

Trenches combined with living hedges or grass lines Rwanda - Imiringoti

Trenches combined with living hedges or grass lines are slow-forming terraces to control soil erosion by changing the length of the slope and progressively reducing the slope gradient; he slope steepness decreases progressively by hydric and tillage erosion.

Trenches combined with living hedges or grassed lines are less labour-intensive method that is practiced in the highlands of Rwanda. The method involves digging trenches which have grass-stabilized banks, or simply planting grass strips and vegetative barriers across the slope to reduce runoff. This method, locally referred to as 'progressive terracing', is more adaptable by individual farmers across the country. In the study conducted by Kagabo et al. (2013) in the highlands of Buberuka Region of Rwanda, it was noted that net increment in yields and returns on investment increased with the age of terraces, since the capital costs of terracing were easily recovered. These terraces also showed more resilience, some being over 30 years old and still effective. Along the contour band, soil from the upper parts of the slope is removed and deposited above by creating a series of discontinuous trenches in order to extend the flat terrain. Over 5-10 years, the terraces become enlarged and form a terrace along the contour, such that the slopes are transformed over time into level bench terraces (but never %).

The main purpose of this technology is to reduce runoff and soil erosion on the slope and to improve soil quality and soil moisture retention. Grass strips or living hedgerows are intended to both trap sediments and facilitate the slow formation of terraces. The establishment of trenches combined with living hedges or grassed lines is less labor intensive and requires less skilled labor. Regular maintenance banks on which living hedges are planted, to seasonally stream living hedges to minimize the competition of nutrients and water with plants. To efficiently use these terraces it is advisable to introduce intensive and rentable cropping systems or agroforestry with fruits and forage trees.

This technology was reported to be very resilient as trenches combined with living hedges or grassed lines of 20+ year old are still effective in controlling soil erosion. However, the soil quality on these formed terraces between alleys does not homogenize 100% over the course of time. Large soil fertility gradients with marked spatial difference in both soil quality and crop yield from their upper parts downwards of the terraces is observed. The soil in the lower parts of the terraces showed as much as 57% more organic carbon content and 31% more available phosphorous than the soil in the upper parts of the terraces (Kagabo et al. 2013).

left: Landscape view of the anti-erosion trenches and grass lines (Photo: Ngenzi Guy) right: Detailed view of trench combined with grass line (Photo: Kagabo Desire and Ngenzi Guy)

Location: Rwanda Region: Kamonyi District (Southern Province) Technology area: 10 - 100 km2 Conservation measure: vegetative, structural Stage of intervention: mitigation / reduction of land degradation Origin: Developed Government, 10-50 years ago Land use type: Cropland: Annual cropping Cropland: Tree and shrub cropping Land use: Grazing land: Extensive grazing land (before), Cropland: Annual cropping (after) Climate: subhumid, tropics WOCAT database reference: T RWA002en Related approach: Top down approach (A_RWA001en) Compiled by: Desire Kagabo, Not a member of an institution Date: 2014-07-04 Contact person: Desire Dr Kagabo, Rwanda Agriculture Board, Rwanda, (+250)788769080,desirekagabo@yahoo.com

Magera Ago Considera

Classification

Land use problems:

- Soil erosion, water contamination due to sediment loads, decrease of soil fertility and soil depth, loss of vegetation cover (expert's point of view)

Soil erosion, contamination of water (the turbidity of water is high) therefore the domestic use of water is a problem. (land user's point of view)

Average annual rainfal (mm)	l Altitude (m a.s.l.)	Landform	Slope (%)	
> 4000 mm 3000-4000 mm 2000-3000 mm 1500-2000 mm 1000-1500 mm 500-750 mm 250-500 mm < 250 mm	> 400 3000-400 2500-300 2000-250 1500-200 1000-150 500-100 100-50 < 100-50	00 plateau / plain 00 ridges 00 mountain slop 00 hill slopes 00 footslopes 00 valley floors 00 00	s flat gentle moderate rolling hilly steep very steep	
Soil depth (cm) 0-20 20-50 50-80 80-120 >120	Growing season(s): 150 days (February), 120 days (March – July Soil texture: medium (Ioam) Soil fertility: medium Topsoil organic matter: mediu Soil drainage/infiltration: good	September - y) Soil water Ground w Availabilit Water quail m (1-3%) Biodivers	r storage capacity: medium ater table: 5 - 50 m :y of surface water: poor / none ality: poor drinking water ity: medium	

Tolerant of climatic extremes: temperature increase, seasonal rainfall decrease, wind storms / dust storms, droughts / dry spells, decreasing length of growing period

Sensitive to climatic extremes: seasonal rainfall increase, heavy rainfall events (intensities and amount), floods

Human Environment

Cropland per household (ha)

<0.5
0.5-1
1-2
2-5
5-15
15-50
50-100
100-500
500-1,000
1,000-10,000
>10,000

Land user: Individual / household, Small scale land users, common / average land users, men and women Population density: 50-100 persons/km2

Annual population growth: 2% - 3% Land ownership: individual, titled Land use rights: individual Water use rights: open access (unorganised)

Relative level of wealth: poor, which represents 75% of the land users; 75% of the

total area is owned by poor land users

Importance of off-farm income: less than 10% of all income:

Access to service and infrastructure: low: technical assistance, employment (eg off-farm), energy, roads & transport; moderate: education, drinking water and sanitation, financial services; high: health, market

Market orientation: subsistence (self-supply)

Technical drawing

Trenches are dug in trapezoidal shape with 40 cm of height, 30 cm of base length and 50 cm of top lengths. An empty space of 40 cm is left between two consecutive trenches along a contour line. (Kagabo Desire and Guy Ngenzi)

Implementation activities, inputs and costs

Establishment activities	Establishment inputs and costs per ha			
- Cuttings - Transport Planting	Inputs	Costs (US\$)	% met by land user	
- Identification of contour lines, digging of trenches and	Labour	381.25	100%	
grass planting on risers	Equipment			
	- Hand hoe	125.00	100%	
	TOTAL	506.25	100.00%	

Maintenance/recurrent activities	Maintenance/recurrent inputs and costs per ha per year			
- Weeding - Manure application and transportation	Inputs	Costs (US\$)	% met by land user	
- Clearing the ditches by removing piled up sediments.	Labour	33.00	100%	
	Equipment			
	- Hand hoe	5.00	100%	
	TOTAL	38.00	100.00%	

Remarks:

The most determining factor affecting the cost is labor (the cost of labor increases with the nature of the soil structure as well as with the land steepness.

The cost of labor is estimated based on land steepness, soil structure (deep, gravel or shallow soils). Land steepness defines the spacing between anti-erosion ditches hence affecting the cost of labor. Similarly, the soil structure (deep, gravel or shallow soils) defines the size of labor to be used per hectare.

Assessment

Impacts of the Technology				
Production and socio-economic benefits		Production and socio-economic disadvantages		
+ + + +	increased crop yield increased fodder production	 + + increased labour constraints + loss of land 		
Socio-cu	ultural benefits	Socio-cultural disadvantages		
++++	conflict mitigation improved conservation / erosion knowledge			
Ecological benefits		Ecological disadvantages		
++ ++ + +	reduced surface runoff reduced soil loss improved harvesting / collection of water increased soil moisture reduced hazard towards adverse events improved soil cover			
Off-site benefits		Off-site disadvantages		
+++++	reduced downstream siltation reduced damage on neighbours fields			
Contrib	ution to human well-being / livelihoods			
++	Increase in agricultural production has contributed t	o income generation and provide needed school fees		
Demofile				

Benefits /Costs according to land user				
	Benefits compared with costs	short-term:	long-term:	
	Establishment	neutral / balanced	very positive	
	Maintenance / recurrent	slightly negative	very positive	

Acceptance / adoption:

100% of land user families (207 families; 100% of area) have implemented the technology voluntary. There is strong trend towards (growing) spontaneous adoption of the technology. 100% of farmers has adopted the technology

Concluding statements

Weaknesses and \rightarrow how to overcome	
It requires a lot of physical energy, elderly people can't afford → Help each other through communal work (umuganda)	
Labor costs → Land users with less financial means should join their efforts by working together	
It is hard to implement mainly by older and poor land users \rightarrow	
from development partners	

Copyright (c) WOCAT (2014)