Carbon sequestration in dry agricultural soils

Almagro M., Garcia-Franco N., de Vente J., Boix-Fayos C., Diaz-Pereira E., and Martínez-Mena M.

Group of Soil and Water Conservation. CEBAS-CSIC

INTRODUCTION

Can we mitigate atmospheric

CO₂ through improved soil

The importance of improved soil

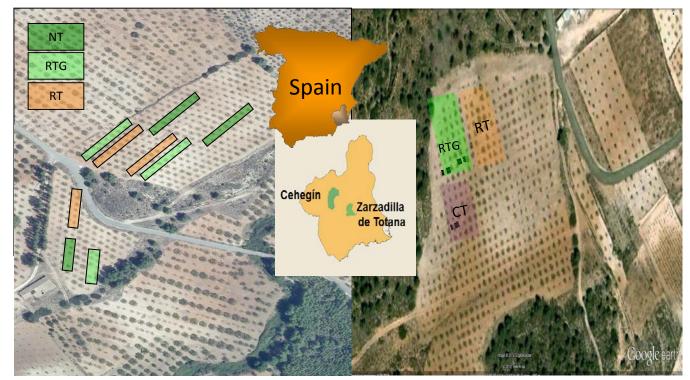
management practices in the

mitigation of the current

management?

OBJECTIVES

We assess:


➢ i) the short-term response of soil CO₂ flux to tillage operations and its implications for annual soil CO_2 emissions;

MAIN RESULTS

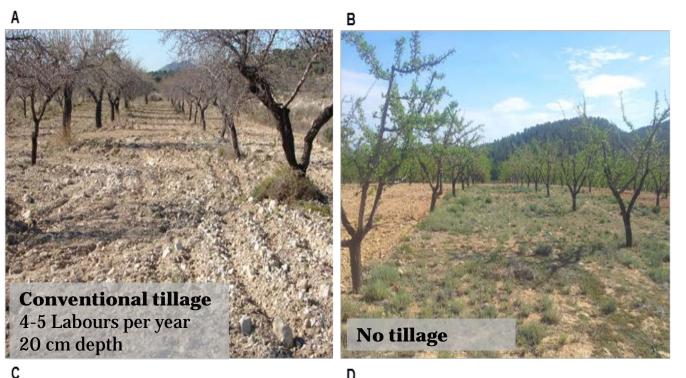
Implications for organic stabilization carbon in agricultural soils

Passing from conventional tillage to reduced tillage combined with atmospheric CO₂ increase through \succ ii) the effect of improved soil the incorporation of plant residues (native vegetation or green manure) increased the SOC stocks by 30% at Alhagüeces (Table 1). At Burete, green manure increased the SOC stock by 45% compared to the reduced tillage treatment. The longest mean residence times

the enhancement of soil organic carbon (SOC) levels has long been recognised (Aguilera et al. 2013). But a proper understanding of the response of Mediterranean soils to climate change and their mitigation capacity, if managed sustainably, is still lacking.

Study sites and improved soil management practices

Our study was conducted in two organic rainfed almond (Prunus dulcis Mill.) orchards located in the province of Murcia (SE Spain). The climate is semiarid Mediterranean. Annual rainfall and temperature average 300 mm and 16 °C, respectively. Soils (Calcisols) in the sites are relatively shallow (~ 35 cm depth) with moderate slopes (7-15%), have a silt-loam texture and high $CaCO_{3}(\sim 45\%).$ of contents Soil practices management (conventional tillage, reduced tillage, reduced tillage plus green manure, and no tillage; Figure 1) were implemented in October 2008. The management practices differ in the number of passes, the presence or not of plant cover in the rows, the quantity and quality of plant residues, and whether these are incorporated into the soil or left on the soil surface.


- management practices on SOC stabilization; and
- \succ iii) if the response of soil CO₂ flux to soil temperature and water content varies among soil management practices.

Tab. 1: SOC content, Particulate and Mineral Associated OC, C:N ratios, OC stocks, respired C from soil and mean residence time (MRT) of SOC for each soil management practices at each site

	Alhagüeces site			Burete site		
	Conventional tillage	Reduced tillage	Green manure	No tillage	Reduced tillage	Green manur
SOC (g kg ⁻¹)	$19.1\pm0.8a$	$\textbf{22.4}\pm\textbf{0.8b}$	27.4 ± 0.9c	$10.0\pm1.00\text{a}$	$10.4\pm0.9a$	$11.6\pm0.8\text{a}$
Particulate OC (g kg ⁻¹)	$\textbf{7.4} \pm \textbf{0.5a}$	$9.5\pm0.5b$	$9.38\pm0.5\text{c}$	$\textbf{2.45}\pm\textbf{0.3a}$	$\textbf{2.04} \pm \textbf{0.3a}$	$\textbf{3.33} \pm \textbf{0.25b}$
Mineral OC (g kg ⁻¹)	$11.7\pm0.4\text{a}$	$12.1\pm0.5b$	$14.2\pm0.3c$	$\textbf{7.9} \pm \textbf{0.55a}$	$9.02\pm0.44\text{a}$	$\textbf{8.38} \pm \textbf{0.5a}$
C:N	10.9 ± 0.7	10.6 ± 0.4	11.2 ± 0.4	10.50 ± 1.03	9.55 ± 0.75	11.60 ± 0.25
SOC stock (g m ⁻²)	4223	5448	5551	2544	2517	3703
C respired (g m ⁻² yr ⁻¹)	399	469	439	405	492	492
MRT (SOC:C respired)	10.6	11.6	12.6	6.3	5.1	7.5

Improved soil management will enhance soil resilience

(MRTs) of SOC stocks at both sites observed under were green

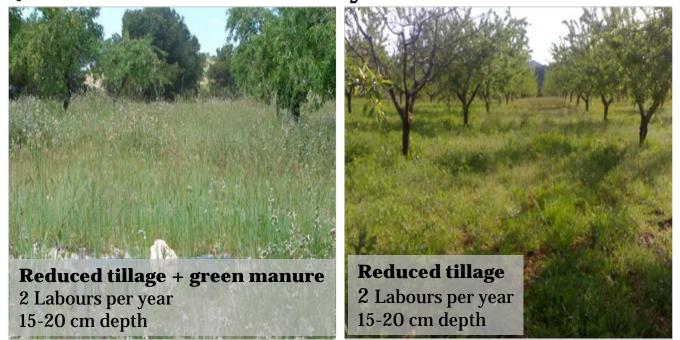
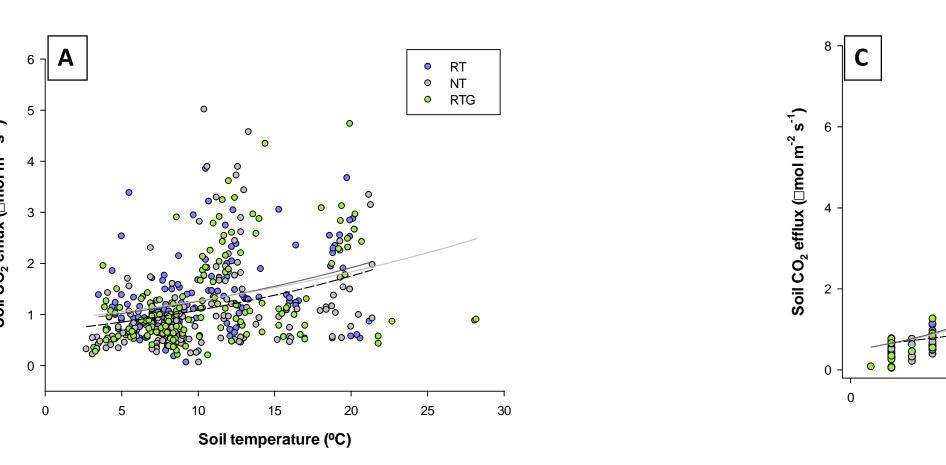



Fig. 1: Different soil management practices showing the aspect of the plant cover in the rows at the end of the growing season: A Conventional Tillage (CT); B No Tillage (NT); C Reduced Tillage plus Green Manure (RTG); and D Reduced Tillage (RT)

against global warming

Soil CO₂ flux was more sensitive to temperature increments under conventional tillage than under both reduced tillage treatments during the growing season (Fig. **2B**).

Soil under no tillage showed the lowest soil CO₂ flux rates and less responsiveness to soil moisture fluctuations during the dry period (Fig. 2C).

manure, which highlights that green manure can be a promising option for SOC preservation.

RT
NT
RTG

CONCLUSION

Tillage operations had a rapid but short-lived effect on soil CO₂ flux rates with no significant influence on the annual soil CO_2 emissions. According to our results, bare soils will be more prone to mineralization as global warming proceeds.

incorporation residues Plant promoted soil aggregation and organic carbon preservation, making soils more resilient to abrupt changes in temperature and moisture.

Studies at larger spatial scales representing a wide range of climatic conditions as well as results derived from longer-term studies (> 10 years) are needed to fully understand the mitigation potential of improved soil practices management in semiarid Mediterranean woody cropping systems under climate change.

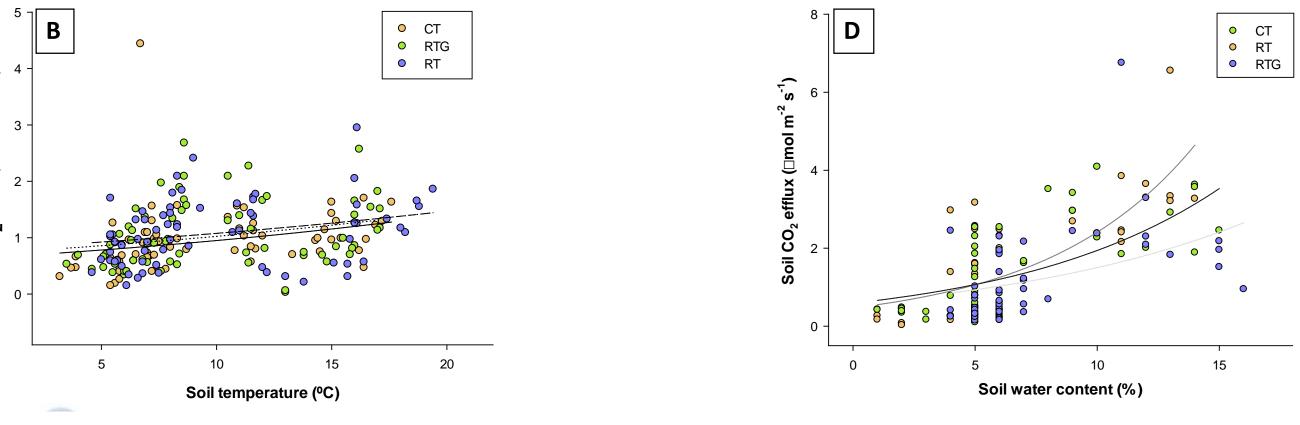


Fig. 2: Response of soil CO2 efflux rate to soil temperature during the growing period (panels A and B). and to soil water content during the dry period (panels C and D) for each soil management practice at each site

GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON | 21-23 MARCH 2017 | FAO-ROME, ITALY | #GSOC17