Virtual Training on SDG indicators 2.5.1b and 2.5.2

Challenges for Livestock Diversity

Gregoire Leroy and Roswitha Baumung, AGAG
Animal Production Officers, FAO
03/05/21
Global challenges around livestock production

• Demand for livestock products is increasing (regional differences)

• Changing economic and social importance of livestock (e.g. animal welfare, cultural role...)

• Increased role of livestock regarding mitigation, adaptation but also contribution to climate change

Source: US Department of Agriculture Natural Resources Conservation Service Soils
Animal genetic resources

• **Genetic material** of actual or potential value

• Livestock diversity: more than 15,000 national breed populations belonging to about 8800 breeds representing 38 species

• + managed honeybees for food and agriculture
AnGRs: a potential for adaptation

• A diversity of ecosystem services provided by a diversity of (locally adapted) breeds and their adaptive traits

Leroy et al. 2018
AnGRs: a heritage which evolves

- In developing countries, increasing use of crossbred animals and exotic breeds
AnGRs: a heritage which evolves

- Increasing importance of small ruminants in some African countries -> shift between species

Photo: Kume, K., Gley Khaldi

Evolution of small ruminants/ cattle ratio

FAOSTAT 2018
AnGRs: a heritage in danger?

- An increasing number of local breeds threatened in developing countries
Goal 2 is to end hunger, achieve food security, improved nutrition and promote sustainable agriculture.

Target 2.5 is concerned with genetic resources for food and agriculture:

“By 2020, maintain the genetic diversity of seeds, cultivated plants and *farmed and domesticated animals* and their related wild species including through soundly managed and diversified seed and plant banks at the national, regional and international levels,

and

promote access to and fair and equitable sharing of benefits arising from the utilization of genetic resources and associated traditional knowledge, as internationally agreed.”
DAD-IS is the Domestic Animal Diversity Information System hosted by FAO. It provides you with access to searchable databases of breed-related information and photos and links to other online resources on livestock diversity. Furthermore, you can find the contact information of all National Coordinators for the Management of Animal Genetic Resources. It allows you to analyse the diversity of livestock breeds on national, regional and global levels including the status of breeds regarding their risk of extinction.

Key messages

- Up to 2 billion people in developing countries rely on livestock for draught power and transport.
- There are around 8800 livestock breeds of 38 different species in the world, providing a diversity of products and services.
- Many breeds have unique characteristics or combinations of characteristics that can contribute to meeting challenges related to climate change.
- The world’s livestock diversity remains at risk.
DAD-IS – Domestic Animal Diversity Information System

- Hosted by FAO

- Communication and information tool for implementing strategies for the management of animal genetic resources

- Provides the user with searchable databases of breed-related information, images, visualization tools, links and contacts of regional and national coordinators for the management of animal genetic resources

- Clearing house mechanism recognized by Convention of Biological Diversity
DAD-IS – Domestic Animal Diversity Information System

• Contains data from 8800 breeds, from 182 countries and 38 species

• Allows to enter data for the calculation of the animal element of SDG indicator 2.5.1 and 2.5.2

• Calculates the animal element of SDG indicator 2.5.1 and 2.5.2 for country, region or globally

• Provides graphical presentations of SDG indicator 2.5.1b and 2.5.2 for country, region or globally
DAD-IS – Domestic Animal Diversity Information System

• DAD-IS data are official country data

• Only the officially nominated national coordinator (NC) for the management of animal genetic resources can enter data

• The NC is nominated by the respective ministry of the country (e.g. Ministry of Agriculture or Livestock)

• FAO provides usernames and password, but does not enter or amend data provided by NC
Goal 2 is to end hunger, achieve food security, improved nutrition and promote sustainable agriculture.

Target 2.5 is concerned with genetic resources for food and agriculture: “by 2020, maintain the genetic diversity of seeds, cultivated plants and farmed and domesticated animals and their related wild species….”

This target is measured by two indicators:

Indicator 2.5.1: “number of plant and animal genetic resources for food and agriculture secured in either medium or long term conservation facilities”

Indicator 2.5.2: “Proportion of local breeds classified as being at risk of extinction”
2.5.1b (animals): Number of animal genetic resources for food and agriculture secured in either medium or long term conservation facilities

- Number of local breeds with sufficient material stored in a gene bank
- The conservation of animal genetic material over the medium and long term is done by cryoconservation.
- Cryoconservation is the deep-freezing of semen, embryos, oocytes (immature eggs) and other types of tissue in liquid nitrogen.
Indicator Methodology – 2.5.1 ANIMALS

2.5.1b (animals): Number of animal genetic resources for food and agriculture secured in either medium or long term conservation facilities

- The local breeds are breeds reported in a single country.
- Extinct breeds are included.
- Breeds with enough material stored means breeds with an amount of genetic material stored which is required to reconstitute the breed (differs between type of material, species, storage conditions etc.; based on the guidelines on cryconservation of animal genetic resources, FAO, 2012, accessible at http://www.Fao.Org/docrep/016/i3017e/i3017e00.Htm)
9% of local breeds with material reported at global scale (3% with sufficient material, 6% with no sufficient material), 43% with no material reported and 48% with no information.

According to the Second State of the World for AnGR genetic material is cryoconserved for 15% of national breed populations.

-> Some issue with under-reporting!
In ESCWA countries, out of 341 local breeds (including extinct ones), 1% with sufficient material collected, 42% with no material collected, and 57% with no information.

Out of 22 countries, 9 countries with at least 1 local breed updated (Comoros, Djibouti, Iraq, Lebanon, Oman, Yemen, Morocco, Sudan, Tunisia).

Two causes:
- Need to improve capacities for ex situ conservation
- Under reporting
2.5.2: Proportion of local breeds classified as being at risk of extinction

- A local breed occurs only in one country (different to transboundary breeds with national breed populations in several countries).

- The risk of extinction is linked to the number of animal belonging to a breed, the lower the number the higher the risk.
2.5.2: Proportion of local breeds classified as being at risk of extinction

A wide range of experts developed the following risk categories (see also http://www.fao.org/docrep/018/i3327e/i3327e.pdf)

- Unknown (population data is unavailable or more than 10 yrs old)
- Not at risk (no risk of extinction)
- Vulnerable (medium risk)
- Endangered (high risk)
- Critical (very high risk)
- Cryoconserved only (no breeding males or females remain, but sufficient material is available to reconstitute the breed)
- Extinct (no breeding males or females remain, not enough cryoconserved material available)
2.5.2: Proportion of local breeds classified as being at risk of extinction

- Population size data (status per year)
- Where such data can be found:
 - Livestock Censuses on breed level
 - Breeders associations
 - Household surveys
 - Key-informants and rapid appraisals
- Update at least every 10 years! Annual updates are recommended.
Indicator Methodology – Risk Status

DAD-IS- Examples of graphics that can be exported

Risk Status of Local Breeds by Region

<table>
<thead>
<tr>
<th>Region</th>
<th>Africa</th>
<th>Asia</th>
<th>Europe and the Caucasus</th>
<th>Latin America and the Caribbean</th>
<th>Near and Middle East</th>
<th>North America</th>
<th>Southwest Pacific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>698</td>
<td>1,553</td>
<td>1,165</td>
<td>512</td>
<td>193</td>
<td>45</td>
<td>130</td>
</tr>
<tr>
<td>Not At Risk</td>
<td>88</td>
<td>197</td>
<td>281</td>
<td>47</td>
<td>30</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Vulnerable</td>
<td>8</td>
<td>13</td>
<td>185</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Endangered-Maintained</td>
<td>1</td>
<td>21</td>
<td>120</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Endangered</td>
<td>17</td>
<td>23</td>
<td>734</td>
<td>16</td>
<td>7</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Critical-Maintained</td>
<td>2</td>
<td>12</td>
<td>44</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Critical</td>
<td>6</td>
<td>9</td>
<td>656</td>
<td>14</td>
<td>0</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>Cryo Conserved Only</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Extinct</td>
<td>35</td>
<td>49</td>
<td>477</td>
<td>23</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

Grand Total: 4,381
Indicator Methodology – Risk Status

DAD-IS - Examples of graphics that can be exported

Risk Status of Local Breeds by Region

Dadis Region
- (All)

Country Name
- (All)

Asian/Mammalian
- (All)

Species
- (All)

Risk Status
- Unknown
- Not At Risk
- Vulnerable
- Endangered-Maintained
- Endangered
- Critical-Maintained
- Critical
- Cryo Conserved Only
- Extinct

Table: Risk Status of Local Breeds by Region

<table>
<thead>
<tr>
<th>Risk Status</th>
<th>Africa</th>
<th>Asia</th>
<th>Europe and the Caucasus</th>
<th>Latin America and the Caribbean</th>
<th>Near and Middle East</th>
<th>North America</th>
<th>Southwest Pacific</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>693</td>
<td>1,553</td>
<td>1,155</td>
<td>1,155</td>
<td>512</td>
<td>193</td>
<td>45</td>
<td>130</td>
</tr>
<tr>
<td>Not At Risk</td>
<td>88</td>
<td>187</td>
<td>381</td>
<td>47</td>
<td>30</td>
<td>7</td>
<td>0</td>
<td>720</td>
</tr>
<tr>
<td>Vulnerable</td>
<td>8</td>
<td>13</td>
<td>185</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>219</td>
</tr>
<tr>
<td>Endangered-Maintained</td>
<td>1</td>
<td>21</td>
<td>150</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>175</td>
</tr>
<tr>
<td>Endangered</td>
<td>17</td>
<td>23</td>
<td>734</td>
<td>16</td>
<td>7</td>
<td>19</td>
<td>0</td>
<td>811</td>
</tr>
<tr>
<td>Critical-Maintained</td>
<td>2</td>
<td>12</td>
<td>44</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>Critical</td>
<td>6</td>
<td>9</td>
<td>656</td>
<td>14</td>
<td>0</td>
<td>35</td>
<td>0</td>
<td>751</td>
</tr>
<tr>
<td>Cryo Conserved Only</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Extinct</td>
<td>35</td>
<td>49</td>
<td>477</td>
<td>23</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>607</td>
</tr>
</tbody>
</table>

Note: The image contains a visual representation of the data, but the text-based description provides a comprehensive understanding of the risk status analysis for local breeds by region.
Blanche de Montagne is a local sheep breed from Morocco. The last estimate from 2019 indicated a population of 20000-30000 animals with 243 breeding males and 999 breeding females. Which risk category would Blanche de Montagne be assigned to?
Example of calculating the risk category where number of male and female breeding animals is known: **Blanche de montagne: at risk (endangered)**

<table>
<thead>
<tr>
<th>Reproductive capacity</th>
<th>Males (n)</th>
<th>Breeding females (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤5</td>
<td>101 - 300</td>
</tr>
<tr>
<td></td>
<td>6 - 20</td>
<td>1 001 - 2 000</td>
</tr>
<tr>
<td></td>
<td>21 - 35</td>
<td>2 001 - 3 000</td>
</tr>
<tr>
<td></td>
<td>>35</td>
<td>3 001 - 6 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>6 000</td>
</tr>
</tbody>
</table>

- High*: pigs, rabbits, guinea pigs, dogs and all poultry species.
- Low**: horses, donkeys, cattle, yaks, buffaloes, deer, sheep, goats and camels.
The indicator presents the **percentage of local livestock breeds among local breeds with known risk status classified as being at risk**, at a certain moment in time, as well as the trends for this percentage.

Source: DAD-IS platform

Totals:
- Not at risk: 720
- At risk: 2,021
- Unknown risk: 4,351
- Proportion of countries with at least partial reporting: 40.76%

SDG Indicator 2.5.2
Regional aggregation not permissible due to less than 50% of countries reporting

Aggregation is not permissible if proportion of countries with at least partial reporting is less than 50%
ESCWA countries provided information for 329 LOCAL breeds, and for 84% of them, status is unknown.

Out of 22 countries, only 5 countries with at least 1 local breed updated over the last 10 years (Oman, Yemen, Morocco, Sudan, Tunisia)
SDG 2.5.2 ANIMALS: ESCWA Countries

562 national breed populations reported in DAD-IS:
- Cattle: 109
- Goat: 100
- Chicken: 68
- Dromedary: 50
- Sheep: 123
- Horse: 40
- Others: 72

Out of the 329 local breeds, only 52 with an updated status (45 not at risk; 7 at risk)
Indicator Policy Use and Interpretation

- Knowledge on genetic resources is fundamental to their conservation and sustainable use

- A prerequisite to make informed decisions

- Even vital, genetic diversity is under threat due to intensive farming, mechanization, demand for uniform products, uncontrolled crossbreeding, land use change, habitat degradation, overgrazing, climate change, etc.

- Monitoring the implementation and the impact of National Strategies and Action Plans, Global Plans of Action.....
Target 2.5 is concerned with genetic resources for food and agriculture:
“by 2020, maintain the **genetic diversity of seeds, cultivated plants and farmed and domesticated animals and their related wild species**, including through soundly managed and diversified seed and plant banks at the national, regional and international levels, and promote access to and fair and equitable **sharing of benefits** arising from the utilization of genetic resources and associated **traditional knowledge**, as internationally agreed.”
Implementation Challenges

- National coordinator needs to update the data information system (DAD-IS) regularly.

- National coordinator needs support from statisticians for indicator 2.5.2:
 - If no national information systems are available, population size data need to be estimated or collected either via livestock censuses on breed level, in the framework of household surveys or estimation of population sizes based on stratified sampling.

- The indicators are as good as the underlying data.
Example of actions of FAO to supports data collection

• Risk status unknown for a majority of breeds

• Main factors identified during a national coordinators workshop in Rome in 2017
 • Difficulty to collect population data
 • Difficulty to access data collected elsewhere
 • Others: lack of knowledge of the role, capacity, mandate, etc.

• FAO has launched a series of projects to assist countries to collect/estimate breed related data allowing them to fulfill their commitments to the CBD, the Global Plan of Action and the Agenda2030.
The principle

- Implementation of cost efficient solutions to allow countries to regularly estimate the population sizes of their animal genetic resources, over the long term.

- Work on a regional scale via service providers

- Three regions targeted so far:
 - Latin America
 - Southern Africa
 - North Africa
The partners in North Africa (January-December 2020)

• The countries:
 - Algeria
 - Libya
 - Mauritania
 - Morocco
 - Tunisia

• Regional Partner
 - Arab Maghreb Union

Source: Arab Maghreb Union website
The context (DAD-IS data beginning 2018)

<table>
<thead>
<tr>
<th>Countries</th>
<th>Local At risk</th>
<th>Local Not at risk</th>
<th>Local unknown</th>
<th>Regional At risk</th>
<th>Regional Not at risk</th>
<th>Regional unknown</th>
<th>International At risk</th>
<th>International Not at risk</th>
<th>International unknown</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>11</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>Libya</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Mauritania</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>Morocco</td>
<td>0</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>25</td>
<td>8</td>
<td>80</td>
</tr>
<tr>
<td>Tunisia</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>29</td>
</tr>
</tbody>
</table>

Livestock censuses on species level exist, no censuses on breed level
The methodology

Combine population data available at species level with expertise at regional support
• Involvement of ministry offices and private representatives to provide assessment in each regions

Alternatively, or in complementarity
• Stratified sampling: strata = agroecological zone, country 100% covered
• Semi-random sampling within strata (representative + accessible + cost efficient)
• Estimation of total population sizes based on direct counts from sample sites
The results (preliminary)

<table>
<thead>
<tr>
<th>Country</th>
<th>Indicator 2.5.2</th>
<th>Project result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td></td>
<td>0 updates in DAD-IS (Data collected for 39 breeds)</td>
</tr>
<tr>
<td>Libya</td>
<td></td>
<td>0 updates in DAD-IS</td>
</tr>
<tr>
<td>Mauritania</td>
<td></td>
<td>0 updates in DAD-IS (Data collected for ? breeds)</td>
</tr>
<tr>
<td>Morocco</td>
<td></td>
<td>51 updates in DAD-IS</td>
</tr>
<tr>
<td>Tunisia</td>
<td></td>
<td>41 updates in DAD-IS</td>
</tr>
</tbody>
</table>

Main results
- Data update for 2 out of 5 countries (but data collection in 4 despite Covid situation)
- Institutional changes (nomination of new NC, activation of NC committee, implementation of data collection process...)

Lessons learned
- Wide use of local remote meeting
- Bottleneck at the National Coordinator level for 3 out of 5 countries
- Importance of multi-partnership coordination at national level
FAO – Capacity Development/Technical Assistance

• Frequent training courses for NCs on the use of data information systems
• Training on the interpretation of SDG indicators
• E-learning courses on indicators at http://www.fao.org/elearning/#/elc/en/Course/SDG251-252
• Guidelines on surveying and monitoring of AnGR at http://www.fao.org/docrep/014/ba0055e/ba0055e00.htm
THANK YOU - MERCI

Credit: Fabrice Romain Monteiro - Werner-Lampert-GmbH
Contact

Roswitha Baumung (Roswitha.Baumung@fao.org)
Gregoire Leroy (Gregoire.Leroy@fao.org)
NSAG, FAO
DAD-IS@fao.org
