

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

SUPPORT FOR DEVELOPMENT OF NATIONAL BIOGAS PROGRAMME (FAO/TCP/NEP/4451-T)

BIOGAS TECHNOLOGY:

A TRAINING MANUAL FOR EXTENSION

NEPAL

September 1996

Consolidated Management Services Nepal (P) Ltd. CMS House, Lazimpat, GPO Box # 10872, Kathmandu, Nepal Tel # (977-1) 410 498/421 654, Fax # (977-1) 415 886 E-mail : cmsnepal@cms.wlink.com.np

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

SUPPORT FOR DEVELOPMENT OF NATIONAL BIOGAS PROGRAMME (FAO/TCP/NEP/4451-T)

BIOGAS TECHNOLOGY:

A TRAINING MANUAL FOR EXTENSION

NEPAL

September 1996

Consolidated Management Services Nepal (P) Ltd. CMS House, Lazimpat, GPO Box # 10872, Kathmandu, Nepal Tel # (977-1) 410 498/421 654, Fax # (977-1) 415 886 E-mail : cmsnepal@cms.wlink.com.np

PREFACE

Biogas has proved to be a viable technology in the physical and socio-economic conditions of Nepal. The hydropower generating potential of Nepal is calculated as one of the highest in the world but only about 12 percent of the population is connected to the national electricity grid. The percapita energy consumption is one of the lowest in the world and more than 90 percent of the energy use is in the domestic sector, mainly for cooking. Nepal's agrarian economy is fully dependent on imports for all of its chemical fertilizer, petroleum and coal requirements. The growing population and small scale industries are pushing the use of traditional sources of energy (forest and agricultural waste) beyond the sustainable generation capacity of the existing forest and farm lands. The occurrence of natural calamities such as draughts and floods has become more frequent in the recent past owing to the removal of vegetative cover on the fragile geology of the young mountains. This situation, coupled with the low rate of literacy and low investment capacity, is bringing more and more people into the ever tightening grip of poverty. Amidst all this, the biogas technology has gained popularity in Nepal for its multitudes of benefits. Nepal stands highest in the world in terms of the ratio of biogas plants over the population.

Biogas development in Nepal has remained largely a private sector operation. The role of the government has been limited to provide policy framework and subsidy funds. The Biogas Support Programme (BSP), initiated in 1992 under the Netherlands Development Organization (SNV/N), is the first comprehensive programme implemented in the country which is planned to continue till 2002 in its third phase. BSP started with an attractive subsidy scheme that pushed the annual rate of plant installation beyond the servicing capacity¹ of existing institutions. The "single-agency, single-design" approach of the past has now been modified to "multi-agency, multi-design" approach to benefit more from the potential of private sector and the new designs developed in die neighboring countries. To maintain the high rate of success in the "multi-agency, multi-design" environment, a strong quality control programme is now in place. FAO support is being used to develop a comprehensive national programme under the FAO/TCP/NEP/4451-T project.

The biogas sector of Nepal is characterized by its focus on family size plants in rural households with catties. The emphasis on research and training has been limited in the past. A strong training programme is required to maintain the high success rate of the past. Equally important is to further increase the annual rate of plant installations to make use of the existing potential estimated at 1.3 million biogas plants. This manual is expected to contribute towards attaining both of these objectives.

This manual is an outcome of (FAO/TCP/NEP/4451 -T) project being implemented with the Ministry of Forest and Soil Conservation as the liaison institution. CMS developed this manual through six stages. To start with, a team of four CMS professionals prepared a draft of this manual which was improved upon based on the comments and suggestions from the national experts and practitioners. At this stage, professional inputs from FAO was also used. This first draft was put to test in the first training programme participated by the 30 district and central level officers from the departments of Forest, Soil Conservation. Agriculture. Livestock, and other agencies active in the promotion of biogas technology in the country including rural credit institutions and NGOs. The team of professionals who prepared the manual also presented it in the training programme and made subsequent improvements based on the experience gained and comments received from the participated by 30 participants from the same institutions This process was repeated for each of the five training programmes organized at 15 days interval during June to August 1996. The draft manual prepared after the third training also incorporated the comments and suggestions from FAO experts. Altogether 151 senior officials were trained in the process of bringing this manual to its present shape.

Preparation of this manual has been greatly benefited by the long experience of Dr Amrit B Karki, who has provided his expert services on the subject in more than twenty countries of Asia, Africa and Latin America Just before taking this assignment as the Team Leader, Dr Karki was decorated with the title of "Father of Biogas in Nepal". His long service to this sector and wide international experience is well reflected in the manual making it relevant not only to the conditions of Nepal but also for other countries interested in making optimum use of their bio-energy potential.

Mr. Krishna M Gautam deserves special thanks for his contributions as the Training Specialist and Rural Energy Expert. This manual would not have seen this light of the day without his untiring efforts in enriching the manual with the wide rage of information and their succinct presentation.

The contribution from Mr. Govind P. Kandel (Chief of the Programme Monitoring and Evaluation Section of the Ministry of Forest and Soil Conservation) both as the National Coordinator of FAO/ TCP/NEP/4451-T project and member of the expert team is well appreciated.

Thanks are also due to Dr Krishna B. Karki, a Soil Scientist and Agriculture Extension Worker, who provided his valuable time in presentation of the material in the training programmes.

CMS, along with all of the above four members of the expert team, express their sincere thanks to Dr. Gustavo Best from FAO Headquarters. Rome, for this continuous support and encouragement to the team.

In addition 10 the core group of four professionals, CMS also used the services of two professional engineers. Mr Ajoy Karki. an experienced engineer and member of Editorial Board of Biogas and Natural Resources Management newsletter, assisted the team in technically improving and editing the manual. Mr. Ajaya L Shrestha. Director of CMS. did the final editing of the manual. The contribution made by these two engineers has been of utmost importance in improving the structure of manual and its content.

Dr K C Khandelwal. an expatriate consultant expert from FAO participated in the two of the five training conducted. His professional inputs helped to define **h**e contents of the manual as well to improve the presentations We are greatly indebted to his support not only in bringing out this manual but also in other ventures of CMS in the biogas sector. Ms Regula Meierhofer from FAO office in Kathmandu deserves special mentioning for her facilitating role during the assignment period.

I take this opportunity to thank all 151 participants of five training programmes for their valuable contributions in making of this manual. I also appreciate the painstaking efforts made by Messrs Hari Upreti, Surendra Shrestha, Murali Dahal, Tirtha Maharjan and Ms Bandana Swar in being effective in their respective role of support staff for the timely completion of this CMS assignment.

Last but not the least, I would like to express my sincere appreciation for SNV/N supported BSP in general and its Programme Manager, Mr Wim J van Nes in particular, for all the information that was made available to the team without which the manual would not have been completed, It would not be an exaggeration to state that BSP has been an important source of information as it has been pivotal to the over all development of biogas sector in Nepal.

While thanking ail those involved in making this manual possible, I look forward to receiving comments and suggestion so that it becomes a living document whose utility transcends beyond any national boundary.

Upendra Gautam President

.....

TABLE OF CONTENTS

Page

PREFA	ACE	C
TABL	E OF TABLES	
TABL	E OF FIGURES	
TABL	E OF CHARTS	
TABL	E OF ANNEXES	
ACRO	INYMS AND ABBREVIATIONS	
	VANT UNITS AND CONVERSION FACTORS	
INTRO	ODUCTION TO MANUAL	
SESSI	ON ONE : SYSTEM APPROACH TO BIOGAS TECHNOLOGY	
1.1	Introduction	1 - 1
1.2	Components of a Biogas System	1 - 1
	1.2.1 Biogas	1 - 2
	1 2.2 Methanogenic Bacteria or methanogens	1 - 2
	1.2.3 Biodigester	1 - 3
	1.2.4. Inputs and their Characteristics	1 - 10
	1.2.5 Digestion	1 - 12
	1.2.6 Slurry	1 - 15
	1.2.7 Use of Biogas	1 - 15
1.3	Implications of Biogas System	1 - 16
1.4	Session Plan	1 - 16
1.5	Review Questions	1 - 16
1.6	References	1 - 17
1.7	Further Reading Materials	1 - 18
1.7	Further Reading Materials	1 -

SESSION TWO : RELEVANCE OF BIOGAS TECHNOLOGY TO NEPAL

2.1	Introduction	2 - 1
2.2	Energy Situation in Nepal	2 - 1
	2.2.1 Tradition Sources of Energy	2 - 1
	2.2.2 Commercial Sources of Energy	2 - 2
	2.2.3 Sources of Alternative Energy	2 - 2
2.3	Biogas in Other Countries	2 - 3
2.4	Biogas Potential in Nepal	2 - 4
2.5	Uses of Biogas	2 - 5
	2.5.1 Cooking	2 - 5
	2.5.2 Lighting	2 - 8
	2.5.3 Refrigeration	2 - 8
	2.5.4 Biogas-fueled Engines	2 - 10
	2.5.5 Electricity Generation	2 - 10
2.6	Biogas and Agriculture	2 - 10
2.7	Biogas and Forests	2 - 11
2.8	Biogas and Women	2 - 11
2.9	Health and Sanitation	2 - 14
2.10	Municipal Waste	2 - 15
2.11	Economy and the Employment	2 - 16
2.12	Session Plan	2 - 17

CONTENTS (Con'd)

2.13 7 14 2.15	Review Questions References Further Reading Materials	2 - 17 2 - 17 2 - 19
SESS	ION THREE : BIOGAS PROGRAMMES	
3.1 In	troduction	3 - 1
3.2	Biogas Programmes in China	3 - 1
	3.2.1 Use of Gas and Slurry	3 - 2
	3.2.2 Training	3 - 2
	3.2.3 Organization	3 - 2
3.3	Biogas programme in India	3 - 3
3.4	Biogas in Nepal	3 - 3
	3.4.1 Brief History of Biogas Development in Nepal	3 - 4
	3.4.2 Programmes of GGC and its Linkage	3 - 4
	3.4.3 Support for the Development of a National Biogas Programme	
	(FAO/TCP/NEP/4451-T)	3 - 6
	3.4.4 Biogas Support Programme	3 - 6
	3.4.5 Basic Features of BSP Third Phase	3 - 8
	3.4.6 Biogas Companies	3 - 12
	3.4.7 Need for Research and Development	3 - 12
3.5	Session Plan	3 - 13
3.6	Review Questions	3 - 13
3.7	References	3 - 14
3.8	Further Reading Materials	3 - 14

SESSION FOUR : UTILIZATION OF SLURRY AS FEED AND FERTILIZER

Introduction	4 - 1
Inter-Relationship of Biogas Technology and Agriculture	4 - 1
Limitations of Chemical Fertilizer Use	4 - 2
Organic Fertilizer	4 - 3
Importance of Slurry for Crop Production	4 - 4
Characteristics of Digested Slurry	4 - 4
Utilization of Digested Slurry	4 - 6
4.7.1 Application of Slurry in Liquid Form	4 - 6
4.7.2 Application of Slurry in Dried Form	4 - 6
4 7 3 Utilization of Slurry for Compost Making	4 - 7
Size of Compost Pit	4 - 7
Quality Assessment of Compost and Digested Slurry	4 - 9
Influence of Slurry on the Yield of Crops and Vegetables	4 - 9
Field Experiment	4 - 9
	4 -10
	4 - 10
	4 - 10
	4 -12
	4 -12
	4 - 13
	4 - 13
References	4 - 14
	Limitations of Chemical Fertilizer Use Organic Fertilizer Importance of Slurry for Crop Production Characteristics of Digested Slurry Utilization of Digested Slurry 4.7.1 Application of Slurry in Liquid Form 4.7.2 Application of Slurry in Dried Form 4 7 3 Utilization of Slurry for Compost Making Size of Compost Pit Quality Assessment of Compost and Digested Slurry Influence of Slurry on the Yield of Crops and Vegetables

CONTENTS (Con'd)

4.17	Other Reading Materials	4 - 1	15	5
------	-------------------------	-------	----	---

SESSION FIVE : INSTALLATION COST AND FINANCIAL VIABILITY

5.1	Introduction	5 - 1
5.2	Financial Analysis	5 - 1
	5.2.1 Project Life	5 - 1
	5.2.2 Benefits and Costs	5 - 2
	5.2.3 Cash Flow Analysis	5 - 11
	5.2.4 Time Value of Money and Discount Rate (Factor)	5 - 11
	5.2.5 Net Present Value	5 - 11
	5.2.6 Internal Rate of Return (IRR)	5 - 12
	5.2.7 Benefit Cost Ratio	5 - 12
5.3	Discussion on Result of Financial Analysis	5 - 13
5.4	Financial Viability Assessment as Practiced by ADB/N	5 - 13
5.5	Indicators of Financial Viability of Biogas Plants	5 - 14
5.6	Economic Analysis	5 - 14
	5.61 Economic Valuation of Firewood	5 - 14
	5.6.2 Economic Valuation of Kerocene	5 - 15
	5.6.3 Economic Valuation of Labour	5 - 15
	5.6.4 Value of Slurry	5 - 15
	5.6.5 Investment Cost	5 - 15
5.7	Session Plan	5 - 15
5.8	Review Questions	5 - 16
5.9	References	5 - 16
anaai		

SESSION SIX : SUBSIDY AND INSTITUTIONAL FINANCING

6.1	Introduction	6 - I
6.2	Definition of Subsidy	6 - 1
6.3	Rationale of Subsidy for Biogas Plant Installation	6 - 1
6.4	Subsidy and External Financing	6 - 2
6.5	Review of Subsidy on Biogas Programmes in Nepal	6 - 3
6.6	Institutional Financing	6 - 5
67	Flow of Funds	6 - 6
6.8	Procedure for Obtaining Loan and Subsidy with Technical Assistance	6 - 8
6.9	Session Plan	6 - 10
6.10	Review Questions	6 - 10
6.11	Reference	6 - 10

SESSION SEVEN : FIELD VISIT PROGRAMME

7.2		7 - 1
7.3	Themes for Observation	
	Information on Plants Visited in each of the Five Training	7 -2
7.5	General Opinions and Impression about Field Visits	7 -2
7.6	Review Questions	7 -3

CONTENTS (Con'd)

SESSION EIGHT : EXTENSION SUPPORT SERVICES FOR BIOGAS

8.1	Introduction	8 - 1
8.2	From a Single Plant to National Objectives and Strategy	8 - 1
	8.2.1 Building Government Commitment	8 - 1
	8.2.2 Energy Related Objective of Eighth Five Year Plan	8 - 2
	8.2.3 Objectives and Strategies of Perspective Energy Plan	8 - 3
8.3	Institutions for Extension of Biogas Technology	8 - 4
	8.3.1 Establishment of Biogas Companies and Biogas Related NGOs	8 - 4
	8.3.2 Formation of Biogas Steering Committee	8 - 4
	8.3.3 Proposed Alternate Energy Promotion Centre	8 - 5
8.4	Factors Affecting Biogas Extension	8 - 5
	8.4.1 Government Commitment	8 - 5
	8.4.2 Subsidy	8 - 6
	8.4.3 Institutional Arrangements	8 - 6
	8.4.4 Energy Pricing	8 - 6
	8.4.5 Education and Access to Technology	8 - 6
	8.4.6 Performance of Existing Plants	8 - 6
8.5	Extension Approaches	8 - 7
8.6	Extension Methods	8 - 7
	8.6.1 Door-to-door Visits	8 - 7
	8.6.2 Use of Local Leaders	8 - 8
	8.6.3 Exhibitions and Demonstration	8 - 8
	8.6.4 Use of Mass Media	8 - 8
	8.6.5 Occasional Publications	8 - 9
	8.6.6 Audio-Visuals	8 - 9
	8.6.7 Seminars and Workshops	8-9
07	8 6 8 Training	8 - 10
8.7 8.8	Session Plan Relevant Questions	8 - 11 8 - 11
8.9	References	8 - 11
		0-11
SESS.	ION NINE : QUALITY STANDARDS	
9.1	Introduction	9 - 1
9.2	The Need for Quality Control	9 - 1
9.3	Development of a System for Quality Control	9 - 2
,	9.3 1 Enforcement of Quality Control Measures	9 - 2
9.4	Important Parameters for Quality Control	9 - 3
	9.4.1 Design	9 - 3
	9.4.2 Deciding on the Size or Capacity of a Plant	9 - 3
	9.4.3 Site Selection	9 - 3
	9.4.4 Construction Materials and Trained Mason	9 - 6
	9.4.5 Critical Stage of Construction	9 - 6

9.5	Appliances and Accessories	9 - 7
9.6	Commissioning	9 - 7
9.7	After-Sale-Services	9 - 10
9.8	Mobile Team for Supervision, Follow up and Monitoring	9 - 10

9.9	Common Problems in Plant Operation	9 - 11
9.10	Session Plan	9 - 13

CONTENTS (Con'd)

9.11	Review Questions	9 -13
9.12	References	9 - 13
9.13	Further Reading Materials	9 - 14

SESSION TEN : MONITORING AND EVALUATION

10.1	Introduction	10 - 1
10.2	Definitions	10 - 1
10.3	Indicators and Data Base	10 - 1
10.4	M&E as Integral Part of Programme Implementation Process	10 - 4
10.5	M&E At Different Levels	10 - 4
	10.5.1 User Level	10 - 4
	10.5.2 Biogas Company Level	10 - 4
	10.5.3 Programme Level	10 - 5
	10.5.4 National Level	10 - 7
10.6	The Logical Framework	10 - 7
10.7	Session Plan	10 - 7
10.8	Review Questions	10 - 8
10.9	References	10 - 8

APPENDICES

Appendix - 1 Registration Form

- Appendix 2 Training Schedule (including field visit)
- Appendix 3 Evaluation Form (to be filled in by the participants)
- Appendix 4 Model of Certificate

LIST OF TABLES

Page

Table 1.1	Composition of Biogas	1 - 2
Table 1.2	Gas Production Potential of Various Types of Dung	1 - 11
Table 1.3	C/N Ratio of Some Organic Materials	1 - 11
Table 1.4	Toxic Level of Various Inhibitors	1 - 15
Table 2.1	Biogas Potential	2 - 4
Table 2.2	Biogas Requirement for Various Appliances	2 - 8
Table 2.3	Average Saving in Women's Work in Selected Districts and Villages	2 - 13
Table 2.4	Average Effects of a Biogas Plant on the Workload of a Household	2 - 13
Table 2.5	Waste Generation Per day in Kathmandu Valley	2 - 15
Table 4.1	Soil Nutrient Loss, (Maize-Rice-Wheat System)	4 - 2
Table 4.2	Percentage of Households Keeping Animals and Birds by Region, 1991/92	4 - 3
Table 4.3 Table 4.4	Nutrients Available in Composted Manure, FYM and Digested Slurry Recommended Size of Compost Pits Corresponding to the Sizes of	4 - 7
	Biogas Plants	4 - 7
Table 5.1	Financial Analysis of a 10 m ³ Biogas Plan (With Loan and Subsidy)	5 - 3
Table 5.2	Financial Analysis of a 10 m ³ Biogas Plan (Without Loan and Subsidy)	5 - 3
Table 5.3	Financial Analysis of a 8 m ³ Biogas Plan (With Loan and Subsidy)	5 - 4
Table 5.4	Financial Analysis of a 8 m ³ Biogas Plan (Without Loan and Subsidy)	5 - 4
Table 5.5	Cost Estimation of Firewood in Terms of Gas and Simple Pay Back	
	Period of Family Size Biogas Plants	5 - 6
Table 5.6	Material Requirement and Breakdown of Cost 4 m ³ 6 m ³ 8 m ³ ,	
	10 m ³ , 15 m ³ and 20 m ³ Biogas Plants (in Rs)	5 - 9
Table 6.1	Subsidy Provided by HMG/N for Biogas Installation	
	(1975/76 to 1991/92)	6 - 4
Table 6.2	Cost of Biogas Per m ³ Gas Produced With and Without Flat	
	Rate Subsidy of Rs 7,000 (1995/96)	6 - 4
Table 6.3	Estimated Loan Requirement for BSP Phase III by Nepalese	
	Fiscal Year (Excluding Physical and Price Contingencies)	6 - 6
Table 6.4	Proposal for the Financing of the Three Components of BSP Phase III	
	by Different Parties (Rs in million)	6 - 7
Table 7.1	General Opines and Impressions	7 - 3
Table 9.1	Common Problems with Biogas Units and their Remedies	9 - 12
Table 10.1	Indicators for BSP Phase III Objectives	10 - 6

LIST OF FIGURES

Figure 1.1	KVIC Floating Gas Holder System	1 - 4
Figure 1.2	GGC Concrete Model Biogas Plant	1 - 5
Figure 1.3	Deenbandhu Biogas Plant (3 m ³ gas production per day)	1 - 6
Figure 1.4	Bag Digester	1 - 8
Figure 1.5	Plug Flow Digester	1 - 8
Figure 1.6	Anaerobic Filter	1 - 9
Figure 1.7	Upflow Anaerobic Sludge Blanket	1 - 9
Figure 1.8 Specification of Slurry Mixture Machine		
Figure 2.1	Biogas Burner Manufactured by GGC Workshop at Butwal, Nepal	2 - 7
Figure 2.2	Biogas Burner with Two Mouths Manufactured in India	2 - 7
Figure 2.3	Sketch of Typical Biogas Lamp Manufactured in India	2 - 9
Figure 2.4 Design of a Biogas Burner Adopted to Run Kerosene Refrigerator		
Figure 9.1	Drawing of GGC Concrete Model Biogas Plants	9 - 4
Figure 9.2	8 m ³ GGC Model Biogas Plant	9 - 5
Figure 9.3	Fixing the Central Point of Biodigester	9 - 8
Figure 9.4	Maintaining Required Shape of the Dome with the help of a Template	9 - 8
Figure 9.5	Specification of BSP Approved Biogas Burner Manufactured by	
	GGC Workshop at Butwal	9 - 9

LIST OF CHARTS

Chart 1.1	A System Approach to Biogas Technology	1 - 1
Chart 1.2	Bimothanization Implementation and its Effects	1 - 16
Chart 2.1 Chart 2.2 Chart 2.3 Chart 2.4 Chart 2.5 Chart 2.6	Domestic Sector Energy Consumption (WECS, 1994) Biogas Potential Number of Biogas plants Installed in Nepal from 1973/74 to 1994/95 Utilization of Biogas as Energy Resource Integration of Biogas with Agriculture Treating Municipal Waste Through Anaerobic Digestion process	2 - 2 2 - 5 2 - 6 2 - 5 2 - 12 2 - 15
Chart 3.1	Year-wise Breakdown of Biogas Plants in BSP Phase - III	3 - 7
Chart 4.1 Chart 4.2 Chart 4.3 Chart 4.4	Relationship Between Biogas and Agriculture in a Farming Family The Nitrogen-cycle in Nature Use of Slurry in Making Compost A Model for Integrating High Farming	4 - 1 4 - 5 4 - 8 4 - 11
Chart 5.1 Chart 5.2 Chart 5.3	Factors Influencing the Financial Viability of a Biogas Plant Cost Distribution of a Biogas Plant GGC Overheads in 1990/1991	5 - 10 5 - 11 5 - 11
Chart 7.1	Elements of a Family Size Biogas Plant to be Observed During Filed Visit	7 - 2

LIST OF ANNEXES

Annex 2.1	Number of Households with Animals, Potential Households with Biogas by Districts			
Annex 3.1	Breakdown of Construction Targets by Size of Plant and Nepalese Fiscal Year			
Annex 7.1	Description of Biodigesters Identified for Field Visit in Kathmandu			
Annex 7.2	7.2 Description of Biodigesters Identified for Field Visit in Chitwan			
Annex 8.1 Annex 8.2	List of the Recognized Biogas Companies Inventory of Active and Potential {I)NGOs and other Agencies Interested in Biogas Programme			
Annex 8.3	Extension of Biogas : A Working Model			
Annex 9.1 Annex 9.2 Annex 9.3 Annex 9.4	BSP Standards as to Quality of Biogas Plants (FY 2050/51) Most Common Defects and Penalty Categories Including the Penalty Amount in NRs. List of Construction Materials and Appliances BSP Approved Appliances and their Manufacturers June 1996			
Annex 10.1 Annex 10.2 Annex 10.3	Example of a Sample Logframe Summary for a Biogas Development Project Job Completion Form of Gobar Gas Plant 1995/96 Gobar Gas Plant Maintenance Report			

ACRONYMS AND ABBREVIATIONS

ADB/N	Agriculture Development Bank of Nepal
AEPC	Alternate Energy Promotion Centre
AFPRO	Action for Food Production
AIC	Agricultural Inputs Corporation
AsDB	Asian Development Bank
ATF	Agriculture Tool Factory
BCR	Benefit Cost Ratio
BNRM	Biogas and Natural Resources Management
BORDA	Bremen Overseas Research and Development Association
BRTC	Biogas Research and Training Centre
BSP	Biogas Support Programme
BYS	Balaju Yantra Shala
ON ON	Carbon Nitrogen Ratio
CBO	Community Based Organization
CDO	Chief District Officer
CMS	Consolidated Management Services Nepal (P) Ltd.
DCS	Development Consulting Services
DDC	District Development Committee
DGIS	*
DGIS	Directorate General for International Co-operation Deutsch Mark
DOA	
DSSAC	Department of Agriculture
ERDG	Division of Soil Science and Agricultural Chemistry
FAO	Energy Research and Development Group
FAO FYM	Food and Agriculture Organization of the United Nations Farm Yard Manure
GGC	
GI	Gobar Gas and Agricultural Equipment Development Company Galvanized Iron
GTZ	
	German Technical Co-operation
HMG/N	His Majesty's Government of Nepal
INGO	International Non-Governmental Organization
KfW	Kreditanstalt fur Wiederaufbau
KVIC	Khadi and Village Industries Commission
LPG	Liquified Petroleum Gas
M&E	Monitoring and Evaluation
MNES	Ministry of Non-Conventional Energy Sources
MOA	Ministry of Agriculture
MOF	Ministry of Finance
MOFSC	Ministry of Forest and Soil Conservation
MSW	Municipal Solid Waste
NBC	Nepal Biogas Centre
NBL	Nepal Bank Limited
NBPG	Nepal Biogas Promotion Group
NGO	Non-Governmental Organizations

NPV	Net Present Value
NPW	Net Present Worth
NTV	Nepal Television
O/H	Over Head
PVC	Polyvinyl Chloride
R&D	Research and Development
RBB	Rastriya Banijya Bank
RMP	Red Mud Plastic
SAP/N	South Asian Partnership/Nepal
SCF/US	Save the Children Fund/USA
SFDP	Small Farmers Development Programme
SNV/N	Netherlands Development "Organizations/Nepal
TOR	Terms of Reference
TU	Tribhuwan University
UASB	Upflow Anaerobic Sludge Blanket
UMN	United Mission to Nepal
UNCDF	United Nations Capital Development Fund
UNDP	United Nations Development Programme
UNEP	United Nations Environmental Programme
UNICEF	United Nations Children Fund
USAID	United States Agency for International Development
VDC	Village Development Committee
WECS	Water and Energy Commission Secretariat

RELEVANT UNITS AND CONVERSION FACTORS

Area of rectangle	=	Length x breadth			
Area of Circle	=	ð (radius)2			
Volume of a rectangular tank		Length x breadth x height			
Volume of a cylindrical tank	=	ð x (radius)2 x height			
1 metre	=	39.37 in	=	3.28 ft	
1 foot	=	0.305 metre	=	30.5 cm	
I inch		2.54 cm			
lm2	=	10.764 sq ft			
lft2	=	0.0929 m2			
lft3	=	0.0283 m3			
lm3	=	1,000 litres			
lm3	=	35.315 cu ft			
1 litre	=	103 cm3	=	0.0353 cu ft	
1 1b	=	0.454 kg			
1kg	=	2.25 lb			
1 ton	=	1,000 kg			
1 quintal	=	100 kg			
1 hectare	=	10,000 m2			
lkm2	=	100 ha	=	106m2	
1 acre		0.40468 ha	=	4046.8 m2	
lsq.ft	=	929,03 cm2			
1 sq. in	=	6.452 cm2			
1MJ	=	238.8 kcal	=	947. 9 BTU	
		(1 MJ/m3)		(26.75 BTU/ft3)	
1 Cal (Calorie)	=	4.1868 J (Joule)			
1BTTJ	=	1.055 Id	=	0.252 kcal	
1 BTU/ft3	=	37.2 kj/m3	=	8.894 kcal/m3	
1 United States gallon	=	3.785 litres			
1 British (Imperial) gallon	=	4.55 litres			
1 degree Fahrenheit					
0°F)	=	5/9 (°F-32)°C			

UNIT EQUIVALENT

1 Watt is equal to: 1 Joule/Sec 0.00134 Horse power 0.001 Kilowatt 3.43 heat unit/hour 0.74 ft. lbs/sec

1 Kilowatt is equal to: 1000 watts 1.341 Horse power 26,56,400 ft. lb./hour 36,00,000 Joules 3,411 heat units 1 Horse power is equal to: 746watt 0.746 Kilowatt 33,000 ft.lb/min 2,545 heat units/min

1 heat unit is equal to: 778 ft.lb 0.24 Calorie 1048 Watt seconds 0.00293 Kilowatt hour 108 Kilogramme meters 0.0000666 1b. coal oxidised 0.00039 Horse power hour

1 joule is equal to:

1 Watt second 278 x 10-8 Kilowatt hour 0.00094 heat units 0.7376 ft. 1b