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PREPARATION OF THIS DOCUMENT

The realization that many world fisheries are either fully exploited or overexploited has 
resulted in increased attention being paid to the management of fishing capacity. While 
environmental factors have affected some fish stocks, excessive levels of fishing capacity is 
the primary cause of these declines.

The management of fishing capacity requires information on both the current level of capacity 
and some desirable or target level of capacity. However, measures of capacity had largely 
developed differently in various countries and comparisons between countries or even 
between different fisheries in some countries was not possible. To address this deficiency, 
FAO convened a Technical Consultation on the Measurement of Fishing Capacity in Mexico 
City, Mexico, from 29 November to 3 December 1999. It was attended by delegates from 56 
Members of FAO, as well as a number of international observers. The key objective of the 
Consultation was to determine definitions of capacity that could be commonly accepted, and 
methods for deriving measures of capacity related to these definitions. 

As a prelude to the discussion of the group, a number of papers were presented outlining 
current approaches used by member states to measure and manage fishing capacity, as well as 
papers proposing alternative means of measuring fishing capacity. Based on the experiences 
presented in these papers, the Technical Consultation agreed on a common definition of 
capacity, and on preferred means to measure fishing capacity. These conclusions are given in 
FAO Fisheries Report No. 615, published by FAO in 2000. 

The papers presented at the Technical Consultation have played a pivotal role in the 
advancement of the study of fishing capacity. Many of the ‘alternative’ methods presented at 
the meeting are now becoming standard techniques in the measurement of fishing capacity, 
and a number of the papers presented at the meeting have been cited in subsequent studies of 
capacity. The interest in these original papers has increased over the last three years, largely 
as a result of these subsequent studies. This increased interest has led to the publication of this 
report, which includes 23 of the papers presented at the meeting. The papers presented in this 
report cover a range of areas, including theoretical considerations, case studies of current 
practice, and examples of alternative methods for assessing capacity. 
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ABSTRACT 

This Fisheries Technical Paper contains some selected papers originally presented at the FAO 
Technical Consultation on the Measurement of Fishing Capacity held in Mexico City in 1999. 
The 23 papers have been subsequently edited and are presented in four parts. The first part 
includes papers addressing theoretical considerations and definitions of capacity. The second 
part includes case studies outlining the existing practice undertaken in some member 
countries. These case studies do not necessarily represent best practice, but provide an 
overview of current practice. The third section includes papers that outline alternative 
methods for deriving output-based measures of capacity. In particular, the papers describe the 
data envelopment analysis and peak-to-peak techniques. The methods are applied to a number 
of fisheries for example purpose. The last section contains papers that outline alternative 
methods for assessing input-based measures of capacity. These include estimation of fishing 
power, hold capacity and bioeconomic modelling to determine optimal fleet sizes. 
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PART 1:  DEFINITIONS AND THEORETICAL CONSIDERATIONS 

THE MEASUREMENT AND MONITORING OF FISHING CAPACITY: 
INTRODUCTION AND MAJOR CONSIDERATIONS 

Dominique Gréboval1

Abstract: In this paper, major issues to be considered by the FAO Technical Consultation on the Measurement 
of Fishing Capacity are introduced. Definitions and main approaches to measurement and assessment are 
reviewed in relation to the requirements of the International Plan of Action for the Management of Fishing 
Capacity. Conceptual and practical difficulties to be addressed in measuring and assessing capacity, in general as 
well as in the case of specific fisheries, are also considered.

1. INTRODUCTION 

This document was prepared in order to introduce and review major issues to be 
considered in the context of the FAO Technical Consultation on the Measurement of Fishing 
Capacity. It introduces basic definitions and major considerations for the measurement and 
monitoring of fishing capacity. The ultimate objective of capacity measurement is to provide 
information for the development of a management strategy that will ensure that fleet capacity 
is moving in the right direction. In this regard, it is important to estimate the magnitude of the 
difference between current and target capacity in order to determine the existence of 
overcapacity (or undercapacity), the severity of the problem and the appropriate steps and 
path that can be taken to bring capacity in line with the long-term target.

In Section 2, the issue of managing fishing capacity is presented briefly in relation to 
recent international efforts that led to the adoption of the International Plan of Action for the 
Management of Fishing Capacity. Related measurement and monitoring aspects were 
discussed by the Technical Working Group on the Management of Fishing Capacity (TWG) 
which met in February 1998 in La Jolla (FAO, 1998a). Definitions and main approaches and 
methods to measure and monitor fishing capacity are presented in Section 3. This section 
reviews and expands on the main conclusions of the TWG pertaining to the measurement and 
monitoring of fishing capacity. Specific areas for consideration by the Technical Consultation 
are presented in Section 4. 

2. THE INTERNATIONAL PLAN OF ACTION FOR THE MANAGEMENT OF 
FISHING CAPACITY 

The issue of managing fishing capacity has been raised quite recently in reference to 
growing concern about the spreading phenomenon of excessive fishing inputs and 
overcapitalization in world fisheries. The issue is essentially one of having too many vessels 
or excessive harvesting power in a growing number of fisheries. The existence of excessive 
fishing capacity is largely responsible for the degradation of fishery resources, for the 
dissipation of food production potential and for significant economic waste. This manifests 
itself especially in the form of redundant fishing inputs and the overfishing of most valued 
fish stocks. 

Excess fishing capacity affects many domestic fisheries throughout the world and, in 
an even more pervasive form, many high-seas fisheries. The globalization of the phenomenon 

1 Fishery Policy and Planning Division, FAO, Viale Terme di Caracalla 00100 Rome, Italy. 
Email: dominique.greboval@fao.org 
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is illustrated by the relative stagnation of world marine catches of major species since the late 
1980s. Evidence provided by FAO indicates that, in reference to all major marine fisheries, 35 
percent are subjected to severe overfishing, 25 percent are fully exploited and 40 percent still 
offer scope for development. Demersal and other most valued stocks are generally the most 
affected.

At the global level, overcapitalization in world marine fisheries appears to be a 
relatively new phenomenon, dating from the late 1980s and following a decade of very 
intense fleet development. FAO data indicate that nominal fleet size seems to have peaked 
during the mid-1990s. However, actual fishing capacity may still be increasing due to 
technological development and the refitting of older vessels. 

Essentially, the existence of excess fishing capacity is a result of the widespread 
tendency to over invest and over fish under open-access conditions. Overcapitalization in 
world fisheries also came about progressively as a result of broader and related factors, such 
as the: 

resilient profitability of fishing activities whereby technical progress and relative price 
inelasticity have largely compensated for diminishing yields in overfished fisheries; 

effect of the extension of maritime areas under national jurisdiction on private and public 
investment strategies and of related ‘nationalization’ policies, generally accompanied by 
sizable subsidization programmes; 

relative mobility of harvesting capacity, which allowed for a pervasive spill-over of 
excess capital among fisheries, both within areas under national jurisdiction and on the 
high seas; 

changing nature of the industry, which is increasingly competitive and capital-intensive, 
with markets that are now largely based on internationally traded commodities; and above 
all,

failure of fisheries management in general, and of commonly used management methods 
in particular, such as total allowable catch (TAC) and other methods which aim essentially 
at controlling fishing mortality indirectly through regulating the catch rather than directly 
by controlling fishing effort or the harvesting capacity itself. 

The FAO Code of Conduct for Responsible Fisheries recognized that excessive 
fishing capacity threatens the world’s fishery resources and their ability to provide sustainable 
catches and benefits to fishers and consumers. In Article 6.3, it is recommended that “States

should prevent overfishing and excess fishing capacity and should implement management 

measures to ensure that fishing effort is commensurate with the productive capacity of the 

fishery resources and their sustainable utilization”.

In 1997, the FAO Committee on Fisheries (COFI) recommended that a technical 
consultation be organized by FAO to clarify issues related to excess fishing capacity and to 
prepare guidelines. Work undertaken by FAO on this basis (FAO, 1998b) led to the 
preparation of the FAO International Plan of Action for the Management of Fishing Capacity. 

The International Plan of Action was adopted by COFI in February 1999, and further 
discussed by the FAO Ministerial Meeting on Fisheries in March 1999. The Ministers 
declared to “attach high priority to the implementation of the International Plan of Action for 

the Management of Fishing Capacity ... and on putting into place within the framework of 
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national plans, measures to achieve a balance between harvesting capacity and available 

fisheries resources.” 2

The International Plan of Action (IPA) was elaborated within the framework of the 
Code of Conduct for Responsible Fisheries, as an element of fisheries conservation and 
sustainable management. The immediate objective of the IPA is for “States and regional 

fishery organizations, in the framework of their respective competencies and consistent with 

international law, to achieve worldwide preferably by 2003 but no later than 2005, an 

efficient, equitable and transparent management of fishing capacity”. The IPA further 
specifies that, inter alia, States and regional fishery organizations, when confronted with an 
overcapacity problem which undermines the achievement of long-term sustainability 
outcomes, should endeavour to limit initially at existing level and progressively reduce the 
fishing capacity applied to affected fisheries. On the other hand, where long-term 
sustainability outcomes are being achieved, it nevertheless urges States and regional fishery 
organizations to exercise caution. 

The IPA is voluntary, and is based on a number of major principles of the Code of 
Conduct as well as on complementary principles. These include: 

a three-phase implementation: i) assessment and diagnosis; ii) adoption of preliminary 
management measures; and iii) a system of periodic reviews and adjustments; with 
priority being given to managing fishing capacity first where it results in unequivocal 
overfishing; and

a holistic approach by which the management of capacity should consider all factors 
affecting capacity in national and international waters, further recognizing the need to 
properly account for mobility and evolving technologies. 

The IPA specifies a number of actions to be taken urgently. Major actions are 
prescribed in reference to the main section of the document: assessment and monitoring of 
fishing capacity, the preparation and implementation of national plans, international 
consideration and immediate actions for major international fisheries requiring urgent 
attention.

Regarding the assessment and monitoring of fishing capacity, the IPA recommends,

inter alia, that States: 

support coordinated effort and research to understand better the fundamental issues related 
to the measurement and monitoring of fishing capacity; 

proceed within the next two years with preliminary assessment of fishing capacity and 
with the systematic identification of fisheries requiring urgent attention at national, 
regional and, in collaboration with FAO, at global level; and 

develop appropriate records of fishing vessels and support the establishment by FAO of 
an international record of vessels operating on the high seas. 

In adopting this International Plan of Action in February 1999, COFI further 
recommended that FAO organize a technical consultation on the measurement of fishing 
capacity before the end of 1999. This Technical Consultation is the fulfilment of that 
recommendation, and will serve as a basis for the preparation of technical guidelines that can 

2 The Rome Declaration on the Implementation of the Code of Conduct for Responsible Fisheries, adopted by 
the FAO Ministerial Meeting on Fisheries, Rome, 10-11 March 1999. 
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be used by countries in their preliminary assessment of fishing capacity and for the systematic 
identification of fisheries requiring urgent attention.

3. APPROACHES AND METHODS FOR THE MEASUREMENT OF FISHING 
CAPACITY

The measurement of fishing capacity is in itself quite complex but has been made even 
more so by the proliferation and confusion of terms used to address this issue. Some of the 
confusion stems from the fact that fishing capacity can be addressed either by focusing on 
productive inputs or on production. Difficulties also arise from the ways the various sciences 
involved are looking at fishing capacity, its measurement and its assessment in relation to the 
specifics of fish stocks. It is, therefore, important to clarify some basic concepts.

3.1 Definitions 

The following general definitions3 were considered by the TWG: Fishing capacity is 

the ability of a vessel or fleet of vessels to catch fish.  Fishing capacity (capacity output) can 

be expressed more specifically as the maximum amount of fish over a period of time (year, 

season) that can be produced by a fishing fleet if fully utilized, given the biomass and age 

structure of the fish stock and the present state of the technology. 

Capacity utilization can be defined in this context as the ratio of actual output (catch, 
landings) to some measure of potential output (capacity output) for a given fleet and biomass 
level. It is essentially a short-run concept.

Fishing capacity can be expressed alternatively in reference to fleet characteristics or 
as the ability of a fleet to generate fishing effort. In this context, economists prefer to use the 
related concepts of capital stock (vessels) or capital services (flow of productive services 
from the capital stock, such as fishing effort) and capital utilization.4 Aggregate proxies are 
typically used to measure the capital stock which the fleet represents, e.g. gross registered 
tonnage or horse power. Capital utilization can be defined as the ratio of actual to desired 
levels.

The TWG noted several advantages to formulating the definition of fishing capacity in 
terms of catch: a) it is consistent with economic production theory; (b) it facilitates 
aggregation between fleets and between the harvesting and processing sectors; (c) it makes it 
easier to deal with complexities due to fisheries interactions, e.g. when the catch of one 
fishery is a by-catch of another; (d) it is more appropriate to artisanal fisheries as these 
fisheries can involve rapid changes in inputs, in the form of numbers of participants rather 
than capital defined stricto sensu, and (e) it makes it easier to determine optimal capacity for 
fluctuating stocks.

The TWG found it more relevant to define “target” capacity rather than “optimal” 
capacity, in deference to the wide diversity of objectives that might be chosen by policy-
makers to ensure sustainability of fisheries and meet other needs. Thus, definitions of 
‘optimal’ would be local and specific. The following definition was agreed upon: Target

fishing capacity is the maximum amount of fish over a period of time (year, season) that can 

be produced by a fishing fleet if fully utilized while satisfying fishery management objectives 

3 All definitions discussed in this section may be referred to as "technologically determined", with capacity 
utilization being necessarily less or equal to 100 percent. 
4 For further details, see Kirkley and Squire (1999).  
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designed to ensure sustainable fisheries. It follows that excess capacity can be expressed by 
comparing current and target capacity output. 

Overcapacity can thus be defined as a situation where capacity output is greater than 
target output. Overcapitalization will refer on the other hand to a situation where actual 
capital stock is greater that the optimum capital stock required to produce the target output. 
The ‘optimum’ can be defined in a technical manner as the minimum capital stock required, 
as determined by the production technology, or in an economic manner as the capital stock 
that will minimize the cost of producing the target output. The two concepts are related and 
could be equivalent under certain restrictive conditions. 

It was suggested by the TWG that target fishing capacity could be better defined in 
terms of a range rather than a specific quantity or metric. It was suggested that optimal could 
be specified relative to outer boundaries. According to paragraph 7 of Annex II of the 
Straddling Stocks Agreement, the minimum standard for a biological reference point should 
be the fishing mortality rate that generates MSY. The following definition for limit capacity
was proposed, in conformity with the direction in which international law is developing: Limit 

capacity is the maximum amount of fish that can be produced on a sustainable basis by a 

fully-utilized fleet.  Thus, the limit capacity corresponds to MSY. Thus, the capacity which 
generates a level of fishing effort which puts stock beyond the FMSY limit5 is an upper bound 
on optimal or target capacity. A starting point would be to define the maximum fleet size 
corresponding to this limit fishing mortality rate. Other considerations may be used to 
determine the lower bound of a range of target capacity (precautionary approach, economic 
efficiency, social factors, etc.). 

Indicators of capacity output, capacity utilization, capital stock and capital utilisation 
are many. Some are reviewed below. In some cases, and for relatively simple fisheries, one 
can readily find correspondence between input-based and output-based indicators. Indicators 
of overcapacity and overcapitalization are fewer as these require explicit reference to the 
resource constraint and to economic efficiency, at least in terms of cost minimization. 
Generally, target output capacity to target capital stock will be determined as a rather separate 
exercise requiring the consideration of resource status (e.g. an estimation of target biomass 
and MSY) and the consideration of economic factors (e.g. estimation of target capital stock 
required to catch target output at minimum cost). 

3.2 Indicators of capital stocks and capital services 

Various proxy variables have been used to monitor fishing capacity (as capital stock) 
on the basis of fleet size and major vessel attributes. The major difficulty is to identify the 
combination of attributes that best reflects the productivity of relatively heterogeneous fishing 
units. An indicator can be developed by weighting key vessel attributes (e.g. length, breadth 
and power). Other attributes of importance will be gear type and key characteristics, as well as 
vessel age and embodied technical change.

Accounting for fishing time allows one to monitor capital services. Fishing time can 
be accounted for as fishing days or days absent from port. Standardization methods need to be 
used to account for fleet heterogeneity. If nominal fishing effort is expressed as ‘standard 
fishing days’, actual effort can be compared to potential effort to derive an indicator of capital 
utilization for a given fleet. In the presence of regulations on fishing time, capital utilization 

5 That is, the level of fishing mortality that produces the maximum sustainable yield. 
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may be significantly lower than one if the fleet has few alternative uses. Even in the absence 
of such regulation, capital utilization may also be significantly less than one under specific 
conditions (adverse price, resource or weather conditions). 

An alternative is to monitor capital stock directly in financial terms, e.g. by estimating 
the market value of all fishing units in a fleet. This would generally imply monitoring 
investments and disinvestments, while accounting for depreciation. 

While the monitoring of these indicators is essential, the assessment of overcapacity 
and overcapitalization requires a definite linkage to the status of exploitation of the resource 
and the determination of target capacity and target capital stock.

3.3 Indicators of capacity output and overcapacity  

The TWG discussed simple indicators of capacity and overcapacity that can be used 
with limited data in relation to basic fishery production models. The basic elements of such 
indicators are the number of vessels in each fleet exploiting a stock, the mean catch rates for 
each fleet, and the amount of time actually spent fishing by each fleet relative to the 
maximum possible if there were no constraints on fleet operation. These practical measures of 
capacity can be expressed in terms of a production-based indicator and a vessel-based 
indicator. These are easily developed for single stock fisheries.

To appropriately set a long-term target capacity, it is necessary to specify a target 
stock biomass. However, it is recognized that the long-term target may be difficult to estimate 
at any point in time, partly because future target capacity will generally be defined on the 
basis of present-day performance. As the fishing fleet moves along the adjustment path 
towards a preliminary estimate of a target, accumulation of knowledge and a better indication 
of changes in technology and other factors may result in continual updating of the ultimate 
target.

One way to approach the problem is to start with a TAC (either current or a long-term 
projection). The maximum that a given fleet could potentially catch (capacity output) divided 
by the target TAC is a measure of excess (or under) capacity. Target fishing capacity can be 
evaluated in reference to both the current and long-term target biomass.

Potential catch by each fleet under current stock conditions can be estimated as the 
product of number of vessels and mean catch rate, scaled up to a full-time equivalent based on 
the ratio of maximum time available to the actual time fished. The potential catch in the 
fishery is the sum of potential catches by all fleets. This can be compared to the TAC to give 
an indication of overcapacity by the current fleet. The indicator can be calculated under 
current stock conditions (TAC and CPUE corresponding to current biomass) and for long-
term target conditions (TAC and CPUE corresponding to target biomass). A disadvantage is 
that it does not account for the ‘latency problem’, i.e. vessels not currently present in the fleet, 
which could enter easily when conditions change. 

Another measure is based on calculating, using the same information, the minimum 
number of vessels needed to take the TAC. This approach may be particularly useful when 
there are several fleets that cannot meaningfully be aggregated into a single measure. The 
minimum fleet size required to take the entire TAC is calculated for each fleet. These minima 
can be compared to the actual size of each fleet to provide perspective on overcapacity. If any 
of the actual fleet size is close or higher than the minimum required, there will be strong 
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evidence of overcapacity. Otherwise, further assessment would require calculating a 
composite index of boats needed by using a fishery-wide average catch rate. The method can 
be applied to current and long-term target conditions. 

These measures are extremely simple rules of thumb, but should be capable of 
indicating the presence of overcapacity in current fisheries. The extension of the techniques to 
fleets fishing multiple stocks was also reviewed by the TWG. In this context, results may be 
difficult to interpret when there is evidence of overcapacity for some stocks and undercapacity 
for others.

3.4 Alternative approaches to estimating capacity output 

Hold capacity has been applied widely to measure capacity output. It provides a 
technological limit to maximum production. Applied as such to a fleet over a year or season, 
it required data on number of vessels, individual hold capacity and maximum number of 
fishing trips. Although there are many difficulties attached to this method, it may provide an 
indication of capacity utilisation (ratio of actual catch to technological maximum). 

If fishing time is assessed as a key factor, another approach is to estimate capacity 
output based on current catch rates, but based on the full use of maximum potential effort. In 
general, capacity output may also be deduced from cross-fishery comparisons at national or 
international level, e.g. by comparing the maximum output of similar vessels operating in 
various shrimp or tuna fisheries.

The TWG suggested two other practical alternatives for measuring capacity: peak-to-
peak analysis and Data Envelopment Analysis (DEA), both are briefly described in the 
following paragraphs. Some of the information documents prepared for the Technical 
Consultation will provide examples on the application of these methods.

The peak-to-peak method defines capacity by estimating the observed relationship 
between catch and fleet size over time. The approach is called peak-to-peak because the 
periods of full utilization, called peaks, are used as the primary reference points for the 
capacity index. The index is fixed to 100 percent for the years for which full utilization is 
observed. For other periods, the index is expressed as percentages of full utilization with an 
adjustment for technologically induced changes in productivity. The approach is based on 
identifying peaks, or periods of full utilization defined as the maximum value of the ratio of 
output to capital stock (e.g. catch per vessel). In practice, a peak year is often identified on the 
basis of having a yield per producing unit that is significantly higher than both the preceding 
and following years. The peak-to-peak method requires data on landings and vessel numbers 
and some identification of a technological time trend. This approach does provide for a rapid 
appraisal of the maximum yield of a fleet given the size of the fleet and the potential 
utilization of inputs. But this is estimated in the absence of resource constraints. Minimum 
fleet sizes (number of vessels) that correspond to an otherwise-determined target level of 
capacity can be calculated on this basis. 

DEA is a mathematical programming method to determine optimal solutions given a 
set of constraining relations. The advantages of this method are that it can estimate capacity 
under constraints including TACs, by-catch, regional and/or size distributions of vessels, 
restrictions on fishing time, and socio-economic concerns such as minimum employment 
levels. DEA can be used to identify operating units (i.e. individual vessels or vessel size 
classes) which could potentially be decommissioned. By rearranging observations in terms of 
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some criterion, such as capacity by region and vessel size class, the desired number of 
operating units could be determined by adding the capacities of each operating unit until the 
total reaches the target. DEA readily accommodates multiple outputs (e.g. species, market 
categories), and multiple types of inputs such as capital and labour). DEA can also determine 
the maximum potential level of effort and its utilization rate. The analysis accepts virtually all 
data possibilities, ranging from the most parsimonious (catch levels, number of trips, and 
vessel numbers) to the most complete (e.g. a full range of cost data). With cost data, DEA can 
be used to estimate the least-cost (cost minimizing) number of vessels and fleet configuration. 
It can also measure capacity relative to any desired biomass or TAC. The method is limited 
by its deterministic specification, but allows for the consideration of an economic definition 
of capacity. 

3.5 Data and monitoring requirements 

A minimal requirement would be to establish a system for the collection and regular 
analysis of the following basic data: estimates of vessel numbers and the main vessel 
characteristics determining fishing power (e.g. GRT or GT, engine power, length, hold 
capacity, gear type and dimensions, with the importance of each of these varying depending 
on the fishery); basic relevant characteristics of fishing operations (e.g. seasonality, number of 
fisheries in which vessels operate); landings; and at least a qualitative indication of trends in 
CPUE or other information that can give at least a rough index of MSY. 

An advanced system for the monitoring and assessment of capacity will require the 
collection and analysis of more specific data and information, such as:

vessels: hold, engine power, engine efficiency, vessel size, electronics (fish finding 
equipment);

gear: type and size; 

biological characteristics of stocks including biomass, fishing mortality, age/size structure, 
uncertainty in stock assessments; 

participants: numbers of participants, skill levels; 

costs and earnings surveys; 

employment;

information on subsidies; 

fishing operations relative to fish distribution; 

reaction of fishing industry to management; and 

existence and adequacy of access controls. 

3.6 Some unresolved issues on definition and approaches 

The TWG identified two major unresolved issues: 

the need to develop an economic definition of capacity; the definitions given above can all 
be described as technologically determined definitions; and

if capacity is defined in terms of output, there is a need to make the translation to what 
managers are really concerned with, which is controlling the capital stock. 

This second issue calls to mind the ongoing debate concerning output controls vs. 
input controls. Although the assessment of overcapacity might be approached from either 
perspective and independently of the type of control method used, the approach taken is likely 
to be influenced by the availability of data and thus by the control method used. In countries 
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where TACs are used as control measures, the measurement of overcapacity may be easier to 
approach on an output basis. On the other hand, many countries (and developing countries in 
particular), may find it easier to approach measurement in input terms because they rarely use 
TACs explicitly as output controls, but rely instead on variables that are easier to control (e.g. 
numbers of vessels, numbers of participants) in relation to indicative long-term TAC figures.

Relating output-based and input-based estimates would generally be difficult except 
for relatively simple fisheries. Standard fishery production models can be used which relate 
catch to fishing effort and catchability coefficients (fishing mortality) and biomass. A priori,

such models could be of use to relate prevailing or target capacity output to prevailing and 
target capital services if these are expressed, for example, in terms of potential standard 
fishing days). A major question will be to assess how the catchability coefficient (q) will 
change as capacity changes from the current (transient) situation to the long-term target, at 
least indicatively. A related problem stems from the fact that (biological) limit reference 
points are frequently defined in terms of fish mortality rates (F). It is interesting to note that 
stock assessment biologists generally assume q to be constant, which is one reason that they 
often favour constant fishing mortality strategies, which are assumed to be equivalent to 
constant fishing effort strategies. Thus, as stock size changes (under a constant F strategy), 
the optimum fleet capacity would not vary from year to year. On the other hand, many 
economists consider that fishing effort is not measurable and q is made up of some parts that 
can be measured and some that are unquantifiable. Further work is thus needed to translate 
measures of capacity into metrics that can be compared to such reference points. 

In a technologically determined approach, capacity output is defined as the maximum 
output that can be produced, given available fixed inputs and the full utilization of variable 
inputs, but without any reference to economic aspects. Capacity utilization is thus defined as 
the ratio of output (catch) to capacity or potential output, the latter being determined in an ad

hoc manner in reference to full use, hold capacity, comparison of annual catches under similar 
conditions, or international comparisons. The calculation of overcapacity further requires one 
to independently establish a desired target level of catch (short-term and long-term) and to 
compare it with capacity output. Economics may be considered at this stage in an ad hoc

manner by estimating the minimum capital stock required to harvest the target catch (e.g. 
MSY); by estimating the capital stock required to harvest the target catch at minimum cost or 
by referring to an independently derived long-term target level of output that accounts for 
economic efficiency (e.g. by referring to MEY rather than MSY).

A more appropriate economic definition of capacity can however be provided in 
reference to cost minimization. Capacity output can be defined as the output corresponding to 
the tangency of short-run and long-run average total cost or alternatively as the output 
corresponding to the minimum short-run total average cost. Intuitively, this means that 
capacity output is the level of output for which the vessels in the fleet were designed to 
operate at lowest average cost. The interest of this definition is that estimates of capacity 
utilization derived from technological and economic definition can be readily compared. 
Estimates of overcapacity using the two approaches can also be compared as the ratio of 
output capacity to short-term and long-term target output.

3.7 Difficulties of application in selected situations 

Measurement difficulties are arising from complex situations, such as those created by 
fluctuation in abundance, both year to year and within a year or season. The latter result in 
peak load problems, particularly for species that are only available for a short period of the 
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year (or only available in a certain high-priced form such as fish roe for a short period of the 
year). Proposed definitions may need to be adjusted to deal adequately with such peak load 
problems. Year to year fluctuations lead to difficulties in the determination of target levels for 
catch and capital stock. It may be appropriate to consider in this case an acceptable level of 
potential over or under capacity. Estimates of overcapacity may also be confounded by age-
structure effects (e.g. both yield per recruit and price aspects).

Measurement methods should account for the fact that fishing units are multiple-input 
productive units, generally composed of a vessel, gear, technology and skills. In some cases, 
the number and type of fishing vessels may be a good indicator of the amount of fishing 
capacity. In other cases, the capacity of similar fishing units may vary broadly in relation to 
gear use (e.g. multiple gear), to technology, skills or labour intensity (e.g. artisanal boat used 
in shifts by different crews). For major and complex fleets, an analysis of the influence of 
major input characteristics needs to be conducted so as to identify determining factors of 
production.

Special problems associated with small-scale fisheries also require detailed 
examination, whether they constitute recreational fisheries or artisanal commercial or 
subsistence fisheries. There are indeed difficulties associated with the collection of data as 
well as with input-based or output-based measurements of capacity in such fisheries (e.g. the 
flexibility with which crafts involved can accommodate additional labour and shift from 
fishery to fishery). Difficulties also arise with regard to establishing target output and input 
levels, especially in geographic areas where small-scale fishing constitutes an activity of last 
resort.

Fleet mobility constitutes one of the main difficulties encountered in measuring 
capacity and assessing overcapacity. Fleet mobility may relate to geographic mobility and/or 
the ability of vessels to redirect effort from one target stock to another in the same area. Thus 
capacity needs to be considered on a fleet basis as well as a species or stock basis, with 
further consideration being given to the relevant geographic perspective (local, national, 
regional or global perspective according to fisheries). The key question is where to draw the 
line and, if starting from a stock perspective, how to define “latent capacity”. This question 
relates directly to the need to define fisheries as management units that are relevant to the 
management of fishing capacity.

Fisheries can be defined as interacting stocks and fleets. One can define a fishery with 
primary reference to stock. For stock-based fisheries, the main difficulty in measuring 
capacity will be to account for latent fleet or fishing effort. Fisheries can also be defined more 
broadly with primary reference to fleet characteristics. A fleet-based fishery will generally be 
specified in reference to gear, vessel size, area and species group, e.g. inshore trawling for 
demersal fish in specific area. A fleet-based definition allows one to deal more easily with the 
problem of latent capacity but makes it more difficult to determine target catch levels as 
fisheries may involve a large number of stocks. The monitoring and measurement of capacity 
needs to be approached from both perspectives in the context of an appropriate set of related 
stock-based and fleet-based fisheries (management units). Accounting for mobility would 
imply a multi-tiered approach by which capacity and overcapacity are measured at various 
levels in reference to a broader multispecies/ecosystem/industry context. One can start 
alternatively from the broadest (ecosystem or major fleet) or more restrictive perspective (a 
stock). In any case allowance will have to be made for major fleet-stock interactions in the 
disaggregation or aggregation process. 
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A major problem with the monitoring of fishing capacity is that stocks and fleets are 
generally monitored quite separately. Typically, one will have numerous data on specific 
stocks and their exploitation on the one hand, and on vessel characteristics (physical and 
sometimes economic) on the other hand. The important missing link is information on fleet-
stock interactions in time and space. The monitoring and study of fleet deployment in time, 
space and across stocks is a priority and the only way to properly define relevant fleet-based 
management units. 

Finally, there is a need to establish a link between harvesting and processing capacity. 
Such a link may be established more easily if fisheries used as management units correspond 
to a rather specific processed product (e.g. in the case of a major small pelagic fisheries and 
related fishmeal plants or in the case of species-specific fleet and processing sectors as 
observed for shrimp, lobsters or crabs in some countries). Otherwise, a relevant link can only 
be established at a fairly aggregated level.

4. CONCLUDING REMARKS FOR THE CONSIDERATION OF THE 
TECHNICAL CONSULTATION 

The Technical Consultation was invited to examine the matter of measuring fishing 
capacity, with due consideration being given, inter alia, to the following considerations:

the adoption of a common working definition of capacity which will allow for the 
estimation of current and long-term overcapacity as well as for international comparison;

the adoption of a common indicative standard of long-term limit capacity which will 
allow for international comparison, noting that target capacity can be otherwise 
determined on the basis of alternative national criteria;

ways of incorporating complementary economic information in the measurement and 
evaluation of capacity, noting that this is especially relevant to the issue of avoiding 
overcapacity as a source of economic waste; 

the need to adopt an aggregation system that accounts for fleet-stock interactions, noting 
that it may be required to measure capacity at various levels (regional, national and local) 
and that a common aggregation system will need to be adopted to estimate capacity at 
regional level and eventually at global level; 

the need to develop indicators that are particularly relevant to the case of well-
circumscribed fisheries and to the case of broadly-defined fisheries, further accounting for 
the applicability of alternative indicators of capacity output and overcapacity under 
specific conditions related to key characteristics of fleets, stocks or species, such as: fleet 
mobility and heterogeneity; technological evolution over time; the case of shared stocks 
and highly-migratory resources; and fisheries showing high fluctuations in stock 
abundance or availability.
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FISHING CAPACITY
AND RESOURCE MANAGEMENT OBJECTIVES 

Gordon R. Munro and Colin W. Clark1

Abstract: It is recognized, almost universally, that the ‘common pool’ characteristic of most capture fisheries 
lies at the heart of the overcapacity problem in fisheries. In regulated open access fisheries, the resource 
managers are presumed to exercise effective control of the global season-by-season harvest, and thus over the 
resource. They do not, however, exercise effective control over the fleet size and hence, excess capacity can 
persist. The consequences of excess capacity are generally agreed upon, namely that excess capacity results in 
pure economic waste and serves to threaten the ability of the resource managers to control the global harvest. In 
this paper, we will not focus on the refining of definitions, but rather shall devote ourselves to addressing head 
on what these authors see as a major debate on the significance of excess capacity, under conditions of pure open 
access. Furthermore, we shall point out that, where excess fleet capacity does not exist in any meaningful sense, 
resource overexploitation can, and does, readily occur. We shall also argue, however, that excess capacity adds, 
at a minimum, two, if not three, significant dimensions to the resource overexploitation problem, which are 
wholly ignored in most, if not all, of the standard economic models of the fishery. 

1. INTRODUCTION 

This paper will take, as its starting point, the discussion paper prepared by one of the 
two authors and Dominique Gréboval for the FAO Technical Working Group (TWG) 
Meeting on the Management of Fishing Capacity, April 1998 (Gréboval and Munro, 1999). 
That paper, although designed to deal with the issue of the control of capacity, did, as well, 
address in some detail the question of the underlying economics of fishing capacity and 
resource management. We contended in that paper that, without a clear understanding of the 
underlying economics, it was difficult to deal effectively with either the question of the 
control of capacity, or the question of the measurement of capacity.

The Gréboval and Munro (1999) paper was limited in its rigor, because of the strict 
time constraint to which the authors were subject. In this paper, we shall attempt to provide a 
somewhat greater degree of rigor to several of the issues raised by Gréboval and Munro, and 
to some new issues, by drawing on a paper currently under preparation by Clark and Munro 
(1999). The reader will, however, be spared the highly technical aspects of the Clark and 
Munro paper. 

In the discussion that follows, all references to capacity will be confined to fleet 
capacity. Everything that we have to say, however, could be applied, with appropriate 
modification, to capacity in the processing sector and to human ‘capacity’, in the form of 
human capital. 

It is recognized, almost universally, that the ‘common pool’ characteristic of most 
capture fisheries lies at the heart of the overcapacity problem in fisheries. In their discussion 
of the underlying economics of the overcapacity problem, Gréboval and Munro (1999) made 
use of the distinction between ‘regulated open access’ fisheries and ‘pure open access’ 
fisheries. In regulated open access fisheries, the resource managers are presumed to exercise 
effective control of the global season-by-season harvest, and thus over the resource. They do 
not, however, exercise effective control over the fleet size. In pure open access fisheries, by 
way of contrast, there is no effective control over harvesting, with the consequence that the 
exploitation of the resource is unrestrained. 

1 University of British Columbia, Vancouver, Canada. 
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We shall, in this paper, proceed by adopting the Gréboval and Munro (1999) 
distinction. The regulated open access case is relatively straightforward, and the measurement 
of excess capacity is comparatively easy. The consequences of excess capacity are generally 
agreed upon, namely that excess capacity results in pure economic waste and serves to 
threaten the ability of the resource managers to control the global harvest. 

In our discussion, we shall point out that the economic waste, once incurred, is not 
readily reversible, particularly through ‘buy-back’ schemes. Furthermore, although this 
meeting is concerned with the measurement of capacity, rather than its control, we shall use 
the opportunity to make the point that, under not unreasonable circumstances; ‘buy-back’ 
schemes can easily exacerbate, rather than mitigate, the excess capacity problem. 

Finally, under the heading “regulated open access”, we discuss a recently adopted 
technique in a major British Columbia fishery designed to deal with excess capacity and its 
effect on the resource managers’ ability to control the harvest. The technique has some of the 
flavour of ITQs, but is much less elaborate and easier to apply. It does, moreover, provide a 
‘rough and ready’, but nonetheless effective, measure of excess capacity. 

The question of overcapacity in the context of pure open access fisheries was found, in 
the Gréboval and Munro (1999) paper, to be much more difficult to address, because, in the 
first instance, the definition of excess capacity is much less clear. We shall in this paper not 
focus on the refining of definitions, but rather shall devote ourselves to addressing head on 
what these authors see as a major debate on the significance of excess capacity, under 
conditions of pure open access2.

One school of thought appears to argue that excess capacity is the root cause of 
resource overexploitation under conditions of pure open access. The second school of thought 
maintains that the first school of thought is confusing symptoms with causes of the disease. 
Overexploitation of the resource arises from perverse incentives created by the 
aforementioned ‘common pool’ characteristics of the fisheries. Perceived overcapacity is 
simply a by-product, or symptom, of resource overexploitation. 

If the second school of thought is correct, then attempting to define and measure 
excess capacity under conditions of pure open access is largely a waste of time. Moreover, the 
focus on capacity could be a harmful distraction, by diverting attention away from the real 
problem, i.e. the true causes of resource overexploitation. 

In this paper, we shall support the second school to the extent that we shall argue that 
the incentives resulting in perceived overcapacity are indeed identical to those resulting in 
resource overexploitation. Furthermore, we shall point out that, where excess fleet capacity 
does not exist in any meaningful sense, resource overexploitation can, and does, readily 
occur. We shall also argue, however, that excess capacity adds, at a minimum, two, if not 
three, significant dimensions to the resource overexploitation problem, which are wholly 
ignored in most, if not all, of the standard economic models of the fishery (e.g. Clark and 
Munro 1982). The fears and concerns of the first school of thought, we shall conclude, are by 
no means devoid of merit. 

2 The authors’ perceptions of the debate are based much less upon documentary evidence, than upon discussions 
which one of the authors, Munro, had and has had, with participants in the TWG Meeting of April 1998, prior to, 
during, and after the meeting. 
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Gréboval and Munro (1999) argued that, for excess capacity to be meaningful, the 
relevant capital had to exhibit some degree of non-malleability. Perfectly malleable capital is 
capital that can be easily and quickly removed from a fishery, or fisheries, without risk of 
capital loss. 

Since we shall be using the concept of non-malleable (fleet) capital throughout the 
paper, let us try to provide a reasonably rigorous definition. To do so, we turn to the article of 
Clark, Clarke and Munro (1979). This was the first article to deal explicitly with the issue of 
non-malleable fleet capital in capture fisheries. 

In following Clark, Clarke and Munro (CCM hereafter), let us denote fishing effort by 
E(t) and the stock of fleet capital by K(t), where K(t) can be thought of in terms of the number 
of “standardized” fishing vessels. We then have (CCM, ibid.):

)()(0 max tKEtE  (1) 

which asserts that maximum fishing effort capacity is determined by the existing number of 
vessels, and that the actual effort cannot exceed Emax .3 Effort capacity may, or may not, be 

fully utilized. 

Given an initial stock of fleet capital K(0) = K0, adjustments in the stock of capital are 
given by: 

dK

dt
I t K( )  (2) 

where I(t) is the gross rate of investment (in physical terms) and (a constant) is the rate of 
depreciation.

Now let c1, a constant, denote the unit purchase price of fleet capital, and let cs, a 
constant, denote the unit “scrap value” (resale value) of capital. We deem the fleet capital to 
be perfectly malleable if: 

c cs 1  (3) 

which implies that freedom from risk of capital loss is assured. Conversely, we deem the 
capital to be perfectly non-malleable if: 

cs 0   (4) 

The capital has no re-sale value, and never depreciates. 

The intermediate cases of quasi-malleable capital are given by the following: 

cs 0 0;  (5) 
and

3 This concept of fleet capacity expressed in terms of the fleet’s ability to generate fishing effort per unit of time 
is, we would argue, entirely consistent with the definitions of capacity used by Gréboval and Munro (1999), and 
with the 1998 Technical Working Group meeting (FAO 1998). 
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0 01c cs ;  (6) 

In the case indicated by equation (5), capital can be divested over time through 
depreciation. In that indicated by equation (6), capital can be disposed of through depreciation 
or by selling the capital at a positive price, but a price below the purchase price. 

With these preliminary matters now in hand, we turn first to the case of excess 
capacity in the context of regulated open access fisheries. We do so because the regulated 
open access case is by far the easier of the two. 

2. REGULATED OPEN ACCESS FISHERIES: AN ELEMENTARY MODEL 

In discussing regulated open access fisheries, we shall deliberately introduce some 
rather extreme assumptions in order to simplify the exposition. We shall argue, however, that 
the principles to be developed would remain valid, with only minor modification, if less 
extreme assumptions were introduced. 

We commence by assuming an absence of ‘crowding’ externalities, that all harvested 
fish is sold into the fresh market that the fisheries collectively face a perfectly elastic demand 
for harvested fish, that vessels and crews are identical in nature and ability, and that 
technology is frozen. Next we assume, initially at least, that the resource managers are 
capable of exercising iron control over total harvests. Thus, there are no resource management 
consequences of excess capacity, and all economic consequences are confined to the 
harvesting sector.4

Finally, we make the highly simplifying assumption that the rate of depreciation of 
vessel capital is equal to zero. We then contrast the extreme cases of perfectly malleable 
capital, with that of perfectly non-malleable capital. 

Let us assume that the resource managers specify an annual Total Allowable Catch 
(TAC), or the equivalent thereof, which remains fixed for all future time. Let Q denote this 
fixed annual TAC in tonnes. Entry into the fishery is initially unrestricted; the variable K

denotes actual entry of vessels into the fishery. The catch rate of fishing is q

tonnes/day/vessel. Thus, if K vessels fish for D days during the year, the fleet’s total annual 
catch, or harvest, is equal to qKD tonnes.

Let Dmax denote the maximum possible length of the annual fishing season. If the fleet 

size is such that qKD Qmax , then the fishing season will be at its maximum length. If 

qKD Qmax , then the season must be reduced below its maximum length in order to ensure 

that the TAC is not exceeded. Thus: 

Total Annual Catch
if

otherwise

max maxqKD K Q qD

Q

, /

,
 (7) 

Now, let the price of harvested fish be denoted as p, a constant. Let the daily operating 
costs for a given vessel be denoted as c. The fleet’s annual operating profits are thus given by 

4 This is one assumption that we shall definitely relax at a later point in the discussion. 
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Fleet Annual Operating Profits =
if

otherwise

max max( ) , /

( / ) ,

pq c KD K Q qD

p c q Q
 (8) 

Next, recall that the unit, or purchase price of vessel capital is denoted by c1, and let 
the annual rate of interest be denoted by r. If vessel capital is perfectly malleable, then, as it 
will be further recalled, the unit resale value of a vessel, at any time, is also equal to c1. The 
relevant capital cost, for a vessel owner is a ‘rental’ cost. Given our assumption that the rate 
of depreciation of vessel capital is zero, the annual capital ‘rental’ cost for a fleet of size K
would simply be Kc1r.5

Now let K0 denote the number of vessels that would be required to take Q, if D Dmax .

Thus, K Q qD0 / max . Fleet annual operating profits would then equal: ( )pq c K D0 max and fleet 

annual, ‘rental’ capital costs would equal K0c1r. We shall assume that ( )pq c K D K c r0 0 1max ,

otherwise the fishery is not viable. Given this assumption, fleet annual operating profits and 
fleet annual ‘rental’ costs can be depicted as functions of K (Figure1).

    0   K0    K

Annual 
Operating 

Profits 
and 

Capital 
Rental 

Costs 

Annual Operating Profits 

Capital Rental Costs 

Fleet Capital 

Figure 1.  Annual operating profits and capital costs 

Total fleet annual net profits obviously achieve a maximum at K = K0. Suppose that 
actual K > K0. Fleet annual operating profits and ‘rental’ costs, and thus net profits, would be 
identical to what they would have been, had actual K = K0. The basic reason is that, in this 
situation, the ‘rental’ cost of capital is really another form of operating cost. Hence suppose 
for the moment that K0 = 200 and Dmax = 360 days. Then suppose that K was doubled to 400 
and as a consequence D was reduced to 180 days. The total annual fleet costs, total revenue, 
and thus annual net profits would remain unchanged.6

5 We shall in the discussion to follow assume (implicitly) that interest is compounded annually. Given that 
assumption, the annual “rental” cost of capital is, strictly speaking, equal to: Kc1rDmax/365. To minimize 
unnecessary complications, the reader may safely assume, at this stage, that Dmax = 365.
6 This is, in fact, a well known result. See for example, Munro and Scott (1985). 
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Thus, given that the resource managers are able to exercise iron control over the total 

harvest, there is, under regulated open access, with perfectly malleable fleet capital, no unique 
optimal fleet size, and hence no such thing as ‘excess capacity’. Attempts to measure excess 
capacity are pointless. 

We turn now to the other polar extreme of perfect non-malleability of vessel capital. A 
vessel, once purchased, lasts forever and has no resale value. Consequently, the rational 
would-be investor must compare the cost of the vessel with the share of the present value of 
fleet operating profits the acquisition of the vessel promises him/her. Since the vessels (and 
crews) are assumed to be identical, an owner of a single vessel can be assumed to enjoy an 
average share of the aforementioned present value, i.e. total present value of operating profits 
divided by the number of vessels, K.

If the total annual harvest Q is taken, then the present value of fleet operating profits 
will be equal to: [( / ) ] ( ) /p c q Q r r1 . Thus, investment in additional vessel capital will 

unquestionably be profitable, if it is true that: 

Kr

r
Qqcpc

11
)/(1  (9) 

Given conditions of regulated open access, we would predict that investment in fleet 
capacity would continue up to the point that: 

r

r
QqcpKc

1
)/(OA1  (10) 

where KOA denotes the regulated open access equilibrium level of fleet capital. Observe that 
equation (10) implies that: 

OA

1

11
)/(

Kr

r
Qqcpc . (11) 

Now consider Figure 2, which shows the present value of fleet operating profits and 
the total capital cost of fleet acquisition, c1K. The present value of resource rent is, not 
surprisingly, maximized at K=K0, where it will be recalled that K0 is given by:7

K Q qD0 / max  (12) 

Thus, when fleet capital is non-malleable the concepts of optimal fleet size and 
‘excess’ capacity do unquestionably become meaningful. In terms of our model, ‘excess’ 
capacity, in physical terms, arising under conditions of regulated open access is simply: (KOA

– K0). We can re-express this excess capacity in economic terms as:

c K K p c q Q
r

r
c K1 0 1 0

1
( ) ( / )OA  (13) 

7 Return, for the moment, to the case of perfectly malleable fleet capital. So long as the entire TAC = Q is taken, 
year in and year out, the annual rental cost will always be equal to K0c1r, regardless of the fleet size. The 
capitalized value of K0c1r through time is, of course, simply equal to: c1K0 .
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Fleet Capital 
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Figure 2.  Present value of fleet operating profits and capital costs 

Thus the economic measure of excess capacity under regulated open access is equal to 
the present value of dissipated resource rent. Let us refer to the L.H.S. of equation (13) as the 
regulated open access Redundancy Deadweight Loss. Given K0, and given that c1 and r both
exceed zero, the Redundancy Deadweight Loss, under regulated open access will be greater 
the smaller is r, for obvious reasons. 

Let it be noted that the Redundancy Deadweight Loss is incurred the instant that 
‘excess’, or redundant, vessel capital is acquired. Moreover, the economic damage, once 
done, cannot be undone. 

If we were to relax our extreme assumption about the rate of depreciation and allow 
for a positive rate of depreciation, the ‘excess’ capacity would be removed over time. 
Attention could then be directed towards preventing the ‘excess’ capacity’s re-emergence, and 
thus preventing another round of economic waste. 

2.1 Buy-back programmes and perfectly non-malleable capital 

An obvious, and widely used, technique for addressing ‘excess’ fleet capacity in 
hitherto regulated open access fisheries is to combine a licence limitation, or limited entry, 
programme with a buy-back programme. We have already implied that, in economic terms, 
the buy-back scheme may be very much a case of locking the barn door after the horse has 
well and truly bolted. 

Jorgensen and Jensen (1999), in discussing buy-back, or decommissioning, 
programmes, in the context of the European Union, argue that experience shows that fishers, 
and their bankers, are not all myopic with respect to investment in fleet capital. 
Decommissioning schemes, if repeated, will come to be anticipated and will influence 
investment decision making. The authors then argue, on the basis of a simulation model, that 
decommissioning schemes are likely to destabilize, rather than stabilize the fishery. 
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We would agree and would argue that one can, in the context of our model, show very 
simply that the impact of a buy-back (decommissioning) scheme will depend critically upon 
whether the scheme is, or is not, anticipated by the vessel owners. If this assertion appears to 
academic economists to carry with it some of the flavour of the rational expectations school 
of macro-economic theory (e.g. Sargent, 1986), it does so for good reason. 

Let us illustrate with the aid of a simple numerical example. Let it be supposed that 
Dmax = 200 days. We assume, in addition that:

Q = 10 000 tonnes 
q = 1 tonne per vessel per day
p = US$1 000 per tonne 
c = US$500 per vessel per day 
c1 =US$500 000 per vessel
r = 0.10 – i.e. 10 percent per annum. 

Total annual fleet net operating profits will therefore be: 

yearper000000$5)/(oper QqcpTP

vessels.50
200

000,10

max

opt
qD

Q
K

Let it be supposed that the fishery commences at time period t = 0. It is not unknown 
for resource managers to react to an ‘excess’ capacity problem, only after the problem has 
emerged. Therefore, let it be supposed that, if ‘excess’ capacity does emerge, the resource 
managers will react by, say, time period t = 10, by introducing a buy-back/licence limitation 
scheme with the objective of reducing K to 50 and of maintaining that fleet level thereafter. 

Let us commence by also assuming that, at t = 0, the resource managers’ future 
responses are wholly unanticipated by vessel owners. They assume, incorrectly, that regulated 
open access will continue forever. We can thus anticipate that at t = 0, investment in capital 
capacity will be given by: 

 vessels110
)000,500($10.0

)10.1(000,10
)500$000,1($

)1(
)/(

1

OA
rc

rQ
qcpK

Thus there is excess capacity of 60 vessels, representing a Redundancy Deadweight Loss of 
US$30 million. 

At t = 10, the resource managers do introduce a ‘sudden death’ buy-back programme, 
to the surprise of the vessel owners. The vessel owners are, however, convinced that the 
authorities will do whatever is necessary to reduce the fleet to 50 vessels and are further 
convinced that the accompanying limited entry programme will be effective forever. 

The present value of the operating profits of the remaining 50 vessels, discounted back 
to t = 10 will be US$1 100 000. Thus, we can be assured that the resource managers cannot 
offer less than US$1 100 000 per vessel. We shall assume, somewhat unrealistically, that the 
authorities are able to achieve their goal by offering a purchase price of US$1 100 000 and the 
accompanying limited entry programme is indeed fully effective. The fleet remains at K = K0

from henceforth. 
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Let us suppose that the buy-back scheme is financed by the government drawing upon 
its general revenues. If one can assume that resultant increase in taxes and/or increased 
government borrowing and/or reduced government expenditures on other activities causes no 
perceptible loss to the economy, we can say that each vessel owner will enjoy a windfall gain 
of US$600 000 (evaluated at t = 10)8 and that the Redundancy Deadweight Loss (incurred at t
= 0) remains at US$30 million. The initial loss to the economy cannot be undone by the buy-
back programme, but at least no further damage is done. 

Now let us change the example by supposing that, at t = 0, the vessel owners have 
perfect foresight. They anticipate, correctly, that, at the inception of the fishery, the resource 
managers will do nothing about the possible emergence of “excess” capacity. They anticipate 
further that, by t =10, the resource managers will react to the appearance of excess capacity 
by introducing a “sudden-death” buy-back programme and the resource managers will, 
moreover, offer a price of US$1 100 000 per vessel. The vessel owners also know that the 
fleet will be stabilized at 50 vessels, and that the accompanying limited entry programme will 
be entirely successful. 

We can now calculate the level of investment in vessels at t = 0, which we shall 
denote by K'OA. Equilibrium will be achieved when: 

OA10

3
10

0
iOA1

)1(r)+(1

Q
c/q)-(p K

r

c
Kc

i

 (14) 

where c3 denotes the resource managers’ offer price at t = 10. Observe that it is a matter of 
indifference whether an individual vessel owner sells his/her vessel at t =10, or whether 
his/her vessel continues on as one of the remaining 50. Also observe that equation (14) can be 
re-written as: 
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 (15) 

In any event, in our example, we have: 

KOA $35, ,
$75,

722 836
1

093
476  

The implication is that the eminently ‘successful’ buy-back programme would lead to 
a Redundancy Deadweight Loss of: US$500 000 (476–50) = US$213 million. Recall that, if 
the authorities had done nothing, i.e. had foregone a buy-back programme, the Redundancy 
Deadweight Loss to the economy would have been US$30 million, less than 15 percent of the 
loss brought on by the buy-back programme. 

Note as well that, what we might term the ‘do nothing’ policy, results in the net 
economic returns from the fishery being reduced to zero – the usual result from the standard 
fisheries economics model. The present value (at t = 0) of net operating profits from the 
fishery is US$55 million; while total expenditure on vessel capital would be US$55 million. 
In our example of the anticipated buy back programme, the net economic benefits from the 
fishery to the economy at large (discounted back to t = 0) will be equal to minus US$158
million.

                                                
8 If there had been no buy-back programme, then, at t = 10 , the present value of operating profits accruing to 
each vessel, evaluated at t = 10 , would have been $500 000, and thus each vessel would, at t = 10 , have been 
worth $500 000 – hence the $600 000 windfall gain. 
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The reason that the anticipated buy-back programme induces a large investment in 
fleet capacity is made transparent by the R.H.S. of equation (15). The effective purchase price 

of vessel capital, for would be vessel owners, at t = 0 is: c c r1 3

101[ / ( ) ]  which carries with 

it the implication that the vessel owners would be receiving a subsidy. Indeed, as the reader 
can verify in our example, exactly the same outcome could have been produced under a ‘do 

nothing’ policy (i.e. KOA = 476) by having the government offer the vessel owners, at t = 0, a 

subsidy per vessel equal to 77 percent of the purchase price c1.

Of course we do not live in a world of perfect certainty. Nonetheless, the point 
remains. As Jorgensen and Jensen (1999) in their study of European fisheries were at pains to 
stress, it is foolish to suppose that vessel owners will simply ignore the knowledge they have 
acquired about the behaviour of resource managers and that they will neglect to incorporate 
that knowledge in their investment decisions. 

2.2 Regulated open access and the monitoring of TACs 

To this point, we have assumed that the resource managers are able to exercise iron 
control over the TACs. Often this is not the case. Indeed, a major cost of ‘excess’ capacity is 
often seen to be the fact that it can readily lead to the undermining of the resource managers’ 
control of the TAC. The ‘swarm’ of vessels with which the resource managers must deal can 
present an impossible policing problem.9

The policing problem provides us with an opportunity to bring to light an apparently 
effective scheme for dealing with that problem, which does not require the use of buy-backs. 
It does, moreover, provide an effective first approximation of a measure of actual excess 
capacity in a regulated fishery. 

The scheme has been put into effect in the British Columbia roe herring fishery. In 
response to claims that there is no assurance that the scheme is applicable to other fisheries, 
we would counter by saying that there is even less reason to assume that the scheme is unique 
to the aforementioned fishery. 

The British Columbia roe herring fishery is a short, intense fishery. There is a licence 
limitation scheme for the two gear classes – seiners and gillnets. Nonetheless, there had, 
historically, been a chronic policing problem. In the decade 1987–1997, for example, the 
actual annual harvests exceeded the coast-wide TAC by an average of 20 percent (G. Thomas, 
Department of Fisheries and Oceans (Canada), personal communication). 

Commencing in 1998, the Canadian Department of Fisheries and Oceans (DFO) 
introduced a pooling system, first for seiners, and subsequently for gillnets (DFO, 1999). 
There are five designated openings for roe herring. Licence holders must beforehand declare 
the opening in which they plan to participate. It is well nigh physically impossible to 
participate in more than one opening. With respect to a given opening, the licence holders are, 
beforehand, required to form themselves into pools. Each seiner pool must have a minimum 
of eight participants; each gillnet pool a minimum of four. There is no upper limit to the 
number of participants in an individual pool. 

                                                
9 What we might term the “swarm” effect does perhaps provide us with an exception to the rule that “excess” 
capacity is meaningful, only if the fleet capital is non-malleable. Even if the fleet capital is perfectly malleable, 
the policing problem, can obviously arise. 
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At a given opening all participants of the pools appear, with their vessels. Each pool is 
given a quota based upon the TAC and the number of licences per pool. Furthermore, each 
pool is required to appoint a pool captain who works with the resource manager to determine 
which vessels from the pool shall actually engage in fishing. The net profits of the pool are, 
however, divided among the pool members. 

Thus, for example, one could have a pool containing 20 independent vessels, but in 
which only two vessels actually engage in harvesting. All 20 vessel owners will, nonetheless, 
share in the profits. 

The race for the fish, within pools, is eliminated. From the resource managers' 
perspective, monitoring a few pools rather than many vessels is far easier. It should also be 
added, that, if a pool exceeds its quota, the overage is distributed elsewhere at the discretion 
of the resource managers (DFO, 1999).

The scheme does, of course, have a certain ITQ flavour to it. It is, however not a fully-
fledged ITQ scheme, and is much simpler to organize. 

To date, the scheme has apparently been very successful (G. Thomas, personal 
communication). Unquestionably, it will evolve through time. One can conjecture that, if at a 
given opening, industry profits should prove to be higher, the smaller the number of pools, the 
industry would not be slow to realize this fact. We could then look forward to a pooling of the 
pools – to the benefit of the resource managers. 

With regards to measures of excess capacity, if, at a particular opening, there is one 
seine pool of fifty vessels, while the actual harvesting is done by, say, four vessels, then we 
would have a rough measure of excess capacity. This, in turn, raises a question about further 
evolution of the scheme. 

At the present, licences, plus vessels, provide fishers (companies) with the ‘tickets to 
the dance’. One can foresee the scheme evolving in a manner in which participants receive 
shares of the profits, but without vessel redundancy being perpetuated. The driving force 
would enhance industry profits. 

3. PURE OPEN ACCESS FISHERIES 

We now examine the case in which we commence with a pure open access fishery in 
that there is, initially at least, a complete absence of intervention by resource managers. The 
standard economic models of the fishery, going back to that of Gordon (1954), predict that, in 
these circumstances, the resource will be ‘overexploited’ from the point of view of society. 
The question that we shall raise is whether fleet capacity, as we have defined it, has a distinct 
role to play in the over-exploitation process, or whether apparent ‘excess capacity’ is no more 
than a symptom of the overexploitation disease. To repeat our earlier point, if apparent 
‘excess capacity’ is no more than a symptom, the attempt to measure the ‘excess capacity’ 
may be a pointless exercise. 

Our discussion will have as its foundation two articles. These are the aforementioned 
article by Clark, Clarke and Munro (1979) (CCM), and a companion article by McKelvey 
(1986).
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In contrast to the discrete time model used in Section 2, we find it more convenient in 
the discussion to follow to use a continuous time model. We shall also find it convenient, and 
appropriate, to relax the restrictive assumption, adopted in Section 2, that fleet capital is 
perfectly non-malleable. We shall rather assume that the fleet capital is quasi-malleable (see 
Section 1), and assume, specifically, that, while the re-sale value of capital, cs, is equal to 
zero, the rate of depreciation of vessel capital is positive. Finally, we shall assume, for ease of 
exposition that we commence with a virgin fishery. It could be that, heretofore, the fishery 
was not commercially viable, but that, with a once and for all change in market conditions 
(e.g. increase in demand for the harvested fish); the fishery does suddenly become 
commercially viable. 

In keeping with the CCM and McKelvey articles, we initially model the fishery 
resource stock with the standard Schaefer model (see: Clark, 1990, Ch. 1) 

)()( thxF
dt

dx
 (16) 

where x = x(t) denotes the fish stock, or biomass, and where F(x) denotes the natural rate of 
biomass growth, when the resource is unexploited. It is assumed, in the Schaefer model, that 
the natural growth function is a pure compensatory one (Clark, 1990). The harvest rate, or 
harvest production function, is assumed, as before, to be given by: 

)()()( txtqEth  (17) 

where E and q are the rate of fishing effort and catchability coefficient respectively. 

The adjustment in the stock of fleet capital is given by: 

KtIdtdK )(/  (18) 

where I(t) and dK/dt are to be seen as the rates of gross and net investment in K respectively.
Given our assumptions we have I t dK dt K( ) ; /0 . We now express the flow of net 

operating profits, at each point in time, as: 

)())(()( tEctpqxt  (19) 

where, as before, c, a constant, denotes unit operating costs, and p, a constant, the price of 
harvested fish. Alternatively, we can express equation (19) as: 

Etqxxcpt )())(()( var  (20) 

where cvar(x) denotes unit variable cost of harvesting, given by qxcxc /)(var .

If (t) > 0, we can assume that the existing fleet will be used to capacity, i.e. E(t) = 

K(t). There will, however, be a biomass level at which (t) = 0 , that we shall denote as 

x t xa( ) 0 . The biomass xa

0  is given by 

0)( 0

var axcp  (21) 
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We can be certain that the resource would not fall below that level, since at biomass levels 

below xa

0 , fleet operating profits would be negative. Hence we have: 

0

0

)(if,0

)(if),(
)(

a

a

xtx

xtxtK
tE  (22) 

There exists another biomass level, which we shall denote as xb

0 . This is the biomass 

level that would be the pure open access equilibrium level, if vessel capital was perfectly 
malleable. It is given by: 

0)( 0

total bxcp  (23) 

where ctotal(x) is the unit total cost of harvesting, given by qxcrcc 1total )(  and where 

(  + )c1 is the unit ‘rental’ cost of vessel capital (recall the discussion in Part II) where 

denotes the rate of interest (in continuous time).10 Obviously, x xb a

0 0 . The biomass level xb

0

corresponds directly to the Bioeconomic Equilibrium level, as originally defined by Gordon 
(1954); see also CCM (1979). It can be shown (and should come as no surprise), that vessel 
owners will have no incentive to invest (positively) in vessel capital at biomass levels below 

xb

0 (McKelvey, 1986). 

With all of this in mind, we can state the following. Assume that x(0) > xb

0 . Then at t = 

0 , i.e. at the time of the once and for all change in market conditions, investment in vessel 
capital by vessel owners will occur, and will occur (by assumption) instantaneously. How the 
level of investment is determined is a matter to be discussed momentarily. Exploitation of the 
fishery resource commences, and the resource (x) declines. 

Given our assumption that cs = 0, the only costs relevant to the vessels, once they have 
been acquired, are operating costs. Hence the biomass may (but not necessarily will) be 

reduced to the level x t xa( ) 0 . Thus, the biomass level xa

0  is an equilibrium level, but only 

over the short-run. The fleet continues to depreciate, and since it will not pay vessel owners to 

invest in additional capital at biomass levels below xb

0 , the time will come when the fleet is 

too small to harvest at x(t) = xa

0  on a sustainable basis. 

When this time arrives, the biomass will experience positive growth and will continue 

to grow until x(t) = xb

0 . At this point, it will pay vessel owners (collectively) to invest in fleet 

capital up to, but not beyond, the point that will enable the fleet to harvest sustainably at x(t)=

xb

0 . In other words, once xb

0 is achieved, the rate of net investment in fleet capital (dK/dt) will 

be equal to zero. It is for this reason that we refer to the biomass level xb

0  as the long-run 

equilibrium level. Finally, it can be shown, of course, that should the biomass rise above xb

0 ,

it would pay vessel owners to invest in sufficient new capacity to an extent that they would 
renew the process of resource depletion (i.e. we would find that dK/dt > 0). 

Now let us consider the determination of the initial fleet size at t = 0 , which we shall 
denote as K0. Recall that, by assumption, the investment is done instantaneously. Denote the 

                                                
10 It is being assumed (implicitly) that each fishing ‘firm’ is subject to constant returns to scale. 
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initial biomass level at t = 0 as x0. If K0 vessels are introduced into the fishery at t = 0, then 
we have: K(0) = K0 .

Once the vessels K0 have been purchased, the operating profits from the vessels alone 
become relevant. The present value of these operating profits is given by: 

dttEctpqxeKxPV t

op )(})({),(
0

00  (24) 

where x(t) and E(t) are as specified above, for all t > 0 .

We continue to assume that vessels and crews are identical. Employing the same form 
of argument used in Section 2, we can argue that, at t = 0, investment in capacity will proceed 
up to the point that: 

c K PV x K1

0 0 0

op ( , )

c PV x K K1

0 0 0

op ( , ) /
 (25) 

Consider now Figure 3 and focus on the 45º line, the curve OA and the fleet-size, 
biomass trajectory W. The figure can be viewed as a type of ‘feedback’ prediction of both the 
level of investment in vessel capital and the amount of fishing effort that will be used. 

OA

W

0                    xa

0      xb

0 x0

Kb

0

0

bK

K
Fleet 

Capital 

Biomass x

Figure 3.  Investment/biomass feedback trajectory 

In the example given in Figure 3, the trajectory indicates that the biomass is, in fact, 

driven down to level xa

0 . While we cannot, in fact, be certain that the biomass will be driven 

down to xa

0 , we can be certain that the resource will be driven down below xb

0 (McKelvey,

1986).

We could accompany Figure 3 with a similar figure showing what the optimal 
resource exploitation and fleet investment path would have been had the resource been under 
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the complete control of a resource manager from the instant that the fishery became 
commercially viable. The underlying analysis is indeed mathematically demanding, so that 
we shall only report the results here (for a complete discussion see Clark and Munro, 1999). If 
we assume that the resource manager and vessel owners use the same discount rate, then it 
can be shown, and will come as no surprise, that, at each stage, the level of investment in fleet 
capital deemed optimal by the resource manager would be less than that which would occur 
under conditions of pure open access.11

The underlying reason is straightforward enough. The resource manager in controlling, 
or monitoring, a fleet investment programme must always be aware of the impact of the 
programme, and the subsequent use of the capital, upon the ‘natural’ capital in the form of the 
resource. The impact upon the resource can be seen as one of the ‘costs’ of investment in 
vessels. Vessel owners operating under conditions of open access will effectively set the 
“cost” associated with the resource at zero. 

This, however, is the sort of argument that is normally used to explain 
overexploitation of the resource in pure open access fisheries. Hence, it would indeed appear 
that resource over-exploitation and ‘overcapitalization’ (as perceived by the resource 
manager) are but two sides of the same coin.

Furthermore, consider the following. Suppose that the fleet capital was perfectly 

malleable, i.e. c1 = cs. In this case, xa

0  and xb

0  would be identical. All costs would be variable, 

all costs would be relevant, and equation (24) would be replaced by: 

dttEctpqxeKxPV t )(})({),( total0

00  (26) 

where c c ctotal ( ) 1 . It can easily be shown that, commencing with a virgin fishery 

resource, exploitation of the resource, under pure open access, would lead to the depletion of 

the resource to the level x(t) = xb

0 , i.e. Bionomic Equilibrium. This, of course, is the 

prediction of the standard economic model of the fishery (see as well: CCM, 1979). Thus, 
while ‘excess’ capacity does not exist in any meaningful sense, overexploitation of the 
resource would most certainly occur. 

Thus, the argument would seem to go in favour of the second school of thought to 
which we referred in Section 1. Fleet capacity, per se, under conditions of pure open access 
does not really matter, and indeed may be a distraction. 

Yet, before accepting this conclusion, let us return to Figure 3 and our analysis of the 
pure open access fishery with non-malleable fleet capital. Note that, with the existence of 
such capital, our model predicts a heavier degree of resource exploitation, under conditions of 
pure open access, than does the standard economic model of the fishery. The resource will be 

driven down below the long-run Bioeconomic Equilibrium level, xb

0 . Once the vessels are 

acquired, the capital costs of the vessels (c1K0 in our example) cease to be relevant. The 
vessels, once acquired, can be viewed as generators of “cheap” fishing effort. If, however, the 
Schaefer model is the appropriate biological model for the resource, then we can rest assured 

11 Needless to say, the extent of resource exploitation deemed optimal would also be less than that which would 
occur under pure open access. 
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that Bionomic Equilibrium ( xb

0 ) will eventually be achieved. Thus it would appear that the 

aforementioned ‘heavy’ exploitation is strictly temporary and is of only passing interest. 

The Schaefer model assures us that the resource will not face the risk of extinction 
through over-harvesting. In a world that has produced resource management disasters, such as 
Northern Cod, one cannot rest content with the assurances of the Schaefer model. Suppose in 
fact that the Schaefer model does not strictly apply. Suppose rather, in following an example 
developed by McKelvey (1986), that, while the harvest production function remains as 
specified in Equation (17), the natural growth function, rather than being a purely 
compensatory one, is characterized by critical depensation (Clark, 1990). Suppose further 
that, as a consequence, there exists a minimum viable population, x , greater than zero.12 The 

biomass levels xa

0  and xb

0  are determined as before. There is, however, no guarantee that: xa

0

> x  (McKelvey, 1986). 13

Now consider the following example. Let it be supposed that xb

0  = 500 while x = 200.

Thus the Bionomic Equilibrium biomass level lies comfortably above x . Consequently, if 
fleet capital was perfectly malleable, we could rest assured, other things being equal, that the 
resource would be safe from extinction. 

If, however, the fleet capital is not perfectly malleable (let us return to our assumption 

that: cs = 0;  >0), and if xa

0  < x , then the resource could be driven to extinction. 

Furthermore, the degree of risk will, we would argue, be dependent critically upon the nature 
of the fleet capacity. 

The measure of capacity which we have employed, which we express as the power to 
generate fishing effort, per period of time,14 is, of course, really a mix of inputs – capital, 
labour, etc. We can think of various forms of ‘capacity’, as varying in terms of ‘capital 
intensity’. For want of a better measure, let us use, in our example, as a measure of ‘capital 
intensity’ that fraction of ctotal(x), at any given level of x, accounted for by capital ‘rental’ 
costs. It can be shown that for any level of x > 0 , the fraction can be expressed as follows:15

1

1

)(

)(

cc

c
 (27) 

where 0 1. Let us refer to as the ‘capital intensity coefficient’. 

If vessel capital is non-malleable, the lower bound to resource exploitation, xa

0 , will be 

determined by the ‘capital intensity’ of the mix of inputs constituting ‘capacity’. Given the 
harvest production function as set out in Equation (17), and given the degree of non-
malleability of vessel capital which we have assumed,16  it can be shown that: 

12 McKelvey made the point in his article that his minimum viable population case was only but one of many

cases in which the assurances offered by the Schaefer model could prove to be illusory (McKelvey, 1986). 
13 For that matter, there is no guarantee that x xb

0
. We shall, however, assume that xb

0
 is in fact greater than 

x .
14 See footnote 8. 
15 See footnote 15. 
16 i.e., cs = 0 ;  > 0. 
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00 )1( ba xx  (28) 

To illustrate, suppose that a fishery resource could be exploited through the use of two 
alternative forms of fishing ‘capacity’: KI and KII . A unit of KI has equal fishing effort 
generating capacity to a unit of KII. The relevant harvest production function is that given by 
Equation (17). The relevant catchability coefficients are identical. Furthermore, let it be 
supposed that: 

   [ ( ) ] [ ( ) ]c c c cI I II II

1 1

Hence, it follows that [ ] [ ]x xb b

0 0I II . Let it be supposed, in keeping with our previous 

example, that: 

   [ ] [ ]x x xb b b

0 0 0 500I II

Let it also be supposed, also in keeping with our previous example, that there exists a 
minimum viable population, x , x = 200 .

Let it further be supposed that: 

   
I

II

010

0 90

.

.

which implies that: 

   
[ ]

[ ]

x

x

a

a

0

0

450

50

I

II

If the resource was exploited under conditions of pure open access with Class I fishing 
capacity (alone), we could be confident, other things being equal, that the resource would be 

safe from extinction ([ ] )x xa

0 I . If, on the other hand, the resource was exploited with the 

much more capital intensive Class II capacity, we would have to conclude, that with [ ]xa

0 II

equal to but 25 percent of c, the resource would indeed be at risk of being driven to extinction. 

Thus we must conclude that, if fleet capital is other than perfectly malleable, fleet 
capacity can indeed add a further, and very significant, dimension to the resource exploitation 
problem under conditions of pure open access. We must also conclude that the form that the 
capacity takes is of significance. The greater is the degree of ‘capital intensity’ of the 
capacity, other things being equal, the greater will be the magnitude of the aforementioned 
dimension.

The existence of fleet capacity, as we have defined it, adds a second dimension to 
what we might call the general resource management problem that we shall describe only 
briefly. Suppose that a fishery commences as a pure open access one, but that, after a period 
of heavy resource exploitation, the resource managers intervene to control the fishery and to 
rebuild the resource. Previous investment by the industry in non-malleable fleet capital will 
have an impact upon the resource managers’ optimal harvest programme. The existence of 
previously acquired fleet capital/capacity will call for a slow, rather than a rapid, restoration 
of the resource stock over time (CCM, 1979). In practical terms, a policy of rapid resource 
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restoration carries with it the cost of possible severe disruption to the industry and 
communities dependent on the industry. 

In any event, ‘optimal’ fleet capacity over the resource restoration (or adjustment) 
phase is not a constant, but becomes a function of time. This issue has been discussed in some 
depth in Gréboval and Munro (1999). On the assumption that the Gréboval and Munro paper 
is readily available to the reader, and with the aim of keeping this paper to a reasonable 
length, we will not explore the issue further here. 

4. SPILLOVER EFFECTS 

The term ‘spillover effect’ refers to the situation in which fleet capacity is removed 
from one fishery, but rather than disappearing, makes its way into another fishery. Once again 
this is a reflection of the fact that fleet capital may be non-malleable – particularly from the 
perspective of world fisheries, combined with the fact that the capital is mobile.

The ‘spillover effect’ provides yet another dimension to the resource exploitation 
problem created by fleet capacity. The implication of the ‘spillover effect’ is that it is no 
longer adequate to examine the problem of resource overexploitation in terms of isolated 
fisheries. The ‘spillover effect’ carries with it the possibility of linkages between and among 
fisheries suffering from overexploitation. 

The question now to be considered is whether these linkages are real or ephemeral. 
We respond first by conceding that not all ‘spillovers’ are harmful. If the recipient fishery is 
well managed, for example, the recipient fishery can be expected to benefit from any 
‘spillover’, taking the form of an offer of ‘cheap’ capital. The resource managers of the 
recipient fishery could look forward to profiting from the resource mismanagement of others. 

We shall rather argue that there are no safe grounds for assuming that ‘spillovers’ will 
always be harmless. To make our point, we need construct but one example of where a 
‘spillover’ can lead to disaster. 

Let us take as our example two independent fisheries  and , exploiting the same 
species, using identical fishing vessels and facing identical costs, including the purchase price 
of vessels, c1. Assume that the vessels have no value (including for true scrap) outside of the 

two fisheries, but that they are subject to a common depreciation rate . It is also reasonable to 
assume that, in the evolution of the two fisheries, movements of vessels between the two 
fisheries would eliminate any profit differential. 

Assume in addition that the resource in each fishery has a minimum viable population, 
which we shall designate as x  and x  respectively. Both fisheries are pure open access 

fisheries. Let is also be supposed that: 

( )

( )

( )

( )

x x

x x

x x

x x

a

b

a

b

0

0

0

0
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Let it be further supposed that the solutions to the equivalent of Equation (25) result in a fleet 
size in each fishery that is insufficient to reduce the resources to x x; . Note from Equation 

(25) that the fleet size will, inter alia (and to the surprise of no one), depend upon c1. In any 

event, both fisheries stabilize at Bionomic Equilibrium, ( ) ; ( )x x1

0

1

0 .

Now let it be supposed that, while Fishery  remains a pure open access fishery, 

Fishery  becomes subject to rigorous and thorough management, with the resource managers 
being able to exercise iron control over both the resource and the fleet size. It is true that the 
past investment in fleet capacity will influence the resource management programme in 

Fishery , and that the resource managers are unlikely to engage in a wholesale disposal of 
vessels (Gréboval and Munro, 1999; CCM, 1979). It is also true, however, that if the resource 
managers were faced with a positive re-sale price for the vessels, they would sell off some of 
the vessels.17

Recalling our assumption that the vessels have no value outside of Fisheries  and ,

the question becomes whether the Fishery  managers could find buyers for their vessels in 

Fishery We know that, at the purchase price of vessels, c1, investment in fleet capacity in 

Fishery would be such as to maintain the rate of net investment in fleet capacity equal to 
zero. In other words, investment in capacity would be for replacement purposes only. 

Suppose, however, that fishers in Fishery were offered vessels by the Fishery

resource managers at a fixed posted price of c c1 1 . Fishers in Fishery would recognize this 

as a once only offer. The number of ‘cheap’ vessels purchased by the Fishery  fishers would 
be determined by a variant of Equation (25). Fishers would be prepared to purchase vessels up 
to the point that their expected per vessel share of the present value of the additional fleet 
operating profits was equal to c1 . We shall not attempt to determine the equilibrium level of 

c1 .

We need only note the following: If c1  was low enough and if the supply of ‘cheap’ 

vessels at that price available to fishers in Fishery  was great enough (suppose, for example, 

that Fishery was much smaller than Fishery ), the fishery resource could readily be 
driven below x .18  We do not have to demonstrate that disaster must occur, only that it could 

occur.

The reason that Fishery  was safe before, but might now be faced with disaster, is 
straightforward. Other things being equal, the level of c1 was sufficiently high to ensure that 

the fleet would not be great enough to drive the resource to x . With vessels from Fishery 

 being sold at ‘fire sale’ prices to Fishery , that assurance is lost. 

Let us also note the importance of ‘capital intensity’. The more capital intense the 
fishing operations, the more vulnerable will the resource be to destruction. If, for example, 

our measure of capital intensity, , was low with the consequence that ( )x xa

0 , a 

                                                
17 This point is analyzed in detail in CCM (1979). 
18 If c1 was equal to zero and the supply of “cheap” vessels to Fishery fishers was unlimited, then obviously 

the resource would be promptly driven down to ( )xa

0
. Of course, c1  will be positive and the supply of 

“cheap” vessels will not be unlimited. Nonetheless, the point remains. 
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‘spillover’ from  to would cause some temporary additional exploitation of the resource,
but would cause no lasting harm. 

Finally, we conclude with a conjecture. The straddling fish stock/highly migratory fish 
stock problem, which emerged with such ferocity in the 1980s and early 1990s, could be seen 
as a ‘spillover’ phenomenon. The eviction of distant water fishing (DWFN) fleets from newly 
formed EEZs could be viewed, in turn, as producing a ‘spillover’ into hitherto commercially 
uninteresting high seas open access fisheries. Furthermore, one could, even without precise 
measures, argue that the DWFN fishing operations were nothing, if not ‘capital intensive’. 
Thus, one could argue further that, as ‘capital intensive’ DWFN fleets ‘spilled over’ into high 
seas areas, such as the Donut Hole and Peanut Hole of the North Pacific, one should not be 
surprised that these once productive areas were transformed into marine deserts. 

5. CONCLUSIONS 

We have attempted to examine the issue of fishing fleet capacity in the context of both 
‘regulated open access’ and ‘pure open access’ fisheries. In so doing, we have followed the 
lead of Gréboval and Munro (1999). 

In both cases, we stressed the significance of the ‘non-malleability’ of fleet capital. 
We questioned whether ‘excess’ capacity had any substantive meaning in cases in which such 
capital can be viewed as being perfectly malleable. 

With regards to regulated open access fisheries, we argued that the measurement of 
excess capacity should be straightforward. Then, although this TWG meeting is not directly 
concerned with measures of control, we did raise some questions about buy-back, or 
decommissioning, schemes to mitigate the economic waste associated with ‘excess’ capacity. 
We first pointed out that much, if not most, of the economic damage is done once the excess 
capacity is acquired, and cannot be easily undone. We then emphasized that concerns about 
anticipated buy-back schemes making a bad situation worse are very well founded. 

One aspect of excess capacity, under conditions of regulated open access, is that the 
excess capacity weakens the control of resource managers over harvesting. We used this issue 
as an opportunity to discuss a recent management technique employed in a major British 
Columbia fishery, which appears to address effectively the harvest control problem and does, 
in addition, provide a good first measure of excess capacity. 

The question of excess capacity under conditions of pure open access is, as Gréboval 
and Munro emphasized, a much more difficult one. We addressed the perceived debate over 
whether capacity plays a direct role in the resource overexploitation associated with pure open 
access, or whether it is no more than a symptom, or by-product, of the overexploitation. If 
perceived excess capacity is no more than a symptom, then attempts to measure excess 
capacity may be of little value, and may in fact be a distraction. 

That the incentives leading to investment in ‘excess’ capacity are identical to those 
resulting in resource overexploitation is not in doubt. Moreover, there is also no question that, 
if fleet capital was perfectly malleable, overexploitation would occur. Nonetheless, we argued 
that when fleet capital is less than perfectly malleable, fleet capacity does add several 
dimensions to the resource exploitation problem and to resource management in general, not 
captured in the standard economic models of the fishery. 
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First, in the context of a single isolated fishery, the existence of non-malleable fleet 
capital will, under conditions of pure open access, lead to a greater degree of resource 
exploitation than that predicted by the aforementioned standard economic models. As Robert 
McKelvey first pointed out over a decade ago, under the ‘right’ set of circumstances this 
added dimension can have very serious consequences indeed. 

Furthermore, the nature, or form, of the fleet capacity will influence the magnitude of 
this dimension. The more ‘capital intensive’ is the fishing operation, other things being equal, 
the greater will be the magnitude of this dimension; the greater will be the threat to the 
resource.

Next, investment in non-malleable fleet capital under conditions of pure open access 
will have an impact upon optimal resource management strategies, should the fishery become 
subject to effective management at a later stage. Attempts to determine ‘optimal’ fleet 
capacity, and thus measure ‘excess’ capacity, will be seriously flawed if these facts are 
ignored.

The final dimension that we considered takes the form of the ‘spillover’ effect, which 
arises from the existence of ‘non-malleable’ fleet capital, combined with the mobility of such 
capital. The implication of the ‘spillover’ effect is that it can no longer be deemed adequate to 
examine the management of individual fisheries in strict isolation. Apparently highly 
commendable attempts to address problems of resource exploitation and excess fleet capacity 
in one fishery can, through the ‘spillover’ effect, result in disaster in other fisheries. 
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CAPACITY AND CAPACITY UTILIZATION
IN FISHING INDUSTRIES 

James E. Kirkley1 and Dale Squires2

Abstract: The definition and measurement of capacity in fishing and other natural resource industries possess 
unique problems because of the stock-flow production technology, in which inputs are applied to the natural 
resource stock to produce a flow of output. In addition, there are often multiple resource stocks, corresponding to 
different species, with a mobile stock of capital that can exploit one or more of these stocks. In turn, this leads to 
three unique issues: (1) multiple stocks of capital and the resource; (2) that of aggregation or how to define the 
industry and resource stocks to consider; and (3), that of latent capacity or how to include stocks of capital that 
are currently inactive or exploit the resource stock only at low levels of variable input utilization. This paper 
presents appropriate definitions of capacity and methods for measuring capacity in fishing industries taking into 
consideration these issues. 

1.  INTRODUCTION 

Excess capacity of fishing fleets is one of the most pressing problems facing the 
world’s fisheries and the sustainable harvesting of resource stocks. Since 1989, both world 
marine fish catches and the world-wide number of vessels have levelled off, with many 
species fully or over-exploited and with a general excess number of vessels (FAO, 1998a). In 
addition, the widespread adoption of the Precautionary Principle (FAO, 1995a), calling for 
resources stocks higher than those of maximum sustainable yield and sustainable catch levels 
correspondingly lower, exacerbates the existing problem of excess capacity. 

International organizations and national governments show increasing concern over 
overfishing and excess capacity. In 1995, Articles 6 and 7 of the FAO Code of Conduct for 
Responsible Fisheries directly addressed the issue of excess capacity, calling on nations to 
take measures to prevent or eliminate excess fishing capacity and to reduce capacity to levels 
commensurate with the sustainable use of fishery resources (FAO, 1997).3 To this end, the 
Committee on Fisheries of the FAO (FAO/COFI) agreed in March 1997 to launch an 
initiative on managing fishing capacity, which led to the Technical Working Group (TWG) on 
the Management of Fishing Capacity, La Jolla, United States, 15-18 April 1998. The results 

                                                
1 Virginia Institute of Marine Sciences, College of William and Mary, Gloucester Point, Virginia 23062 United 
States. Tel 804-642-7160, Fax 804-642-7097, Email: jkirkley@vims.edu. The authors are grateful for 
discussions with Rolf Färe, Shawna Grosskopf, Ted McConnell, Ivar Strand, John Walden, and participants at 
the meetings of the FAO Technical Working Group on the Management of Fishing Capacity, La Jolla, United 
States, 15-18 April, 1998, at the United States National Marine Fisheries Service National Capacity Management 
Team, La Jolla, 25-26 January, 1999, and the United States Congressional Task Force on Investment in 
Fisheries. An earlier version of this paper appeared as the background paper "Measuring Capacity and Capacity 
Utilization in Fisheries," prepared for the FAO Technical Working Group on the Management of Fishing 
Capacity. The authors are also grateful to Dominique Greboval, Dan Holland, Pamela Mace, Gordon Munro, 
Kjell Salvanes, Kathy Segerson, Jon Sutinen, Niels Vestergaard, John Ward, and Jim Wilen who made 
comments on the FAO background paper. The authors remain responsible for any errors. The results are not 
necessarily those of the United States National Marine Fisheries Service. Support for James E. Kirkley provided 
by the College of William and Mary, School of Marine Science, Gloucester Point, Va. 23062 and The Reves 
Center for International Studies, Williamsburg, VA. 
2 United States National Marine Fisheries Service, Southwest Fisheries Science Center, P.O. Box 271, La Jolla, 
California 92038-0271 United States. Tel 619-546-7113, Fax 619-546-7003, Email: dsquires@ucsd.edu 
3 The Kyoto Declaration's Plan of Action from the 1995 International Conference on the Sustainable 
Contribution of Fisheries to Food Security called for action to reduce excess capacity as soon as possible (FAO, 
1997). Cooperative actions at the international level include implementation of the 1995 UN Fish Stocks 
Agreement and the 1993 FAO Compliance Agreement and implementation of the FAO Code of Conduct for 
Responsible Fisheries. 
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from the TWG form the basis for the current FAO/COFI-led global plan of action to manage 
world fishing capacity. In May 1998, FAO called for a drastic reduction of at least 30 percent 
of world fishing capacity on the main high-valued species (FAO, 1998a). In the United States 
the Sustainable Fishing Act (1997) requires that resources be rebuilt to at least maximum 
sustainable yield (MSY) levels within a ten year period. Under the present United States 
regulatory regime, the only permissible option for rebuilding fish stocks is a drastic reduction 
in fishing activity.

Excess capacity creates a number of problems. It generates intense pressure to 
continue harvesting past the point of sustainability in order to keep as much of the fleet 
working as possible. With revenues spread among many vessels operating under little or no 
profits, reductions in fleet size become politically and socially more difficult.4 Vessels are 
more vulnerable to changes in the resource base and regulations when they are only 
marginally viable because of excess capacity. Excess capacity encourages inefficient 
allocation and constitutes a major waste of economic resources. Over investment occurs and 
an excessive amount of variable inputs are used. Excess capacity also complicates the fishery 
management process, particularly in regulated open access, frequently leading to 
microregulation. Excess capacity substantially reinforces the increasing tendency for 
management decisions to become primarily allocation decisions, i.e. decisions about the 
gainers and losers of wealth and profits (or losses) from alternative management choices over 
an overfished or even declining resource stock. 

Fishing industries are particularly vulnerable to excess capacity and overcapitalization 
because of the open-access property right found in most fisheries. Generous subsidies found 
in many fisheries exacerbate the tendencies for capacity to expand with few checks (Milazzo, 
1998).

Surprisingly, given the widespread and deep concern over excess capacity in many of 
the world’s most important fisheries, enormous confusion persists over the definition and 
measurement of capacity and capacity utilization in fishing industries (Kirkley and Squires, 
1999). Yet, a precise definition and widely applicable method of measurement is required for 
monitoring and measuring excess capacity, especially at the international level, where clearly 
agreed upon definitions and measures are required to develop international consensus and 
cooperation for global and regional plans of action to monitor and reduce excess capacity. 

Individual transferable quotas obviate a need to formally manage fishing capacity, by 
letting decentralized market forces match capacity to Total Allowable Catches (TACs), but 
the management of fishing capacity among the developed countries is still largely 
accomplished through moratoria on new entrants, limited access systems, and vessel buyout 
programmes. Capacity management in less developed countries, especially those in the 
tropics with the wide species diversity, is also likely to rely primarily upon limited access 
rather than individual transferable quotas given the infrastructure otherwise required to 
operate such a system and the species diversity. 

This paper addresses this issue of defining and measuring capacity in fishing 
industries. The paper draws upon the corresponding background paper (Kirkley and Squires, 
1999) and discussions from the Breakout Group on defining and measuring fishing capacity 
in the FAO Technical Working Group on the Management of Fishing Capacity, La Jolla, 

                                                
4 Moreover, owners and crew of some vessel size classes or gear types, and in some regions or species-specific 
fisheries, struggle to even make a living. In turn, families and fishing communities come under stress or even 
their very existence and way of life is threatened.
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United States, 15-18 April 1998 (FAO, 1998b), the United States NMFS National Capacity 
Management Team meeting, La Jolla, 25-26 January 1999, and various meetings of the 
United States Congressional Task Force on Investment.

Capacity can be defined and measured following either a technological-engineering 
approach or explicitly predicated on economic optimization from microeconomic theory 
(Morrison, 1985a, 1985b and 1993). These papers, Kirkley and Squires (1999), and the 
different working groups primarily focus on the former because the general paucity of cost 
data in most fisheries world-wide militates against estimation of cost or profit functions to 
derive economic measures of capacity and capacity utilization. Similarly, the technological-
engineering approach is the one used by the United States Federal Reserve Board (Corrado 
and Mattey, 1998) and in most other countries to monitor capacity utilization throughout the 
economy.

The definition and measurement of capacity in fishing and other natural resource 
industries possess unique problems because of the stock-flow production technology, in 
which inputs are applied to the natural resource stock to produce a flow of output. In addition, 
there are often multiple resource stocks, corresponding to different species, with a mobile 
stock of capital that can exploit one or more of these stocks (Gréboval and Munro, 1999; 
Kirkley and Squires, 1999; FAO, 1998b). In turn, this leads to three unique issues: (1) 
multiple stocks of capital and the resource; (2) that of aggregation or how to define the 
industry and resource stocks to consider; and (3), that of latent capacity or how to include 
stocks of capital that are currently inactive or exploit the resource stock only at low levels of 
variable input utilization. In fishing industries, the current stock and flow of catch frequently 
differs from a sustainable target or reference stock and flow level (such as a Total Allowable 
Catch or TAC), so that different measures of capacity and excess capacity correspond to 
current and target resource conditions and intermediate states. Because most fisheries are 
multiproduct due to multiple species or product forms and may employ multiple stocks of 
capital, measures of capacity must contend with the corresponding special issues. Finally, in 
many fisheries, such as artisanal or in isolated regions, labour may be immobile and 
overemployed. The stock of labour may then form a fixed factor and the definition and 
measurement of capacity is extended to include this additional fixed factor (Gréboval and 
Munro, 1999). 

The widespread use of industry output quotas corresponding to target resource flows, 
such as TACs, leads to a distinction between input- and output-oriented measures (Kirkley 
and Squires, 1999). When there is a TAC, an input-oriented measure considers how inputs 
may be reduced relative to a desired output level. An output-oriented measure indicates how 
output could be expanded to reach the maximum possible output level, given the capital stock 
and full variable input utilization. Both the corresponding input- and output-oriented measures 
of excess capacity can help design vessel decommissioning schemes such as a vessel buyback 
programme.

The balance of the paper is organized as follows. Section 2 reviews the literature on 
fishing capacity and provides a definition consistent with economic theory. Section 3 
discusses measurement of capacity in fishing industries. Section 4 provides concluding 
remarks.
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2. FISHING CAPACITY 

2.1 Fisheries literature review 

The concept of fishing capacity has been used in a number of ways in the scholarly 
fisheries and governmental grey literatures and in fisheries management, but in its most 
widespread usage is equated with the capital stock (Kirkley and Squires, 1999). Specifically, 
fishing capacity is conceived as the maximum available capital stock in a fishery that is fully 
utilized at the maximum technical efficiency in a given time period given resource and market 
conditions. Capacity reduction then becomes reduction of the capital stock in a fishery or 
fleet. In short, the discussion of capacity and capacity utilization in the literature is often 
actually of capital and capital utilization, so that the primary focus of concern is the optimum 
utilization of capital.5 Some of the names given to this concept include available fishing 
effort, effort capacity, harvest capacity, maximum effort utilization, maximum potential 
effort, and potential fishing capacity. 

This approach equates fishing capacity with fishing power, but not the concept of 
fishing power developed by Garstang in the latter part of the 19th century (Garstang, 1900; 
Smith, 1994) and refined by Gulland (1956), Beverton and Holt (1957), and others.6 That is, 
fishing power is not conceived in terms of relative catch rates per unit of time. Instead, fishing 
power is considered to measure the potential ability of a vessel to catch fish, where this 
potential is measured in terms of average vessel characteristics (see Taylor and Prochaska, 
1985; Hilborn and Waters, 1992; Valatin, 1992). Hence, fishing capacity is equated with the 
heterogeneous capital stock available to the fishery. Fishing effort then denotes the product of 
the fishing power (capital stock) and the amount of time spent fishing, giving a flow of capital 
services.7 Capacity utilization is related to one of the variants of the neoclassical economics 
concept of capital utilization, discussed by Hulten (1990), as the ratio of capital services to the 
stock of capital. The second, and less widely adopted, specification of fishing capacity as 
capital stock directly accounts for fishing time, and capacity becomes a flow measure.

Equating the capital stock and capital utilization to capacity and capacity utilization 
implicitly assumes a linear relationship between the capital stock and capacity and the two 
corresponding utilization rates.8 These measures coincide only if there is but one fixed input 

                                                
5 Capital utilization captures how much of the existing capital stock is being used and capacity utilization 
provides information about short-run versus long-run equilibrium and economic incentives for investment and 
disinvestment. Capital utilization has been defined as the ratio of the desired capital stock (given output quantity 
and input prices) to the actual capital stock (Berndt, 1990; Färe et. al., 1994). An alternative definition of capital 
utilization is the ratio of capital services to the stock of capital (Schworm, 1977; Hulten, 1990). The idea of 
capacity is sometimes developed in the context of capital utilization rather than capacity utilization, directly 
implying that capital is the only important fixed input (Morrison, 1993). However, since capacity utilization 
reflects overall firm behavior, it depends on all fixed factors facing firms rather only a given amount of capital. 
Moreover, the capital stock may itself be heterogeneous rather than homogeneous. 
6 Garstang (1900) developed the notion of fishing power to measure relative efficiency between gear and vessel 
types and over time, based on total annual catch (Smith, 1994). Garstand tried to account for the greater relative 
efficiency of one type of fishing gear compared to another. In the process, Garstand developed the procedure of 
standardization. Gulland (1956) and Beverton and Holt (1957) and others subsequently further developed the 
notion. 
7 The heterogeneous capital stock is frequently aggregated into a single composite measure or measured by a 
single proxy variable, such as vessel size or numbers. 
8 As was noted in the TWG, this corresponds to a constant q (catchability coefficient) in the population biology 
model. Moreover, the vast bulk of the bioeconomics literature is actually concerned with capital utilization and 
optimal capital stock even though the term capacity is frequently employed; this literature also implicitly equates 
capital with capacity.
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(a single stock of capital), all variable inputs are in fixed proportions to the fixed input, and if 
production is characterized by constant returns to scale (Berndt, 1990; Berndt and Fuss, 
1989). Thus, given a constant optimal capital-output ratio g = Kt/Yt

*, capacity output Yt
* can

be expected to vary directly with the observed capital stock Kt (Berndt, 1990). 

Fishing capacity has been conceived in other ways besides the capital stock, most 
notably maximum potential catch (Kirkley and Squires, 1999). There are several approaches 
discussed in the fisheries literature to measure maximum potential catch: (1) fleet hold 
capacity; (2) the peak-to-peak method; (3) maximum sustainable yield; and (4) fishing 
mortality. In some instances, the impact of various regulations or fishery management 
measures are considered, and in other instances they are not. 

Economic measures of capacity have received substantially less attention than 
engineering-technological measures (Kirkley and Squires, 1999). Economic notions of 
capacity define output as the economic optimum when outputs are freely varied or correspond 
to a target level (such as total allowable catches, or TACs) or are exogenously determined in 
some other manner given one or more quasi-fixed or fixed inputs.9 In the fisheries literature, 
gross proceeds, measuring total output, have been suggested. When TACs are taken as given, 
the focus has shifted to examining the optimal fleet size rather than the maximum potential 
catch level, often using linear programming. Break-even analysis has also been used, where 
excess capacity can be defined as the reduction in fleet size required to provide a break-even 
catch level to the remaining vessels. Duality-based econometric estimates of economic 
capacity and capacity utilization, as developed by Berndt and Morrison (1981), Morrison 
(1985a, 1985b and 1986), and Nelson (1989), have been used on a limited basis.10

2.2 Capacity and capacity utilization 

Capacity is a short-run concept, where firms and industry face short-run constraints, 
such as the stock of capital or other fixed inputs, existing regulations, the state of technology, 
and other technological constraints.11 Johansen (1968: p. 52) defined capacity for the 
technological-engineering approach as, “...the maximum amount that can be produced per 

unit of time with existing plant and equipment, provided the availability of variable factors of 

production is not restricted.” Capacity output thus represents the maximum level of 
production the fixed inputs are capable of supporting. This concept of capacity generally 
conforms to that of a full-input point on a production function, with the qualification that 
capacity represents a realistically sustainable maximum level of output rather than some 
higher unsustainable short-term maximum (Klein and Long, 1973). This approach gives an 
endogenous output and incorporates the firm’s ex ante short-run optimization behaviour for 
the production technology (given full utilization of the variable inputs). This approach does 

                                                
9 Quasi-fixed inputs are factors of production that can be adjusted in a time period, the short-run, but will not be 
adjusted all the way to the equilibrium level because of constraints such as adjustment costs. 
10 These studies include Squires (1987), Dupont (1990), Segerson and Squires (1990, 1992), Squires and Kirkley 
(1996), and Weninger and Just (1997). 
11 Capacity output and capacity utilization are inherently short-run concepts since the capital stock is fixed in the 
short-run, so that optimal short-run output might differ from that in a steady-state, long-run equilibrium 
(Morrison, 1985a, 1985b). However, the optimal capital stock or capacity decision is a long-run concept, and as 
the firm adjusts its capital stock to the long-run, steady-state optimum, capacity output adjusts to the new short-
run optimal level (Nelson, 1989). If all inputs are completely variable, the problem of capacity, as such, does not 
exist; available inputs will be utilized in terms of their most effective long-run equilibrium mixes and a given 
capacity is not defined, and full utilization B in an economic sense B of available inputs will be the norm 
(Morrison, 1993). 
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not directly capture the influences of changes in economic variables and is not based on 
economic optimization. 

In fisheries, we actually consider the maximum potential nominal catch or maximal 
level of landings.  Rarely is it possible to know what is actually caught and discarded at sea.  
The maximum potential catch in fisheries is the maximal or expected harvest that fishing 
effort is capable of producing given the observed capital stock, other vessel characteristics, 
the state of technology, and the resource stock (Kirkley and Squires, 1999). The definition 
adopted by the TWG Break-Out Group is (FAO, 1998b). Fishing capacity is the maximum 
amount of fish over a period of time (year, season) that can be produced by a fishing fleet if 
fully-utilized, given the biomass and age structure of the fish stock and the present state of the 
technology. Fishing capacity is the ability of a vessel or fleet of vessels to catch fish. This 
definition was adopted by the United States National Marine Fisheries Service and a very 
closely related one was adopted by the United States Congressional Task Force. 

A second basic approach to capacity explicitly builds upon an economic foundation 
(Morrison, 1985a). Capacity can be defined as that output pertaining to one of two economic 
optimums: (1) the tangency of the short- and long-run average cost curves (Chenery, 1952; 
Klein, 1960; Friedman, 1963), so that the firm is in long-run equilibrium with respect to its 
use of capital, or (2), the tangency of the long-run average cost curve with minimum short-run 
average total cost curve (Cassel, 1937; Hickman, 1964); these measures coincide for a linear 
homogeneous technology. These capacity output levels are in steady state in that the firm 
does not have an incentive to change output levels provided that input prices, stocks of fixed 
inputs, and state of technology remain constant (Morrison, 1985a). Berndt and Morrison 
(1981), Berndt and Fuss (1986), Hulten (1986), Morrison (1985a, 1985b, and 1986) and 
Nelson (1989) developed the dual approach with exogenous output, which measures the cost 
gap when actual output differs from capacity output.12 This cost-minimizing economic 
approach, in which outputs are exogenous, neatly fits the widespread application of TACs in 
fisheries, where the output level is exogenously defined by population biologists.13 The use of 
exogenous output contrasts with the endogenous output of the output-oriented technological-
engineering approach. The economic approach requires cost data, which hinders its 
applicability on a widespread and consistent basis in fisheries. 

                                                
12 It may be deemed dual because it does not directly compare physical output levels. Instead, it captures the cost 
gap when the actual output differs from capacity. This cost gap of disequilibrium is measured not by the 
differences in actual and capacity output levels, but by the difference between the firm's implicit marginal 
valuation (shadow price) of its capital stock and the rental or services price of that capital stock. The dual CU 
measure contains information on the difference between the current short-run (temporary) equilibrium and the 
long-run equilibrium in terms of the implicit costs of divergence from long-run equilibrium. The firm's optimal 
capital stock can be derived given the firms observed output or capacity output can be derived given the existing 
capital stock. The primal economic capacity utilization measures capture the output gap that exists when actual 
output differs from capacity output but is calculated from a cost function (Morrison, 1985a, 1985b). In addition, 
Segerson and Squires (1992), Squires (1994), Squires and Kirkley (1996), and Weninger and Just (1997) 
consider CU under quotas and rations, where Weninger and Just (1997) should be referred to as the last word. 
13 The economic approach to capacity and capacity utilization was extended to endogenous outputs and profit 
maximization by Squires (1987), Segerson and Squires (1990, 1992), and Kim (1999) and to revenue 
maximization by Segerson and Squires (1992, 1995). The use of endogenous output gives a profit- or revenue-
maximizing optimal output and incorporates the firm's ex ante optimization behavior, including demand 
information through product prices. Capacity output is then defined as the output for which the current capital 
stock is optimal, i.e. the output level corresponding to the tangency of the short and long-run average cost 
curves. The optimal and capacity output levels can differ, since optimal output corresponds to the equality of 
short-run marginal cost and marginal revenue. Capacity utilization corresponds to the ratio of observed output to 
capacity output, and measures the effects of current operations on capacity. Optimal capacity utilization 
corresponds to the ratio of optimal output to capacity output (Kim, 1999). 
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Capacity utilization (CU) represents the proportion of available capacity that is 
utilized, and is usually defined as the ratio of actual output to some measure of capacity 
output (Morrison, 1985a, 1985b; Nelson, 1989). In the technological-engineering approach 
that was adopted by FAO, NMFS (1998), and the United States Congressional Task Force, 
full CU represents full capacity and the value of CU cannot exceed one (1). A CU value less 
than one indicates that firms have the potential for greater production without having to incur 
major expenditures for new capital or equipment (Klein and Summers, 1960). 

CU can be measured in two different ways with the technological-engineering 
approach. CU can be measured as the ratio of observed output to capacity output, which is the 
standard approach. When TACs are used, observed output and the industry level is the TAC. 
CU can also be measured as the ratio of technically efficient output to capacity (Färe et al.,

1994). The latter definition corrects for any bias that could otherwise arise from technical 
inefficiency. That is, the technological-engineering measure of capacity is made with full 
technical efficiency, so that the ratio of technically efficient output to capacity is consistent in 
that both numerator and denominator are technically efficient output levels. In contrast, the 
ratio of observed output to capacity contains a numerator that may be technically inefficient 
and a denominator that is technically efficient. In turn, this may provide a capacity utilization 
measure that combines both deviations from full technical efficiency and full capacity. 

2.3 Two stocks: capital and resource 

In the short-run of stock-flow production processes in natural resource industries, two 
types of stocks are paramount, the stock of capital and the natural resource stock (and in some 
instances, the stock of labour). The resource stock is often specified as another type of capital 
stock (in which case, capacity and capacity utilization can be indeterminate, a topic we turn to 
in greater detail below). When resource stocks are specified as another type of capital stock, 
they can be treated as either discretionary or nondiscretionary inputs.14 The resource stocks 
may best be treated as nondiscretionary. Resource stock levels lie beyond the control of the 
vessel captain. Nonetheless, the vessel captain has the option of selecting when and where to 
fish, which provides some control of the resource level available for harvesting. Calculation 
of capacity and technical efficiency with discretionary or nondiscretionary inputs is 
straightforward (Charnes et al., 1994).

The resource stock can also be specified as a technological constraint rather than as a 
fixed factor (in which case the above indeterminancy problem does not arise). Different levels 
of the resource stock shift the production frontier or cost curve up or down, and can even twist 
their shapes depending on whether or not there are Hicks-neutral or biased relationships 
between the resource stock and production technology. 

Capacity with either specification of the natural resource stock must contend with both 
of these stocks changing over time, not simply the capital stock. Five basic combinations of 
these stocks are possible, the existing capital and natural resource stock levels, one at the 
long-run equilibrium level and the other not, both at the long-run equilibrium levels, or one or 
both at future levels that differ from the current and long-run steady-state equilibriums; this 
allows for the transition path between the current stock levels and the long-run optimum. 
Moreover, in almost all fishing industries, some target level of output maintains the resource 

                                                
14 A nondiscretionary output is an output whose production is not under the control of management (Charnes et

al., 1994). A nondiscretionary input is an input whose level or utilization is not under the control of 
management. It corresponds to a quasi-fixed or fixed factor of production. It may also be viewed as a minimum 
required level of an essential variable input. 
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stock at the desired level, which might be a TAC. Capacity can be defined and evaluated with 
the resource stock at existing or long-run equilibrium levels. 

2.4 Excess capacity 

In fisheries and other renewable resource industries, excess capacity15 should ideally 
be defined relative to some biological or bio-socio-economic reference point that accounts for 
sustainable resource use. To appropriately set the target capacity, it is necessary to specify a 
target resource stock size. The TWG recommended that the target level of output be evaluated 
at both the current and target stock sizes (FAO, 1998b). 

In practice, the long-range target, such as the long-run steady-state optimum, may be 
difficult to estimate, so that the most important objective is to develop a capacity management 
strategy that moves in the right direction.16 It is important to determine the magnitude of the 
difference between current and target capacity to determine severity of problem, and the 
appropriate step size in the future. As the fleet moves along the adjustment path towards a 
preliminary target estimate, accumulation of knowledge and a better indication of changes in 
technology and other factors may result in continual updating of the ultimate target.17

Excess capacity, in an output-oriented approach, can be defined as the difference 
between capacity output and desired or target level of capacity output, such as the TAC 
(OECD, 1997, Kirkley and Squires, 1999, FAO, 1998b).18 The target level of output was 
defined by the TWG as (FAO, 1998b), “… [t]arget fishing capacity is the maximum amount 

of fish over a period of time (year, season) that can be produced by a fishing fleet if fully 

utilized while satisfying fishery management objectives designed to ensure sustainable 

fisheries...".19 The TWG observed that current and target capacity need to be evaluated and 
compared relative to the same stock size (FAO, 1998b).

Excess capacity, in an input-oriented approach, starts with a TAC (either current or 
long-term projection) and determines how many of each vessel type would catch this TAC, 
then compares to current fleet size, given full utilization of the variable inputs and the 

                                                
15 Excess capacity differs from overcapitalization. Excess capacity refers to the excess use of inputs, including 
labour and capital, to produce a potential output, whereas overcapitalization refers to the excessive use of only 
capital. Overcapacity and overcapitalization are usually equated because of the standard use of a single 
composite input, fishing effort, which in turn is equated to the capital stock and capital utilization. 
16 The optimal capital stock, capacity, and resource stock decisions are ultimately long-run in nature, with 
optimal levels in some very long-run, steady-state equilibrium, and new short-run optimal positions 
corresponding to intermediate stages along some approach path to this optimum.
17 See Stone (1997: p. 513). However, there is little consensus on what would constitute the “right” capacity, or 
the “right” level of inputs, against which excess capacity should be measured. For instance, the safe catch level 
for any stock is always controversial and fluctuates from year to year. In light of the uncertainties, it is not clear 
what level of fishing activity will net the “right” catch. The fact that fishing capacity is an artifact of regulation 
complicates the definition of “excess”. It is unclear how much of the “overcapacity” is an economically rational 
response to (suboptimal) regulation. Wilen (1979) made the same points. A related issue is the peak load 
problem. A fluctuating and stochastic resource generates periods when sufficient investment is desired to harvest 
this fluctuating capacity but in other periods ostensibly appears as excess. See Hannesson (1993) for a fisheries 
discussion.
18 The OECD Fisheries Committee (1997) defined excess fishing capacity as in excess of the minimum amount 
required to harvest the desired quantity of fish at the least cost. 
19 This definition directly corresponds to the engineering-technological definition of capacity and excess 
capacity. Nonetheless, it can be readily extended to allow for an economic or socio-economic optimum and the 
corresponding definitions of capacity and CU. 
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resource stock. The maximum that a given fleet could potentially catch divided by the target 
TAC is a measure of excess capacity.20

Optimal capacity, if defined, can be better defined as a range rather than a specific 
quantity or metric (FAO, 1998b). Optimal can be specified relative to outer boundaries. 
According to paragraph 7 of Annex II of the Straddling Stocks Agreement, the minimum 
standard for a biological reference point should be the fishing mortality rate that generates 
maximum sustainable yield. The capacity corresponding to a resource stock beyond this 
mortality rate limit is an upper bound on optimal or target capacity. The following definition 
for “limit” capacity conforms to the direction in which international law is developing: Limit 
capacity is the maximum amount of fish that can be produced on a sustainable basis by a 
fully-utilized fleet. Thus, the limit capacity corresponds to MSY (FAO, 1998b: para 68). 

2.5 The measurement of capacity and the natural resource stock 

In fisheries and other renewable resource industries with stock-flow production 
processes, capacity can be measured conditional upon the size and composition (e.g. age 
structure, species, and density) of the resource stock or without the resource stock. When 
capacity is measured conditional upon the size and composition of the resource stock, it is a 
measure of the maximum potential output that could be produced at given resource stock 
levels, where the resource stock abundance also sets an upper limit on output in the stock-
flow production technology. When capacity is defined without the resource stock, it provides 
a measure of the potential output that could be produced in the absence of resource 
constraints, such as after a resource stock as begun rebuilding beyond the current depleted 
level.

Whether or not to include resource abundance in a measurement of capacity depends 
upon the information desired by resource managers. In turn, this often depends on the time 
frame of concern. Inclusion of the resource stock gives greater fixity to capacity output and 
provides information pointed towards policy questions dealing with current resource stock 
levels, i.e. with short-run conditions. When capacity is calculated conditional on available 
resource abundance, the capacity measure is not truly indicative of the total potential catch a 
fishing operation or vessel could harvest when constrained by current resource conditions 
(which could be very low and restrictive). In contrast, exclusion of the resource stock in 
capacity measures pertains to a longer-term period when current resource conditions – say of 
a depleted stock – do not limit capacity. When resource managers seek information about 
capacity for the purpose of reducing overall harvesting capacity and achieving medium or 
long-term harvest goals, capacity should be assessed without the inclusion of resource levels, 
or as discussed in the previous section, at a target resource stock size. 

Including the resource in the assessment of capacity makes it possible to determine 
whether or not certain levels of resource abundance rather than the fixed inputs limit the 
harvest.  In this latter case, capacity is calculated with and without the resource abundance.  If 
the capacity output with abundance included equals capacity output with abundance excluded 
from the analysis, the fixed factors and not resource abundance are constraining production.

                                                
20 The TAC does not necessarily (and almost always does not) correspond to an economic or socio-economic 
optimum. However, in practice fisheries use TACs that correspond to solely biological objectives and limited 
ones at that, since they do not generally incorporate multispecies and ecosystems concerns. 
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2.6 Full utilization of variable inputs 

Capacity output (in the technological-engineering approach) is the level of output 
attainable by fully employing or full utilization of the variable factors of production, given the 
current technology and keeping fixed factors at their current levels. This raises the question of 
defining the full-employment or full utilization level of variable inputs (Corrado and Mattey, 
1998; Morrison, 1993). For example, is the capacity of a plant (e.g. fishing vessels) and 
equipment (e.g. nets, winches, engines) determined by the production of this plant and 
equipment operating throughout the day or season or year, and should downtime for repair 
and maintenance, offloading, institutional constraints such as holidays, and the like be 
considered?

The answer varies by the type of technology and institutional factors that constitute 
issues such as normal downtime (Corrado and Mattey, 1998).21 Short-run output varies with 
technology type in different ways according to duration and intensity or speed of operations. 

Fishing vessels operate a stock-flow production technology with relatively continuous 
production punctuated by transit times to and from port to offload the catch, for repair and 
maintenance, and time with families. Catch from this stock-flow production process is also 
subject to resource availability and weather conditions, which vary by season and even over 
longer annual and decadal cycles. Maximum catch – given the fishing grounds and resource 
stock (abundance, age distribution, density, species mix), weather, other technological 
constraints, fishing skill, and the plant and equipment – varies with the length of time the gear 
is in the water, i.e. duration. Over a year, the length of time the net is in the water depends on 
institutionally derived downtime and markets. Moreover, as resource availability, species 
abundance, and weather temporally varies, maximum catch and its product mix from this 
stock-flow production process varies, given any full utilization of variable inputs and plant 
and equipment. The intensity or speed of operation in fisheries is of lesser or no importance, 
since biological conditions dictate speed of operation such as tow rates or soaking time for 
passive gear. To the extent processing constrains intensity, when harvesting and processing 
are vertically integrated into one production process at sea, then intensity plays a larger role in 
defining full utilization of variable inputs. Finally, maximum catch and full utilization of 
variable inputs differ from full utilization of the resource stock, and maximum catch and full 
utilization of variable inputs at any time face an upper bound dictated by the resource stock, 
weather, and other technological constraints imposed by the environment. 

2.7 Latent capacity 

The definition and measurement of capacity and capacity utilization depends on the 
universe of active participants, i.e. which firms to include in the industry. The definition of 
the participating firms in a fishing industry is complicated because of the great mobility of 
vessels – the capital stock. Most fishing industries have a core of active participants, where 
some are more active than others. However, there are often potential participants that fish 
elsewhere or on other species that are currently inactive, or active only at low levels of 

                                                
21 The definition of full utilization or full employment of variable factors is closely related to the capital 
utilization literature. For example, Betancourt (1986) refers to capital utilization as the duration of operations of 
productive processes. Bosworth and Dawkins (1983) refer to capital utilization as the timing of input flows and 
in particular to shift work and overtime. Betancourt (1986) observed that the utilization of equipment over a 
given time period can be varied along two dimensions, duration and intensity (speed). The speed of operations is 
typically assumed constant and variations in utilization come through variations in duration over a given time 
period. 
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variable input utilization, but which could suddenly actively participate if resource stock or 
market conditions or regulations change. The property rights structure (e.g. open access or 
regulated open access such as limited entry) and other regulations (e.g. TACs) affect the 
number of potential participants. The number of potential participants and the duration and 
intensity of operations of potential and existing participants leads to the issue of latent 
capacity. Latent capacity could be estimated attributing the full variable input utilization rates 
of active participants to the currently partially or fully inactive participants and using their 
capital stock information, for which there is quite frequently information (e.g. vessel size 
from permit files). 

2.8 Multiple outputs and heterogeneous capital stock 

Measurement of fishing capacity needs to take account of multiple species or outputs 
and multiple resource stocks. When there are multiple outputs and production is joint-in-
outputs, a problem arises because a primal (output-based) scalar measure of output does not 
generally exist except under the restrictive conditions of homothetic output separability or 
changes in outputs in constant proportions giving a ray measure (Segerson and Squires, 
1990).22 When production is non-joint in inputs, measures of capacity and CU can be formed 
for each separate production process. 

Even though theoretical constraints militate against a fully theoretically satisfactory 
primal measure of capacity and CU in multispecies fisheries with joint production, even with 
only a single stock of capital, policy makers must still form policies to manage capacity. 
Moreover, multispecies fisheries, especially those in the temperate latitudes, are usually 
managed on a species-by-species basis, leading policy makers to want capacity and CU 
measures on a corresponding species-by-species basis.  For instance, fishery managers in the 
New England groundfish fishery separately manage cod, haddock, and other species.

In these instances, partial capacity and CU measures, denoted yi
* and CUi, can be 

formed (Segerson and Squires, 1990). yi
* provides the capacity level of output for the ith

product given the actual output levels for all other products (as well as the stock of capital, 
input prices, the state of technology, and resource stocks). CUi is correspondingly defined as 
CUi = yi

* /yi for any given i. The numerical value of this CU measure will vary across 
products, and therefore it is not unique for a given firm. Nonetheless, under certain 
conditions, it might be possible to form a consistent partial CU measure.23 Consistency of the 

                                                
22 A consistent scalar measure of output in multiproduct firms exists if all outputs are homothetically separable 
from inputs, and a direct analogue of the single-product primal measure of capacity and CU can be developed for 
the multiproduct firm (Segerson and Squires, 1990). When the technology is not homothetically separable, 
Segerson and Squires (1990) suggest two alternative ways of defining a primal CU measure: (1) outputs move 
along a ray, giving a ray measure of capacity and CU and (2) only output adjusts, giving a partial measure of 
capacity and CU. 
23 For the economic definition of capacity, let the firm's variable cost function be given by G(y,w,K), where y is 
a vector of outputs, w is the vector of variable input prices, and K represents one input that is quasi-fixed. Let 

G/ yi = Gi and  2G/ yi K =  GiK . Then from Theorem 1 of Segerson and Squires (1990), if GiK < 1 i,

exactly one of the following holds: (1) CUi > 1 for all i; (2) CUi < 1 for all i; or (3) CUi = 1 for all i. Given the 
levels of all other outputs, if yi < yi

*, then -GK < PK (where PK denotes the rental or services price of K) and there 
is an incentive to disinvest, i.e. capacity is underutilized. This holds true regardless of the product considered, i.e. 
which one is allowed to adjust to equate the shadow value and the price of capital K. Thus, the question of 
whether the firm faces expansionary or contractionary forces has the same answer regardless of which product is 
used to measure capacity utilization (Segerson and Squires, 1990). The full CU measure = 1 implies CUi = 1 for 
all i. Finally, the partial and full CU measures could converge at different rates (e.g. if costs are relatively 
insensitive to changes in output). 
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partial CU measure when applying the technological-engineering approach and a single stock 
of capital has yet to be evaluated in the literature.

When there are both multiple outputs and multiple (quasi-) fixed factors, measures of 
capacity and CU become problematic (Berndt and Fuss, 1986).24 However, in fisheries and 
other natural resource industries with stock-flow production technologies, and when the 
resource stock is conceived of as natural capital stock (i.e. as quasi-fixed or fixed inputs), 
capacity and CU can be found recognizing that these are short-run. Each species output flows 
from a corresponding resource stock. The estimates of capacity and CU can be made 
conditional upon the existing (or target) resource stocks, given a single stock of man-made 
capital. The resource stocks can alternatively be conceived as technological constraints, like 
the state of technology, and capacity and CU measured conditional upon their levels. Either 
conceptualization of the resource stocks gives equivalent empirical results. When a 
heterogeneous man-made capital stock is considered, the issue of multiple quasi-fixed or 
fixed factors once again raises its head. 

2.9 Multiple fisheries and the level of aggregation 

The issue arises of what capacity to measure when there are multiple fisheries or 
multiple resource stocks harvested by different gear types. In general, multispecies fisheries 
and multiple fisheries can be approached as multiproduct industries (Kirkley and Squires, 
1999; Gréboval and Munro, 1999). The TWG concluded that stock-by-stock, fleet-by-fleet, 
and region-by-region approaches are all required (FAO, 1998b). 

The level of spatial, species, and gear aggregation affects the results. The more 
broadly based the analysis, such as a major regional fishery across all gear types instead of a 
more narrowly defined one, the more the effects of fleet interaction and mobility are 
incorporated. More broadly based analyses might indicate lower or even zero excess capacity, 
since high-value species might show excess capacity relative to MSY but are counter-
balanced by under-capacity relative to MSY lower-value species.25 For example, world-wide, 
many demersal (bottom dwelling) fisheries are generally believed to face excess capacity but 
lower-valued pelagic (surface dwelling) species may face under-capacity (FAO, 1998a).26

                                                
24 With the technological-engineering approach to capacity and a single output for example, CU may equal one, 
seemingly indicating full capacity, but when in fact one fixed factor may be fully utilized, while the other is not. 
Alternatively, in the economic approach to capacity, capacity corresponds to the tangency point of the short- and 
long-run average cost curves, where the short-run average cost curve depends on all fixed factors. This tangency 
occurs when the shadow prices and service/rental prices of each fixed input are each equal, and capacity 
utilization is defined as the output level satisfying the equality of shadow and actual total costs (Morrison, 1993: 
p. 65). Nonetheless, its interpretation can be unclear with multiple fixed factors, since it is possible for capacity 
utilization to equal one (shadow and total costs are the same) even if the actual prices of the fixed factors do not 
equal their shadow values (e.g. if there are offsetting effects). The implications of this for investment incentives 
are unclear, since a unique measure of capacity output may not exist in this context even with only a single 
output (Morrison, 1993: p. 65). 
25 Klein (1960) discussed whether measures of capacity output suffer from aggregation problems. For example, 
capacity outputs for firms might all be increasing and yet industry capacity output may not be consistent with the 
sum of the firm's individual capacity outputs because of, say, downward sloping industry demand, or upward 
sloping supply curves for inputs (Morrison, 1993: p. 72). Moreover, firm-level data can only be aggregated to 
the industry level under very stringent conditions (van Daal and Merkies, 1984; Morrison, 1993: Chapter 10). 
26 Production from most of the high-value species, and from demersal stocks in particular, has levelled off since 
the mid-1970s, with the world-wide growth in landings since then, except for tuna and cephalopods, accounted 
for by increased landings of lower-value species, much of which are reduced to fish meal (FAO, 1998b). The 
recent global analysis by Grainger and Garcia (1996) indicates that about 40 percent of the global resource stock, 
often of lower value, may have allowed for increased catch. 
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Highly aggregated analyses, such as global or regional, might best describe the issue 
and indicate approximate orders of magnitude, whereas capacity management might best be 
served by disaggregated analyses with finer resolution (FAO, 1998a). Aggregated analyses 
may also be relevant for highly mobile tuna stocks and fisheries, but not efficacious across 
fishing areas or fisheries that are spatially distinct or sufficiently technologically distinct 
(FAO, 1998a). 

3. MEASURING FISHING CAPACITY 

There are a number of approaches to assess fishing capacity. The two most promising 
approaches for widespread, tractable application correspond to the technological-economic 
definition that focuses upon capacity output and does not require cost data. This best serve the 
current FAO-led efforts to globally manage fishing capacity and the requirements of member 
nations to develop national capacity management plans. Both approaches are nonparametric 
in that they do not entail statistical analysis. These are the peak-to-peak method of Klein 
(1960), and output- and input-oriented data envelopment analysis (DEA) approach developed 
by Färe et al. (1989, 1994) and proposed for fisheries by Kirkley and Squires (1999). 

The peak-to-peak approach is best suited when data are especially parsimonious, such 
as when the data are limited to catch and vessel numbers.27 The approach permits determining 
the capacity output and the potential level of capital which might be targeted for reduction in 
decommissioning schemes, although it does not provide any information to indicate the actual 
operating units to be decommissioned (Kirkley and Squires, 1999). Ballard and Roberts 
(1977) and Garcia and Newton (1997) are the most prominent applications of the peak-to-
peak method in fisheries.

The stochastic production frontier provides another option, since it gives the 
maximum possible output (Kalirajan and Salim, 1997; Kirkley and Squires, 1999). To 
conform to the technological-engineering approach to capacity, the frontier should be 
estimated with the stock, not the flow, of capital and with full utilization of variable inputs, 
not the observed level of use. The stochastic frontier approach does not readily accommodate 
multiple outputs. 

3.1 Data envelopment analysis 

DEA is a nonparametric or mathematical programming technique to determine 
optimal solutions given a set of constraints (Charnes et al., 1994). DEA can be used to 
calculate capacity and CU using the approach of Färe et al. (1989, 1994).28 The DEA 

                                                
27 The peak-to-peak method (also called trend line through peaks, Klein and Long, 1973) defines capacity by 
estimating the observed relationship between catch and fleet size. Periods with the highest ratio of catch to the 
capital stock provide measures of full capacity (maximum attainable output). Estimates of maximum attainable 
output for the most recent years are obtained by extrapolating the most recent output-capital peak and 
multiplying by the capital stock in the selected recent years. Capacity output is compared to actual output levels 
in different time periods to give measures of CU. Catch levels in all years can be adjusted for productivity levels. 
The method is most seriously limited by the problem that vessel tonnage or numbers are only a rough measure of 
capital stock, the analysis ignores other economic inputs (it essentially utilizes the average productivity of 
capital), and it ignores differences across gear types (which can change over time). Ballard and Roberts (1977), 
Garcia and Newton (1997), and Kirkley and Squires (1999) give further discussion, including its weaknesses. 
28 Klein and Long (1973: p. 746) describe an earlier approach using linear programming to measure the 
technological-engineering definition of capacity, “... as the bottleneck point in expansion along a given ray 

corresponding to a fixed product mix.” When one product hits such a bottleneck, all others dependent on it for 
intermediate input are restricted at less than full CU. This provides a maximum output point while preserving a 
given product mix. 
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approach determines the maximal or capacity output given that the variable factors are 
unbounded or unrestrained and only the fixed factors and state of technology constrain output. 
Based on an output orientation (i.e. output is allowed to change while inputs are held 
constant), capacity output is determined by solving a simple linear programming problem. 
The maximum possible output or capacity corresponds to the output which could be produced 
given full and efficient utilization of variable inputs, but constrained by the fixed factors, the 
state of technology, and when included, the resource stock.

The difference between observed and frontier output gives the excess capacity for that 
resource stock in an output-oriented approach, but may be biased downward because of the 
possible inefficiency in production.  In many fisheries, however, observed output is usually 
the TAC. Thus, both measures of excess capacity should be considered. 

DEA has several unique advantages (Kirkley and Squires, 1999). DEA can estimate 
capacity under constraints including TACs, by-catch (incidental catch of species other than 
those intended), regional and/or size distributions of vessels, restrictions on fishing time, and 
socio-economic concerns such as minimum employment levels. DEA readily accommodates 
multiple outputs and multiple inputs, zero-valued output levels, and nondiscretionary inputs 
and outputs. DEA can also determine the maximum potential level of effort or variable inputs 
in general and their optimal utilization rate. The analysis accepts virtually all data 
possibilities, ranging from the most parsimonious (catch levels, number of trips, and vessel 
numbers) to the most complete (a full suite of cost data). With cost data, DEA can be used to 
estimate the least-cost (cost minimizing) number of vessels and fleet configuration. It can also 
measure capacity to any desired biomass or TAC. DEA also allows both the input- and 
output-oriented approach. 

The DEA approach to capacity measurement effectively converts the multiple 
products into a single composite output because there is a radial expansion of outputs (outputs 
are in fixed proportions for different input levels). This gives the ray measure of capacity and 
CU considered by Segerson and Squires (1990, 1992, and 1995), and implicitly imposes 
Leontief separability among the outputs. 

The heterogeneous capital stock represents multiple quasi-fixed or fixed factors.29 By 
specifying a heterogeneous capital stock, the specification does not necessarily a priori

denote any individual piece of capital as binding or fully utilized, and in fact, not all fixed 
factors necessarily will bind. Instead, the data can determine the individual component of the 
heterogeneous capital stock that binds on a firm-by-firm basis. For instance, the vessel length 
might bind for one firm while engine horsepower might bind for another firm. 

In two different ways, the DEA approach effectively converts the heterogeneous 
capital stock (multiple fixed or quasi-fixed factors) into a single measure of the capital stock 
(composite factor) to solve the indeterminancy problem raised by Berndt and Fuss (1986). 
First, when the DEA measure of capacity is output-oriented, i.e. the maximum output given 
(quasi-) fixed inputs, the (quasi-) fixed inputs or heterogeneous capital stock are held constant 
at observed levels, and as discussed above, that individual component of the heterogeneous 
capital stock that is fully utilized (binding) is the individual capital stock that determines 
capacity. Second, and perhaps more importantly, the DEA measure of capacity entails a radial 

                                                
29 These factors can be captured by different proxy variables, each of which measures one of the capital 
components. These proxy variables can include those that resource managers denote as most important at 
capturing production and which are most easily regulated, such as vessel length or gross registered tonnage and 
main engine horsepower. 
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expansion of outputs and inputs, that is, outputs are in fixed proportions for any output levels 
and inputs are in fixed proportions for any input levels. When (quasi-) fixed inputs are in 
fixed proportions, an aggregate fixed input or capital stock is formed (Leontief separability). 
This effectively converts the multiple (quasi-) fixed factors into a composite measure. 

Other issues that could be considered within the DEA framework include calculation 
of capacity output under various by-catch mitigation or habitat restoration policies. Adding 
by-catch simply requires reformulating the problem such that by-catch is treated as an 
undesirable output; this requires subvector disposability constraints.30

3.2. DEA and vessel decommissioning 

Capacity reduction programmes are conceived in terms of reducing vessel numbers 
and the associated fishing power, such as for example, through vessel buybacks. The target 
capacity level, such as TAC, needs to be directly and explicitly linked to the appropriate and 
superfluous numbers of vessels and their composition (vessel sizes, regional distribution, 
engine power, gear type, and so forth). 

The need for vessel decommissioning in capacity reduction programmes can be 
directly addressed using the DEA approach (Kirkley and Squires, 1999). Because DEA can be 
either output- or input-oriented, different aspects of vessel decommissioning can be 
addressed. The input-based measure considers how inputs may be reduced relative to a 
desired output level, such as a TAC.31 Hence, it would allow determining the optimal vessel 
or fleet configuration and actual vessels that should be decommissioned in a fishery 
corresponding to a TAC. The output-based measure indicates how output could be expanded 
to reach the maximum possible output level, given the capital stock and full utilization of 
variable inputs. The output-oriented DEA measure allows fishery managers to identify the 
level of output and vessels which would maximize output subject to given full utilization of 
variable inputs and fixed factors and (optionally) resource constraints. Hence, it can be used 
to identify operating units (individual vessels or vessel size classes) that can be 
decommissioned. By rearranging observations in terms of some criterion, such as capacity by 
region and vessel size class, the number of operating units can be determined by adding the 
capacity of each operating unit until the total reaches the target.32 Moreover, given a TAC, the 
output-based measure could yield a precautionary level of total inputs and vessels that yield 
maximum technical efficiency. 

3.3 The DEA framework 

Following Färe et al. (1989), let there be j = 1,...,J observations or firms in an industry 

producing a scalar output Ru j  by using a vector of inputs Nj Rx . We also assume that 

                                                
30 Disposability generally refers to the ability to stockpile or discard or dispose of unwanted commodities (Färe 
et al., 1994). The private disposal cost distinguishes two types of disposability. Strong disposability refers to the 
ability to dispose of an unwanted commodity with no private cost. Weak disposability refers to the ability to 
dispose of an unwanted commodity at positive private cost. Thus, joint reduction of a bad output entails scaling 
back production of a good output. Strong disposability implies weak disposability but not vice versa. 
31 In an input-oriented approach, an infeasible solution is possible without constant returns to scale. A TAC is the 
target flow from a corresponding resource stock. Unless the resource stock level is in excess of that 
corresponding to the TAC, the resource stock should be held constant as a nondiscretionary input or a 
technological constraint. The variable inputs would be scaled under all circumstances. If the capital stock(s) is 
not scaled back, it should be specified as a nondiscretionary input(s). 
32 The dual economic measures of CU allow direct estimation of the optimal number of vessels corresponding to 
the TAC. 
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used by some firm. The second assumption indicates that each firm uses some input. A 
remaining assumption is that each firm produces some output, uj > 0 for all j.

The following output-oriented data envelopment analysis (DEA) problem calculates 
Johansen’s notion of capacity (Färe et al., 1989, 1994): 
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The variable factors are denoted by ˆ , the fixed factors are denoted by  and the zj

define the reference technology. Problem (1) enables full utilization of the variable inputs and 

constrains output with the fixed factors. Moreover, the vector  is a measure of the ratio of the 

optimal use of the variable inputs (Färe et al., 1989, 1994).  gives the capacity utilization 
rate of the nth variable input for the jth firm for xjn > 0, n ˆ . Problem (1) imposes constant 

returns to scale, but it is a simple matter to impose variable returns to scale (i.e. variable 

returns to scale requires the convexity constraint zj=1.

The parameter  is the reciprocal of an output distance function and is an output-

oriented measure of technical efficiency relative to capacity production, 1.0. It provides 

a measure of the possible (radial) increase in output if firms operate efficiently given the fixed 
factors, and their production is not limited by the availability of the variable factors of 
production (e.g. a value of 1.50 indicates that the capacity output equals 1.5 times the current 

observed output). If * denotes an optimum, then *
ju

j equals the maximum amount of uj that

can be produced given observed levels of fixed factors  and full utilization of variable inputs 
ˆ  capacity output for output uj.

The CU measure of observed output divided by capacity output may be downward 
biased because the numerator in the traditional CU measure, observed output, may be 
inefficiently produced. Färe et al. (1989) demonstrate that an unbiased measure of CU may be 
obtained by dividing an output-oriented measure of technical efficiency corresponding to 
observed variable and fixed factor input usage by the technical efficiency measure 
corresponding to capacity output (i.e. the solution to problem (1) in which variable inputs ˆ

are fully utilized).

To obtain a measure of TE corresponding to observed input usage, Färe et al. (1989) 

suggest that TE of the jth firm, ( (xj)), may be obtained as a solution to a linear programming 
problem:
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where the input vector x includes both the fixed and variable inputs. 

Problem (1) provides a measure of TE, 1, which corresponds to full capacity 

production. Problem (2) provides a measure of TE, 2, which corresponds to technically 

efficient production given the usage of the variable inputs. The ratio of the two s, 2/ 1, is an 
unbiased measure of capacity utilization (Färe et al., 1989). Solutions to problems (1) and (2) 
provide estimates of technical efficiency, capacity, capacity utilization, and optimal input 
utilization relative to a best practice frontier.33 The solutions are not indicative of absolute 
efficiency and capacity.

The optimal levels of the fixed factors (which would approximately correspond to the 
long-run level of capacity) can be calculated under constant returns to scale. Alternatively, it 
is possible to assess the optimum levels of the fixed and variable factors that correspond to 
scale efficiency and use those levels as benchmarks for assessing capacity in the long-run. We 
defer these other possible approaches to future research because there is no comparative basis 
upon which to evaluate the corresponding results. More important, though, is that even if the 
approach cannot provide measures of capacity and capacity utilization for the long-run, it can 
still provide measures useful for determining the potential capacity removed with vessel 
reduction programmes. Also, it is highly probable that any capacity reduction programme 
implemented by resource managers would have additional constraints on the existing vessels 
such that capacity would not be allowed to increase in a short to intermediate time period. 

4. CONCLUDING REMARKS 

The economic issue of excess capacity, its biological twin of overfishing, and their 
management are the single dominant issues in world fisheries today. They are currently the 
subject of considerable attention at the national and international levels. Nonetheless, 
considerable confusion has reigned over a definition and a tractable means of measuring 
capacity and excess capacity in fishing industries.

The paper provides both technological-engineering and economic definitions of 
capacity and excess capacity in fishing industries. The paper recommends the technological-
engineering approaches to measuring capacity and excess capacity. Either output- or input-
oriented approaches are possible. The paper provides definitions and a tractable approach to 
measurement using Data Envelopment Analysis.

                                                
33 The variable input utilization rate measures the ratio of optimal variable input usage to actual variable input 
usage, where the optimum variable input usage is that variable input level which gives full technical efficiency at 
the full capacity output level (Färe et al., 1994). If the ratio of the optimum variable input level to the observed 
variable input level exceeds 1.0 in value, there is a shortage of the ith variable input currently employed and the 
firm should expand use of that input. If the ratio is less than 1.0 in value, there is a surplus of the ith variable 
input currently employed and the firm should reduce use of that input. If the ratio equals 1.0, the actual usage of 
the ith variable input equals the optimal usage of the ith variable input.  
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This paper applied the engineering-technological definition of fishing capacity, as the 
short-run maximal output given the capital stock and with and without resource stocks, to the 
Northwest Atlantic sea scallop fishery to estimate capacity in the harvesting sector. The paper 
calculated the excess capacity and corresponding number of vessels that should be removed 
from the fishery to satisfy a target level of fishing capacity and socio-economic goals for the 
distribution of decommissioned vessels. 
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