) can be obtained from the formula：
\[
Q_{1} / O_{2} \mathrm{ml} / \mathrm{h} /=0.3 W^{0.8}
\]
or

where＂w＂is weight in grams．
Mo data on active metabolism has been found．

\subsection*{3.5 Behaviour}

3．51 Migrations and local movements
Bream from the estuaries of Black， Caspian and Azov Seas have been described as semi－migratory．The spawning and winter grounds of those populations are in the lover reaches and deltas of large rivers，while their feeding grounds are in brackish sea areas．Consequentiy two periods of mass migration are observed：spring and autumn． The spring mieration of the Caspian bream begins with the melting of ice on the sea。 The first group of bream start their up stream migration at the beginaing of April． while the second and larger run lasting for 15－30 daye begins when the water of the river reaches the temperature of \(8^{\circ} \mathrm{C}\) ．

After spaming，bream returns to the ses and disperse to feed．They school at the ond of July and in August．The autumn migration in the northern part of the Caspian Sea begina in August and reaches its peak in October．Bream spend the winter in the deeper parts of rivers，not far from the places where they discharge themselves into the sea（Dementeva，1952as Berg in Berg et E1。1949）。

Only a part of the bream population of the Aral Sea apaw in rivere，while the rest spawn in the areas surxounding river mouths． In March－April bream appear in coastal areas to breed．After spawning，bream move to marine feoding grounds and return to the shore in September－October．In December bream aggregate near the Syr and Amumaria Rivers（Morozova，1952）．Velikokhatko （1941，in Berg 1949）distinguishes two forms of Dneper breams a＂winter＂Lorm which migrates up to 100 km upstream and＂spring＂ fish which occur in the lower reaches of the
river．The xuns of the＂winter＂form begin in autumn，at the end of September and in October，and they last all through the winter． The＂spxing＂form is not so numerous as the ＂winter＂one and starts its migration in spring．Young bream reaching the length of \(25-30 \mathrm{~mm}\) swim seaward．

The results of tagging carried out in German rivers and in the middle Vistula （Plisgke，1951）prove that most of the population does not migrate for long distances．Similarly，the observations of Sakowicz and Backiel（1953），on the migrations of fish along canals linking lakes with dense bream populations，did not reveal any cleax out migratory trends．

Within particular lakes，however，there occur local migrations which in some degree resemble those of semi－migratory bream of the Morth－European big river estuaries． Driagin（1949）described the spawning migration of bream from Lake Pskovsko，JSSR， to adjacent rivers．Tagging was carried out in Lake Sniardwy，Polend，（unpublished data of the Inland Fisheries Institute in Olsatym） on a spawning ground where they were vexy abundant．Tagged fish were caught on fooding grounds over the whole lake in summer，and they were found on a gathering ground in winterg when 40 tons of bream were taken in one seine haul．
\[
3.52 \text { Schooling }
\]

Bream school in early stages of their devel opment（Vasnetsov et al． 1957 ）after reaching the length of 16 mma（Paiusova，1961）． These schools or aggregations，known also as ＂elementary populations＂（Lebedev，1946）， differ in individual size，size distribution， condition factor and degree of infestation with metacercariae．Paiusova（1961）observed soparate aggregations of young bream for two weeks．The behaviour of those bream was not observed．Observations on bream in an aquariun suggest that they school when oxcited and they scatter for feoding． Ohlmer and Schwarzkopr（1959）proved that the swimming velocity of bream studied individually increases with their length， from \(0.66 \mathrm{~m} / \mathrm{sec}\) ．when they are \(12=16 \mathrm{~cm}\) Iong to \(0.90 \mathrm{~m} / \mathrm{sec}\) at the length of \(24-28 \mathrm{cme}\) Bream，when studied in a school，swam 0.65 － \(0.68 \mathrm{~m} / \mathrm{sec}\) irrespective of theix length （of．also section 3．51）．

\section*{3．53 Responses to stimuli。}

Bream are able to see light of wave－ length \(400=710 \mathrm{mp}\) ，their greatest sensitivity lying between 600 and 630 mp．At dusk they are most sensitive to rays of \(540 \mathrm{~m} \mathrm{\mu}\) ．The number of pictures a bream can distinguish in ons sec is 55 （Radakov and Protasov，1964）．

Table XVI
Respiration rate of bream
\begin{tabular}{|c|c|c|c|}
\hline Age (days) & Weight (g) & \(\mathrm{O}_{2}\) consumption & Author \\
\hline Embryo & & \(0.655 \mathrm{mg} / \mathrm{h} / \mathrm{g}\) & Kuznetsova, 1958 \\
\hline Lervae & & \(\mathrm{mm}^{3} / \mathrm{h} / 10\) larvae & Wikiforov, 1953 \\
\hline 20 & . 0.080 & 0.84 & \\
\hline 25 & 0.100 & 0.38 & \\
\hline 30 & 0.120 & 0.42 & \\
\hline 45 & 0.210 & 0.42 & \\
\hline 60 & 0.200 & 0.42 & \\
\hline \multicolumn{2}{|l|}{Older bream at \(t^{\circ}=20^{\circ} \mathrm{C}\)} & \(\mathrm{mg} / \mathrm{h} / \mathrm{g}\) & Ivanova, 1939 \\
\hline & 38.7 & 0.177 & in Vinberg, 1956 \\
\hline & 69.5 & 0.165 & \\
\hline & 102.9 & 0.114 & \\
\hline
\end{tabular}

Pigure 14. Metabolio rate of oream and temperature (Rrom Vinberg, 1956, after Bogdanova and Streloova, 1953).

Figure 15. Respiration rato of broum and osygen contont of enviroment \(20^{\circ} \mathrm{C}\) (srom Vinberg, 1956).

The reaction to light changes witu ago. Privolnev (1956a) found that bream younger than 15 days shun strong 1 ight, from the 15th to the 20 th day of their life they get more photophilous, and they again avoid light when they are 40 days old.

A positive rheotaxis mas observed by Aslanova (1952) among bream \(4.5-5.5 \mathrm{~cm}\) long, when the water current was \(3.32 \mathrm{~cm} /\) Beo. Bream aged two-tomsix years, which were \(24-35 \mathrm{~cm}\) long, took an upgtream position in flow rates of \(4.54-8.46 \mathrm{~cm} / \mathrm{sec}\).

A drop in the oxygen content of water to 1 or 1.5 me/ 1 caused bream to leave thst place and search for another where the oxygen content was higher (Alabaster and. Robertson, 1961). Privolnev (quoted by Vinberg, 1956) observed restlessiness amone bream at an oxygen content as high as \(2-2.5 \mathrm{mg} / 2\) 。

Bream of the southern regt on of its distribution avoid salinitiea higher thas 12.9 \% (Karpevich, 1955).

According to Lenkiewies (1964), young bream of \(b-10 \mathrm{~cm}\) g studied in November and acclimatized for onemtonfive days at \(7=8^{\circ} \mathrm{C}\), showed a preference for wator of temperature \(9-19^{\circ} \mathrm{C}\) (average \(13.75^{\circ} \mathrm{C}\)) g but

Whon acolimatized at the temperature of \(14-25^{\circ} \mathrm{C}\) they preferred a higher temperatures from \(13-24^{\circ} \mathrm{C}\) (average \(18.9^{\circ} \mathrm{C}\)). Bream bred in an aquarium at room temperature for 6 months showd a preference for temperatures from \(26^{\circ}\) to \(28^{\circ} \mathrm{C}\) (Horoezewicz, unpublishod dsta)。

The bream is mensitive to direct eloctric ourrent of field intensity equal to 0.66 V (Bodrove and Rraiukhin, 1959). At the intensity of \(3.64 \mathrm{\nabla}\) eleotronaroosis takes placo. The reaction to aiternating ourrent (Shentiakor, 1964) begins with fin twitohing at about \(0.46=0.77 \mathrm{~V}_{\mathrm{g}}\) beadeto tail voltage ("Cestaltspannung" in German, denoted by \(\mathrm{PR}_{\mathrm{R}}\)).

As the electric field atrength groms, the twitching of fins inoreases, there are body jerks, uneasy swimming around, then sudden swimming for long distances and oonvulsive movements of the body. Shook or tautening of fins and the whole body, twitohing and at last complete immobility take place at \(\mathrm{U}_{\mathrm{B}}=2\) to 3.5 V , dependisg oss the body leagth, at the water resistanoe \(30350 \mathrm{bm} / \mathrm{cm}\).

\section*{4 POPULATION}

\section*{4．1 Structure}
4.11 Sex ratio

Available data are presented in Table XVII．In the catchable populations females usually predominate。 It may be assumed that the same is true of the population as a whole owing to the greater mortality rate anong males（Alm，1959）．In older age groups the proportion of females keeps in－ oreasing．

During the spawing season far more meles are taken and up to 80 percent were recorded by Shaposhnikove（1948）．This is because males remain longer on the spaming grounds（of．section 3．16）．In bream ag－ gregations observed in the Sea of Azov， called＂elementary populations＂by Lebedev （1946），the sex ratio varied widely，ranging from 48 to 80 percent of females．To sum up the available data：
－the ratio among young bream is close to 1：1；
－the number of males declines faster then that of females as bream grow olderg females predominate in older age groups；
－in the spawning aggregations usually Semales predominate before spawning whereas males are more numerous during spawning；
－In feeding aggregations the ratio varies．

\section*{4．12 Age composition}

Table XVIII exemplifies age composition in bream catches．Populations from northern waters（Siamozero）are composed of more age groups than those from southern waters．

The composition of a population varies from year to year，particularly in heavily exploited populations（e．g．Caspian Sea） owine to considerable variations in the abundance of different generations（Fig．16）。

Age at first capture is frequently two－ to－three years（Table XVIII）．In the lakes of northern Poland it is five－to－six years．

The average \(a_{G} \theta\) of bream caught in the northern Caspian Soa（Lukashov，1961）was 4.5 in the years 1937 －＇ 43 and 3.6 in the years 1953－58．In the Sea of Azov it ranced from 4.5 to 5.5 in 1939 －\(^{-1} 47\) ．

The most abundant age groups of bream caught in northern waters are：

Siamozero
Vistula Lagoon
Vistula River
Lakes of Northem Poland

7－12 years
3－8 years
4－6 years
6－10 years
In the Danube estuary 76 percent of the bream caught are two years old（Popescu， 1958）．

The age composition in the populations caught varies in the course of a year，as show in Table XVIII for the Caspien Sea． In spring，older individuals are usually tam ken in spawning aggregations．

Age at maturity－cf．section 3.12
Maximum age－of．section 3.31

\section*{4．13 Size composition}

The composition of bream populations in length groups are illustrated by the date of Dementeva（1955），for catches with a gear called＂lampara＂in the Sea of Azov．The catches comprise individuals ranging from 5 to 51 cm in length（Fig．17）．The varia－ tions in the size composition are in agreem ment with the variations in age composition （cf．section 4．12），so that bream 7 cm long dominated in the Sea of Azov in 1948，while bream 27－35 cm long were predominant in 1952： In comnercial catches from various waters the length of bream was as follows：

Nogat River
（Vistula estuery）
Vistula Lagoon

Elbe River

Danube estuary

28－57 cm body length （Backiel unpublished）
\(15-60 \mathrm{~cm}\) total length （Filuk，1957）

22－57 cm total length （Bauch，1958）

21－38 cm total length （Popescu，1958）

Size at first capture：of．section 6．12。
The average lengths of bream caught in various waters vary，due to differences in the abundance of generutions，variations in growth and also exploitation．

In 1929－＇ 39 the averace length of bream caught in the Volga Delta ranged frum 24.5 － 31 cm （Dementeva，1952）due to variations in the abundance of generations．A decrease in the average length of bream caught today，as compared with bxeam caught during the Midale Ages and in prehistoric times，has been ex－ plained by changes in the methods and intene

TABIE XVII
Sex ratio in bream populations
\begin{tabular}{|c|c|c|c|}
\hline Locality & Data obtained from & \[
\begin{aligned}
& \text { Percent of } \\
& \text { females }
\end{aligned}
\] & Author \\
\hline Szczecin Firth, Poland & ```
commercial catch
1956-1959
``` & 63.8 & Peczalska, \(10 \leq 3\) \\
\hline \[
\begin{aligned}
& \text { Szczecin } \\
& \text { Fixth }
\end{aligned}
\] & \begin{tabular}{l}
commercial catch, age group: \\
2 \\
3 \\
4 \\
6 \\
7 \\
8
9 \\
9
10 \\
11-15
\end{tabular} & \[
\begin{aligned}
& 43.3 \\
& 55.9 \\
& 70.5 \\
& 59.7 \\
& 61.6 \\
& 60.0 \\
& 65.0 \\
& 64.0 \\
& 70.0 \\
& 78.7
\end{aligned}
\] & P9czalaka, 1963 \\
\hline Commen lakes & & abt 50.0 & Wundsch, 1939 \\
\hline Vistula River Poland & ```
commercial catch
age group:
\begin{array} { r } { 3 } \\ { 4 } \\ { 5 } \end{array}
    6-10
``` & \[
\begin{aligned}
& 46.0 \\
& 39.0 \\
& 48.5 \\
& 55.5
\end{aligned}
\] & Zawisza,1951 \\
\hline Danube River, Czechoslovekia & special collection & abt 50.0 & Balon,1963 \\
\hline Volga estuesy & young bream catch, age 1 and 2 & abt 50.0 & Berg, 1949 \\
\hline Volge estuary & spawning popula tion in autum & 53.0 & Berge 1949 \\
\hline Volge estuary and Azov Soe & commercial catch,
age groups
3
4
5
6
7
8 & \[
\begin{array}{r}
28.6 \\
45.3 \\
64.0 \\
78.2 \\
87.5 \\
100.0
\end{array}
\] & Dementeva, 1952 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{Locality} & \multicolumn{18}{|l|}{\multirow[t]{2}{*}{A Age Eroups}} & \multirow[t]{3}{*}{Author} \\
\hline & & & & & & & & & & & & & & & & & & & \\
\hline & 2 & 3 & 4 & 5 & 6 & 17 & 18 & 91 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & \\
\hline Lake Siamozeto, Karelia, USSR & 0.2 & 0.4 & 0.2 & 0.2 & 2.4 & 7.8 & 13.9 & 25.9 & 16.9 & 8.1 & 6.2 & 4.6 & 5.9 & 2.2 & 2.5 & 1.9 & 0.5 & 0.2 & Balagurova; 1963 \\
\hline Vistula Lagoon, Poland & 7.0 & 25.1 & 14.1 & 9.1 & 10.2 & 8.8 & 6.7 & 6.0 & 3.7 & 2.1 & 0.9 & 0.7 & 0.1 & & & & & & Filuk, 1957 \\
\hline Vistula Estuary, Poland & & & 0.6 & 4.0 & 49.9 & 21.9 & 15.8 & 2.5 & 2.2 & 0.6 & 1.9 & & 0.5 & & & & & & Backiel, (unpublished) \\
\hline Elbe River, middle course, Germany & & 0.8 & 5.1 & 24.5 & 25.5 & 28.8 & 8.5 & 3.4 & 3.4 & & & & & & & & & & Bauch, 1958 \\
\hline Danube River, Czechoslo vakia & 2.7 & 39.9 & 6.8 & 24.5 & 8.4 & 7.3 & 3.6 & 2.7 & 1.6 & 0.9 & 0.5 & 0.5 & & 0.1 & & & & & Balon, 1963 \\
\hline Vesolovskoe Reservoir on Don River, USSR 高 & & & & & & & & & & & & & & & & & & & \\
\hline 1953 & 3.6 & 62.7 & 20.5 & 11.4 & & & & & & & & & & & & & & & Kruglova, 1961 \\
\hline 1954 & 25.5 & 64.8 & 8.3 & 0.7 & & & & & & & & & & & & & & & \\
\hline 1959 & 1.0 & 22.0 & 67.0 & 9.0 & & & & & & & & & & & & & & & \\
\hline Southern Aral Sea 1939 & & 5.5 & 52.9 & 36.7 & & & & & & & & & & & & & & & \\
\hline \[
1947
\] & & & 2.0 & 56.3 & 31.7 & \[
7.9
\] & \[
1.5
\] & 0.3 & 0.3 & & & & & & & & & & Berwald, 1956 \\
\hline Estuary of Terek River, Western Caspian Sea, USSR & & & & & & & & & & & & & & & & & & & \\
\hline Sea, 1947 & & 71.2 & 17.2 & 10.1 & 1.1 & & & & & & & & & & & & & & Deming 1962 \\
\hline Morthem Caspian Sea 1933 autumn & 2.4 & 91.0 & 6.2 & 0.4 & & & & & & & & & & & & & & & Dementeva, 1952 \\
\hline 1934 spring & 0.2 & 82.0 & 13.9 & 2.0 & 0.6 & 1.2 & & & & & & & & & & & & & \\
\hline 1935 autum & & 2.3 & 13.7 & 81.5 & 2.5 & & & & & & & & & & & & & & \\
\hline 1936 spring & & 0.8 & 25.2 & 72.4 & 1.4 & 0.1 & & & & & & & & & & & & & \\
\hline 1951 spring
1951 autumn & 0.3
7.7 & 13.8
49.1 & 12.1 & 64.5
25.6 & 6.5
4.4 & 1.1
0.9 & 0.6
0.4 & \[
\begin{aligned}
& 0.8 \\
& 0.7
\end{aligned}
\] & 0.3 & & & & & & & & & & Berdichevskii, 1961 \\
\hline Lake Yasa, Turkmen SSR & 10.0 & 40.0 & 31.0 & 19.0 & & & & & & & & & & & & & & & Nikolskiig1953 \\
\hline
\end{tabular}

Figure 16. Age composition of bream oatoher in Volge Estuary (after Dementeva, 1952).

Figure 17. Size composition of bream in Azov Sea (after Dementeva, 1955).
sity of exploitation．So，for ezumple，ex－ cavations from the first eight centuries A．D．revealed that the average length of bream from Lake Pskovskoe was 39.6 cm ， whereas the average for 1951 is 33.1 cm 。 Excavations in the vicinity of Lake Ilmen from VII to IX centuries A．D．revealed the average length to be 42.4 cm ；today it is 30.5 cm （Nikolskii，1958）．Similar tenden cies have been observed in bream from the Sea of Azov（Nikolskii，1958），the average length being：
\begin{tabular}{ccc}
5,000 years ago，about & 36.0 cm \\
in 1925 & \(" 1\) & 34.3 cm \\
\(" 1929\) & 1929 & 31.0 cm \\
\(" 1955\) & \("\) & 29.4 cm
\end{tabular}

According to Tsepkin（1964），bream ave－ raging from 28.9 to 29.5 cm were caught in the VI－XI centuries \(A_{0} D_{0}\) ，in the estuary of the Amu－Daria River，where it enters the Sea of Aral．It must be stressed that 5，000 years ago bream comprised only two percent of all catches，whereas today they amount to some 39 percent．

Size at maturity cf．section 3.21 。
In lakes，adult bream inhabit deeper regions．In the shallow coastal waters of lakes only young bream，about 4 cm long，are found，and these occur only in small numbers even in the vicinity of spawning grounds （Backiel，1953）。 In running water，larger bream avoid shallow places．They move to deeper waters within one month of hatching （Backiel，1958）．

The same applies to the Volga（Demen－ teva，1952a；Tanasiichuk，1952，1959），and to the Amu－Daxia and Syr－Daria（Berg，1949） where young bream move to deoper water and to the brackish water of the estuary．As early as July，bream about 2 cm long have been found in brackish waters（Dementeva， 1952a；Paiusova，1961；Tanasiichuk，195？）． The data concerning the age distribution in autumn and spring catches in the Morthern

Caspian Sea（Table XVIII）show differences in bream size in various places and seasone， connected with spawning migration．

According to Berg（1949）the maximum weight of bream is 11.55 kg ．Toner（perso－ nal commanication）reported that a 5.3 kg bream has been caught in Ireland．Bauch （1958）gave 8 kg as the maximum weight in the Elibe River．Lebedev（1961）mentioned the length of 74 cm as the maximum for bream，（cf．section 3．31）．

\section*{4．2 Abundance and density \\ 4．21 Average abundance}

No information is available on any at－ tempt to estimate the abundance of bream by tagging or from data on fishing effort and catch．Karpevich（1955）estimated the som called＂Promyslovyi zapas＂（available com－ mercial stock）of more than three－year－old bream of the Sea of Azov to be 39.4 million fishes in 1947 and 47.7 million fishes in 1949－150．The areas where bream occured were \(17,000-18,000 \mathrm{~km}^{2}\) and \(10,000 \mathrm{~km}^{2}\) respec tively．Therefore it is possible to calcu－ late that average numbers of bream older than three years were 22 per ha in 1947 and 48 per． ha in 1949 and 2950。

\section*{4．22 Changes in abundance}

Changes in abundance caused by hydro－ graphic and other conditions were studied in the Sea of Azov by Maiskij（1955）．He osta－ blished the area where bream were present， and then the relative density was found in various places of thet area by means of catches made with a net called＂lampara＂， which can take fish from 5－50 cm long．The numbers of fish caught are an index of rele－ tive abundance，according to the author．The results were as follows：
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year & 1937 & 1940 & 1946 & 1947 & 1948 & 1949 & 1950 & 1951 \\
\hline \begin{tabular}{l}
Area where \\
bream were found \\
（thousand \(\mathrm{km}^{2}\) ）
\end{tabular} & 22 & 20 & 15 & 18 & 13 & 12 & 10 & 10 \\
\hline Relative abun－ dance （million Pish） & 161 & 62 & 120 & 96 & 130 & 40 & 40 & 66 \\
\hline
\end{tabular}

A shrinkage of the area of occurrence， and consequently a drop in abundance，were caused，eccording to Karpevich（1955）and Maiskii（1955），by an increase in the sali－ nity of the Sea of Azov，as a result of flow regulation of the Don River where retention reservoirs have been built．

Tanasiichuk（1952），Dementeva（1952a） and Koblitskaia（1961）have pointed to the dependence of the abundance of young bream on the water level of the Volga delta．A high，although not disastrous，water level lasting for \(12-15\) days during bream spawning and egg and larval development and then \(a\) lowering of the water level favour the deve－ lopment of a numerous generation．Romany－ cheva（1958）noticed a similar correlation between the strength of year classes in the Aral Sea and the water level in the Amu－Daria River．His suggested explanation is that a high water level makes bream more difficult to catch and therefore more bream reach the spawning grounds．

Changes in hydrological conditions and an increase in the water area resulting from the buildine of retention reservoiss gene－ xally cause a xise in the abundance of bream， both in absolute and reletive numbers （Wundsch，1949；Backiol，Kossakowski and Rudnicki，1956；Nikolskii，1948；Sebentsov and Meisner，Mikheev，1953；Vasilev，1956）。

The following foux reservoirs may serve as an oxamplos

Pape（1952）drew attention to the un－ desirable effects of river bed correction upon the population of bream．He was con－ vinced that a drop in catches（mainly bream） in the Elbe from an average of 56.6 kg fsh／ha between 1896 and 1928 to 18.5 kg fish ha was caused largely by cutting－off or destroying lentic environments and by pollution．Bauch （1958）was of a similar opinion．Hydro－ graphic conditions should be accepted， therefore，as one of the most important fao－ tors influencing the abundance of bream．

Nikolskii（1954）drew attention to the offects of climatic changes and stated that 5,000 years ago bream were the main fish in the catches in the drainage basin of the White Sea；and now they are caught there in negligible amounts．The retreat of bream from those waters is connected with cooling down of the climate。

\section*{－Biotic factors．}

Competition for food is mentioned as an important factor but no reliable data are available（ef．section 3．33）．Tanasijchuk （1952）atated that a decrease in the popu－ le，tion of Blicca björkna \(L_{\text {。 }}\) in the Volga delta favours a better survival of bxeam．

Predation on bream is inconsiderable and cannot really affect the changes in abundance（cf．section 3．34）．

An invasion of parasites can have se－

In all these water bodies the catches of bream increased with the lapse of years．
rious effects (cf. section 3.35).
- Effects of exploitation.

A break in bream exploitation in the group of "Siamozero" lakes in 1940-142 caused an increase in the abundance of 1941'43 generations (Balagurova, 1963). An increase in bream catches in Polish lakes during the years 1958-65 wes partly due to greater legal sizes and stocking (Zawisza, in Backiel 1965).

According to Dahl (personal communication), bream in Danish lakes is underfished and therefore numerous. Hofstede (personal comunication) is of a similar opinion concerning Dutch waters.

The importance of exploitation in the changes in the abundance of fish, including bream, is commonly accepted.

\subsection*{4.23 Average density.}

From the deta quoted by Karpevich (1955) it has been calculated that in the Sea of Azov there were 22 individuals/he in 1947 and 48 individuals older than three years in 1949 -'50. The average yield was \(6.6 \mathrm{~kg} / \mathrm{ha}\) (Table XIX).

Data presented in the table show differ rences in the averace density of a bream population. The intensity of catches is not known, and therefore weter bodies exploited. in a similar way for a long time have been selected. Thus it may be essumed that differences between catches result from difPerences in population density.

The differences are even more distinct when a group of 238 lakes exploited in Poland is taken into consideration (Leopold, data Inland Fisheries Institute). This spem cies was not taken at all in three of the laker, and the amount of bream caught in the remaining lakes was as Pollows: In 27 lakes (11. 3 yercent) less than \(1 \mathrm{~kg} / \mathrm{ha}\); in 26 lakes (10.9 percent) \(10-20 \mathrm{~kg} / \mathrm{hag}\) in 3 lakes it was higher than \(20 \mathrm{~kg} / \mathrm{ha}\), the maximum yield being \(27 \mathrm{ke} / \mathrm{haj}\) in the remaining lakes (76.5 percent) the yield was between 1 and 10 kg/ha. The averace yield per ha, which to a certair degree supplies informution on the density of bream, does not depend on the area of a lake (Leopold, personal communication).

\subsection*{4.24 Changes in density}

Catches per unit of pishing effort with varicus types of gear are very diverse in the lakes of Northem Poland. Averace values are presented in Table XXIV (Eection 5.41).

The catches near the Volga delta in the Caspian Sea per 100 gill nets are given by Dementeva (1952); they vary with the region:

In the Volea delta, the farther from the ses the lower catches per unit of fishing effort were reported, e.g. in 1937:
\begin{tabular}{cccc}
Delta region & Lower & Central & Upper \\
\begin{tabular}{c}
kg per \\
Seine haul
\end{tabular} & 218.52 & 44.61 & 6.69
\end{tabular}

Tanasiichuk (1952) included the results of catches made with a fry trawl in the Northerm Caspian Sea and information on salinity:
\begin{tabular}{cc}
Salinity & No. of Bream per hour \\
\hline 0 & trawilne \\
1 & 903 \\
2 & 1051 \\
3 & 1063 \\
4 & 236 \\
5 & 210 \\
6 & 265 \\
7 & 251 \\
8 & 375 \\
9 & 23 \\
10 & 6 \\
11 & 121 \\
12 & 106 \\
13 & 24 \\
14 & 7 \\
15 & 0 \\
16 & 0
\end{tabular}

The few examples mentioned above illustrate the enormous variability in the bream population density in fresh and brackish waters.

Seasonal variation of available stock is show in Table KXIII. This variation is a

Table XIX
Amount of bream caught per ha of some water bodies
\begin{tabular}{|c|c|c|c|}
\hline Water body & \[
\begin{gathered}
\text { Bream in } \\
\mathrm{kg} / \mathrm{ha}
\end{gathered}
\] & Percentage of bream in total eatch & Autior \\
\hline Sea of Azov & 6.6 & 9.1 & Bervald, 1952 \\
\hline North-Caspian & 4.1 & 13.0 & Bervald, 1952 \\
\hline Aral Sea & 1.8 & 36.0 & Bervald, 1952 \\
\hline Siamozero, Karelia, USSR & \(0.2-0.3\) & & Belagurova, 1963 \\
\hline Ijssel Lake, Netherlands & 1.5 & 3.0 & Hofstode, pers.comm. \\
\hline North-easterm German lakes: & & & \\
\hline \begin{tabular}{l}
Griminitz \\
(data for 2 yoars)
\end{tabular} & 11.8-24.3 & 58.0-72.9 & Tesch 1955 \\
\hline \begin{tabular}{l}
Mügelsee \\
(2 years)
\end{tabular} & 12.0 & 30.0 & Tesch, 1955 \\
\hline Sacrowersee (6 years) & 0.3-7.7 & \(1.7-50.6\) & Tesch, 1955 \\
\hline Tallensee (3 years) & \(3.7-15.0\) & \(6.5-18.4\) & Tesch, 1955 \\
\hline Polish lakes: & & & \\
\hline \[
\begin{aligned}
& \text { Average for all } \\
& \text { in } 1950 \text { - } 1964
\end{aligned}
\] & 4.73 & 19.25 & Leopold, pers.comm. (Dpt.Economics, Inlend Fish.Inst。) \\
\hline minimum (1957) & 3.14 & 17.55 & \\
\hline maximum (1952) & 6.79 & 23.87 & \\
\hline
\end{tabular}
result of winter or spawning aggregations．

\section*{4．3 Natality and recruitment}

\section*{4．31 Reproduction rate}

Zemskaia（196I）estimated annual egg production rates for the bream of the Volga Delta（Fig．18）．She multiplied an average fecundity by the number of females probably reaching the spaming grounds．Numbers of eggs deposited varied from 520 to 3,962 mil－ lion million in 1936－49。

For survival in embxyonic and larval phases see sections 3.21 and 3.22 ．
－Forecasting of potential yields．
An estimate of the density of young ijish，made during their seaward runs in the Volga delta by Tanasiichuk（1952），has been used to sorecast the relative abundanoe of year claem ses in catches（Dementeva，1952；Dementeva， 1952a；Zemskaia，1961）。 There is a direct relation between the number of young bream caught during one hour trawling and year class atrength calculated by the Derzhavin nethod，as shown by the approximate fomula：
\[
\frac{N x}{N b}=\frac{a_{z}}{a_{b}} \text { ox } N x=\frac{a_{z} \cdot N b}{a_{b}}
\]
where：\(a_{x}, a_{b}\) are number of young per one hour of trawling in the years \(x\) and \(b, ~ N / x\) and Nb are year class strengths in the years \(z\) and \(b\) 。

As seen from Fig ．19，such calculations may contain considerable errors．It should be meritioned that the correlation between the density of young and the year class strength was close in 1931－1．30，the correlation coef－ ficient being 0．91（Monastyrski，2952）．

\section*{4．32 Factors affecting reproduction}

The water level in the estuaries of the Volea and Amu－Daria affects decisively the number of larvae hatched（cfo section 4.2 ）． A sudden lowering of the water level in the river after spawning causes drying out of eqes（cf．sections \(3.21,3.22\) ）．

The amount of food available for larvae and younc fish is mentioned as the main factor influencing the brood strength（Zemakaia， 1961；Dementeva，1955；Nikolskid，1953；and gections 3．22，3．35）．According to Karpevich （1955），the survival of sour－day－old bream larves in the Sea of Azov ，in weter of sali－ nity \(0-7.5 \%\) and temperature of \(17^{\circ} \mathrm{C}\) ，was reasonably high and it did not depend on
salinity；an increase in salinity above 7． \(5 \%\) caused increased mortality．A similar resistance was shown by 11－day－old larvae to salinities of up to \(7.5 \%\) 。

\section*{4． 33 Recruitment}

Monastyrskii（1952）proposed to divide the spawning population into two parts on the absence or presence of spawning marks on scaless（a）fishes spawning for the first time and（b）those repeating their spawnings． The spawning population of bream in the in－ land seas of the southern USSR is the main object of exploitation．Therefore fish which have not yet spawned are to a certain desree recruitment to the fishable stock．The age distribution of that part of population is shown by data referring to the bream of the Northern Caspian Sea（Table \(X X\) ）．In the catchable stock of Caspian bream，the rela－ tive numbers of recruits defined as above varied from 42.2 to 87.7 pexcent，depending on brood atrength，in the period 1933－139。 Relative numbers of recruits can be higher in lightly exploited populations．Vaxiem tions in the growth rate of bream and resul－ ting changes in the average age at which sex． ual meturity is reached affect the recruitw ment rate（cf．sections 3.12 and 3.43 ）．

Recruitment may proceed during the en－ tire growing season or only in the warmer period．Fig． 18 shows the ratio of eggs de－ posited by bream in the Volga delta to the density of young fish．As can be seen，there is no simple，correlation．In our opinion it is very characteristic that maximum numbers of young fish developed from eggs deposited in numbers below the average（see year clas－ ses 1941，1942），and this suggests a relation resembling Ricker＇s reproduction curves．Ac－ cording to Dementeva（1952）the number of spawsers，and hence tbe quantity of eggs laid，has little bearing on recxuitment．

\section*{4．4 Mortality and morbidity}

\section*{4．41 Mortality rates}

Averace annual mortality caused by fishing and natural factors was estimated for the postrecruitment phases of the North－Cas－ pian bream（Lukaskov，1961）（cf．section 4．5）．Balon（1963）from one sample of 256 individuals，estimated total mortality of brean older than four years to be 65 percent annually．It follows from the age composi－ tion（section 4．12）that among older ace croups，particularly in the northern water bodies，total mortality is less than 50 per－ cent．Tiurin（1962）estimated the survival of the Lake Ilmen bream using Baranov＇s me－ thod．The method assumes that if＇，in a given aemple，maximum age is represented by one in－

TABLE XX
Age composition Percentage of Northern Caspian bream migrating for spawning for the first time (after Dementeva, 1952)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Year} & \multicolumn{5}{|c|}{Age (years)} \\
\hline & 2 & 3 & 4 & 5 & 6 \\
\hline 1933 & 25.8 & 45.3 & 27.5 & 0.9 & \\
\hline 1934 & 0.2 & 91.2 & 8.4 & 0.2 & \\
\hline 1935 & & 2.8 & 94.1 & 3.1 & \\
\hline 1936 & & 2.4 & 45.9 & 51.7 & \\
\hline 1937 & 3.5 & 46.6 & 36.3 & 9.8 & 3.8 \\
\hline 1938 & 0.9 & 28.3 & 66.0 & 2.5 & 0.7 \\
\hline 1939 & & 80.3 & 17.0 & 2.7 & \\
\hline
\end{tabular}

Figure 18. Relative abundanoe of young bream in the Volge Estuary againet potential number of eges depositedin the same year (date from Zemskaia. 1961).

\section*{Figure 19. Year olass strength in the oatchable stock of brean in the Volga Estuary against relative abundance of young of the same year olass (Data from Dementeva, 1952, Por 1931-1935, and Zemskaia, 1961, for 19361949).}
dividual then annual survival is a function of maximum age and the size of the sample。 Tiurin's sample contained 260 bream in age groups from 2 to 11, from which be estimated the total mortality rate to be 40 percento His estimate of fishing mortality as 22 perw cent seems to be not very convincing.

Cherfas (1956) quoted Dementeva's estimate that the proportion of eggs,which eventually gave rise to caught fish is the case of North-Caspian bream varied Prom 0.0006 to 0.0220 or from 6 to 220 Iish were caught per 10,000 eggs laid.

These data show variations in mortality rates. As can be seen in Fig. 18, there is a considerable varistion in survival in the first Jeax, but a more consistent survival rato in later years of life is suggested by Fig. 19. The oscillation of the fishing return coefficiont, expressed by Zemskaia (1961) in arbitrary units, ranged irom 0.01 to 0.18 (ratio 1 : 18) 。

> 4. 42 Factors causing os affecting mortality.

Predation by fish ia a Pactor which qually has little influence on the survival of young bream (cie seotion 3.23). When the density of young bream is great, however, competitors or predatory fishes may affoct the survival rate (cif section 6.44).

> 4.43 Factors arsecting morbidity
> - cR. section 3.35 .

\subsection*{4.5 Dynamics of population (as a whole)}

Lukashov (1961), in a very short papers attompted to apply a mathematical model to the exploited brean population in the northern part of the Caspian Sea. The survival rato was ostimatod apter taking into account the year-class composition of the population fishsd, during tmo periods of varying intonsity of exploitation, i.e. in period I: 19370.48, period II: 1953-58. The total wortality xato in geriod I was 0.55 and in period II it was 0.80 . He ostimatod ilshing and natural mortalitios, without doacribiag the method in detail, as rollows:

Baturel mortality Fishing mortality
\begin{tabular}{lll}
Period I & 0.25 & 0.40 \\
Period II & 0.25 & 0.65
\end{tabular}

Growth rate parametera to the Bertalanffy formula
\[
I_{t}=I_{\infty}\left(1-0^{-k\left(t-t_{0}\right)}\right)
\]
\(L_{\infty}=42 \mathrm{~cm}\)
\(k=0.233\)
\(\mathrm{t}_{0}=0.62\) years
From the weight/length relation
\[
W \infty=0.0215 \cdot L^{3} \infty
\]
the maximum weight was calculated to be 1,593 grams.

In calculating yield per recmuit the following values have been accepted:

II (natural mortality coofficient) \(=0.165\)
\(t_{p}\) (age at recruitment)
-2 years
\(t_{0}\) (age at first capture)
\(=3\) years
\({ }^{4}{ }_{\lambda}\) (mazimum age) \(=20\) yeare
Lukashov (1961) was convinced that increasing to (age at fixst capture) by one year and diminishing the intensity of fishing (F) could result in a three or fourfold increase in yield.

Many Soviet ichthyologists (Monastyrskis, 1952; Dementeva, 1952\% Nikolskii, 1950, 1953: Dementeva et al. 9 1961, and others) view fish population dynames in a different way, emphasizing the connections between dynamic parameters and enviromental conditions and the community, and looking for causalitty. The latter has been mentioned above (sections \(4.2,4,3,4.4\)). According to those authors the size of a population depends mainly on the "feeding base" (the area and richness of feeding grounds) and also on spawning conditions. Monastyrskii (1952) explained veriations in the abundance of a bream population in the region of the Volga delte as resulting from the changes in those factors and in the conditions under which young iish live in winter. He stressed the fact that looking for one factor responsible for variations in abundence does not solve the problem.

Mikolskil (1950) pointed to the relationship between food, growth rate and age of sexual maturity, and statod that the strength of itish yoar-alasses depends on the above relationship. For the bream of the Volga Delta region, Zemskaia (1961) found a positive correlatios between the food supply inder and the growth rate of bream in the \(3 \mathrm{rd}, 4\) th and 5 th years of 1 is .

Factors responsible for variations in abundance may be different in diverse environs ments．Thus， \(0 . \mathrm{g}_{0}\) o changes in the abundance of bream in the Sea of Azor and the Dos Delta are comnected with variations is salinity （Karpevioh，1955）．The water level oscilla tion in the doltas of the Volga and Amumaria are of great importance（Tanasischuk， 1952 Homanycheva，1958）．Water level was also beld responsible for variations in the yeareclass strengths of bream of the Rybinskoe Reservoix （Ostroumov，2956）．

Numerous authors have dram attention to exploitation as the main factor controlling abundance（Berdichevskii， 19619 Nikolskil， 1958：Tsepkin， 2964 Zamisze， 19618 Iukashov，1961）。

\section*{4．6 The population in the community and the ocosystom}

The bream is a generatively stagno philous fresh－water species，living also is brackish waters of a salinity up to \(20 \% 0\) （ox．sections 2．3．and 3．21）．In bigger rivers． it occurs in the middle and lower xeaches（ 0. B \(_{0}\) in the Rhine，Elbe，Danube，Vistula；Dong Volga）．When the current of a river is strong， as e．go in the Amu Daria，it oocurs only in \＆ts delta（Shaposhnikove，1950）．In small rivers， even those with very weak currents，bream are found in negligible quantities（Backiel，1964）． When a river is divided into zones，the bream is recognized to be a characteristic species of oertain physical conditions（Borne，1877， and Nowioki，1882，according to Stamach， 1956 Huet， 19498 Bauch，1963）．According to Iuet （1949），a bream zone comprises those river stretches of slope less than 1 in 2，000 and which are from 5 m to 300 m wides according to Starmach（1956），a bream zone comprisos river stretehes of slope between one in 800 and one in 10,000 and \(15-200 \mathrm{~m}\) wide．Bauch （1963）defined that zone in a different way， namelys besides bream and white bream there are found numerous species which also occur in the lakes of the German Lowlands including sporadically Barbus barbuss the bottom is sandy and muddy lotio enviroment with abundant vegetation，the banks overgrown with Typha and Phragmitos．

The fishery olassification of the lakes in Germany，Poland and USSR also accepts the bream as a characteristic species（Buch， 1963；Sakowicz，1952；Cherfas，1956）。

Among brean lakes，Bauch（1963） distinguished four subtypes which differ is cortain environmental properties and in quantities and sizes of bream most often caught（Table XXI）。Cherfas（1956）defined bream lakes in the USSR as those which are not too deep，with a well developed littoral regiong abundent vegetation and a very muddy bottom． During winter and summer，oxygen exhaustion often occurs in the deeper layers of water．

Two subtypes have been distinguished：smelt bream lakes and bleak－bream lakes，according to which of these two species is abuadant in the pelegic zone of a lake．

In the bream lakes of goland，fron 17 to 23 fish species are found，but roach，bream and bleak predominato（Zawisza in Baokiel． 1965）．

It should be stressed that the tishery classification of lakes as described above has not resulted from an analysis of certain properties of water bodjes and the co－ oxistance of fish species in those water bodies，and therefore it ought to be looked． upon as a working conception．It has been mentioned here since it is very comon．

According to limnological typology， bream lakes are b－mezotrophic and outrophic．

The bream population position in the \(000=\) system is determined by their abundance，food， predatore foodiag on bream and parasitos， some of which have a complex life cyele（or． soction 3．35）．The abundance of broam in many weters can be comparatively great（ox．section 4．2）and theresore it may be conoluded that theix part in the ecosystems or lakes and some braokish waters is considerable。

After studying the food of fish of the Northern Caspian Sea，Shorygin（1952）statod that bream feed mainly on Cumaces（more than \(25 \%\) of daily intake）and that Cumaces aro also the maix food of some Gobisdae（Fig．20）．A complete list of organisms on which bream feed shows that many of its items are taken by al most all the fish species，but the coincidence is strongest in case of some Cobiidae and Cyprinus caxpio and less，although still con－ siderable，with Eutilus cutilus caspius and Acipenseridae．Taking into account the ares of fish occurrenoe in the Northern Caspian Sea， the biomass of fish and that of food oxganisms． Shorygin（1952：203）established the relative intensity of competition for food between the broam and other fish species（in arbitrary units）as follows：
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\(\frac{\text { Neogobius }}{\text { Benthophilus macrocephalus }}\) flusiatils \(=144\)} \\
\hline Rutilus rutilus caspius & 29 \\
\hline Neogobius melanostomus & \\
\hline Acipenser stellatus & \\
\hline Acipenser mildenstadidi & \\
\hline Lucioperca lucioperca & \\
\hline
\end{tabular}

The food of the caxp is similar to that of the bream，but，since the two fish occur in different regions，they do not compete．In fresh wators the composition of fish species and food is different（cfo section 3．4），but the bream is a demerssl fish in these waters too．

Predatory fish attacks upon bream are inconsiderable（cfe section 3．32）．
Table XXI

Figure 20. Food interrelations among fishes in Northern-Caspian Sea. Arrows directed towards prey. Areas of circles - relative biomass of groups indicated. The figure includes only food items whioh constitute not less than 25 percent in food of a fish species (after Shorygin, 1952).

\section*{5 EXPLOITATION}

\subsection*{5.1 Fishing oquipment}

\subsection*{5.11 Gears.}

Various types of fishing gear, adapted to local conditions and to the behaviour of brean, are used in commercial fishing. In large water basins (Sea of Azov, Caspian and Aral Seas, large retention reservoirs of the USSR) trawls are mainly used but seines, pound nets and gill nets are also employed. Winter seines, for fishing under ice, are used on icemovered lakes. In summer, beachseines and various set nets are used.

In Polish lakes, socalled bream gill nets, mesh size \(60-90 \mathrm{~mm}\), height \(2.5-3.0 \mathrm{~m}_{\text {g }}\) length \(40-45\) or \(90 \mathrm{~m}_{\text {, are }}\) usod. Best fishing results with this gear are obtained in April and in October and November. In the Aral Sea, from 40 to 50 percent of bream are caught with gill nets (mesh size 60-75 mos), from 30 to 35 percent with seines and from 10 to 25 percent wi th fyke nets (Bervald, 1956). In the Rybinskoe Reservoirg gill nets, mesh size 50 to 90 mm , as well as trawls and seines, smallest mesh size 6 mm, are used (Ostroumov, 1956).

In large rivers, usually river seines without bag are usod (lower Danube, Vistula) fyke nets and drifting gill nets, less frequently river seines with bag (Table XXII)。

In the Rybinskoe and Tsimlanskoe reservoirs, successful attempts have been made to catch brean with a trawl, the lead line of which was equipped with a system of electrodes supplied with alternating current (Shentiakov \({ }^{\text {1964). }}\)

\subsection*{5.12 Boats.}

Various fishing oraft, ranging from simple rowing boats or boats with an outboard motor (lakes, rivers) to trawlers or drifters (\(\theta_{0}\) g. Sea of Azov, Caspian Sea) are used, according to the type of fishing gear.

\subsection*{5.2 Fishing aress}
5.21 General geographio distribution.

Bream are taken almost everywhere they ocour (of. section 2.1), although commercial catches are made only in regions of their ereater concentrations. The richest bream fishing grounds are situated in the southern geas of the USSR (Table XXII and XXVI), and in the brackish waters of the Southmoastern Baltio.

Exploitation and its intensity in various waters also depend upon whether poople consider kream as a savoury fish, as do the fishermen of Northern Germany (Bauch, 1963), people in the USSR (Berg et al., 1949) and country people in Fungary (Entzo personal communication). It is considered as a coarse fish by Denish people (Dahl, personal communication), and Dutich people (Hofstede, personal communication), and as of littlo value in Sweden (Sasserson, personal communication). Bream is believed to compete with other highly valued species in Danish lakes and in the Netherlands.

\subsection*{5.22 Geographio ranges.}

See sections 5.21 and 5.43

\subsection*{5.23 Depth ranges.}

Adult bream are demersal Pish. In lakes, however, they have not been taken by bottom fishing at a depth of over 40 m . Bream fishing grounds in brsckish waters usually do not go beyond the \(12 \%\) isohalines \(\mathrm{i} . \mathrm{o}_{0}\) they do not reach any great depth.

\section*{5. 24 Conditions of the grounds.}

An increase in salinity in the Sea of Azov has affected the abundance of bream (Karpevich, 1955). The construction of retention reservoirs has resulted in new fisheries having conditions different from those existing in the river, \(\theta_{0} g_{0}\) the Rybinskoe Reservoir on the upper Volga, where trawls are used in fishinge this gear was formerly limited to the sea (Ostroumov, 1956).

River pollution in Central Europe has affected fishing grounds, e.go the Elbe (Bauch, 1958). A decline in abundance was noted, and the meat of bream (and of other species) acquired an unpleasant "chemical" flavour and this in turn caused a decline in demand. In the middle Vistula and lower Odra, fish developed the flavour of phenol or its derivatives.

Variations in the abundance in certain regions and the resulting variations in the importance of certain fishing grounds are also related to changes of climate over long periods of time. Nikolskil (1954) found that 5,000 years ago bream was the main constituent of all catches in the White Soa drainage area. Today only single individuals are taken. Thus the conditions on the fishing grounds are subjeot to rapid changes due to the activities of man, whereas the changes resulting from variations of climate are slow.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Country} & \multirow[t]{2}{*}{Kind of oxploitation} & \multicolumn{3}{|l|}{Fishing} & \multirow[t]{2}{*}{Utilisation, other remarks} & \multirow[t]{2}{*}{Authority} \\
\hline & & equipment & main areas & main season & & \\
\hline Denmark & commercial & otter trawls. seines, pourd and hoop nets & \[
\begin{aligned}
& \text { Takes (the Iargest } \\
& \text { lake Arres } \phi \text {) }
\end{aligned}
\] & spring & coarse fishs fish meal, \(V\). little export of fish over 1.5 kg & \(\mathrm{T}_{0} \mathrm{D}_{\mathrm{hh} 1} \mathrm{p}_{0} \mathrm{c}_{0}{ }^{\text {I/ }}\) \\
\hline Norway & no exploitation & & & & & K. W. Jenseng poc. \\
\hline Sweden & little commercial & \begin{tabular}{l}
winter seines gill \\
- and Pyke nets
\end{tabular} & brackish water in the Baltic, some lakes & May to June and winter & coarse fish, little consumption, Volow price appr. 28 percent that of pikes & J.Sasserson, poc。 \\
\hline Finland & commercial, no sport & & brackish waters, lakes & & import, food fish & \\
\hline Netherlands & commercial; very little sport fishing (released when caught) & gill nets, seines, in fyke nets with eel & lake Yssel & September to March & coaxse fish, not consumed & A.E.HoIstede, p.C. \\
\hline Belgium & sport only & hook and rod & rivers & & & M.Huet, poc. \\
\hline France & \(\quad\).little sport fishing & & & & not appreciated for consumption & R.Vibert, p.c. \\
\hline Ireland & little sport occam sionally during closed seasons for salmonids & rod and line & & & not consumed & E.D. Toner, p.c. \\
\hline Great Britain & sport fishing common in lowland rivers of England (Northern Ireland: little commercial) & rod and line (gill nets) & & & not appreciated no market value & \[
\begin{aligned}
& \text { W. Do LeCren, p.c; } \\
& \text { PoTombleson, poc. }
\end{aligned}
\] \\
\hline Yugoslavia & little commercial & & rivers (Danube, Drava Sara, Tisa) & & & \begin{tabular}{l}
K。Apostolski, poc; \\
Disalov, 1964
\end{tabular} \\
\hline Greece & no information & & & & & \\
\hline Bulgaria & commercial, of little significance & river seine Pyke nets & Danube, coastal lakes & & & L. Ivanor, \(\mathrm{pac}_{\text {c }}\) \\
\hline & & & & & \(\ldots 2\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Roumanis & little commercial and little sport & seines and fyke nets & Danubo estuary and prozimate lakes & & second grade food fish & \begin{tabular}{l}
W.B.Ziemiankowski, \\
pec; Popescu, 1958
\end{tabular} \\
\hline Turkey & commercial (1ittlo with other fishes) & & & & & \begin{tabular}{l}
Nümann, 1962 \\
Ladiges, 1960
\end{tabular} \\
\hline Germeny & commercial and sport & water and sead seines, gill nets, fyke nets & northern and central lakes & winter and spring & large specimens appreciated & Bauch, 1963 Tesch, p.c§ Menzel, poc. \\
\hline Austria & ```
commercial more in
lakes, sport more in
rivers (ox-bow lakes)
``` & gill nets in lakes fyke nets. in rivors and rod and line & & & & Worinsele, poc. \\
\hline Poland & commercial and sport & winter seines beach seines, gill nets, Pyke nets & Firths of Vistula and Odra, northern lakes & winter, early spring and autumn & sold at a medium price, laxge specimens appreciated & authors \\
\hline Czechoslovalsia & \begin{tabular}{l}
little commercials \\
almost no sport fishing
\end{tabular} & seines, fyke nets in spring & Danube (low lakes) & spring and autumn & & F.K.Balon, p, C. \\
\hline Hungaxy & commercial; as sport fish not appreciated & zeines, fyke nets in rivers & Balaton lake, Danube & & appreciated as food fish by country poople, mostly preserved (tinnod) & B. Fntz, P.c. \\
\hline USSR & commercial (large scale) and sport & seines, trawls, gill nets, pound nets & North Caspian, Azovg south Aral, big resorvoirs, big norbhwestom lakes & spring and autumn & \begin{tabular}{l}
food fish, \\
large specimens \\
appreciated
\end{tabular} & \begin{tabular}{l}
Nikolskii, 1954; \\
Berg et al \({ }^{\circ}, 1949\) \% \\
Dementeva, 1952a.
\end{tabular} \\
\hline
\end{tabular}
I/ p.c. means personal commuication

5．3 Fishing seasons
5． 31 General．pattern of season（s）
The general distribution pattern of commercial catches throughout the year is very much the same in various regions（Table XXII）．Most bream are taken at the time of spawning aggregations in spring，or in winter （in freezing lakes）．In the warmest period， i．e．at a time of intensive rood intake as well as great dispersion of fish，the catches are very small．A few examples are given in Table XXIII。×
5.32 Dates of beginning，peak and end of season（s）
CQ．Tables XXII and XXIII。
5．33 Variation in date or duration of season

According to Dementeva（1952a）a cool spring retards the spawning migration of bream to the Volga estuary，thus shifting the peak of catches（Romanyoheva，1958）．

In lakes，winter catches depend on the date on which a sufficiently thick ice cover forms．The duration of the fishing season in turn depends on winter weather．The lakes of northwest Poland frequently fail to freeze and therefore do not permit the use of winter seines．

\section*{5．4 Fishing operations and results}

\section*{5．41 Effort and intensity}

It is difficult to estimate the fishing epfort in a bream fishery since，in lakes， bream are caught under conditions that vary Prequently，and they are usually caught to gether with several other species．Dabrowski et el．（1964）and Leopold and Nowak（1964，1964a 1964b，1964c）made an analysis of catches in lakes and established，among other data，the average（annual）yield of fish caught pex gear per day（Table XXIV）．The authors stress，however，that yield per gear per day varies widely throughout the year and with the locality．It can serve only as a compari－ son for a large number of data．

Catch per \(h\) has been accepted as an of－ fort unit when catching young fish with a specially desigued fry trawl in the Caspian Sea and in the Aral Sea（cf．section 4．24）．

\subsection*{5.42 Selectivity}

Baranov（1948，pace 207）stated that the optimum mesh size（a）of broam gill nets is given by \(a=0.2 \mathrm{Lc}\) or \(a=7 \sqrt{\mathrm{mg}}\) ．where Lo is body length in cm and is weight of Pish in gram．

The available data on the selectivity of some fishing gear in relation to the size of ＇bream are presented in Table KXV．In Table XXIV it is worth noticing that the catch of bream varied with the use of different types of fishing gear，constituting a lareer or smaller percentage of all fish landed．This depends on the distribution of bream in water bodies and on the fishing technique used． Usually，howeverg＇seines and trawls catch smaller fish than other nets．

In the Rybinskoe and Tsimlanskoe reten－ tion reservoirs an alternating electric cur－ rent has been applied to trawls（a system of electrodes at ca． 230 v placed along the lead line，to prevent the fish escaping the trawl）． This device was used in selective fishing： the average weight of bream caught with the selective trawl exceeded the average weight of bream taken with 2 usual trawl by 22 percent in the Tsimlanskoe and by 58 percent in the Rybinskoe Reservoirs．（Shentiakov，1964）．

\section*{5．43 Catches}

The available data on commercial bream catches are presented in Table XXVI．In some countries bream catches are recorded together with the catches of other fresh water species （partially in the Netherlands and Denmark）．

In most countries bream is caught by anglers and in some exclusively so．The amounts of bream caught by anglers may be considerableg e．g．in Belgium，annual ang－ lers＇catches are ostimated to be 37 tons （Huet，personal communication in 1963）．Acco cording to Rümler（1949），the ratio of com－ mercial to sport catches varied from I ： 1 to 1 ： 11 in Lake Sacrower，near Berlin，in 1923 \(-1948\).

Similarly around Warsaw，Poland，the ratio of anglers＇catches to commercial catches has been estimated by tagging，as a．b－ out l ：l。

The number of bream caught by anglers makes an estimate of the total catch in the whole region of their exploitation difficult． From commercial catches only，Table XXVI，the total annual yield amounts to about 70,000 tons，and 80 percent of this quantity comes from the fishing grounds of the Caspien，Azov and Aral Seas．
Seasonal distribution of bream catches (percent of total annual catch)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Area} & \multicolumn{12}{|l|}{Calendar month} & \multirow[t]{2}{*}{Authority} \\
\hline & I & II & III & IV & V & VI & VII & VIII & IX & \(\overline{\mathrm{X}}\) & XI & XII & \\
\hline Don estuary & 0.8 & 8.0 & 21.4 & 33.4 & 22.6 & 7.7 & 0.2 & 0.3 & 0.8 & 1.3 & 2.9 & 6.0 & Berg, 1949 \\
\hline Azov Sea near & 1.6 & 4.4 & 16.8 & 13.6 & 40.9 & 13.7 & 0.8 & 0.7 & 2.2 & 2.7 & 1.8 & 0.8 & - \\
\hline Aral Sea & & 23.0 & & & 63.0 & & & 4.0 & & & 10.0 & & Bervald, 1956 \\
\hline Lakes in Poland (1950-1964) & 9.4 & 14.0 & 31.6 & 4.1 & 10.7 & 8.5 & 4.0 & 5.4 & 6.1 & 8.3 & 11.1 & 6.8 & 1. Leopold, pece \\
\hline \begin{tabular}{l}
Vistula Firth \\
Szczecin Firth
\end{tabular} & \multicolumn{13}{|l|}{\begin{tabular}{l}
great peak in May and second in October or November peaks in spring and late autumn \\
Filuk, 1962 \\
Peczalska, 1963
\end{tabular}} \\
\hline Northern Caspian & \multicolumn{8}{|l|}{spring 60-70 percent} & \multicolumn{2}{|l|}{} & & & Dementeva, 1952a \\
\hline Azov Sea & \multicolumn{8}{|l|}{spring 60-90 percent} & & & & & Domenteva, 1955 \\
\hline Lake complex "Siamozero", Karelia, USSR & \multicolumn{8}{|l|}{greatest part caught in April, May, June} & & & & & Balagurova, 1963 \\
\hline
\end{tabular}

Table XXIV
Bream Pishing with various gears in Polish lakes
(Data Irom Debrowski et 2l., 1964; Leopold and Nowak 1964, 1964a, 1964b, 1964c)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Gear & Fishing season & Size class of lakes (ha) & Catch of bream as percentage of total catch & ```
Total average
    catch per
gear per day
    (kg)
``` & NO of lakes considered \\
\hline Winter seine with bag & JanuaxyApril & \begin{tabular}{l}
up to 100 \\
\(100-500\) \\
500 and more
\end{tabular} & \[
\begin{aligned}
& 28.02 \\
& 41.83 \\
& 28.38
\end{aligned}
\] & \[
\begin{aligned}
& 245.4 \\
& 323.3 \\
& 500.6
\end{aligned}
\] & 108 \\
\hline Summer seine with bag & July December & \[
\begin{aligned}
& \text { up to } 80 \\
& 80 \text { and more } \\
& 500 \text { and }
\end{aligned}
\] & \[
\begin{array}{r}
22.32 \\
19.57 \\
6.56
\end{array}
\] & \[
\begin{aligned}
& 157.5 \\
& 177.9 \\
& 252.3
\end{aligned}
\] & 206 \\
\hline Pyke nots with rings \(37-80 \mathrm{~cm}\) & MarchOctober & \[
\begin{aligned}
& \text { up to } \quad 100 \\
& 200=500 \\
& 500 \text { and more }
\end{aligned}
\] & \[
\begin{array}{r}
6.73 \\
15.07 \\
10.03
\end{array}
\] & \[
\begin{aligned}
& 1.36 \\
& 1.78 \\
& 1.52
\end{aligned}
\] & 101 \\
\hline Fyke nets (traps) height av. 100 cm & \begin{tabular}{l}
March \\
Septeraber
\end{tabular} & up to 1000 1000 and more & \[
\begin{aligned}
& 15.19 \\
& 23.98
\end{aligned}
\] & \[
\begin{aligned}
& 1.93 \\
& 2.72
\end{aligned}
\] & 44 \\
\hline Gill neta, mesh 30-50 man & \begin{tabular}{l}
April- \\
December
\end{tabular} & Mamry lake complex (\(10,000 \mathrm{ha}\)) other lakes & \begin{tabular}{l}
less than 3.1 \\
less than 17.0
\end{tabular} & \[
\begin{gathered}
2.44 \\
3.26
\end{gathered}
\] & 21 \\
\hline
\end{tabular}

TABLE XXV
Selectivity of some gear in bream fishing
\begin{tabular}{l|l|l|l}
\hline & \multicolumn{2}{|c|}{ Selectivity of some gear in bream fishing } \\
Gear (water body) & mesh size & lish caught & Authority \\
\hline \begin{tabular}{l}
Seine towed by \\
boat \\
beach seine \\
tranmel nets \\
gill nets \\
(Vistula Firth)
\end{tabular} & & mostly \(20-35 \mathrm{~cm}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
Table XXVI（Sheet I） \\
Bream catches
\end{tabular} & \\
\hline Country & Catch estimate（paŕ annum） & Authority \\
\hline Denmark & Coarse lish：total \(800-1,100\) ton（1955－63）， bream is the most abundant．（see editor＇s note） & Dahl，poco \\
\hline Sweden & Freshwater：total \(2,700-4,000\) ton（1956－59）， bream 100－ 200 ton（1956－60）， Brackish water：bream 126 ton（1961） （ 0. g．in Lake Aspeng bream 15 percent of 10 tors）． & \begin{tabular}{l}
Tearbook＊ \\
Sasserson，p．c．
\end{tabular} \\
\hline Finland & \(\frac{\text { Bream }}{10 \% \text { of }}\) total freshwater 4,500 ton，which is \(5-\) 10\％of total freshwater fish yield． & \(V_{0} \mathrm{Sjob} \mathrm{blom}_{9} \mathrm{p}\) ．c． \\
\hline Netherlands & Lake Ijssel：total 10，400－15， 800 ton（1955－62）， large bream and roach \(400-710\) ton； ＂immature ？ish＂7，600－10，800 ton，includes small bream． Other waters：250－300 ton． & Hoistede，p．c． \\
\hline Yugoslavia & \begin{tabular}{l}
Bream not more than \(5 \%\) of total freshwater catch． \\
Dambe： 595 ton（1963）．
\end{tabular} & \begin{tabular}{l}
K。Apostolski，p．c． \\
Disalov， 1964
\end{tabular} \\
\hline Bulgaria & \begin{tabular}{l}
Danube： \(.154 \mathrm{~kg}-48\) ton，average 12.6 ton （2925－58） \\
Coastal lakes：averace 2.7 ton。
\end{tabular} & Ivanor，p．c． \\
\hline Elungary & Eream，averace for all commercial waters，1， 600 ton，＂which is to 55 percent of total catch & intz，\(p_{0} c_{0}\) \\
\hline Roumania & \begin{tabular}{l}
Danube estuary：ca 200 to 400 ton（1962－1964）， which is \(2-3.8\) percent of total catch． Danube： 457 ton（1963）． \\
Other waters：about same as Danube．
\end{tabular} & \begin{tabular}{l}
Ziemiankowski，poc。 \\
Diselov， 1964 \\
Popescu， 1958
\end{tabular} \\
\hline Germany Test & Total freshwater：ca 10,500 ton；Bream，perch etc 10,100 ton． & Yearbook＊ \\
\hline Germany East & \begin{tabular}{l}
Total Ireshwater： \(3,200-4,100\) ton（1960－1964）， \\
Bream \\
\hline
\end{tabular} & Menzel，p．c． \\
\hline Poland & & Peczalska， 1963 Filuk， 1962 \\
\hline
\end{tabular}

*/ Yearbook of Fishery Statistics, Production, 1961, Vol.XIV, FAO

\section*{6 PROTECTION AND MANAGEMENT}

\subsection*{6.1 Regulatory (legislativo) measures}

\subsection*{6.11 Limitation or reduction of} total catch.

Limitation on efficiency, No data are available on limitations other than those presented in Table XXVII. Equally no limita tions has been imposed on the number of Rishing units.

\section*{- Quota limitationo}

Fishing was prohibited in some of the recently constructed rotention reservoirs in the USSR (Sebentsov et al., 1953). In some Polish retention reservoirs there are quantitative restrictions on fish taken with nets, bream included. This measure applies to reservoirs heavily exploited by anglers.

> 6.12 Protection of portions of populations.

Closed areas, season, legal siżes, etc. are presented in Table XXVII.

Rescue action of fry in the estuaries of the Volga, Ural, Dneper, Amu-Daria Rivers includes bream (Cherfas, 1956): The aim of this action is to rescue fry remaining ia shallow basins which lose their connection with the adjacent river as the water level falls. Toung fish are rescued in two ways: (i) when the bottom of the cut-off basin is above the low water level of the river, a canal connecting the latter with the basin is dug and the young fish are released with the waterg (ii) when the bottom of the cutwoff basin is beneath the water level in the river, joung fish are caught with fine meshed nets and transferred to the river.

In both cases the number of the rescued fish is estimated. In 1948 in the USSR, \(8,272.4\) million young fish were rescued, and the percentage of bream amounted to 15.3 per cent (Cherfas, 1950); in 1953 2,422.7 million were rescued, including 579.6 million (16.9 perceat) bream (Cherfas, 1956).

\subsection*{6.2 Control or alternation of physical fostur os of the environment}

\subsection*{6.21 Regulation of flow.}

In many countries the construction of dams to regulate the flow of water in rivers has led to changes in the population of bream. This has been mentioned in sections 4.22 and 5.2.

The regulation of 1 llow resulting from the construction of a dam on the Don River affected the abundance of bream tus the Sea
of Azov (Karpevich, 1955). In rivers after the construction of a dam the bream population increased (Mikolskij, 1948; Backiel ot al。g 1956; Wundsch, 1949).

\subsection*{6.22 Control of water levels.}

The construction of dams alters the water level. The effects are the same as those meationed above.
\(6.23 \quad \begin{aligned} & \text { Control of erosion and } \\ & \text { silting, }\end{aligned}\)
That, too, is achieved by building dams.
\(6.24 \quad \begin{aligned} & \text { Fishways at, artificial and } \\ & \text { natural obstructions. }\end{aligned}\)

Although bream use the fishways constructed at the dams, this is of minor importance (Sakowicz and Zarnecki, 1954).

\subsection*{6.25 Fish screens.}

Mo screens specially adapted for bream have been devised. The Soviet electric soreens of the \(E R Z U=1\) type (strakhov and Nusenbaun, 1959) are used at dams, to direct fish into the fishways, and in front of irrigation canals, to discourage young fish from ascending these canalis. The screens are up to 85 percent effective. Bream are also protected by them.

\subsection*{6.26 Improvement of spawaing grounds.}

In the construction of artificial spawning grounds, use has been made of the fact that bream spaw on branches of coniferous trees placed in lakes (Mikheev, 1951 Sukhovan, 1959). Flooting spawning grounds have also been used, consisting of bunches of coniferous tree twigs or bulrush (Scirpus) attached every \(30-40 \mathrm{~cm}\) to ropes hanging \(30-40 \mathrm{~cm}\) apart from a flozing wooden frame。 Mikheev (1951) advised the use of this type of spawning grousid in reservoirs of oscillating water level, eog. retention re servoirs. But Antipova ot al. (1954) found that bream did not use such spawning grounds in the Rybinskoe Reservoir, in spite of unfavourable conditions on natural spawning grounds. Dudin (1954) sharply criticizod this method, drawing attontion, among other things, to the considerable cost and losses in eggs. Trials in Poland with floating artificial spawning grounds have also not been very successful.

Mention should be made here of the measures taken on the somcalled "poimennye ozera", ox-bow lakes in the Volga delta. These are flooded during high water in spring and they serve as the spawing grounds of bream and other fish (Suvorov, 1948 Sukhoverkhov \({ }_{9}\) 1948). Improvement is possible

by construction of a sluice in the canal linking a lake with the river and securing a high water level from spring to the ond of August or the beginaing of Septembere Such a sluice prevents spawners from swimming into the spawning ground but desirable species may be released in the lake．In the middle of August， 196 kg of fry，weighing on average 1.6 g ，was obtained from 1,000 bream spawners released in 95 ha of lake．Sulkhoverkhov（1948） reported that with careful management \(300=400\) kg／ha of carp and bream fingexlings can be obtained from such lakes．

\section*{6．3 Control or alteration of chemical features of the environment}

\section*{6．31 Water pollution control．}

Water pollution control exists in all countries where bream occur（Economic Commission for Europe，1962）．

This water pollution control is not carried out from the point of view of the bream＇s demands only but the criteria of surface water purity are good enough to the populations of this species．

\section*{6．32 Salinity control．}

In spite of the fact that an increase in salinity limits the occurrence of bream（cfo section 4.2 －the Sea of．Azov），not much can be done to prevent the undesirable offects of these chances．

6．4 Control or alteration of the biom
logical ieatures of the environment
6．42 Introduction of fish foods （plant，invertebrate，Porage fishes）。

Invertebrates are being introduced in the USSR．They are not exclusively organisms present in the natural food of bream but they are accepted as food by bream（Karpovich and Bokova，1963，1961；Karpevich and Lokshine，1965）．
\begin{tabular}{ll}
6.43 & \begin{tabular}{l}
Control of parasites and \\
disaases of section 3.35.
\end{tabular} \\
6.44 & \begin{tabular}{l}
Control of prodation and \\
competition．
\end{tabular}
\end{tabular}

In the USSR attempts have been made to regulate the species composition of spawners in ox－bow lakes which have sluices and are periodi－ cally flooded（Ixinarkhov and Tokarev，1949）． Regulation hes consisted in preventine proda－ bory fiahes and less valuable species from entering those ox－bow lakes carp，bream and Caspian roach（Romitilus caspius）were looked upou as valuable species．Changes in fry species composition vere as followss in the spawning grounds under control \(59.4-83.5\) per－ cent of pish were valuable while the reapect－
ive figures were \(20.5=67.8\) percent on unu controlled spawning grounds．Nevertheless this method has been criticized（Kuznetsova， 1950）since the production of fry on the controlled spawning grounds proved to be lower than on the uncontrolled ones． Kuznetsova（1950）does not attack the basio idea but she stresses the technical dirfi－ culties，laborious control or species compom sition of spawners and inconsiderable effects．

6．45 Population manipulation（cf． sections 6．1 and 6．5）．

\section*{6．5 Artificial stocking}

\section*{6．51 Maintenance stocking。}

In the USSR some xiver deltas are stocked with brearn fry reared in the som callod spawning and breeding farms（Cherfas， 1956）．Those farms have ponds lying in hole lows separated from the river bed by natural elevations or by dams with sluices．Such reservoirs are flooded during high water in the river or by means of pumps．Young fish when two months old are usually released by emptying the pond into the river．Theix numbers are estimated（see section 7）．Stocking with bream eggs was done in the USSR to strengthen the population in recently consfructed retention reservoirs（Mikheev and Meisner，1954）．

Such reservoirs were stocked with spawners，too．Recommendations have been made to release one female and onembotwo males per one ha（Bizaiev，1952：Mikheev and Prokhorova，1952）．

The transfer of two－to－three year old bream from lakes having an abundant populem tion to lakes and retention reservoirs with a small bream population is comon in Poland． Some such transfers have been successful． Wundsch（1949）mentions the stocking of German retention reservoirs with breara．
\[
\begin{aligned}
& \text { 6.52 Transplantation } \\
& \text { and introduction. }
\end{aligned}
\]

Bream have been introduced into numerous Sibirian waters（Table RXVIII）e These works are being continued on a big scale in the USSR，\(\theta_{0}\) E．in 1960－61 Abramis brama orientalis was introduced into eight lakes and two rem tention reservoirs and in 1962 into more than 30 lakes and four reservoirss in most cases spawners were released（Karpevich and Bokova， 1961，1963；Karpovich and Lokshina，1965）。

The bream is being introduced into those water bodies within its atural geographic distribution where it did not previously occur， o．g．to some lakes of Finland（Sjoblom，p．o． 1965）and Poland．It can be rtated that its introduction into the lakes within its natural occurrence area and its acclimatizam tion in Sibirien waters have been suocessful．

TABLE XXVIII
Acclimatization of bream
\begin{tabular}{|c|c|c|c|c|}
\hline Locality & Year of first introduction & Stage of fish introduced & Results & Authority \\
\hline \begin{tabular}{l}
Ponds and \\
lakes in the \\
Iset \({ }^{\circ}\) River \\
system (near \\
Sverdlovsk, \\
West Siberia)
\end{tabular} & 1863 & & Successful, invaded some sectors of middle Irtysh river & Cherfas, 1956; Burmakin, 1963 \\
\hline Lake Ubinskoe (near Novosibirsk, West Siberia) & 1929 & spawners & In 1950 estimated stock abt. 300 ton of young bream, in 1951 -30-40 percent of total catch & ```
Petkevich, 1954;
Tikhii, 1954;
Volgin and Vertinin,
1964
``` \\
\hline Lake Zajsan (East Kazakh. SSR) & 1949 & spawners & Spawning and fry observed in many places after 2 years & ```
Goriunova and Serov,
1954
``` \\
\hline Lake Balkash (East Kazakh. SSR) & 1949 & spawners & 1958 commercial catches about 1.5 ton per trawl & ```
Goriunova and Serov,
1954;
Ivanov and Pecheni-
kova, }196
``` \\
\hline Lake near Baikal Lake & 1954 & spawners & young observed in many places in 1955-57 & Askhaev, 1958 \\
\hline
\end{tabular}

\section*{7 POND FISH CULTURE}

Bream have not been reared in ponds until reaching marketable size．Nevertheless，the rearing of young fish has much in common with pond fish culture。

\section*{7．1 Procurement of stock}

Bream spawners are caught in the waters adjacent to a fish farm during their spawning migration in the spring（in May）（Cherfas， 1956；Syrkov，1953；Kozbin and Letichevskii， 1953）．

\section*{7．2 Genetic seleotion of stocks}

Genetic selection of stocks has not been attempted．

\section*{7．3 Spawning}

Bream spawners are released in pond having proper spawning conditions，usually together with carp spawners and occasionally also with Caspian roach spewners（Rutilus rutilus caspius Jak．）and pikemperch spawners （Syrkov，1953；Nikolskii，1955）．The sex ratio among spawners should be 181 （Kozhin and Letichevskii，1953）and \(5-11\) females are released per ha．The number of spawning fish released depends on the quantitative relation of fish species，female fecundity and the sure vival rates of young fish（Cherfas，1956）． According to Kozhin and Letichevskil（1955）， survival was between 3.34 and 8.5 percent from fertilization of the eggs until the fish were two－to－three months old．

When necessary，artificial spawning is used（ \(0_{0}\) g．when there is no suitable sub－m merged vegetation to induce natural spawning）． The fertilization is carried out by the dry method（Hussian method）．The eggs are then placed on a substratum of coniferous tree branches or their adhesiveness is removed by mixing with river mud for one ho（Cherfas， 1956：119；Vernidub，1953）。

Fggs，on a substratum or after unm sticking，are put into hatohing boxes which are submerged in a pond or river．Green＇s or Chalikov＇s apparatus sets are useds these are cases，some or all walls of which are made of fine－meshed nettinge

\section*{7．4 Holding of stock}

The so－called spawning and breeding farms cover an area of about 7，000 ha in the Volga delta（Syrkov，1953；Letichevskii，1965， of．section 6．51）．There are also farms in the deltas of the Don，Kuban and Kura Rivers （Syrkov，1953）．Attempts to rear young bream were made in Soland before World War II
（Mrugasiewicz，1931）．At present bream are reared in ponds near lakes．Similar attempts have been made in Roumania （Ziemiankowski，personal communication）．

Toung fish（bream，carp and eventually others）are reared in ponds until the middie or end of August，then released into a river by letting out water through a sluice or similar arrangement．Fishes released are counted（Cherfas，195682758 Kozhin and Letichevskii，1953）．

\section*{7．5 Pond management}

Ponds of 50－500 ha in area are filled in spring，at the time of high water in the adjacent river．These ponds are without water from about the beginning of September until the spring．The importance of early flooding is stressed，since food organisms can then develop．

Energent plants overgrowing ponds and their control are a serious problem（Kozhin and Letichevskii，1953）．To secure suitable spaming conditions，grasses should be sown in autumn（Letichevskii，1965）．

\section*{7．7 Disease and parasite control}

The spawners（of bream and other species）should be carefully examined and all individuals either injured or having external parasites ought to be discarded（Cherfas 1956）．Apart from that，the drying out of ponds should be looked upon as a means of controlling diseases and parasites．

\subsection*{7.8 Harvest}

Some data on the gields obtained by the farms of this type are presented in Table XXIX。

\subsection*{7.9 Transport}

Live eggs deposited on a substratum of coniferous tree branches have been transported in the USSR（Mikheev and Meisner， 1954）．Eggs on chopped branches of coni－ ferous trees were put into impermeable card－ board boxes and the twigs were interlaid with wet napkins．After 8.5 h of transportation the eggs were in good condition．

In Poland，young bream for stocking are usually transported in autumn in tanks， trucks or lorries with tarpsulin and barrelse From \(20=50 \mathrm{~kg}\) of fish is put per 1,000 liters of water，depending on the time required for transportation．

Marketable live bream are rarely transe ported. Privol'nev (1956) advised in such cases the use of the same appliance as when transporting carp, providing that only 72 percent of carp weight is carriedg oogo in a railway wagon (car) provided with tanks of 24,000 liters capacity and an appropriate
system of aeration the following quantities of bream can be transported for two-tomethree days:
water
temperature \(\left({ }^{\circ} \mathrm{C}\right): \quad 0-2 \quad 2-5 \quad 5-10 \quad 10-15 \quad 15-20\)
tons of fish
(bream): \(\quad 7.26 .5 \quad 5.8 \quad 4.3 \quad 2.9\)

Table XXIX
Harvest from spawing-breeding Farms in Volga Estuary (after Syrkov, 1953 - seleoted data)
\begin{tabular}{lcccccc}
\hline Year & \begin{tabular}{c} 
No of \\
farms
\end{tabular} & \begin{tabular}{c} 
Total area \\
(ha)
\end{tabular} & \begin{tabular}{c} 
No of fish harvested, millions \\
Carp
\end{tabular} & \begin{tabular}{c} 
Harvest \\
(kg per ha)
\end{tabular} \\
\hline 1946 & 5 & 1454 & 46.9 & 41.4 & 0 & 420 \\
1948 & 7 & 1874 & 62.7 & 83.8 & 14.2 & 318 \\
1951 & 10 & 4052 & 215.7 & 267.9 & 6.7 & 160 \\
\hline
\end{tabular}

8
REFERENCES
 nauchno－issled．Inst．ozernorechn．ryb．Khoz．，42：146－159

Alabaster，\(J_{0} S_{0}\), The effect of heated effluents on fish．In International Conference on Water 1964 Poliution，1962．Oxford，Pergamon Press，pp． 26 1－92

Alabaster，J．S．and K．G．Robertson，The effect of diurnal changes in temperature dissolved oxygen 1961 and illumination on the behaviour of roach（Rutilus rutilus（ \(\mathrm{L}_{0}\) ）），bream（Abramis brama（L．））and perch（Perca fluviatilis（ \(L_{0}\) ））。 AnimoBehavo，9（3－4）：187－92

Alm，Go，Undersobkningar rörande Ejglmarens naturforhallanden och fiske。 MeddoLandtbrStyrog 1917 Stockh．，（3）（quoted in Laskar 1948）

Fiskeribiologiska undersokningar i sjobarna Toften，Testen och Teen．Medd．Landtbre
1919 Styr．，Stockh．，（quoted in Laskar 1948）
Connection between maturity，size and age in fishes．Rep．Inst．Freshwores．
1959 Drottningholm，40：5－145
Almacher， E．g Taschenbuch der Fischkrankheiteno Jena，Go Fischer Verlag， 286 po \(^{2}\) 1961

Ananiohev，\(A_{0} V_{0}\) ，Chemical composition of the detritus of Rybinsk，Uglich and Ivankovo Reservoirs． 1959 Biull．Inst．Biol．Vodokhran．，5：37－8

Antipa，Grog Fauna ichtiologica a Romaniei．Buçuresti，Carel G\％bl， 294 p． 1909

Antipova，\(O_{0} P_{0}, V_{0} A_{0}\) Sakharova and \(L_{0} A\) ．Shohetinina，Primenenie plovuchikh iskustvennykh 1954 nerestilishch dlia leshcha \(v\) Rybinskom vodokhranilishche。（Application of floating artificial spawning grounds for the bream in Rybinskoe Reservoir）（Ru）Ryb．Khoz． 9 1954（5）：39 940

Antosiak，\(B_{0}\), Fishes in the food of older perch（Perca fluviatilis \(L_{0}\) ）in lakes of Wegorzewo 1963 district．（Polish，En Ru summary），Rocz．Nauk roln．（B）82（2）：273m94


Aristovskaia，GoVog Pitanie ryb bentofagov srednei Volgi i ikh vzaimootnoshenila，（Feeding of 1954 benthophagous fishes and their interrelations）（Ru）Trudy tataroOtdovses，nauchno issled．Inst，ozern．rechnoryboKhoz．，7876－132

Ashkhaev，MoGog Rezultaty akklimatizatsii ryb v vodormakh vostochnoi Sibirii．（Results of fish 1958 Eclimatisation in eastern Siberia）（Ru）Ryb。Khoz．，1958，（1）：17－20

Aslanova，NoFoy Eksperimentalnye izuchenia povedenia ryb potoke。（Experimental study of fish 1952 behaviour in a stream）（Ru）Dokl．vses．nauchnomissled．Instomorsk．ryb．Khoz．Okeanerr．： 1：13－8


Biologicheske osnovy ratsional nogo vedeniia rybolovstra．（Biological
1961 roundations of rational fishery）（Ru）Trudy Soveshchog ikhtiol．Kom．，13：42－66
Berg，L．S．，Classification of fishes both recent and fossil．Ann Arbor，Michog JoW．Edwards Co．g 1947517 p。

Ryby presnykh vod SSSR i sopredel mykh stran，Chast＂2．（Fishes of Presh waters 1949 of USSR and of adjacent countries，Part 2）（Ru）Moskva－Leningrad，Izdatelstvo Akademil Nauk SSSR，Vol．2：469～926

Berg，\(I_{0} S_{\circ}\) ，et alog editors，Promyslovye ryby SSSR。（Commercial fishes of USSR）（Ru）Moskva， 1949 VNIRO \(=\) Pishchepromizdat， 787 p．

Bernatowicz，S．，Development stages of certain vascular plants as an indication of the spawning 1955 time of fish．（Polish，En and Ru sumary）．RoczoNauk rolno（B），69（4）：547－557 1962 Observations on the phenology of fish spawning．（Polish，En and Ru summary）． 1962 Rocz．Nauk rolno（B），81（2）：306－33

Bexvald，EoAog Ryboproduktimost \({ }^{\circ}\) vodoemov i kolebanie chislennosti stad promyslovylch ryb． 1952 （Fishproduction of waters and fluotuations of abundance of commercial fishes）（Ru） Zool．Zh。，31（1）：82－90

Vozdeistvie promysla na producktivnost＇stad leshcha Aral＇skogo moriae（Effect 1956 of fisheries on productivity of bream populations in the Aral Sea）（Ru）Vop．Ikhtioles 7：21－32

Biziaev，FoNo，Opyt peresadki proizvoditelei pronyslovykh ryb v Tsimlianskoe vodokhranilishche。 1952 （Transfer of bream spawners into the Tsimliansk reservoir）（Ru）Ryb．Khoz．，1952（4）： 39 -40

Blanchard，Eog Les poissons des eaux douces de la France，Paris，J－Bo Bailliere et Fils， 656 po 1880

Bodrova，I．V．and B．V．Kraiukhing K voprosu o vidovoi chustvitolnosti ryb k elektricheskomu toku． 1959 Biull．Inst．Biol．Vodokhrano，5：29－31

Bogatova，I．Bog On food relations of lake fishes．（Ru，En summary）．Vop．Ikhtiolo．3（2）：336－46 1963

Bogdanova，EoAog Parasitenfauna der Blei－und der Wildkarpfenbrut in den Fischzfichtereien des 1957 Wolgadeltas und epizootischer Zustando（Ru，Gexman summary）．IzVovses，nauchno isslod．Inst．rechn，ozernoryb．Khoz． 43 （2）：3－75

Botnariuc，No and P．Spataru，Etude de la nourriture naturelle de la brème（Abramis brama \(\mathrm{L}_{0}\) ） 1963 dans le complex d＇ftangs Crapino－Jila，Véstočslozemध̃。Musog 27（2）：130－46

Burmakin，E．U．の Akklimatizatsia presnovodnykh ryb v SSR。（Acclimatisation of fresh－water fishes 1963 in USSR）（Ru）Izvoposud，nauchno－issled．InstoozernorechnoryboKhoz．，53：5－316

Butskaia，\(N_{0} A_{0}, ~ O b\) osobennostiakh funktsii semennika u xyb s razlichnymi tipami neresta．（On 1955 peculiarities of testes in fishes of different type of spawning）Dokl．Akad．Nauk SSSR， peculiarities of testes in fishes of different type of spawning）DokloAkad．Nauk SSSR，
\(100(4): 809-12\)
 1962 Izdat．Akad．Nauk SSSR， 776 p．

Cherfas，BoIo，Rybodovstvo vestestvennykh vodoemakh，（Ru）Moskva，Pishchepromizdat 1950

Rybodovstvo \(v\) estestvennykh vodoemakh．（Fish culture in natural waters）（Ru）

Dabrowski，Bo，M．Leopold and Wo Nowak，The species composition of catches with summex seine with 1964 bag．（Polish，En and Ru summary）．Rocz．Nauk roln。（B），83（4）：631－43

Dementeva, T.F., Metodika sostavlenila prognozov ulovov leshcha severnogo Kaspia。 (Method of 1952 bream catch forecasting) (Ru) Trudy vses, nauchnomissled. Instomorskoryb.Khoz.Okeanogy, 9 21:163-82

Biologicheskij tsikl severokaspiiskogo leshcha. (Biological cycle of northern
1952a Caspian bream) (Ru) Trudy vses,nauchno-issled.Inst.morsk.ryb.Khoz.Okeanogr. 21:18594


Studies on early development stages of fish．2．The influence of some onvironm
1958 mental conditions on the embryonio development of bream（Abramus brama \(L_{0}\) ）in the Vistura delta．（Polish，En and Hu sumary）Polskie Arohvm Hydrobiol． \(4: 193 \mathrm{~m} 206\)

Economic Commission for Europe，Water pollution control in Furope A compendium of documentam 1962 tion．Water Poll．／Gen．1：77 p．
\＃gereva，I．Ves Damye o pitanii ryb bentofagov v Kuibyshevgkom vodokhrenilishche，（Data on 1962 benthophagous fish feeding in Kuibyshev reservoir）（Ru）Msuchnomtekh．Biull．gosud． nauchnowissled．Inst．ozern．rechnoryb．Khoz． \(16: 5 \mathrm{~m} 9\)

Elizarove，No \(\mathrm{S}_{0}\), Nekotorye osobennosti formirovanija stade leshohe y pervye gody obrazovania 1962 Vulgogradskogo vodokhranilishoha．（Some poouliarities of bream atock formation in the first years of existence of Volgogradskoe reservoix）（Fu）Trudy saratoyoota． gosud，nauohnomissled．Inst．ozernereohnozyb．Khoz． \(7: 184=92\)

Fngelbrecht，Ho，Untersuchungen tber den Parasitenbefall der Nutzfigche im Greifswalder Bodden 1958 und Kleinen Eafs．Z，Fischo \(T\left(N_{0} F_{\circ}\right):(7 / 8): 481 心 511\)

Eremeeva，E．F．，Sravnenie etapov razvitijaleshcha Abramis brama（Linme）Kubanskjkh limanov， 1960 Volgi i．Dona（Comparison of devel opment stages in bream of Kuban lagoons，Volgam and Don rivers）（Ru）Truay Inst．MoréZhivoto \(25: 25 \mathrm{~m}\)（ 37
，Etapy mazvitiia leshcha Rybinskogo vodokbranilishche（Development stages of 1960 bream from Rybinsk reservoir）（Ru）Trudy InstoMorfe Zhivoto 28：79－107

Fabricius，Ee，The topography of the spawning bottom as a factor influencing the size of the 1951 terxitory in some species of fish．RepoInstomreshwatoRes．Drottningholm，（32）：43m50

Filuk，Je Results of investigation performed on a stock of bream from the Fixth of Vistula in 1957 1951－1952．（Polish，En and Ru sumary）Promorsk．Instoryb，Gdyni，9：221－45 －Biological charaoteristics of bream（Abramis brama）catohes of Vistula Firth． 1962 Promorsk．Inst．Fyb，Ggymi，12／A：89－116

Studies on the biology and catches of the Vistula Fixth perchmpike．（Polish，En

 \(19543\left(\pi, F_{0}\right):(6-7-8): 553-64\)

Gasowska，Me，Bream of Vistula river，Polish Academy of Sciences，Zoological Instituto，1964 MS

Geyer，Fo，Ueber parasitische Lernaeopodiden von Balaton－mischen（Ungarn）．Zool．Anzo 127 \(1939 \quad(5 / 6): 145-59\)
．Alter und Wachstum der wichtigston Cypriniden ostholsteinischer Soeno Arch． 1939a Hydrobiol．34：543－644

Geyer，Fre and He Mann，Limnologisohe und fisohereibiologisohe Untersuchungen am ungarischen 1939 Teil des Ferto（Neusiedler）Sees．ArboungebjoloForschoInstog 11（quoted in Laskar ．1948）

Ginzburg，Ia，I， 0 biologid i urozhainosti molodi ryb veimlianskom vodokhranilishohe 1958 （po nabliudeniam 1953－1955）。（On the oiology and abundance of young ish in


Gnadeberg，Wo，Beitryge zur Biologie und Entwicklung des Epgagilus gieboldi ve Nordmann 1948 （Copepoda parasitica）。 2．Parasitenk．14：103－80

Gomazkov，\(O\) A．\(A_{\text {g }}\) About the question of the role of detritus in the nutrition of Abramjs brams in 1959 Rybingk Reservoir．Bivil．Ingt．Biol．Vodokhran． 5 23m5

Goriunova，A．I．，and NoP．Serov Akklimatizatsiia ryb v Kazakhstane。（Acelimatization of 1954 fishes in Kazakhstan）（Ru）Trudy Soveshchoikhtiol．Kom。g 3：109－13

Gosteeva，Mo No，Razvitie Aral＇skogo leshcha \(v\) morskoi vode．（Development of Aral bream in sea 1954 watex）（Ru）Ryb．Khoz。g 1954（6）：57－60
，Ekologomorfologicheskaia kharakteristika razvitia Aral＇skogo lescha．（Ecologicalm morphological characteristics of the development of Aral bream）（Ru）Trudy Instomorfo Zhivot．20：121－47

Grabda，\(E_{0}\) g Sciegorza（Ligula intestinalis \(L_{0}\) ）i jej znaczenie dla gospodarki rybnejo（Polish） 1951 Medycyna wot： \(7(6): 377^{-8}\)

Grabda，E．and J．Grabdag Tracheliastosis in the conmon bream（Abramis brama Lo）in lake Jamno． 1957 Zoologica Pol．，8（4）：325－34

Parasites and fish diseases in Wdzydze Lake。（Polish，En and Bu summary）． 1961 RoczoNauk rolno（D）．， \(93: 239=66\)

Grabda，Jo，Parasitic Copepoda of the Vistula Firth fishes．（Polish，En sumary）．Promorsko 1962 Instoryb，Gdyni，11A：275－86

Griazeva，EiDog Izmenenie gonad leshcha Abramis brama \(v\) sviazi s sozrevaniem polovykh produktov 1936 i vozrastom．（Changes in gonads of bream in connection with sexual maturation and age）（Ru）Izvobiolonauchno－isslodoInst。biol．Sta。permogosud．Univo \(10(8): 285-304\)

Eartley，PoHoTog The natural history of some British fresh water fishes．Proc．zooloSoo．Londono， 1947 117：129－206

Horoszemicz，\(L_{0}\) ，Food of predatory fishes in Vistula rivere（Polish，En summary）。 Roozonauko 1964 roln．（B）． \(84(2): 313-23\)

Euet，\(M_{0}\) A pergu des relations entre la pente et les populations piscicoles des eaux courantes． 1949 Schweiz．Z．Hydrolo， \(11(3-4): 332-351\)

Iliina，L．K．g Growth and age of Abramis brama，Blicoa bjorkna，Rutilus rutilus and Abramis sapa 1960 in Gorky reservoix．（Ru，En summary）Trudy Inst．BioloVodokhran．Bor ok．，3（6）：202－17

Irinarkhovs \(G_{0} S_{\text {e }}\) and NoMe Tokarev，Regulirovanie zakhoda proizvoditelei na estestvennye 1949 nerestilishchae（Control of migration to natural spawning grounds）（Ru）Rybokhozoo 1949：27－8

Iurovitskii，Iu。Go and P．N．Reznichenko，Razvitie leshcha v usloviakh razlichnogo kislorodnogo 1961 rezhima．（Bream development in different oxygen conditions）（Ru）Trudy Inst．Morp． Zhivot．33：94－110

Ivanov，SoNo and N．Vo Pechenikova，Rezultaty vselenia Aralskogo leshcha vozero Balkhash． 1960 （Results of introduction of Aral bream into Balkhash lake）（Ru）Nauchno－tekh．Biull． gosud，nauchno－issled．Insto ozernorechn．ryb．Khoz： \(10: 19-21\)

Ivanova，Mo No，Nekotorye dannye o pitanil okunia v rozlichnykh zonakh delty Volgio（Some data 1956 on perch food in different zones of Volga estuary）（Ru）Vop．Ikhtiol．7：96－106

On the nutrition of fishes in Koma Reservoir．（Ru，En summary）．BiulloInste 1960 Biol．Vodokhrano，7：21－5

Iviev， \(\mathrm{V}_{\mathrm{A}} \mathrm{Sog}_{\mathrm{g}}\) Eksperimentalnaia okologia pitania ryb．（Experimental eoology of fish feoding） 1955 （Ru）Moskva，Pishchepromizdat， 251 p．

Janiszewske，Jog Caxyophyllaeidae europejskie ze szczeg6inym uwzglednieniem Polski。（Polish） 1954 Prowrocl．Tow．nauk．（B）， \(66: 28 \mathrm{~m} 9\)

Jtrnefelt，Hog Untersuchungen Mber die Fische und ihre Nahrung im Tuusula See。 Acte SocoFauna 1921 Flora fenn．9 52 N1：1－160

Karpevich，A。Fo，Ekologicheskoo obosnovanie prognoza izmenenii arealov ryb 1 sostava ikhtiofauny 1955 pri osolenil Azovskogo moria．（Ecological background for forecasting of changes in distribution and species composition of fishes resulting from salt increase in Azov Sea）（ Ru ）Irudy vsesonauchnomissled．Instomorsk．ryb．Khozo Okeanores．31：3－84

Karpevich，A．Fo and E．N．Bokova，Peresadka ryb i vodnykh bezpozvonochnykh \(\vee\) 1957－1959 ggo 1961 （Acol imatization of fish and invertebrates carried out in USSR in 1957－1959）（Ru） Vop．Ikhtiol．1（3）：552m63

Peresadka ryb i vodnykh bezpozvonochnykh provedennaia v SSSR za 1960 i 1961 gg． 1963 （Aeclimatization of fish and invertebrates carried out in the USSR，1960－1961）（Ku） Vop．Ikhtiol．，3（2） \(8366=95\)

Karpevich，Ao Fe and＇D．E．Lokshina，Peresadka ryb i vodnykh bezpozconochnyk v 1962 g． 1965 （Acclimatization of fish and invertebrates in 1962）（Ru）Vopotikhtiol．，5（1）：178－97

Karpinska－Walus，\(B_{0}\) ，The rate of growth of bream（Abramis brama \(\mathrm{I}_{0}\) ）in lakes of Wegorzewo 1961 district．（Polish，En summary）RoczoNauk．rolno（B）77（2）：455－90

Karainkin，Gosog Osnovy biologicheskoi produktivnosti vodoemovo Moskra，Pishchepromizdat， 1952402 p．g alsos Polish edition 1955，Podstaw biologicznej wdejności zbiornikew wodnych Warszawa，PWRL， \(386 \mathrm{p}_{\mathrm{e}}\)（Fundamentals of biological productivity of water bodies）
 1948 microsc．Sci．，5（89）：129m37

Koblitskaia，A。Fo，Vijianie izmenenil rozlichnykh factorov sredy na kharaleter i effectivnost＊ 1961 neresta poluprokhodnykh ryb v nizoviakh delty Volgi．（Influence of changes in various environmental factors on character and efficiency of spawning in semim misratory fishes of Volga estuary）（Ru）Trudy Soveshchoikhtiol．KKomo，13：265－76

Kogan，A．V．g Materialy po pitaniu sintsag sazana 1 leshcha \(v\) Tsimlianskom vodokhranilishcheo 1958 （On the feeding of Abramis bailerus and Abramis brama in the Tsimliansk reservoir） （Ru）Izv。vses，nauchno－issled．Inst．ozern，rechnoryb．Khozo，45：178－89 1963 Reservoir．（ Ku ，En summary）．Vop．Ikhtiol：, 3（2）：319－25
Kogteva，EoPog Die Fischparasiten des Peipus Seeso（Ru，German sumary）．Izvovsesonauchno－ 1957 issled．Inst，ozern，rechn．ryb．Khoz．，42：243－69

Kosheva，A．Fog Forming of parasitical fauna of iishes in the impoundment Kutuluko（ \(\mathrm{Ru}_{8}\) En 1957 summary）Izvovses，nauchnomissled．Inst．ozern。rechnoryb．Khoz。g 42：124－31

Kozhing N．I．and M．A．Letichevskil，Nerestovo vyrastnye khoziaistva．（Spawning－breeding 1953 farms）（Ru）Moskva，Gizlegpishcheprom， 47 p．

Kozicka，Jo，Parasites and health conditions of bream from the Vistula river near Warsamo 1951 （Polish，En summery）．Rocz．Nauk．rolo．58：341－72

Diseases of fishes of Druzhno Lake．（En，Polish sumnary）．Acta parasitapol． \(1958 \quad 6(20): 393=432\)

Parasites of fishes of Druzhno Lake。（En，Polish summary）Acta parasitopol． \(19597(1): 1-72\)

Kozikowska，Zo，Crustacts parasites（Crustacea paxasitica）de la Pologne，Part 1．（Polish， 1957 French summary）．Zoolorica Pol．，8（2－3）：217－70

Krizhanovskii，S．Go，Ekologmorfologicheskie zakonomernosti razvitila karpovykh viunovykh is 1949 somovykh xyb（Cyprinoidei i Siluroidei）．（Ecological and morphological principles of development of Cyprinoidei and Siluroidei）（Ru）Trudy InstoMorfoZhivoto 1：5－332

Kruglova，Vo Hlo，Znachenie Veselovskogo vodokhranilishcha \(\nabla\) vosproizvodstve poluprokhodnykh ryb 1961 Azovomonskogo basseina（Significance of Veselovskoe reservoir in management of semi－ migratory fishes of Azovemon watershed）（Ru）Trudy SoveshchoikhtioloKome，13：430－2

Kuznetsova，I．I．g Regulirovanie kolichestva proizvoditelei na nerestilishchakhe（Abundance 1950 control of spawners on spawning grounds）（Ru）Ryb．Khoz．，1950（4）：30－4
\begin{tabular}{|c|c|}
\hline \[
1958
\] & Elementy gazoobmena u leshcha，sazana i sudaka na rannykh etapakh razvitila， （Elements of gas metabolism of bream，carp and pike－perch in eariy stages of develop－ ment）（Ru）Trudy Soveshch，ikhtiol．Kom．，8：346－58 \\
\hline \[
\begin{gathered}
\text { Ladiges, Wo, } \\
1960
\end{gathered}
\] & ，Süsswasserfische der Turkei．Mittohamb，zool．Mus．Insto；58：105－50 \\
\hline Lapitskaia,
\[
1958
\] & L．Nog Pitanie i pishchevye vzaimootnoshenia molodi ryb Tsimlianskogo vodokhranilishe 71954 g．（Feeding and food relationship of young fish in Tsimlianskoe reservoix） （Ru）Izvovses．nauchno－issled．Inst，ozernorechn．ryb．Khoz。， \(45: 160-77\) \\
\hline
\end{tabular}
 1941 \(1948 \longrightarrow 42: 10-165\)

Lebedev，\(N_{0} V_{0}\) Elementary populations of fishese（Ru，En summary）Zool。Zheg 25（2）：121－36 1946

Vozdeistve promysla na biologicheskie pokazateli ryb．（Effect of fishery on 1961 biological indices of fish）（Ru）Trudy Soveshchoikhtiol．Kom．13：173－9

Leeming，JoBeg The chub，bream and other fishes of the Welland．In proceedings，1st British 1963 Coarse Fish Conference，the University Liverpool．，Dpt Zool．，ppo48－52

Lenkiewicz，Zo，Temperature preferendum of some freshwater fishes．（Polish summary）Folia 1964 Biol．Kraków，12（1）：95－140

Leopold，\(M_{0}\) and W．Nowak，Species composition of catches with fyke net with rings．（Polish，En 1964 and Ru summary）RoczoNauk rolno（B），83（4）：655－65

Species composition of catches with winter seine with bage（Polish，En and Ru 1964a summary）．Rocz．Nauk roln．（B），83（4）：645－54

Species composition of gill net cetches．（Polish，En and Ru summary）．Roczonauk 1964 b rolno（B）， \(83(4): 675-80\)

Species composition of trap catches．（Polish，En and Ru summary）．RoczoNauk roln． 1964 C （B）， \(83(4): 667-73\)

Leszazxiski，\(L_{0}\) g Food items of juvenile stages of some fish species from several lakes of 1963 Wegorzewo district．（Polish，En and Ru summary）RoczoNauk rolno（B），82（2）：235－50

Leticherski \(i_{\text {，}} \mathrm{M}_{0} A_{0}\) g Ulutshenie eksplostatsii nerestovo－vyrostnykh khoziaistv delty Volgi i 1965 ijkvidatsila sezonnosti ikh roboty。（Improvement in spawingmbreeding farms of Volga estuary and elimination of periodicity in their work）（Ru）Ryb。Khoz。，41（1）：15－7

Liaiman，EoNog Kurs boleznei syb。（Ru）Moskva；Pishchepromizdat， \(270 \mathrm{p}_{0}\) 1949

Lieder，U．\(\theta\) Chromosomenstudien an Knochenfischen 2．Ueber die Chromosomenzahl und－morphologie 1954 der Plötze（Leuciscus mutilus \(\mathcal{L}_{0}\) ）und einiger Bastarde mit anderen Gypriniden． Z．Fischo， \(3 N F(4 / 5): 375=81\)

Untersuchungsergebnisse Uber die Grätenzahlen bei 17 Slisswasserfischarten。 1961 Z．Fisch． \(10 \operatorname{NF}(4 / 5): 329-50\)

Logvinovich，DoVog Vlijanie solennosti i plotnosti kormorykh obiektov na pitanie i rost 1955 lichinok i malkov donskovo leshcha Abramis brama（ \(\mathrm{L} \%\) ）i sudaka Lucioperca Iucioperca （ \(L_{0}\) ）．Trudy vses，nauchnomissled．Inst．ozern，rechn。ryb．Khoz ； \(31(2): 85=96\)
Iucky，Z。 and Vo Dyk，Die Schmarotzer der Fische in Flussen und Telchen des Flussgebietes voa 1964 Odra und Dyje．（ Czech \(_{9}\) German summary）．Sbovys．Skozeméd．Brnğ，12（1）：49－73

Lukashov，VoNog Dinamika chislennosti ekspluatiruemykh stad vobly，leshcha i sudaka Severnogo 1961 Kaspiia．（Dynamics of abundance in stocks of Caspian roach，bream and pike－perch） Trudy Soveshchoikhtiol．Kom．，23：445－53

Lehmann，\(M_{0}\) and \(H_{0}\) Mann，Ueber Hungerformen beim Brassen。 Fischwixto， 8 1957

Maiskij，\(V_{0} N_{0} g\) Raspredelenie i chislennost ryb Azovskogo moria pered zaregulirovaniem stoka 1955 reki Done（Distribution and abundance of fish in Azov sea beiore controlling of water discharge in Don river）（Ru）Trudy vses，nauchnomissled．Instomorskoxyboknozo Okeanogro：31：138－63
 1956 Rybinskoe reservoir）（Ru）Vop．Ikhtio1． 9 7：60－95

Maliarevskaia，AoJ．and ToI。Birger，Biokhemioheskii sostav proizvoditelei，ikry i Iichinok 1965 taxani i leshcha．In Vlíanie kachestva proizvoditelei na potomstvo u ryb，Kiev， Naukove Duma， 534 p．

Margaritov，Ne，Paraziti po niakoi nashi sladkovodni ribio Varna，Izdanie No－Izolodo 1959 Institut po Ribarstvi I Ribne Promyshlonnost \({ }^{1}\)

Marketova，\(N\) ．Vog Vozrastnol sostav i temp rosta leshcha \(v\) pervye gody suschestvovania 1958 Tsimlianskogo vodokhranilishcha。 Tzvovses，nauchnomissled。Instoozernorechnorybo Khoz。 \(45: 190=5\)

Markevich，AoP．，Parazitofauna presnovodnykh ryb USSR，Kiev，IzdatoAkadoNauk，OlerosSR \(376 p_{0}\) 1951
 1956

Markun，MeIog Materialy po rostu i sistematike aralskogo leshche IzvoOtdoprikIoIkhtiolog 1929 Lenings．g 2（1）：22041

Mayre，\(E_{0}, O_{0}\) Linsley and \(L_{\text {。 }}\) Usinger，Methods and principles of systematic zoology New Yoxk， 1953 MoGraw Kill． 328 p．

Mikheev，PoVeg，Isskustvennye plovuohie nerestilishcha，（Artificial floating spawning grounde） 1951 （Ru）Moskva，Pishchepromizdat， 44 p．

Mikheev，\(P_{0} V_{0}\) and E．Vo Meisnerg Sbor i transportirovka ikry sudaka i leshcha dia maryblenila 1954 vodokhenilishoh．（Collection and transportation of pikemperch and bream eggs for stocking reservoirs）（Ru）Ryb．Khoz．，（3）：36m7

Mikheev，\(P_{0} V_{0}\) and K．P．Prokhorova，Rybnoe nasolenie vodokhranilishch i ogo formirovanie。 1952 （Fish stocks of reservoirs and their formation）（Ru）Moskva，Pishohepromizdat， 86 po

Monastyrskii，GoNog Dinamika chislennosti promyslovykh ryb。（Dynamics of abundance in commex 1952 cial fishes）（Ru）Trudy vsosonauchno－issled．Instomorskoryb．Khoz．Okoanocre ，21：3－162

Moreau，E．，Histoire naturel des poissons de la France．Vol．3．Paris，C．Massong 697 po 1881

Morozova，PoNog Leshch Aralskogo moriaa（Bream of Aral Sea）（Ru）Izvovses，nauchno－issled．Inst． 1952 ozernorechn。ryboKhoz． \(30: 74-96\)

Mrugasiewicz，Wo，Próby hodowli leszcza w stawach．（An attempt of bream culture in ponds） 1931 （Polish）Przegl．rybaoki，4：23－4

Nobolsina，ToKog Pitanie leshcha，plotvy，gustery i sintsa v pervyo gody obrazovania Volgom 1962 gradskogo vodokbranilishehe（Feeding of Ao brama，Ao ballerus，Bliocabjörkna and Rutilus rutilus in the first years of forming of Volgograd reservois）（Ru）Trudy saratov．Otd．gosud．nauchno－issled．Inst．ozern，rechn，ryb．Khozo， \(7: 148\)

Neubaur，\(R_{0}\) ，Biologisches und Wirtschaftliches von Blei（Abramis brame \(L_{0}\) ）irn Stettiner Haff und 1926 seinen Nebengewassem．Z．Fischo，24：163－93

Neuhaus，Eog Untersuchungen Wber die Lebensweise von Ergasilus sieboldi．Z。Fisch．，27：341－97 1929

Studien Uber das Stettiner Haff und seine Nebengewasserg Untersuchungen dber den 1934 Kaulbarsch．Zo Fisch．，30：1－35

Niewolak，\(S_{0}\) ，Pseudomonas chloraphis as a factor that causes focal colliquative necrosis of the
 \(11(109): 145=50\)
 1953 promyslovykh ryb．Izvevses．nauchno－isslod．Inst．ozernorechnoryb．Khoz．．33：36－41
 1952 Saratov，Saratovskoe Oblastnoe Gos．Izdatelstvo， 312 p．

Nikolskii，GoV．，K poznaniu osobennostoi formirovania i rozvitile ikhtiofauny vodokhranilishch 1948 V otdelnykh geograficheshikh zonakh．（On the peculiarities of formation and develop－ ment of fish fauna in reservoirs in different geographic zones）（Ru）Zool．Zh．， 27 （2）：149－58
\begin{tabular}{|c|c|}
\hline 1950 & vodoemov．（On the dynamics of fish population and on the somalled problem of water productivity）（Ru）Zool．Zh．，29（6）：489－500 \\
\hline 1953 & ，O teoreticheshikh osnovakh robot po dinamike chislennosti ryb．（Ru）Trudy Soveshch．ikhtiol．Kom．，1：77－93 \\
\hline \[
1954
\] & ，Chastnaia ilchtiologia．（2d Edo）（Systematic ichthyology）（Ru）Moskva，Sovetskaia Nauks， 458 po \\
\hline 1958 & 0 vlijanii vylova na struktuma populiatsil promyslovoi rybyo zool． \(\mathrm{Zh}_{0}, 37(1): 41-56\) \\
\hline \[
\begin{gathered}
\text { Nikol skii, } \\
1955
\end{gathered}
\] & PoDog Vyrashchivanie molodi sudake i．leshcha pri uplotnennykh posadkakh proizvoditelei v uslovilakh nerestovo－vyrastnogo khoziaistva delty Volgi．（Rearing of bream and pike perch at dense stocks of spawners in spawning－breeding farms in Volga estuary）（Ru） Ryb，Khoz。（3）：42－4 \\
\hline \[
\frac{\text { Itumann, Wo, }}{1962}
\] & \[
\begin{aligned}
& \text { Die anatolischen Seen und ibre Iischereiliche Bewirtschaftungo 2。Fischog N. F. } \\
& 10(8-10): 773-99
\end{aligned}
\] \\
\hline \[
\begin{gathered}
\text { Oblmer, } \\
1959
\end{gathered}
\] & and J．Schwarzkopi，Schwimmgeschwindigkeit von Fischen aus stehenden Binnengewasserm． Naturwissenschaftenos 10 （quoted in Radakov，Protasov 1964） \\
\hline \[
\begin{gathered}
\text { Oliva, } O_{0}, \\
1952
\end{gathered}
\] & A revision of the cyprinid fishes of Czechoslovakis with regard to their secondary sexual characters．Bulloint．Acad．Prague．53（1）：1－61 \\
\hline \[
\begin{gathered}
\text { Ostrounov }_{y} \\
1956
\end{gathered}
\] & A．ho， 0 vozrastnom sostave stada 1 roste leshcha Rybinskogo vodokhranilishcha。（Age composition and growth of bream in Rybinskoe reservoir）（Ru）Trudy biol．Sta．Borok， 2：166－83 \\
\hline \[
\begin{gathered}
\text { Pacak, } S_{0} \\
1962
\end{gathered}
\] & Parasites of Danube bram（Abramis brama danubii）（Czech，En summary）．Pr，Lab。Ryb。 Pratiglava，1：173098 \\
\hline Pafusova， 1961 & \begin{tabular}{l}
No， 0 metodakh nabludenila za molodiu vobly i leshcha w elementarnykh populatsiakh． \\
（On the methods of research of young Caspian roach and bream in elementarypopulations） \\
\((\mathrm{Ru})\) Trudy Soveshchoikhtiol．Kom．，13：471－9
\end{tabular} \\
\hline
\end{tabular}

Pankratova，Wo Io Materialy po pitaniu volzhskikh ryb．（Materials on feeding of Volga fishes） 1948 （Ru）Trudy zool．Inst．，Leningro，8（3）：600－20

Panov，DoAog On the larval feeding of Abramis brama in Rybinsk reservoir．（Ru，En summary）． 1960 Trudy Insto Biol．Vodokhrane，Borok，3（6）：1760081

Papadopol，Mog Despere prolificifatea platici Abramis brama \(L_{0}\) pescuita in delta Dunarij si 1962 analiza dinamicii oi in ontogeneza．Anal．romosovo（Biolo），3：73－90

Sur le caractère de la ponte chez la brème Abramis brama danubij Pavlov pochêe 1963 dans le delta de Danube．（Rumanian，Fr summary）Studii CorcoBiol。（anim．）15（4）： 465－76

Pape，\(A_{0}\), Untersuchungen Uber die Ertrage der Fischered der Mittelelbe und die Auswirkungen ihres 1952 Extragsaiedergangs．ZoFisch．，N．F．：\(I(1 / 2): 45-72\)

Pavlov，P．Io，Pridunaiskia leshch \(v\) sravnenii s dneprovskim．（The Danubian bream in comparison 1956 with the Dnepr－bream）（Ru）Zool．Zh：，35（6）：891～96

Peczalska，Aog The reproduotive biology of bream from Szczecin Firth Polskie Archvm Fydro－ 1963 biolo，（Polish，En and Ru sumnary）．11（1）：109－39

Petkevich，AoNog Akklimatizatsia leshcha \(\nabla\) vodoemakh Sibirio（Bream acclimatization in 1953 Sybirian waters）（Ru）Priroda，12：110－1
\begin{tabular}{c} 
Akklimatizatsia sazana i leshcha v Barabinskikh ozerakho（Acclimatization of \\
\hline 1954 carp and bream in Barabin lakes）（Ru）Trudy SoveshchoikhtioloKomo \(3: 98=108\)
\end{tabular}
Pliszka，Fog Results of investigations on the migrations of fish in the Vistulao（Polish，Ea 1951 summary）．Rocz．Nauk roln．，57：272－83

Dynamics of feeding relations of the lake Harsz．Polskie Archwn Hydrobiol．， \(19531: 271-300\)

The effect of spawning conditions in lakes on survival rates of juvenile stages． 1953a（Polish，En and Ru summary）．Polskie Archom Hydrobiol．g 1：165－88

Pliszka，F．and \(J_{0}\) Dziekonska，An analysis of the feeding conditions in Tajty as a basis for its 1953 arrangement。（Polish，En and Ru summary）R Roczo Nauk rolno，67：187－209

Efforts to characterize the feed relation and feod conditions in lake Tafty for 1953a fry．（Polish，En and Ru summary）．Rocz。Nauk roln．，67：209－21

Pliszka，Fo，et alog Investigation into the food and feeding habits of fish in the river Vistula。 1951 （Polish，En summary）．Rocz．Nauk rolno，57：205－35

Podarueva，Z．So，On the nutrition of Acerina cernua in the Upper Volga Reservoix and in lake 1360 Beloe．（ Ru, En summary）．Trudy Inst．Biol．Vodokhran．，3（6）：182m93

Poddubnyi，AoGo，Some peculiarities of the distribution of Abramis brama in Rybinsk resexvoir 1959 during the period of feedinge（Ru，En summary）．Biull．Inst，Biol．Vodokhran．\({ }^{0}\) 5：32＝6 ，On local populations of Abramis brama in Rybinsk reservoir．（Ru，En summary）。 1960 Trudy Inst．Biol．Vodokhran．， \(3(6): 216-27\)

Ponedelko，BoIo，Die Verteilung des Laichs，der Larven und Jungfische im Ilmensee。（Ru，German 1958 sumnary）．Biull．Inst．Biol．Vodokhran．2：33－7

Popescu，Log Contributions à la biologie de la brème（Abramis brama \(L_{0}\) ）du Delta du Danubo。 1958 （Roumanian，French summary）．BuloInst．Cerc．piso．9 17（2）：65－77

Potapova， \(0 . I_{0}\), Leshch kak obiekt ozernogo rybnogo khoziaistve karelo－finskod SSR．（Bream as an 1954 object of lake fisheries in Karel－minnish SSR）（Ru）In Materialy Soveshchania po probleme povyshenia rybnoi produktivnosti mutrennykh vodoemov Karelo－Finskoi SSR． Petrozavodsk，Gos．Izdatelstvo Kar．－Fin．SSR．，pp．86－95


Sebentsov， \(\mathrm{B}_{0} \mathrm{Mog}_{0}\) E。Vo Meisner and P．V．Mikheov，Rybovodnombiologicheskj osnovania 1953 rybokhoziaistvennogo osvoenia vodokhranilishch na rekakh．（Fisherymbiological principles of fishery management in reservoirs．（Ru）Trudy vsesonauchnomissled．Inst． ozern。rechn。ryb。Khoze，6：5－120

Segestrale，Co，Ueber die jehrlichen Zuwachszonen der Schuppen und Beziehungen zwischen Sommex 1932 temperatur und Zuwachs bei Abramis brama．Acta zool．fenno，13：1－42
© Ueber scalimetrische Methoden zur Bestimmung des linearen Wachstums bei Fischen． 1933 Acta zool．fenn．，15：1－168

Shaposhnikova，GoKh。g Leshch i perspektivy ego sushchestvovaniis v vodokhranilishche na Volgo． 1948 （Bream and pospects of its existance in a reservoir on Volga River）（Ru）Trudy zool． Insto．Leningr：，8（3）：467－502 \(1950 \quad 9: 16=54\)

Shentiakov，VoAog Presnovodnyi elektrotralovyi lov ryby s primenenem poremennogo toka。（Fresho 1964 water electric trawling of fish applying alternating current）（Ru），Moskva， Pishchevaia Promyshlennost， 82 p．

Shilov V．I．Vozrastnye i sezonnye izmenenia iaichnikov leshcha v usloviakh formirovanifa 1962 Volgogradskogo vodokhranilishcha．（Seasonal and in age groups changes of broam ovaries in conditions of Volgogradskoe reservoir formation）Trudy saratovoOtd．gosudo nauchno－issled．Inst．ozernorechnoryb．Khoz． 9 7：118－29

Shkorbatov，GoLo On the acclimatisation theory of water animals．（Ru，En summary）Z Zool．Zhog 1964 53（7）：953－64

Shorygin，AoAo，Pitanie i pishchevye vzaimootnosheniia yyb Kaspiikogo moria。（Feeding and food 1952 relationships in fishes of Caspian Sea）（Ru）Moskva，VNIRO，Pishchepromizdatg 268 po

Shpet，G．I．，O metodakh srawnenia produktivnosti vodnykh zhivotnykh．（On the methods of 1964 comparing productivity of water organisma）（Ru）In Biologicheski osnovy rybnogo khoziaistva na vnutr．vodoemakh Pribaltiki，Minsk，Nauka i Tekhnika，pp。297－304

Siebold，C．Slusswasserfische von Mitteleuropa。 Leipzig，W．Engelmana， 430 po 1863

Stammer，Jog Beitrag zur Morphologie，Biologie und Bekämpfung der Karpfenlâuse。 Zoparasitkdeog 1959 19（2）：135－208

Stangenberg， \(\mathrm{M}_{0}\) g Participation in catch and growth of the economically most important fish in 1950 the Charzykowo Lake。（Polish，En summary）．In Jezioro Charzykowo－Prace，Instytut Badawczy Lesnictwa，Warszaw，PWRiL，pp．217－44

Starmach，\(K_{0}\), Fisheries and biological characteristics of rivers．（Polish，En and Ru summary）． 1956 Polskie Archrm Hydrobiol．，3：304－32

Steinmann，Pog Schweizerische Fischkunde。 Aarau，H．R．Sauerlander Co． 222 po 1948

Stophanidis，Aog Poissons d＇өau douce，nouveaux pour l＇ichthyofaune de la Geèce Acta Instozool。 1937 UnivoAtheno， \(2(9-10)\)

Strakhov，V．A。and \(L_{0}\) N．Nusenbaum，Elektricheskil zagraditel dia ryb tipa ERZU－1。（Eleotric fish 1959 screen－type ERZU－1）（Ru）Moskva，Izdatelstvo Zhurnala＂Rybnoe Khoziaistvo＂， 39 p．

Sukhoivan，\(P_{0} G_{\theta}\) Opyt primenenia isskustvennykh nerestilishch \(v\) nizhnem befe Kakhovskogo gidrouzlso 1959 （An experiment with artificial spawning grounds below the Kakhovsk hydroelectric station）（Ru）Rybo Khoze 3：28－31

Jukhoverkhov，\(F_{0} M_{0}\) ，Rybovodstvo \(\nabla\) poimennykl．ozerakh．（Fish culture in ox－bow lakes）（Ru） 1948 Moskva，Pishchepromizdat， 146 po

Suvorov，E．K．g Osnovy ikhtiologij。（Foundations of Ichthyology）（Ru）Moskva，Sovetskaia Nauka， 1948579 p．

Svardson，Gog Note on spawaing habits of Leuciscus erytrhophthalmus（Li），Abramis brama（Lo）and 1949 Esox lucius Log Rep．Insto Freshwato Res．Drottningholm，29：102＝8

Syoh，Rog Observations on the propagation of fish in the Konfederatka＂shoal＂of the Vistula 1955 river．（Polish，En and Ru sumary）．Rocz．Nauk soln．（B），69（4）：527－46

Syrkovg \(P_{0} G_{0}\), Opyt raboty nerestovo－vyrostnykh khoziaistv v delte Volgi po vyrashchivaniu molodi 1953 krupnochastikhovykh ryb。（Experience of spawning－breeding farms in Volga estuary in rearing young fish）（Ru）Trudy Soveshchoikhtiol．Kom． 1 1：346－53

Syrovatskaia，NoIf 0 tipe ikrometania doskogo leshcha．（On the spaming type of Doneriver 1949 bream）（Ru）Dokl．Akad。Nauk SSSR 0 66（5）：1001－4 4

Tanasiichuk VoSeg K voprosu o prichinakh kolebanila chislemnosti leshcha i vobly vaevernom 1952 Kaspij．（On the question of season for abundance fluctuations of bream and Caspian roach in the northern Caspian Sea）（Ru）Trudy vses，nauchnowissled．Instomorskorybo Khozo Okeanogr．，21：195－212 1959 Leshch severnogo Kaspia．（The bream of northera Caspian Sea）（Ru）Trudy kaspo 1959 nauchnomissled．Instomorsk．ryb．Khoz．Okeanogr．，15：3－38

Tesch，FoWog Das Wachstum des Barsches（Perca fluviatilis（ \(L_{0}\) ））in verschiedenen Gewâssern． 1955 Z．Fisch．，N．F．\(\quad 4(5 / 6): 321-420\)

Tikhii，MoIog Rezultaty akklimatizatsii ryb \(\nabla 0\) vnutrennykh vodoemakh SSSR．（Results of fish 1954 acclimatisation in inland waters of USSR）（Ru）Trudy Sovesheh．ikhtioloKomo，3：75－83

Timofeev，I。No，Materialy po rostu azovskogo leshcha．Trudy kasp．nauchnomissled．Instomorsk．ryb。 1964 Khoz．Okeanoges． \(50: 163\)－77
 1957 issled．Inst．ozern。rechn，ryb．Khoz。，42：166－74

Tiuring \(P_{0} V_{0}\) Factor estestvennoi smertnosti u ryb i ego znachenie pri regulirovanii rybolovstva。 1962 Natural mortality in fish and its significance in fishery regulation）（Ru）Vop． Ikhtiol：2 2（3）：403－27

Tsepkin，E．Aog Drevniaia promyslova fauna ryb reki Amu－Darii．（Ancient commeroial fishes of Ampe 1964 river）（ Ru ）Vop．Ikhtiol．g 4（2）： \(280-8\)

Van Cleve，HoJo and JoEe Lynch，The cixcumpolar distribution of Neoechinorhynchus rutilig an 1950 acantocephan parasite of freshwater fishes．Trans．AmomicroscoSoc． \(69(2): 156 \mathrm{~m} \% 1\)

Vashoherifo，D．M．The carp as the object of pike feeding in Kakhovka water reservoir in the first 1958 year of its formationo（Ru，En surnmary）．Zool．Zh．，37（11）：1745－8

Vasilev，LoIo，Nekotorye osobennosti Pormirovaniia promyslovoi ikhtiofauny Rybinskogo vodokhrani－ 1956 lishcha za period 1941－1952．（Comercial ichthyofauna formation in Rybinsk reservoir） Trudy bioloSta．Borok 2：143－65

Vasnetsov，VoVog Versuch einer vergleichenden Erforsohung des Wachstums der Cypriniden。（Ru， 1934 German surmary）．Zool．Zh。 13（3）：540；83
，（Ed．），Morfologicheskie osobennosti opredeliaiushche pitanie leshcha，vobly i 1948 sazana na vsekh etapakh razvitia．（Morphological characters detexmining the feeding of bream，Caspian roach and carp at all development stages）（Ru）Moskva－Leningrad， Izdat。Akademiii Nauk SSSR 262 po

Vasnetsov，VoVo，et alo Etapy razvitia promyslovykh poluprokhodnykh ryb Volgi i Dona－leshcha，
1957 sazana，vobly，taranii i sudaka。（Development stages of commercial semimigratory fishes of Volga and Don rivers）（Ru）Trudy Inst．MorfoZhivot．，1687－74

Velikokhatko，FoDo Materialy \(k\) poznaniu leshoha iz Dnepra，（Materials on bream of Dnepr 1947 river）（Ru）Zool．Zh．，20（1）：101－17

Vernidub，Mo．Fog Novyi sposob obeskleivania ikry leshcha．（A new method of making bream eggs 1953 not sticky）（Ru）Ryb．Khoz．，1953（9）：32－3

Vinberg，\(G_{0} G_{0}\) Intensivnost obmena i pishchevye potrebnosti ryb．Minsk，Izdat．Belgosuniversi－ 1956 tetas 251 p．

Wadimirov，VoI。g Lichinochnye kriticheski periody razvitia i smertnost u ryb．（Critical 1964 periods of larval development and mortality in fish）（Ru）Vop．Tkhtiol：，4（1）：104－17

Vojtek，J．，Beitrag zur Kenntnis der Helmintenfauna der Fische。（Czech，German summary）． 1959 Publ．Fac．Soi．Univ．Brne，（407）：437－465

Vojtkova，\(L_{0}\), Beityag zur Kenntnis der Fischparasiten in den Flüssen Svitava und Svratka． 1959 Spisy prix．Fak．Univ．Brne，（401）：97－123

Volgin，L．Vo and N．V．Vertinin，Pitanie Ubinskogo leshcha Abramis brama（Lo）．（Feeding of 1964 Ubinsk bream）（Ru）Vop．Ikhtiol：4（4）：708－15

Volodix，\(V_{0} M_{0}\) ，Influence of temperature and dissolved \(\mathrm{CO}_{2}\) on embryonic development of Abramis 1960 brama．（Ru，En summary）．Biull．Inst．Biol．Vodokhran．7：31

Waluga，Do，Enzootion of focal colliquative necrosis in Abramis brama（L．）．Acta Hydrobiol．， 1962 Krakow 4（1）：29－39

Phenol effectas on the anatomo－histopathological changes in bream（Abramis brama \(\overline{1966 \text {（L．））．Acta Hydrobiol．Krakem，8（1）：55－78 }}\)

Phenol induced changes in the peripheral blood of bream（Abramis brama（ \(\mathrm{L}_{\mathrm{o}}\) ））。 1966a Acta Hydrobiol．，Krakow，8（2）：87－95
 1909 （50）：195－286

Wierzbicka，Jo，The occurrence of Assymphylodora imitans（Muhling 1898）in Vistula．（Polish， 1964 En summary）．Wiad．parazyt． \(10(4-5): 525-6\)

Willer，Aog Beitrege zur Kenntnis der Bandwurmseuche（Ligulosis）der Brachsen oder Bleie 1912 （Abramis brama \(I_{0}\) ）。 Z．Fisch．，16（1）：98－149

Wunder，Wo，Physiologie der Shisswasserfische Mitteleuropas．Handb．BinnenfischoMitteleuropo， 1936 2b：340 po

Wundsch，H．\(H_{0}\) Das Wachstum des Bleies（Abramis brama（ \(L_{0}\) ））in den Seen der Oberspree und Dahme。 1939 Z．Fischo， \(37(4): 555-612\)

Grundlagen der Fischwirtschaft der Gross－Staubecken．Abho FischoHilfswiss． 1949 Lief．1：17－186

Zakharova，L．K．g Materialy po biologii razmozhenia ryb Rybinskogo vodokbranilishoha。 1955 （Materials on the biology of fish reproduction in Rybinsk reservoir）（Ru）Trudy biol． Sta．Borok，2：200－66

Zawisza，J．，The growth rate of bream，barbel，Vimba vimbe and whitemream in the midde reaches 1951 of the Vistula near Warsaw．（Polish，En and Ru summary）．Rocz．Nauk roln．．57：237－71 \(1953-67: 221-55\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{The growth of fish in lakes of Wegorzowo district. (Polish, En and Ru summary). Rocz.Nauk roln. (B) , 77(2):681-748} \\
\hline \multicolumn{2}{|r|}{Wytyczne zagospodarowania jezior w ktorych stwierdzono silne zarazenie leszcza tasiemcem Ligula. Olsztyn (Inland Fish. Institute), (MS)} \\
\hline \[
\begin{gathered}
\text { Zemskaia, } \\
1958
\end{gathered}
\] & K.A., Rost i polovoe sozrevanie severokaspiiskogo leshcha v sviazi s izmeneniem ego chislennosti. (Growth and maturation in northern Caspian bream in connection with changes in its abundance) (Ru) Trudy vses, nauchnomissled.Inst.morsk. ryb.Khoz. Okeanogr., 34: 63-86 \\
\hline \[
1961
\] & , O vliianil nagula i chislennosti proizvoditelei na velichinu potomstva kaspiiskogo leshcha. (On the effect of feeding and abundence of spawners upon the year class strength of Caspian bream) (Ru) Trudy Soveshch.ikhtiol.Kom., 13:307-13 \\
\hline Zhel tenkova 1964 & a, Mo Vo, Metodika izuchenia obespechennosti ryb pishchei v sviazi s problemoi ikh chislennosti. ( Ru ) Trudy vses.nauchno-issled. Inst, morsk. rybokhoz.Okeanogr. , 50:89-108 \\
\hline Zhiteneva, 1958 & T.S. Ueber die Ernahrung des Brachsen in der Uglitsch in Ivankovo Stauseen. (Ru, German suxamary). Biull.Inst, Biol.Vodokhran., 2:31-2 \\
\hline \[
1960
\] & , Nutrition of Abramis brama in Gorky reservoir. (Ru, In summary). Trudy Inst. Biol. Vodokhran: \(3(6): 170=5\) \\
\hline \[
\underset{1958}{\text { Zhukov, }}
\] & I. 2 Ryby basseina Nemana. Minsk, Izdat.Ak.Nauk Beloruskoi SSR, 191 p. \\
\hline \[
\begin{gathered}
\text { Ziemiankovs! } \\
1961
\end{gathered}
\] & ski, H. Be and \(^{2}\). Cristea, Beobachtungen zur Ernahrungsdynamik der Fische während des Winters. ZoFisch.,NoFo, \(10:(4 / 5): 275=98\) \\
\hline \[
\mathrm{Zitnan}_{1960} \mathrm{R}_{0}
\] & Vorkomen, Wirte, Lokalisierung und Invasionsextensitat der Metazerkarien Metagonismus yokogawai (Katsurada 1912) bei Fischen in den Gewassern slovakischer Flusse。 Holminthologia, \(2(3-4): 295-306\) \\
\hline Zukowski, 1962 & Czo, Investigations on bream from Suczecin Firth and Pommeranian Bay in 1953-1955. (Polish, En and Ru summary). Pr.morsk. Inst.ryb. Gdyni, 11A:443-62 \\
\hline
\end{tabular}

This is one of a series of documents issued by FAO, CSIRO and USFWS concerning species and stocks of aquatic organisms of present or potential economic interest. The primary purpose of the series is to make existing information readily available to fishery scientists according to a standard pattern, and by so doing also to draw attention to gaps in knowledge. It is hoped that synopses in the series will be useful to other scientists initiating investigations of the species concerned or of related ones, as a means of exchange of knowledge among those already working on the species, and as the basis for comparative study of fisheries resources. They will be brought up to date from time to time as further information becomes avallable either as revisions of the entire document or their specific chapters.

The relevant series of documents are:
\begin{tabular}{llll} 
FAO & \begin{tabular}{l} 
Fisheries Synopsis No. \\
(replacing, as from 1.1.63 FAO \\
and
\end{tabular} & Fisheries Biology Synopsis)
\end{tabular}\(\quad\)\begin{tabular}{l} 
FB/S \\
CSIRO Fisheries Synopsis No.
\end{tabular}

Synopses in these series are compiled according to a standard outline described in FIb/S1 Rev. 1 (1965).

FAO, CSIRO and USFWS are working to secure the co-operation of other organizations and of individual scientists in drafting synopses on species about which they have knowledge, and welcome offers of help in this task. Additions and corrections to synopses already issued will also be most welcome. Comments including suggestions for the expansion of the outline and requests for information should be addressed to the co-ordinator of this work and editor of the FAO series:

\author{
A. Ben-Tuvia \\ Fishery Resources and Exploitation Division \\ Marine Biology and Environment Branch Food and Agriculture Organization of the United Nations \\ Via delle Terme di Caracalla \\ 00100 Rome, Italy
}

\begin{abstract}
Consolidated lists of species or groups covered by synopses issued to date or in preparation will be issued from time to time. Requests for copies of synopses should be addressed to the issuing organization.
\end{abstract}

The following synopses in this series have been issued since January 1966:
\begin{tabular}{lll} 
SSR/F526 & \begin{tabular}{l} 
Synopsis on the biology of the jack mackerel (Trachurus \\
(FR/S86) \\
trachurus). (Published as U.S. Fish and Wildlife Service Special \\
Scientific Report - Fisheries No. 526)
\end{tabular} & April 1966 \\
FRi/S30 & \begin{tabular}{l} 
Synopsis of biological data on the pike Esox lucius (Linnaeus) \\
1758. Provisional version
\end{tabular} & April 1966 \\
FR/S31.1 & \begin{tabular}{l} 
Synopsis of biological data on common carp Cyprinus carpio \\
(Linnaeus) 1758 (Asia and the Far East). Provisional version
\end{tabular} & May 1966 \\
FR/S31.2 & \begin{tabular}{l} 
Synopsis of biological data on common carp Cyprinus carpio \\
(Linnaeus) 1758 (Near East and Europe). Provisional version
\end{tabular} & May 1966 \\
FR/S32 & \begin{tabular}{l} 
Synopsis of biological data on catla Cat/a catla (Hamilton) 1822. \\
Provisional version
\end{tabular} & May 1966 \\
FRm/S34 & \begin{tabular}{l} 
Synopsis of biological data on the blue whiting Micromesistius \\
poutassou (Risso) 1810. Provisional version
\end{tabular} & September 1966 \\
FRm/S35 & \begin{tabular}{l} 
Synopsis of biological data on the West African croakers Pseudo- \\
tolithus typus, P. senega/ensis and P. elongatus
\end{tabular} & October 1966 \\
FRm/S33 & \begin{tabular}{l} 
Synopsis of biological data on the Norway pout Trisopterus \\
esmarkii (Nilsson) 1855
\end{tabular} & January 1968 \\
FRi/S36 & \begin{tabular}{l} 
Synopsis of biological data on the bream Abramis brama (L.)
\end{tabular} & February 1968
\end{tabular}```

