# FISHERMAN'S WORKBOOK



Published by arrangement with the FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS by FISHING NEWS BOOKS

#### Acknowledgements

The *Fisherman's Workbook* has been prepared in the Fishing Technology Service, Fishery Industries Division, in the Fisheries Department of the FAO.'

A number of consultants and experts in fishing technology worked on the preparation of this book, over a period of several years. Without their contributions it would have been impossible to compile the book, and we wish to thank them. We wish to thank the FAO masterfishermen working in various countries, who offered valuable comments on the draft, and Messrs A. Smith and S. Drew, for translating and editing the English language edition.

Finally, we wish to thank the draftspeople in the FAO Fisheries Department for preparation of the illustrations.

#### FISHERMAN'S WORKBOOK

Compiled by J. Prado

Fishery Industries Division, FAO

in collaboration with P.Y. Dremiere IFREMER, Sete, France

Published by arrangement with the FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS by FISHING NEWS BOOKS OXFORD 1990 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

#### Copyright ©FAO 1990

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form *or* by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduc-tion, should be addressed to the Director, Publications.Division, Food and Agriculture Organization of the United Nations, Via delle Terme di Caracalla, 00100 Rome, Italy. Fishing News Books A division of Blackwell Scientific Publications Ltd Editorial Offices: Osney Mead, Oxford OX2 OEL (Orders: Tel. 0865 240201) 25 John Street, London WC1N 2BL 23 Ainslie Place, Edinburgh EH3 6AJ 3 Cambridge Center, Suite 208, Cambridge MA 02142, USA 107 Barry Street, Carlton, Victoria 3053, Australia

Set by Best-set Typesetter Ltd. Printed and bound in Great Britain by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk

British Library Cataloging in Publication Data Prado, J. Fisherman's workbook. 1. Fishing equipment I. Title II. Dremiere, P.Y. III. Food and Agriculture Organization 639.2 ISBN 0-85238-163-8

#### Notice



Materials and accessories





Fishing gear and operations



Equipment for deck and wheelhouse

p. 121



Fishing vessel operation

presented.

p. 135



The fifth part, 'Formulae and tables', gives tables for converting units and numbers among different systems of measurement as well as formulae for calculations which a fisherman may need. Finally, the section on 'Ordering equipment' gives recommendations about the specifications to be listed when ordering fishing gear and equipment.

Formulae and tables

145 - 161

To fishermen, net makers, boatbuilders, and other professionals working in commercial fisheries:

The Fisherman's Workbook is a tool intended for field use, to carry with you for easy reference on land or sea. It contains essential information about the choice and use of a variety of materials and equipment necessary for commercial fishing.

The first part of the book, 'Materials and ac-cessories', contains a review of common materials and components used in commercial fishing, with examples and explanations of their use. This part should help with the choice and use of appropriate materials.

The second part, 'Fishing gear and operations', will help with the choice of particular types of fishing gear, their characteristics and use.

The third section, Equipment for deck and wheelhouse', outlines the characteristics of echo-sounders and deck machinery for handling fishing gear and gives examples of such equipment.

A fourth part, 'Fishing vessel operation', gives information about the most effective use of fishing vessels. Guidelines for calculating the costs and benefits of fishing operations are

| expertise.<br>Although the <b>Fisherman's Workbook</b> covers a wic<br>range of subjects, it cannot pretend to cover everythin<br>and in the preparation of the book it was necessary t<br>leave out many subjects. It is hoped that the reader w<br>fill these 'gaps' with his personal knowledge, skill an<br>experience in the context of the area in which he wor |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                       |

#### Contents

#### Materials and accessories

density of materials strength of hardware synthetic fibres twine rope wire rope net webbing fish hooks line fishing accessories floats sinkers hardware

#### Fishing gear and operations

purse seines beach seines bottom seines trawls entangling nets traps and pots line fishing longlines

nets, traps, lines — buoys

dredges

#### Equipment for deck and wheelhouse

light

echo-sounders

deck equipment

#### Fishing vessel operations

propulsion

fish holds, tanks

bait

operations

bookkeeping

regulations

#### Formulae and tables

units of measurement formulae

#### Ordering equipment fishing gear and accessories deck equipment

Index



| Density | of | materia | s |
|---------|----|---------|---|
|---------|----|---------|---|

#### SINKING MATERIALS

#### Metals

| Turne       | Density | Multiplic  | ation factor* |
|-------------|---------|------------|---------------|
| туре        | (g/cc)  | freshwater | sea water     |
| aluminium   | 2.5     | 0.60 +     | 0.59 +        |
| brass       | 8.6     | 0.88 +     | 0.88 +        |
| bronze      | 7.4     | 0.86 +     | 0.86 +        |
|             | to 8.9  | 0.89 +     | to 0.88 +     |
| cast iron   | 7.2     | 0.86 +     | 0.86 +        |
|             | to 7.8  | 0.87 +     | 0.87 +        |
| copper lead | 8.9     | 0.89 +     | 0.88 +        |
|             | 11.4    | 0.91 +     | 0.91 +        |
| steel       | 7.8     | 0.87 +     | 0.87 +        |
| tin         | 7.2     | 0.86 +     | 0.86 +        |
| zinc        | 6.9     | 0.86 +     | 0.85 +        |

#### Textiles

| Туре                        | Density | Multiplicatio<br>n factor* |           |
|-----------------------------|---------|----------------------------|-----------|
|                             | (9/00)  | freshwater                 | sea water |
| aramide (kevlar)            | 1.20    | 0.17 +                     | 0.15 +    |
| cotton                      | 1.54    | 0.35 +                     | 0.33 +    |
|                             |         |                            |           |
| hemp                        | 1.48    | 0.32 +                     | 0.31 +    |
| linen                       | 1.50    | 0.33 +                     | 0.32 +    |
| manilla                     | 1.48    | 0.32 +                     | 0.32 +    |
| polyamide (PA)              | 1.14    | 0.12 +                     | 0.10 +    |
| polyester (PES)<br>polyviny | 1.38    | 0.28 +                     | 0.26 +    |
| alcohol (PVA)<br>polyvinyl  | 1.30    | 0.23 +                     | 0.21 +    |
| chloride (PVC)              | 1.37    | 0.27+                      | 0.25 +    |
| polyvinylidene              | 1.70    | 0.41 +                     | 0.40 +    |
| ramie                       | 1.51    | 0.34 +                     | 0.32 +    |
| sisal                       | 1.49    | 0.33 +                     | 0.31 +    |

#### Other Materials

|             | Doncity | IVI        | ultiplication factor" |
|-------------|---------|------------|-----------------------|
| Туре        | (g/cc)  | freshwater | sea water             |
| brick       | 1.9     | 0.47 +     | 0.46 +                |
| chalk       | 2.4     | 0.58 +     | 0.57 +                |
| concrete    | 1.8     | 0.44 +     | 0.43 +                |
|             | to 3.1  | 0.68 +     | 0.67 +                |
| earthenware | 2.2     | 0.55 +     | 0.53 +                |
| glass       | 2.5     | 0.60 +     | 0.59 +                |
| rubber      | 1.0     | 0.00       | 0.03 -                |
|             | to 1.5  | 0.33 +     | 0.32 +                |
| sandstone   | 2.2     | 0.55 +     | 0.53 +                |
| stone       | 2.5     | 0.60 +     | 0.59 +                |
| ebony       | 1.25    | 0.20 +     | 0.18 +                |

<sup>1</sup> Multiplication factor used to calculate the weight in water' of different materials, as shown on page 4.

| ■ Wood       |         |             |              |
|--------------|---------|-------------|--------------|
| Turne        | Density | Multiplicat | tion factor* |
| туре         | (g/cc)  | freshwater  | sea water    |
| bamboo       | 0.50    | 1.00-       | 1.05-        |
| cedar, red   | 0.38    | 1.63-       | 1.70-        |
| cedar, white | 0.32    | 2.13-       | 2.21-        |
| cork         | 0.25    | 3.00-       | 3.10-        |
| cypress      | 0.48    | 1.08-       | 1.14-        |
| fir          | 0.51    | 0.96-       | 1.01-        |
| oak, dry     | 0.65    | 0.54-       | 0.58-        |
| oak, green   | 0.95    | 0.05-       | 0.08-        |
| pine         | 0.65    | 0.54-       | 0.58 -       |
| pine, Oregon | 0.51    | 0.96-       | 1.01-        |
| pine, poplar | 0.41    | 1.44-       | 1.50-        |
| oplar        | 0.48    | 1.08-       | 1.14-        |
| spruce       | 0.40    | 1.50-       | 1.57-        |
| teak         | 0.82    | 0.22-       | 0.25-        |
| walnut       | 0.61    | 0.64-       | 0.68-        |

FLOATING MATERIALS

#### Fuel

| Type                      | Density | Multiplication factor* |           |  |  |
|---------------------------|---------|------------------------|-----------|--|--|
| Туре                      | (g/cc)  | freshwater             | sea water |  |  |
| petrol (normal or         |         |                        |           |  |  |
| super)                    | 0.72    | 0.39 -                 | 0.43-     |  |  |
| petrol for lamps          | 0.79    | 0.27-                  | 0.30-     |  |  |
| diesel fuel               | 0.84    | 0.19-                  | 0.22-     |  |  |
| crude oil, heavy          | 0.86    | 0.16-                  | 0.19-     |  |  |
| crude oil, light          | 0.79    | 0.27-                  | 0.30-     |  |  |
| fuel oil, heavy           | 0.99    | 0.01-                  | 0.04-     |  |  |
| fuel oil,<br>intermediate |         |                        |           |  |  |
|                           | 0.94    | 0.06-                  | 0.09-     |  |  |
| (morebant voccole)        |         |                        |           |  |  |

#### Textiles

| Type                     | Tupo Density |            | Multiplicatie factor* |  |  |
|--------------------------|--------------|------------|-----------------------|--|--|
| туре                     | (g/cc)       | freshwater | sea water             |  |  |
| polyethylene             | 0.95         | 0.05-      | 0.08-                 |  |  |
| polypropylen<br>e        | 0.90         | 0.11-      | 0.14 -                |  |  |
| polystyrene,<br>expanded | 0.10         | 9.00-      | 9.26-                 |  |  |

#### Others 1 0.95 0.11-0.14- I ice oil 0.90-0.95 Examples of loss of buoyancy as a function of duration of immersion: 10 days 15 days after 0 days cork 4.5 kgf 4.0 2.0 kgf 1.0 wood 0

DENSITY OF MATERILS

### Weight in water, with examples for materials and for a rigged gillnet

# DENSITY OF MATERILS

 $P = A \times \{1 - DW/DM\}^*$ 

where :

P = weight (kg) in water A = weight (kg) in air DW = density (g/cc) of water (freshwater 1.00; sea water 1.026) DM = density (g/cc) of material

\* The term in brackets, the multiplication factor, has been calculated for the materials most commonly used in fisheries, with the results given in the tables on pages 2-3. The factor followed by a + sign indicates a sinking force. The factor followed by a - sign indicates a buoyant or floating force. To obtain the weight in water of a certain quantity of material, simply multiply its weight in air by the factor.

#### Example a:

1.5 kg of cork in air The table on page 3 gives the multiplication factor for cork: freshwater : 3.00(-) sea water : 3.10( -)

S0,

 $1.5 \times 3.00(-) = 4.5 \text{ kg}$  flotation in freshwater

1.5 x 3.10H = 4.65 kg flotation in sea water

#### Example b:

24.6 kg of polyamide (nylon) in air The table on page 3 gives the multiplication factor for polyamide:

freshwater : 0.12(+)sea water : 0.10(+)

so,

 $24.6 \times 0.12(+) = 2.95$  kg flotation in freshwater

#### 24.6 x 0.10( + ) = 2.46 kg flotation in sea water

#### ■ Example c: Calculating the weight in water of a bottom gillnet

| component                                                                 | weight(kg)<br>in air | weight (kg)<br>in sea |
|---------------------------------------------------------------------------|----------------------|-----------------------|
|                                                                           |                      | water                 |
| ropes: 2 x 90 m PP Ø 6<br>mm                                              | 3.060                | -0.430 -              |
| netting: 900 x 11 meshes<br>140 mm stretched mesh<br>PAR 450 tex with     |                      |                       |
| bolchlines                                                                | 1.360                | + 0.136 +             |
| floats: 46 corks x 21 g (in<br>air) (or 50 floats of 60 gf<br>each)       | 0.970                | - 3.000 -             |
| sinkers: 180 lead sinkers,<br>80g each (in air) (1<br>or 111 stones, avg. | 14.400               | +13.100 +             |
| weight 200 g (2)                                                          | 22.200               |                       |
| TOTAL                                                                     | (1)19.790            |                       |
|                                                                           | (2) 27.590           | 9.806 +               |

The weight of a gillnet in water is calculated by adding the weights of the different components, taking into account the sign of the factor. The sign of the total indicates the type of net we have made; thus, this gillnet with a + sign would be a bottom net with a sinking force of 9.806 kg.

#### Definitions

#### - Safe working load (SWL), is the

maximum load that an item is certified to lift in service. Another equivalent term in use is *Working load limit* 

— **Breaking load (BL)** is the maximum load that an item can hold with a static load before it breaks. Another equivalent term in use is *Breaking strength*.

#### Safety factor

= breaking load

safe working load

**Very important** : The loads used in these calculations *are* static loads. Dynamic or shock loads increase the stress considerably, and thus increase the possibility of breakage.

#### Values of the safety factor

(a) For ropes

| Diameter (mm) | 3-18     | 20-28 | 30-38 | 40-44 | 48-100 |
|---------------|----------|-------|-------|-------|--------|
| Safety factor | 25 (est) | 20    | 15    | 10    | 8      |

(b) For wire ropes and metal hardware : safety factor about 5-6.

#### Safe working load



Weight held by one line SWL



STRENGTH OF HARDWARE



Weight held by 2 lines  $SWL \times 2$ 



#### Synthetic fibres and commercial names

SYNTHETIC FIBRES

| ■ Polyamide (PA)                                                                                                                                                                                             | Polypropylene (                                                                                                                                                                                                       | PP)                        | Polyester (PES)                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amilan (Jap)<br>Anid (USSR)<br>Anzalon (Neth)<br>Caprolan (USA)<br>Denderon (E. Ger)<br>Enkalon (Neth, UK)<br>Forlion (Itd)<br>Kapron (USSR)<br>Kenlon (UK)<br>Knoxlock (UK)<br>Lilion (Itd)<br>Nailon (Itd) | Akvaflex PP (Nor)<br>Courlene PY (UK)<br>Danaflex (Den)<br>Drylene 6 (UK)<br>Hostalen PP (Ger)<br>Meraklon (Ital)<br>Multiflex (Den)<br>Nufil (UK)<br>Prolene (Arg)<br>Ribofil (UK)<br>Trofil P (Ger)<br>Ulstron (UK) | )                          | <ul> <li>Polyester (PES)</li> <li>Dacron (USA)</li> <li>Diolen (Ger)</li> <li>Grisufen (E. Ger)</li> <li>Tergal (Fran)</li> <li>Terital (Ital)</li> <li>Terlenka (Neth, UK)</li> <li>Tetoron (Jap)</li> <li>Terylene (UK)</li> <li>Trevira (W. Ger)</li> </ul> |
| Nailonsix (Braz)<br>Nylon (many coun)<br>Perlon (Ger)<br>Platil (Ger)<br>Relon (Roum)                                                                                                                        | Velon P (USA)<br>Vestolen P (Ger)<br>Copolymers (PV                                                                                                                                                                   | ′D)                        | Cremona (Jap)<br>Kanebian (Jap)<br>Kuralon (Jap)                                                                                                                                                                                                               |
| Roblon (Den)<br>Silon (Czec)                                                                                                                                                                                 | Clorene (Fran)<br>Dynel (USA)                                                                                                                                                                                         |                            | Manryo (Jap)<br>Mewlon (Jap)                                                                                                                                                                                                                                   |
| Polyethylene (PE)                                                                                                                                                                                            | Kurehalon<br>(Jap)                                                                                                                                                                                                    |                            | Trawlon (Jap)<br>Vinylon (Jap)                                                                                                                                                                                                                                 |
| Akvaflex (Nor)<br>Cerfil (Port)<br>Corfiplaste (Port)<br>Courlepe (LK)                                                                                                                                       | Saran (Jap, USA)<br>Tiviron (Jap)<br>Velon (USA)<br>Wynene (Can)                                                                                                                                                      |                            |                                                                                                                                                                                                                                                                |
| Drylene 3 (UK)<br>Etvlon (Jap)                                                                                                                                                                               | Commercial nar                                                                                                                                                                                                        | nes of co                  | mbined twines for netting                                                                                                                                                                                                                                      |
| Flotten (Fran)<br>Hiralon (Jap)                                                                                                                                                                              | Kyokurin<br>Livlon                                                                                                                                                                                                    | Cont. fil F<br>Cont. fil F | PA + Saran<br>PA + Saran                                                                                                                                                                                                                                       |
| Hi-Zex (Jap)<br>Hostalen G (W. Ger)                                                                                                                                                                          | Marlon A<br>Marlon B                                                                                                                                                                                                  | Cont. fil F                | PA + St. PVA<br>PA + Saran                                                                                                                                                                                                                                     |
| Laveten (Swed)                                                                                                                                                                                               | Marlon C                                                                                                                                                                                                              | Cont. fil F                | PA + Cont. fil PVC                                                                                                                                                                                                                                             |
| Marlin PE (Ice)                                                                                                                                                                                              | Marlon D<br>Marlon E                                                                                                                                                                                                  | St. PA +                   | PA + Saran<br>St. PVA (or PVC)                                                                                                                                                                                                                                 |
| Northylen (Ger)                                                                                                                                                                                              | Marumoron                                                                                                                                                                                                             | Cont. fil.                 | PA + St. PVA                                                                                                                                                                                                                                                   |
| Nymplex (Neth)                                                                                                                                                                                               | Polex                                                                                                                                                                                                                 | PE + Sar                   | an                                                                                                                                                                                                                                                             |
| Sainthene (Fran)                                                                                                                                                                                             | Polytex                                                                                                                                                                                                               | PE + con                   | t, fil. PVC                                                                                                                                                                                                                                                    |
| Trofil (Ger)                                                                                                                                                                                                 | Ryolon                                                                                                                                                                                                                | Cont. fil.                 | PES + Cont. fil. PVC                                                                                                                                                                                                                                           |
| Velon PS (LP) (USA)<br>Vestolen A (Ger)                                                                                                                                                                      | Saran-N                                                                                                                                                                                                               | Cont. fil.                 | PA + Saran                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                              | Tailon (Tylon P)                                                                                                                                                                                                      | Cont. fil.                 | PA + St. PA                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                              | Temimew                                                                                                                                                                                                               | St. PVA -                  | + St. PVC                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                              | Cont. fil. = conti                                                                                                                                                                                                    | nuous fibro                | es                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                              | St. = staple                                                                                                                                                                                                          | e fibre                    |                                                                                                                                                                                                                                                                |



#### Synthetic fibres: physical properties

| ■ Nylon, polyamide (PA) | Sinks (density = 1.14)<br>Good breaking strength and resistance to<br>Abrasion<br>Very good elongation and elasticity | BRES   |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|--------|
| ■ Polyester (PES)       | Sinks (density = 1.38)<br>Very good breaking strength<br>Good elasticity<br>Poor elongation (does not stretch)        | ETIC F |
| Polyethylene (PE)       | Floats (density = 0.94-0.96)<br>Good resistance to abrasion<br>Good elasticity                                        | Y NTH  |
| Polypropylene (PP)      | Floats (density = 0.91-0.92)<br>Good breaking strength<br>Good resistance to abrasion                                 | Ś      |
| Polyvinyl alcohol (PVA) | Sinks (density = 1.30-1.32)<br>Good resistance to abrasion<br>Good elongation                                         |        |



#### Synthetic fibres: identification

| Properties                                | PA                                                                                 | PES                                                      | PE                                                   | PP                                                   |
|-------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Floats                                    | No                                                                                 | No                                                       | Yes                                                  | Yes                                                  |
| - Appearance                              |                                                                                    |                                                          |                                                      |                                                      |
| <ul> <li>Continuous fibres</li> </ul>     | Х                                                                                  | Х                                                        | -                                                    | Х                                                    |
| <ul> <li>Short (staple) fibres</li> </ul> | (X)                                                                                | (X)                                                      | -                                                    | (X)                                                  |
| <ul> <li>Monofilament</li> </ul>          | (X)                                                                                | (X)                                                      | Х                                                    | (X)                                                  |
| - Sheets                                  |                                                                                    |                                                          | (X)                                                  | Х                                                    |
| Combustion                                | Melts follow-<br>ing short<br>duration of<br>heating -<br>forms molten<br>droplets | Melts and<br>burns slowly<br>with bright<br>yellow flame | Melts and<br>burns slowly<br>with pale blue<br>flame | Melts and<br>burns slowly<br>with pale blue<br>flame |
| Smoke                                     | White                                                                              | Black with<br>soot                                       | White                                                | White                                                |
| Smell                                     | Celery-like<br>fishy odour                                                         | Hot oil<br>faintly sweet                                 | Snuffed out candle                                   | Hot wax/<br>burning<br>asphalt                       |
| Residue                                   | Solid yellow-<br>ish round<br>droplets                                             | Solid black-<br>ish droplets                             | Solid droplets                                       | Solid brown droplets                                 |



- X = Commonly available
- (X) = Material exists but is less common
- = Not available



#### Twine: number, tex, denier, metres/kg, diameter

#### Simple fibres

Titre (denier) : Td = weight (g) of 9000 m of fibre Metric number : Nm = length (m) of 1 kg of fibre English number for cotton : Ne<sub>c</sub> = length (in multiples of 840 yd) per lb International system: tex = weight (g) of 1000 m of fibre

#### Finished twine

Runnage, metres/kg : m/kg = length (m) of 1 kg of finished twine Resultant tex : Rtex = weight (g) of 1000 m of finished twine

#### Equivalents and conversions

| Textile\system           | PA  | PP  | PE  | PES | PVA |
|--------------------------|-----|-----|-----|-----|-----|
| Titre/denier             | 210 | 190 | 400 | 250 | 267 |
| International tex system | 23  | 21  | 44  | 28  | 30  |

 $\begin{array}{l} tax = 0.111 \times Td = 1000/Nm \\ = 590.5/Ne_c \\ Rtex = \frac{100000}{m/kg} \\ = \frac{496055}{\gamma d/b} = 0.132 \times Td \\ \frac{kg/100\,m}{25} = b/tathom (approximate) \\ kg/m = 1.5 \times [b/ft (approximate)] \end{array}$ 

kg/m = 0.5 × lb/yd (approximate)

#### Estimating the diameter of twine

In addition to precise measurements from instruments such as micrometer, magnifying glass and microscope, there exists a quick method of estimation. Roll 20 turns of the twine to be measured around a pencil and measure the total length of the turns.

Example:



If 20 turns of the twine measure 6 cm, then the diameter of the twine = 60 mm/20 turns = 3 mm**Note** : The strength of twine or rope depends not only on its thickness, but also on the method and degree of twisting or braiding its yarns.



#### Twin : calculation of tex

#### Case 2 : A sample of twine is available for Calculation of Resultant tex (Rtex) of twine evaluation Case 1 : When the structure of the twine is Example : known 5 m of twine, placed on a precision scale, weigh Example: 11.25 g. We know that twine of R 1 tex weighs 1 g Netting twine made of nylon (polyamide), with per 1000 m, and the weight per metre of the sample 210 denier single yarns, 2 single yarns in each of twine is 11.25/5 = 2.25 g/m. So, 1000 m of the the 3 folded yarns (strands) which make up the sample would weigh $1000 \times 2.25 = 2250$ g, or R twine. 2250 tex 210 x 2 x 3 = 23 tex x 2 x 3 = 138 texTo find the Resultant tex (Rtex) we have to **Note** : The strength of twine or rope depends not only on its thickness, but also on the method and apply a correction to the calculated value, taking into account the structure of the finished twine degree of twisting or braiding its yarns (twisted, braided, hard lay, degree of twist, etc.). A rough estimation of Rtex can be found by adding 10% to the value calculated above: 138 tex + 10% = R 152 tex (estimate) Fibres Single yorks Folded yorks Finished from $210 \times 2 \times 3$ 23 tex × 2 × 3 = 138 tex +10% = R 152 texNote : in view of the complex structure of braided twines, it is the general practice in fisheries for the gear designer to use the Rtex value without going into detail.



#### Twine: equivalents of numbering systems

|        |         | Eg.: twisted   | l nyl | on |
|--------|---------|----------------|-------|----|
| m/kg   | Rtex    | <u>y</u> ds/lb |       |    |
|        | g/1000m | a/             |       |    |
| 20 000 | 50      | 9 921          |       |    |
| 13 500 | 75      | 6 696          |       |    |
| 10 000 | 100     | 4 960          |       |    |
| 6 450  | 155     | 3 199          |       |    |
| 4 250  | 235     | 2 180          |       |    |
| 3 150  | 317     | 1 562          |       |    |
| 2 500  | 450     | 1 240          |       |    |
| 2 100  | 476     | 1 041          |       |    |
| 1 800  | 556     | 893            |       |    |
| 1 600  | 625     | 794            |       |    |
| 1 420  | 704     | 704            |       |    |
| 1 250  | 800     | 620            |       |    |
| 1 150  | 870     | 570            |       |    |
| 1 060  | 943     | 526            |       |    |
| 980    | 1 020   | 486            |       |    |
| 910    | 1 099   | 451            |       |    |
| 850    | 1 176   | 422            |       |    |
| 790    | 1 266   | 392            |       |    |
| 630    | 1 587   | 313            |       |    |
| 530    | 1 887   | 263            |       |    |
| 400    | 2 500   | 198            |       |    |
| 360    | 2 778   | 179            |       |    |
| 310    | 3 226   | 154            |       |    |
| 260    | 3 846   | 129            |       |    |
| 238    | 4 202   | 118            |       |    |
| 225    | 4 444   | 112            |       |    |
| 200    | 5 000   | 99             |       |    |
| 180    | 5 556   | 89             |       |    |
| 155    | 6 452   | 77             |       |    |
| 130    | 7 692   | 64             |       |    |
| 100    | 10 000  | 50             |       |    |

| <b>1</b> ( | (polyamide) twine |                  |                |  |  |  |  |
|------------|-------------------|------------------|----------------|--|--|--|--|
|            | Noofyams          | No.ofdeniers     | Tex            |  |  |  |  |
|            | denier            | Td               |                |  |  |  |  |
|            | 210x2             | 420              | 47             |  |  |  |  |
|            | 3                 | 630              | 70             |  |  |  |  |
|            | 4                 | 840              | 93             |  |  |  |  |
|            | 6                 | 1 260            | 140            |  |  |  |  |
|            | 9                 | 1 890            | 210            |  |  |  |  |
|            | 12                | 2 520            | 280            |  |  |  |  |
|            | 15                | 3 150            | 350            |  |  |  |  |
|            | 18                | 3 780            | 420            |  |  |  |  |
|            | 21                | 4 410            | 490            |  |  |  |  |
|            | 24                | 5 040            | 559            |  |  |  |  |
|            | 27                | 5 670            | 629            |  |  |  |  |
|            | 30                | 6 300            | 699            |  |  |  |  |
|            | 33                | 6 930            | 769            |  |  |  |  |
|            | 36                | 7 560            | 839            |  |  |  |  |
|            | 39                | 8 190            | 909            |  |  |  |  |
|            | 42                | 8 820            | 979            |  |  |  |  |
|            | 45                | 9 450            | 1 049          |  |  |  |  |
|            | 48                | 10 080           | 1 119          |  |  |  |  |
|            | 60                | 12 600           | 1 399          |  |  |  |  |
|            | 72                | 15 120           | 1678           |  |  |  |  |
|            | 96                | 20 160           | 2 238          |  |  |  |  |
|            | 108               | 22 680           | 2 517          |  |  |  |  |
|            | 120               | 25 200           | 2 /9/          |  |  |  |  |
|            | 144               | 30 240           | 3 357          |  |  |  |  |
|            | 156               | 32 /60           | 3 636          |  |  |  |  |
|            | 108               | 35 ∠80<br>40 320 | 3 916<br>1 176 |  |  |  |  |
|            | 192               | 40.520           | 4 470          |  |  |  |  |
|            | 216               | 45 360           | 5 035          |  |  |  |  |
|            | 240               | 50 400           | 5 594<br>6 154 |  |  |  |  |
|            | 204               | 75 600           | 9 202          |  |  |  |  |
|            | 300               | 75 000           | 0 392          |  |  |  |  |
|            |                   |                  |                |  |  |  |  |



a/ yds/lb = approx. (m/kg)/2

m/kg = approx. (yds/lb) x 2

Note: 210 denier = 23 Tex

#### Twines: nylon (polyamide PA), multifilament twisted or braided

|            | A = breaking load, dry without knots (single twine) |                |                |            |          |           |   |  |          |           |             |     |           |   |
|------------|-----------------------------------------------------|----------------|----------------|------------|----------|-----------|---|--|----------|-----------|-------------|-----|-----------|---|
| ļ          | B = breaking load, wet, knotted (single twine)      |                |                |            |          |           |   |  |          |           |             |     |           |   |
|            |                                                     | ■ Twisted,     | continuou      | s filament |          | -         | 1 |  | Braided, | continuou | is filament |     |           | 1 |
|            |                                                     | m/kg           | Rtex           | Diam.      | A        | B         |   |  | m/kg     | Rtex      | Diam.       | A   | B         |   |
|            |                                                     |                |                |            | ĸġi      | ку        |   |  |          |           | Appox<br>mm | куі | ĸgi       |   |
|            |                                                     | 20 000         | 50             | 0.24       | 3.1      | 1.8       | ł |  | 740      | 1 350     | 1.50        | 82  | 44        |   |
|            |                                                     | 13 300         | 75             | 0.24       | 4.6      | 2.7       |   |  | 645      | 1 550     | 1.65        | 92  | 49        |   |
|            |                                                     | 10 000         | 100            | 0.33       | 6.2      | 3.6       |   |  | 590      | 1 700     | 1.80        | 95  | 52        |   |
|            |                                                     | 6 400          | 155            | 0.40       | 9        | 6         |   |  | 515      | 1 950     | 1.95        | 110 | 60        |   |
|            |                                                     | 4 350          | 230            | 0.50       | 14       | 9         |   |  | 410      | 2 450     | 2.30        | 138 | 74        |   |
|            |                                                     | 3 230          | 310            | 0.60       | 18       | 11        | ł |  | 360      | 2 800     | 2.47        | 154 | 81        |   |
|            |                                                     | 2 560          | 390            | 0.65       | 22       | 14        |   |  | 280      | 3 550     | 2.87        | 195 | 99<br>112 |   |
|            |                                                     | 2 130<br>1 850 | 470<br>540     | 0.73       | 20<br>30 | 18        |   |  | 230      | 4 000     | 3.10        | 220 | 112       |   |
|            |                                                     | 1 620          | 620            | 0.85       | 34       | 21        | ſ |  | 200      | 5 000     | 3.60        | 270 | 135       | 1 |
|            |                                                     | 1 430          | 700            | 0.92       | 39       | 22        |   |  | 167      | 6 000     | 4.05        | 320 | 155       |   |
|            |                                                     | 1 280          | 780            | 1.05       | 43       | 24        | ļ |  | 139      | 7 200     | 4.50        | 360 | 178       |   |
|            |                                                     | 1 160          | 860            | 1.13       | 47       | 26        |   |  | 115      | 8 700     | 4.95        | 435 | 215       |   |
| 0 <u>.</u> |                                                     | 1 050          | 950            | 1.16       | 51       | 28        |   |  | 108      | 9 300     | 6.13        | 460 | 225       |   |
|            |                                                     | 070            | 1 020          | 1.20       | E E      | 20        |   |  | 95       | 10 500    | 5.40        | 520 | 245       |   |
|            |                                                     | 970<br>830     | 1 200          | 1.20       | 55<br>64 | 29<br>34  |   |  | 71       | 12 300    | 5.74        | 680 | 275       |   |
| <u>ъ</u>   |                                                     | 780            | 1 280          | 1.37       | 67       | 35        |   |  | 57       | 17 500    | 6.08        | 840 | 390       |   |
|            |                                                     | 700            | 1 430          | 1.40       | 75       | 40        | ĺ |  |          |           |             |     |           | 1 |
|            |                                                     | 640            | 1 570          | 1.43       | 82       | 43        |   |  |          |           |             |     |           |   |
|            |                                                     | 590            | 1 690          | 1.5        | 91       | 47        | Į |  |          |           |             |     |           |   |
|            |                                                     | 500            | 2 000          | 1.6        | 110      | 56        |   |  |          |           |             |     |           |   |
|            |                                                     | 385            | 2 600          | 1.9        | 138      | 73        |   |  |          |           |             |     |           |   |
|            |                                                     | 315            | 3 100          | 2.0        | 100      | 04        | ł |  |          |           |             |     |           |   |
|            |                                                     | 294<br>250     | 3 400<br>4 000 | 2.2        | 210      | 90<br>104 |   |  |          |           |             |     |           |   |
|            |                                                     | 200            | 5 000          | 2.75       | 260      | 125       |   |  |          |           |             |     |           |   |
|            |                                                     | 175            | 6 000          | 2.85       | 320      | 150       | ĺ |  |          |           |             |     |           |   |
|            |                                                     | 125            | 8 000          | 3.35       | 420      | 190       |   |  |          |           |             |     |           |   |
|            |                                                     | 91             | 11 000         | 3.8        | 560      | 250       | J |  |          |           |             |     |           |   |
|            |                                                     |                |                |            |          |           |   |  |          |           |             |     |           |   |
|            |                                                     |                |                |            |          |           |   |  |          |           |             |     |           |   |
|            |                                                     |                |                |            |          |           |   |  |          |           |             |     |           |   |
|            |                                                     |                |                |            |          |           |   |  |          |           |             |     |           |   |
|            |                                                     |                |                |            |          |           |   |  |          |           |             |     |           |   |
|            |                                                     |                |                |            |          |           |   |  |          |           |             |     |           |   |



## Twine, nylon (polyamide PA), monofilament and multimonofilament, Japanese numbering system

| A = breaking load, dry without knots (single twine)<br>B = breaking load, wet, knotted (single twine) |        |       |       |          |  |  |  |
|-------------------------------------------------------------------------------------------------------|--------|-------|-------|----------|--|--|--|
| Diam.<br>mm                                                                                           | m/kg   | Tex*  | A kgf | B<br>kgf |  |  |  |
| 0.10                                                                                                  | 90 900 | 11    | 0.65  | 0.4      |  |  |  |
| 0.12                                                                                                  | 62 500 | 16    | 0.9   | 0.55     |  |  |  |
| 0.15                                                                                                  | 43 500 | 23    | 1.3   | 0.75     |  |  |  |
| 0.18                                                                                                  | 33 300 | 30    | 1.6   | 1.0      |  |  |  |
| 0.20                                                                                                  | 22 700 | 44    | 2.3   | 1.4      |  |  |  |
| 0.25                                                                                                  | 17 200 | 58    | 3.1   | 1.8      |  |  |  |
| 0.30                                                                                                  | 11 100 | 90    | 4.7   | 2.7      |  |  |  |
| 0.35                                                                                                  | 8 330  | 120   | 6.3   | 3.6      |  |  |  |
| 0.40                                                                                                  | 6 450  | 155   | 7.7   | 4.4      |  |  |  |
| 0.45                                                                                                  | 5 400  | 185   | 9.5   | 5.5      |  |  |  |
| 0.50                                                                                                  | 4 170  | 240   | 12    | 6.5      |  |  |  |
| 0.55                                                                                                  | 3 570  | 280   | 14    | 7.5      |  |  |  |
| 0.60                                                                                                  | 3 030  | 330   | 17    | 8.8      |  |  |  |
| 0.70                                                                                                  | 2 080  | 480   | 24    | 12.5     |  |  |  |
| 0.80                                                                                                  | 1 670  | 600   | 29    | 15       |  |  |  |
| 0.90                                                                                                  | 1 320  | 755   | 36    | 19       |  |  |  |
| 1.00                                                                                                  | 1 090  | 920   | 42    | 22       |  |  |  |
| 1.10                                                                                                  | 900    | 1 110 | 47    | 25       |  |  |  |
| 1.20                                                                                                  | 760    | 1 320 | 55    | 30       |  |  |  |
| 1.30                                                                                                  | 650    | 1 540 | 65    | 35       |  |  |  |
| 1.40                                                                                                  | 560    | 1 790 | 75    | 40       |  |  |  |
| 1.50                                                                                                  | 490    | 2 060 | 86    | 46       |  |  |  |
| 1.60                                                                                                  | 430    | 2 330 | 98    | 52       |  |  |  |
| 1.70                                                                                                  | 380    | 2 630 | 110   | 58       |  |  |  |
| 1.80                                                                                                  | 340    | 2 960 | 120   | 65       |  |  |  |
| 1.90                                                                                                  | 300    | 3 290 | 132   | 72       |  |  |  |
| 2.00                                                                                                  | 270    | 3 640 | 145   | 75       |  |  |  |
| 2.50                                                                                                  | 180    | 5 630 | 220   | 113      |  |  |  |

#### Japanese numbering system for Monofilament

| N' Japan | Diam.<br>(mm) | N" Japan | diam.<br>(mm) |
|----------|---------------|----------|---------------|
|          | 0.20          |          | 0.55          |
| 2        | -             | 12       | -             |
|          | 0.25          |          | 0.60          |
| 3        |               | 14       |               |
|          | 0.30          |          | 0.70          |
| 4        | -             | 18       | -             |
|          | 0.35          |          | 0.80          |
| 5        | -             | 24       |               |
|          | 0.40          | 30       | 0.90          |
| 6        | -             |          |               |
| 7        | 0.45          |          |               |
| 8        | 0.50          |          |               |
|          |               |          |               |
|          |               |          |               |
| 10       | -             |          |               |

#### Multimonofilament

| Diameter*xnumberof<br>(mm) filaments | m/kg         | A<br>Kgf |
|--------------------------------------|--------------|----------|
| 0.20 x 4                             | 6 250        | 9        |
| 0.20 X 6                             | 4 255        | 14       |
| 0.20 x 8                             | 3 125        | 18       |
| 0.20 x 10                            | 2 630        | 24       |
| 0.20 x 12                            | 2 120        | 26       |
| * for monofilament, te.              | x and Rtex a | re the   |
| same.                                |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |
|                                      |              |          |



## Twine: polyester (PES), polyethylene (PE), polypropylene (PP)

- A = breaking load, dry without knots (single twine)
- B = breaking load, wet, knotted (single twine)

POLYESTER (PES)

#### ■ twisted, continuous filaments

| m/kg   | Rtex  | Diam.<br>mm | A<br>kgf* | B<br>kgf |
|--------|-------|-------------|-----------|----------|
| 11 100 | 90    | 0.40        | 5.3       | 2.8      |
| 5 550  | 80    | 0.40        | 10.5      | 5        |
| 3 640  | 275   | 0.50        | 16        | 7.3      |
| 2 700  | 370   | 0.60        | 21        | 9.3      |
| 2 180  | 460   | 0.70        | 27        | 12       |
| 1 800  | 555   | 0.75        | 32        | 14       |
| 1 500  | 670   | 0.80        | 37        | 16       |
| 1 330  | 750   | 0.85        | 42        | 18       |
| 1 200  | 830   | 0.90        | 46        | 20       |
| 1 080  | 925   | 0.95        | 50        | 22       |
| 1 020  | 980   | 1.00        | 54        | 24       |
| 900    | 1 110 | 1.05        | 60        | 26       |
| 830    | 1 200 | 1.10        | 63        | 28       |
| 775    | 1 290 | 1.15        | 68        | 29       |
| 725    | 1 380 | 1.20        | 73        | 30       |
| 665    | 1 500 | 1.25        | 78        | 32       |
| 540    | 1 850 | 1.35        | 96        | 40       |
| 270    | 3 700 | 1.95        | 180       | 78       |

|   | m/kg  | Rtex   | Diam.<br>approx.<br>mm | A<br>kgf | B<br>kgf |
|---|-------|--------|------------------------|----------|----------|
| Γ | 4 760 | 210    | 0.60                   | 13       | 8        |
|   | 3 470 | 290    | 0.72                   | 15       | 9        |
|   | 2 780 | 360    | 0.81                   | 19       | 11       |
|   | 2 330 | 430    | 0.90                   | 25       | 14       |
|   | 1 820 | 550    | 1.02                   | 28       | 15       |
|   | 1 560 | 640    | 1.10                   | 38       | 19       |
|   | 1 090 | 920    | 1.34                   | 44       | 23       |
|   | 840   | 119011 | 1.54                   | 58       | 30       |
|   | 690   | 10     | 1.70                   | 71       | 36       |
|   | 520   | 1 920  | 1.95                   | 92       | 47       |
|   | 440   | 2 290  | 2.12                   | 112      | 59       |
|   | 350   | 2 820  | 2.32                   | 132      | 70       |
|   | 300   | 3 300  | 2.52                   | 152      | 80       |
|   | 210   | 4 700  | 2.94                   | 190      | 100      |
| L | 177   | 5 640  | 3.18                   | 254      | 130      |

#### POLYETHYLENE (PE)

#### twisted or braided thick filaments

| m/kg  | Rtex   | Diam.<br>approx.<br>mm | A<br>kgf | B<br>kgf |
|-------|--------|------------------------|----------|----------|
| 5 260 | 190    | 0.50                   | 7.5      | 5.5      |
| 2 700 | 370    | 0.78                   | 10       | 7        |
| 1 430 | 700    | 1.12                   | 27       | 19       |
| 950   | 1 050  | 1.42                   | 36       | 24       |
| 710   | 1 410  | 1.64                   | 49       | 35       |
| 570   | 1 760  | 1.83                   | 60       | 84       |
| 460   | 2 170  | 2.04                   | 75       | 54       |
| 360   | 2 800  | 2.33                   | 93       | 67       |
| 294   | 3 400  | 2.56                   | 116      | 83       |
| 225   | 4 440  | 2.92                   | 135      | 97       |
| 190   | 5 300  | 3.19                   | 170      | 125      |
| 130   | 7 680  | 3.68                   | 218      | 160      |
| 100   | 10 100 | 3.96                   | 290      | 210      |
|       | -      | -                      |          | -        |

#### twisted staple fibres

POLYPROPYLENE (PP)

■ twisted, continuous filaments

| m/kg  | Rtex  | Diam.<br>approx.<br>mm | A<br>kgf | B<br>kgf |
|-------|-------|------------------------|----------|----------|
| 4 760 | 210   | 0.60                   | 9        | 6        |
| 3 330 | 300   | 0.73                   | 13       | 9        |
| 2 560 | 390   | 0.85                   | 18       | 12       |
| 1 250 | 800   | 1.22                   | 32       | 22       |
| 1 010 | 990   | 1.36                   | 38       | 24       |
| 720   | 1 390 | 1.62                   | 57       | 36       |
| 530   | 1 900 | 1.94                   | 73       | 46       |
| 420   | 2 360 | 2.18                   | 86       | 54       |
| 325   | 3 070 | 2.48                   | 100      | 59       |
| 240   | 4 100 | 2.90                   | 150      | 88       |
| 185   | 5 400 | 3.38                   | 215      | 120      |
| 150   | 6 660 | 3.82                   | 300      | 170      |



#### Vegetable fibre ropes\*

|                | Tarred Cotton |          |
|----------------|---------------|----------|
| Diameter<br>mm | kg/100 m      | R<br>kgf |
| 3.0            | 1.056         | 45       |
| 3.5            | 1.188         | 55       |
| 4.0            | 1.320         | 66       |
| 4.5            | 1.585         | 77       |
| 5.0            | 1.915         | 88       |
| 5.5            | 2.448         | 100      |
| 6.0            | 2.905         | 113      |
| 6.5            | 3.300         | 127      |

| Sisal           |               |        |              |       |
|-----------------|---------------|--------|--------------|-------|
|                 | Stan          | dard   | E            | ktra  |
| Diameter<br>mm" | kg /<br>100 m | R kgf  | kg/<br>100 m | R kgf |
| 6               | 2.3           | 192    | 3.3          | 336   |
| 8               | 3.5           | 290    | 4.7          | 505   |
| 10              | 6.4           | 487    | 6.4          | 619   |
| 11              | 8.4           | 598    | 9.0          | 924   |
| 13              | 10.9          | 800    | 11.0         | 1 027 |
| 14              | 12.5          | 915    | 14.0         | 1 285 |
| 16              | 17.0          | 1 100  | 17.2         | 1 550 |
| 19              | 24.5          | 1630   | 25.3         | 2 230 |
| 21              | 28.1          | 1 760  | 29.30        | 2 390 |
| 24              | 38.3          | 2 720  | 39.5         | 3 425 |
| 29              | 54.5          | 3 370  | 56.0         | 4 640 |
| 32              | 68.0          | 4 0501 | 70.0         | 5510  |
| 37              | 90.0          | 5 220  | 92.0         | 7 480 |
| 40              |               |        |              |       |
| 48              |               |        |              |       |

R = Breaking strength, dry Safe working load, see page 5 " In English-speaking countries the size of a rope is

" In English-speaking countries the size of a rope is sometimes measured by its circumference in inches (in.)

or by its diameter in inches Diameter of rope 0 (mm) = approx. 8 x c (inch)

Example: 0 (mm) of a rope of 2.25 inch circumference 0 (mm) =  $2.25 \times 8 = 18 \text{ mm}$  (approximate)

| Нетр     |       |        |       |        |
|----------|-------|--------|-------|--------|
|          | Star  | ndard  | Ex    | tra    |
| Diameter | kg/   | R      | kg/   | R      |
| 1010     | 100 m | ĸġſ    | 100 m | ĸġr    |
| 10       | 6.6   | 631    | 7.8   | 600    |
| 11       | 8.5   | 745    | 10.0  | 708    |
| 13       | 11.3  | 994    | 13.3  | 944    |
| 14       | 14.3  | 1 228  | 17.0  | 1 167  |
| 16       | 17.2  | 1 449  | 20.3  | 1 376  |
| 19       | 25.3  | 2017   | 29.8  | 1 916  |
| 21       | 30.0  | 2318   | 35.4  | 2 202  |
| 24       | 40.2  | 3 091  | 47.4  | 2 936  |
| 29       | 59.0  | 4 250  | 70.0  | 4 037  |
| 32       | 72.8  | 5 175  | 86.0  | 4916   |
| 37       | 94.8  | 6 456  | 112.0 | 6 133  |
| 40       | 112.0 | 7 536  | 132.0 | 7 159  |
| 48       | 161.0 | 10 632 | 190.0 | 10 100 |

| Manilla         |              |       |              |        |
|-----------------|--------------|-------|--------------|--------|
|                 | Star         | ndard | Ex           | tra    |
| Diameter<br>mm" | kg/<br>100 m | R kgf | kg/<br>100 m | R kgf  |
| 10              | 6.2          | 619   | 6.2          | 776    |
| 11              | 9.15         | 924   | 9.25         | 1 159  |
| 13              | 11.2         | 1 027 | 12.4         | 1 470  |
| 14              | 14.2         | 1 285 | 15.0         | 1 795  |
| 16              | 17.5         | 1 550 | 18.5         | 2 125  |
| 19              | 25.5         | 2 230 | 26.65        | 2 970  |
| 21              | 29.7         | 2 520 | 30.5         | 3 330  |
| 24              | 40.5         | 3 425 | 41.6         | 4 780  |
| 29              | 58.4         | 4 800 | 59.9         | 6 380  |
| 32              | 72.0         | 5 670 | 74.0         | 7 450  |
| 37              | 95.3         | 7 670 | 98.0         | 9 770  |
| 40              | 112.5        | 8 600 | 115.8        | 11 120 |
| 48              |              |       |              |        |



ROPE

#### Synthetic fibre rope\*

ROPE

| Diamatar | Delvomid | (DA)          | Delvet             |              | Delvest           |                | Dolypr              | (00)         |
|----------|----------|---------------|--------------------|--------------|-------------------|----------------|---------------------|--------------|
| mm"      | e kg/100 | (PA)<br>R kgf | hy<br>ene<br>kg/10 | (PE)<br>Rkgf | er<br>kg/100<br>m | (PES)<br>R kgf | opy<br>ene<br>Kg/10 | (PP)<br>Rkgf |
| Δ        | 11       | 320           | UIII               |              | 14                | 295            | UIII                |              |
| 6        | 2.4      | 750           | 17                 | 400          | 3                 | 565            | 17                  |              |
| 8        | 4.2      | 1 350         | 3                  | 685          | 5.1               | 1 020          | 3                   | 960          |
| 10       | 6.5      | 2 080         | 4.7                | 1 010        | 8.1               | 1 590          | 4.5                 | 1 425        |
| 12       | 9.4      | 3 000         | 6.7                | 1 450        | 11.6              | 2 270          | 6.5                 | 2 030        |
| 14       | 12.8     | 4 100         | 9.1                | 1 950        | 15.7              | 3 180          | 9                   | 2 790        |
| 16       | 16.6     | 5 300         | 12                 | 2 520        | 20.5              | 4 060          | 11.5                | 3 500        |
| 18       | 21       | 6 700         | 15                 | 3 020        | 26                | 5 080          | 14.8                | 4 450        |
| 20       | 26       | 8 300         | 18.6               | 3 720        | 32                | 6 350          | 18                  | 5 370        |
| 22       | 31.5     | 10 000        | 22.5               | 4 500        | 38.4              | 7 620          | 22                  | 6 500        |
| 24       | 37.5     | 12 000        | 27                 | 5 250        | 46                | 9 140          | 26                  | 7 600        |
| 26       | 44       | 14 000        | 31.5               | 6 130        | 53.7              | 10 700         | 30.5                | 8 900        |
| 28       | 51       | 15 800        | 36.5               | 7 080        | 63                | 12 200         | 35.5                | 10 100       |
| 30       | 58.5     | 17 800        | 42                 | 8 050        | 71.9              | 13 700         | 40.5                | 11 500       |
| 32       | 66.5     | 20 000        | 47.6               | 9 150        | 82                | 15 700         | 46                  | 12 800       |
| 36       | 84       | 24 800        | 60                 | 11 400       | 104               | 19 300         | 58.5                | 16 100       |
| 40       | 104      | 30 000        | 74.5               | 14 000       | 128               | 23 900         | 72                  | 19 400       |

R = breaking strength, dry

Direction of twist of twines, ropes and cables







Left hand laid

Right hand laid

' Safe working load see page 5

" Conversioninch-mm, seepage 15



|      | Knots for stoppers and mooring                                                                                                                                                             |                                                                                                            |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| ROPE | Some knots are used more than others. In selectin<br>considered : — the use of the knot — the type of re<br>permanent.<br>For stopping a rope from running through<br>a narrow space (i.e. | ng which knot to use the following points should be ope — whether the knot will slip — whether the knot is |
|      | sheave)                                                                                                                                                                                    |                                                                                                            |
|      | Figure of eight                                                                                                                                                                            | Double sheet<br>bend                                                                                       |
|      | Clove hitch                                                                                                                                                                                | - Specie                                                                                                   |
| 8    | 省参考                                                                                                                                                                                        | Anchor bend                                                                                                |
| 1 1  | A Q J                                                                                                                                                                                      |                                                                                                            |
|      |                                                                                                                                                                                            | ■ To close the codend of a trawl                                                                           |
|      | A M                                                                                                                                                                                        | (codend knot)                                                                                              |
|      | Round turn and<br>two half hitches                                                                                                                                                         | ■ To shorten a rope<br>Sheepshank<br>( not effective with monofilgment )                                   |

#### Knots for hitches and stoppers

Some knots are used more than others. In selecting which knot to use the following points should be considered : — the use of the knot — the type of rope — whether the knot will slip — whether the knot is permanent.



ROPE



#### Combination wire (1)\*

| Steel - Sisal | 3 strands |       |        |       |
|---------------|-----------|-------|--------|-------|
| Diameter      | Untr      | eated | Tarred |       |
| (mm)          | kg/m      | Rkgf  | kg/m   | Rkgf  |
| 10            | 0.094     | 1 010 | 0.103  | 910   |
| 12            | 0.135     | 1 420 | 0.147  | 1 285 |
| 14            | 0.183     | 1 900 | 0.200  | 1 750 |
| 16            | 0.235     | 2 400 | 0.255  | 2 200 |
| 18            | 0.300     | 3 100 | 0.325  | 2 800 |
| 20            | 0.370     | 3 800 | 0.405  | 3 500 |
| 22            | 0.445     | 4 600 | 0.485  | 4 200 |
| 25            | 0.565     | 5 700 | 0.615  | 5 300 |
| 28            | 0.700     | 7 500 | 0.760  | 6 700 |
| 30            | 0.820     | 8 400 | 0.885  | 7 600 |

#### Steel - Sisal 4 strands

| Diameter       | Untr                    | eated                   | Ta                      | arred                   |
|----------------|-------------------------|-------------------------|-------------------------|-------------------------|
| (mm)           | kg/m                    | Rkgf                    | kg/m                    | Rkgf                    |
| 12<br>14<br>16 | 0.135<br>0.183<br>0.235 | 1 420<br>1 900<br>2 400 | 0.147<br>0.200<br>0.255 | 1 285<br>1 750<br>2 200 |
| 18             | 0.300                   | 3 100                   | 0.325                   | 2 800                   |
| 20             | 0.370                   | 3 800                   | 0.405                   | 3 500                   |
| 22             | 0.445                   | 4 600                   | 0.485                   | 4 200                   |
| 25             | 0.565                   | 5 700                   | 0.615                   | 5 300                   |
| 28             | 0.700                   | 7 200                   | 0.760                   | 6 400                   |
| 30             | 0.775                   | 8 400                   | 0.840                   | 7 600                   |

R = Breaking strength dry

\*Safe working loads, see page 5



# ROPE

#### 22 Combination wire (2)\*

ROPE

| Steel -Manilla B | , 4 strands |        |       |        |
|------------------|-------------|--------|-------|--------|
| Diameter         | Untr        | reated | Tar   | red    |
| (mm)             | kg/m        | Rkgf   | kg/m  | Rkgf   |
| 12               | 0.138       | 1 500  | 0.150 | 1 370  |
| 14               | 0.185       | 2 000  | 0.205 | 1 850  |
| 16               | 0.240       | 2 500  | 0.260 | 2 350  |
| 18               | 0.305       | 3 300  | 0.335 | 3 000  |
| 20               | 0.380       | 4 000  | 0.410 | 3 800  |
| 22               | 0.455       | 5 000  | 0.495 | 4 600  |
| 25               | 0.575       | 6 200  | 0.630 | 5 700  |
| 28               | 0.710       | 7 600  | 0.775 | 6 900  |
| 30               | 0.790       | 8 900  | 0.860 | 8 200  |
| 32               | 0.890       | 9 500  | 0.970 | 8 750  |
| 34               | 1.010       | 11 200 | 1.100 | 10 200 |
| 36               | 1.140       | 12 000 | 1.235 | 11 000 |
| 40               | 1.380       | 15 000 | 1.495 | 14000  |
| 45               | 1.706       | 18 500 | 1.860 | 17 500 |
| 50               | 2.045       | 22 500 | 2.220 | 20 000 |

#### Steel - Polypropylene

| Diameter<br>(mm) | Number of<br>strands | kg/m  | Rkgf  |
|------------------|----------------------|-------|-------|
| 10               | 3                    | 0.105 | 1 230 |
| 12               | 3                    | 0.120 | 1 345 |
| 14               | 3                    | 0.140 | 1 540 |
| 16               | 3                    | 0.165 | 2 070 |
| 18               | 3                    | 0.240 | 3 000 |
| 14               | 6                    | 0.250 | 4 000 |
| 16               | 6                    | 0.275 | 4 400 |
| 18               | 6                    | 0.350 | 5 300 |
| 20               | 6                    | 0.430 | 6 400 |
| 22               | 6                    | 0.480 | 7 200 |
| 24               | 6                    | 0.520 | 7 800 |
| 26               | 6                    | 0.640 | 9 700 |

#### R = Breaking strength dry

\* Safe working loads, see page 5



#### **Floatlines and leadlines**

#### Floatline (with floats inside)



Principal advantages (1) and disadvantages (2)

- 1) Ease of rigging; less entanglement in the meshes.
- Need to calculate the rigging as a function of the distance between the floats; fragility of some types of float when passing through certain gillnet haulers.

#### Floatline (with floats inside)

| Interval between<br>floats (cm) | Flotation gf/100m |
|---------------------------------|-------------------|
| 52                              | 480               |
| 47                              | 500               |
| 35                              | 570               |
| 20                              | 840               |
| 35                              | 2850              |
| 20                              | 3 000             |

#### Leadline (with leads inside)



#### Principal advantages (i) and disadvantages (2)

- Ease of rigging; uniform weight of leadline; better hanging; no entanglement in meshes.
- 2) In the case of breaking, loss of leads; difficult to repair; high cost.

#### Braided with a centre core of lead

| Diameter<br>(mm) | kg/100 m   | Rkgf |
|------------------|------------|------|
| 2                | 2.3 - 3.5  | 73   |
| 2.5              | 4.6        |      |
| 3                | 6.5-7.1    | 100  |
| 3.5              | 9.1        |      |
| 4                | 11.1 -12.3 | 200  |
| 4.5              | 14.5       |      |
| 5                | 15.2-18.1  | 300  |
|                  |            |      |

| Diameter<br>(mm) | kg/100m | Rkgf |
|------------------|---------|------|
| 7.2              | 7.5     | 360  |
| 8                | 12.5    | 360  |
| 8                | 18.8    | 360  |
| 9.5              | 21.3    | 360  |
| 9.5              | 23.8    | 360  |
| 9.5              | 27.5    | 360  |
| 11.1             | 30.0    | 360  |
| 12.7             | 37.5    | 675  |



ROPE

#### Rope with a lead core in three strands

| Diameter | kg/100m | Rkgf  |
|----------|---------|-------|
| 6        | 8.7     | 495   |
| 7        | 11.2    | 675   |
| 8        | 13.3    | 865   |
| 10       | 21.6    | 1 280 |
| 12       | 26.6    | 1 825 |
| 14       | 33.0    | 2510  |

R = breaking strength

there are also leadlines of 0.75; 0.90; 1.2; 1.5; 1.8 kg/100m

#### Steel wire rope: structure, diameter and use

# WIRE ROPE



|              | Examples of common marine wire rope                                              |                                                                                         |    |  |  |  |  |
|--------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----|--|--|--|--|
| Туре         | Structure and diameter                                                           | Example of Use                                                                          | S  |  |  |  |  |
|              | 7x7(6/1)<br>central heart: steel<br>Ø 12 to 28 mm                                | Standing rigging                                                                        | +  |  |  |  |  |
| ٠            | 6x7 (6/1)<br>Central heart: textile<br>Ø 8 to 16 mm                              | Standing rigging<br>Warps for small<br>trawlers<br>Small coastal vessels                | +  |  |  |  |  |
| *            | 6x12(12/fibre)<br>Central heart, strand cores,<br>fibre<br>Ø 8 to 16 mm          | Bridles and warps for<br>small trawlers moorings<br>and running rigging                 | ++ |  |  |  |  |
|              | 6x19 (9/9/1)<br>Central heart of steel or textile<br>Ø 16to30mm                  | Trawler warps                                                                           | +  |  |  |  |  |
|              | 6x19(12/6/1)<br>Central heart of textile<br>Ø 8 to 30 mm                         | Trawler's sweeps and<br>warps<br>running rigging                                        | +  |  |  |  |  |
|              | 6x24(15/9/fibre)<br>Central heart and strand cores<br>of textile<br>Ø 8 to 40 mm | Purse wire bridles and<br>otter board strops,<br>running rigging<br>moorings and towing | ++ |  |  |  |  |
| 3 <b>8</b> 8 | 6x37(18/12/6/1)<br>Central heart of textile<br>Ø 20 to 72 mm                     | Purse wire<br>moorings and running<br>rigging mooring                                   | ++ |  |  |  |  |

S = flexibility

+ = poor or average

++= good

As a general rule, the greater the number of strands, and the greater the number of filaments per strand, the greater the flexibility of the cable.

|         |                  |                   | nogo (24) o |                 |              |
|---------|------------------|-------------------|-------------|-----------------|--------------|
|         | 6x7 (6/1)        | or structure, see | page 24) e. | kampies         | 6x12 (12/    |
| diam.   | ka/              | R                 | -     -     | diam.           | ka/          |
| mm      | 100 m            | kgf               |             | mm              | 100 m        |
| 8       | 22.2             | 3 080             |             | 6               | 9.9          |
| 9       | 28.1             | 3 900             |             |                 |              |
|         |                  |                   |             | 8               | 15.6         |
| 10      | 34.7             | 4 820             |             | 9               | 19.7         |
| 11      | 42.0             | 5 830             |             | 10              | 24.3         |
| 12      | 50.0             | 6 940             |             |                 |              |
| 13      | 58.6             | 8 140             |             | 12              | 35.0         |
| 14      | 68.0             | 9 440             |             | 14              | 47.7         |
| 15      | 78.1             | 10 800            |             | 16              | 62.3         |
| 16      | 88.8             | 12 300            |             |                 |              |
|         | 6x19(9/9/1)      |                   | 7   F       |                 | 6x19(12/     |
| diam.   | kg/              | R                 |             | diam.           | kg/          |
| mm      | 100 m            | kgf               |             | mm              | 100 m        |
| 16      | 92.6             | 12 300            |             | 8               | 21.5         |
| 17      | 105              | 13 900            |             | 10              | 33.6         |
| 18      | 117              | 15 500            |             | 12              | 48.4         |
| 19      | 131              | 17 300            |             |                 | 05.0         |
| 20      | 145              | 10.200            |             | 14              | 65.8         |
| 20      | 140              | 19 200            |             | 10              | 60.0<br>100  |
| 21      | 100              | 23 200            |             | 10              | 109          |
| 22      | 191              | 25 200            |             | 20              | 134          |
| 23      | 208              | 27 600            |             | 20              | 163          |
| 27      | 200              | 27 000            |             | 24              | 193          |
| 25      | 226              | 30 000            |             |                 |              |
| 26      | 245              | 32 400            |             |                 | 6x 37 (18/1  |
|         |                  | •                 | -           | diam            | kg/          |
|         |                  |                   | _           | mm              | 100 m        |
|         | 6 x24(15/9/fibre | e)                | _           | 20              | 134          |
| Diam    | kg/              | R                 |             | 22              | 163          |
| mm<br>o | 100 m            | ×gr               | -           | 24              | 102          |
| 10      | 30.9             | 2 000             |             | 24              | 195          |
| 12      | 44 5             | 5 850             |             | 26              | 227          |
| 12      |                  | 0.000             |             | 20              | 221          |
| 14      | 60.6             | 7.060             |             | P - Procking    | otropath     |
| 14      | 00.0             | 7 900             |             | R = Dieaking    |              |
| 16      | 79.1             | 10 400            |             | (steel 145 kgf/ | /mm²)        |
| 18      | 100              | 13 200            |             |                 |              |
|         |                  |                   |             | * Safe Workin   | g Loads, see |
| 20      | 124              | 16 200            |             |                 |              |
| 21      | 136              | 17 900            |             |                 |              |
| 22      | 150              | 19 700            |             |                 |              |
| 24      | 178              | 23 400            |             |                 |              |
| 26      | 209              | 27 500            |             |                 |              |
|         |                  |                   |             |                 |              |

#### Galvanised steel wire rope: runnage. breaking strength\* 25

| amples |                 |       |
|--------|-----------------|-------|
|        | 6x12 (12/fibre) |       |
| diam.  | kg/             | R     |
| mm     | 100 m           | kgf   |
| 6      | 9.9             | 1 100 |
|        |                 |       |
| 8      | 15.6            | 1 940 |
| 9      | 19.7            | 2 450 |
| 10     | 24.3            | 3 020 |
|        |                 |       |
| 12     | 35.0            | 4 350 |
| 14     | 47.7            | 5 930 |
| 16     | 62.3            | 7 740 |

| 6x19(12/6/1) |       |        |  |  |  |
|--------------|-------|--------|--|--|--|
| diam.        | kġ/   | R      |  |  |  |
| mm           | 100 m | kgf    |  |  |  |
| 8            | 21.5  | 2 850  |  |  |  |
| 10           | 33.6  | 4 460  |  |  |  |
| 12           | 48.4  | 6 420  |  |  |  |
|              |       |        |  |  |  |
| 14           | 65.8  | 8 730  |  |  |  |
| 16           | 86.0  | 11 400 |  |  |  |
| 18           | 109   | 14 400 |  |  |  |
|              |       |        |  |  |  |
| 20           | 134   | 17 800 |  |  |  |
| 22           | 163   | 21 600 |  |  |  |
| 24           | 193   | 25 700 |  |  |  |

|      | 6x 37 (18/12/6/1 | )      |
|------|------------------|--------|
| diam | kg/              | R      |
| mm   | 100 m            | kgf    |
| 20   | 134              | 17 100 |
| 22   | 163              | 20 700 |
| 24   | 193              | 24 600 |
| 26   | 227              | 28 900 |

page 5

# WIRE ROPE



# 26 Handling wire rope WIRE ROPE NO YES ■ Winding onto a drum depending on the direction of lay in a wire

| Matching wire                                                                                    | ropes with drums and sheaves                                                                                                                                                                                                                                                                                                                                                                                                 |           |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Drums:                                                                                           | the diameter of a drum (D) relative to the diameter of the wire rope (0) to be<br>held on the drum —<br>$D / \oslash$ depends on the structure of the wire rope, and depending on the<br>particular situation, D should range from 20 $\oslash$ to 48 $\oslash$ . In practical use on<br>board fishing vessels, depending on the space available, the following values<br>are common :<br>$D = 14 \oslash$ or more           | WIRE ROPE |
| ■ Sheaves :                                                                                      | The diameter of a sheave (D) relative to the diameter of the wire rope (0) to be<br>used with the sheave —<br>$D/\emptyset$ depends on the structure of the wire rope, and depending on the<br>particular situation, D should range from 20 $\emptyset$ to 48 $\emptyset$ . In practical use on<br>board fishing vessels, depending on the space available, the following values<br>are common:<br>$D = 9 \emptyset$ or more |           |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
|                                                                                                  | Width of sheave relative to the diameter of the wire rope                                                                                                                                                                                                                                                                                                                                                                    |           |
|                                                                                                  | NO<br>sheave too<br>narrow wide NO<br>sheave too<br>wide NO<br>sheave too<br>on 1/3 of its circumference                                                                                                                                                                                                                                                                                                                     | X         |
| Location of sh                                                                                   | eave relative to drum                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| Maximum fleet an<br>gear:<br>(In order to let a s<br>rather than a fixe<br><b>■ Cable clamps</b> | gle of a steel wire between a fixed sheave and a drum with manual or automatic spooling<br>L - C x 5 (or more); C x 11 is recommended<br>heave shift with changing wire angles, it is often better to use a flexibly attached block<br>d sheave.)<br>should be fastened with nuts on the standing part of the wire                                                                                                           |           |
|                                                                                                  | NO YES                                                                                                                                                                                                                                                                                                                                                                                                                       |           |

| •      | Stainless steel, h | eat treated an | d painted | (exam | ples <u>)</u> |                   |          |              |            |
|--------|--------------------|----------------|-----------|-------|---------------|-------------------|----------|--------------|------------|
|        | Construc           | tion           | diam.     | R     | C             | onstruction       |          | diam.        | R          |
|        | Contract           |                | mm        | kgf   |               |                   |          | mm           | kgf        |
|        |                    |                | 1.00      | 75    |               |                   |          | 2.2          | 220        |
|        |                    |                | 0.91      | 60    |               |                   |          | 2.0          | 180        |
|        |                    |                | 0.82      | 50    |               |                   |          | 1.8          | 155        |
|        |                    |                | 0.75      | 45    |               |                   |          | 1.6          | 130        |
|        |                    |                | 0.69      | 40    |               |                   |          | 1.5          | 115        |
|        |                    |                | 0.64      | 34    |               | C the C           |          | 1.4          | 100        |
|        |                    |                | 0.00      | 20    |               |                   |          | 1.3          | 00         |
|        |                    |                | 1.0       | 170   |               |                   |          |              |            |
|        |                    |                | 1.4       | 155   |               |                   |          |              |            |
|        |                    |                | 1.3       | 140   |               |                   |          | 24           | 200        |
|        |                    |                | 1.0       | 120   |               |                   |          | 2.4          | 290        |
|        |                    |                | 1.1       | 100   |               |                   |          | 2.2          | 240        |
|        | 1 X 2              |                | 1.0       | 90    |               | X                 |          | 1.8          | 175        |
|        |                    |                | 0.9       | 75    |               |                   |          | 1.6          | 155        |
|        | T Y Î              |                | 0.8       | 65    |               | -CxC+             |          | 1.5          | 130        |
|        | · · ·              | ^ <b></b>      | 0.7       | 50    |               | J                 |          | 1.4          | 110        |
|        |                    |                | 0.6       | 40    |               |                   |          |              |            |
|        |                    |                | 0.6       | 30    | _             |                   | -        |              |            |
|        |                    |                |           |       |               |                   |          | 1.9          | 290        |
|        |                    |                | 2.2       | 290   |               | 1×3+91            |          | 1.8          | 245        |
| 12     | U3 X3              |                | 2.0       | 245   |               |                   |          | 1.6          | 200        |
| ×.     |                    | 2              | 1.8       | 200   |               | $C \rightarrow C$ |          | 1.5          | 175        |
| -1-1-1 |                    |                | 1.6       | 175   |               |                   |          | 1.3          | 155        |
|        | ÚÔ                 | Û              | 1.5       | 155   |               |                   |          | 1.2<br>1.1   | 135<br>110 |
|        | Columnia d at      |                |           |       |               |                   |          |              |            |
|        | ■ Galvanised sto   | Num            | ber of    |       | Diameter of   |                   |          | Diret        |            |
|        | mm                 | Strands        | Wires     |       | wires<br>mm   | kg/m              | (steel 8 | 0 - 90 kgf/i | mm )       |
|        | 2                  | 5              | 1 plus    | 6     | 0.25          | 0.016             |          | 125          |            |
|        | 3                  | 6              | 1 plus    | 6     | 0.30          | 0.028             |          | 215          |            |
|        | 4                  | 6              | 1 plus    | 6     | 0.40          | 0.049             |          | 380          |            |
|        | 5                  | 6              | 7         |       | 0.50          | 0.081             |          | 600          |            |
|        | 6                  | 6              | 9         |       | 0.50          | 0.110             |          | 775          |            |



#### Systems of measuring net meshes in different countries

NET WEBBING

|    | SYSTEM                                                                                                                   | PLACES USED             | TYPE OF MEASURE                                                                                   |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|
| а  | stretched mesh                                                                                                           | international           | distance (N direction)<br>between the centres of the<br>2 opposite knots of a<br>stretched mesh * |  |  |  |  |
| OM | mesh opening                                                                                                             | international           | maximum inside measure<br>(N direction) between the 2<br>opposite knots of a<br>stretched mesh *  |  |  |  |  |
| b  | bar length                                                                                                               | some European countries | length of one bar of mesh                                                                         |  |  |  |  |
| Р  | pasada                                                                                                                   | Spain, Portugal         | number of meshes per 200 mm                                                                       |  |  |  |  |
| On | omfar                                                                                                                    | Norway, Iceland         | half the number of meshes<br>per Alen (1 Alen = 628 mm)                                           |  |  |  |  |
| Os | omfar                                                                                                                    | Sweden                  | half the number of meshes<br>per Alen (1 Alen = 594 mm)                                           |  |  |  |  |
| R  | rows                                                                                                                     | Netherlands, UK         | number of rows of knots per<br>yard (1 yard = 910 mm)                                             |  |  |  |  |
| Ν  | knots                                                                                                                    | Spain, Portugal         | number of knots per metre                                                                         |  |  |  |  |
| F  | Fushi or Setsu                                                                                                           | Japan                   | number of knots per 6<br>inches (6 inches = 152 mm)                                               |  |  |  |  |
|    | Conversions                                                                                                              |                         |                                                                                                   |  |  |  |  |
|    | a (mm) = $\frac{200}{P} = \frac{1260}{O_R} = \frac{1190}{O_S} = \frac{1830}{R} = \frac{2000}{(N-1)} = \frac{300}{(F-1)}$ |                         |                                                                                                   |  |  |  |  |

\* Note that stretched meshsize is not the same as mesh opening, which is considered in many fisheries regulations.

A simple method of measuring stretched meshsize is as follows: extend a panel of twine fully in the N direction (see page 32 for N direction), and measure the distance between the centres of 2 knots (or connexions) separated by 10 meshes. Then divide this measure by 10.










## Common cutting rates and tapers

Number of meshes decreasing (or increasing) in width 5 7 9 2 3 4 6 8 1 1 AB 1T2B 1T1B 3T2B 2T1B 5T2B 3T1B 7T2B 4T1B 9T2B 2 1N2B AB 1T4B 1T2B 3T4B 1T1B 5T4B 3T2B 7T4B 2T1B 3 1N1B 1N4B AB 1T6B 1 T3B 1T2B 2T3B 5T6B 1T1B 7T6B 1N2B 1N6B 1T8B 1T4B 5T8B 4 3N2B AB 3T8B 1T2B 3T4B 1N8B 2T5B 5 2N1B 3N4B 1N3B AB 1T10B 1T5B 3T10B 1T2B Number of meshes in height (or depth) 6 5N2B 1N1B 1N2B 1N4B 1N10B AB 1T12B 1T6B 1T4B 1T3B 2N3B 7 3N1B 5N4B 3N8B 1N5B 1N12B AB 1T14B 1T7B 3T14B 8 7N2B 3N2B 5N6B 1N2B 3N10B 1N6B 1N14B AB 1T16B 1T8B 9 4N1B 7N4B 1N1B 5N8B 2N5B 1N4B 1N7B 1N16B AB 1T18B 10 9N2B 2N1B 7N6B 3N4B 1N2B 1N3B 3N14B 1N8B 1N18B AB 11 5N1B 9N4B 4N3B 7N8B 3N5B 5N12B 2N7B 3N16B 1N9B 1N20B 12 11N2B 5N2B 3N2B 1MB 7N10B 1N2B 5N14B 1N4B 1N6B 1N10B 13 6N1B 11N4B 5N3B 9N8B 4N5B 7N12B 3N7B 5N16B 2N9B 3N20B 14 13N2B 3N1B 11N6B 5N4B 9N10B 2N3B 1N2B 3N8B 5N18B 1N5B 15 7MB 13N4B 2N1B 11N8B 1MB 3N4B 4N7B 7N16B 1N3B 1N4B 16 15N2B 7N2B 13N6B 3M2B 11N10B 5N6B 9N14B 1N2B 7N18B 3N10B 17 8N1B 15N4B 7N3B 13N8B 6N5B 11N12B 5N7B 9N16B 4N9B 7N20B 18 17N2B 4N1B 5N2B 7N4B 13N10B 1MB 11N14B 5N8B 1N2B 2N5B 19 9N1B 17N4B 8N3B 15N8B 13M12B 11N16B 5N9B 9N20B 7N5B 6N7B

10

N = Sideknots

T = Meshes

B = Bars

**NET WEBBING** 

#### Estimation of weight of netting

#### Knotless netting

#### W = H x L x Rtex/1000 = H x L x (1000/m/kg)

#### Knotted netting

#### W = H x L x Rtex/1000 x K = H x L x (1000/m/ka)

Where

W = H x L x Rtex/1000 x K = H x L x (1000/m/ka)

W = estimated weight (g) of netting

H = number of rows of knots in the height of the netting 2 x number of meshes

L = Stretched length (m) of netting

Rtex and m/kg = the size of twine in the netting

K = knot correction factor to take into account the weight of the knots (single knot); see table below

K = (knot correction factor) for different netting panels

| Stretched        | Twine diameter (d) in mm |      |      |      |      |      |      |      |
|------------------|--------------------------|------|------|------|------|------|------|------|
| meshsize<br>(mm) | 0.25                     | 0.50 | 0.75 | 1.00 | 1.50 | 2.00 | 3.00 | 4.00 |
| 20               | 1.20                     | 1.40 | 1.60 | 1.80 | 1.80 | -    | -    | -    |
| 30               | 1.13                     | 1.27 | 1.40 | 1.53 | 1.60 | 2.07 | -    | -    |
| 40               | 1.10                     | 1.20 | 1.30 | 1.40 |      | 1.80 | -    | -    |
| 50               | 1.08                     | 1.16 | 1.24 | 1.32 | 1.48 | 1.64 | 1.96 | 2.07 |
| 60               | 1.07                     | 1.13 | 1.20 | 1.27 | 1.40 | 1.53 | 1.80 | 1.80 |
| 80               | 1.05                     | 1.10 | 1.15 | 1.20 | 1.30 | 1.40 | 1.60 |      |
| 100              | 1.04                     | 1.08 | 1.12 | 1.16 | 1.24 | 1.32 | 1.48 | 1.64 |
| 120              | 1.03                     | 1.07 | 1.10 | 1.13 | 1.20 | 1.27 | 1.40 | 1.53 |
| 140              | 1.03                     | 1.06 | 1.09 | 1.11 | 1.17 | 1.23 | 1.34 | 1.46 |
| 160              | 1.02                     | 1.05 | 1.07 | 1.10 | 1.15 | 1.20 | 1.30 | 1.40 |
| 200              | 1.02                     | 1.04 | 1.06 | 1.08 | 1.12 | 1.16 | 1.24 | 1.32 |
| 400              | 1.02                     | 1.02 | 1.03 | 1.04 | 1.06 | 1.08 | 1.12 | 1.16 |
| 800              | -                        | -    | -    | 1.02 | 1.03 | 1.04 | 1.06 | 1.08 |
| 1 600            | -                        | -    | -    | -    | -    | 1.02 | 1.03 | 1.04 |



NET WEBBING

*Example* : Knotted netting of twisted nylon twine, R1690 tex (590 m/kg), 100 mm bar length (200 mm stretched mesh length), height 50 meshes, length 100 meshes

50 meshes = 100 rows of knots in height

Stretched length = 100 meshes x 0.200 m = 20 m

Diameter of twisted polyamide twine 1690 Rtex = 1.5 mm (see page 12)

K in the table above =1.12 (stretched mesh 200 mm; diameter 1.5 mm)

W= 100 x 20 x (1690/1000) x 1.12 = 3785 g = about 3.8 kg

## Calculating twine surface area

The drag of a net is proportional to the number and type of meshes in the netting, and to the orientation of the net panel(s) in the water.



NET WEBBING

## Calculating twine surface area of a trawl



#### ■ NET WEBBING: CALCULATING TWINE SURFACE AREA OF A TRAWL

| PANEL   | No of  | N+n | Н   | $\frac{N+n}{2}xH$ | A    | Ø    | 2(a x Ø) | Twine |
|---------|--------|-----|-----|-------------------|------|------|----------|-------|
| Surface | Panels | 2   |     | 2                 | (mm) | (mm) |          | Area  |
| A       | 4      | 21  | 24  | 504               | 80   | 1.13 | 181      | 0.36  |
| В       | 2      | 61  | 90  | 5490              | 80   | 1.13 | 181      | 1.99  |
| С       | 1      | 279 | 30  | 8370              | 60   | 0.83 | 100      | 0.84  |
| D       | 2      | 194 | 140 | 27160             | 60   | 0.83 | 100      | 5.43  |
| E       | 2      | 136 | 100 | 13600             | 40   | 0.83 | 66       | 1.80  |
| F       | 2      | 54  | 90  | 4860              | 80   | 1.13 | 181      | 1.76  |
| G       | 2      | 97  | 30  | 2910              | 60   | 0.83 | 100      | 0.58  |
| J       | 2      | 86  | 150 | 12900             | 40   | 1.13 | 90       | 2.32  |

#### Twine surface area without knots

TOTAL S =  $15.08 \text{ m}^2$ 

In order to compare the twine surface areas of two trawls, the trawls should be as nearly the same shape as possible. In the case of such comparisons the surfaces of the lengthening pieces and the codend (parts without oblique orientation), will cause no significant drag, and can be disregarded.

## Hanging ratios, definition and calculation

NET WEBBING



| Hanging ratio (E) is | commonly defined as :                          |
|----------------------|------------------------------------------------|
|                      | anoth of range on which a not papel is mounted |

F = L / Lo = Length of rope on which a net panel is mounted (L) / Length of stretched netting hung on the rope (Lo)

Example: 200 meshes of 50 mm stretched mesh size hung on a rope of 8 m

| rope (L)<br>stretched netting (Lo) |
|------------------------------------|
| stretched netting (Lo)             |
|                                    |
|                                    |

$$E = \frac{8 \text{ m}}{0.050 \text{ m} \times 200}$$
$$= \frac{8}{10} = 0.80 = 80\%$$

#### Other expressions used for hanging ratio :

|      | $E = \frac{L}{L_0}$ | Lo   | (Lo-L)<br>x100 | $\frac{(Lo-L)}{R}$ x100 | Estimate of the   |
|------|---------------------|------|----------------|-------------------------|-------------------|
|      | LO                  | L    | LO             | н                       | height as mounted |
| (h   | anging ratio)       | (1)  | (2)            | (3)                     | % of stretched    |
|      |                     |      |                |                         | height            |
| 0.10 | 10%                 | 10   | 90%            | 900%                    | 99%               |
| 0.20 | 20%                 | 5    | 80%            | 400%                    | 98%               |
| 0.30 | 30%                 | 3.33 | 70%            | 233%                    | 95%               |
| 0.40 | 40%                 | 2.5  | 60%            | 150%                    | 92%               |
| 0.45 | 45%                 | 2.22 | 55%            | 122%                    | 89%               |
| 0.50 | 50%                 | 2.00 | 50%            | 100%                    | 87%               |
| 0.55 | 55%                 | 1.82 | 45%            | 82%                     | 84%               |
| 0.60 | 60%                 | 1.66 | 40%            | 67%                     | 80%               |
| 0.65 | 65%                 | 1.54 | 35%            | 54%                     | 76%               |
| 0.71 | 71%                 | 1.41 | 29%            | 41%                     | 71%               |
| 0.75 | 75%                 | 1.33 | 25%            | 33%                     | 66%               |
| 0.80 | 80%                 | 1.25 | 20%            | 25%                     | 60%               |
| 0.85 | 85%                 | 1.18 | 15%            | 18%                     | 53%               |
| 0.90 | 90%                 | 1.11 | 10%            | 11%                     | 44%               |
| 0.95 | 95%                 | 1.05 | 5%             | 5%                      | 31%               |
| 0.98 | 98%                 | 1.02 | 2%             | 2%                      | 20%               |

1) Also called external hanging co-efficient

 Also called percentage of hanging in — Setting in x 100 — Looseness percentage of hanging — Hang in (Asia, Japan)

3) Also called Hang in ratio (Scandinavia)

Note : It is recommended that only the hanging ratio E be used



## Mounted height of a net

#### Calculation of mounted height

The actual height of a mounted (rigged or hung) net depends on the stretched height and the hanging ratio. The general formula permitting estimation in all cases is :

mounted height (m) = stretched height (m) ×  $\sqrt{1 - E^2}$ 

Where  $E^2$  = horizontal hanging ratio multiplied by itself

**Example**: Given the piece of netting described on the preceding page with hanging ratio of 0.90 : Stretched height of netting

500 meshes of 30 mm, 500 x 30 = 15000 mm = 15 m

Mounted height = stretched height x  $\sqrt{1 - E^2}$ 

$$= 15 \times \sqrt{1 - (0.9)^2}$$
  
= 15 × 0.44 = 6.6 m

#### Table for estimating mounted height





#### Example:

Given the piece of netting described on the preceding page, mounted with the horizontal hanging ratio 0.90, we can deduce from the table above (E to A to H) that its mounted height is 44% of the stretched height.

Stretched height = 500 meshes of 30 mm = 500 x 30 mm = 15 m Mounted height = 44% of 15 m = 6.6 m





## Mounting (hanging or rigging) panels of netting

Examples

**NET WEBBING** 



























## Terms for describing fish hooks





#### Examples of fish hook characteristics

| gap (mm)<br>.5<br>0<br>1<br>2.5 | Shank diam.<br>(mm)<br>1<br>1<br>1<br>1<br>5 | Num!<br>2<br>1<br>1/0                          | ber gap (m<br>10<br>11                                                                                         |
|---------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| .5<br>0<br>1<br>2.5             | 1<br>1<br>1<br>15                            | 2<br>1<br>1/0                                  | 10<br>11                                                                                                       |
| 0<br>1<br>2.5                   | 1<br>1<br>15                                 | 1<br>1/0                                       | 11                                                                                                             |
| 1<br>2.5                        | 1                                            | 1/0                                            | 10                                                                                                             |
| 2.5                             | 15                                           |                                                | 12                                                                                                             |
| 1                               | 1.0                                          | 2/0                                            | 13                                                                                                             |
| 4                               | 1.5                                          | 3/0                                            | 14.5                                                                                                           |
| 5                               | 2                                            | 4/0                                            | 16.5                                                                                                           |
| 6                               | 2                                            | 5/0                                            | 10                                                                                                             |
| 8                               | 2.5                                          | 6/0                                            | 27                                                                                                             |
| 0                               | 3                                            | 8/0                                            | 29                                                                                                             |
| 3                               | 3                                            | 10/0                                           | 31                                                                                                             |
| 6.5                             | 3.5                                          | 12/0                                           | 39                                                                                                             |
| 1                               | 4                                            | 14/0                                           | 50                                                                                                             |
| 5                               | 4.5                                          |                                                |                                                                                                                |
|                                 | 8<br>0<br>3<br>6.5<br>1<br>5                 | 8 2.5<br>0 3<br>3 3<br>6.5 3.5<br>1 4<br>5 4.5 | 8     2.5     6/0       0     3     3       3     3     10/0       6.5     3.5     12/0       1     4     14/0 |

|        | Forged hooks |                     |
|--------|--------------|---------------------|
| Number | gap (mm)     | Shank diam.<br>(mm) |
| 2      | 10           | 1                   |
| 1      | 11           | 1                   |
| 1/0    | 12           | 1                   |
| 2/0    | 13           | 1.5                 |
| 3/0    | 14.5         | 1.5                 |
| 4/0    | 16.5         | 2                   |
| 5/0    | 10           | 2.5                 |
| 6/0    | 27           | 3                   |
| 8/0    | 29           | 3.5                 |
| 10/0   | 31           | 4                   |
| 12/0   | 39           | 5                   |
| 14/0   | 50           | 6                   |
|        |              |                     |
|        |              |                     |

## Principal types of fish hooks





## Lures, knots for fish hooks





#### Floats for seines: examples



There are a great variety of seine floats, with L ranging from 100 to 400 mm; 0 from 75 to 300 mm; and buoyancy from 300 to 22 000 gf.

Durability is a most important characteristic of a seine float. *Examples* : in expanded PVC, two types of manufacture

| L   | Ø   | ø  | Wt. (g)<br>in air | buoyancy<br>kaf |
|-----|-----|----|-------------------|-----------------|
| 195 | 150 | 28 | 350               | 2.2             |
| 203 | 152 | 28 | 412               | 2.2             |
| 203 | 175 | 28 | 515               | 3.0             |

| L   | Ø   | Ø  | Wt. (g)<br>in air | buoyancy<br>kgf |
|-----|-----|----|-------------------|-----------------|
| 192 | 146 | 26 | 326               | 2.4             |
| 198 | 151 | 28 | 322               | 2.5             |
| 198 | 174 | 33 | 490               | 3.5             |

For the dimensions given, the buoyancy varies depending on the material.

## Rough estimation of the buoyancy may be found by measuring the float.

buoyancy (gf) = 0.5 to 0.6  $\times$  L (cm)  $\times \emptyset$  (cm)<sup>2</sup>

## Estimation of the number of floats necessary for a seine :

 $N = \frac{1.5 \times \text{weight of ballasted net in water}}{\text{buoyancy of a float}}$ 

# FLOATS



## Floats for gillnets and seines (1)

FLOATS





Cylindrical, expanded PVC





Ovals, expanded PVC



|           |                 | 1     |  |  |  |
|-----------|-----------------|-------|--|--|--|
| Dimensio  | Dimensions (mm) |       |  |  |  |
| ØxL       | Ø               | (gf)  |  |  |  |
| 30 x 50   | 6               | 30    |  |  |  |
| 50 x 30   | 8               | 50    |  |  |  |
| 50 x 40   | 8               | 67    |  |  |  |
| 65 x 20   | 8               | 55    |  |  |  |
| 65 x 40   | 8               | 110   |  |  |  |
| 70 x 20   | 12              | 63    |  |  |  |
| 70 x 30   | 12              | 95    |  |  |  |
| 80 X 20   | 12              | 88    |  |  |  |
| 80 x 30   | 12              | 131   |  |  |  |
| 80 x 40   | 12              | 175   |  |  |  |
| 80 x 75   | 12              | 330   |  |  |  |
| 85 x 140  | 12              | 720   |  |  |  |
| 100 x 40  | 14              | 275   |  |  |  |
| 100 x 50  | 14              | 355   |  |  |  |
| 100 x 75  | 14              | 530   |  |  |  |
| 100 x 90  | 14              | 614   |  |  |  |
| 100 x 100 | 14              | 690   |  |  |  |
| 125 x 100 | 19              | 1 060 |  |  |  |
| 150 x 100 | 25              | 1 523 |  |  |  |

#### Estimating the buoyancy from the size of the Float:

buoyancy (in gf) = 0.67 x L (cm) x  $\emptyset^2$  (cm)<sup>2</sup>

| Dimensior | Buoyancy |      |
|-----------|----------|------|
| ØxL       | Ø        | (gi) |
| 76 x 44   | 8        | 70   |
| 88 x 51   | 8        | 100  |
| 101 x 57  | 10       | 160  |
| 140 x 89  | 16       | 560  |

| Dimensio | Buoyancy |      |
|----------|----------|------|
| ØxL      | Ø        | (gf) |
| 76 x 45  | 8        | 70   |
| 89 x 51  | 8        | 100  |
| 102 x 57 | 10       | 160  |
| 140 x 89 | 16       | 560  |
| 158 x 46 | 8        | 180  |

Estimation of the buoyancy from the size of a float buoyancy (in gf) = 0.5 x L (cm) x  $\mathcal{Q}^2$  (cm)<sup>2</sup>  $\mathcal{Q}^2$  = external diameter multiplied by itself

## Floats for gillnets and seines (2)





## Spherical floats and trawl floats

Examples from suppliers' catalogues

| xamples from | amples from suppliers catalogues |                  |                    |                 |                      |  |  |
|--------------|----------------------------------|------------------|--------------------|-----------------|----------------------|--|--|
|              |                                  | Diameter<br>(mm) | Volume<br>(litres) | Buoyancy<br>kgf | Maximum<br>depth (m) |  |  |
|              |                                  |                  |                    |                 |                      |  |  |
| $\sim$       | plastic,                         | 200              | 4                  | 2.9             | 1 500                |  |  |
| (0)          | center hole                      | 200              | 4                  | 3.5             | 350                  |  |  |
|              |                                  | 280              | 11                 | 8.5             | 600                  |  |  |
|              | plastic,                         | 75               | 0.2                | 0.1             | 400                  |  |  |
| ()           | side hole                        | 100              | 0.5                | 0.3             | 500                  |  |  |
| 00           |                                  | 125              | 1                  | 0.8             | 400-500              |  |  |
|              |                                  | 160              | 2                  | 1.4             | 400-500              |  |  |
|              |                                  | 200              | 4                  | 3.6             | 400-500              |  |  |
| -            | plastic,                         |                  |                    |                 |                      |  |  |
| 6 3          | with "ears"                      | 203              | 4.4                | 2.8             | 1 800                |  |  |
| $\sim$       | or lugs                          |                  |                    |                 |                      |  |  |
| 0            | plastic                          | 200              | 4                  | 3.5             | 400                  |  |  |
| 0            | with screw                       | 280              | 11-11.5            | 9               | 500-600              |  |  |
| - A          | lug                              |                  |                    |                 |                      |  |  |
|              | Aluminium                        | 152              | 1.8                | 1.3             | 1 190.               |  |  |
| $\square$    |                                  | 191              | 3.6                | 2.7             | 820                  |  |  |
| Sur          |                                  | 203              | 4.4                | 2.8             | 1 000                |  |  |
|              |                                  | 254              | 8.6                | 6.4             | 1 000                |  |  |

The table below shows that, for floats of equal diameter (200 mm in this case), the volume and buoyancy may vary a great deal, depending on the material and placement of holes or lugs.

| Ø 200 mm       | Plas<br>cente | stic,<br>r hole | Plastic, side hole | Plastic, with<br>screw lug | Aluminium,<br>with lugs |
|----------------|---------------|-----------------|--------------------|----------------------------|-------------------------|
| Volume         | 4             | 4               | 4                  | 4                          | 4.4                     |
| Buoyancy (kgf) | 2.9           | 3.5             | 3.6                | 3.5                        | 2.8                     |
|                |               |                 |                    |                            |                         |

\* Note: The maximum effective depth of a float depends on the manufacture, and should be specified by the supplier. It cannot be deduced from the appearance, shape or colour

FLOATS



## Floats (buoys) for marking nets, lines and traps

L

(mm)

300

180

L

(mm)

300

180



|      |      |      | _    |      | _        |
|------|------|------|------|------|----------|
| Ø    | L    | Ø    | В    | С    | Buoyancy |
| (mm) | (mm) | (mm) | (mm) | (mm) | kgf      |
| 125  | 300  | 25   | 200  | 90   | 2.9      |
| 150  | 530  | 25   | 380  | 100  | 7.8      |
| 150  | 600  | 25   | 450  | 100  | 9.2      |
| 150  | 680  | 25   | 530  | 100  | 10.4     |
| 150  | 760  | 25   | 580  | 100  | 11.5     |
| 200  | 430  | 45   | 290  | 110  | 10.5     |

Ø

(mm)

35 25

Н

(mm)

200

180

Buoyancy

kgf 12 – 15 4

#### 2/ Inflatable floats



| Ø     | Ø    | Ø    | L     | L    | Buoyancy |
|-------|------|------|-------|------|----------|
| (mm)  | (mm) | (mm) | (mm)  | (mm) | kgf      |
| 510   | 160  | 11   | 185   | 18   | 2        |
| 760   | 240  | 30   | 350   | 43   | 8        |
| 1 015 | 320  | 30   | 440   | 43   | 17       |
| 1 270 | 405  | 30   | 585   | 43   | 34       |
| 1 525 | 480  | 30   | 670   | 43   | 60       |
| 1 905 | 610  | 30   | 785   | 48   | 110      |
| 2 540 | 810  | 30   | 1 000 | 48   | 310      |

| Ø<br>(mm) | Ø<br>(mm) | Ø<br>(mm) | L (mm) | Buoyancy kgf |
|-----------|-----------|-----------|--------|--------------|
| 760       | 240       | 38        | 340    | 7.5          |
| 1 015     | 320       | 38        | 400    | 17           |
| 1 270     | 405       | 51        | 520    | 33.5         |
| 1 525     | 480       | 51        | 570    | 59           |



FLOATS

## Groundrope leads and rings

#### Examples

#### Leads for ropes



 $\oslash$ , diameter of the hole = diameter of rope + 3 mm approx.

| L(mm)  | 25  | 38 | 38 | 32 | 32 | 32 | 25 | 45 | 45 | 45 |
|--------|-----|----|----|----|----|----|----|----|----|----|
| Ø (mm) | 16  | 16 | 13 | 10 | 8  | 6  | 6  | 5  | 5  | 6  |
| G (g)  | 113 | 90 | 64 | 56 | 50 | 41 | 28 | 28 | 28 | 16 |

#### Leads for lines, examples of shapes







Cigar shaped Range of weights = 57–900 g

#### Example of mould for leads





#### Example of groundrope rings for a gillnet



Ex:

| Ømm | Ømm | Pg  |
|-----|-----|-----|
| 210 | 5   | 105 |
| 220 | 6   | 128 |

#### Chains and thimbles\*



Clips for wire rope



Cable clamps or 'bulldog grips'

Safe Working Load see page 5

## Steel accessories for joining : shackles, links and clips\*





| Ø    | С    | 0    | S.W.L | B.S.   |
|------|------|------|-------|--------|
| (mm) | (mm) | (mm) | Ton.f | Ton.f  |
| 6    | 12   | 18   | 0.220 | 1.350  |
| 8    | 16   | 24   | 0.375 | 2.250  |
| 10   | 20   | 30   | 0.565 | 3.400  |
| 12   | 24   | 36   | 0.750 | 4.500  |
| 14   | 28   | 42   | 1.200 | 7.250  |
| 16   | 32   | 48   | 1.830 | 11.000 |
| 18   | 36   | 54   | 2.200 | 13.200 |
| 20   | 40   | 65   | 2.600 | 16.000 |
| 24   | 40   | 75   | 3.600 | 22.000 |
| 30   | 45   | 100  | 5.830 | 35.000 |

Bow shackle with countersunk screw Straight shackle with countersunk screw







**Riveted** link

Straight





Screw link

Spring clip



Tapered





Half-cut link

\* Safe Working Load see page 5

#### **Swivels**

Swivel, forged steel

Ø

B.S.\*\* Ø Е Ø S.W.L.\* (mm) (mm) (mm) Ton.f Ton.f 8 17 14 0.320 1.920 10 25 15 0.500 3.000 12 28 18 0.800 4.800 35 14 20 1.100 6.600 16 35 20 1.600 9.600 18 38 25 2.000 12.000 20 43 26 2.500 15.000 25 50 33 4.000 24.000 30 60 40 6.000 36.000

Swivel, tempered steel and hot galvanized



| Ø<br>mm | S.W.L.*<br>Ton.f | Weight<br>Kg |
|---------|------------------|--------------|
| 8       | 0.570            | 0.17         |
| 16      | 2.360            | 1.12         |
| 22      | 4.540            | 2.61         |
| 32      | 8.170            | 7.14         |

#### Swivel, high tensile stainless steel



| A<br>(mm) | B<br>(mm) | C<br>(mm) | S.W.L.*<br>Ton.f | B.S.**<br>Ton.f | Weight<br>Kg |
|-----------|-----------|-----------|------------------|-----------------|--------------|
| 146       | 48        | 20        | 3                | 15              | 1.3          |
| 174       | 55        | 27        | 5                | 25              | 2.1          |
| 200       | 62        | 34        | 6                | 30              | 2.8          |

\* Safe working load see page 5 \*\* Breaking strength, see page 5



HARDWARE



#### Spreaders, codend release and purse rings



Interior Exterior Exterior Thickness Opening Breaking Diam, Width Length Mm Mm Weight strength mm mm kg mm Ton.t Е В С D А 1 128 180 22 34 0.400 1.3 86 Å -D 107 172 244 32 47 3.800 4.0 B n 262 32 5.0 107 187 52 5.400 110 187 262 37 53 6.500 6.0 2 75 128 200 19 40 1.800 2.0 94 150 231 25 47 2.200 3.0 103 169 253 28 50 3.000 4.0 103 169 262 35 53 3.500 5.0 3 106 175 264 38 53 3.600 6.0 b 0 - D 25 65 111 17 17 5.000 0.5 3 2 38 80 140 15 25 6.000 0.65 36 90 153 29 12.000 19 1.1 000000 Number of rings required



$$N = \frac{L - W_1 - W_2 + d}{d}$$



## Elements of trawl groundropes: steel bobbins





| Ø<br>mm | L<br>mm | A<br>Weight<br>in air<br>Kg | B<br>Weight<br>in air<br>kg |
|---------|---------|-----------------------------|-----------------------------|
| 200     | 165     | 7.5                         | 9.5                         |
| 250     | 215     | 10                          | 12.5                        |
| 300     | 260     | 18                          | 22                          |
| 350     | 310     | 29                          | 34                          |
| 400     | 360     | 35                          | 40                          |

А

Weight

in air kg

12

15

25

42

51

В

Weight

in air kg

14

17.5

29

46

56









## Elements of trawl groundropes: steel bobbins

Bunts

Bobbins



Spacers



| Ø (mm)                      | 229  | 305  | 356   | 406   |
|-----------------------------|------|------|-------|-------|
| Wt. in air (kg) per piece   | 4.40 | 9.10 | 11.80 | 19.50 |
| Wt. in water (kg) per piece | 0.98 | 2.10 | 2.85  | 4.4   |

| Ø (mm)                         | 305  | 356  | 406   |
|--------------------------------|------|------|-------|
| Wt. in air (kg)<br>per piece   | 5.10 | 8.00 | 11.50 |
| Wt. in water (kg)<br>per piece | 1.65 | 2.20 | 3.50  |

| L(mm)                          | 178  | 178  |
|--------------------------------|------|------|
| Ø (mm)                         | 121  | 165  |
| Ø (mm)                         | 44   | 66   |
| Wt. in air (kg) per piece      | 1.63 | 2.30 |
| Wt. in water (kg)<br>per piece | 0.36 | 0.57 |



| diameter ext. Ø (mm)   | 60  | 80  | 110  |
|------------------------|-----|-----|------|
| diameter int. Ø (mm)   | 25  | 30  | 30   |
| Weight* (kg/m)         | 2.3 | 3.0 | 7.5  |
|                        |     |     |      |
| diameter ext. Ø (mm)   | 200 | 240 | 280  |
| diameter int. Ø (mm)   | 45  | 45  | 45   |
| Weight* per piece (kg) | 5.0 | 7.0 | 10.5 |

\* Weight in air



HARDWARE









#### Purse seines: minimum dimensions, mesh sizes, twine sizes

## ■ Minimum length and depth of the purse seine, size of the bunt\*

— Minimum length depends on the length of seiner : length of purse seine  $\geq$  15 x length of seiner

- Minimum depth : 10% of the length of seine

- Minimum length and depth of bunt = length of vessel

■ Choice of mesh size is a function of the target species. It is necessary to avoid enmeshing or gilling the fish (with respect for regulations on minimum mesh size].

$$OM = \frac{2}{3} \times \frac{L}{\kappa} \frac{(fish)}{\kappa}$$
  
(Fridman formula)

where:

OM = mesh opening (mm] in the bunt

L = length (mm) of target species

K = coefficient, a function of the target species

- K = 5 for fish that are long and narrow
- K = 3.5 for average shaped fish

K = 2.5 for flat, deep-bodied, or wide fish

| Some examples                                                                      |                               |                            |
|------------------------------------------------------------------------------------|-------------------------------|----------------------------|
| Species                                                                            | Stretched<br>meshsize<br>(mm) | Size of<br>twine<br>(Rtex) |
| small anchovy, n'dagala,<br>kapenta (East Africa)                                  | 12                            | 75-100                     |
| anchovies, small sardine                                                           | 16                            | 75-150                     |
| sardine, sardinella                                                                | 18-20                         | 100-150                    |
| large sardinella, bonga,<br>flying fish, small<br>mackerel and Spanish<br>mackerel | 25-30                         | 150-300                    |
| mackerel, mullet, tilapia,<br>Spanish mackerel, small<br>bonito                    | 50-70                         | 300-390                    |
| Bonito, tuna, wahoo,<br>Scorn beromorus sp.                                        | 50-70 (min)                   | 450-550                    |

#### ■ Relationship between the diameter of the twine and mesh size in different parts of the purse seine :

diameter of twine (mm) stretched mesh size (mm)

#### Some examples

|                    | Body of the   | Bunt of the  |
|--------------------|---------------|--------------|
|                    | purse seine   | purse seine  |
| Small Pelagic Fish | 0.01 to 0.04  | 0.01 to 0.05 |
|                    |               | North Sea    |
|                    |               | 0.04 to 0.07 |
| Large Pelagic Fish | 0.005 to 0.03 | 0.01 to 0.06 |
|                    |               |              |

\* In purse seines, as in many types of fishing gear, the 'bunt' refers to the section of net which is hauied last or the section in which the catch may be concentrated



## Weight of ballast\*, buoyancy of floats, weight of netting

| Weight of ballast*, buoyancy of floats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , weight of netting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ratio of ballast to weight of netting (in air)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the buoyancy needed is a bit more than half the weight (in air) of the netting.                                                                                                                                                                                                                                                                                                                                                                                                                                          | EINES    |
| The weight (in air) of the ballast normally ranges<br>between 1/3 and 2/3 the weight of the netting (in<br>air).** The weight (in air) of the ballast per metre<br>of seine footrope is often between 1 and 3 kg<br>(although more is used for small mesh purse<br>seines used to catch deep-swimming small<br>pelagic fish and up to 8 kg/m is used in large tuna<br>seines).                                                                                                                                                                                                                                                                                                                                                                                                                | Buoyancy = 1.3 to 1.6 x (weight of<br>netting in water + weight of ballast in<br>water)<br>= (1.3 to 1.6) x (0.10 + 0.27)<br>= 0.5 to 0.6 kg per kg of netting<br>(weight in air)<br>(b) If a <b>smaller purse seine</b> has<br>relatively light netting (as is common) the ballast                                                                                                                                                                                                                                      | PURSE SE |
| ■ Ratio of buoyancy to total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | should be relatively heavy, and the buoyancy may                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| weight of the seine<br>The rigging of floats on a purse seine must take<br>into account not only the buoyancy needed to<br>balance the total weight of the gear in water, but<br>also additional buoyancy.*** This additional<br>buoyancy should be of the order of 30% for calm<br>waters, and up to 50-60% in areas of strong<br>currents, to compensate for rough sea conditions<br>and other factors related to handling of the gear.<br>Buoyancy should be greater in the area of the<br>bunt (which has heavier twine) and mid-way<br>along the seine (where pulling forces are greater<br>during pursing).<br>In practical terms, the buoyancy of the floats<br>should be equal to about 1.5 to 2 times the weight<br>of the ballast along the bottom of the seine,<br><i>Examples</i> | be equal to or slightly greater than the weight of the<br>netting (in air).<br>Weight in air<br>Weight in water<br>in water<br>1<br>0.10<br>0.72<br>Buoyancy = 1.3 to 1.6 (weight of<br>netting in water + weight of ballast<br>in water)<br>= (1.3 to 1.6) x (0.10 + 0.72)<br>= 1 to 1.3 kg per kg of netting (in air)<br>In summary, the procedure of choosing weight of<br>ballast and buoyancy*** required is to calculate :<br>(1) the weight (in air) of<br>netting Wn**<br>(2) the weight (in air) of<br>leads Ws |          |
| (a) If a <b>large purse seine</b> has relatively heavy<br>netting (as is common), ballast may be relatively<br>light, and<br>Weight in dir<br>Weight<br>in woter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $W_s$ $Ws= (0.3 \text{ to } 0.8) \times Wn$ (3) Buoyancy = (1.3 to 1.6) $W_n$ $W_n$ $W_n$ $W_n$                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>* Ballast in this case Is considered to include the sinkers on the leadline, purse rings, chain and any other lead or Iron rigging along the bottom of the seine</li> <li>** Weight of netting, see page 35</li> <li>*** Buoyancy of purse seine floats, see pages</li> </ul>                                                                                                                                                                                                                                   |          |

## Hanging, leadline, tow line, purse line, depth, volume on board, performance

|          | The leadline of a purse seine is usually longer                                                                                                                                                                                                                                                                                                 | $AD = SD \times 0.5 = SD/2$ extremities                                                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | types, the two lines are equal in length.                                                                                                                                                                                                                                                                                                       | $AD = SD \times 0.6$ centre of net                                                                                                                             |
|          | The hanging ratio (E), is usually greater on the leadline than on the floatline. Hanging ratios generally range from 0.50 to 0.90, depending on the type of net. The hanging ratio may also vary along the floatline or leadline, usually being lower in the bunt. For more on hanging ratios and methods of hanging, see pages 38, 39, and 42. | <b>Sinking speed</b> of a purse seine — for different seines, sinking speed has been measured in a range from 2.4 to 16.0 m/min, with an average of 9.0 m/min. |
|          | The tow line is normally about 25% of the length of the purse seine.                                                                                                                                                                                                                                                                            |                                                                                                                                                                |
|          | <b>The purse line</b> is generally 1.1 to 1.75 times the length of the leadline, usually about 1.5 times the length of the purse seine. The purse line must have good resistance to abrasion and good breaking strength. As a general guideline, the breaking strength (R) of the purse line should be as follows :                             |                                                                                                                                                                |
| こう こうちょう | R > 3 x (combined weight of netting, leadline, leads and purserings)<br>$R$ (tons) = $\sqrt{10nnage of vessel}$                                                                                                                                                                                                                                 |                                                                                                                                                                |
| N P      | Volume (on board) occupied by the seine when<br>rigged                                                                                                                                                                                                                                                                                          |                                                                                                                                                                |
|          | $V(m^3) = 5 x$ weight (tons) of the seine (in air)                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |
|          | <b>Depth in water</b> of the seine (see also pages 39 and 40). As an approximation, the actual depth or height (AD) can be considered equal to roughly 50% of the stretched depth (SD, or stretched meshsize x number of meshes) of the seine at its extremities, and 60% near the centre of the net.                                           |                                                                                                                                                                |
|          |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                |




## Types of beach seine, bridles, ropes

## Beach seine without bag

A single panel of netting — no particular rules concerning height and length or Special meshsize and/or twinesize in the central part





Beach seine with bag





## Hauling points

For a rather high small seine with bridle, handled by one man alone



## Ropes for hauling beach seines

Natural fibre rope or nylon, polyethylene, polypropylene

| 6      |
|--------|
| 14- 16 |
| 18     |
|        |



**BEACH SEINES** 

## Beach seines: materials and hanging

## Mesh size and twine thickness

In the wings, the mesh size and twine thickness may be the same as, or different from, those of the central section or bunt.

## Examples of specifications for bunts of beach seines

| target species        | stretched<br>mesh<br>(mm) | twine<br>thickness<br>(R tex) |
|-----------------------|---------------------------|-------------------------------|
| sardine               | 5-12                      | 150-250                       |
| sardinella            | 30                        | 800-1200                      |
| tilapia               | 25                        | 100                           |
| tropical shrimp/prawn | 18                        | 450                           |
| diverse large species | 40-50                     | 150-300                       |

The headrope and footrope (float line and lead line) are usually of the same material (PA or PE) and diameter.

**Hanging ratios** (E) are usually the same on headrope and footrope. For central sections, E = 0.5 or slightly greater (0.5-0.7). In the wings the hanging ratio is usually the same as in the bunt, but it is sometimes slightly greater (E = 0.7-0.9).

## Floats on the headrope

The number of floats required increases with the height of the seine. The following are examples of buoyancy observed in the central part of seines :

| height (m)<br>of seine | Buoyancy<br>(g/m of hung net) |
|------------------------|-------------------------------|
| 3-4                    | 50                            |
| 7                      | 150                           |
| 10                     | 350-400                       |
| 15                     | 500-600                       |
| 20                     | 1000                          |

The floats are either evenly spaced along the headrope, or placed closer together in the bunt, and spaced increasingly farther apart toward the ends of the seine.

## Sinkers on the footrope

The quantity and type of sinkers varies according to the intended use (to 'dig' more, or 'dig' less). Sinkers may be spaced evenly along the footrope, or concentrated more near the bunt.

## Ratio of buoyancy/weight

In the bunt, the ratio of buoyancy/ weight of sinkers is around 1.5-2.0, but sometimes, to make the net 'dig' more, a net is rigged with more weight than buoyancy. In the wings, the ratio of buoyancy/weight of sinkers is equal to, or slightly less than, 1.



**BEACH SEINES** 



## Bottom seines: dimensions and properties of net

|                                         | E                            | Boat                        | N                        | et                                   |                                         | a ta a ta ba a da a a a b  | Dian                 |
|-----------------------------------------|------------------------------|-----------------------------|--------------------------|--------------------------------------|-----------------------------------------|----------------------------|----------------------|
|                                         | Length<br>(m)                | Power<br>(hp)*              | Mouth"<br>opening<br>(m) | Headline<br>(m)                      |                                         | stretched mesh<br>(mm)     | Rtex                 |
| Bottom seine<br>(Japan)                 | 10-15                        |                             | 30                       | 50                                   |                                         | 110-150<br>90-110<br>70.00 | 1100-140<br>1000-110 |
| Bottom seine<br>(Europe)                | 15-20                        | 100-200                     | 20-30                    | 55-65                                |                                         | 40-70                      | 600-800              |
| Bottom seine<br>(high op.)              | 10-20<br>20<br>20-25<br>25 + | 100 200<br>300 - 400<br>500 | 35-45<br>45-65<br>~100   | 25-35<br>35-45<br>45-55 I<br>55 - 65 |                                         |                            |                      |
| $\simeq \frac{\text{length of } h}{10}$ | ieadline                     |                             |                          |                                      |                                         |                            |                      |
|                                         |                              |                             |                          |                                      |                                         |                            |                      |
|                                         |                              |                             |                          |                                      |                                         |                            |                      |
|                                         |                              |                             |                          |                                      |                                         |                            |                      |
| * Power in (hn                          | ) = 1.36 x                   | Power in (kV                | V)<br>Iona the for       | ward edge (                          | <br>of the be                           | ellies, and is equal t     | n                    |
| "* The mouth of                         |                              |                             |                          |                                      | , , , , , , , , , , , , , , , , , , , , | moo, and is equal t        |                      |

**BOTTOM SEINES** 

## Bottom seines: ropes

Durability, resistance to abrasion, and weight are essential qualities of seine ropes.

Materials



3-strands, PP with lead cores (combination rope)

| Anchor seining<br>(Danish seining) : | combination rope<br>Ø18-20                                              |
|--------------------------------------|-------------------------------------------------------------------------|
| Fly dragging<br>(Scottish seining)   | PE or PP, Ø 20-<br>: 32 (3 strands with<br>lead core in each<br>strand) |
| Fly dragging<br>(Japan, Korea) :     | small boats :<br>manila mid-sized<br>boats : PVA                        |

## Diameter

| R     | ope        |
|-------|------------|
| Ø     | Weight     |
|       | (kg/100 m) |
| PP 20 | 35         |
| 24    | 43         |
| 26    | 55         |
| 28    | 61         |
| 30    | 69         |

Often the diameter changes along a single rope, from 24-36 mm (for mid-sized boats). Weights are often attached along the rope.

*Length* is expressed in coils of 200-220 m, total length usually 1000-3000 m.

| Method    | Fishing grounds                               | Rope      |
|-----------|-----------------------------------------------|-----------|
|           | 00                                            | length    |
| Scottish  | shallow waters (50-70                         |           |
| technique | <ul> <li>m) or small areas of soft</li> </ul> | less than |
| -         | bottom surrounded by                          | 2000 m    |
|           | rocky areas                                   |           |
|           | medium depths (80-260                         | 3000 m    |
|           | m) or large smooth                            | or longer |
|           | bottom areas                                  |           |
| Japanese  | for depths as great as                        | 8 to 15   |
| technique | 300-500 m or soft,                            | times     |
| -         | regular bottom                                | depth of  |
|           |                                               | water     |

**BOTTOM SEINES** 



## **Bottom seines: operations BOTTOM SEINES** Operating with an anchor (Denmark) Tidal current 0 2 Hd Current Anchor 3-(4. 2 Where the direction of the current changes with the height of the fide Fly-dragging (Scotland) TAL CER Winch hauls as boat tows (at 0.5 to 2 knots) D D Fly-dragging (bull trawling) (Japan, Korea) Current 10° 10 Winch hauls (when the ropes are at $10^\circ\pm$ ) Tows at 1-2 knots for 1 h Operations of 2 boats (pair seining, Canada) E N 50 3 0 2 <1 4







| Bottom Tra                 | awls                   | Shrimp trawls<br>type, semi-ballo | s, American<br>oon     | ■ High-openi<br>trawls     | ng bottom               |      |
|----------------------------|------------------------|-----------------------------------|------------------------|----------------------------|-------------------------|------|
| Power 3                    | 30 to 100hp*           | try-net (se                       | ee pg. 84)             | Power 75                   | to 150 hp*              |      |
| Stretched<br>rnesh<br>(mm) | Size of<br>twine(Rtex) | Stretched<br>mesh (mm)            | Size of<br>twine(Rtex) | Stretched<br>mesh<br>(mmW) | Size of twine<br>(Rtex) | '    |
| 100                        | 950-1 170              | 39.6                              | 645                    | 120                        | 950                     |      |
| 80                         | 650- 950               |                                   |                        | 80                         | 650-950                 |      |
| 60                         | 650                    |                                   |                        | 60                         | 650-950                 |      |
| 40                         | 650                    |                                   |                        | 40                         | 650-950                 |      |
|                            |                        | Power 150                         | to 300 hp*             |                            |                         |      |
| Power 10                   | 00 to 300 hp*          | Stretched<br>mesh (mm)            | Size of<br>twine(Rtex) | Power 150                  | ) to 300 hp*            |      |
| Stretched<br>mesh<br>(mm)  | Size of<br>twine(Rtex) | 44<br>39.6                        | 940-1190<br>1 190      | Stretched<br>mesh (mm)     | Size of<br>twine (Rtex) |      |
| 200                        | 1 660-2 500            |                                   |                        | 200                        | 1 660-2 500             |      |
| 160                        | 1 300                  |                                   |                        | 160                        | 1 300-1 550             |      |
| 120                        | 1 300-2 000            |                                   |                        | 120                        | 1 300-2 000             |      |
| 80                         | 950-1 550              | Power 300                         | to 600 hp*             | 80                         | 950-1 550               |      |
| 60                         | 850-1 190              | Stretched<br>mesh (mm)            | Size of<br>twine(Rtex) | 60                         | 850-1 190               | 2    |
| 40                         | 850-1 190              | 47.6                              | 1 190                  | 40                         | 850-1 020               |      |
|                            |                        | 39.6                              | 1 540                  |                            |                         | 1110 |
| Power 30                   | 00 to 600 hp*          |                                   |                        | Power 300                  | ) to 800 hp*            |      |
| Stretched<br>mesh<br>(mm)  | Size of<br>twine(Rtex) |                                   |                        | Stretched<br>mesh (mm)     | Size of<br>twine(Rtex)  |      |
| 200                        | 2 500-3 570            |                                   |                        | 800                        | 5 550                   |      |
| 160                        | 1 230-2 000            | m/kg = <sup>1</sup>               | 000000<br>Btox         | 400                        | 3 570                   |      |
| 120                        | 1 230-2 000            |                                   | TILBX                  | 200                        | 2 500-3 030             |      |
| 80                         | 1 660                  | * brake horsepov                  | ver (BHP) or           | 160                        | 1 660-2 500             |      |
| 60                         | 950-1 190              | Apparent Nomin                    | al Power (ANP),        | 120                        | 1 550-2 500             |      |
| 40                         | 950-1 190              | see pg. 95 Powe<br>(power in kW)  | er in HP = 1.36 x      | 80                         | 1 300-2 500             |      |
|                            | <u> </u>               |                                   |                        | 60                         | 1 190-1 540             |      |
|                            |                        |                                   |                        | 40                         | 940-1 200               |      |

## Relationship between mesh size and twine size for midwater trawls

TRAWLS

| Midwater trawls     |  |
|---------------------|--|
| (for single vessel) |  |

| Power 150      | to 200 hp*             |
|----------------|------------------------|
| Stretched mesh | Size of<br>twine(Rtex) |
| 400            | 2 500                  |
| 200            | 1 190-1 310            |
| 160            | 950-1 190              |
| 120            | 650-950                |
| 80             | 650-950                |
| 40             | 450                    |
| 40             | 950-1 310              |

| Power 400      | to 500 hp*  |
|----------------|-------------|
| Stretched mesh | Size of     |
| (mm)           | twine(Rtex) |
| 800            | 3 700       |
| 400            | 2 500       |
| 200            | 1 310-1 660 |
| 160            | 1 190-1 310 |
| 120            | 950         |
| 80             | 650-950     |
| 40             | 650-950     |
| 40             | 1 660       |

| Size of<br>twine(Rtex)<br>7 140-9 090 |
|---------------------------------------|
| twine(Rtex)<br>7 140-9 090            |
| 7 140-9 090                           |
|                                       |
| 3 700-5 550                           |
| 2 500-3 700                           |
| 2 500                                 |
| 1 660                                 |
| 1 660                                 |
| 1 660                                 |
| 2 500                                 |
|                                       |

## Midwater pair trawls

| Power 2 x 100-300 hp*  |                        |  |  |
|------------------------|------------------------|--|--|
| Stretched mesh<br>(mm) | Size of<br>twine(Rtex) |  |  |
| 800                    | 3 030-4 000            |  |  |
| 400                    | 1 190-2 280            |  |  |
| 200                    | 1 190-1 540            |  |  |
| 120                    | 950                    |  |  |
| 80                     | 650-950                |  |  |
| 40                     | 450-950                |  |  |

| Power 2 x 300-500 hp* |             |  |  |
|-----------------------|-------------|--|--|
| Stretched mesh        | Size of     |  |  |
| (mm)                  | twine(Rtex) |  |  |
| 800                   | 5 550       |  |  |
| 400                   | 2 280       |  |  |
| 200                   | 1 540       |  |  |
| 120                   | 950-1 190   |  |  |
| 80                    | 950-1 190   |  |  |
| 40                    | 950-1 190   |  |  |

 $m/kg = \frac{1000000}{RTex}$ 

\* Brake horsepower (BHPj or Apparent Nominal Power(APNj, see page 95. Power in Hp = 1.36 X (power in kWj

## Choosing the right size trawl for the power of the vessel

 Selection according to the calculated twine surface area of the net (see page 37 for twine surface area)

Given the vessel horsepower, and the type of trawling intended, the best results will be obtained by choosing a net of which the twine surface area falls within a particular range.



- 1 Two-panel bottom trawls
- 2 Four-panel bottom trawls

3 Single-boat mid-wotertrawls (stretched mesh in wings up to 200mm)

- 4 Single-boat mid-water trawls
- (wing meshes larger than 200 mm)

Given the vessel horsepower and trawl type, the twine surface area may vary according to several factors, for example : real delivered horsepower, rate of utilisation of the motor, type of rigging, meshsize, type of bottom, strength of currents, etc.

For pair trawling, the twine surface areas  $(m^2)$  indicated above should be multiplied by the factors shown in the table:

| trawl type                 | factor |
|----------------------------|--------|
| two-panel bottom trawls:   | 2.4    |
| four-panel bottom trawls : | 2.2    |
| single-boat mid-water      |        |
| trawls (stretched mesh in  |        |
| wings up to 200 mm) :      | 2      |
| single-boat mid-water      |        |
| trawls (wing meshes        |        |
| largerthan 200 mm) :       | 2      |
|                            |        |

### ■ Choice by comparison with a trawl of the same type used by a vessel in the same horsepower range

Let us say you know the dimensions of a particular trawl (TI) used by a particular trawler which has horsepower P]. In order to calculate the right net size for another vessel of horsepower  $P_2$ , the length and width of each panel of P] are multiplied by

the square root of  $\frac{P_2}{P_1}$ .

$$L_2 = L_1 \times \sqrt{\frac{P_2}{P_1}}$$



\* Brake Horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in (HP) = 1.36 x Power in (kW)



## **Opening of bottom trawls**







## Rigging of bottom trawl for one boat

## Rigging of bottom and midwater trawls for single-boat operation



\* For power to use in calculation, see page 95 Power in (HP) = 1.36  $\times$  Power in (KW)





### Estimating the depth of a midwater pair trawl **FRAWLS** It is necessary to estimate the vertical angle of the warps. (In other words, the inclination, or angle between the warps and the horizontal plane.) Note : These methods give only very rough approximations. They should be used only when you have | no nelsounder to give more accurate information. Be careful to keep the net away from the bottom. The warp angle may be measured with a protractor or other device Depth of the trawl is estimated as follows : (1) Measure the warp angle A (3) Follow the warp length down to the angle A (2) On the horizontal scale of the graph below, find the warp (4) Read the estimated trawl depth from the vertical scale at the left length Length of warps Estimated depth of trowl (m) 10 Example For 250 m of warps at an angle of 12 degrees, the estimated trawl depth is 52 m Another method without using a pro-Distance WARP LENGTH (M) tractor is shown below measured D cm 100 200 300 400 500 (1) Mark the warp I 99 14 27 42 56 70 m aft ot block 98 21 42 62 83 103 (2) Drop a vertical 97 25 49 72 94 116 line from the block 96 28 57 82 106 130 4) Find the trawl (3) Measure the depth in the table 123 95 31 62 92 153 distance D on the right 94 34 68 103 138 174

| TRAWLS | Gulf of Mexico type Example ;                                                                                                                             | In tropical zones the catch rate is propor tional to the horizonta spread of the trawl. In order to obtain the greatest horizontal opening, special types of trawl are used, and also special rigging.<br>(1) Special types of trawl | Rigging of booms     This rigging allows an incr<br>catch rate of 15-30% over<br>trawl. Towing speed is 2.5 | ease in shrimp<br>that of a single<br>to 3 knots.                                   |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 22     | Semi-balloon                                                                                                                                              | Trawl with 3 toes<br>Headline in two parts                                                                                                                                                                                           | Power of<br>enqine*<br>TOL<br>Headline150 to 20012-14                                                       | engths (m)<br>Bridles Booms<br>33 9                                                 |
|        | Balloon                                                                                                                                                   | Tongue trawl<br>Headline and groundrope<br>in two parts                                                                                                                                                                              | 200 to 150 15-17<br>250 to 300 17-20<br>300 to 400 20<br>500 24                                             | 35         9           40         9           45         10           50         12 |
|        |                                                                                                                                                           | (2) Special rigging                                                                                                                                                                                                                  | 500 24                                                                                                      | 30 12                                                                               |
|        | sizes                                                                                                                                                     | (-, -, -, -, -, -, -, -, -, -, -, -, -, -                                                                                                                                                                                            | Depth (m)                                                                                                   | Warp length (m)                                                                     |
|        | Stretched mesh (in mm)<br>French Guyana : 45 West<br>Africa : 40-50 Persian Gulf :<br>30-40/ 43-45<br>Madagascar ; 33-40 India :<br>50-100 Australia : 44 | Twin trawls                                                                                                                                                                                                                          | * Brake horsepower (BMP<br>Nominal Power (ANP),<br>(HP) = 1.36 x Power in (kt                               | 110<br>145<br>180<br>220<br>) or Apparent<br>see page 95 Power in<br><i>W</i> )     |
|        |                                                                                                                                                           |                                                                                                                                                                                                                                      |                                                                                                             |                                                                                     |

## Shrimp (prawn) trawls and their rigging

## Rigging between different parts of trawls



## Midwater trawls for 1 boat



## Midwater pair trawls





## Headline buoyancy and groundrope weight recommended for trawls

| Real<br>horsepower*<br>hp |                     | BIT                    |                     | B21                    |                     | Bat                    |
|---------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|
|                           | B1 (kgf)<br>P (hp)* | W1 (kg air)<br>P (hp)* | B2 (kgf) P<br>(hp)* | W2 (kg air)<br>P (hp)* | B3 (kgf) P<br>(hp)* | W3 (kg air)<br>P (hp)* |
| 50                        | B1=Px               | W1=Px                  | B2=P x              | W2=P x                 | B3=P x              | W3=P x                 |
| 100                       | 0.20                | 0.28                   | 0.27                | 0.29                   | 0.28                | 0.33                   |
| 200                       | 0.20                | 0.25                   | 0.24                | 0.27                   | 0.25                | 0.31                   |
| 400                       | 0.20                | 0.22                   | 0.22                | 0.24                   | 0.22                | 0.28                   |
| 600                       | 0.20                | 0.22                   | 0.21                | 0.23                   | 0.21                | 0.27                   |
| 800                       | 0.18                | 0.20                   | 0.19                | 0.22                   | 0.19                | 0.26                   |

— For buoyancy, the indicated values correspond to nets made of poly-amide (nylon), a synthetic fibre with negative buoyancy (it sinks). For nets made of floating materials, the floats may be decreased by 10-15%.

— The weights presented are estimated, with a 5-10% margin of error. They may vary according to the trawling speed, type of bottom, buoyancy of the net and floats, target species, etc. These weights have been calculated assuming that steel chain will be used for ballast. If another material is used, its density must be taken into account. For example, in order to get the same sinking force in water, a length of chain weighing 1 kg in air must be replaced by a quantity of rubber rollers which weighs 3-3.5 kg in air.

\* Brake horsepower (BHP) or Apparent Nominal Power (ANPj, see page 95 Power in (HP) = 1.36 x Power in (kW)



## **Examples of groundropes**



Midwater trawls

(maximum vertical opening) joining lines of braided PP. Groundrope of leaded rope

■ High-opening bottom trawls : Joining lines of braided PP. Groundrope of chain

■ Shrimp trawls, smooth bottom Grassrope with lead rings (chain ground-rope is also common)

■ High-opening bottom trawl with 2 bridles : groundrope of rubber rings

For use on rougher bottom : groundrope of rubber bobbins or rollers with rubber disc spacers and chain joining lines

■ Fish or shrimp trawls, hard bottom :

groundrope of rubber rings and hard plastic spheres

■ Fish or shrimp trawls for soft or muddy bottom : split wooden rollers which can be added or removed without running groundrope through centre











## Otter boards: properties of the principal types, choice depending on the trawler's power

## Rectangular and oval curved

The weights indicated below (for single board) are the maximum values used. For a given horsepower, the surface area listed below is often used, but with a lighter material which may make a board as much as 50% lighter.

|   | Power*  | Rectangular flat<br>otter boards |        | Oval Curved<br>Otter boards |      |        | Weight  |         |
|---|---------|----------------------------------|--------|-----------------------------|------|--------|---------|---------|
|   | (hp)    | Dimer                            | nsions | Surface                     | Dime | nsions | Surface | (Kg)    |
|   |         | L(m)                             | h(m)   | m2                          | L(m) | h(m)   | m2      |         |
| ſ | 50-75   | 1.30                             | 0.65   | 0.85                        |      |        |         | 45      |
|   | 100     | 1.50                             | 0.75   | 1.12                        | 1.40 | 0.85   | 0.93    | 100-120 |
|   | 200     | 2.00                             | 1.00   | 2.00                        | 1.75 | 1.05   | 1.45    | 190-220 |
|   | 300     | 2.20                             | 1.10   | 2.42                        | 1.90 | 1.10   | 1.65    | 300-320 |
|   | 400     | 2.40                             | 1.20   | 2.88                        | 2.20 | 1.25   | 2.15    | 400-420 |
|   | 500     | 2.50                             | 1.25   | 3.12                        | 2.40 | 1.40   | 2.65    | 500-520 |
|   | 600     | 2.60                             | 1.30   | 3.38                        | 2.60 | 1.50   | 3.05    | 600-620 |
|   | 700-800 | 2.80                             | 1.40   | 3.92                        | 2.90 | 1.60   | 3.65    | 800-900 |

## V otter boards

| Power*     | Surface      | Weight         |
|------------|--------------|----------------|
| (hp)       | m²           | kg             |
| 100        | 1.40         | 240            |
| 200        | 2.10         | 400            |
| 300        | 2.50         | 580            |
| 400        | 2.90         | 720            |
| 500        | 3.30         | 890            |
| 600        | 3.60         | 1 000          |
| 700<br>800 | 3.90<br>4.20 | 1 100<br>1 200 |

## Shrimp otter boards (double rig)

| Power<br>(hp)* | Dimensions m           | Weight<br>kg |
|----------------|------------------------|--------------|
| 100-150        | 1.8 x 0.8-2.4 x0.9     | 60-90        |
| 150-200        | 2 x 0.9 - 2.45 x 1 2.4 | 90-100       |
| 200-250        | x 1 - 2.45 x 1         | 120          |
| 250-300        | 2.5 x 1 -2.7 x 1.1 3   | 160          |
| 300-450        | x 1.1 -3 x 1.2 3.3 x   | 220          |
| 450-600        | 1.1 -3.3 x 1.3         | 300          |

## Midwater, Suberkrub

| Power*                       | Dime                         | nsions                       | Surface                      | Weight<br>(kg)                           |  |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------------|--|
| (hp)                         | H(m)                         | L(m)                         | (m²)                         |                                          |  |
| 150 200<br>250               | 1.88<br>2.05<br>2.12         | 0.80<br>0.87<br>0.94         | 1.50<br>1.80<br>2.00         | 90-100<br>110-120<br>150-160             |  |
| 300 350<br>400               | 2.28<br>2.32<br>2.42         | 0.97<br>1.03<br>1.07         | 2.20<br>2.40<br>2.60         | 170-180<br>220-240<br>240-260            |  |
| 450<br>500<br>600<br>700-800 | 2.51<br>2.68<br>2.86<br>3.00 | 1.12<br>1.14<br>1.22<br>1.33 | 2.80<br>3.00<br>3.50<br>4.00 | 260-280<br>280-300<br>320-350<br>400-430 |  |

Example of the relationship between the twine surface area (see page 37) of a pelagic trawl (S<sub>f</sub> in m<sup>2</sup>) and the surface area of a Suberkrub otter board used by the boat (S<sub>p</sub> in m<sup>2</sup>)

$$Sp = (0.0152 \times S_f) + 1.23$$

\* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in HP = 1.36 X Power in (kW)





## Warps: diameter and length

| Characteristics of steel trawl warps, according to power of trawler |       |        |       |        |  |
|---------------------------------------------------------------------|-------|--------|-------|--------|--|
|                                                                     | hp*   | 0 (mm) | kg/m  | R kgf  |  |
|                                                                     | 100   | 10.5   | 0.410 | 5 400  |  |
|                                                                     | 200   | 12.0   | 0.530 | 7 000  |  |
|                                                                     | 300   | 13.5   | 0.670 | 8 800  |  |
|                                                                     | 400   | 15.0   | 0.830 | 11 000 |  |
|                                                                     | 500   | 16,5   | 1.000 | 13 200 |  |
|                                                                     | 700   | 18.0   | 1.200 | 15 800 |  |
|                                                                     | 900   | 19.5   | 1.400 | 18 400 |  |
|                                                                     | 1 200 | 22.5   | 1.870 | 24 500 |  |

R= breaking strength

## Length of warps according to depth of water (for bottom trawling)

(for shallow water less than 20 m, the length should not be less than 120 m)

This curve gives only estimates; the captain should decide warp length according to the type of bottom, sea conditions, current, etc.





TRAWLS

\* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in (HP) =  $1.36 \times Power in (kW)$ 

## Trawling speed

| Main species groups                                            | Average trawling<br>speed (knots) |
|----------------------------------------------------------------|-----------------------------------|
| shrimp, small bottom species, flat fish                        |                                   |
| very small trawlers                                            | 1.5-2                             |
| mid-sized and large trawlers                                   | 2.5-3.5                           |
| mid-sized bottom species, small pelagic fish<br>small trawlers | 3-4                               |
| mid-sized to large trawlers                                    | 4-5                               |
| cephalopods (squid, cuttlefish)                                | 3.5-4.5                           |
| mid-sized pelagic fish                                         | >5                                |



■ The choice of fishing gear depends on the power of the trawler

For trawlers with a fixed propeller, reduction gear between 2 : 1 and 4 : 1, and no nozzle, the tables in this book are intended for use with the Brake Horsepower (BHP). This is the figure given most often by manufacturers as the horsepower or rated power of an engine. It is expressed in horsepower (HP) or in kilowatts (kW).

1 HP = 0.74 kW 1 kW= 1.36 HP

If a trawler has a variable pitch propeller and/or a nozzle, Apparent Nominal Power (ANP), should be used in the tables of this book.

It may be calculated as follows :

ANP = bollard pull (kg) x 0.09

**Example** : A trawler, with a variable pitch propeller and a nozzle, has an engine rated at 400 BHP, and the bollard pull is 6000 kg

 $ANP = 6000 \ge 0.09 = 540 HP$ 

Thus, the fishing gear should be chosen from the tables according to an Apparent Nominal Power of 540 HP, and not 400 HP.

**Power available for trawling** (p), is usually 15 to 20% of the BHP or ANP. This power is used to pull the gear, and may be calculated as follows :

In calm waters, p = 0.75 x k x (BHP or ANP)

| type of propeller | k                                         |                     |
|-------------------|-------------------------------------------|---------------------|
| fixed propeller   | high RPM engine<br>slow turning<br>engine | 0.20<br>0.25 - 0.28 |
| variable pitch pr | 0.28 - 0.30                               |                     |

In rough weather, p is reduced by 1/3.



## Pulling power of trawlers

## ■ Bollard pull BP<sub>0</sub> of a trawler at fixed point (speed = 0)

BP<sub>0</sub>(kg) = 10 to 12 kg per BHP\* (with fixed propeller)

13 to 16 kg per HP of Apparent Nominal Power\* (with a variable pitch propeller or nozzle)

## Bollard pull BP (when fishing)

If you have calculated the engine power (p) available for towing (page 95),

 $BP (kg) = \frac{150 \times p (HP)}{trawling speed (knots)}$ 

If you have measured the bollard pull BP0 at speed 0 knots,

## $BP(kq) = BP_0(kg)$

 $\times \left(1 - \frac{\text{trawling speed (knots)}}{\text{maximum free running}} \right)$ 



### Choosing the appropriate engine speeds (RPM) for 2 boats of different characteristics for pair trawling



Vessel A pulls vessel B, engine in neutral, at the chosen speed, for example 2 knots. Then vessel B engine is engaged and the revs progressively increased until vessel

B holds vessel A stationary.

Decreasing speed B Д Engine in forward

The engine RPM of both vessels A and B are noted, for the chosen speed of 2 knots. The same operations are repeated for other speeds until the range of normal trawling speeds is covered.

| Revs    | Vessel A | Vessel B |  |  |
|---------|----------|----------|--|--|
| Speed   |          |          |  |  |
| 2 knots | —        | _        |  |  |
| 2.5     | —        | _        |  |  |
| 3       | —        | —        |  |  |
| 3.5     | —        | _        |  |  |

## Plan and rigging of a gillnet : example



# ENTANGLING NETS



## Choosing the meshsize of gillnets\*

ENTANGLING NETS

## ■ Choice of meshsize according to fish species

There is a ratio between the body girth or length of a fish one wants to catch, and the gillnet meshsize which will be effective for that fish (Fridman formula).

OM = L(fish)/K

where

OM = mesh opening (mm)

L(fish) = average length (mm) of fish one wants to catch

K = coefficient, according to species

and

- K = 5 for long, thin fish
- K = 3.5 for average-shaped fish (neither very thick nor thin)

K = 2.5 for very thick, wide or high (shaped) fish

## A few examples of stretched meshsizes (mm) adapted for particular species

| Demersal tropical species |         |  |  |  |
|---------------------------|---------|--|--|--|
| threadfin (Polynemidae)   | 50      |  |  |  |
| small catfish             | 75      |  |  |  |
| grunt (Pomadasidae)       | 50      |  |  |  |
| mullet                    | 110-120 |  |  |  |
| maigre (Sciaenidae)       | 120-140 |  |  |  |
| croaker (Sciaenidae)      | 160-200 |  |  |  |
| seabream (Sparidae)       | 140-160 |  |  |  |
| barracuda                 | 120     |  |  |  |
|                           |         |  |  |  |

\* For clarification of terms stretched meshsize and mesh opening see page 29

| Temperate demersal species |         |  |  |
|----------------------------|---------|--|--|
| cod                        | 150-170 |  |  |
| pollack                    | 150-190 |  |  |
| Pacific pollack            | 90      |  |  |
| sole                       | 110-115 |  |  |
| hake                       | 130-135 |  |  |
| red mullet (Mugilidae)     | 25      |  |  |
| halibut (Greenland)        | 250     |  |  |
| turbot, monk, anglerfish   | 240     |  |  |

| Crustaceans          |         |  |  |  |
|----------------------|---------|--|--|--|
| shrimp (India)       | 36      |  |  |  |
| shrimp (El Salvador) | 63-82   |  |  |  |
| green spiny lobster  | 160     |  |  |  |
| red spiny lobster    | 200-220 |  |  |  |
| spider crab          | 320     |  |  |  |
| king crab            | 450     |  |  |  |

| Small pelagic species |         |  |  |  |
|-----------------------|---------|--|--|--|
| sprat                 | 22-25   |  |  |  |
| herring               | 50-60   |  |  |  |
| anchovy               | 28      |  |  |  |
| sardine               | 30-43   |  |  |  |
| sardinella            | 45-60   |  |  |  |
| shad (Ethmalosa)      | 60-80   |  |  |  |
| small mackerel        | 50      |  |  |  |
| large mackerel        | 75      |  |  |  |
| Spanish mackerel      | 100-110 |  |  |  |

| Large pelagic species |         |  |  |
|-----------------------|---------|--|--|
| mackerel, bonito,     |         |  |  |
| skipjack              | 80-100  |  |  |
| marlin, flying fish   | 120-160 |  |  |
| bonito, jacks         | 125     |  |  |
| Atlantic bluefin      |         |  |  |
| tuna                  | 240     |  |  |
| sharks                | 170-250 |  |  |
| swordfish             | 300-330 |  |  |
| salmon                | 120-200 |  |  |
|                       |         |  |  |



## Choosing twine type for gillnets

The twine should be **relatively thin**, but not so fine that it damages, entangled fish. **Good breaking strength** is important, especially for bottom set gillnets, taking into account the size of the fish and the meshsize. The twine should have **low visibility**, either clear (mono or multi-monofilament) or of a colour which blends in with the environment. It should also be **flexible**.

**Note** : A length of twine may stretch 20-40% before breaking

## Choosing twine diameter for gillnets

Twine diameter should be proporional to meshsize. The ratio

twine diameter (same units of stretched meshsize measurement)

should be between 0.0025, for calm waters and low catches, and 0.01, for rough waters or bottom set. An average ratio is 0.005. ENTANGLING NETS

|           |           |          |           |              |            | 1              |           |            |
|-----------|-----------|----------|-----------|--------------|------------|----------------|-----------|------------|
| stretched | inland    | waters,  |           | coastal wate | ers        |                | pen ocean |            |
| meshsize  | lakes     | , rivers |           |              |            |                |           |            |
|           | multifil. | monofil. | multifil. | monofil.     | multimono. |                | monofil.  | multimono. |
| mm        | m/kg Øm   | Ømm      | m/kg      | Ømm          | nxØmm      | multifii. m/kg | Ømm       | nxØmm      |
| 30        |           |          | 20 000    | 0.2          |            | 10 000         | 0.4       |            |
|           |           |          |           |              |            | 6 660          |           |            |
| 50        | 20 000    |          | 13 400    | 0.2          |            | 6 660          |           |            |
| 60        | 13 400    | 0.2      | 10 000    |              |            | 4 440          |           |            |
| 80        | 10 000    |          | 6 660     |              | 4x0.15     | 4 440          | 0.28-0.30 | 6a8x0.15   |
| 100       | 6 660     |          | 4 440     | 0.3          |            | 3 330          | 0.5       | 6x0.15     |
| 120       | 6 660     |          | 4 440     | 0.35-0.40    |            | 3 330          | 0.6       |            |
| 140       | 4 440     |          | 3 330     | 0.33-0.35    | 6x0.15     | 2 220          |           | 8x0.15     |
| 160       | 3 330     |          | 3 330     | 0.35         | 8a10x0.15  | 2 220          | 0.6-0.7   |            |
| 200       | 2 220     |          | 2 220     |              |            | 1 550          | 0.9       | 10x0.15    |
| 240       | 1 550     |          | 1 550     |              |            | 1 100          | 0.9       |            |
| 500       |           |          |           |              |            | 1 615-2 220    |           |            |
| 600       |           |          | 3 330     |              |            | 1 615-2 220    |           |            |
| 700       |           |          | 2 660     |              |            |                |           |            |
| ,00       |           |          | 2 300     |              |            | 1              |           |            |

## Examples of twine sizes used with certain types of gillnets and meshsizes



## **Rigging or hanging gillnets**





## plan and rigging of trammel net



## Trammel nets: mesh sizes and rigging




#### Average bouyancy (B) and ballast (W) of gillnets and trammel nets

| Floating gillnets and a statement of the statement of | nd trammel nets                                                     |                                                                |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B<br>W                                                              | B <sub>1</sub><br>W <sub>1</sub><br>A≃10-20m                   |             |
| B(gf/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100-160                                                             | B2 = 50-120<br>B1 = 50 - 80                                    | 600 - 1 500 |
| W (g/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50-80                                                               | W1 = 30-80<br>W2 = 25-60                                       | 300 - 1 000 |
| B/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                   | $\frac{B_2}{W_2} \sim 2-2.5$                                   | 1.5-2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Length of leadline < 1<br>Length of floatline<br>(smaller or equal) | B1 - Wf + W <sub>1</sub><br>Wf = weight of netting<br>in water |             |

#### Bottom set gillnets and trammel nets

|          | В                 | B B B B B B B B B B B B B B B B B B B                                                   |
|----------|-------------------|-----------------------------------------------------------------------------------------|
| B (gf/m) | 40-80             | 100-200                                                                                 |
| W (g/m)  | 120-250           | 250-400                                                                                 |
| B/W      | <u>1_1</u><br>3_5 | $\cdot \frac{1}{2} - \frac{1}{2.5}$                                                     |
|          |                   | $\frac{\text{length of leadline}}{\text{length of floatline}} \ge 1$ (greater or equal) |

Note : These weights do not include anchors, etc.



ENTANGLING NETS

#### Rigging of entangling nets: some examples









#### Dimensions of pots and traps

These gears, which can be used for catching fish, crustaceans, molluscs, and cephalopods (squid, octopus, etc.), are made in a wide variety of shapes and sizes, using many different materials. They may be used on the bottom or in mid-water, with or without bait.

#### Choosing the size of a pot or trap

If a pot gets too crowded with captured fish inside, it will stop catching. The interior volume of a pot must be large enough to avoid this situation. On the other hand, in some cases an interior volume which is too large may lead to cannibalism (some captives eating others). Some types of pots appear to be effective because their shape and size make them attractive shelters for certain species.

#### A few examples:

| Species              | Country     | Volume<br>(cubic decimeters - see p. 157) |
|----------------------|-------------|-------------------------------------------|
| octopus              |             | 6                                         |
| small shrimp         |             | 40-70                                     |
| small crabs          | Japan       | 70-90                                     |
| crabs                | Canada      | 450                                       |
| King crab, snow crab | USA         | 2500-4500                                 |
| spiny lobster        | Europe      | 60-130                                    |
| lobster              | USA         | 200                                       |
| spiny lobster        | Caribbean   | 300-800                                   |
| spiny lobster        | Australia   | 2500                                      |
| sea bream            | Morocco     | 150-200                                   |
| mixed reef fish      | Caribbean   | 500-700 (up to 2000)                      |
| torsk, wolf fish     | Norway      | 1300                                      |
| grouper              | India       | 1400                                      |
| black cod            | USA, Alaska | 1800                                      |



TRAPS AND POTS

#### Making fish traps and pots

**Choice of materials** must consider such factors as durability, resistance to immersion, corrosion, and fouling by marine growth.

Spacing of bars or laths; or size of meshes has a direct relation to the size of the target species.

A few examples (measurements in mm] :

| Species                            | bar of mesh<br>(diamond shape) |
|------------------------------------|--------------------------------|
| small shrimp                       | 8-10                           |
| (Europe)                           |                                |
| small crabs (Japan)                | 12                             |
| rock crab (Europe)                 | 30                             |
| crab (Canada, USA)                 | 50                             |
| King crab (Alaska)                 | 127                            |
| spiny lobster (France,<br>Morocco) | 30-40                          |
| lobster                            | 25-35                          |
| torsk, wolffish (Norway)           | 18                             |
| sea bream                          | (see Alternatives)             |
| grouper (India)                    | 40                             |
| reef fish (Caribbean)              | 15-20                          |
| black cod (USA)                    | (see Alternatives)             |
| threadfin (Australia)              | (see Alternatives)             |

#### Alternatives

- For lobster pots : Triangular meshes

60-80 mm side Rectangular meshes

25 x 50 mm Parallel wooden strips or laths, spaced 25-38 mm apart

- For fish pots : For sea bream,

triangular meshes 35-40 mm on aside For black cod, USA west coast, square meshes  $\Box I$  51 x 51 mm For threadfin, Australia, hexagonal

meshes 25-40 mm across



**Ballast** in traps is very variable, from 10 to 70 kg per trap, according to the type and size of trap, the type of bottom, and strength of currents.



#### **Entrances: dimensions**

The diameter of a pot entrance is directly related to the size and characteristics of the target species.

#### A few examples:

| Species                 | Country              | Entrance diameter (mm) |
|-------------------------|----------------------|------------------------|
| small shrimp            |                      | 40-60                  |
| small and medium crabs  | Japan, USA           | 140-170                |
| snow crab               | Canada               | 360                    |
| King crab               | USA Alaska           | 350-480                |
| spiny lobster, crayfish | Europe               | 100-200                |
| spiny lobster           | Australia, Caribbean | 230                    |
| lobster                 | Europe               | 100-150                |
| sea bream               | Morocco              | 70-100                 |
| torsk, wolffish         | Norway               | 100                    |
| grouper                 | India                | 210                    |
| black cod               | USA, W. coast        | 250                    |
| threadfin               | Australia            | 250-310                |
| snapper                 | Caribbean            | 230                    |





#### Vertical line fishing: examples, breaking strength





The breaking strength of the mainline should be greater than or equal to the maximum weight of an individual fish to be caught (even if there are several branchlines).

#### Examples of mainline breaking strength in common use for certain species

| Species                          | Breaking strength (kg, wet, knotted) |
|----------------------------------|--------------------------------------|
| sea bream,snapper                | 7-15                                 |
| meagre, conger,<br>dogfish       | 15-30                                |
| weakfish, grouper,<br>cod, moray | 30-40                                |
| snapper, grouper                 | 100                                  |
| yeliowfin tuna                   | 150-200                              |
|                                  |                                      |

Note : Some vessels equipped with hydraulic or electric reals for catching snapper and grouper in depthis greater than 180 m, use stainless steel or monel mainlines with breaking strength at the order of 400 kg.

The breaking strength of branchlines is usually 50-100% of the breaking strength of the mainline.

For hooks and lures see pages 43-45

## LINE FISHING





#### Trolling lines: rigging equipment



#### Plan and rigging of bottom longlines: an example



## LONGLINES



#### Longline components

| A longline consists of a main line, to which a number of branchlines (also called snoods or gangions) are attached. A hook is attached to the end of pnch branchline.<br>The material and diameter of the mainline will depend on the target species, the type of longline (bottom or mid-water), and gear-handling methods (manual or mechanical hauling). The diameter and breaking strength must take into account not only the weight of the fish, but also the displacement (and therefore, inertia) of the vessel.<br>As a general rule, one can choose a mainline whose breaking strength (dry, unknotted, in kg) is ;<br>— both greater than 10 times the tonnage of the vessel's length (in metres).<br>— at least 10 times the weight of the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <ul> <li>The material and diameter of the mainline will depend on the target species, the type of longline (bottom or mid-water), and gear-handling methods (manual or mechanical hauling). The diameter and breaking strength must take into account not only the weight of the fish, but also the displacement (and therefore, inertia) of the vessel.</li> <li>As a general rule, one can choose a mainline whose breaking strength (dry, unknotted, in kg) is;</li> <li>— both greater than 10 times the tonnage of the vessel's length (in metres).</li> <li>— at least 10 times the weight of the</li> </ul>                                                                                                                                     | A longline consists of a main line, to which a number of are attached. A hook is attached to the end of pnch brar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | branchlines (also called snoods or gangions)<br>nchline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INES |
| largest fish one expects to catch.<br>For example:<br>What would be the minimum breaking strength for the<br>main line of a longline used by a 9 m, 4 t vessel,<br>catching sea bream and gurnards?<br>Breaking strength must be greater<br>than $4 \times 10 = 40$ kg<br>or $9x9 = 81$ kg<br>But, if one expects to catch individual fish weighing 10<br>kg, it is necessary to calculate<br>$10$ kg $\times 10 = 100$ kg<br>Therefore, the line could be twisted or braided nylon<br>(PA), 2 mm diameter (breaking strength<br>110 kg); or nylon monofilament 170/100 (breaking strength<br>110 kg); or polyethylene (PE) 3 mm diameter (break-<br>ing strength 135 kg).                                                                             | The material and diameter of the mainline will depend<br>on the target species, the type of longline (bottom or<br>mid-water), and gear-handling methods (manual<br>or mechanical hauling). The diameter and breaking<br>strength must take into account not only the weight of<br>the fish, but also the displacement (and therefore, in-<br>ertia) of the vessel.<br>As a general rule, one can choose a mainline whose<br>breaking strength (dry, unknotted, in kg) is;<br>- both greater than 10 times the<br>tonnage of the vessel, and greater<br>than the square of the vessel's length<br>(in metres).<br>- at least 10 times the weight of the<br>largest fish one expects to catch.<br><b>For example:</b><br>What would be the minimum breaking strength for the<br>main line of a longline used by a 9 m, 4 t vessel,<br>catching sea bream and gurnards?<br>Breaking strength must be greater<br>than $4 \times 10 = 40$ kg<br>or $9x9 = 81$ kg<br>But, if one expects to catch individual fish weighing 10<br>kg, it is necessary to calculate<br>$10$ kg $\times 10 = 100$ kg<br>Therefore, the line could be twisted or braided nylon<br>(PA), 2 mm diameter (breaking strength 130-160<br>kg); or nylon monofilament 170/100 (breaking strength<br>110 kg); or polyethylene (PE) 3 mm diameter (break-<br>ing strength 135 kg). | <ul> <li>Branchlines (snoods or gangions) should be as close as possible to invisible in water, but sometimes of steel (for example, in some tuna and shark fisheries).</li> <li>Breaking strength of branchlines (wet, with knots) should be at least equal to twice the weight of the fish one expects to catch. (The breaking strength of the main line should equal 3 to 10 times that of the branchlines.)</li> <li>The length of a branchline is usually less than half the distance between branchlines, in order to avoid tangling.</li> <li>Hooks are usually chosen by experience, according to the size and behaviour of the target species; hooked fish should stay alive (for species which can live when hooked), but should not come unhooked.</li> </ul> |      |







#### Longlines: automation of operations







#### Dredges

### DREDGES



### Equipment for deck and wheelhouse

#### **Fishing with light**

| Conditions which favour fishing with light |                     |                   |                |
|--------------------------------------------|---------------------|-------------------|----------------|
|                                            | Not<br>favourable   | Average           | Favoura<br>ble |
| Colour of the<br>Sea                       | Brown-<br>yellow    | Yellow-<br>Green  | Green-<br>Blue |
| Transparency<br>(visibility m)             | 0 to 5              | 5 to 10           | 10 to 30       |
| Moon phase                                 | Full                | -                 | New            |
| Current                                    | Strong to<br>Medium | Medium to<br>Weak | None           |

#### Type of Lamp and utilization

|               | Petrol (gasoline)<br>or liquified gas      | Electric                                               |
|---------------|--------------------------------------------|--------------------------------------------------------|
| Advantages    | inexpensive easy<br>to maintain and<br>use | effective above<br>the surface or in<br>the water      |
| Disadvantages | fragile<br>used only above<br>the water    | expensive<br>heavy bulky<br>batteries or<br>generators |

It is better to use several lights of moderate intensity, sufficiently spaced apart, rather than a single light of strong intensity.

When a lamp.is mounted above the surface, only half its light effectively penetrates the water, due to reflection from the surface.

#### Resistance of electric cables

Running lamps with low voltages (for example, 12-24 V) may involve significant power losses through conducting wires. Therefore, wires used with low voltages should be thicker than those needed for higher voltages.

Resistance to a continuous current (in ohms/km) in a copper conductor is a function of the cross section area of the cable  $(mm^2)$ .



From Ben-Yami, 1976. *Fishing with light.* FAO Fishing Manuals, Fishing News (Books), Oxford.



-IGH

#### Characteristics of echo-sounders

#### Depth Range

Frequency Common frequencies are 30-400 KHz

|                    | High Frequency Echo-sounders<br>(100 to 400 kHz) | Low Frequency Echo-sounders<br>(50 kHz or less) |
|--------------------|--------------------------------------------------|-------------------------------------------------|
| Common use         | shallow water                                    | deep water                                      |
| Width of Beam      | narrow                                           | wide                                            |
| Precision          | very good                                        | less precise                                    |
| Size of transducer | small                                            | large                                           |
| Usual Use          | fish detection                                   | navigation                                      |

#### Electric supply required on the vessel (voltage, power)

If the echosounder's power supply is a bit weak, its performance will be poor.

The type of display may be lamp display (flasher), paper (chart recorder), or colour screen.

|               | Paper display<br>(dry, black and white)                                                                            | Television type display<br>(colour)                                                                |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Advantages    | paper record may be kept                                                                                           | different colours may<br>indicate very small<br>differences in strengths of                        |
| Disadvantages | differentiation of different echo<br>strengths is limited (shades of<br>black and grey) cost of Recording<br>Paper | echoes<br>no memory or limited<br>memory, but note that<br>recording equipment is now<br>available |

#### Other predetermined characteristics

**Wavelength** (m) = 1500/frequency (Hz) The smaller the wavelength the greater the precision of detection.

#### Pulse length :

Short 0.1 to 1 millisecond Long more than 2 milliseconds The shorter the pulse length, the greater the precision but, in fact, this is predetermined according to the frequency and the depth of sounding.

#### Beam-width :

Wide : 20 to 30 degrees Narrow : 4 to 10 degrees

**Output power** ranges from 100 to 5000 watts. The greater the power, the better will be the strength and precision of detection.





#### Choice of an echo-sounder according to the application

|                                    | Navigation echosounder                                                                                                                      | Fish-finding echosounder                                                                                                                                   |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Depth of Water<br>Limited to 100 m | Frequency 20-100 kHz<br>Beamwidth 10-20 degrees<br>Output Power less than 1 kW                                                              | Frequency 100-400 kHz<br>Beamwidth 4-15 degrees<br>Output Power around 1 kW                                                                                |
|                                    | Pulse length less than<br>1 millisecond<br>Flasher display may be<br>sufficient                                                             | Pulse length less than<br>1 millisecond<br>Usually with TVG and<br>whiteline                                                                               |
| Deeper Water                       | Frequency 10-20 kHz<br>Beamwidth 4-10 degrees<br>Output Power 5 -10 Kw<br>depending on depth<br>Pulse length greater than<br>2 milliseconds | Frequency 30-50 kHz<br>Beamwidth 4-10 degrees<br>Output Power 5-10 kW<br>depending on depth<br>Pulse length 1-2<br>milliseconds, with TVG and<br>whiteline |

# ECHO – SOUNDERS



#### Winches and net drums

Power required

#### where

P = actual power of winch or hauler (HP)

F = pulling force needed (kgf)

v = speed of hauling needed (m/s)

When estimating the engine power required to produce the actual power at the winch, it is necessary to add 25% for power loss through mechanical transmission, or 100% for hydraulic transmission. For example, if actual winch power (P) of 10 HP is required and transmission is mechanical, then 12.5 HP engine power will be needed to produce this.

Turning speed required

$$R \sim \frac{1000 \times v}{3 \times \emptyset}$$

where

- R = turning speed of winch or hauler (RPM)
- v = speed of hauling required (m/min)
- $\emptyset$  = diameter of full drum (mm)

#### At a constant hauling speed, pulling force available decreases as a drum fills Pulling force

torque effective diameter of drum

The torque of the drum is constant (at 5, in the example in next column).

#### 3 1.6 Pull at mid-drum (half full) 5 5 Pull at bare drum At a constant drum diameter, the

Pull at full drum

LE

#### pulling force available decreases as speed increases

Work done by drum = pull x speed = constant

#### Example:

| pull | at   | mid-drum      | at    | 1    | m/s | : | 1.6 | t |
|------|------|---------------|-------|------|-----|---|-----|---|
| pull | at   | mid-drum      | at    | 1.6  | m/s | : | 1.0 | t |
| (1.6 | tx1r | n/s = 1.0 t x | 1.6 m | ı/s) |     |   |     |   |

Tension on the material being hauled

$$T = \frac{75 \times P}{v}$$

where

T = tension on the material (kgf)

P = power of the winch or hauler (HP)

v — speed of hauling (m/s)

Note : Main characteristics of a winch or drum are the dimensions, the capacity and the pulling force (in tonnes force or in daN; see pages 150.

152)



The pulling force of the purse line winch required for a seine of given weight can be estimated by the following formula :

$$F = 4/3$$
 (Wn/2 + Wr + Ws)

where :

F = pulling force of the winch (tf, tons force)

Wn = weight in air of the netting (t, tons)

Wr = weight in air of the footrope and purse rings (†)

Ws = weight in air of the ballast on the footrope (†)

Characteristics of some purse line winches in use (after Brissonneau and Lotz)

|                      |              | Drum Capacity   |               |                         |                            |        |
|----------------------|--------------|-----------------|---------------|-------------------------|----------------------------|--------|
| Vessel<br>Length (m) | No.<br>Drums | Cable<br>Ø (mm) | Length<br>(m) | Pull (†)<br>(bare drum) | Speed (m/s)<br>(bare drum) | P(HP)* |
| 20                   | 2            | 15.4            | 1300          | 8                       | 0.5                        | 44     |
| 20-25                | 2            | 15.4            | 1800          | 11                      | 0.42                       | 70     |
| 25-30                | 2            | 17.6            | 1800          | 17                      | 0.37                       | 100    |
| 30-40                | 3            | 17.6            | 1800          | 21                      | 0.30                       |        |
|                      |              | 17.6            | 800           | 21                      | 0.30                       | 100    |
|                      |              | 17.6            | 600           | 21                      | 0.30                       |        |
| 45-60                | 3            | 20              | 2220          | 27                      | 0.35                       |        |
|                      |              | 20              | 975           | 27                      | 0.35                       | 150    |
|                      |              | 20              | 975           | 24.5                    | 0.35                       |        |
| 60-75                | 3            | 22              | 2420          | 27                      | 0.35                       |        |
|                      |              | 22              | 1120          | 27                      | 0.35                       | 300    |
|                      |              | 22              | 1120          | 24.8                    | 0.35                       |        |

#### Seine drums

some examples

| width of drum inside flanges (m)                        | 3.00     | 3.90     |
|---------------------------------------------------------|----------|----------|
| flange diameter (m)                                     | 2.45     | 2.44     |
| drum diameter (m)                                       | 0.6      | 0.45     |
| Seine dimensions:<br>hung length x stretched height (m) | 360 × 30 | 450 x 64 |
| stretched meshsize (mm)<br>(centre section)             | 32       |          |
| twine size (centre section, Rtex)                       | 376      |          |



DECK EQUIPMENT

\* Power (HP) = 1.36 x Power (kW)

#### **Trawl winches**

| Power* of<br>trawler(HP) | Power of<br>winch(HP) | Capacity of drums |                  | hauling speed<br>(m/sec) | Pull at<br>mid-drum (kg)<br>drums combined |
|--------------------------|-----------------------|-------------------|------------------|--------------------------|--------------------------------------------|
|                          |                       | Length(m)         | Ø of<br>wire(mm) |                          |                                            |
| 50-75                    | 200                   | 6.3               | 500-750          |                          |                                            |
| 100                      | 25                    | 700               | 10.5             | 1.00                     | 900                                        |
| 200                      | 40                    | 1000              | 12.0             | 1.20                     | 1600                                       |
| 300                      | 60                    | 1250              | 13.5             | 1.35                     | 2500                                       |
| 400                      | 80                    | 1350              | 15.0             | 1.40                     | 3500                                       |
| 500                      | 120                   | 2100              | 16.5             | 1.50                     | 4500                                       |
| 700-800                  | 165                   | 2000              | 19.5             | 1.50                     | 6500                                       |

\* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in (HP] = 1.36 x Power in (kW)

At constant drum RPM, pull x diameter = constant; thus,

pull at bare drum = pull at mid-drum × Ø at mid-drum Ø at bare drum

#### Performance

- Power : Power of winch (HP)  $= \frac{Power of engine (HP)}{4 \text{ or } 5}$ 



Maximum Pull : At the most, equal to
 1/3 the breaking strength of the warp.
 In order to haul the trawl the winch has to
 develop more power than tha' which is exerted
 in towing the trawl.

The pull of the winch at mid-drum should be at least 80% of the maximum bollard pull of the vessel. It is best to use the formula :

Pull of the winch (at mid-drum) = 1.3 x pull of the trawler

#### Dimensions

Diameter of the bare drum : about 14 to 20 times the diameter of the warp.

Depth of drum(<u>A - B</u>): at least

2

equal to the diameter of the bare drum

#### Capacity of a winch drum

— With automatic spooling (levelwind) and drum dimensions given above, If L = length (m) of warp, and 0 = diameter (mm) of warp :



Manual spooling reduces this capacity by about 10%.

Note : Tolerances must be taken into account when accessories (i.e. chains, shackles) swivels] are hauled on with the warps.

#### Trawl net drums



**Note** : The volume of a trawl (V) con be estimated from its weight W: midwater trawl V (cubic m) =  $3.5 \times W$  (tonnes) bottom trawl V (cubic m) =  $4.0 \times W$  (tonnes)

**Note** : when sweeps and/or the bridles of combination rope are to be reeled onto the drum with the net, their volume must be taken into account. The same is true for the floats, ballast, sinker chain and bobbins.

#### Main dimensions

For a given application (requiring a [certain pull, speed and capacity) there may be several alternatives to choose from.



The bare drum diameter B generally does not vary much for a given pull.

| Pull<br>(tonnes) | B average<br>(mm) |
|------------------|-------------------|
| <3               | 240               |
| 5-8              | 300               |
| 8-13             | 450               |
| 20-30            | 600               |

Thus, A and C will be chosen depending on the type of net, use of the drum (storage and/or hauling) the volume of the net, and deck space available.

#### Pulling force

In order to maintain the speed of hauling, the pull of the net drum at bare drum should be at least equal to the pull of the winch at full drum.

■ Hauling speed is generally great er than or equal to 30 m/min.

#### A few guidelines:

Note that for a given capacity, the pulling force and speed may vary a great deal, according to the strain on the winch.

| Vessel<br>horsep<br>ower | Capac<br>ity<br>(cubic<br>m) | Weig<br>ht<br>of net<br>(kg) | Pull (t)<br>(bare<br>drum) | Speed<br>(m/min) | Weight<br>of<br>Drum<br>(t) |
|--------------------------|------------------------------|------------------------------|----------------------------|------------------|-----------------------------|
| 100                      | 0.5                          | 120                          |                            |                  |                             |
| 200                      | 1                            | 250                          |                            |                  |                             |
| 300                      | 1.5                          | 400                          |                            |                  | 1-1.2                       |
| 400                      | 2                            | 550                          | 2-4                        | 10               | 1.5                         |
| 500                      | 2.5                          | 700                          |                            |                  |                             |
| 600                      | 3                            | 800                          | 6-10                       | 13.5             | 1.7-1.8                     |
| 700                      | 3.5                          | 1000                         |                            |                  |                             |
| 800                      | 4                            | 1100                         | 7-12                       | 17               | 2-2.5                       |

\* Brake horsepower (BHP) or Apparent Nominal Power (ANP), see page 95 Power in (HP) = 1.36 x Power in (kW)



#### **Power block**

#### Choice of model

DECK EQUIPMENT



The netting should fill only the groove (throat) of the power block. The model is chosen according to the circumference of the seine gathered together, estimated by two different methods :

- Direct measurement take the leadline with the floatline to form a large bundle with the netting and measure the circumference of the bundle with a piece of twine, passing it between the leads and the floats.
- (2) Calculation Circumference (mm) = 450 (0.00006 × Rtex + 0.02)  $\sqrt{N}$

where Rtex = size of twine in the bady of the net

N = number of meshes deep in the purse seine

#### Pull available

The power block should be capable of pulling 20% to 50% of the total weight of the net (in air), at speeds of between 30 m/min for a small seiner to 80 m/min for a larger seiner.

Values of pulling force available at middiameter for power blocks of different capacities in common use.

| Capacity<br>(circumference<br>of net, mm) | Pull<br>tonnes |
|-------------------------------------------|----------------|
| 500-800                                   | 0.5-1.5        |
| 800-1100                                  | 1.0-2.0        |
| 1100-1800                                 | 3.0-5.0        |
| 1800-2500                                 | 6.0-8.0        |

#### ■ Performance of power blocks in common use according to the size of the vessel

| Seiner<br>length<br>(m) | Pull<br>(tonnes) | Speed<br>(m/min) | Power<br>(HP*) |
|-------------------------|------------------|------------------|----------------|
| 9-12                    | 0.5-1.0          | 30-40            | 8-16           |
| 12-24                   | 1.0-1.5          | 30-40            | 13-20          |
| 18-30                   | 2                | 40-50            | 30-45          |
| 24-39                   | 4                | 40-50            | 60-85          |
| 24-34                   | 5                | 40-70            | 80-150         |
| 30-75                   | 6-7              | 40-90            | 90-220         |

\* Power in (HP) = 1.36 x power in (kW)



#### Net haulers: some examples



#### Line haulers



#### pot/trap haulers



#### Haulers for nets, lines and traps: performance of common types





#### Longline haulers

For longlines up to about 30 km long, with relatively short branchlines (5 m or less), the following pertain to a few types in common use.



| Vessel<br>Length<br>(m) | Depth of<br>Water<br>(m) | Pull<br>(kg) | Speed of<br>Hauling<br>(m/min) |
|-------------------------|--------------------------|--------------|--------------------------------|
| 5-10                    | < 100                    | 150-300      | 20-35                          |
| 10-15                   | <200                     | 200-500      | 25-45                          |
| 15-20                   | 300 <u>&gt;</u>          | 500-900      | 50-70                          |



| Vessel<br>Length<br>(m) | Ø Line<br>(mm) | Pull<br>(kg) | Speed of<br>Hauling<br>(m/min) |
|-------------------------|----------------|--------------|--------------------------------|
| <10                     | <6             | 200-300      | 20-40                          |
| 10-15                   | 6-12           | 300-400      | 60                             |
| 15-20                   | 8-16           | 500-700      | 70                             |

For drifting midwater longlines (i.e. Japanese-type longlines for tuna), length is of the order of 100 km, with snoods spaced 50 m or more apart.

| Vessel<br>Tonnage | Speed of<br>hauling<br>(m/min) |
|-------------------|--------------------------------|
| 10                | 70-80                          |
| 20                | 70-90                          |
| 40                | 150-210                        |
| 100 <u>&gt;</u>   | 180-260                        |

#### Pot/trap haulers

Performance is very variable depending on the model, and comparable to that of line haulers and net haulers, except for the existence of models with pulling force greater than 1000 kg (1000, 1350, 1500 kg) and higher hauling speeds.

# Fishing vessel operations

#### Fuel consumption of the engine

Specific consumption of fuel depending on the type of engine

| Engine                        | Density of<br>fuel | Consumptio<br>n<br>in<br>g/hp/hour |
|-------------------------------|--------------------|------------------------------------|
| 2-stroke petrol               | 0.72               | 400-500                            |
| 2-stroke petrol<br>(improved) | 0.72               | 300-400                            |
| 4-stroke petrol               | 0.72               | 220-270                            |
| Diesel                        | 0.84               | 170-200                            |
| Diesel<br>(turbo-charged)     | 0.84               | 155-180                            |

- Consumption of fuel by an engine during a given period of time :

C = 0.75 x P(max) x (S/d) x † x 0.001

where

0.75 is an average coefficient; free running it is between 0.7 and 0.8 and when fishing 0.5 to 0.8 С = consumption (in litres) P(max) = maximum power of engine in HP

S = specific consumption of

fuel in grams/HP/hour

d = density of fuel

t = time of use of engine in

hours

Note : time can be replaced with

distance covered in miles

speed in knots

Approximation :

Annual consumption of а trawler = 1000 litres/HP/year

Consumption of lubricating oil = 1 to 3% (in litres) of fuel consumption

#### Maximum Economic Speed (Critical Speed)

This is related to the length of the vessel at the waterline.

- for a displacement vessel, this speed, V, can be estimated as follows :

V (knots) = 
$$2.4 \times \sqrt{(L_w)}$$

where  $L_w = \text{length}$  at the waterline (m)

$$V (knots) = 5.4 \times \sqrt{(L_w)}$$

\* petrol = gasoline



**PROPULSION** 

#### Ice, capacity of holds and tanks, fresh water

#### Quantity of ice required

(1 m<sup>3</sup> of ice weighs a round 900 kg)

- In temperate waters : 1 ton of ice for 2 tons of fish (kept for more than a

week)

0.7 ton of ice for 2 tons of fish (kept for less than a week)

- In tropical waters :1 ton of ice for 1 ton of fish

These quantities may be reduced by 30 to 50% if the hold is refrigerated.

| Capacity of the hold in kg of fish<br>or crustacea per m <sup>3</sup>                                                                                                               | Material                | Method of stowing       | stowing rate<br>kg/m <sup>3</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|-----------------------------------|
| Taking into account the shape of the<br>hold and arrangement for stowage,<br>the real capacity of a hold will reflect<br>a stowing rate 10-20% less than the<br>figures shown here. | Ice                     | Crushed                 | 550                               |
|                                                                                                                                                                                     | Ice                     | Flake                   | 420-480                           |
|                                                                                                                                                                                     | Small fish(eg sardine)  | Without Ice             | 800-900                           |
|                                                                                                                                                                                     | Small fish(eg sardine)  | In bulk with ice        | 650                               |
|                                                                                                                                                                                     | Small fish (eg sardine) | In chilled sea water    | 700                               |
|                                                                                                                                                                                     | Average to large fish   | In bulk with ice        | 500                               |
|                                                                                                                                                                                     | Average to large fish   | In boxes with ice       | 350                               |
|                                                                                                                                                                                     | Average to large fish   | Frozen whole            | 500                               |
|                                                                                                                                                                                     | Average to large fish   | Fresh or frozen fillets | 900-950                           |
|                                                                                                                                                                                     | Tailed shrimp           | Frozen in blocks        | 700-800                           |
|                                                                                                                                                                                     | Tuna                    | Frozen in bulk          | 600                               |

#### Capacity of a live tank or well

Crustacea in well or tank on board : 120-200 kg of Crustacea per  $m^3$  of tank (Note : *adequate water circulation is essential*)

Crustacea in cage or 'car' set in sea : 400 kg of Crustacea per  $m^3$  of cage Live bait well : 30/50 kg of bait per  $m^3$  (water renewed 6 to 8 times per hour)

• Consumption of fresh water, minimum allowance to plan :

vessel length 10 m : 10 to 15 litres of water per person per day



30 m : 30 litres of water per person per day



#### Bait: quantity required

#### Longiine

The quantity of bait required obviously depends on the bait type, target species and type of longiine. The figures here are rough estimates taken from examples in use.

If mackerel is used as bait, the following estimates may be given.

| Bait type                                                                          | Quantity (in kg) per<br>100 hooks |
|------------------------------------------------------------------------------------|-----------------------------------|
| Sandeel, Sardine<br>Mackerel, Horse mackerel<br>Needlefish (for drifting longiine) | 2.5-3<br>5-6<br>10                |
|                                                                                    |                                   |
| Target species                                                                     | Weight of bait (g)                |
|                                                                                    | per hook                          |
| Whiting                                                                            | 20-25                             |
| Whiting<br>Small sharks, cod, rays                                                 | 20-25<br>40-60                    |
| Whiting<br>Small sharks, cod, rays<br>Large sharks                                 | 20-25<br>40-60<br>200 - 300       |

#### Live bait for tuna

In planning to catch in the order of 10 to 30 † of tuna, reckon on 1 † of bait (the proportion will increase a little with the tonnage of the vessel).



BAIT
# Speed of operation

■ Longlining (manual operation aided only by a line hauler)

### — Bottom longline

number of hooks per man per day : 500-1000 speed of baiting : 2-4 hooks/min/man

speed of shooting (coastal) : 50-150 m/min

speed of shooting (deep-water) : 200-300 m/min

speed of hauling (coastal) : 15-40 m/min

speed of hauling (deep-water) : 60 m/min

# — Midwater drifting longline (tuna type)

speed of shooting : 400-600 m/min or 500 hooks/h

speed of hauling : 200 hooks/h at 3-5 knots

### Gillnetting

Length of net per man per day : 500-1000 m

speed of shooting : 6000-9000 m/h

speed of hauling : 700-1500 m/h

### Purse seining

Shooting the seine usually takes 2-5 min

Speed of pursing :

| Length of purse seine<br>(m) | Duration (mins) |
|------------------------------|-----------------|
| 300                          | 7-10            |
| 800                          | 10-15           |
| 1200-1400                    | 15-25           |

### Speed of hauling with power block :

| Length of purse seine<br>(m) | Duration (mins) |
|------------------------------|-----------------|
| 300                          | 20-25           |
| 800                          | 40-60           |
| 1200-1400                    | 60-100          |

Loading or broiling may take several hours depending on the catch.

### Trawling

The amount of time needed to shoot and haul the warps depends on the depth. Shooting the rest of the gear (doors, sweeps, bridles, net) may take 5-15 min. Hauling may take 15-25 min (excluding warps).



# Bookkeeping

### Rules

— Keep a record of all expenses and receipts

— Take a lot of care in organising and classifying records

- Check accounts very regularly

### Keeping and presenting accounts

— The methods of settling and presentation of the accounts depend on the habits and traditions of local fishermen, which will determine the following :

— Particular costs are defined as **joint expenses** (fuel, ice, food etc.) or **boat expenses** (vessel maintenance, renting of equipment, etc.).

 Income from the catch is divided to pay certain expenses, as well as the **labour** share (crew share) and the **boat share**; these proportions vary among different fisheries.

 Division of the labour share among the crew may depend on individual responsibilities, amount of experience, etc.

NEVER mix the payment of the skipper with the boat's accounts, which are the accounts of the company or owner (even if the skipper is the owner). Keep these two accounts well separated, preferably in two separate books.

(1) A book for the accounts of the crew, skipper included

| Date | Transaction # | Grass<br>Receipts<br>from sale<br>and fish | Joint Expenses                              |
|------|---------------|--------------------------------------------|---------------------------------------------|
|      |               |                                            | (several columns for<br>different expenses) |
|      |               |                                            |                                             |

This will help with calculation of crew payments.

(2) A book for the boat's accounts (accounts of the company)

| Data | Taxa a stira II | Employed to the Original                 |
|------|-----------------|------------------------------------------|
| Date | I ransaction #  | Expenses charged to the Owners           |
|      |                 | (several columns for different expenses) |
|      |                 |                                          |
|      |                 |                                          |

This will help with calculation of the boat's net income.

— Gross receipts - joint expenses = net receipts

— Net receipts are divided into labour share and boat share

— The labour share is divided among the crew according to the contract (calculated every week or after each trip)

The **boat share - boat expenses = gross profit** (calculated on an annua! basis)



BOOKKEEPING

# **Bookkeeping (continued)**

There is a **net profit** only if the gross profit is greater than the sum of interest on loans plus amortisation of equipment.

### Table of loan repayment

Amortisation is the cost associated with the loss of value, (through use, wearing out) of the investment

(vessel, motor, etc.). Depreciation is a related term which is used more commonly. When money for replacement of equipment (which is wearing out) is set aside and considered a cost, this may be called amortisation, and the amount set aside should be equal to the depreciation (anticipated loss of value) of the equipment. During normal periods while the amortisation is calculated, it is not represented by actual payments of money; the money associated with amortisation costs is actually available, but should be set aside for replacement of vessel and equipment, as this eventually becomes necessary.

| <ul> <li>Examples</li> </ul> | of          | amortisation |
|------------------------------|-------------|--------------|
| periods :                    |             |              |
| new hull                     | 10-15 years |              |
| motor                        | 1 -4 years  |              |
| navigation equipment         | 5 years     |              |

outfitting and fishing gear 3 years

— 2 types :

(1) linear depreciation : <u>value of the purchase</u> duration of amortisation

(2) accelerated depreciation : re sidual value X depreciation rate

 The sum of the amortisation allotments should equal the actual purchase the equipment. All price of equipment should be amortised during is the period in which it actually used.

### Keeping accounting records

• gross receipts = sum of (joint expenses + crew shares + boat expenses)

• money available at year-end = [money available on January 1 (cash + savings) + gross profits (before taxes) + amortisation]

# Example of accounts in a situation where the boat and crew split 50/50:

|                 |             |                             |                                                     | joint expenses |     |     |                 |      |               |               | bo    | at expen              | ses                       |                 |
|-----------------|-------------|-----------------------------|-----------------------------------------------------|----------------|-----|-----|-----------------|------|---------------|---------------|-------|-----------------------|---------------------------|-----------------|
| date<br>of trip | record<br># | receip<br>ts<br>(sales<br>) | tax<br>on<br>sales                                  | fuel           | oil | ice | fishing<br>gear | food | crew<br>share | boat<br>share | taxes | rent<br>for<br>equip. | maint<br>&<br>repair<br>s | gross<br>profit |
| Jan 9           |             | 1000                        | 50                                                  | 150            | 50  | 20  | 30              | 60   | 320           | 320           | 32    |                       |                           | 288             |
| Jan 12          |             | 300                         | 15                                                  | 180            |     | 15  |                 | 50   | 20            | 20            | 2     | 30                    | 85                        | 97              |
| Jan 15          |             | 600                         | 30                                                  | 140            |     | 20  | 45              | 65   | 150           | 150           | 15    |                       |                           | 135             |
| Jan 23          |             | 1200                        | 60                                                  | 200            | 20  | 30  |                 | 50   | 420           | 420           | 42    |                       | 150                       | 228             |
|                 |             |                             | receipts from sales-joint expenses<br>=net receipts |                |     |     |                 | •    |               | boat<br>share | b     | ooat expens           | ies                       | gross<br>profit |



Use this blank page for records of local fisheries regulations and other useful local information.

# REGULATIONS



# Formulae and tables

|                                                          | 1 m/<br>(cm)<br>1 kil<br>1 na<br>1 ca<br>1 fat | etre (m) = 10 de<br>) = 1000 millimer<br>ometre (km) = 1<br>sutical mile = 185<br>ble = 185 m<br>thom = 1.83 m                                      | cimetre<br>tres (mi<br>000 me<br>52 (m) | es (dr<br>m)<br>etres | m) = 100 centimetres<br>(m)                                                                                                                                                                                                                                   | S OF MEASUREMENT |
|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Conversions between metric and<br>Anglo-American units ► | •                                              | 1 mm<br>1 cm<br>1 cm<br>1 m<br>1 m<br>1 m<br>1 m<br>1 km<br>1 km<br>1 km<br>1 in<br>1 in<br>1 ft<br>1 ft<br>1 yd<br>1 m<br>1 n<br>1 n<br>1 n<br>1 m |                                         |                       | 0.04 inch (in) or (")<br>0.4 inch (in) or (")<br>0.03 foot (ft) or (')<br>3.3 feet (ft) or (')<br>1.09 yards (yd)<br>0.55 fathom (fm)<br>0.54 nautical mile (nm)<br>0.62 statute mile<br>25.4 mm<br>2.54 cm<br>30.5 cm<br>0.3 m<br>0.9 m<br>1.83 m<br>1.85 km | N                |
| Quick approximations                                     |                                                | 1 statute mile                                                                                                                                      | 10 cm<br>30 cm                          |                       | 1609 m<br>4 in<br>1 ft                                                                                                                                                                                                                                        |                  |

1 m

40 in

~



# Units of area

| 1 so<br>1 ar<br>1 he | quare kilometre<br>e (a) = 100 m <sup>2</sup><br>ectare (ha) = 10                                                                           | = 10000 square centimetre<br>= 1 000000 square millimet<br>( $km^2$ ) = 1 000 000 m <sup>2</sup><br>000 m <sup>2</sup>                                                                             | s (cm )<br>tres (mm²) |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| •                    | 1 mm <sup>2</sup><br>1 cm <sup>2</sup><br>1 m <sup>2</sup><br>1 ha<br>1 in <sup>2</sup><br>1 in <sup>2</sup><br>1 ft <sup>2</sup><br>1 acre | = $0.0015 \text{ in}^2$<br>= $0.15 \text{ in}^2$<br>= $10.7 \text{ ft}^2$<br>= $2.47 \text{ acres}$<br>= $645 \text{ mm}^2$<br>= $6.45 \text{ cm}^2$<br>= $0.09 \text{ m}^2$<br>= $0.4 \text{ ha}$ |                       |
|                      | 1                                                                                                                                           | $0 \text{ cm } b^2 \sim 1.5 \text{ in }^2$<br>$1 \text{ dm }^2 \sim 15 \text{ in }^2$<br>$1 \text{ m}^2 \sim 11 \text{ ft }^2$<br>$10 \text{ m}^2 \sim 12 \text{ yd }^2$                           | Quick approximations  |





# Units of volume, capacity

|                                                      | decimetre (dm <sup>3</sup> )<br>1 cubic metre (m <sup>3</sup> ) = 1000 l | litres (1)           |                      |
|------------------------------------------------------|--------------------------------------------------------------------------|----------------------|----------------------|
| nversions between metric and<br>glo-American units ► | 43                                                                       |                      | 0.00::=3             |
|                                                      | • 1 Cm                                                                   |                      | 0.00 III             |
|                                                      | 1 dm <sup>3</sup>                                                        | =                    | 0.03 ft <sup>3</sup> |
|                                                      | 1 m°                                                                     | =                    | 35.3 ft <sup>3</sup> |
|                                                      | 1 m³                                                                     | =                    | 1.3 yd <sup>3</sup>  |
|                                                      | 11                                                                       | =                    | 0.22 gallon (gal)    |
|                                                      | 11                                                                       | =                    | 0.26 US gallon       |
|                                                      | 11                                                                       | =                    | 1.75 pints           |
|                                                      | 11                                                                       | =                    | 2.1 US pints         |
|                                                      | • 1 in <sup>3</sup>                                                      |                      | 16.4 cm <sup>3</sup> |
|                                                      | 1 ft <sup>3</sup>                                                        | =                    | 28.3 dm <sup>3</sup> |
|                                                      | 1 ft <sup>3</sup>                                                        | =                    | 0.03 m <sup>3</sup>  |
|                                                      | 1 yd <sup>3</sup>                                                        | =                    | 0.76 m <sup>3</sup>  |
|                                                      | 1 gal                                                                    | =                    | 4.5 I                |
|                                                      | 1 US gal                                                                 | =                    | 3.8 I                |
|                                                      | 1 pint                                                                   | =                    | 0.57 I               |
|                                                      | 1 US pint                                                                | =                    | 0.47 l               |
|                                                      |                                                                          |                      |                      |
| approximations                                       | 91                                                                       | ~ 2 gal              |                      |
|                                                      | 1m <sup>3</sup>                                                          | ~ 35 ft <sup>3</sup> | 5                    |



# Units of mass, weight and force

#### Mass and weight 1 kilogram (kg) = 1000 grams 1 tonne or metric ton (†) = 1000 kilograms Conversions between metric and **Anglo-American units** 1g 0.03 ounce (oz) = 1 kg 2.2 pounds (lb) = 1 kg 0.02 hundred weight (cwt) = 1 t 0.98 (long) ton = 1 oz 28.3 g . = 1 lb 0.45 kg = 1 cwt 50.8 kg = 1 (lon g)t 1.01 t = Quick approximations 10 kg 22 lb ~ 50 kg 1 cwt ~

# Force

1 kilogram-force (kgf) = 1000 gram-force (gf) 1 kilogram-force (kgf) = 9.81 newtons (N) 1 decanewton (daN) = 10 newtons (N)

1 kgf ~ 1 daN

Quick approximations



# Units of pressure, power, light and sound

# Pressure

| F       | Pressure = forcesure = forcesu | e<br>ace | _                                                                                 |                                                                     |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1       | atmosphere (Atm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )        | = 1 kgf/cm² = 101 kN/m²<br>~ 1 bar ~ 100000 Pascals (Pa)<br>~ 1013 millibars (mb) |                                                                     |
| 1       | millibar (mb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | = 100 N/m <sup>2</sup> = 100 Pa                                                   |                                                                     |
| 1       | kgf/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | = 9.81 N/m <sup>2</sup>                                                           |                                                                     |
| 1<br>(F | pound per square<br>PSI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in       | <sup>ch</sup> = 689 mb                                                            |                                                                     |
| •       | 1 kg / mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =        | 1 422 PSI                                                                         | •                                                                   |
|         | 1 PSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =        | 0.0007 kg / mm ²                                                                  | Conversions<br>between<br>metric and<br>Anglo-<br>American<br>units |

# Power

Power = force x speed 1 horsepower (HP) = 75 kg x m/s 1 kilowatt (kW) = 1.34 Hp 1 HP = 0.74 Kw

# Light

The international unit which describes light intensity is the candela (cd).

Illumination (E) is described in terms of units called lux (Lx).

Illumination varies inversely with the square of the distance from the light source; that is, illumination decreases quickly as the light source draws farther away.

Illumination (Lx) =  $\frac{\text{Light Intensity (cd)}}{R^2(m)}$ 

where r = distance from light source in metres

# Sound

The speed of sound in water is approximately 1500 m/s.

# Units of speed

### 1 metre per second (m/s)

1 knot (kn) = 1 nautical mile per hour\* = 1852 m/h = 0.51 m/s

Speed of a vessel

| kn  | ~ m/s | ~ km/h | kn   | ~ m/s | ~ km/h |
|-----|-------|--------|------|-------|--------|
| 0.5 | 0.3   | 0.9    | 8    | 4.1   | 14.8   |
| 1   | 0.5   | 1.8    | 8.5  | 4.4   | 15.7   |
| 1,5 | 0.8   | 2.8    | 9    | 4.6   | 16.7   |
| 2   | 1.0   | 3.7    | 9.5  | 4.9   | 17.6   |
| 2.5 | 1.3   | 4.6    | 10   | 5.1   | 18.5   |
| 3   | 1.5   | 5.6    | 10.5 | 5.4   | 19.4   |
| 3.5 | 1.8   | 6.5    | 11   | 5.7   | 20.4   |
| 4   | 2.1   | 7.4    | 11.5 | 5.9   | 21.3   |
| 4.5 | 2.3   | 8.3    | 12   | 6.2   | 22.2   |
| 5   | 2.6   | 9.3    | 12.5 | 6.4   | 23.1   |
| 5.5 | 2.8   | 10.2   | 13   | 6.7   | 24.1   |
| 6   | 3.1   | 11.1   | 13.5 | 6.9   | 25     |
| 6.5 | 3.3   | 12     | 14   | 7.2   | 25.9   |
| 7   | 3.6   | 13     | 14.5 | 7.5   | 26.9   |
| 7.5 | 3.9   | 13.9   | 15   | 7.7   | 27.8   |

# Quick approximations

(1) V m/s  $\sim \frac{V \text{ kn}}{2}$ (2) V km/h  $\sim (V \text{ kn} \times 2) - 10\%(V \text{ kn} \times 2)$ (3) V km/h  $\sim 1.8 \text{ V kn}$ 

### Examples : 10 knots is ab/ou equivalent to :

| $-\frac{10}{2} = 5 \text{ m/s}$                       |
|-------------------------------------------------------|
| $\sim (10 \times 2) - 10\%(10 \times 2)$<br>= 18 km/h |
| $\sim$ 1.8 $\times$ 10 = 18 km/h                      |

\* **Note** : in some countries, the distances may be measured in 'statute miles', sometimes referred to simply as 'miles'.



I statute mile = 1609 m = 0.87 nautical mile

# Units of temperature

| ۴   | °C     | °C   | ۴   |
|-----|--------|------|-----|
| -20 | -29.8  | -30  | -22 |
| -10 | -23.3  | -20  | -4  |
| 0   | - 17.8 | - 10 | 14  |
| 10  | - 12.2 | 0    | 32  |
| 20  | -6.7   | 10   | 50  |
| 30  | - 1.1  | 20   | 68  |
| 40  | 4.4    | 30   | 86  |
| 50  | 10.0   | 40   | 104 |
| 60  | 15.6   | 50   | 122 |
| 70  | 24.1   | 60   | 140 |
| 80  | 26.7   | 70   | 158 |
| 90  | 32.2   | 80   | 176 |
| 100 | 37.8   | 90   | 194 |
| 110 | 43.3   | 100  | 212 |
| 120 | 48.9   |      |     |
| 130 | 54.4   |      |     |
| 140 | 60.0   |      |     |
| 150 | 65.6   |      |     |
| 160 | 71.1   |      |     |
| 170 | 76.7   |      |     |
| 180 | 27.9   |      |     |
| 190 | 87.8   |      |     |
| 200 | 93.3   |      |     |
| 210 | 98.9   |      |     |





UNITS OF MEASUREMENT

# Conversion of kW to HP, and HP to kW

UNITS OF MEASUREMENT

| kW                                                                                                            | HP                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| kW<br>0.2<br>0.4<br>0.6<br>0.8<br>1<br>2<br>4<br>6<br>8<br>10<br>20<br>30<br>40<br>50<br>60<br>70<br>80<br>90 | HP<br>0.3<br>0.5<br>0.8<br>1.1<br>1.4<br>2.7<br>5.4<br>8.2<br>10.9<br>14<br>27<br>41<br>54<br>68<br>82<br>95<br>109<br>122 |
| 100<br>200<br>300                                                                                             | 136<br>272<br>408                                                                                                          |
| 400                                                                                                           | 544                                                                                                                        |
| 500                                                                                                           | 680                                                                                                                        |
| 600                                                                                                           | 816                                                                                                                        |
| 700                                                                                                           | 952                                                                                                                        |
| 800                                                                                                           | 1 088                                                                                                                      |
| 900                                                                                                           | 1 224                                                                                                                      |
| 1 000                                                                                                         | 1 360                                                                                                                      |
| 1 100                                                                                                         | 1 496                                                                                                                      |
| 1 200                                                                                                         | 1 632                                                                                                                      |
| 1 300                                                                                                         | 1 768                                                                                                                      |
| 1 400                                                                                                         | 1 904                                                                                                                      |
| 1 500                                                                                                         | 2 040                                                                                                                      |

| HP    | kW        |
|-------|-----------|
| 0.5   | 0.4       |
| 1     | 0.7       |
| 2     | 1.5       |
| 3     | 22        |
| 4     | 2.9       |
| 5     | 3.7       |
| 6     | 4.4       |
| 8     | 5.9       |
| 10    | 7.4<br>45 |
| 20    | 15        |
| 30    | 22        |
| 40    | 29        |
| 80    | 59        |
| 100   | 74        |
| 200   | 147       |
| 300   | 221       |
| 400   | 294       |
| 500   | 368       |
| 600   | 442       |
| 700   | 515       |
| 800   | 589       |
| 900   | 662       |
| 1 000 | 736       |
| 1 200 | 883       |
| 1 400 | 1 030     |
| 1 600 | 1 178     |
| 1 800 | 1 325     |
| 2000  | 1 472     |







# Area, circumference

FORMULAE







# Pressure underwater

FORMULAE

| Depth (m) | Hydrostatic pressure<br>kgf/cm or atmospheres |
|-----------|-----------------------------------------------|
| 0         | 1                                             |
| 10        | 2 or 1 + 1                                    |
| 20        | 3 or 2 + 1                                    |
| 40        | 5 or 4 + 1                                    |
| 50        | 6 or 5 + 1                                    |
| 60        | 7 or 6 + 1                                    |
| 100       | 11 or 10 + 1                                  |
| 200       | 21 or 20 + 1                                  |
| 300       | 31 or 30 + 1                                  |
| 400       | 41 or 40 + 1                                  |
| 500       | 51 or 50+ 1                                   |
| 1 000     | 101 or 100 + 1                                |
|           |                                               |

Pressure  $(kgf/cm^2) = 0.1 \times depth(m) + 1$ 

(specific gravity of water 0.001 kgf/cm<sup>3</sup>)



# Gravity and buoyancy



# Square roots of numbers from 0 to 499

FORMULAE

| ſ   | N     | 0        | 1 1      | 2                  | 3        | 4        | 5        | 6        | 7        | 8       | 9        |
|-----|-------|----------|----------|--------------------|----------|----------|----------|----------|----------|---------|----------|
|     | 0.    | 0.0000   | 1.0000   | 1.4162             | 1.7321   | 2.0000   | 2 2361   | 2.4495   | 2.6458   | 2.8284  | 3.0000   |
| - 1 | 1.    | 3,1623   | 3,3166   | 3,4641             | 3,6056   | 3,7417   | 3,8730   | 4,0000   | 4,1231   | 4.2426  | 4,3589   |
| →   | 3.    | 5,4772   | 5,5678   | 5,6569             | 5,7446   | 5,8310   | 5,9161   | 6,0000   | 6,0828   | 6,1644  | 6,2450   |
| 1   | 4.    | 6,3246   | 6,4031   | 6,4807             | 6,5574   | 6,6332   | 6,7082   | 6,7823   | 6,8557   | 6,9282  | 7,0000   |
| 1   | 6.    | 7,7460   | 7,8102   | 7,8740             | 7,9373   | 8,0000   | 8,0623   | 8,1240   | 8,1854   | 8,2462  | 8,3066   |
|     | 8:    | 8,9443   | 9,0000   | 9,0554             | 9,1104   | 9,1652   | 9,2195   | 9,2736   | 9,3274   | 9,3808  | 9,4340   |
| 1   | 10    | 9,4868   | 9,5394   | 9,5917             | 9,6437   | 9,6954   | 9,7468   | 9,7980   | 9,8489   | 9,8995  | 9,9499   |
| - 1 | 11.   | 10,4881  | 10,5357  | 10,5830            | 10,6301  | 10,6771  | 10,7238  | 10,7703  | 10,8167  | 10,8628 | 10,9087  |
| 1   | 13.   | 10,9545  | 11,4455  | 11,4891            | 11,5326  | 11,1355  | 11,6190  | 11,6619  | 11,7047  | 11,3137 | 11,35/8  |
|     | . 14. | 11,8322  | 11,8743  | 11,9164            | 11,9583  | 12,0000  | 12,0416  | 12,0830  | 12,1244  | 12,1655 | 12,2066  |
|     | 16.   | 12,6491  | 12,2882  | 12,3288            | 12,3093  | 12,8062  | 12,8452  | 12,4900  | 12,9228  | 12,9615 | 12,0000  |
| 1   | 18:   | 13,0384  | 13,0767  | 13, 1149           | 13,1529  | 13,1909  | 13,2288  | 13,2665  | 13,3041  | 13,3417 | 13,3791  |
| 1   | 19,   | 13,7840  | 13,8203  | 13,8564            | 13,8924  | 13,9284  | 13,9642  | 14,0000  | 14,0357  | 14,0712 | 14,1067  |
|     | 21.   | 14,1421  | 14,5258  | 14,212/            | 14,2478  | 14,2829  | 14,3178  | 14,3527  | 14,3875  | 14,4222 | 14,4566  |
| 1   | 22.   | 14,8324  | 14,8661  | 14,8997            | 14,9332  | 14,9666  | 15,0000  | 15,0333  | 15,0665  | 15,0997 | 15, 1327 |
| 1   | 24:   | 15,4919  | 15,5242  | 15,5563            | 15,5885  | 15,6205  | 15,6525  | 15,6844  | 15,7162  | 15,7480 | 15,7797  |
|     | 25.   | 15,8114  | 15,8430  | 15,8745            | 15,9060  | 15,9374  | 15,9687  | 16,0000  | 16,0312  | 16,0624 | 16,0935  |
| 1   | 27.   | 16,4317  | 16,4621  | 16,4924            | 16,5227  | 16,5529  | 16,5831  | 16,6132  | 16,6433  | 16,6733 | 16,7033  |
|     | 29.   | 17,0294  | 17,0587  | 17,0880            | 17, 1172 | 17, 1464 | 17, 1756 | 17,2047  | 17,2337  | 17,2627 | 17,2916  |
|     | 30.   | 17,3205  | 17,3494  | 17,3781            | 17,4069  | 17,4356  | 17,4642  | 17,4929  | 17,5214  | 17,5499 | 17,5784  |
| 2.7 | 32.   | 17,8885  | 17,9165  | 17,9444            | 17,9722  | 18,0000  | 18,0278  | 18,0555  | 18,0831  | 18,1108 | 18,1384  |
|     | 34:   | 18,4391  | 18,4662  | 18,4932            | 18,5203  | 18,5472  | 18,5742  | 18,6011  | 18,6279  | 18,6548 | 18,6815  |
|     | 35.   | 18,7083  | 18,7350  | 18,7617            | 18,7883  | 18,8149  | 18,8414  | 18,8680  | 18,8944  | 18,9209 | 18,9473  |
|     | 37.   | 19,2354  | 19,2614  | 19,2873            | 19,3132  | 19,3391  | 19,3649  | 19,3907  | 19,4165  | 19,4422 | 19,4679  |
|     | 39.   | 19,7484  | 19,7737  | 19,7990            | 19,8242  | 19,8494  | 19,8746  | 19,8997  | 19,9249  | 19,9499 | 19,9750  |
|     | 40.   | 20,0000  | 20,0250  | 20,0499<br>20,2978 | 20,0749  | 20,0998  | 20, 1246 | 20,1494  | 20,1742  | 20,1990 | 20,2237  |
|     | 23.   | 20,4939  | 20, 5183 | 20,5426            | 20,5670  | 20,5913  | 20,6155  | 20,6398  | 20,6640  | 20,6882 | 20,7123  |
|     | 44:   | 20,9762  | 21,0000  | 21,0238            | 21,0476  | 21,0713  | 21,0950  | 21,1187  | 21, 1424 | 21,1660 | 21,1896  |
| 1   | 45.   | 21,2132  | 21,2368  | 21,2603            | 21,2838  | 21,3073  | 21,3307  | 21,3542  | 21,3776  | 21,4009 | 21,4243  |
|     | 47.   | 21,6795  | 21,7025  | 21,7256            | 21,7486  | 21,7715  | 21,7945  | 21,8174  | 21,8403  | 21,8632 | 21,8861  |
|     | 49    | 22, 1359 | 22, 1585 | 22, 1811           | 22,2036  | 22,2261  | 22,2486  | 22, 2711 | 22,2935  | 22,3159 | 22, 3383 |

Using the table : an example



 $\sqrt{9} = 3$   $\sqrt{36} = 6$   $\sqrt{324} = 18$ A B<sub>1</sub> B<sub>2</sub> C<sub>1</sub> C<sub>2</sub> C<sub>3</sub>

Extracted from *Statisfique et probabilité* from the collection Aide-Mémoire TECHNOR, doc. 15 and 16, Delagrave 1985. With permission of the editor.

# Square roots of numbers from 500 to 999

|     |                                 | В,                                                       |                                                          |                                                          |                                                     |                                                     |                                                     | A <sub>a</sub><br>↓                                 |                                                          |                                                     |                                                          |
|-----|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|
|     | N                               | 0                                                        | 1                                                        | 2                                                        | 3                                                   | 4                                                   | 5                                                   | 6                                                   | 7                                                        | 8                                                   | 9                                                        |
|     | 50.<br>51.<br>53.<br>53.        | 22,3607<br>22,5832<br>22,8035<br>23,0217<br>23,2379      | 22,3830<br>22,6053<br>22,8254<br>23,0434<br>23,2594      | 22,4054<br>22,6274<br>22,8473<br>23,0651<br>23,2809      | 22,4277<br>22,6495<br>22,8692<br>23,0868<br>23,3024 | 22,4499<br>22,6716<br>22,8910<br>23,1084<br>23,3238 | 22,4722<br>22,6936<br>22,9129<br>23,1301<br>23,3452 | 22,4944<br>22,7156<br>22,9347<br>23,1517<br>23,3666 | 22,5167<br>22,7376<br>22,9565<br>23,1733<br>23,3880      | 22,5389<br>22,7596<br>22,9783<br>23,1948<br>23,4094 | 22,5610<br>22,7816<br>23,0000<br>23,2164<br>23,4307      |
| 7   | 55.<br>56.<br>57.<br>59.        | 23,4521<br>23,6643<br>23,8747<br>24,0832<br>24,2899      | 23,4734<br>23,6854<br>23,8956<br>24,1039<br>24,3105      | 23,4947<br>23,7065<br>23,9165<br>24,1247<br>24,3311      | 23,5160<br>23,7276<br>23,9374<br>24,1454<br>24,3516 | 23,5372<br>23,7487<br>23,9583<br>24,1661<br>24,3721 | 23,5584<br>23,7697<br>23,9792<br>24,1868<br>24,3926 | 23,5797<br>23,7908<br>24,0000<br>24,2074<br>24,4131 | 23,6008<br>23,8118<br>24,0208<br>24,2281<br>24,4336      | 23,6220<br>23,8328<br>24,0416<br>24,2487<br>24,4540 | 23,6432<br>23,8537<br>24,0624<br>24,2693<br>24,4745      |
|     | 812234                          | 24,4949<br>24,6982<br>24,8998<br>25,0998<br>25,2982      | 24,5153<br>24,7184<br>24,9199<br>25,1197<br>25,3180      | 24,5357<br>24,7386<br>24,9399<br>25,1396<br>25,3377      | 24,5561<br>24,7588<br>24,9600<br>25,1595<br>25,3574 | 24,5764<br>24,7790<br>24,9800<br>25,1794<br>25,3772 | 24,5967<br>24,7992<br>25,0000<br>25,1992<br>25,3969 | 24,6171<br>24,8193<br>25,0200<br>25,2190<br>25,4165 | 24,6374<br>24,8395<br>25,0400<br>25,2389<br>25,4362      | 24,6577<br>24,8596<br>25,0599<br>25,2587<br>25,4558 | 24,6779<br>24,8797<br>25,0799<br>25,2784<br>25,4755      |
|     | 65.<br>66.<br>67.<br>68.<br>69. | 25,4951<br>25,6905<br>25,8844<br>26,0768<br>26,2679      | 25,5147<br>25,7099<br>25,9037<br>26,0960<br>26,2869      | 25,5343<br>25,7294<br>25,9230<br>26,1151<br>26,3059      | 25,5539<br>25,7488<br>25,9422<br>26,1343<br>26,3249 | 25,5734<br>25,7682<br>25,9615<br>26,1534<br>26,3439 | 25,5930<br>25,7876<br>25,9808<br>26,1725<br>26,3629 | 25,6125<br>25,8070<br>26,0000<br>26,1916<br>26,3818 | 25,6320<br>25,8263<br>26,0192<br>26,2107<br>26,4008      | 25,6515<br>25,8457<br>26,0384<br>26,2298<br>26,4197 | 25,6710<br>25,8650<br>26,0576<br>26,2488<br>26,4386      |
|     | 70                              | 26,4575<br>26,6458<br>26,8328<br>27,0185<br>27,2029      | 26,4764<br>26,6646<br>26,8514<br>27,0370<br>27,2213      | 26,4953<br>26,6833<br>26,8701<br>27,0555<br>27,2397      | 26,5141<br>26,7021<br>26,8887<br>27,0740<br>27,2580 | 26,5330<br>26,7208<br>26,9072<br>27,0924<br>27,2764 | 26,5518<br>26,7395<br>26,9258<br>27,1109<br>27,2947 | 26,5707<br>26,7582<br>26,9444<br>27,1293<br>27,3130 | 26,5895<br>26,7769<br>26,9629<br>27,1477<br>27,3313      | 26,6083<br>26,7955<br>26,9815<br>27,1662<br>27,3496 | 26,6271<br>26,8142<br>27,0000<br>27,1846<br>27,3679      |
|     | 75.777.78.79                    | 27,3861<br>27,5681<br>27,7489<br>27,9285<br>28,1069      | 27,4044<br>27,5862<br>27,7669<br>27,9464<br>28,1247      | 27,4226<br>27,6043<br>27,7849<br>27,9643<br>28,1425      | 27,4408<br>27,6225<br>27,8029<br>27,9621<br>28,1603 | 27,4591<br>27,6405<br>27,8209<br>28,0000<br>28,1780 | 27,4773<br>27,6586<br>27,8388<br>28,0179<br>28,1957 | 27,4955<br>27,6767<br>27,8568<br>28,0357<br>28,2135 | 27,5136<br>27,6948<br>27,8747<br>28,0535<br>28,2312      | 27,5318<br>27,7128<br>27,8927<br>28,0713<br>28,2489 | 27,5500<br>27,7308<br>27,9106<br>28,0891<br>28,2666      |
|     | 80.<br>81.<br>82.<br>83.        | 28,2843<br>28,4605<br>28,6356<br>28,8097<br>28,9828      | 28,3019<br>28,4781<br>28,6531<br>28,8271<br>29,0000      | 28, 3196<br>28, 4956<br>28, 6705<br>28, 8444<br>29, 0172 | 28,3373<br>28,5132<br>28,6880<br>28,8617<br>29,0345 | 28,3549<br>28,5307<br>28,7054<br>28,8791<br>29,0517 | 28,3725<br>28,5482<br>28,7228<br>28,8964<br>29,0689 | 28,3901<br>28,5657<br>28,7402<br>28,9137<br>29,0861 | 28,4077<br>28,5832<br>28,7576<br>28,9310<br>29,1033      | 28,4253<br>28,6007<br>28,7750<br>28,9482<br>29,1204 | 28,4429<br>28,6182<br>28,7924<br>28,9655<br>29,1376      |
|     | 85.<br>86.<br>87.<br>88.        | 29, 1548<br>29, 3258<br>29, 4958<br>29, 6648<br>29, 8329 | 29, 1719<br>29, 3428<br>29, 5127<br>29, 6816<br>29, 8496 | 29, 1890<br>29, 3598<br>29, 5296<br>29, 6985<br>29, 8664 | 29,2062<br>29,3769<br>29,5466<br>29,7153<br>29,8831 | 29,2233<br>29,3939<br>29,5635<br>29,7321<br>29,8998 | 29,2404<br>29,4109<br>29,5804<br>29,7489<br>29,9166 | 29,2575<br>29,4279<br>29,5973<br>29,7658<br>29,9333 | 29,2746<br>29,4449<br>29,6142<br>29,7825<br>29,9500      | 29,2916<br>29,4618<br>29,6311<br>29,7993<br>29,9666 | 29,3087<br>29,4788<br>29,6479<br>29,8161<br>29,9833      |
| Bj→ | 9012234                         | 30,0000<br>30,1662<br>30,3315<br>30,4959<br>30,6594      | 30,0167<br>30,1828<br>30,3480<br>30,5123<br>30,6757      | 30,0333<br>30,1993<br>30,3645<br>30,5287<br>30,6920      | 30,0500<br>30,2159<br>30,3809<br>30,5450<br>30,7083 | 30,0666<br>30,2324<br>30,3974<br>30,5614<br>30,7246 | 30,0832<br>30,2490<br>30,4138<br>30,5778<br>30,7409 | 30,0998<br>30,2655<br>30,4302<br>30,5941<br>30,7571 | 30, 1164<br>30, 2820<br>30, 4467<br>30, 6105<br>30, 7734 | 30,1330<br>30,2985<br>30,4631<br>30,6268<br>30,7896 | 30, 1496<br>30, 3150<br>30, 4795<br>30, 6431<br>30, 8058 |
|     | 950589                          | 30,8221<br>30,9839<br>31,1448<br>31,3050<br>31,4643      | 30,8383<br>31,0000<br>31,1609<br>31,3209<br>31,4802      | 30,8545<br>31,0161<br>31,1769<br>31,3369<br>31,4960      | 30,8707<br>31,0322<br>31,1929<br>31,3528<br>31,5119 | 30,8869<br>31,0483<br>31,2090<br>31,3688<br>31,5278 | 30,9031<br>31,0644<br>31,2250<br>31,3847<br>31,5436 | 30,9192<br>31,0805<br>31,2410<br>31,4006<br>31,5595 | 30,9354<br>31,0966<br>31,2570<br>31,4166<br>31,5753      | 30,9516<br>31,1127<br>31,2730<br>31,4325<br>31,5911 | 30,9677<br>31,1288<br>31,2890<br>31,4484<br>31,6070      |

 $\sqrt{576} = 24$ A<sub>1</sub> A<sub>2</sub> A<sub>3</sub>

 $\sqrt{900} = 30$ B<sub>1</sub> B<sub>2</sub> B<sub>3</sub>



# Ordering equipment

# Check list of specifications to order fishing equipment

Buoy :

Float :

Fish hook :

# 

Intended use ; marker buoy, mooring buoy, anchor buoy, protecting buoy, seine buoy, etc.

— any mechanical constraints (e.g. crushing, passage for example through a power block)

□ form : as precise a description as possible, with drawing showing clearly the mooring points, reinforced connectors, central axis (diameter of marking mast to be set)

 $\hfill\square$  desired buoyancy or volume (in litres)

□ number of buoys, bearing in mind the packaging and selling procedure used by the supplier (number per box)

Intended use : float for trawl, gillnet, seine, etc. — any mechanical constraints (crushing during

manoeuvres on a drum or a hauler, etc.) maximum depth of use

□ material, shape, central hole or attachment point(s), etc.

unit buoyancy or exact size

 quantity required bearing in mind the handling and selling procedure used by the supplier (num ber per box)

According to the supplier's catalogue (give the name of the supplier) : name, number(s) of the model and size number chosen,

ORDERING EQUIPMENT

|                    | or                                                                                                                                              |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | accurate drawing of hook, full-sized                                                                                                            |
|                    | or                                                                                                                                              |
|                    | use : trolling or rod fishing or handline fishing or bngline fishing                                                                            |
|                    | - expected species sought and average size                                                                                                      |
|                    | □ single, double or triple                                                                                                                      |
|                    | □ normal or forged                                                                                                                              |
|                    | normal finish, tinned, galvanised or stainless steel                                                                                            |
|                    | □ kirbed or reversed bend                                                                                                                       |
|                    | extremity of hook shank : flatted or eye type                                                                                                   |
|                    | □ with or without lure : description                                                                                                            |
|                    | □ with or without barb                                                                                                                          |
|                    | possibly with swivel incorporated                                                                                                               |
|                    | opening of hook, gap (distance point — shank)                                                                                                   |
|                    | □ long or short shank                                                                                                                           |
|                    | □ throat (or depth of the hook)                                                                                                                 |
|                    | $\square$ quantity desired, bearing in mind the packaging and selling procedure used by the supplier (box of <i>x</i> hooks)                    |
| Gillnet, mounted : | The list of data to be supplied will depend on the                                                                                              |
|                    | supplier's skill and experience in mounting gillnets.                                                                                           |
|                    | Give a detailed drawing                                                                                                                         |
|                    | or                                                                                                                                              |
|                    | intended used on the bottom : hard or soft bottom; or in midwater; drifting; waters often rough or fairly calm.                                 |
|                    | <ul> <li>— species to be fished</li> </ul>                                                                                                      |
|                    | <ul> <li>handling : type of hauler</li> </ul>                                                                                                   |
|                    | <ul> <li>method of ranging on board</li> </ul>                                                                                                  |
|                    | <ul> <li>volume of expected catch</li> </ul>                                                                                                    |
|                    | $\hfill\square$ mesh size (size of the bar or stretched mesh to be specified) or, for trommel nets, mesh size of inside net and outside panels. |
|                    | <ul> <li>nature of twine : twisted multifilament or mono<br/>filament or multimonofilament</li> </ul>                                           |
|                    |                                                                                                                                                 |

|                           | □ twine material and twine size                                                                                     | ENT      |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|----------|
|                           | possibly height of net when hung or stretched net; or number of meshes deep                                         | IPM      |
|                           | number and type of floats and sinkers                                                                               | ig r     |
|                           | possibly colour                                                                                                     | ш<br>IJ  |
|                           | □ hanging ratio                                                                                                     | NIX<br>N |
|                           | □ length of mounted net                                                                                             | DEF      |
| Net webbing :             | (trade) name of textile                                                                                             | ORI      |
|                           | twisted (direction of twist: right or left); braided, monofilament<br>or multimonofilament                          |          |
|                           | □ size of the twine (in R tex or m/kg or denier or diameter)                                                        |          |
|                           | □ colour                                                                                                            |          |
|                           | $\hfill\square$ mesh size, in specified size of mesh bar, or stretched mesh or mesh opening                         |          |
|                           | <ul> <li>knotted or knotless netting (intended use)</li> <li>for knotted netting : simple or double knot</li> </ul> |          |
|                           | □ dimensions of netting :                                                                                           |          |
|                           | <ul> <li>length of stretched net or number of meshes</li> </ul>                                                     |          |
|                           | <ul> <li>depth of stretched net or number of meshes</li> </ul>                                                      |          |
|                           | $\hfill\square$ simple selvedge or double row or double mesh                                                        |          |
|                           | $\hfill\square$ placing of selvedges : at top and bottom of netting or along the sides                              |          |
|                           | $\hfill\square$ if necessary, treatment (impregnation) of netting                                                   |          |
| Purse seine.<br>mounted : | The list of data to be supplied will depend on the supplier's skill and experience in mounting seines.              |          |
|                           | Give a detailed drawing                                                                                             |          |
|                           | or                                                                                                                  |          |
|                           | minimum specifications                                                                                              |          |
|                           | Intended use :                                                                                                      |          |
|                           | <ul> <li>length or tonnage of seine boat and winch power</li> </ul>                                                 |          |
|                           | <ul> <li>species to be fished, depth of fish and/or water depth</li> </ul>                                          |          |
|                           | <ul> <li>mesh size (body and bunt with specifications of mesh bar or<br/>stretched mesh)</li> </ul>                 |          |
|                           |                                                                                                                     | i i      |

|                             | $\hfill\square$ length when hung (with indication of the hanging ratio along the floatline for each part of the seine)                                                                       |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | <ul> <li>depth with stretched net (seine fully hung, in<br/>cluding border strips or selvedges)</li> </ul>                                                                                   |
|                             | $\hfill\square$ position and dimensions (width, depth) of bunt                                                                                                                               |
|                             | $\Box$ form of wings                                                                                                                                                                         |
|                             | □ type of purse rings                                                                                                                                                                        |
|                             | number and buoyancy of the floats                                                                                                                                                            |
|                             | $\hfill\square$ weight of the ballast on the leadline (type of ballast : lead or chain)                                                                                                      |
| Rope, combination<br>rope : | (trade) name of textile or composition (fibre syn-<br>thetic and/or natural and/or steel, with or without<br>core)                                                                           |
|                             | $\hfill\square$ braided or twisted (if possible, direction of twist — Z or S)                                                                                                                |
|                             | $\hfill\square$ if possible, breaking strength required                                                                                                                                      |
|                             | <ul> <li>size of the rope : diameter (or circumference)</li> <li>colour</li> </ul>                                                                                                           |
|                             | □ natural or treated                                                                                                                                                                         |
|                             | □ length                                                                                                                                                                                     |
|                             | intended use of rope — exposure to sunlight; wear                                                                                                                                            |
| Trawl board :               | Type of board (which implies : use on the bottom or in midwater, material, shape, main characteristics)                                                                                      |
|                             | power of trawler                                                                                                                                                                             |
|                             | a length, height and weight of board                                                                                                                                                         |
|                             | <ul> <li>quantity : the pair or the port board or the<br/>starboard board.</li> </ul>                                                                                                        |
|                             | <ul> <li>special requirements for backstrop fastening or brackets<br/>adjustments or eye for lifting, etc.</li> </ul>                                                                        |
| Trawl, mounted :            | The list of data to be supplied will depend on the<br>supplier's skill and experience in mounting trawls                                                                                     |
|                             | <ul> <li>trade name of a model considered to be typical and well known<br/>(e.g. size of opening lines followed or preceded by a trade name<br/>coded in letters and/or figures),</li> </ul> |
|                             |                                                                                                                                                                                              |

|                   | or give a detailed drawing                                                                                                                                                                                 |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | or specify bottom trawl or high-opening bottom trawl, 2, 4 or more panels or pelagic trawl for one or two boats (pair trawl)                                                                               |  |
|                   | $\hfill\square$ intended use : power of trawler(s), species to be fished, for trawls in contact with the bottom : relationship of species fished with the bottom, nature of bottom, average trawling speed |  |
|                   | $\hfill\square$ mesh size(s) (size of the bar or stretched mesh to be specified) in the fore part                                                                                                          |  |
|                   | $\hfill\square$ mesh size(s) (size of the bar or stretched mesh to be specified in the aft part)                                                                                                           |  |
|                   | possibly material and twine size desired                                                                                                                                                                   |  |
|                   | possibly length of headline and footrope                                                                                                                                                                   |  |
|                   | nature, diameter and mounting of groundrope                                                                                                                                                                |  |
|                   | □ codend                                                                                                                                                                                                   |  |
|                   | <ul> <li>mesh size expressed in inside opening of the<br/>mesh (regulations in force) or size of the bar or<br/>stretched mesh</li> </ul>                                                                  |  |
|                   | - length, stretched net                                                                                                                                                                                    |  |
|                   | — possibly width                                                                                                                                                                                           |  |
|                   | <ul> <li>possibly reinforcements (lines, beckets)</li> </ul>                                                                                                                                               |  |
|                   | — strop, splitting strap                                                                                                                                                                                   |  |
|                   | $\hfill\square$ possibly characteristics of the codend chafer or the double protection codend                                                                                                              |  |
|                   | $\hfill\square$ list of any accessories to be supplied with the trawl(s) and characteristics (rigging, shackles, swivels, hooks, etc.)                                                                     |  |
|                   |                                                                                                                                                                                                            |  |
| Twine, in spool : | (trade) name of texile (or usual abbreviation, PA, PE, etc.)                                                                                                                                               |  |
|                   | twisted or braided, or monofilament or multi-monofilament                                                                                                                                                  |  |
|                   | $\hfill\square$ size of the twine (in R tex or m/kg or denier, or diameter)                                                                                                                                |  |
|                   | breaking strength required                                                                                                                                                                                 |  |
|                   | colour                                                                                                                                                                                                     |  |
|                   | natural or treated                                                                                                                                                                                         |  |
|                   |                                                                                                                                                                                                            |  |

**ORDERING EQUIPMENT** 

Warp :

| <ul> <li>quantity (weight of one spool or twine length<br/>on it, number of spools)</li> </ul> |
|------------------------------------------------------------------------------------------------|
| Intended use and desired flexibility                                                           |
| □ length □ diameter                                                                            |
| <ul> <li>composition : number of wires and fibres, with<br/>or without core</li> </ul>         |
| $\hfinish\hfill $ : galvanised or not (black or bright) or stainless stee                      |
| required breaking strength                                                                     |
| □ right or left laid                                                                           |
| □ preparation of ends                                                                          |
| □ delivered in coils or on wooden reel                                                         |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |

# Deck equipment

| Drum, for net or line :          | Intended use : for trawl, seine, gillnet or longline                                                                                                                 |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | □ pulling power required                                                                                                                                             |
|                                  | <ul> <li>desired winding speed (with corresponding pull)</li> </ul>                                                                                                  |
|                                  | □ capacity :                                                                                                                                                         |
|                                  | <ul> <li>for a trawl, seine or gillnet drum : estimated volume of net(s) with any accessories (floats, groundrope, chain, various sinkers, shackle, etc.)</li> </ul> |
|                                  | — for a longline drum (storage of main line) : length and diameter of line; type of line, multifilament or monofilament                                              |
|                                  | <ul> <li>possibly, in order to avoid crowding the deck :<br/>maximum overall dimensions</li> </ul>                                                                   |
|                                  | □ source of power (main engine, auxiliary, PTO)                                                                                                                      |
|                                  | □ means of power transmission                                                                                                                                        |
| Hauler, for net.<br>line or pot: | Intended use : gillnets or lines or pots hauler<br>— tonnage and possibly size of boat                                                                               |
|                                  | - average depth of use                                                                                                                                               |
|                                  | <ul> <li>best catches expected (expressed in weight) for a given<br/>length of gear</li> </ul>                                                                       |
|                                  | <ul> <li>average sea conditions</li> </ul>                                                                                                                           |
|                                  | pull and desired winding speed                                                                                                                                       |
|                                  | □ for line and pot hauler : diameter of main line                                                                                                                    |
|                                  | $\hfill\square$ for net hauler : height of gillnet(s) used, type of floats and sinkers                                                                               |
|                                  | <ul> <li>possibly form of groove or throat preferred</li> <li>axle of hauler : vertical or horizontal</li> </ul>                                                     |
|                                  | <ul> <li>source of power (main engine, auxiliary, PTO)</li> <li>means of power transmission</li> </ul>                                                               |
| Power block :                    | Intended use :                                                                                                                                                       |
|                                  | — tonnage and size of seiner                                                                                                                                         |
|                                  | <ul> <li>circumference of bunched seine when floatline and leadline have been joined</li> </ul>                                                                      |
|                                  | or, failing this, greatest height of seine (towards mid-length) expressed in number of meshes and twine size                                                         |

# Deck equipment (continued)

|   |                   | means of power transmission                                                                                                                                                                                                                  |
|---|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                   | possibly pull and hauling speed required                                                                                                                                                                                                     |
|   | Winch for seine : | Intended use :                                                                                                                                                                                                                               |
|   |                   | — tonnage and size of seiner                                                                                                                                                                                                                 |
|   |                   | <ul> <li>main dimensions and weight of seine</li> </ul>                                                                                                                                                                                      |
|   |                   | — common sea conditions                                                                                                                                                                                                                      |
|   |                   | <ul> <li>average behaviour of fish : stability of schools swimming speed,<br/>any tendency to dive, etc.</li> </ul>                                                                                                                          |
|   |                   | <ul> <li>stabilisation by bait or attraction to light</li> </ul>                                                                                                                                                                             |
|   |                   | — day and/or night fishing                                                                                                                                                                                                                   |
| l |                   | <ul> <li>any fishing on bottoms where the depth would be less than the<br/>height of the seine</li> </ul>                                                                                                                                    |
|   |                   | □ two or three drums                                                                                                                                                                                                                         |
|   |                   | <ul> <li>with or without warp head(s)</li> <li>capacity of each drum</li> </ul>                                                                                                                                                              |
|   |                   | <ul> <li>winch with two drums (small and medium-sized seiners), length<br/>and diameter of the purseline</li> </ul>                                                                                                                          |
|   |                   | <ul> <li>winch with three drums (large seiners), length and diameter(s)<br/>of the purse line, if appropriate in several pieces, + length and<br/>diameter of tow line</li> </ul>                                                            |
|   |                   | □ possibly : pull and speed                                                                                                                                                                                                                  |
| , | Winch for trawl : | Intended use :                                                                                                                                                                                                                               |
|   |                   | <ul> <li>— size of trawler and/or tonnage and/or power of main engine</li> </ul>                                                                                                                                                             |
|   |                   | <ul> <li>— type of fishing : bottom trawling or pelagic trawling — average depth of the fishing grounds</li> </ul>                                                                                                                           |
|   |                   | a driving means : mechanical (power, nature and position of driving power) hydraulic or electric                                                                                                                                             |
|   |                   | $\hfill\square$ possibly power and/or pull and winding speed required                                                                                                                                                                        |
|   |                   | nonobloc (2 joined drums) or separate drums                                                                                                                                                                                                  |
|   |                   | possibly supplementary bobbins                                                                                                                                                                                                               |
|   |                   | □ capacity of each drum : expressed in length of warp of given<br>diameter (if appropriate take into account rigging elements and<br>accessories that could be put on the drum : chain, shackle, swivel,<br>triangle, danleno, sweeps, etc.) |
| 1 |                   |                                                                                                                                                                                                                                              |

| Deck equipment (continued) |                                                                                                                      |  |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|--|
|                            | <ul> <li>warp head : one, two or none</li> <li>manual or automatic warp guide (spooling, level-<br/>wind)</li> </ul> |  |  |  |

# Forged accessories, tools

| Chain, shackle,<br>anchor, bobbin, etc.: | Intended use clearly indicated (junction, lifting, etc)                                                                                                                                                                                                     |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | $\hfill\square$ elements (nature, size, breaking strength) expected on each side of the accessory                                                                                                                                                           |
|                                          | estimated maximum use load                                                                                                                                                                                                                                  |
|                                          | nature of steel (semi-hard, very high resistance, etc.)                                                                                                                                                                                                     |
|                                          | □ finish : black, galvanised or stainless steel                                                                                                                                                                                                             |
|                                          | <ul> <li>main dimensions and characteristics (e.g. opening of a shackle,<br/>forelock, counter sunk, eye screw pin, diameter of eye of a swivel, etc.)</li> </ul>                                                                                           |
|                                          | or                                                                                                                                                                                                                                                          |
|                                          | choice from catalogue (give the name of the supplier), indicating exact trade name of accessory and code number or the calibre corresponding to the main dimensions and necessary breaking load (breaking strength = 6 times the estimated maximum use load |
|                                          |                                                                                                                                                                                                                                                             |
|                                          |                                                                                                                                                                                                                                                             |

# Α

Accounting; see Bookkeeping Anchors Angle of attack of otter board Apparent Nominal Power, of trawler Area, formulae for calculation Area, see also Twine surface area Area, units of measurement

# В

Backstrop, of otter board Bait Ballast, of purse seine Bar (of net mesh) Beach seme Beach seine, bridles and ropes Beach seine, materials and hanging Beach seine, types of Bobbins, rubber Bobbins. steel Bollard pull, of trawler Bookkeeping Bottom seine Bottom seines, dimensions Bottom seines, operation Bottom seines, ropes Bottom traw; see also Trawls Brake horsepower, BHP Breaking strength, breaking load .Bulldog grips; see Cable damps Bunt, for trawl groundrope Bunt\* of purse seine Buoy; see float Buoyancy, of fibres and materials

Buoyancy, of floats Buoyant force, and gravity

### С

Cable clamps (wire rope clips) Cable, see Wire rope Chain Circumference, formulae for calculation Clips Codendcip Connectors, steel Conversion, units of measurement Cookies, for trawl groundrope

# D

Danish seine Deck equipment Deck equipment, information for ordering Denier Density of materials Depressor, for trolling Depth of midwater pair trawl, estimation Diving board, for trolling Door, see Otter board Dredges Drum, information for orderina Drum. purse seine Drum, traw! net drum Dutch clip (codend clip)

# E

Echo-sounders, characteristics Echo-sounders, choice of Edge, net webbing Entangling nets

# Index

# F

Fish finders: see echosounders Fish hooks, information for ordering Fishhooks, knots for tying Fish hooks, principal types Fish hooks, terms for describing Floats, estimating buoyancy of Floats, estimating number needed for seine Foots, for gillnets and seines Floats, for marking stationary gear Floats. for seine Floats, for trawls Floats, information for orderina Floats, ring-shaped Floats, spherical, buoyancy Flotation; see Buoyancy Footrope, of trawl Force, units of measurement Fork rigging of trawl Formulae Fresh water consumption Fuel consumption of engine Fushi

# G

G links Gillnet, information for ordering Gillnets Gillnets, choosing meshsize Gillnets, choosing twine Gil nets, flotation and ballast Gillnets, hanging, rigging Gillnetting, speed of operations Gravity and buoyant force Groundrope, of trawl Groundrope, trawl: Examples

### Н

Handlines; see Vertical line fishina Hanging net panels Hanging ratio Hardware Hardware, hooks and G links Hardware, steel, for joining Hauler, information for ordering Haulers, ine haulers Haulers. net haulers Haulers, pot/trap haulers Head ine height of traw Headline. of traw Height of mounted net Hold, fish hold Holds, capacity Hooks, hardware Hooks, see Fish hooks Horsepower, HP

### L

Ice, amount required Inclination, of traw warps, measurement

# J

Jigs

# Κ

Kites, for trawl Knots, for fish hooks Knots, for longlines Knots, for stoppers and mooring Knots, net webbing kW, kilowatts

### Index

Lamps, (or fish attraction Leads Length, units of measurement Lifting, slings and tackles Light, fishing with Light, units of measurement Line fishing Line fishing accessories Line, see Twine, Rope Link. half-cut Link, riveted Longlines Longlines, automation Longlines, bottom longline plan and rigging Longlines, components Long ines, drifting Long ines, set Longlinmg, speed of operations Lures

### Μ

Marking buoys Mass, units of measurement Mesh opening Mesh size, for purse seine Mesh size, stretched Midwater pair trawl, estimating depth Midwater traw Monofilament; see also Twine Mounting net panes Mouth opening, of bottom seine

# Ν

Net webbing, common cutting rates Net webbing, cutting rates Net webbing, definition of cuts

Net webbing, estimation of weight Net webbing, hanging ratio Net webbing, information for ordering Net webbing, joining panels Net webbing, knots, edges, selvedges Net webbing, meshes, definition Net webbing, mounted height Net webbing, mounting panels Net webbing, surface covered Net webbing, systems of measuring Net webbing, twine surface area Net webbing, twine surface in traw

# 0

Omfar Ordering equipment, data needed Otter boards, ad|ustment Otter boards, angle of attack Otter boards, estimating spread Otter boards, proportions Otter boards; types, weight, surface area Otter trawl, see Trawl

### Ρ

Pair trawl, midwater Pair trawling, engine RPM Pair trawls, rigging Pelagic trawls; see Trawls, midwater Polyamide (PA); see Synthetic fibres, Twine

# Index

Polyester (PES); see Synthetic fibres. Twine Polyethylene (PE); see Synthetic fibres, Twine Polypropylene (PP); see Synthetic fibres. Twine Pots: see Traps and pots Power block Power block, information for ordering Power, of trawlers Power, units of measurement Prawn trawls; see Shrimp traw s Pressure, underwater Pressure, units of measurement Propulsion Puling power of trawler Purse line Purse rings Purse seine Purse seine, buoyancy of floats Purse seine, depth Purse seine, dimensions, twine Purse seine, hanging ratio Purse seine, plan and rigging Purse seine, weight of sinkers Purse seining, speed of operations

# R

Regulations, local fisheries Rings, for net ballast Rings, for purse seine Rings, for trawl groundrope Rope, combination wire (1) Rope, floa (lines and leadlines Rope, knots for joining and loops Rope, knots for stoppers and mooring Rope, loss of breaking strength due to knots and splices Rope, synthetic fibre Rope, vegetable fibre Rtex, Resultant tex

### S

Safe working load Safety factor Seine, anchor or Danish Seine; see also Bottom seine Selvedge Setsu Settling; see Bookkeeping Shackles Shearing depressor, for trolina Shrimp (prawn| trawls Sinkers Sinking speed of purse seine Slinas Snaps, for long line. Sounders; see Echosounders Spacers, for groundrope Speed, units of measurement Spread, horizontal spread of traw Square roots, tables Stainless steel; see Wire rope Strength of hardware Stretched mesh Surface covered by netting Swivels Synthetic fibres, commercial names Synthetic fibres, identification Synthetic fibres, physical properties

### Т

Tackles Tanks, live
## Index

Temperature, units of measurement Thimbles Tow line, of purse seine Tramme net, example of pan and rigging Tramme nets Tramme nets, flotation and weiaht Traps and pots Traps and pots, dimensions Traps and pots, entrances Traps and pots, examples Traps and pots, materials Trave board, information for ordering Trawl door: see Otter board Trawl groundropes Trawling speed Trawls; (see also Pair trawls) Trawls, bottom trawl plan Trawls, bottom, meshsize and twine size Trawls, buoyancy and weiaht Trawls, choosing size for vessel hp Trawls, fork rigging Trawls, midwatertrawl pan Trawls, midwater, meshsize and twine size Trawls, opening of bottom traw Trawls, opening of midwater trawls Trawls, rigging Trawls, twine surface area Trolling Twme Twine size, for purse seine Twine size; see also Twine number Twine surface area in trawl Twine, common, for netting Twine, equivalents,

numbering systems Twine, information for ordering Twine, measurement Twine, number, tex, denier, runnage, diameter Twine, nylon, monofi ament, mu timonofilament Twine, polyester, polyethylene, polypropylene Twine, Rtex Twine, runnage Twine, tex Two-boat trawls; see Pair trawls

V

Vertica line fishing Volume, formulae for calculation Volume, units of measurement

## W

Warp, nformation for ordering Warp angle, vertical, . measurement Warps, trawl; diameter, length Weight in water Wells, live Winch, information for ordering Winch, pull, power, speed Winch, purse seine Winch, trawl Wire rope clips Wire rope, galvanized steel

| Index                                                                                              |                                  |    |
|----------------------------------------------------------------------------------------------------|----------------------------------|----|
| Wire rope, handling                                                                                | Wire rope, structure and use     | 24 |
| Wire rope, matching drums<br>and sheaves<br>Wire rope, sma 1 diameter<br>Wire rope, stainless stee | <b>Y</b><br>Yarn; see a so Twine |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  |    |
|                                                                                                    |                                  | _  |

## Books published by **Fishing News Books**

Free catalogue available on request Advances in fish science and technology Aquaculture in Taiwan Aquaculture: principles and practice Aquaculture training manual Aquatic weed control Atlantic salmon: its future Better angling with simple science British freshwater fishes Business management in fisheries and aquaculture Cage aquaculture Calculations for fishing gear designs Carp farming Commercial fishing methods Control of fish quality Crab and lobster fishing The cravfish Culture of bivalve mollusks Design of small fishing vessels Developments in electric fishing Developments in fisheries research in Scotland Echo sounding and sonar for fishing The economics of salmon aquaculture

The edible crab and its fishery in British waters Eel culture Engineering, economics and fisheries management European inland water fish: a multilingual catalogue FAO catalogue of fishing gear designs FAO catalogue of small scale fishing gear Fibre ropes for fishing gear Fish and shellfish farming in coastal waters Fish catching methods of the world Fisheries oceanography and ecology Fisheries of Australia Fisheries sonar Fisherman's workbook Fishermen's handbook Fishery development experiences Fishing and stock fluctuations Fishing boats and their equipment Fishing boats of the world 1 Fishing boats of the world 2 Fishing boats of the world 3 The fishing cadet's handbook

Fishing ports and markets Fishing with electricity Fishing with light Freezing and irradiation of fish Freshwater fisheries management Glossary of UK fishing gear terms Handbook of trout and salmon diseases A history of marine fish culture in Europe and North America How to make and set nets Inland aquaculture development handbook Intensive fish farming Introduction to fishery by-products The law of aquaculture: the law relating to the farming of fish and shellfish in Great Britain The lemon sole A living from lobsters The mackerel Making and managing a trout lake Managerial effectiveness in fisheries and aquaculture Marine fisheries ecosystem Marine pollution and sea life Marketing in fisheries and aquaculture Mending of fishing nets

Modern deep sea trawling gear More Scottish fishing craft Multilingual dictionary of fish and fish products Navigation primer for fishermen Net work exercises Netting materials for fishing gear Ocean forum Pair trawling and pair seining Pelagic and semi-pelagic trawling gear Penaeid shrimps — their biology and management Planning of aquaculture development Refrigeration of fishing vessels Salmon and trout farming in Norway Salmon farming handbook Scallop and queen fisheries in the British Isles Seine fishing Squid jigging from small boats Stability and trim of fishing vessels and other small ships Study of the sea Textbook of fish culture Training fishermen at sea Trends in fish utilization Trout farming handbook Trout farming manual Tuna fishing with pole and line

A handy tool for reference on land or sea, this book contains the essential information commercial fishermen need to choose and use fishing equipment. It contains guidelines and recommendations drawn from many years' experience in professional fishing compiled at the Fishing Technology Service of the FAO, covering:

- Materials and accessories
- Fishing gear and operations
- Equipment for deck and wheelhouse
- Fishing vessel operation

All the information is highly illustrated, and there are also many useful formulae and tables for conversions between different systems of measurement.

ISBN 0-85238-163-8

9

780852 381632

## Fishing News Books

specializes in books on a wide range of subjects connected with world-wide commercial fisheries including aquaculture and the management of fresh waters. A detailed catalogue is available free on request from:

Fishing News Books, Osney Mead, Oxford OX2 0EL England