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NATURE-BASED SOLUTIONS IN AGRICULTURE: SUSTAINABLE MANAGEMENT AND CONSERVATION OF LAND, WATER, 
AND BIODIVERSITY

In recent years, considerable progress has been made in 
the area of Nature-based Solutions (NbS) that improve 
ecosystem functions of environments and landscapes 
affected by agricultural practices and land degradation, 
while enhancing livelihoods and other social and cultural 
functions. This has opened up a portfolio of NbS options 
that offer a pragmatic way forward for simultaneously 
addressing conservation, climate and socioeconomic 
objectives while maintaining healthy and productive 
agricultural systems.  NbS can mimic natural processes 
and build on land restoration and operational water-land 
management concepts that aim to simultaneously improve 
vegetation and water availability and quality, and raise 
agricultural productivity (Sonneveld et al., 2018). NbS can 
involve conserving or rehabilitating natural ecosystems 
and/or the enhancement or the creation of natural 
processes in modified or artificial ecosystems (UNWWAP, 
2018). In agricultural landscapes, NbS can be applied for 
soil health, soil moisture, carbon mitigation (through soil 
and forestry), downstream water quality protections, 
biodiversity benefits as well as agricultural production and 
supply chains to achieve net-zero environmental impacts 
while achieving food and water security, and meet climate 
goals.

BACKGROUND

NbS can involve conserving or 
rehabilitating natural ecosystems and/
or the enhancement or the creation of 
natural processes in modified or artificial 
ecosystems .

METHODOLOGY

Many examples in the literature on agricultural practices 
have focused on highlighting production vs conservation 
tradeoffs, e.g., sparing versus sharing (Franklin and 
Mortensen, 2012), intensification vs sustainable 
production (Matocha et al., 2012), agriculture vs forestry 
(Adewopo, 2019), or production forest vs. regeneration 
forest (Dewi et al., 2013; Meyfroidt and Lambin, 
2009),  short-term economic gains versus long-term 
environmental benefits (Meyfroidt, 2018), among others. 
This literature review incorporates the application of NbS 
in agricultural landscapes that contribute to reducing 
negative trade-offs between sustainable production and 
conservation objectives. Specifically, this review provides 
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a synthesis of literature covering NbS applications 
in agricultural landscapes to achieve co-benefits in 
production, climate action (disaster risk reduction, 
adaptation, and mitigation, and conservation of land, 
water and biodiversity. 

To classify NbS in agricultural landscapes, we have drawn 
from several typology efforts employed in the literature. 
FAO has promoted a typology for NbS based on levels 
of human intervention (Eggermont et al., 2015). TNC and 
collaborators have defined Natural Climate Solutions 
(TNC, 2020), as well as leverage the work of TNC’s Water 
Funds (Abell et al., 2017) which capture several NbS that 
intersect source water protection and agriculture, while 
providing co-benefits in climate, land and biodiversity. 
This has yielded a grouping of NbS as they apply in the 
forest, grassland and croplands, and wetland biomes. In 
doing this, the synthesis done in this document provides 
a broader context that is representative of major efforts in 
the international community centered on the application 
of NbS to a variety of global issues (e.g., IPCC for climate 
change, IPBES for biodiversity, among others). 

The literature reviewed relies primarily in peer-reviewed 
sources, and is organized around a synthesis of NbS 
science and applications in agricultural landscapes in 
major biomes (forests, grasslands and croplands, and 
wetlands). These sources have been complemented with 
selected grey literature sources that provide evidence-
based case study applications. 

For peer-reviewed literature, focus has been placed on the 
web of science, google scholar and science direct portals. 
Additionally, grey literature sources were obtained 
from organized literature outlets such as the World 
Overview of Conservation Approaches and Technologies 
(WOCAT), which focuses on documenting case study 
applications and best practices on NbS for sustainable 
land management (WOCAT, 2020). The Economics 
of Ecosystems and Biodiversity (TEEB) synthesis 
reports (TEEB, 2018a; TEEB, 2018b) were consulted 
to complement this review along the lines of economic 
considerations of ecosystem services in agriculture and 
food production. FAO’s recent extensive report on The 

State of the World’s Biodiversity for Food and Agriculture 
was drawn from as a key source of information linking 
biodiversity conservation to ecosystem services, 
provision of food security, resilience of food systems and 
support of livelihoods in agriculture.

This process yielded a significant body of literature 
sources with NbS applications across agricultural 
landscapes for a variety of objectives. In particular, 
literature sources on NbS related to climate mitigation 
(i.e., reduction of emissions and carbon sequestration) 
are far more numerous and delve deeper in analysis 
relative to NbS towards climate adaptation, conservation 
of land, water and biodiversity, and other ecosystem 
services and co-benefits. This is to be expected given the 
intense focus on the science of climate change globally 
and the maturity of efforts centered on mitigation 
sponsored by UNFCCC (e.g., IPCC, Green Climate Fund) 
and other global and regional organizations (e.g., World 
Bank Group, regional development banks). Because of 
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INTRODUCTION

Synergies across multiple co-benefits 
has been noted in some of the literature 
reviewed

this asymmetry in available published work, this literature 
review has been structured by separately grouping 
the co-benefits provided by NbS into: (i) agricultural 
production; (ii) climate (mitigation and adaptation); 
(iii) conservation (biodiversity, land, water); and (iv) 
socioeconomic considerations of NbS in agricultural 
landscapes. Synergies across multiple co-benefits has 
been noted in some of the literature reviewed; this occurs 
particularly in the climate-related references, which often 
encompass conservation and other co-benefits.

To simplify the presentation of this literature review, the 
information has been organized into synthesis narratives 
accompanied by a series of tables that capture the 
characteristics of each NbS applied to each landscape to 
achieve agricultural production; climate (mitigation and 
adaptation), conservation (land, water, biodiversity) and 
other co-benefits. These tables have been adapted from 
the format followed in Griscom et al., 2017, complemented 
with material from FAO, 2019 and other sources as cited.

TABLE 1

Defines the various NbS synthesized in this review, a 
description containing some of the NbS key characteristics, 
and the assumptions embedded to specify each NbS in 
each one of the major biomes considered. Frameworks 
and guiding principles, are useful in guiding qualification 
and innovation in NbS. While the IUCN Global Standard 
for NbS has been a main reference for defining NbS, 
more recent frameworks include the development of an 
NbS planning tool specifically targeted at the agriculture 
sector (FAO and ICEM, [forthcoming] 2020).

TABLE 2 

Provides examples of activities associated with NbS 
in agricultural landscapes that address agricultural 
production and other co-benefits.

TABLE 3

Summarizes the literature on conservation and 
climate adaptation co-benefits of the analyzed NbS for 
biodiversity, land, water and air.

TABLE 4

Provides key indicators and ranges of climate mitigation 
potential for each NbS over the next decade (time horizon 
of 2030).

TABLE 5

Complements the information in Table 2 by pairing NbS 
with mitigation costs to arrive at a parameterization of 
the tradeoff between investments in NbS and achieving 
climate benefits.
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TABLE 1. SUMMARY OF NBS DEFINITION AND ASSUMPTIONS REGARDING EXTENT AND METHODS FOR ASSESSING 
AGRICULTURE, CONSERVATION, CLIMATE AND SOCIOECONOMIC CO-BENEFITS

NbS Definition Assumptions

AVOIDED FOREST 
CONVERSION

Forests are defined as areas with > 25 
percent tree cover, per comprehensive 
global study conducted by University 
of Maryland team (Tyukavina et al., 
2012).

Boreal forests excluded due to albedo effect (offsets 
climate change) and because carbon stocks are 
significantly lower than those in tropical and subtropical 
areas. Most temperate forests excluded due to lack 
of data and to avoid double-counting tree cover loss 
associated with temperate forestry. Wetland forests 
(mangroves, peatlands) excluded to avoid double-
counting with wetland NbS. Excludes loss of “managed 
forest” as defined by Tyukavina et al., except for inclusion 
of emission attributed to conversion to subsistence 
agriculture. Given these exclusions, this NbS has no 
spatial overlap with others.

REFORESTATION

Conversion from non-forest (< 25% 
tree cover) to forest (> 25% tree cover 
in areas ecologically appropriate and 
desirable for forests. 

We exclude afforestation, defined here as conversion of 
native non-forest cover types (i.e. grassland, savanna, 
and transitional areas with forest) to forest. Boreal 
biome excluded, due to albedo. All existing cropland 
area excluded, due to food security safeguard. Exclusion 
of croplands from reforestation while assuming that all 
grazing lands in forested ecoregions can be reforested 
is consistent with recent analyses finding a variety 
of options for improving the efficiency of livestock 
production and/or diet change (Erb et al., 2016; Herrero 
et al. 2013). Impervious surfaces excluded.

NATURAL 
FOREST 
MANAGEMENT

Improved forest management 
practices in native forests under timber 
production. This definition applies 
to naturally-regenerated forests 
designated for production or multiple-
use as defined by FAO (FAO, 2020).

Includes all native forests under timber production in 
tropical, subtropical, temperate, and boreal climate 
domains. Does not involve transitions between “forest” 
and “non-forest” or management for tree species 
changes, so does not invoke albedo changes. Excludes 
areas under intensive plantation forestry. Includes areas 
also included in Fire Management, but double counting 
avoided because it is assumed that no improvements 
are made in fire management.

NATURE-BASED SOLUTIONS IN AGRICULTURE: SUSTAINABLE MANAGEMENT AND CONSERVATION OF LAND, WATER, 
AND BIODIVERSITY
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NbS Definition Assumptions

MAINTAINING 
RIVERINE 
ECOSYSTEMS AS 
NATURAL FLOOD 
DEFENCES 

Natural flood defences, including 
wetlands, lakes and rivers, are meant 
to absorb flood waters and provide 
the space needed to reduce flood risk 
(Day et al., 2007; van Wesenbeeck et 
al., 2017). The restoration of inactive 
floodplains can also contribute to 
reducing carbon emissions and 
“building back better” by enhancing 
retention and nutrient cycling to 
improve water quality (Ramsar 
Convention on Wetlands, 2018)

Wetlands play a key role in the global water cycle, 
particularly through water purification, and nutrient 
cyclying. Wetland flood mitigation potential is 
dependant on geographic location, the interaction of 
the wetland area with other flood defences and the 
potential flood waters, and what alternative flood uses 
could have been (TEEB, 2013). Peatlands, wet grasslands 
and other wetlands can reduce the speed and volume of 
runoff after heavy rainfall, by storing and slowly releasing 
water or snowmelt (Javaheri and Babbar-Sebens, 2014;  
Acreman and Holden, 2013).

IMPROVED 
PLANTATIONS

Extending harvest rotation lengths 
on intensively managed production 
forests (i.e. plantations) subject to 
even-aged stand management.

Includes intensively managed production forests (i.e. 
plantations) subject to even-aged stand management 
in tropical, subtropical, temperate, and boreal climate 
domains. Does not involve transitions between “forest” 
and “non-forest” or management for tree species 
changes, so does not invoke albedo changes. Excludes 
areas not under intensive plantation forestry.

FIRE 
MANAGEMENT

Integrates three spatially discrete and 
distinct forms of fire management 
(i) prescribed fires applied to fire-
prone temperate forests to reduce the 
likelihood of more intense wildfires; (ii) 
fire control practices (e.g. fire breaks) 
applied in moist and wet tropical 
forests to avoid understory fires that 
enter at edges with lands converted 
to non-forest cover types (primarily 
pasture maintained with fire); and (iii) 
use of early season fires in savanna 
ecosystems to avoid higher emissions 
late season fires.

Includes naturally fire-prone forests in North America 
and Europe, forests adjacent to pasture in Brazilian 
Amazonia, and global savannas. Extent is conservative 
because full potential extent of application of this NbS 
is larger but unknown. This has spatial overlap with 
Natural Forest Management; however, no double-
counting issues because this NbS assumes no change in 
harvest levels.

AVOIDED 
WOODFUEL
HARVEST

Drawn from a recent comprehensive 
analysis of global unsustainable 
woodfuel harvest levels (Bailis et al., 
2015).

Extent is not spatial, but based on number of people, 
the majority in Africa. Potential spatial overlap with 
savanna burning; however, no double-counting since 
this NbS and improved savanna fire management are 
additive. No double counting with Avoided Forest 
Conversion by subtracting the 32% of baseline 
woodfuel harvest emissions linked to forest conversion 
(Bailis et al., 2015).
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NbS Definition Assumptions

AVOIDED 
GRASSLAND 
CONVERSION

Includes temperate grasslands, tropical 
savannas, and shrublands; focus is 
placed on conversion of grasslands to 
cropland.

Includes avoided conversion to cropland of tropical, 
subtropical, and temperate native grasslands. Spatial 
overlap with other NbS (e.g. fire management) is 
minimum.

BIOCHAR

Amount of crop residue available for 
pyrolysis, used as a soil amendment 
for both carbon sequestration and soil 
health benefits.

Crop residue availability for biochar estimated from 
assumptions about global crop production, competing 
demands for residue, and the fraction of residue 
that must be left in fields to maintain soil condition 
and carbon levels (Slade, Bauen and Gross, 2014; 
Slade and UKERC (Organization), 2011). Maximum 
extent assumed to be all global croplands. This has 
spatial overlap with Cropland Nutrient Management, 
Conservation Agriculture, and Trees in Croplands. 
However, accounting of carbon mitigation benefits is 
additive so no double-counting deductions needed.

CROPLAND 
NUTRIENT 
MANAGEMENT

Business as usual nutrient budgets 
from Bodirsky et al., who use a range 
of development scenarios to project 
total food and feed demand to 2050. 
(Bodirsky et al., 2014)

Bodirsky et al. develop country-specific nitrogen 
budgets balancing nutrient demand (crop and 
livestock production) and supply (atmospheric 
deposition, manure, legumes etc.). Based on a series 
of assumptions about nitrogen use efficiency, they 
then estimate the amount of synthetic and manure 
fertilizer needed to meet nutrient shortfalls in different 
regions. The end result is a projected amount of 
nitrogen fertilizer applied in order to meet global food 
demand to 2050. Applicable extent includes all global 
croplands, except those already using best nutrient 
management practices. Spatial overlap with Biochar, 
Conservation Agriculture, and Trees in Croplands; 
however, no double-counting for mitigation purposes 
because this considers different pools and fluxes (N2O 
flux, measured in Mg of fertilizer, rather than soil carbon 
and biomass carbon pools) and likewise accounting is 
additive to these other NbS.

NATURE-BASED SOLUTIONS IN AGRICULTURE: SUSTAINABLE MANAGEMENT AND CONSERVATION OF LAND, WATER, 
AND BIODIVERSITY
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INTRODUCTION

NbS Definition Assumptions

CONSERVATION 
AGRICULTURE

Cultivation of cover crops in fallow 
periods between main crops. 
Prevents losses of arable land 
while regenerating degraded lands. 
Promotes maintenance of a permanent 
soil cover, minimum soil disturbance, 
and diversification of plant species. 
Enhances biodiversity and natural 
biological processes above and below 
the ground surface, which contribute 
to increased water and nutrient 
use efficiency and to improved and 
sustained crop production.

Limited to active global cropland areas where cover 
crops are not currently used but could be given climatic 
and crop system context. Spatial overlap with Biochar, 
Nutrient Management, and Trees in Croplands. Carbon 
mitigation accounting is additive so no double-counting 
concerns.

TREES IN 
CROPLANDS

Includes windbreaks (shelterbelts), 
alley cropping, and farmer managed 
natural regeneration (FMNR), each 
of which was restricted to non-
overlapping relevant cropland areas. 

Applicable area for windbreaks and/or alley cropping 
includes annual croplands currently with <10% tree 
cover, excluding African cropland (where FMNR was 
exclusively applied).

Any production system that exceeds 25% tree 
cover (e.g. some agroforestry) and all silvopastoral 
systems (outside of croplands) were excluded to avoid 
double counting with Reforestation. Spatial overlap 
with Biochar, Nutrient Management, Conservation 
Agriculture; however, accounting is additive, so no 
carbon double-counting concerns.

GRAZING 
- OPTIMAL 
INTENSITY

Grazing optimization defined as the 
offtake rate that leads to maximum 
forage production (Henderson et al., 
2015). This prescribes a decrease 
in stocking rates in areas that are 
overgrazed and an increase in stocking 
rates in areas that are undergrazed, but 
with the net result of increased forage 
offtake and livestock production. 

Includes global rangelands and planted pastures. Spatial 
overlap with Reforestation and Grazing - Legumes. 
Mitigation potential of this NbS was subtracted from 
Reforestation mitigation potential to avoid double-
counting. Accounting with Grazing - Legumes is 
additive, so no mitigation double-counting concerns.

GRAZING - 
LEGUMES IN
PASTURES

Sowing legumes in planted pastures.

Restricted to global planted pastures. Spatial overlap 
with Reforestation and Grazing - Optimal Intensity. 
Mitigation potential of this  was subtracted from 
Reforestation mitigation potential to avoid double-
counting. Accounting with Grazing - Optimal Intensity 
is additive, so no double-counting concerns.
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NbS Definition Assumptions

GRAZING - 
IMPROVED FEED

Improved feed management 
represents inclusion of energy-dense 
feeds (e.g. cereal grains) in the 
ration, with the greatest potential in 
production systems that utilize little 
or no grain to feed animals, which are 
common in many parts of the world. 
(Herrero et al., 2016)

Spatial overlap with other grazing NbS, but accounting 
additive so no double-counting concerns. This has 
the added benefit of sparing land as a result of the 
reductions in the extent of land needed for livestock 
production (Havlík et al., 2014); however, this benefit is 
not accounted for here to avoid double-counting with 
avoided deforestation and reforestation.

GRAZING 
- ANIMAL 
MANAGEMENT

Use of improved livestock breeds, and 
increased reproductive performance, 
health, and liveweight gain.

Spatial overlap with other grazing NbS, but accounting 
additive so no double-counting concerns. This has 
the added benefit of sparing land as a result of the 
reductions in the extent of land needed for livestock 
production (Havlík et al., 2014); however, this benefit is 
not accounted for here to avoid double-counting with 
avoided deforestation and reforestation.

IMPROVED RICE 
CULTIVATION

Water management techniques such 
as alternate wetting and drying and 
midseason drainage limit the time 
rice paddies spend in an anaerobic 
state thereby reduce annual methane 
emissions while at the same time 
saving water (Sander, Wassmann 
and Siopongco, 2015). Additional 
management techniques applied 
to upland rice such as fertilizer 
applications, residue and tillage 
management practices reduce the 
amounts of nitrogen and carbon 
emissions.

Global upland and flooded rice lands included. Limited 
spatial overlap with Biochar, Trees in Croplands, and 
Nutrient Management; however, accounting is additive, 
so no carbon mitigation double-counting concerns.

AVOIDED 
COASTAL 
WETLAND 
IMPACTS

Coastal wetland conversion causes 
anthropogenic loss of organic carbon 
stocks in mangroves, saltmarshes, and 
seagrass ecosystems. (U.S. EPA, 2016)

Includes global mangroves, salt marshes, and coastal 
seagrass. Mangroves were excluded from Avoided 
Forest Conversion to avoid double-counting.

PEATLAND 
RESTORATION

Potential extent of peatland restoration 
based on the extent of degraded 
wetlands, derived from (Joosten, 
2009).

Includes restoration of global non-tidal freshwater 
forested and non-forested wetlands.

NATURE-BASED SOLUTIONS IN AGRICULTURE: SUSTAINABLE MANAGEMENT AND CONSERVATION OF LAND, WATER, 
AND BIODIVERSITY
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NbS Definition Assumptions

AVOIDED 
PEATLAND 
IMPACTS

Conversion rate of freshwater 
peatlands per The International Mire 
Conservation Group Global Peatland 
Database (Joosten, 2009).

Includes all non-tidal freshwater forested and non-
forested wetlands. Forested wetlands were excluded 
from Avoided Forest Conversion to avoid mitigation 
double-counting.

COASTAL 
WETLAND 
RESTORATION

Potential extent of wetland restoration 
based on the extent of degraded 
wetlands, derived from estimate of 
percent of original extent disturbed, 
restoration of mangroves and seagrass 
(Mcleod et al., 2011). 

Includes restoration of global mangroves, salt marshes, 
and coastal seagrass.

PEATLAND 
RESTORATION

Potential extent of peatland restoration 
based on the extent of degraded 
wetlands, derived from (Joosten, 
2009). 

Includes restoration of global non-tidal freshwater 
forested and non-forested wetlands.
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NBS AND FOOD PRODUCTION-DERIVED CO-BENEFITS

Case studies and quantification of benefits of NbS in 
agricultural landscapes have had a dominant focus on 
carbon sequestration, water, disaster-risk management 
and urban environments (Cohen-Shacham et al., 2016; 
FOLU, 2019), while specific examples of NbS benefits in 
agricultural production are sparse. For instance, in the 
Special Report on Climate Change and Land, while forestry 
and water management are featured among the five NbS 
response options on ‘land management’, none explicitly 
stated agriculture (Hurlbert et al., 2019) and in the same 
report, urban agriculture is reported under management 
of supply rather than of land, focusing NbS away from 
agricultural landscapes.

Examples of experiences in implementation of NbS in 
agricultural landscapes do suggest however a variety 
of co-benefits specific to production. For instance, 
some production-oriented practices make use of the 
multiple ecosystem functions of trees, plants and (wild 
or domesticated) animals for agricultural production, 
while minimizing the negative environmental impacts of 
the production (Darayanto et al., 2018) as regenerative 
agriculture and conservation agriculture. Other 
documented practices are aimed at retaining or increasing 
available nutrients or improving the microclimate. For 

Examples of experiencies in 
implementation of NbS in agricultural 

landscapes do suggest however a variety of 
co-benefits specific to production. 
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example, trees in alley cropping can provide shade among 
other roles, e.g., tree crops for food and fodder production, 
perennial alley crops, trees for crop facilitation via shade, 
within-system tree diversity (Wolz and DeLucia, 2018).

Many sustainable practices and approaches drawing 
on agroecological principles (Altieri, 1992; FAO, 2018) 
or collectively referred to as climate-smart agriculture 
(FAO, 2013; Rosenstock et al., 2019), would also fall into 
this category. Specifically, in agroforestry and sloping 
agriculture land technologies, in addition to production 
contributions, plants may also perform NbS functions 
if, for example, planted as grass strips, or nitrogen-fixing 
legumes used as green mulch and fruit trees, planted along 
contours (Are, Oshunsanya and Oluwatosin, 2018; Aguiar 
Jr. et al., 2015; McIvor et al., 2014). 

When agricultural species play the role of vegetation 
in NbS, multiple functions are rendered. For example, 
grass strips control soil erosion and return crop yields 
(Rosenstock, Rohrbach, Nowak, 2019) and vetiver 
grass can act as phytoremediation to trap phosphorous 
(Huang et al., 2019) while providing cut for animal feed. 
The efficiency of a catch crop also depends on physical 
elements, such as slope gradient (Novara et al., 2019) and 
root structure. Some papers related microterraces and 
built terraces as NbS for agriculture (Zuazo et al., 2011; Liu 
et al., 2018). In northern India for example, simple weed 
strips and weed mulch also created microterraces, which 
resulted in reduced soil erosion and higher yields (Lenka 
et al., 2017).

Other experiences are illustrative of agriculture-derived 
co-benefits of NbS. For instance, trees in croplands or 
agroforestry (Francis et al., 2003) is an increasingly 
prominent example of a working landscape practice that 
can provide multiple economic, cultural and ecological 
benefits (FAO, 2005; World Agroforestry Centre, 2008). 
Agroforestry’s diversified cropping systems mimicking 
natural forests form an important part of indigenous food 
production systems around the world and are also being 
used as a contemporary agricultural BMP in non-traditional 
contexts. These systems tend to be resilient, productive, 
pest resistant, nutrient-conserving and biodiverse, 
providing multiple economic, cultural and ecological 

benefits (Ewel, 1999). For example, they can provide 
fuelwood, cultivated foods, timber and medicinal plants 
for local communities (Junsongduang et al., 2013; Thaman, 
2014), while also supporting high levels of biodiversity 
(Thaman, 2014; ASFAW and LEMENIH, 2010; Jose, 
2009). These systems have also been shown to reduce 
sediment and nutrient runoff into adjacent watercourses 
and enhance carbon sequestration and storage (Bruun 
et al., 2009; Montagnini and Nair, 2004). Agroforestry 

Documented practices are aimed at 
retaining or increasing available 
nutrients or improving the microclimate.
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systems also support a diversity of wild foods and provide pollinator habitat, 
both of which can help to combat malnutrition and micronutrient deficiencies 
(Declerck et al., 2011; Chaplin-Kramer et al., 2014; Johns, 2003; Steyn et al., 
2006; Ellis, Myers and Ricketts, 2015). A subset of agroforestry, silvopasture, 
integrates trees with pasture with the intention of increasing pasture quality 
and producing fodder while also protecting soils and vegetation.

Another type of agricultural NbS, conservation agriculture, defined by a 
combination of conservation tillage, crop rotations, and cover crops has gained 
traction in many parts of the world.  In some regions, variations on the principles 
of conservation agriculture have been part of traditional agricultural systems 
for generations.  As of 2011, conservation agriculture had been implemented 
on approximately 125 million hectares across the world, with the greatest 
concentrations by far in United States, Brazil, Argentina, Australia, and Canada 
(Friedrich, Derpsch and Kassam, 2012).  The broad extent of this adoption has 
been cited as evidence of its implicit benefits for farmers (Brouder and Gomez-
Macpherson, 2014).

There is clear evidence that conservation agriculture increases soil organic 
matter and a range of associated processes including improved sediment 
retention.  However, crop yield outcomes vary based on practices employed, 
climate, crop type, and biophysical conditions (Palm et al., 2014). Available 
evidence on actual changes in crop yields suggests that conservation agriculture 
has the greatest potential to increase crop yields when implemented as a set 
of integrated practices in rainfed systems in water-limited or water-stressed 
regions, including potentially on millions of hectares in Sub-Saharan Africa 
and South Asia.  Decisions to adopt conservation agriculture practices can go 
beyond immediate changes in crop yield, though. For example, a review of farmer 
adoption of conservation agriculture, identified reduction in farm operation 
costs, nutrient use and efficiency, water savings, and crop yield stability as 
additional factors beyond increased crop yield that motivated adoption (Corsi 
and Muminjanov, 2019).

Intensification of agriculture has been reported in the literature, both from a 
perspective of increased production and conservation perspective; the latter in 
terms of the millions of hectares of forests which otherwise would be converted 
into farm land, provision of ecosystem services, and of some 590 billion tons of 
carbon prevented from being released into the atmosphere (Burney, Davis and 
Lobell, 2010). Rockström et al. (2017) describe the conditions and the elements 
of mainstreaming sustainable agricultural intensification in order to reposition 
agriculture from being the major driver of global environmental change to 
a major contributor to the transition to sustainability through incorporating 
double objectives of increasing yields and enhancing the ecosystem services. 

Similarly, though outside of what is typically considered agricultural lands, NbS 
can also lead to co-benefits in relation to food production in seascapes. The 

There is clear evidence that 
conservation agriculture 

increases soil organic matter 
and a range of associated 

processes including 
improved sediment 

retention.
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Special Report on the Ocean and Cryosphere in a Changing 
Climate has singled out fishieries and aquaculture as one 
of the human activities exposed and vulnerable to climate 
drivers and discussed NbS as potential effective pathways 
to risk reduction for marine dependent communities 
including fishing and fish farming communities (IPCC, 
2019). Coastal and riverine ecosystems are critical for 
production of wild fish, for some of the ‘seed’ and much of 
the feed for aquaculture. The conservation and restoration 
of aquatic ecosystems are considered to be essential 
pieces of the portfolio of NbS measures to mitigate and 
adapt to global climate change: fish and fish products 
are rich in nutrients and micronutrients and have low 
carbon footprint; moreover, healthy aquatic and coastal 
ecosystems, such as estuaries, coral reefs, mangroves and 
seagrass beds not only sustain the productivity of fisheries 
and aquaculture and sequester and store carbon, they 
are also more resilient and hence more likely to absorb 
changes resulting from global warming, or moderate the 
impacts when these changes are abrupt, as in the case of 
extreme events or disasters. 

Table 2 lists some illustrative agriculture-derived co-
benefits of NbS, and activities that have been documented 
to realize these benefits. While a detailed characterization 
of these co-benefits, particularly in socioeconomic 
terms, remains to be done, it is anticipated that upscaling 
implementation will need to adapt practices and strategies 
to the local biophysical, economic, and socio-cultural 
context and work to integrate local knowledge for effective 
results. Where they do so, existing sustainable agricultural 
systems can be supported and less sustainable practices 
shifted towards mutually beneficial outcomes for 
agricultural producers and broader society.  
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NbS Example Co-Benefits and Activities

FORESTS

AVOIDED FOREST 
CONVERSION

Protected areas establishment; improved siting of non-forest land use; improved land tenure; 
zero-deforestation commitments; sustainable intensification of subsistence agriculture; 
avoided loss of high carbon forests. (Altieri, 2002; Ayarza et al., 2010; Abell et al., 2019; 
Kroeger et al., 2019)

REFORESTATION

Conversion from non-forest to forest in areas ecologically appropriate for tree growth 
through agricultural certification programs and impact mitigation frameworks that prioritize 
restoration; regulations that advance minimum forest cover requirements; integration of trees 
into grazing lands (i.e. silvopastoral systems); reduced consumption of land-extensive food 
types (e.g. beef). (Kosoy et al., 2007; Cole, 2010; Locatelli, Rojas and Salinas, 2008; Lerner et 
al., 2017; Chará et al., 2019; Niijima and Yamane, 1991; Trabucco et al., 2008)

NATURAL FOREST 
MANAGEMENT

Extension of logging rotations; reduced-impact logging practices that avoid damage to non-
commercial trees; improved land tenure (IPCC, 2006). 

FIRE MANAGEMENT

Advance prescribed fires to reduce the likelihood of more intense wildfires in fire-adapted 
forests; advance fire control practices in tropical moist forests such as fire breaks between 
pasture and forest edges; improved forest management practices that reduce slash and 
improve resiliency to natural disturbance. (Wiedinmyer and Hurteau, 2010; Alencar, Nepstad 
and Diaz, 2006; Anderson et al., 2015)

IMPROVED 
PLANTATIONS

Extension of logging rotation lengths to achieve maximum yield while increasing average 
landscape carbon stocks; multi-species plantation systems. (Nowak et al., 2013; Nowak et al., 
2014; Harrison, Wardell-Johnson and McAlpine, 2003; van der Werf et al., 2010) 

AVOIDED WOODFUEL 
HARVEST

Reduce woodfuel harvest levels by the adoption of improved efficiency cookstoves or stoves 
using alternative fuel (e.g. solar, methane from agricultural waste).

TABLE 2. ILLUSTRATIVE CO-BENEFITS AND ACTIVITIES ASSOCIATED WITH NBS IN AGRICULTURAL 

Activities represent a variety of NbS applications that address agricultural production while providing co-benefits (e.g., 
environmental, sustainability); adapted from (Griscom et al., 2017; FAO, 2019).
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NbS Example Co-Benefits and Activities

AGRICULTURE & GRASSLANDS

AVOIDED GRASSLAND 
CONVERSION

Protected areas establishment and improved enforcement to prevent the conversion of 
grasslands to tilled croplands; improved land tenure; intensification of existing croplands 
(Burivalova, Şekercioğlu and Koh, 2014; Burton, 1997; Bremer, 2014; Bremer et al., 2014; Don, 
Schumacher and Freibauer, 2011)

BIOCHAR
Extension programs to build capacity on biochar management; improved land tenure; 
certification systems; incentives programs (Saeid and Chojnacka, 2019; Davidson and 
Ackerman, 1993; Bell and Worrall, 2011) 

CROPLAND NUTRIENT 
MANAGEMENT

Certification programs that seek to maintain water quality by reducing excessive fertilizer; 
water quality/pollution mitigation; credit trading programs; removal of regulations creating 
perverse incentives to apply excessive fertilizer; improved manure management (Keeler et al., 
2012; Oenema et al., 2014; Mueller et al., 2014; Snyder et al., 2009) 

CONSERVATION 
AGRICULTURE

Cultivation of additional cover crops in fallow periods; shift to reduced-tillage or zero-tillage 
systems and other conservation agriculture practices may enhance soil carbon benefits of 
cover crops (Keeler et al., 2012; FAO, 2008; Benites and Ofori, 1993; ESMC, 2018; Pueppke et 
al., 2019;World Bank, 2018; Lewis et al., 2019; Faiz-ul Islam et al., 2020)

TREES IN CROPLANDS

Regulations and certification programs that promote the integration of trees into agricultural 
lands; agroforestry certification systems; increasing the number of trees in croplands by 
introducing windbreaks (also called shelterbelts), alley cropping, and farmer-managed natural 
regeneration (FMNR) (Poeplau and Don, 2015; Zomer et al., 2008; Kumar and Nair, 2011; 
Chendev et al., 2014)

GRAZING - ANIMAL 
MANAGEMENT

Animal management practices such as improved health; reduced mortality; improved genetics; 
live weight gain (Davidson, 2009)

GRAZING - OPTIMAL 
INTENSITY

Maintaining forage consumption rates that enable maximum forage production; certification 
programs (Page et al., 2002).

GRAZING - LEGUMES IN 
PASTURES

Sowing legumes in existing planted pastures.

GRAZING - IMPROVED 
FEED

Inclusion of cereal grains in feed to improve feed quality and reduce methane emissions.

IMPROVED RICE 
CULTIVATION

Adopting water management techniques such as alternate wetting and drying (AWD) and 
midseason drainage (MSD); residue incorporation; fertilizer management (Wang et al., 2013)
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NbS Example Co-Benefits and Activities

WETLANDS

AVOIDED COASTAL 
WETLAND IMPACTS

Protected areas establishment and improved enforcement; improved land tenure; no-net-loss 
mitigation regulations; avoided harvest of mangroves for charcoal; avoided consumption of 
food products with acute impacts on coastal wetlands (e.g. mangrove replacing shrimp farms) 
(Heumann, 2011; Polidoro et al., 2010; Zedler, 2003; Breaux, Farber and Day, 1995)

AVOIDED PEATLAND 
IMPACTS

Protected areas establishment and improved enforcement; improved land tenure; no-net-loss 
mitigation regulations; resiting of oil palm plantation permits to non-peat locations (Spitzer 
and Danks, 2005; Page et al., 2002; Schoeneberger, 2008)

WETLANDS 
RESTORATION

Re-wetting and re-planting with native salt-water wetlands; wetland mitigation programs. 
(Ming et al., 2007; Giri et al., 2011; Siikamäki, Sanchirico and Jardine, 2012; Jardine and 
Siikamäki, 2014; Donato et al., 2011)

PEATLAND 
RESTORATION

Re-wetting and re-planting with native freshwater wetlands species; wetland mitigation 
programs (Pendleton et al., 2012) 

Besides agriculture, there are noteworthy examples of 
NbS in aquaculture and fisheries. For instance, Restorative 
Aquaculture is the expansion of unfed, low trophic 
marine aquaculture, primarily of bivalve shellfish and 
seaweed, which require very low utilization of resources 
from a life cycle analysis perspective, and also provide 
ecosystem services back to the environment, in the form 
of provisioning services, regulating services and  habitat 
services. FAO developed the Ecosystem Approach to 
Aquaculture  (FAO, 2001) which is commonly cited in 
the aquaculture literature as a framework or road map for 
responsible development of the aquaculture sector.  

Another example in the aquaculture space is Integrated 
Multi-Trophic Aquaculture (Soto and FAO, 2009) which 
involves culturing fish alongside shellfish and seaweed 
providing potential win-wins for sustainable food production 
and opportunities to restore coastal ecosystems.  The idea 
is that the shellfish and seaweed aquaculture will utilize 
nutrients from the fish farm, thereby reducing effects of 
effluent.  Wide scale implementation of this NbS has been 
limited though as experience on the ground increasingly 
shows that most of the negative impacts of fish farms 
on water quality can be mitigated just through good site 
selection (Theuerkauf et al., 2019). 

On the fisheries side, implementation of sustainable 
fisheries management measures provides the strongest 
and most powerful mechanism to allow fish populations, 

marine ecosystems, and fishing- and coastal-based 
economies to thrive. Rebuilding of fish populations has 
been demonstrated in global fisheries that are managed 
(Hillborn et al., 2020). Yet, many data- and resource-limited 
fisheries face challenges in access the tools and capacity 
needed to effectively allow fish populations to recover 
(Dowling et al., 2016). Recent literature illusrtaes how 
we can ensure nature-related biodiversity goals are met, 
while simultaneously meeting the demand for food from 
the sea, by implementing effective fisheries management 
measures (Costello et al., 2020; Hillborn et al., 2020).

Implementing an ecosystem-based fisheries management 
(EBFM) or an ecosystem approach to fisheries (EAF) 
ensures management measures are taken with a holistic, 
ecosystem perspective (FAO EAF Toolbox1). Maintaining 
healthy ecosystem function and reducing overfishing is 
also critical for climate change resilience in marine fisheries 
(Sumalia and Tai, 2020).

Coastal habitat conservation and restoration allows nature 
to thrive and ensures healthy marine ecosystems, necessary 
to produce stable, sustainable supplies of seafood. Spatial 
management measures, or specific restrictions such as 
fishing gear regulations can serve to protect critical habitat, 
such as seagrass beds that may serve as nursery grounds 
for important fished species, or spawning zones (Guannel 
et al., 2016; MacNeil et al., 2015).

1 FAO EAF Toolbox: http://www.fao.org/fishery/eaf-net/toolbox/en

http://www.fao.org/3/i1750e/i1750e.pdf
http://www.fao.org/3/i1750e/i1750e.pdf
http://www.fao.org/3/i1092e/i1092e.pdf
http://www.fao.org/3/i1092e/i1092e.pdf
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The recognition of NbS towards conservation and 
adaptation co-benefits has been increasingly documented 
in the literature in recent years. This section documents 
literature sources in conservation and adaptation 
associated with each of the NbS defined in Table 1. 
For consistency, a taxonomy of conservation actions 
developed by the International Union for Conservation 
of Nature (IUCN) and the Conservation Measure 
Partnership (Holt et al., 2016) was used to link each NbS 
with a known set of conservation activities. Activities 
represent specific conservation, restoration, and 
improved land management actions that practitioners 
may take that are nature-based. For adaptation, focus 
is placed on co-benefits related to water resources (e.g., 
flood and drought management), extreme weather 
events, developing drought-tolerant crops, choosing tree 
species and forestry practices less vulnerable to storms 
and fires, and other similar activities.

Various agricultural landscape approaches have been 
documented to achieve multiple goals from ecological 
intensification of crop production with biodiversity focus 
to ecosystem services within payment-for-ecosystem-
services (PES) schemes (Holt et al., 2016; Karabulut, 
Udias and Vigiak, 2019; van Noordwijk et al., 2019). 
One particular intention with practices in this category, 
is to ensure ecological connectivity of conservation 
agriculture on field-units across larger landscape mosaics 
in landscape approaches (Karabulut, Udias and Vigiak, 
2019). Furthermore, species diversity play important 
roles for recovery after disaster and preventive disaster 
risk reduction, such as mangroves protecting against 
storm surges (van Noordwijk et al., 2019). 

Other cases in the literature illustrate the integration of 
practices to connect patches in the landscape. A number 
of cases across Europe implemented agrobiodiversity 
approaches, where permanent grassland and crop 
diversification within ecological focus areas involved a 

certain percent of arable land set aside to be used for field 
margins, hedges, trees, fallow land, landscape features, 
biotopes, buffer strips, and afforested areas (Delbaere, 
Mikos and Pulleman, 2014). Similarly, connectivity was 
achieved with ecological infrastructure such as woodland 
hedges, grass strips, wildflower strips, and field margins 
(Rosas-Ramos et al., 2018). In Pakistan, an example 
of NbS practices include crop rotation, intercropping, 
agroforestry, crop diversification, live fencing, and wind 
barriers by trees (Shah, Zhou and Shah, 2019). These 
example illustrates a combination of practices that build 
up multiple conservation objectives and also contribute 
to climate mitigation.  

For classification purposes, conservation co-benefits 
considered in this review fall into four generalized types 
of ecosystem services (biodiversity, water, soil, air) that 
may be enhanced as a result of the implementation of 
NbS (Table 3). Types of ecosystem services are linked 

Conservation co-benefits considered in this 
review fall into four generalized types of 
ecosystem services;

biodiversity

water

soil

air
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to an NbS only where one or more peer-reviewed publication confirms that 
the type of ecosystem service is enhanced by implementation of that NbS. 
For example, the existence of additional forest area (which is generated by 
avoided forest conversion and reforestation pathways) has been linked to 
improved air quality (Kroeger et al., 2014). However, two forest management 
NbS in this review (natural forest management, improved plantations) do not 
directly change forest area, so a link between forestry management pathways 
and improved air quality has not been included here. Such a link may exist, 
but documentation of it in a peer-reviewed publication demonstrating it was 
not found.

Following this approach, co-benefits in biodiversity are defined as any increases 
in alpha, beta, and/or gamma diversity as is described in the Convention on 
Biological Diversity2. Water ecosystem benefits include water regulation, 
water purification, and storm protection as defined in the Millennium 
Ecosystem Assessment (MEA, 2005). Soil-related benefits are characterized 
by improvement in metrics of soil quality that enhance productivity, maintain 
nutrient cycling, and improve plant growth (Shukla, Lal and Ebinger, 2006) as 
well as the improved potential food provision and reduced soil erosion services 
described in the Millennium Ecosystem Assessment. Air-related benefits are 
referred to as the “air quality regulation” ecosystem service described in the 
Millennium Ecosystem Assessment.

On the water side, notable efforts by TNC have focused on the cost-
effectiveness of source water protection and Water Funds in the provision 
of climate and conservation co-benefits. Source water protection has broad 
geographic relevance for reducing land-based sources of nonpoint pollution, 
raising the question of how to comparatively analyze locations around the 
world where it will yield better results. An analysis of return on investment in 
watersheds and cities around the world was performed as part of assessing 
enabling conditions for Water Funds worldwide. This analysis focused 
on estimation of potential water quality treatment savings (reduction in 
concentrations of sediments and Phosphorus) relative to conservation 
costs.  This information was used to generate maps of “high-opportunity” 
watersheds and cities for investments in Nature-based Solutions for source 
water protection. Figure 1 shows preliminary results of this analysis. Detailed 
studies of Water Funds applications at global and local scales are documented 
in Abell et al. (2019), Kroeger et al. (2019) and Vogl et al. (2017).

Notable efforts by TNC 
have focused on the cost-

effectiveness of source 
water protection and Water 

Funds in the provision of 
climate and conservation 

co-benefits.

2 United Nations. 1992. Convention on Biological Diversity. (also available at https://
www.cbd.int/doc/legal/cbd-en.pdf).
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FIGURE 1. HIGH OPPORTUNITY CITIES AND WATERSHED FOR INVESTMENTS IN NATURAL BASED SOLUTIONS FOR SOURCE 
WATER PROTECTION (SOURCE: TNC, 2018).

Legend

ALL CITIES HIGH OPPORTUNITY CITIES

HIGH OPPORTUNITY WATERSHEDS ALL SOURCE WATERSHEDS
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N
bS Biodiversity 

(alpha, beta, gamma)
Water 
(quantity, quality)

Soil 
(quality)

Air 
(quality)

FORESTS
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ST
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O

N
V
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O
N

Results indicate the 
irreplaceable value of 
continuous primary forests 
for conserving biodiversity 
(Sakai and Umetsu, 2014).

Improved availability of 
water for crop irrigation, 
drought mitigation; 
avoided sedimentation 
and water regulation 
for hydroelectric dams 
(Ferraro et al., 2012)

Water retention and flow 
regulation (Jankowska-
Huflejt, 2006). 
Maintains soil biological 
and physical properties 
ensuring health and 
productivity of forests 
(Jurgensen et al., 1997)

Ozone abatement 
benefits of 
reforestation (Kroeger 
et al., 2014). Multiple 
modeling studies 
describe health 
benefits of air filtration 
by forests (Nowak et 
al, 2013; Nowak et al, 
2014)

RE
FO

RE
ST

AT
IO

N

Tree plantings can create 
wildlife corridors and 
buffer areas that enhance 
biological conservation 
(Harrison, Wardell-Johnson 
and McAlpine, 2003).

Improved availability of 
water for crop irrigation, 
drought mitigation; 
avoided sedimentation 
and water regulation 
for hydroelectric dams 
(Ferraro et al., 2012)

Measured increase in 
soil fauna in reforested 
sites. During drought 
conditions earthworms 
only survived in 
reforested areas (Niijima 
and Yamane, 1991)

Ozone abatement 
benefits of 
reforestation (Kroeger 
et al., 2014). Multiple 
modeling studies 
describe health 
benefits of air filtration 
by forests (Nowak et 
al, 2013; Nowak et al, 
2014)

N
AT

U
RA

L 
FO

RE
ST

 

M
A

N
A

G
EM

EN
T

Species richness of 
invertebrates, amphibians, 
and mammals decreases as 
logging intensity increases 
(Burivalova, Şekercioğlu and 
Koh, 2014).

Harvesting that removes 
large proportions of 
biomass increases 
water flows and 
flooding thereby altering 
freshwater ecosystem 
integrity (Burton, 1997).

Timber harvesting that 
removes large amounts 
of woody debris reduces 
soil biological and 
physical properties 
thereby reducing 
health and productivity 
(Jurgensen et al., 1997)

IM
PR

O
V

ED
 P

LA
N

TA
TI

O
N

S

Forest plantations that 
consider community type 
such as polycultures over 
monocultures, native 
over exotics, disturbance 
pattern replication, longer 
rotations, and early thinning 
can enhance biodiversity 
(Hartley, 2002).

TABLE 3. CONSERVATION AND ADAPTATION CO-BENEFITS ASSOCIATED WITH NBS:

Summary of publications providing evidence that a given type of ecosystem service is enhanced due to implementation 
of an NbS. Cells in white indicate cases where there is no clear evidence of enhanced ecosystem services in the 

literature; adapted from (Griscom et al., 2017), (FAO, 2019).
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bS Biodiversity 
(alpha, beta, gamma)

Water 
(quantity, quality)

Soil 
(quality)

Air 
(quality)

FORESTS

FI
RE

 M
A

N
A

G
EM

EN
T

Fire management that 
mimics natural historic fire 
regimes can improve forest 
biodiversity (Bengtsson et 
al., 2000).

Forests that survive fires 
(i.e. reduced catastrophic 
wild fires) contain more 
organic matter, improved 
soil properties, and lower 
recovery times enhance 
water infiltration and 
retention (Imeson et al., 
1992).

Forests that survive fires 
(i.e. reduced catastrophic 
wild fires) contain more 
organic matter, improved 
soil properties, and lower 
recovery times enhance 
water infiltration and 
retention (Nyman et al. 
2015).

Possibility of small 
increases in mortality 
due to abrupt and 
dramatic increases 
in particulate matter 
concentrations from 
wildfire smoke (Vedal 
and Dutton, 2006)

AV
O

ID
ED

 W
O

O
D

FU
EL

 H
A

RV
ES

T

Woodfuel collection reduces 
saproxylic material used 
as food and habitat for 
forest organisms and fauna 
(Bouget, Lassauce and 
Jonsell, 2012).

Limiting soil compaction 
during woodfuel harvest 
reduces runoff and 
increases forest water 
retention (Bouget, 
Lassauce and Jonsell, 
2012)

Fuel wood harvest 
causes soil compaction 
and disturbance that can 
change soil chemical 
properties (Bouget, 
Lassauce and Jonsell, 
2012)

More efficient cook 
stoves improve 
indoor air quality and 
“reduce the incidence 
of mortality and 
disease” (Jeuland and 
Pattanayak, 2012; Bailis 
et al., 2009;  Smith et 
al., 2000)

AGRICULTURE & GRASSLANDS

AV
O

ID
ED

 G
RA

SS
LA

N
D

 

CO
N

V
ER

SI
O

N

Important habitat for nesting 
and foraging birds  (Ausden, 
Sutherland and James, 
2001).

Permanent grasslands 
provide “biological flood 
control” and maintain 
ecosystem water balance 
assuring adequate water 
resources.

Soil macroinvertebrates 
are important prey for 
breeding wading birds on 
lowland wet grassland 
(Jankowska-Huflejt, 
2006).

BI
O

CH
A

R

The addition of biochar 
enhances soil quality 
and fertility in temperate 
regions  (Tenenbaum, 
2009).

CR
O

PL
A

N
D

 N
U

TR
IE

N
T 

M
A

N
A

G
EM

EN
T Increased fish species 

richness and abundance. 
(Breitburg et al., 2009)

Benefits associated 
with improved drinking 
water quality, increased 
opportunities for 
recreation, and health 
benefits (Smith et al., 
2013)

Better nutrient 
management maintains 
soil fertility (Smith et al., 
2013)

Precision management 
of soil nutrients can 
reduce ammonia and 
nitric oxide emissions 
(Smith et al., 2013)

CO
N

SE
RV

AT
IO

N
 

A
G

RI
CU

LT
U

RE

Agroforestry provides 
habitat for species and 
supports connectivity 
(Derpsch et al., 2010)

Reduces agricultural 
water demands with 
appropriate cover crops 
(Derpsch et al., 2010)

Reduces soil erosion 
and redistribution 
maintaining soil depth 
and water retention 
(Keeler et al., 2012; 
Breitburg et al., 2009)
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N
bS Biodiversity 

(alpha, beta, gamma)
Water 
(quantity, quality)

Soil 
(quality)

Air 
(quality)

AGRICULTURE & GRASSLANDS

TR
EE

S 
IN

 C
RO

PL
A

N
D

S

Erosion control and water 
recharge (Jose, 2009; 
Patanayak and Mercer, 
1998)

Decreased soil erosion 
(Jose, 2009; Patanayak 
and Mercer, 1998).

Tree planting helps 
capture airborne 
particles and 
pollutant gases 
(Jose, 2009; 
Patanayak and 
Mercer, 1998)

G
RA

ZI
N

G
 - 

O
PT

IM
A

L 
IN

TE
N

SI
TY

A gradient of intensive to 
extensively grazed pastures 
reduces overall disturbance 
to plant-insect interactions 
(Kruess and Tscharntke, 
2002)

Nearly 70% of water use 
for cattle occurs during 
farm grazing, managed 
grazing practices can 
reduce water use on 
managed pastures  (Rotz 
et al., 2015)

Over grazing can reduce 
the soils ability to trap 
contaminants and 
cause a release of these 
and other suspended 
sediments (Keeler et al., 
2012; Breitburg et al., 
2009)

Erosion control and 
water recharge (151) 
(152)..

G
RA

ZI
N

G
 - 

LE
G

U
M

ES
 

IN
 P

A
ST

U
RE

S

The presence of legumes 
in prairie leads to higher 
insect herbivore and insect 
predator diversity (Haddad 
et al., 2009)

Legumes provide other 
ecological services 
including improved 
soil structure, erosion 
protection and greater 
biological diversity 
(Haddad et al., 2009)

IM
PR

O
V

ED
 R

IC
E 

CU
LT

IV
AT

IO
N

Alternating wet dry and 
midseason drainage 
of irrigated rice fields 
reduces water demands 
for agriculture (Jensen 
and Hauggaard-Nielsen, 
2003). The use of gray 
water in agriculture 
can reduce gross 
water consumption 
(Sander, Wassmann and 
Siopongco, 2015; Faiz-ul 
Islam et al., 2020).

WETLANDS

AV
O

ID
ED

 W
ET

LA
N

D
 

IM
PA

CT
S

Maintains the provision 
of structure, nutrients and 
primary productivity and 
nurseries for commercially 
important fish and shrimp 
(Toze, 2006; Heumann, 
2011; Duke et al., 2007)

Coastal wetlands have 
an assessed economic 
value of $785-$34,700 
in wastewater treatment 
value (Zedler and 
Kercher, 2005).

Benefits of cross-system 
nutrient transfer to coral 
reefs, coastal protection, 
and water quality 
regulation  (Hemond and 
Benoit, 1988).

Tree planting helps 
capture airborne 
particles and 
pollutant gases 
(Smith et al., 2013)
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N

bS Biodiversity 
(alpha, beta, gamma)

Water 
(quantity, quality)

Soil 
(quality)

Air 
(quality)

WETLANDS

AV
O

ID
ED

 P
EA

TL
A

N
D

 
IM

PA
CT

S

Boreal peat bogs contain 
distinctive insects in addition 
to widely distributed 
generalists (Duke et al., 
2007; Barbier et al., 2011). 

Peatlands and wetland 
soils attenuate flooding 
(Ming et al., 2007)

Peatland clearing 
increases fire risk (Page 
et al., 2002)

Exposure to 
pollutants from peat 
fires increases in 
the need for health 
services to treat 
lung and pulmonary 
disorders (Rappold 
et al., 2011)

W
ET

LA
N

D
S 

RE
ST

O
RA

TI
O

N

Maintains the provision 
of structure, nutrients and 
primary productivity and 
nurseries for commercial 
fish and shrimp (Toze, 
2006; Duke et al., 2007; 
Heumann, 2011)

Flood control and 
water filtration benefits 
of mangroves (166) 
and other coastal 
wetlands (Duke et al., 
2007)

Benefits of cross-
system nutrient 
transfer to coral reefs, 
coastal protection, 
and water quality 
regulation (Hemond 
and Benoit, 1988).

Tree planting helps 
capture airborne 
particles and 
pollutant gases 
(Smith et al., 2013).

PE
AT

LA
N

D
 

RE
ST

O
RA

TI
O

N

Regeneration of peatlands 
reestablishes diverse 
communities (Chapman 
et al., 2003)

Waste water treatment 
and storm water 
remediation (Das 
and Vincent, 2009; 
Rousseau et al., 2008).

Restoring degraded 
lands to high 
productivity depend 
on faunal species 
that help develop soil 
structure and fertility 
(Lal and Stewart, 
1992).

Rewetting peatlands 
reduces fire risk 
(Page et al., 2009)
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CHANGE AND CONSERVATION OF LAND, WATER, AND BIODIVERSITY CAPTURING AGRICULTURE NATURE-

BASED SOLUTIONS FOR CLIMATE 

CLIMATE CHANGE MITIGATION CO -
BENEFITS OF NBS
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The intensity of global efforts towards mitigating the 
effects of climate change through reduction of emissions 
of greenhouse gases, and more recently through carbon 
sequestration, have resulted in an increased focus on NbS 
for climate mitigation. These global efforts have yielded 
a rich amount of literature that characterizes NbS in 
agricultural landscapes with mitigation in a much more 
specific and quantitative way relative to the conservation 

and adaptation co-benefits discussed above. This is in 
part due to the fact that climate mitigation has a clear 
global goal (e.g., limiting to 2 degrees the increase in mean 
global temperature) and that vast resources in research 
have been invested over the past 3 decades (e.g., IPCC, 
the World Climate Research Program, and other global, 
regional and national efforts).
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4 Urban reforestation

5 Fire mgmt.

6 Improved plantations

7 Avoided grassland conv.

AG. & GRASSLANDS

8 Cover crops

9 Biochar

10 Alley cropping

11 Cropland nutrient mgmt.

12 Improved manure mgmt.

13 Windbreaks

14 Grazing optimization

15 Grassland restoration

16 Legumes in pastures

17 Improved rice

18 Tidal wetland restoration

WETLANDS

19 Petland restoration

20 Avoided seagrass loss

21 Seagrass restoration

Maximum 100 USD Mg CO2e-1 50 USD Mg CO2e-1 10 USD Mg CO2e-1 Air Biodiversity Soil Water

Maximum climate mitigation potential with safeguards has been estimated for the reference year 2030. Dark-colored portions of 
bars represent cost-effective mitigation levels assuming a global ambition to hold warming to <2 °C (<100 USD MgCO2e−1 y−1). 
Light-colored portions of bars indicate medium (<50 USD MgCO2e−1 y−1) and low-cost (<10 USD MgCO2e−1 y−1) portions of <2 °C 
levels. Wider error bars indicate empirical estimates of 95% confidence intervals, while narrower error bars indicate estimates 
derived from expert elicitation. Conservation co-benefits linked with each NbS are indicated by colored bars for biodiversity, water 
(quantity and quality), soil (quality), and air (quality). Asterisks indicate truncated error bars. Source: adapted from TNC’s Lands 
of Opportunity (TNC, 2017).

FIGURE 2: . CLIMATE MITIGATION POTENTIAL OF NBS

https://www.nature.org/content/dam/tnc/nature/en/documents/TNC_NCS_LandsofOpportunity_2017.pdf
https://www.nature.org/content/dam/tnc/nature/en/documents/TNC_NCS_LandsofOpportunity_2017.pdf
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A key literature source for the application of NbS to 
climate mitigation was co-produced by TNC (10). Natural 
Climate Solutions (TNC, 2020) provides an in-depth 
analysis of NbS for climate mitigation with a particular 
focus on agricultural landscapes and avoidance/
reduction of emissions through carbon sequestration. 
This peer-reviewed work provides an overall summary of 
the potential of NbS towards climate mitigation potential 
as 23.8 PgCO2e y−1 (95% CI 20.3–37.4) at a 2030 
reference year (Table 4 and depicted in Figure 2). This 
estimate is not constrained by costs, but it is constrained 
by a global land cover scenario with safeguards for 
meeting increasing human needs for food and fiber. It 
also assumes no reduction in existing cropland area but 
does allow for grazing lands in forested ecoregions to be 
reforested, consistent with agricultural intensification 
and diet change scenarios. This potential value is also 
constrained by excluding activities that would either 
negatively impact biodiversity (e.g., replacing native non-
forest ecosystems with forests) or have carbon benefits 
that are offset by net biophysical warming (e.g., albedo 
effects from expansion of boreal forests).

The analysis done in the Natural Climate Solutions effort 
and the research conducted therein includes the tradeoff 
between costs and benefits of NbS implementation 
for climate mitigation. This is approached through an 
analysis of published information on the fraction of 
maximum mitigation potential that offers a cost-effective 
contribution to meeting the Paris Climate Agreement 
goal of limiting warming to below 2 °C. 

The fraction of NbS that are cost effective for holding 
warming to below 2 °C are informed by published marginal 
abatement cost (MAC) curves. Due to highly sparse and 
coarse spatial resolution data on costs of NbS for climate 
and conservation purposes, the reviewed literature was 
complemented by searching for MAC curves for each 
NbS; searches were also conducted searched for regional 
and local studies.

This limit of <2 °C is referenced in the literature as a 
cost-effective level of mitigation equivalent to a marginal 
abatement cost not greater than ~100 USD MgCO −1 
as of 2030. This ensures that the marginal (per unit) 
cost of emissions reductions from NCS does not exceed 

the marginal benefit of avoiding carbon emissions. The 
marginal benefit of emissions reductions is represented 
by estimates of the social cost of carbon, which is the 
value to society of the avoided marginal damage of CO2 
emissions due to climate change and is obtained through 
welfare-maximizing emissions pricing models (Tol, 2005; 
Nordhaus, 2014). The social cost of carbon in 2030 is 
estimated to be 82-260 USD MgCO2e-1 to meet the 1.5-
2°C climate target (Dietz and Stern, 2015). 

This value is consistent with estimates for the avoided cost 
to society from holding warming to below 2 °C (Dietz and 
Stern, 2015; Canadell and Raupach, 2008; Meinhausen 
et al., 2009). The 100 USD constrained estimate (11.3 
PgCO2e y−1 in Table 4) is consistent with prior central 
estimates, chiefly with the upper-end estimate from the 
IPCC Fifth Assessment Report (AR5) (10.6 PgCO2e y−1), 
and also with the values used in Griscom et al. (2017).

The proportion of climate mitigation towards a <2°C 
outcome that could be achieved at low cost was also 
assessed as part of this literature review. A marginal cost 
threshold of ~10 USD MgCO2e-1 was used for this purpose, 
consistent with the current cost of emission reductions 
efforts underway and current prices on existing carbon 
markets.

The review of published data also reveals that more than 
one-third of the <2 °C cost effective levels for NbS are 
low cost (<10 USD MgCO2e-1, 4.1 PgCO2e y-1; Figure 1 
and Table 3). The “low-cost” and cost-effective” carbon 
sequestration opportunities compare favorably with 
cost estimates for emerging technologies, most notably 
bioenergy with carbon capture and storage (BECCS)—
which range from ~40 USD MgCO −1 to over −1 21,000 
USD per MgCO2. Furthermore, large-scale BECCS is 
largely untested and likely to have significant impacts on 
water use, biodiversity, and other ecosystem services.

The marginal benefit of emissions 
reductions is represented by estimates of 
the social cost of carbon
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TABLE 4. MAXIMUM MITIGATION POTENTIAL OF NBS BY 2030

Key literature sources used in estimating values are listed below each value. Mitigation potential given in million tons 
CO2e per year (Tg CO2e yr-1). Negative Fluxes indicate carbon sequestration. Uncertainty values derived from ranges in 

literature sources; adapted from (Griscom et al., 2017).
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AV
O
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ED

 F
O

RE
ST

 C
O

N
V
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SI

O
N

Conversion 
of Natural 
Forests

5.93 112.80 
Mg ha-1 -2,452 >100 2,452

References (Tyukavina et 
al., 2015)

(Tyukavina 
et al., 2015)

(Achard et al., 
2004) (Powers 

et al., 2011)

(Tyukavina 
et al., 2015)
(Achard et 
al., 2004) 

(Powers et al., 
2011)

Clearing for 
Subsistence 
Agriculture

3.04 103.29 
Mg ha-1 -1,151 >100 1,151

References
(Tyukavina 
et al., 2015)

(Hosonuma et 
al., 2012)

(Tyukavina 
et al., 2015) 

(Powers et al., 
2011)

(Tyukavina 
et al., 2015)

(Achard et al., 
2004) 

All 0.97 7.95 - 9.98 109.58 
Mg ha-1 96 - 123 -3,603 >100 304

2,999 - 

4,209

RE
FO

RE
ST

AT
IO

N

Temperate 206 Mha 2.82 202 >30 2,100

References
(Minnemeyer 
et al., 2014)  

(Hansen et al., 
2013)

(IPCC, 2003)
(Richards and 
Stokes, 2004) 

(Mokany, 
Raison, 

Prokushkin, 
2006) 

(Hansen et al., 
2013)

Tropical & 
subtropical 472 Mha 4.71 953 25 8,025

References
(Minnemeyer et 

al., 2014) 
(Hansen et al., 

2013)

(Powers et al., 
2011) (Mokany, 

Raison, 
Prokushkin, 

2006) (Bonner, 
Schmidt, Shoo, 

2013)

(Hansen et al., 
2013)

All 678 Mha 230 - 1125 4.14 2.81 - 
5.46 1,132 >25 10,124

2,727 - 

17,867

N
AT

U
RA

L 
FO

RE
ST

 M
A

N
A

G
EM

EN
T Temperate

& Boreal
1369 Mha 0.14 0 >50 690

References (Brown and 
Birdsey, 1997)

(Roxburgh et 
al., 2006) 

 (Harmon and 
Marks, 2011)
(FAO, 2015)

Tropical & 
subtropical 545 Mha 0.39 0 >50 780

References (Brown and 
Birdsey, 1997)

(Putz et al., 
2012) (IPCC, 

2006)

All 1914 Mha 1247 - 2350 0.21 0.18 - 1.20 0 >50 1,470 921 - 8,224
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Temperate

& Boreal
176 Mha 0.04 - 

0.16
351.86 

MgC ha-1 268 - 436 -130 68 130

References (Brown and 
Birdsey, 1997)

(Jardine and 
Siikamäki, 2014) 

(Donato et al., 
2011) (Pendleton 

et al., 2012) 
(Siikamäki 

et al., 2013) 
(Twilley, Chen, 
Hargis, 1992) 

(Bridgham et al., 
2006) (Laffoley 

et al., 2009) 
(Murray, and 

Pendleton, 2013) 
(Hutchison et al., 

2014)

Tropical &

Subtropical
81 Mha 0.10 142.78 

MgC ha-1 52 - 234 -42 64 42

References (Brown and 
Birdsey, 1997)

(Pendleton et al., 
2012)

All 257 Mha 152.02 
MgC ha-1 -304 >64 304 141 - 466

FI
RE

 M
A

N
A

G
EM

EN
T

Tropical
Peatland

0.46 11.13 Mg 
ha-1 -77 19 7 - 182

References
(Wiedinmyer 
and Hurteau, 

2010) (Alencar, 
Nepstad, Diaz, 

2006) 

(Wiedinmyer 
and Hurteau, 

2010) 
(Alencar, 

Nepstad, Diaz, 
2006) 

Temperate 
Peatland 0.54 34.34 Mg 

ha-1 -68 68 17 - 117

References (Anderson et al., 
2015)

(Anderson et 
al., 2015)

Boreal 
Peatland

not 

applicable

not 

applicable
125 50 - 200

References (van der Werf 
et al., 2010)

All -145 >100 212 166 - 411

AV
O

ID
ED

 W
O

O
D

FU
EL

 
H

A
RV

ES
T

All
2,800 M 

people

0.04 MgC 
person-1 

yr-1
-748 >100 367

326 - 

407

References (Ramankutty and 
Foley, 1999)

(Tyukavina 
et al., 2015) 

(Ramankutty 
and Foley, 

1999)

Forest Subtotal 16,219
11,291 - 
28,133
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N Temperate 0.70 18.40 Mg 

ha-1 -47 >100 47

References
(Jobbágy 

and Jackson, 
2000) 

(Putz et al., 
2012) (Slade, 

Bauen and 
Gross, 2014) 

(Slade and 
UKERC, 2011)

Tropical & 
subtropical 1.00 18.80 Mg 

ha-1 -69 >100 69

References
(Jobbágy 

and Jackson, 
2000) 

(Davidson and 
Ackerman, 

1993) (Slade, 
Bauen and 

Gross, 2014)

All 0.97 1.13 - 5.40 18.65 Mg 
ha-1

15.91 - 
21.39 -116 >100 116 75 - 373
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CH

A
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All
1,670 Tg 

dm yr-1
939 - 2075 0.18 MgCe 

(Mg dm)-1 0.17 - 0.21 0 >100 1,102 642 - 1,455

References (Spokas, 2010)

(Herath et al., 2015)
(Meyer, Glaser, 
Quicker, 2011)

(Dharmakeerthi et 
al., 2015) (Liang et 

al., 2008)

CR
O

PL
A

N
D

 N
U

TR
IE

N
T 

M
A

N
A

G
EM

EN
T All 44 Tg N 

yr-1 used 32.6 - 58.0
4.33 

MgCe 
Mg N-1

2.9 - 5.3 -2612 >100 706

References (Bodirsky et al., 
2014)

(Oenema et al., 
2014)

(Oenema et 
al., 2014)

(Mueller et 
al., 2014) 

(Davidson, 
2009) (Snyder 

et al., 2009)

399 - 959

CO
N

SE
RV

AT
IO

N
 

A
G

RI
CU

LT
U

RE All 352 Mha 0.32 28 >50 413 310 - 516

References
(Poeplau and 
Don, 2015)

(Trabucco et al., 
2008)

(Trabucco et al., 
2008)

(Trabucco et al., 
2008)

(Trabucco et al., 
2008)

(Trabucco et 
al., 2008)

TR
EE

S 
IN

 C
RO

PL
A

N
D

S

Windbreaks 318 Mha 70.4 - 400 0.20 0 50 204

References
(Kumar and Nair, 
2011) (Chendev 

et al., 2014)

(Wang et al., 2013)
(Sauer, Cambardella, 

Brandle, 2007)
(Dhillon and 
Rees, 2017) 

(Schoeneberger, 
2008) (Kort and 
Turnock, 1998)

Alley 
cropping 140 Mha 48.8 - 205 1.20 0 50 616

References (Chendev et al., 
2014)

(Nair, Kumar, Nair, 
2009) (Cardinal et 

al., 2012) (Tsonkova 
et al., 2012) 

(Lu et al., 2015)  
(Oelbermann et al., 
2006) (Peichl et al., 
2006) (Bambrick et 

al., 2010)

Farmer 
Managed 
Natural 
Regen

150 Mha 35.0 - 388 0.40 0.22 - 
0.76 0 50 220 469 - 1,855

References
(Searchinger 
et al., 2018) 

(Luedeling and 
Neufeldt, 2012)

(Henderson et al., 
2015)

(Luedeling 
and Neufeldt, 

2012)

All 608 Mha 0.37 0 50 1,040
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G
RA

ZI
N

G
 

- O
PT
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A

L 
IN

TE
N

SI
TY All 712 Mha 0.06 268 - 436 0 >100 148 148 - 699

References (Henderson et al., 
2015)

(Henderson et 
al., 2015)

(Henderson et 
al., 2015)

G
RA

ZI
N

G
 - 

LE
G

U
M

ES
 IN

 
PA

ST
U

RE
S All 72 Mha 0.56 52 - 234 0 >100 147
14 - 

1,500

References (Henderson et al., 
2015)

(Henderson et 
al., 2015)

FI
RE

 M
A

N
A

G
EM

EN
T

All
1,400 M 

head cattle

0.13 
MgCe 
head-1

-2,412 >100 680 35 - 1,014

References (FAO, 2012) (Thornton and 
Herrero, 2010)

(Thornton and 
Herrero, 2010)

(Thornton 
and Herrero, 

2010)

G
RA

ZI
N

G
 - 

IM
PR

O
V

ED
 

FE
ED

All
1,400 M 

head cattle

0.04 
MgCe 
head-1

-2,412 >100 200 75 - 214

References (FAO, 2012) (Thornton and 
Herrero, 2010)

(Thornton 
and Herrero, 

2010)

IM
PR

O
V

ED
 

RI
CE

 
CU

LT
IV

AT
IO

N

All 163 Mha
0.44 

MgCe ha-1 

yr-1
-755 >100 265 227 - 319

References (US EPA, 2016)
(US EPA, 2016) 

(Golub et al., 
2009)

(US EPA, 2016)

Agriculture & Grasslands Subtotal 4,817
4,398 - 
6,926
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Mangrove 0.10 0.04 - 
0.16

351.86 
MgC ha-1 268 - 436 -130 68 130

References
(Macreadie et 

al., 2017)
(Siikamäki, 
Sanchirico, 

Jardine, 2012)

(Jardine and 
Siikamäki, 

2014) (Donato 
et al., 2011) 

(Pendleton et 
al., 2012)

(Siikamäki 
et al., 2013) 

(Twilley, Chen, 
Hargis, 1992)
(Bridgham et 

al., 2006)
(Laffoley et 
al., 2009) 

(Murray, and 
Pendleton, 

2013)
(Hutchison et 

al., 2014)

Salt Marsh 0.10 0.04 - 
0.12

142.78 
MgC ha-1 52 - 234 -42 64 42

References (Pendleton et 
al., 2012)

(Pendleton et 
al., 2012)

Seagrass 0.45 0.12 - 
0.78

79.95 
MgC ha-1 27-133 -132 67 132

References (Pendleton et 
al., 2012)

(Pendleton 
et al., 2012) 

(Fourqurean et 
al., 2012)

All 0.63 152.02 
MgC ha-1 -304 >64 304 141 - 466

PE
AT

LA
N

D
 R

ES
TO

RA
TI

O
N

Tropical
Peatland

0.57
317.54 
MgCe 

ha-1
-664 89 664

References (Tapio-Biström 
et al., 2012)

(Tapio-Biström 
et al., 2012) 

(Murdiyarso, 
Hergoualc’h, 

Verchot, 
2010)

Temperate 
Peatland 0.14

146.08 
MgCe 

ha-1
-75 >100 75

References (Tapio-Biström 
et al., 2012)

(Tapio-Biström 
et al., 2012) 
(Adams and 
Faure, 1998)

Boreal 
Peatland 0.07

59.20 
MgCe 

ha-1
-15 >100 15

References (Tapio-Biström 
et al., 2012)

(Tapio-Biström 
et al., 2012) 
(Adams and 
Faure, 1998)

All 0.78
266.68 
MgCe 

ha-1
197-550 -754 -89 754 237-1,212
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Mangrove 11 Mha 9 - 13
8.80 

MgCe 
ha-1 yr-1

6.4 12.0 - 18.4 -345 >100 596

References
(Mcleod et al., 

2011) (Macreadie 
et al., 2019)

(Jardine and 
Siikamäki, 

2014 
(Hutchison et 

al., 2014)

Mcleod et al., 2011)

Salt Marsh 2 Mha 0.2 - 3.2
3.57 

MgCe 
ha-1 yr-1

2.2
3.43 - 

8.07
-22 57 36

References Mcleod et al., 
2011)

(Pendleton et 
al., 2012) Mcleod et al., 2011)

Seagrass 17 Mha 8.3 - 25.4
2.00 

MgCe 
ha-1 yr-1

1.4
1.87 - 

4.89
-124 51 209

References Mcleod et al., 
2011)

(Pendleton 
et al., 2012) 

(Fourqurean et 
al., 2012)

(Bouillon et al., 
2008)

All 29 Mha
4.71 

MgCe 
ha-1 yr-1

3.3 -491 >51 841 621 - 1,064

PE
AT

LA
N

D
 R

ES
TO

RA
TI

O
N

Tropical
Peatland

17 Mha
7.94 

MgCe 
ha-1 yr-1

-497 20 497 642 - 1,455

References (Tapio-Biström et 
al., 2012)

(Tapio-Biström 
et al., 2012)  

(Murdiyarso, 
Hergoualc’h, 

Verchot, 
2010)

(Bridgham et al., 
2014) (Mitsch, et al., 

2013) (Neubauer, 
2014)

Temperate 
Peatland 20 Mha

3.65 
MgCe 
ha-1 yr-1

0.0 -267 20 267

References (Tapio-Biström et 
al., 2012)

(Tapio-Biström 
et al., 2012) 
(Adams and 
Faure, 1998)

(Bridgham et al., 
2014) (Mitsch, et al., 

2013) (Neubauer, 
2014)

Boreal 
Peatland 9 Mha

1.48 
MgCe 
ha-1 yr-1

0.0 -51 20 51

References (Tapio-Biström et 
al., 2012)

(Tapio-Biström 
et al., 2012) 
(Adams and 
Faure, 1998)

(Bridgham et al., 
2014) (Mitsch, et al., 

2013) (Neubauer, 
2014)

All 46 Mha
4.79 

MgCe 
ha-1 yr-1

0.0 3.5 - 9.9 -815 20 815 705 - 2,471

Wetlands Subtotal 2,713
2,415-
4,502

Total NbS 23,750
20,261- 
37,403
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 C
O

N
V
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SI

O
N Conversion of Natural 

Forests 2,452 90% 2206 60% 1,471

References (Kindermann, 2008)
(Lubowski and Rose, 2013)

(Kindermann, 2008)
(Lubowski and Rose, 

2013)

Clearing for 
Subsistence 
Agriculture

1,151 60% 691 30% 345

References

All 3,603 2,999 - 4,209 80% 2,897 50% 1,816

RE
FO

RE
ST

AT
IO

N

Temperate 2,100

References

Tropical & subtropical 8,025

References

All 10,124 2,727 - 17,867 30% 3,037 0% 0

References (Strengers, Van Minnen, 
Jeickhout, 2008)

(Strengers, Van Minnen, 
Jeickhout, 2008)

N
AT

U
RA

L 
FO

RE
ST

 M
A

N
A

G
EM

EN
T

Temperate
& Boreal

690

References

Tropical & subtropical 780

References

All 1,470 921 - 8,224 60% 882 30% 441

References (Metz and IPCC, 2007)
(IPCC and Edenhofer, 2014)

(Golub et al., 2009) (IPCC 
and Edenhofer, 2014)

TABLE 5. COST-EFFECTIVE AND LOW-COST MITIGATION LEVELS PROVIDED BY NBS

Literature sources used in setting both the Cost-Effective (100 USD/MgCO2e; <2°C) and Low Cost (10 USD/MgCO2e). 
See Table 4 for key sources used for estimating maximum additional mitigation potential; adapted from  

(Griscom et al., 2017).
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Temperate & Boreal 304

References

Tropical & subtropical 139

References

All 443 168 - 1,009 60% 266 0% 0

References (Golub et al., 2009) (IPCC 
and Edenhofer, 2014)

(Golub et al., 2009) (IPCC 
and Edenhofer, 2014)

FI
RE

 M
A

N
A

G
EM

EN
T

Temperate Fire Prone 
Forests 19 7 - 182

References

Brazilian Amazon 
Forests 68 17 - 117

References

Global
Savannas

125 50 - 200

References

All 212 166 - 411 60% 127 0% 0

References

AV
O

ID
ED

 W
O

O
D

FU
EL

 
H

A
RV

ES
T

All 367 326 - 407 30% 110 0% 0

References

Forest Subtotal 16,219 11,291 - 28,133 7,320 2,257
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O
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Temperate 47

References

Tropical & subtropical 69

References

All 116 75 - 373 30% 35 0% 0

BI
O

CH
A

R

All 1,102 642 - 1,455 30% 331 0% 0

References

CR
O

PL
A

N
D

 
N

U
TR

IE
N

T 
M

A
N

A
G

EM
EN

T

All 706 399 - 959 90% 635 90% 635

References

CO
N

SE
RV

AT
IO

N
 

A
G

RI
CU

LT
U

RE All 413 310 - 516 90% 372 60% 248

References (IPCC and Edenhofer, 2014) (IPCC and Edenhofer, 
2014)

TR
EE

S 
IN

 C
RO

PL
A

N
D

S

Windbreaks 204 60% 122 0%

References

Alleycropping 616 30% 185 0%

References

Farmer Managed 
Natural Regen. 220 60% 135 0%

References

All 1,040 469 - 1,855 42% 439 0% 0

References (IPCC and Edenhofer, 2014) (IPCC and Edenhofer, 
2014)
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TY All 148 148 - 699 60% 89 30% 45

References (Thornton and Herrero, 
2010)

(Thornton and Herrero, 
2010)

G
RA

ZI
N

G
 - 

LE
G

U
M

ES
 IN

 
PA

ST
U

RE
S All 147 14 - 1500 90% 132 60% 88

References (Thornton and Herrero, 
2010)

(Thornton and Herrero, 
2010)

G
RA

ZI
N

G
 - 

IM
PR

O
V

ED
 

FE
ED

All 680 35 - 1014 30% 204 0% 0

References (Thornton and Herrero, 
2010)

(Thornton and Herrero, 
2010)

G
RA

ZI
N

G
 - 

A
N

IM
A

L 
M

A
N

A
G

EM
EN

T

All 200 75 - 214 30% 60 0% 0

References

IM
PR

O
V

ED
 

RI
CE

 
CU

LT
IV

AT
IO

N

All 265 227 - 319 60% 159 30% 80

References
(Golub et al., 2009) (IPCC 

and Edenhofer, 2014) (Beach 
et al., 2015) (US EPA, 2015) 

(Golub et al., 2009) (IPCC 
and Edenhofer, 2014) 

(Beach et al., 2015) (US 
EPA, 2015) 

Agriculture & Grasslands   
Subtotal

4,817 4,398 - 6,926 51% 2,456 23% 1,095
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CT
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Mangrove 130 90% 117 60% 78

References

Salt Marsh 42 90% 38 60% 25
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References
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References
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References
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All 841 621 - 1,064 24% 200 0% 0

References (Bayraktarov et al., 2016) (Bayraktarov et al., 2016)
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Tropical Peatland 497 60% 298 30% 149
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Temperate Peatland 267 30% 80 0% 0

References (Schleupner and Schneider, 
2013)

(Schleupner and 
Schneider, 2013)

Boreal Peatland 51 30% 15 0% 0

References

All 815 705 - 2,471 48% 394 18% 149

References (IPCC and Edenhofer, 
2014)

Wetlands Subtotal 2,713 2,415 - 4,502 57% 1,546 29% 784

Total 23,750
20,261 - 

37,409
48% 11,321 17% 4,136
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Summarizing the contents of Table 4 and Table 5, 
projection estimates suggest that global warming can be 
held to below 2 °C if NbS pathways are implemented at 
cost-effective levels indicated in Table 5 and if increases 
in fossil fuel emissions are avoided for 10 years and then 
driven to 7% of current levels by 2050 and then to zero 
by 2095. This assumes a 10-year linear increase of NbS 
implementation to the cost-effective mitigation levels 
and a >66% likelihood of holding warming to below 2 °C 
following a model by Meinshausen et al. (176). NbS can 
provide 37% of the necessary climate mitigation between 
now and 2030 and 20% between now and 2050. 
Thereafter, the proportion of total mitigation provided 
further declines as the proportion of necessary avoided 
fossil fuel emissions increases and as some natural 
pathways saturate. Natural climate solutions such as NbS 
are thus particularly important in the near term for our 
transition to a carbon-neutral economy by the middle of 
this century.

Half of this cost-effective mitigation is due to additional 
carbon sequestration of 5.6 PgCO2e y−1 by nine of the 
NbS pathways, while the remainder is from pathways 
that avoid further emissions of CO2, CH4, and N2O. 
Aggregate sequestration levels begin to taper off around 
2060, although most pathways can maintain the 2030 

mitigation levels reported here for more than 50 years and 
pathway-specific time horizons for saturation in Table 2). 
The aggregate NbS pathway illustrated in Figure 3 (10). 
will require substantial near-term ratcheting up of both 
fossil fuel and mitigation targets by countries to achieve 
the Paris Climate Agreement goal to hold warming to 
below 2 °C. Countries provided nationally determined 
contributions (NDCs) with 2025 or 2030 emissions 
targets as a part of the Paris Climate Agreement. 
While most NDCs indicate the inclusion of land sector 
mitigation, only 38 specify land sector mitigation 
contributions, of 160 NDCs assessed (Forsell et al., 
2016). Despite these limitations, analyses indicate that 
if NDCs were fully implemented, NCS would contribute 
about 20% of climate mitigation and about 2 PgCO2e 
y−1 mitigation by 2030. As such, a small portion of the 
11.3 PgCO2e y−1 NCS opportunity we report here has been 
included in existing NDCs. Across all sectors, the NDCs 
fall short by 11–14 PgCO2e y−1 of mitigation needed to keep 
2030 emissions in line with cost-optimal 2 °C scenarios 
(Rogelj et al., 2016). Hence, NbS could contribute a large 
portion (about 9 PgCO2e y−1) of the increased ambition 
needed by NDCs to achieve the Paris Climate Agreement.

Forest pathways offer over two-thirds of cost-effective 
mitigation needed to hold warming to below 2 °C and 

Natural climate solutions 
such as NbS are thus 
particularly important 
in the near term for our 
transition to a carbon-
neutral economy by the 
middle of this century.
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about half of the low-cost mitigation opportunities (Table 
3). Reforestation is the largest natural pathway and 
deserves more attention to identify low-cost mitigation 
opportunities. Reforestation may involve trade-offs 
with alternative land uses, can incur high costs of 
establishment, and is more expensive than Avoided Forest 
Conversion. However, this conclusion from available MAC 
curves ignores opportunities to reduce costs, such as 
involving the private sector in reforestation activities by 
establishing plantations for an initial commercial harvest 
to facilitate natural and assisted forest regeneration. The 
high uncertainty of maximum reforestation mitigation 
potential is due to the large range in existing constrained 
estimates of potential reforestation extent. As with most 
forest pathways, reforestation has well-demonstrated 
co-benefits, including biodiversity habitat, air filtration, 
water filtration, flood control, and enhanced soil fertility 
(Table 4). 

Avoided Forest Conversion offers the second-largest 
maximum and cost-effective mitigation potential. 
However, implementation costs may be secondary to 
public policy challenges in frontier landscapes lacking 
clear land tenure. The relative success of Brazil’s efforts to 
slow deforestation through a strong regulatory framework, 
accurate and transparent federal monitoring, and supply 
chain interventions provides a promising model, despite 
recent setbacks. Relatively low uncertainty is found for 
Avoided Forest Conversion, reflecting considerable global 
forest monitoring research in the last decade stimulated 
by interest in reducing emissions from deforestation and 
forest degradation (REDD).

Improved forest management (i.e., Natural Forest 
Management and Improved Plantations pathways) offers 
large and cost-effective mitigation opportunities, many 
of which could be implemented rapidly without changes 
in land use or tenure. While some activities can be 
implemented without reducing wood yield (e.g., reduced- 
impact logging), other activities (e.g., extended harvest 
cycles) would result in reduced near-term yields. This 
shortfall can be met by implementing the Reforestation 
pathway, which includes new commercial plantations. 
The Improved Plantations pathway ultimately increases 
wood yields by extending rotation lengths from the 

optimum for economic profits to the optimum for wood 
yield. Grassland and agriculture pathways offer one-fifth 
of the total mitigation needed to hold warming below 2 
°C while maintaining or increasing food production and 
soil fertility. Collectively, the grassland and agriculture 
pathways offer one-quarter of low-cost mitigation 
opportunities. Cropland Nutrient Management is the 
largest cost-effective agricultural pathway, followed 
by Trees in Croplands and Conservation Agriculture. 
Nutrient Management and Trees in Croplands also 
improve air quality, water quality, and provide habitat for 
biodiversity (Table 3). Recent literature reviewed here 
on nutrient management improves upon that presented 

Reforestation is the largest natural 
pathway and deserves more attention to 
identify low-cost mitigation opportunities.
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by the IPCC AR5 in that it is informed by more recent 
data for fertilizer use and projections of future use of 
fertilizers. Future remote sensing analyses to improve the 
detection of low-density trees in croplands will constrain 
the uncertainty about the extent of this climate mitigation 
opportunity. 

The addition of biochar to soil offers the largest maximum 
mitigation potential among agricultural pathways, but 
unlike most other NbS options, it has not been well 
demonstrated beyond research settings. Hence trade-
offs, cost, and feasibility of large-scale implementation 
of biochar are poorly understood. From the livestock 
sector, two improved grazing pathways (Optimal 
Intensity and Legumes) increase soil carbon, while two 
others (Improved Feed and Animal Management) reduce 
methane emissions.

Wetland pathways offer considerable (~14 percent) 
mitigation opportunities needed to hold warming to <2 
°C, and 19 percent of low-cost mitigation. Wetlands are 
less extensive than forests and grasslands, yet per unit 
area, they hold the highest carbon stocks and the highest 
delivery of hydrologic ecosystem services, including 
climate resilience. Avoiding the loss of wetlands (an 
urgent concern in developing countries) tends to be less 
expensive than wetland restoration. Improved mapping 
of global wetlands (particularly peatlands) is a priority 
for both reducing our reported uncertainty and for their 
conservation and restoration.
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The extent to which NbS can contribute to agricultural 
production, conservation climate and socioeconomic 
co-benefits in agricultural landscapes is explored in this 
document through a literature review. Peer-reviewed 
literature sources on NbS with a global focus were found 
to abundant on benefits tackling climate mitigation 
(i.e., reduction of emissions and carbon sequestration). 
Literature sources on NbS applied to  climate adaptation, 
conservation of land, water and biodiversity, and other 
ecosystem services and co-benefits were found to occur 
in lesser numbers and more localized geographically; 
place-based case study applications are generally found 
in the literature for these benefits. This is to be expected 
given the intense focus on the science of climate change 
globally and the maturity of efforts centered on mitigation 
sponsored by UNFCCC (e.g., IPCC, Green Climate Fund) 
and other global and regional organizations (e.g., World 
Bank Group, regional development banks). Because of 
this asymmetry in available published work, this literature 
review has been structured by separately grouping the co-
benefits provided by NbS into: (i) agricultural production; 
(ii) conservation (biodiversity, land, water); (iii) climate 

(primarily mitigation, but also adaptation) and (iv) other 
(e.g., environmental, socioeconomic) applications of NbS 
in agricultural landscapes. Synergies across multiple 
co-benefits has been noted in some of the literature 
reviewed; this occurs particularly in the climate-related 
references, which often encompass conservation and 
other co-benefits.

Advancing implementation of NbS for climate and 
conservation purposes needs to emphasize gains in 
agricultural production and socioeconomic benefits to 
food producers this is an area of opportunity for future 

Advancing implementation of NbS for 
climate and conservation purposes needs 
to emphasize gains in agricultural 
production and socioeconomic benefits 
to farmers
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analytical work on the general topic of NbS. With the 
exception of a limited number of sources exist in the 
literature that are largely focused on local case study 
applications, e.g., (Current and Scherr, 1995; Grieg-
Gran, Porras and Wunder, 2005; Pascual et al., 2010; 
Zheng et al., 2013; Hegde and Bull, 2011; Corbera, Kosoy 
and Martínez Tuna, 2007; Turpie, Marais and Blignaut, 
2008), most published studies that are included in 
this literature review have stopped short of doing the 
economic analysis of NbS benefits (outside of climate 
and conservation, which have been done by the climate 
and conservation science communities rather than the 
agricultural science one). However, the analysis could 
be done to make estimates of these gains and benefits 
at a global scale of NbS implementation. Given the 
conservation and adaptation benefits documented for 
NbS, it is likely that economic benefits to food producers 
would be realized by NbS implementation, and further 
work would systematically quantify them.

The conjunctive realization of multiple co-benefits through 
the implementation of NbS in agricultural landscapes is an 
area of active research and experimentation in the field; 
a myriad of new approaches continues to be investigated 
and tested. For instance, recent research reviewed in 
Backer et al. (2018) has demonstrated that inoculating 
plants with plant-growth promoting rhizobacteria 
(PGPR) can be an effective strategy to stimulate crop 
growth. Furthermore, these strategies can improve crop 
tolerance for the abiotic stresses (e.g., drought, heat, 
and salinity) likely to become more frequent as climate 
change conditions continue to develop. This discovery 
has resulted in multifunctional PGPR-based formulations 
for commercial agriculture, to minimize the use of 
synthetic fertilizers and agrochemicals. 

Another example that has been receiving increased 
attention lately is ecosystem services provided by insects. 
Examples include not only pollination, but also other 
services such as dung burial, pest control, and wildlife 
nutrition. A recent review of the value of ecosystem 
services provided by insects provides estimations of the 
value of each service on projections of losses that would 
accrue if insects were not functioning at their current 
level (Losey and Vaughan, 2006). This review estimates 

Much contemporary bioprospecting has 
multiple goals,including the conservation 
of biodiversity, the sustainable management 
of natural resources and economic 
development.

the annual value of these ecological services provided in 
the United States to be at least $57 billion, an amount 
that justifies greater investment in the conservation of 
these services.

Many of these innovative NbS approaches fall under 
the umbrella of bioprospecting, i.e., the exploration of 
biodiversity for new resources of social and commercial 
value (Barrett and Lybbert, 2000; Beattie et al., 2011). It 
is carried out by a wide range of established industries 
in the food production sector such as agriculture as 
well as a wide range of comparatively new ones such 
as aquaculture. Much contemporary bioprospecting 
has multiple goals,including the conservation of 
biodiversity, the sustainable management of natural 
resources and economic development. With respect to 
NbS in agricultural landscapes, the science aspects of 
bioprospecting continue to evolve in three vital ways. 
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First, the discovery of new ecosystem services provided 
by biodiversity (such as the ones provided in his review). 
Second, carrying out field studies to confirm and quantify 
the co-benefits of these NbS. Third, demonstrating the 
value of millions of mostly microscopic species to local, 
regional and global economic activities.

With respect to climate mitigation, the quantification 
of potential contribution of NbS to meeting global 
goals such as those laid out in the  Paris Agreement is 
conservative in three ways. First, payments for ecosystem 
services other than carbon sequestration have not been 
analyzed in the literature reviewed and could spur cost-
effective implementation of these solutions beyond the 
levels identified in this document. As documented here, 
NbS enhances conservation and adaptation benefits such 
as biodiversity habitat, water filtration, flood control, air 
filtration, and soil quality among other services, some of 
which have high monetary values. Improved human health 
from dietary shifts toward plant-based foods reduce 
healthcare expenses and further offset implementation 
costs (Springmann et al., 2016).  Second, these findings are 
conservative because this review only includes activities 
and greenhouse gas fluxes where data available in the 
literature are sufficiently robust for global extrapolation. 

For example, no-till agriculture (Conservation Agriculture), 
improved manure management in concentrated animal 
feed operations (Nutrient Management), adaptive multi 
paddock grazing (Grazing), and soil carbon emissions 
that may occur with the conversion of forests to pasture 
(Avoided Forest Conversion) are excluded from the 
NbS reviewed here. Future research may reveal a robust 
empirical basis for including such activities and fluxes 
within these pathways. Third, the Paris Agreement 
states goals of limiting warming to “well below 2 °C” and 
pursuing “efforts to limit the temperature increase to 1.5 
°C”. Additional investment in all mitigation efforts (i.e., 
beyond ~100 USD/MgCO2e), including NbS, would be 
warranted to keep warming to well below 2 °C, or to 1.5 
°C, particularly if a likelier chance of success is desired.

Despite the large potential of NbS, land-based 
sequestration efforts receive negligible climate mitigation 
financing. Reasons may include not only uncertainties 
about the potential and costs but also concerns about 
the permanence of natural carbon storage and social and 
political barriers to implementation. A major concern is 
a potential for Reforestation, Avoided Forest Conversion, 
and Wetland/Peatland pathways to compete with the 
need to increase food production. Reforestation and 
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Avoided Forest Conversion remain the largest mitigation 
opportunities despite avoiding reforestation of mapped 
croplands and constraints we placed on avoiding forest 
conversion driven by subsistence agriculture (Table 2). 
A large portion of the maximum reforestation mitigation 
potential depends on the reduced need for pasture 
accomplished via increased efficiency of beef production 
and/or dietary shifts to reduce beef consumption. On 
the other hand, only a ~4% reduction in global grazing 
lands is needed to achieve <2 °C ambition reforestation 
mitigation levels, and reduced beef consumption can 
have large health benefits. A portion of wetland pathways 
would involve limited displacement of food production; 
however, the extremely high carbon density of wetlands 
and the valuable ecosystem services they provide suggest 
that protecting them offers a net societal benefit.

Feedbacks from climate change on terrestrial carbon 
stocks are uncertain in the scientific literature. Increases 
in temperature, drought, fire, and pest outbreaks could 
negatively impact photosynthesis and carbon storage, 
while CO2 fertilization has positive effects. Unchecked 
climate change could reverse terrestrial carbon sinks by 
midcentury and erode the long-term climate benefits 
of NbS. Thus, climate change puts terrestrial carbon 

stocks at risk. Cost-effective implementation of NbS, 
by increasing terrestrial carbon stocks, would slightly 
increase (by 4%) the stocks at risk by 2050. However, 
the risk of net emissions from terrestrial carbon stocks 
is less likely under a <2 °C scenario. As such, overall NbS 
slightly increases the total risk exposure, yet it will be 
a large component of any successful effort to mitigate 
climate change and thus help mitigate this risk. Further, 
most natural pathways can increase resilience to climate 
impacts. Rewetting wetlands reduces the risk of peat fires. 
Reforestation that connects fragmented forests reduces 
exposure to forest edge disturbances. Fire management 
increases resilience to catastrophic fire. On the other 
hand, some of our pathways assume intensification of 
food and wood yields—and some conventional forms of 
intensification can reduce resilience to climate change. 
All of these challenges underscore the urgency of 
aggressive, simultaneous implementation of mitigation 
from both Nature-based Solutions and fossil fuel 
emissions reductions, as well as the importance of 
implementing NbS and land use intensification in locally 
appropriate ways with best practices that maximize 
resilience.

Overall, considerable scientific work remains to refine 
and reduce the uncertainty of NbS benefit estimates. 
Recent work (Wood et al., 2015; Oldfield, Bradford and 
Wood, 2019; DeFries et al., 2015; Bossio et al., 2020; 
Reguero et al., 2018) has focused on aspects of improved 
quantification of ecosystem services in agricultural 
landscapes, particularly in generating evidence of 
transforming agricultural practices towards multiple 
co-benefits. Work also remains to refine methods 
for implementing pathways in socially and culturally 
responsible ways while enhancing resilience and 
improving food security for a growing human population. 
However, delaying implementation of the NbS pathways 
presented here would likely increase the costs to meet 
agricultural production, climate, conservation and other 
societally beneficial goals, while degrading the capacity 
of natural systems to mitigate climate change and 
provide other ecosystem services.

Increases in temperature, drought, fire, 
and pest outbreaks could negatively impact 
photosynthesis and carbon storage, while 
CO2 fertilization has positive effects.
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