Bibliografía

Abd-Elgawad, M.M.M. 2020. Managing nematodes in Egyptian citrus orchards. Bulletin of the National Research Centre, 44: 41 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1186/s42269-020-00298-9

Ainsworth, E.A., y Long, S.P. 2021. 30 years of free-air carbon enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Global Change Biology, 27: 27-49.

Al-Ayedh, H.Y. 2017. The current state of the art research and technologies on RPW management. Paper presented at the “Scientific Consultation and High-Level Meeting on Red Palm Weevil Management”, 29-31 de marzo de 2017, Roma, FAO.

Albajes, R., Gullino, M.L., van Lenteren, J.C. y Elad, Y., eds. 1999. Integrated pest and disease management in greenhouse crops. Dordrecht, The Netherlands, Kluwer Academic Publishers.

Almeida, R.P.P., Blua, M.J., Lopes, J.R.S. y Purcell, A.H. 2005. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Annals of the Entomological Society of America, 98: 775 -786.

Almekinders, C.J., Walsh, S., Jacobsen, K.S., Andrade-Piedra, J.L., McEwan, M.A., de Haan, S., Kumar, L. y Staver, C. 2019. Why interventions in the seed systems of roots, tubers and bananas crops do not reach their full potential. Food Security, 11: Seguridad alimentaria 23-42.

Altermatt, F. 2010. Climatic warming increases voltinism in European butterflies and moths. Proceedings of the Royal Society B: Biological Sciences, 277: 1281-1287.

Altizer, S., Ostfeld, R.S., Johnson, P.T.J., Kutz, S. y Harvell, C.D. 2013. Climate change and infectious diseases: From evidence to a predictive framework. Science, 341: 514-519.

Amanifar, N., Taghavi, M., Izadpanah, K. y Babaei, G. 2014. Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopathologia Mediterranea, 53(2): 318-327.

Anderegg, W.R.L., Kane, J.M. y Anderegg, L.D.L. 2013. Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3: 30-36.

Anderson, P.K., Cunningham, A.A., Patel, N.G., Morales, F.J., Epstein, P.R. y Daszak, P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology and Evolution, 19: 535-544.

Angelotti, F., Hamada, E., Magalhaes, E.E., Ghini, R., Garrido, L.D.R. y Junior, M.J.P. 2017. Climate change and the occurrence of downy mildew in Brazilian grapevines. Pesquisa Agropecuaria Brasileira, Brasilia, 52: 426-434.

Aukema, J.E., Leung, B., Kovacs, K., Chivers, C., Britton, K.O., Englin, J., Frankel, S.J. et al. 2011. Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6(9): e24587 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0024587

Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Läderach, P., Anzueto, F., Hruska, A.J. y Morales, C. 2015. The coffee rust crises in Colombia and Central America (2008-2013): Impacts, plausible causes, and proposed solutions. Food Security, 7: 303-321.

Bairstow, K.A., Clarke, K.L., McGeoch, M.A. y Andrew, N.R. 2010. Leaf miner and plant galler species richness on Acacia: Relative importance of plant traits and climate. Oecologia, 163: 437-448

Bajwa, A.A., Farooq, M., Al-Sadi, A.M., Nawaz, A., Jabran, K. y Siddique, K.H.M. 2020. Impact of climate change on biology and management of wheat pests. Crop Protection, 137: 105304 [en línea]. [Acceso: 31 de marzo de 2021]. https://doi.org/10.1016/j.cropro.2020.105304

Bale, J.S., y Hayward, S.A.L. 2010. Insect overwintering in a changing climate. The Journal of Experimental Biology, 213: 980-994.

Battilani, P., Toscano, P., van der Fels-Klerx, H.J., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A. et al. 2016. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 6: 24328 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1038/srep24328

Battisti, A. 2008. Forests and climate change; lessons from insects. iForest – Biogeosciences and Forestry, 1: 1-5 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3832/ifor0210-0010001

Battisti, A., Stastny, M., Buffo, E. y Larsson, S. 2006. A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 12: 662-667.

Bebber, D.P, Ramotowski, M.A.T. y Gurr, S.J. 2013. Crop pests and pathogens move polewards in a warming world. Nature Climate Change, 3: 985-988.

Bentz, B.J., y Jönsson, A.M. 2015. Modeling bark beetle responses to climate change. En F.E. Vega y R.W. Hofstetter, eds. Bark beetles – biology and ecology of native and invasive species, págs. 533-553. Cambridge MA, Academic Press, Elsevier.

Bergsma-Viami, M., van de Bilt, J.L.J., Tjou-Tam-Sin, N.N.A., van de Vossenberg, B.T.L.H. Y Westenberg, M. 2015. Xylella fastidiosa in Coffea arabica ornamental plants imported from Costa Rica and Honduras in The Netherlands. Journal of Plant Pathology, 97: 395.

Betz, O., Srisuka, W. y Puthz, V. 2020. Elevational gradients of species richness, community structure, and niche occupation of tropical roove beetles (Coleoptera: Staphylinidae: Steninae) across mountain slopes in Northern Thailand. Evolutionary Ecology, 34: 193-216.

Biber-Freudenberger, L., Ziemacki, J., Tonnang, H.E.Z. y Borgemeister, C. 2016. Future risks of pest species under changing climatic conditions. PLoS ONE, 11: e0153237 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0153237

Billore, S.D. 2019. Weeds in soybean vis-à-vis other crops – a review. Soybean Research, 17: 1-21.

Bingna, H., Feifei, C., Yue, S., Kun, Q., Yan, W., Changjiao, S., Xiang, Z. et al. 2018. Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials (Basel, Switzerland), 8(2): 102 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3390/nano8020102

Björkman, C., y Niemelä, P. 2015. Climate change and insect pests. Wallingford, Reino Unido, CABI.

Bonello, P., Campbell, F.T., Cipollini, D., Conrad, A.O., Farinas, C., Gandhi, K.J.K., Hain, F.P. et al. 2020. Invasive tree pests devastate ecosystems – a proposed new response framework. Frontiers in Forests and Global Change, 3: 2 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3389/ffgc.2020.00002

Borkataki, S., Reddy, M.D., Nanda, S.P. y Taye, R.R. 2020. Climate change and its possible impact on the existence of insect pests. Ecology, Environment and Conservation, 26: S271-S277.

Bosso, L., Russo, D., Febbraro, M.D., Cristinzio, G. y Zoina, A. 2016. Potential distribution of Xylella fastidiosa in Italy: A maximum entropy model. Phytopathologia Mediterranea, 55: 62-72.

Bregaglio, S., Donatelli, M. y Confalonieri, R. 2013. Fungal infections of rice, wheat, and grape in Europe in 2030-2050. Agronomy for Sustainable Development, 33: 767-776.

Burne, A.R. 2019. Pest risk assessment: Halyomorpha halys (Brown marmorated stink bug). Versión 1, junio de 2019. Ministry for Primary Industries, Nueva Zelandia.

Butterworth, M.H., Semenov, M.A., Barnes, A., Moran, D., West, J.S. y Fitt, B.D.L. 2010. North–south divide: Contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 7: 123-130.

CABI. 2021a. Bursaphelenchus xylophilus (pine wilt nematode) datasheet. In: Invasive Species Compendium [en línea]. Wallingford, Reino Unido, CABI. [Acceso: 16 de marzo de 2021]. https://www.cabi.org/isc/datasheet/10448#todistribution

CABI. 2021b. Agrilus planipennis (emerald ash borer) datasheet. In: Invasive Species Compendium [en línea]. Wallingford, Reino Unido, CABI. [Acceso: 19 de marzo de 2021]. https://www.cabi.org/isc/datasheet/3780#todistribution

CABI. 2021c. Bactrocera oleae (olive fruit fly) datasheet. In: Invasive Species Compendium [en línea]. Wallingford, Reino Unido, CABI. [Acceso: 19 de marzo de 2021].

Carvajal-Yepes, M., Cardwell, K., Nelson, A., Garrett, K.A., Giovani, B., Saunders, D., Kamoun, S. et al. 2019. A global surveillance system for crop diseases. Science, 364: 1237-1239.

Castellanos-Frías, D., de León, D.G., Bastida, F. y González-Andújar, J.L. 2016. Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change. The Journal of Agricultural Science, 154: 755-764.

Castillo, N.E.T., Melchior-Martínez, E.M., Sierra, J.S.O., Ramirez-Mendoza, R.A., Parra-Saldivar, R. y Iqbal, H.M.N. 2020. Impact of climate change and early development of coffee rust – an overview of control strategies to preserve organic cultivars in Mexico. Science of the Total Environment, 738: 140225.

Chakraborty, S., y Newton, A.C. 2011. Climate change, plant diseases and food security: An overview. Plant Pathology, 60: 2-14.

Chakraborty, S., Pangga, I.B. y Roper, M.M. 2012. Climate change and multitrophic interactions in soil: The primacy of plants and functional domains. Global Change Biology, 18: 2111-2125.

Chang, F.P., Kuang, L.Y., Huang, C.A., Jane, W.N., Hung, Y., Hsing, Y.I. y Mou, C.Y. 2013. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 1(39): 5279-5287 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1039/c3tb20529k

Chen, J., y Henny, R.J. 2006. Somaclonal variation: An important source for cultivar development of floriculture crops. En J.A. Teixeira da Silva, ed. Floriculture, ornamental and plant biotechnology, Volume II, págs. 244-253. London, Global Science Books.

Choudhary, J.S., Kumari, M. y Fand, B.B. 2019. Linking insect pest models with climate change scenarios to project against future risks of agricultural insect pests. CAB Reviews, 14: 055 [en línea]. [Acceso: 28 de diciembre de 2020]. https://www.cabi.org/cabreviews/review/20193460085

Cilas, C., y Bastide, P. 2020. Challenges to cocoa production in the face of climate change and spread of pests and diseases. Agronomy, 10: 1232 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3390/agronomy10091232

Clements, D.R., y DiTommaso, A. 2011. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted? Weed Research, 51: 227-240.

Clements, D.R., DiTommaso, A. y Hyvönen, T. 2014. Ecology and management of weeds in a changing climate. En B.S. Chauhan y G. Mahajan, eds. Recent advances in weed management, págs. 13-37. New York, USA, Springer Science + Business Media.

Cooke, D.E.L., Cano, L.M., Raffaele, S., Bain, R.A., Cooke, L.R., Etherington, G.J., Deahl, K.L. et al. 2012. Genome analyses of an aggressive and invasive lineage of the Irish potato famine pathogen. PLoS Pathogens 8(10): e1002940 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.ppat.1002940

Cornara, D., Morente, M., Markheiser, A., Bodino, N., Tsai, C.-W., Fereres, A., Redak, R.A., Perring, T.M. y Lopes, J.R.S. 2019. An overview on the worldwide vectors of Xylella fastidiosa. Entomologia Generalis, 39(3-4): 157-181.

Cunningham, F.J., Goh, N.S., Demirer, G.S., Matos, J.L. y Landry, M.P. 2018. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends in Biotechnology, 36(9): 882-897.

Daughtrey, M., y Buitenhuis, R. 2020. Integrated pest and disease management in greenhouse ornamentals. En M.L. Gullino, R. Albajes y P.C. Nicot, eds. Integrated pest and disease management in greenhouse crops, págs. 625-679. Dordrecht, The Netherlands, Springer Nature.

Day, R., Quinlan, M. y Ogutu, W. 2006. Analysis of the application of the phytosanitary capacity evaluation tool. Report to the Secretariat of the International Plant Protection Convention.

Debelo, D.G. 2020. Predictions of climate change impacts on agricultural insect pests vis-à-vis food crop productivity: A critical review. Ethiopian Journal of Science and Sustainable Development, 7: 18-26.

Delcour, I., Spanoghe, P. y Uyttendaele, M. 2015. Literature review: Impact of climate change on pesticide use. Food Research International, 68: 7-15.

Delucia, E.H., Nabity, P.D., Zavala, J.A. y Berenbaum, M.R. 2012. Climate change: Resetting plant-insect interactions. Plant Physiology, 160: 1677-1685.

Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Shelton, K.S., Ghalambor, C.K., Haak, D.C. y Martin, P.R. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences USA, 105: 6668-6672.

Deutsch, C.A., Tewksbury, J.J., Tigchelaar, M., Battisti, D.S., Merrill, S.C., Huey, R.B. y Naylor, R.L. 2018. Increase in crop losses to insect pests in a warming climate. Science, 361: 915919.

Diamond, S.E. 2018. Contemporary climate-driven range shifts: Putting evolution back on the table. Functional Ecology, 32: 1652-1665.

Dilling, L., Daly, M.E., Travis, W.R., Wilhelmi, O.V. y Klein, R.A. 2015. The dynamics of vulnerability: Why adapting to climate variability will not always prepare us for climate change. Wiley Interdisciplinary Reviews: Climate Change, 6: 413-425.

Dita, M., Barquero, M., Heck, D., Mizubuti, E.S.G. y Staver, C.P. 2018. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science, 9: 1468 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3389/fpls.2018.01468

Diyanat, M., Saeidian, H., Baziar, S. y Mirjafary, Z. 2019. Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environmental Science and Pollution Research International, 26(21): 21579-21588 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1007/s11356-019-05257-0

Donovan, G.H., Butry, D.T., Michael, Y.L., Prestemon, J.P., Liebhold, A.M., Demetrios Gatziolis, D. y Mao, M.Y. 2013. The relationship between trees and human health: Evidence from the spread of the emerald ash borer. American Journal of Preventive Medicine, 44(2): 139-145.

Duan, J.J., Bauer, L.S., Van Driesche, R., Schmude, J.M., Petrice, T., Chandler, J.L. y Elkinton, J. 2020. Effects of extreme low winter temperatures on the overwintering survival of the introduced larval parasitoids Spathius galinae and Tetrastichus planipennisi: Implications for biological control of emerald ash borer in North America. Journal of Economic Entomology, 113: 1145-1151.

Duncan, L.W. 2009. Managing nematodes in citrus orchards. En A. Ciancio y K.G. Mukerji, eds. Integrated management of fruit crops and forest nematodes, págs. 135-173. Dordrecht, The Netherlands, Springer Science+Business Media B.V.

Duran, A., Gryzenhout, M., Slippers, B., Ahumada, R., Rotella, A., Flores, F., Wingfield, B.D. y Wingfield, M.J. 2008. Phytophthora pinifolia sp. nov. associated with a serious needle disease of Pinus radiata in Chile. Plant Pathology, 57: 715-727.

Eastburn, D.M., McElrone, A.J. y Bilgin, D.D. 2011. Influence of atmospheric and climate change on plant-pathogen interactions. Plant Pathology, 60: 54-69.

Edmonds, R.L. 2013. General strategies of forest disease management. En P. Gonthier y G. Nicolotti, eds. Infectuous forest diseases, págs. 29-49. Wallingford, Reino Unido y Boston, EE.UU., CABI.

Eigenbrode, S.D., Davis, T.S. y Crowder, D.W. 2015. Climate change and biological control in agricultural systems: Principles and examples from North America. En C. Björkman y P. Niemelä, eds. Climate change and insect pests, págs. 119-135. Wallingford, Reino Unido, CABI.

El-Mergawy, R.A.A.M., y Al-Ajlan, A.M. 2011. Red palm weevil, Rhynchophorus ferrugineus (Olivier): Economic importance, biology, biogeography, and integrated pest management. Journal of Agricultural Science and Technology, 1: 1-23.

El-Sabea, A.M., Faleiro, J. y Abo-El-Saad, M.M. 2009. The threat of red palm weevil Rhynchophorus ferrugineus to date plantations of the Gulf region in the Middle-East: An economic perspective. Outlooks on Pest Management, 20(3): 131-134.

Erikson, L., y Griffin, R. 2014. The international regulatory framework. En G. Gordh y S. McKirdy, eds. The handbook of plant biosecurity, págs. 27-44. Dordrecht, Países Bajos, Springer Science+Business Media.

Evans, N., Baierl, A., Semenov, M.A., Gladders, P. y Fitt, B.D.L. 2008. Range and increase of a plant disease increased by global warming. Journal of the Royal Society Interface, 5: 625-631.

Fahim, M.A., Hassanein, M.K. y Mostafa, M.H. 2003. Relationships between climatic conditions and potato late blight epidemic in Egypt during winter seasons 1999-2001. Applied Ecology and Environmental Research, 1(1-2): 159-172.

Fahim, M.A., Hassanein, M.K., Abou Hadid, A.F. y Kadah, M.S. 2011. Impacts of climate change on the widespread and epidemics of some tomato diseases during the last decade in Egypt. Acta Horticulturae, 914: 317-320.

Falco, S.D., Adinolfi, F., Bozzola, M. y Capitanio, F. 2014. Crop insurance as a strategy for adapting to climate change. Journal of Agricultural Economics, 65: 485-504.

FANFC/Banco Mundial. 2011. El cambio climático y el comercio: La relación con las normas sanitarias y fitosanitarias. Documento elaborado conjuntamente por el Banco Mundial, Grupo de investigaciones sobre el desarrollo, comercio e integración internacional (DECTI) y por el Fondo para la Aplicación de Normas y el Fomento del Comercio (FANFC). 26 págs. Ginebra, OMC, (disponible en: https://www.standardsfacility.org/sites/default/files/STDF_Climate_Change_SP_0.pdf).

FAO. 2008. Climate-related transboundary pests and diseases. Technical background document from the Expert consultation held on 25 to 27 February 2008. Roma, FAO, 59 págs. (disponible en: http://www.fao.org/3/a-ai785e.pdf).

FAO. 2020. Red palm weevil: Guidelines on management practices. Roma, FAO, ix + 86 págs. (disponible en: https://doi.org/10.4060/ca7703en).

FAO. 2021a. Desert locust upsurge – progress report on the response in Southwest Asia (May-December 2020). Roma, FAO, 18 págs. (disponible en: http://www.fao.org/3/cb2358en/cb2358en.pdf).

FAO. 2021b. Strategic framework for the International Plant Protection Convention (IPPC) 2020-2030. Protecting global plant resources and facilitating safe trade. Roma. Publicado por la FAO en nombre de la Secretaría de la CIPF. 40 págs. Licence: CC BY-NC-SA 3.0 IGO.

Fedchock, C., Gould, W.P, Hennessey, M.K., Mennig, X. y Sosa, E. 2006. Trip Report – Spanish lemon site visit: September 23-30, 2006. Riverdale, EE.UU., Departamento de Agricultura de los Estados Unidos de América (USDA), Servicio de Inspección Sanitaria de Animales y Plantas (APHIS).

Fiaboe, K.K.M., Peterson, A.T., Kairo M.T.K. y Roda, A.L. 2012. Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Florida Entomologist, 95: 559-673.

Flitters, N.E. 1963. Observations on the effect of hurricane “Carla” on insect activity. International Journal of Biometeorology, 6: 85-92.

Frank, S.D. 2020. Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems. Forestry: An International Journal of Forest Research, cpaa033 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1093/forestry/cpaa033

Frem, M., Chapman, D., Fucilli, V., Choueiri, E., Moujabber, M.E., Notte, P.L. y Nigro, F. 2020. Xylella fastidiosa invasion of new countries in Europe, the Middle East and North Africa: Ranking the potential exposure scenarios. NeoBiota, 59: 77-97 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3897/neobiota.59.53208

Fussmann, K.E., Schwarzmüller, F., Brose, U., Jousset, A. y Rall, B.C. 2014. Ecological stability in response to warming. Nature Climate Change, 4: 206-210.

García-Bastidas, F.A., Quintero-Vargas, Ayala-Vasquez, M., Schermer, T, Seidl, M.F., Santos-Paiva, M., Noguera A.M. et al. 2019. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Disease. [en línea] [Acceso: 31 de marzo de 2020]. https://doi.org/10.1094/PDIS-09-19-1922-PDN

Garibaldi, A., y Gullino, M.L. 1995. Focus on critical issues in soil and substrate disinfestation towards the year 2000. Acta Horticulturae, 382: 21-36.

Garibaldi, L., Kitzberger, T. y Chaneton, E.J. 2011. Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia, 167: 117–129.

Garrett, K.A., Alcalá-Briseño, R.I., Andersen, K.F., Choudhury, R.A., Dantes, W., Fayette, J., Fulton, J.C., Poudel, R. y Staub, C.G. 2020a. Adapting disease management systems under global change. En J.B. Ristaino y A. Records, eds. Emerging plant diseases and global food security, págs. 1-13. St. Paul, EE.UU, APS Press.

Garrett, K.A., Alcalá-Briseño, R., Andersen, K.F., Brawner, J., Choudhury, R., Delaquis, E., Fayette, J., Poudel, R., Purves, D. y Rothschild, J. 2020b. Effective altruism as an ethical lens on research priorities. Phytopathology, 110: 708-722.

Garrett, K.A., Dendy, S.P., Frank, E.E., Rouse, M.N. y Travers, S.E. 2006. Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44: 489-509.

Garrett, K.A., Nita, M., De Wolf, E.D., Esker, P.D., Gomez-Montano, L. y Sparks, A.H. 2016. Plant pathogens as indicators of climate change. En T.M. Letcher, ed. Climate change: Observed impacts on planet Earth, 2nd ed., págs. 325-338. Amsterdam, The Netherlands, Elsevier.

Garrett, K.A., Alcalá-Briseño, R.I., Andersen, K.F., Buddenhagen, C.E., Choudhury, R.A., Fulton, J.C., Hernandez Nopsa, J.F., Poudel, R. y Xing, Y. 2018. Network analysis: A systems framework to address grand challenges in plant pathology. Annual Review of Phytopathology, 56: 559-580.

Garrett, K.A., Nita, M., De Wolf, E.D., Esker, P.D., Gomez-Montano, L. y Sparks, A.H. 2021. Plant pathogens as indicators of climate change. En T.M. Letcher, ed. Climate change: Observed impacts on planet Earth, 3.a ed., págs. 499-513. Amsterdam, Países Bajos, Elsevier.

Ge X., He, S., Wang, T., Yan, W. y Zong, S. 2015. Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios. PLoS ONE 10(10): e0141111 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0141111

Ghini, R., Bettiol, W. y Hamada, E. 2011. Diseases in tropical plantation crops as affected by climate changes: Current knowledge and perspectives. Plant Pathology, 60: 122-132.

Ghini, R., Hamada, E. y Bettiol, W. 2008. Climate change and plant diseases. Scientia Agrícola, 65: 98-107.

Ghini, R., Hamada, E. y Bettiol, W. 2011. Impactos das mudanças climáticas sobre doenças de importantes culturas no Brasil. Brasília, DF., Jaguariúna: Embrapa Meio Ambiente.

Ghini, R., Hamada, E., Pedro Júnior, M.J. y Gonçalves, R.R.V. 2011. Incubation period of Hemileia vastatrix in coffee plants in Brazil simulated under climate change. Summa Phytopathologica, 37: 85-93.

Gilardi, G., Garibaldi, A. y Gullino, M.L. 2018. Emerging pathogens as a consequence of globalization and climate change: Leafy vegetables as a case study. Phytopathologia Mediterranea, 57: 146-152.

Gilardi, G., Gisi, U., Garibaldi, A. y Gullino, M.L. 2017. Effect of elevated atmospheric CO2 and temperature on the chemical and biological control of powdery mildew of zucchini and the Phoma leaf spot of leaf beet. European Journal Plant Pathology, 148: 229-236.

Giovani, B., Blümel, S., Lopian, R., Teulon, D., Bloem, S., Galeano Martínez, C., Beltrán, Montoya, C. et al. 2020. Science diplomacy for plant health. Nature Plants 6, 902-905.

Gitaitis, R., y Walcott, R. 2007. The epidemiology and management of seedborne bacterial diseases. Annual Review of Phytopathology, 45: 371-397.

Godefroid, M., Cruaud, A., Rossi, J.P. y Rasplus, J.Y. 2015. Assessing the risk of invasion by tephritid fruit flies: Intraspecific divergence matters. PLoS ONE, 10: e0135209 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0135209

Godefroid, M., Cruaud, A., Streito, J.C., Rasplus, J.Y. y Rossi, J.P. 2018. Climate change and the potential distribution of Xylella fastidiosa in Europe. bioRxiv, hal-02791548f [en línea]. [Acceso: 28 de diciembre de 2020]. https://hal.inrae.fr/hal-02791548/document

Godefroid, M., Cruaud, A., Streito, J.C., Rasplus, J.Y. y Rossi, J.P. 2019. Xylella fastidiosa: Climate suitability of European continent. Scientific Reports, 9: 8844 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1038/s41598-019-45365-y

Godefroid, M., Morente, M., Schartel, T., Cornara, D., Purcell, A., Gallego, D., Moreno, A., Pereira, J.A. y Fereres, A. 2020. The risk of Xylella fastidiosa outbreaks will decrease in the Mediterranean olive-producing regions. bioRxiv [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1101/2020.07.16.206474

Goergen, G., Kumar, P.L., Sankung, S.B., Togola, A. y Tamò, M. 2016. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11(10): e0165632. [en línea]. [Acceso: 15 de marzo de 2021]. https://doi.org/10.1371/journal.pone.0165632

Goswami, A., Roy, I., Sengupta, S. y Debnath, N. 2010. Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin solid films, 519(3): 1252-1257.

Gouache, D., Bensadoun, A., Brun, F., Page, C., Makowski, D. y Wallach, D. 2013. Modelling climate change impact on Septoria tritici blotch (STB) in France: Accounting for climate model and disease uncertainty. Agricultural and Forest Meteorology, 170: 242-252.

Gouache, D., Roche, R., Pieri, P. y Bancal, M.O. 2011. Evolution of some pathosystems on wheat and vines. En N. Brisson y F. Levrault, eds. The green book of the CLIMATOR project (2007-2010): Climate change, agriculture, and forests in France – simulations of the impacts on the main species, Section B5 Health, The Topics, págs. 113-126. France, Agency for the Environment and Energy Management (ADEME).

Gregory, P.J., Johnson, S.N., Newton, A.C. y Ingram, J.S.I. 2009. Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany, 60: 2827-2838.

Grillo, R., Dos Santos, N.Z.P., Maruyama, C.R., Rosa, A.H., de Lima, R. y Fraceto, L.F. 2012. Poly(ε-caprolactone) nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. Journal of hazardous materials, 231-232: 1-9.

Grünig, M., Mazzi, D., Calanca, P., Karger, D.N. y Pellissier, L. 2020. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Communications Biology, 3: 233 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1038/s42003-020-0962-9

Gullino, M.L. y Munkvold, G., eds. 2014. Global perspectives on the health of seeds and plant propagation material. Dordrecht, The Netherlands, Springer. 136 págs.

Gullino, M.L., Gilardi, G. y Garibaldi, A. 2014a. Seed-borne pathogens of leafy vegetable crops. En M.L. Gullino y G. Munkvold, eds. Global perspectives on the health of seeds and plant propagation material, págs. 47-53. Dordrecht, Países Bajos, Springer.

Gullino, M.L., Gilardi, G. y Garibaldi, A. 2014b. Chemical and non-chemical seed dressing for leafy vegetable crops. En M.L. Gullino y G. Munkvold, eds. Global perspectives on the health of seeds and plant propagation material, págs. 125-136. Dordrecht, The Netherlands, Springer.

Gullino, M.L., Gilardi, G. y Garibaldi, A. 2019. Ready-to-eat salad crops: a plant pathogen’s heaven. Plant Disease 103: 2153-2170.

Gullino, M.L., Pugliese, M., Gilardi, G. y Garibaldi, A. 2018. Effect of increased CO2 and temperature on plant diseases: A critical appraisal of results obtained in studies carried out under controlled environment facilities. Journal of Plant Pathology, 100: 371-389.

Gullino, M.L., Pugliese, M., Paravicini, A., Casulli, E., Rettori, A., Sanna, M. y Garibaldi, A. 2011. New phytotron for studying the effect of climate change on plant pathogens. Journal of Agricultural Engineering, 1: 1-11.

Gullino, M.L., Tabone, G., Gilardi, G. y Garibaldi, A. 2020. Effects of elevated atmospheric CO2 and temperature on the management of powdery mildew of zucchini. Journal of Phytopathology, 168: 405-415.

Gutierrez, A.P., Ponti, L. y Cossu, Q.A. 2009. Effects of climate warming on Olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Climatic Change, 95: 195-217.

Haack, R.A., Jendek, E., Liu, H.P., Marchant, K.R., Petrice, T.R., Poland, T.M. y Ye, H. 2002. The emerald ash borer: A new exotic pest in North America. Newsletter of the Michigan Entomological Society, 47: 1-5.

Hakata, M., Wada, H., Masumoto-Kubo, C., Tanaka, R., Sato, H. y Morita, S. 2017. Development of a new heat tolerance assay system for rice spikelet sterility. Plant Methods, 13(1): 34 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1186/s13007-017-0185-3

Hannukkala, A.O., Kaukoranta, T., Lehtinen, A. y Rahkonen, A. 2007. Late-blight epidemics on potato in Finland, 1933-2002: Increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56: 167-176.

Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S. y Samuel, M.D. 2002. Climate warming and disease risk for terrestrial and marine biota. Science, 296: 2158-2162.

Harvey, J.A., Heinen, R., Gols, R. y Thakur, M.P. 2020. Climate change-mediated temperature extremes and insects: From outbreaks to breakdowns. Global Change Biology, 26: 6685-6701.

Heeb, L., Jenner, E. y Cock, M.J.W. 2019. Climate-smart pest management: Building resilience of farms and landscapes to changing pest threats. Journal of Pest Science, 92: 951-969.

Heltberg, R., Siegel, P.B. y Jorgensen, S.L. 2009. Addressing human vulnerability to climate change: Toward a ‘no-regrets’ approach. Global Environmental Change, 19: 89-99.

Heraud, J. 2018. Blue River Technology. Resource, 25(6): 12-12.

Herms, D.A., y McCullough, D.G. 2014. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annual Review of Entomology, 59: 13-30.

Hill, M.P., y Thomson, L.J. 2015. Species distribution modelling in predicting response to climate change. En C. Björkman y P. Niemelä, eds. Climate change and insect pests, págs 16-37. Wallingford, Reino Unido, CABI.

Hoffmann, A.A., Rymer, P.D., Byrne, M., Ruthrof, K.X., Whinam, J., McGeoch, M., Bergstrom, D.M. et al. 2019. Impacts of recent climate change on terrestrial flora and fauna: Some emerging Australian examples. Austral Ecology, 44: 3-27.

Howden, S.M., Gifford, R.G. y Meinke, H. 2010. Grains. En C. Stokes y M. Howden, eds. Adapting agriculture to climate change: Preparing Australian agriculture for the future, págs. 21-40. Melbourne, Australia, CSIRO.

Hu, J., Angeli, S., Schuetz, S, Luo, Y. y Hajek, A.E. 2009. Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agricultural and Forest Entomology, 11: 359-375.

Huang, J., y Hao, H. 2020. Effects of climate change and crop planting on the abundance of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Ecology and Evolution, 10: 1324-1338.

Hunjan, M.S., y Lore, J.S. 2020. Climate change: Impact on plant pathogens, diseases, and their management. En K. Jabran, S. Florentine y B.S. Chauhan, eds. Crop protection under changing climate, págs. 85–100. Springer International Publishing.

Ikegami, M., y Jenkins, T.A.R. 2018. Estimate global risks of a forest disease under current and future climates using distribution model and simple thermal model – pine wilt disease as a model case. Forest Ecology and Management, 409: 343-352.

Ingram, J.S.I., Gregory, P.J. y Izac, A.-M. 2008. The role of agronomic research in climate change and food security policy. Agriculture, Ecosystems & Environment, 126(1-2): 4-12.

IPCC (Intergovernmental Panel on Climate Change). 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [T.F. Stocker, D. Qin, D., G.-K.Plattner, M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, EE.UU., 1535 págs.

IPCC. 2014a. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (R.K. Pachauri y L.A. Meyer coords.). Ginebra, Suiza, IPCC. 151 págs. (disponible en: https://www.ipcc.ch/site/assets/uploads/2018/02/AR5_SYR_FINAL_Front_matters.pdf).

IPCC. 2014b. Summary for policymakers. En: Climate Change, 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea y L.L.White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, EE.UU., págs. 32. (disponible en: https://www.ipcc.ch/site/assets/uploads/2018/02/ar5_wgII_spm_en.pdf).

IPCC. 2018. Global warming of 1.5 °C: An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani et al., eds.) Geneva, Switzerland, IPCC. 630 págs.

IPCC. 2019a. Special Report on Climate Change and Land [en línea]. [Acceso: 19 de marzo de 2021]. https://www.ipcc.ch/srccl/

IPCC. 2019b. Special Report on the Ocean and Cryosphere in a Changing Climate [en línea]. [Acceso: 19 de marzo de 2021]. https://www.ipcc.ch/srocc/

Iscaro, J. 2014. The impact of climate change on coffee production in Colombia and Ethiopia. Global Majority E-Journal, 5: 33-43.

Jabran, K., Florentine, S. y Chauhan, B.S. 2020. Impacts of climate change on weeds, insect pests, plant diseases and crop yields: Synthesis. En K. Jabran, S. Florentine y B.S. Chauhan, eds. Crop protection under changing climate, págs. 189-196. Springer International Publishing.

Jactel, H, Koricheva, J. y Castagneyrol, B. 2019. Responses of forest insect pests to climate change: Not so simple. Current Opinion in Insect Science, 35: 103-108.

Jactel, H., Desprez-Loustau, M.L., Battisti, A., Brockerhoff, E., Santini, A., Stenlid, A., Björkman, C. et al. 2020. Pathologists and entomologists must join forces against forest pest and pathogen invasions. NeoBiota, 58: 107-127.

Janse, J.D., y Obradovic, A. 2010. Xylella fastidiosa: Its biology, diagnosis, control and risks. Journal of Plant Pathology, 92: 35-48.

Jeger, M., Bragard, C., Caffier, D., Candresse, T., Chatzivassiliou, E., Dehne-Schmutz, K., Gilioli, G. et al. 2018. Pest risk assessment of Spodoptera frugiperda for the European Union. EFSA Journal, 16(8): 5351 [en línea]. [Acceso: 6 de abril de 2021]. https://doi.org/10.2903/j.efsa.2018.5351).

Jeger, M.J., y Pautasso, M. 2008. Plant disease and global change – the importance of long-term data sets. New Phytologist, 177: 8-11.

Jones, J.T., Haegeman, A., Danchin, E.G.J., Gaur, H.S., Helder, J., Jones, M.G.K., Kikuchi, T. et al. 2013. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14: 946-961.

Jones, R.A.C. 2016. Future scenarios for plant virus pathogens as climate change progresses. Advances in Virus Research, 95: 87-147.

Jönsson A.M., Harding S., Krokene P., Lange H., Lindelöw Å., Økland B. y Ravn H.P. y Schroeder, M. 2011. Modelling the potential impact of global warming on Ips typographus voltinism and reproductive diapause. Climatic Change, 109, 606-718.

Junk, J., Jonas, M. y Eickermann, M. 2016. Assessing meteorological key factors influencing crop invasion by pollen beetle (Meligethes aeneus F.) – past observations and future perspectives. Meteorologische Zeitschrift, 25: 357-364.

Juroszek, P., y von Tiedemann, A. 2011. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathology, 60: 100-112.

Juroszek, P., y von Tiedemann, A. 2013a. Plant pathogens, insect pests and weeds in a changing global climate: A review of approaches, challenges, research gaps, key studies and concepts. The Journal of Agricultural Science, 151: 163-188.

Juroszek, P., y von Tiedemann, A. 2013b. Climatic changes and potential future risks through wheat diseases. European Journal of Plant Pathology, 136: 21-33.

Juroszek, P., y von Tiedemann, A. 2013c. Climatic changes and the potential future importance of maize diseases: A short review. Journal of Plant Diseases and Protection, 120: 49–56.

Juroszek, P., y von Tiedemann, A. 2015. Linking plant disease models to climate change scenarios to project future risks of crop diseases: A review. Journal of Plant Diseases and Protection, 122: 3-15.

Juroszek, P., Racca, P., Link, S., Farhumand, J. y Kleinhenz, B. 2020. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, 69: 179-193.

Karaca, M., y Dursun, S.S. 2020. Possible effects of climate change on weeds in agriculture. Selcuk Journal of Agriculture and Food Sciences, 34: 111-117.

Karkanis, A., Ntatsi, G., Alemardan, A, Petropoulos, S. y Bilalis, D. 2018. Interference of weeds in vegetable crop cultivation, in the changing climate of Southern Europe with emphasis on drought and elevated temperatures: A review. The Journal of Agricultural Science, 156: 1175-1185.

Kellermann, V., y van Heerwaarden, B. 2019. Terrestrial insects and climate change: Adaptive responses in key traits. Physiological Entomology, 44: 99-115.

Kimathi, E., Tonnang, H.E.Z., Subramanian, S., Cressman, K., Abdel-Rahman, E.M., Tesfayohannes, M., Niassy, S., Torto B. et al. 2020. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Scientific Reports 10: 11937 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1038/s41598-020-68895-2

King, M., Altdorff, D., Li, P. Galagedara L., Holden, J. y Unc, A. 2018. Northward shift of the agricultural climate zone under 21st-century global climate change. Scientific Reports 8: 7904 [en línea]. [Acceso: 31 de marzo de 2021]. https://doi.org/10.1038/s41598-018-26321-8

Kocmánková, E., Trnka, M., Eitzinger, J., Dubrovský, M., Štěpánek , P., Semerádová, D., Balek, J. et al. 2011. Estimating the impact of climate change on the occurrence of selected pests at high spatial resolution: A novel approach. The Journal of Agricultural Science, 149: 185-195.

Koo, T.H., Hong, S.J. y Yun, S.C. 2016. Changes in the aggressiveness and fecundity of hot pepper anthracnose pathogen (Colletotrichum acutatum) under elevated CO2 and temperature over 100 infection cycles. The Plant Pathology Journal, 32: 260-265.

Koricheva, J., y Larsson, S. 1998. Insect performance on experimentally stressed woody plants: A meta-analysis. Annual Review Entomology, 43: 195-216.

Korres, N.E., Norsworthy, J.K., Tehranchian, P., Gitsopoulos, T.K., Loka, D.A., Oosterhuis, D.M., Gealy, D.R. et al. 2016. Cultivars to face climate change effects on crops and weeds: A review. Agronomy for Sustainable Development, 36: 12 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1007/s13593-016-03505

Kremer, P., Schlüter, J., Racca, P., Fuchs, H.J. y Lang, C. 2016. Possible impact of climate change on the occurrence and the epidemic development of cercospora leaf spot disease (Cercospora beticola sacc.) in sugar beets for Rhineland-Palatinate and the southern part of Hesse. Climatic Change, 137: 481-494.

Kriticos, D.J., Watt, M.S., Potter, K.J.B., Mannig, L.K., Alexander, N.S. y Tallent-Halsell, N. 2011. Managing invasive weeds under climate change: Considering the current and potential future distribution of Buddleja davidii. Weed Research, 51: 85-96.

Kumar, N., y Khurana, S.M.P. 2020. Invasion of major fungal diseases in crop plants and forest trees due to recent climate fluctuations. En A. Raj, M.K. Jhariya, D.K. Yadav y A. Banerjee, eds. Climate Change and Agroforestry Systems: Adaptation and Mitigation Strategies, Chapter 8, págs. 209-236. Burlington, Canada, Apple Academic Press.

Launay, M., Caubel, J., Bourgeois, G., Huard, F., de Cortazar-Atauri, I.G., Bancal, M.O. y Brisson N. 2014. Climatic indicators for crop infection risk: Application to climate impacts on five major foliar fungal diseases in Northern France. Agriculture, Ecosystems & Environment, 197: 147158.

Launay, M., Zurfluh, O., Huard, F., Buis, F., Bourgeois, G., Caubel, J., Huber, L. y Bancal, M.O. 2020. Robustness of crop disease response to climate change signal under modelling uncertainties. Agricultural Systems, 178: 102733.

Leguizamon, E.S., y Acciaresi, H.A. 2014. Climate change and the potential spread of Sorghum halepense in the central area of Argentina based on growth, biomass allocation and eco-physiological traits. Theoretical and Experimental Plant Physiology, 26: 101-113.

Lehmann, P., Ammunet, T., Barton, M., Battisti, A., Eigenbrode, S.D., Jepsen, J.U., Kalinkat, G. et al. 2020. Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 18: 141-150.

Liang, L., y Fei, S. 2014. Divergence of the potential invasion range of emerald ash borer and its host distribution in North America under climate change. Climatic Change, 122: 735-746.

Liebhold, A.M., y Kean, J.M. 2019. Eradication and containment of non-native forest insects: Successes and failures. Journal of Pest Science, 92: 83-91.

Lipper, L., Thornton, P., Campbell, B.M., Baedeker, T., Braimoh, A., Bwalya, M., Caron, P., Cattaneo, A., Garrity, D. y Henry, K. 2014. Climate-smart agriculture for food security. Nature Climate Change, 4: 1068-1072.

Litkas, V.D., Migeon, A., Navajas, M., Tixier, M.S. y Stavrinides, M.C. 2019. Impacts of climate change on tomato, a notorious pest and its natural enemy: Small scale agriculture at higher risk. Environmental Research Letters, 14: 084041 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1088/1748-9326/ab3313

Liu, T., Wan, A., Liu, D. y Chen, X. 2017. Changes of races and virulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. Plant Disease, 101: 1522-1532.

Lopian, R. 2018. Climate change, sanitary and phytosanitary measures and agricultural trade. The state of agricultural commodity markets (SOCO) 2018: Background paper. Roma, FAO. 48 págs. (disponible en: http://www.fao.org/3/CA2351EN/ca2351en.pdf).

Loustau, D., Ogee J., Dufrene, E., Deque, M., Duponey, J.I., Badeau, V., Viovy, N. et al. 2007. Impacts of climate change on temperate forests and interaction with management. En P.H. Freer-Smith, M.S.J. Broadmeadow y J.M. Lynch, eds. Forestry and climate change, págs. 243-250. Wallingford, Reino Unido, CABI.

Luck, I., Spackman, M., Freeman, A., Trebicki, P., Griffiths, W., Finlay, K. y Chakraborty S. 2011. Climate change and diseases of food crops. Plant Pathology, 60: 113-121.

Luo, Y., TeBeest, D.O., Teng, P.S. y Fabellar, N.G. 1995. Simulation studies on risk analysis of rice blast epidemics associated with global climate change in several Asian countries. Journal of Biogeography, 22: 673-678.

Luo, Y., Teng, P.S., Fabellar, N.G. y TeBeest, D.O. 1998. The effects of global temperature change on rice leaf blast epidemics: a simulation study in three agroecological zones. Agriculture, Ecosystems & Environment, 68: 187-196.

Macfayden, S, McDonald, G. y Hill, M. P. 2018. From species distributions to climate change adaptation: Knowledge gaps in managing invertebrate pests in broad-acre grain crops. Agriculture, Ecosystems & Environment, 253: 208-219.

Maclean, I.M.D. 2020. Predicting future climate at high spatial and temporal resolution. Global Change Biology, 26(2): 1003-1011.

Madgwick, J.W., West, J.S., White, R.P., Semenov, M.A., Townsend, J.A., Turner, J.A. y Fitt, B.D.L. 2011. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130: 117-131.

Magan, N., Medina, A. y Aldred, D. 2011. Possible climate-change effects on mycotoxin contamination of food crops pre-and postharvest. Plant Pathology, 60: 150-163.

Manisankar, G., y Ramesh, T. 2019. Response of weeds under elevated CO2 and temperature: A review. Journal of Pharmacognosy and Phytochemistry, SP2: 427-431.

Marshall, K.E., Gotthard, K. y Williams, C.M. 2020. Evolutionary impacts of winter climate change on insects. Current Opinion in Insect Science, 41: 54-62.

Massad, T.J., y Dyer, L.A. 2010. A meta-analysis of the effects of global environmental change on plant–herbivore interactions. Arthropod-Plant Interactions, 4: 181-188.

Matzrafi, M., Seiwert, B., Reemtsma, T., Rubin, B. y Peleg, Z. 2016. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta, 244: 1217-1227.

McConnachie, A.J., Strathie, L.W., Mersie, W., Gebrehiwot, L., Zewdie, K., Abdurehim, A., Abrha, B., Araya, T., Asaregew, F., Assefa, F., Gebre-Tsadik, R., Nigatu, L., Tadesse, B. y Tana, T. 2011. Current and potential geographical distribution of the invasive plant Parthenium hysterophorus (Asteraceae) in eastern and southern Africa. Weed Research, 51: 71-84.

McCullough, D.G., Work, T.T., Cavey, J.F., Liebhold, A.M. y Marshall, D. 2006. Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biological Invasions 8: 611-630.

Medina, A., Akbar, A., Baazeem, A., Rodriguez, A. y Managan, N. 2017. Climate change, food security and mycotoxins. Do we know enough? Fungal Biology Reviews, 31(3): 143-154.

Mehmood, M.Z., Afzal, O., Aslam, M.A., Riaz, H., Raza, M.A., Ahmed, S., Qadir, G. et al. 2020. Disease modeling as a tool to assess the impacts of climate variability on plant diseases and health. En M. Ahmed, ed. Systems modeling, págs. 327-351. Singapore, Springer Nature Singapore.

Melloy, P., Hollaway, G., Luck, J., Norton, R., Aitken, E. y Chakraborty, S. 2010. Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology, 16: 3363-3373.

Meurisse, N., Rassati, D., Hurley, B.P., Brockerhoff, E.G. y Haack, R.A. 2019. Common pathways by which non-native forest insects move internationally and domestically. Journal of Pest Science, 92: 13-27.

Meynard, C.N., Gay, P.E., Lecoq, M., Foucart, A., Piou, C. y Chapuis, M.P. 2017. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Global Change Biology, 23: 4739-4749.

Miedaner, T., y Juroszek, P. 2021a. Climate change will influence disease resistance breeding in wheat in Northwestern Europe. Theoretical and Applied Genetics [en línea]. [Acceso: 13 de marzo de 2021]. https://doi.org/10.1007/s00122-021-03807-0

Miedaner, T., y Juroszek, P. 2021b. Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north-western Europe. Plant Pathology [en línea]. [Acceso: 26 de febrero de 2021]. https://doi.org/10.1111/ppa.13365.

Mikkelsen, B.L., Jørgensen, R.B. y Lyngkjær, M.F. 2014. Complex interplay of future climate levels of CO2, ozone, and temperature on susceptibility to fungal diseases in barley. Plant Pathology, 64: 319-327.

Misra, A.K., Yadav, S.B., Mishra, S.K. y Tripathi, M.K. 2020. Impact of meteorological variables and climate change on plant diseases. En P. Kumar, A.K. Tiwari, M. Kamle, Z. Abbas y P. Singh, eds. Plant pathogens – detection and management for sustainable agriculture, págs. 313-327. Oakville, Ontario, Canada, Apple Academic Press.

Moriyama, M., y Numata, H. 2019. Ecophysiological responses to climate change in cicadas. Physiological Entomology, 44: 65-76.

Mostert, D., Molina, A.B., Daniells, J., Fourie, G., Hermanto, C., Chao, C.P., Fabregar, E. et al. 2017. The distribution and host range of the banana Fusarium wilt fungus Fusarium oxysporum f. sp. cubense, in Asia. PLoS ONE, 12: e0181630 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0181630

Munkvold, G.P. 2009. Seed pathology progress in the academia and industry. Annual Review of Phytopathology, 47: 285-311.

Munkvold, G.P., y Gullino, M.L. 2020. Seed and propagative material. En M.L. Gullino, R. Albajes y P.C. Nicot, eds. Integrated pest and disease management in greenhouse crops, págs. 331-354. Dordrecht, The Netherlands, Springer Nature.

Naidu, V.S.G.R. 2015. Climate change, crop-weed balance, and the future of weed management. Indian Journal of Weed Science, 47: 288-295.

Niblack, T.L. 2005 Soybean cyst nematode management reconsidered. Plant Disease, 89: 10201026.

NIMF 5. 2018. Glosario de términos fitosanitarios. Roma, Secretaría de la CIPF, FAO.

NIMF 6. 2018. Vigilancia. Roma, Secretaría de la CIPF, FAO.

NIMF 2. 2019. Marco para el análisis de riesgo de plagas. Roma, Secretaría de la CIPF, FAO.

NIMF 11. 2019. Análisis de riesgo de plagas para plagas cuarentenarias. Roma, Secretaría de la CIPF, FAO.

NIMF 20. 2019. Directrices sobre un sistema fitosanitario de reglamentación de importaciones. Roma, Secretaría de la CIPF, FAO.

NIMF 21. 2019. Análisis de riesgo de plagas para plagas no cuarentenarias reglamentadas. Roma, Secretaría de la CIPF, FAO.

O’Bannon, J.H., y Tomerlin, A.T. 1973. Citrus tree decline caused by Pratylenchus coffeae. Journal of Nematology, 5: 311-316.

OEPP (Organización Europea y Mediterránea de Protección de la Plantas). 2020a. A1 list of pests recommended for regulation as quarantine pests, version 2020-09. En European and Mediterranean Plant Protection Organization [en línea]. [Acceso: 28 de diciembre de 2020]. https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list

OEPP. 2020b. First report of Spodoptera frugiperda in Israel. EPPO Reporting Service No. 08-2020: 2020/161. En EPPO Global Database [en línea], París. [Acceso: 28 de diciembre de 2020]. https://gd.eppo.int/reporting/article-6839

OEPP. 2021a. Anoplophora glabripennis. EPPO datasheets on pests recommended for regulation. En EPPO Global Database [en línea]. [Acceso: 20 de febrero de 2021]. https://gd.eppo.int/taxon/ANOLGL/datasheet

OEPP. 2021b. Agrilus planipennis. EPPO datasheet as updated January 2021. En: EPPO Global Database [en línea]. [Acceso: 20 de febrero de 2021]. https://gd.eppo.int/taxon/AGRLPL/datasheet

OEPP. 2021c. Current global distribution of Bactrocera dorsalis (DACUDO) as registered in January 2021 and reporting service articles. En EPPO Global Database [en línea]. [Acceso: 20 de mayo de 2021]. https://gd.eppo.int/taxon/DACUDO/distribution and https://gd.eppo.int/taxon/DACUDO/reporting

Oliveira, H., Stolf-Moreira, R., Martinez, C., Grillo, R., Jesus, M. y Fraceto, L. 2015. Nanoencapsulation enhances the post-emergence herbicidal activity of atrazine against mustard plants. PLoS ONE, 10(7): e0132971 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0132971

Ormsby, M., y Brenton-Rule, E. 2017. A review of global instruments to combat invasive alien species in forestry. Biological Invasions, 19: 3355-3364.

Paini, D.R., Mwebaze, P., Kuhnert, P.M y Kriticos, D.J. 2018. Global establishment threat from a major forest pest via international shipping: Lymantria dispar. Scientific Reports, 8: 13723 [en línea]. [Acceso: 12 de diciembre de 2020]. https://doi.org/10.1038/s41598-018-31871-y

Palmer, G., Platts, P.J., Brereton, T., Chapman, J.W., Dytham, C., Fox, R., Pearce-Higgins, J.W., Roy, D.B., Hill, J.K. y Thomas, C.D. 2017. Climate change, climatic variation, and extreme biological responses. Philosophical Transactions of the Royal Society B, 372: 20160144.

Paraschivu, M., Cotuna, O., Paraschivu, M. y Olaru, L. 2019. Effects of interaction between abiotic stress and pathogens in cereals in the context of climate change: An overview. Annals of the University of Craiova, XLIX: 413-424.

Paterson, R.R.M., y Lima, N. 2019. Ecology and biotechnology of thermophilic fungi on crops under global warming. En S.M. Tiquia-Arashiro y M. Grube, eds. Fungi in extreme environments: Ecological role and biotechnological significance, págs. 81-96. Springer International Publishing.

Pautasso, M. 2013. responding to diseases caused by exotic tree pathogens. En P. Gonthier and G. Nicolotti, eds. infectious forest diseases, págs. 29-49. Wallingford, Reino Unido y Boston, EE.UU., CABI.

Pautasso, M., Doring, T.F., Garbelotto, M., Pellis, L. y Jeger, M.J. 2012. Impacts of climate change on plant diseases – opinions and trends. European Journal of Plant Pathology, 133: 295-313.

Pegg, G., Taylor, T., Entwistle, P., Guymer, G., Giblin, F. y Carnegie, A. 2017. Impact of Austropuccinia psidii (myrtle rust) on Myrtaceae-rich wet sclerophyll forests in south east Queensland. PLoS ONE 12(11): e0188058 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0188058

Pegg, K.G., Coates, L.M., O’Neill, W.T. y Turner, D.W. 2019. The epidemiology of Fusarium wilt of banana. Frontiers in Plant Science, 10: 1395 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3389/fpls.2019.01395

Peng, H.X.X., Sivasithamparam, K. y Turner, D.W.W. 1999. Chlamydospore germination and Fusarium wilt of banana plantlets in suppressive and conducive soils are affected by physical and chemical factors. Soil Biology and Biochemistry, 31: 1363-1374.

Perez, C., Nicklin, C., Dangles, O., Vanek, S., Sherwood, S., Halloy, S., Garrett, K.A. y Forbes, G. 2010. Climate change in the high Andes: Implications and adaptation strategies for small-scale farmers. International Journal of Environmental, Cultural, Economic and Social Sustainability, 6: 71-88.

Perrone, G., Ferrara, M., Medina, A., Pascale, M. y Magan, N. 2020. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction, and prevention of the risk. Microorganisms, 8: 1496 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.3390/microorganisms8101496

Peters, K., Breitsameter, L. y Gerowitt, B. 2014. Impact of climate change on weeds in agriculture: A review. Agronomy for Sustainable Development, 38: 707-721.

Peterson, A.T, Menon, S. y Li, X. 2010. Recent advances in the climate change biology literature: Describing the whole elephant. WIREs Climate Change, 1: 548-555.

Ploetz, R.C. 2005. Panama disease, an old nemesis rears its ugly head: Part 1 – The beginnings of the banana export trades. Plant Health Progress, 6(1) [en línea]. https://doi.org/10.1094/PHP-2005-1221-01-RV

Ploetz, R.C., y Pegg, K.G. 2000. Fungal diseases of root, corm and pseudostem. En D.R. Jones, ed. Diseases of banana abacá and enset, págs. 143-172. Wallingford, Reino Unido, CABI.

Porter, J.R., Challinor, A.J., Henriksen, C.B., Howden, S.M., Martre, P. y Smith, P. 2019. IPCC, agriculture, and food – a case of shifting cultivation and history. Global Change Biology, 25(8): 25182529.

Prank, M., Kenaley, S.C., Bergstrom, G.C., Acevedo, M. y Mahowald, N.M. 2019. Climate change impacts the spread of wheat stem rust, a significant crop disease. Environmental Research Letters, 14: 124053 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1088/1748-9326/ab57de

Preisler, A.C., Pereira, A.E., Campos, E.V., Dalazen, G., Fraceto, L.F. y Oliveira, H.C. 2020. Atrazine nanoencapsulation improves pre-emergence herbicidal activity against Bidens pilosa without enhancing long-term residual effect on Glycine max. Pest Management Science, 76(1): 141149.

Pritchard, S.G. 2011. Soil organisms and global climate change. Plant Pathology, 60: 82-99.

Priyanka, A.K.M., Varma, S., Kumar, V. y Sharma, R.S. 2020. Impact of climate change on plant diseases and management strategies: A review. International Journal of Chemical Studies, 8: 29682973.

Pugliese, M., Gullino, M.L. y Garibaldi, A. 2010. Effects of elevated CO2 and temperature on interactions of grapevine and powdery mildew: First results under phytotron conditions. Journal of Plant Diseases and Protection, 117: 9-14.

Qin, Z., Zhang, J.E., Di Tommaso, A., Wang, R.I. y Liang, K.M. 2016. Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models. Climatic Change, 134: 193-208.

Racca, P., Kakau, J., Kleinhenz, B. y Kuhn, C. 2015. Impact of climate change on the phenological development of winter wheat, sugar beet and winter oilseed rape in Lower Saxony, Germany. Journal of Plant Diseases and Protection, 122: 16-27.

Raderschall, C.A., Vico, G., Lundin, O., Taylor, A.R. y Bommarco, R. 2021. Water stress and insect herbivory interactively reduce crop yield while the insect pollination benefit is conserved. Global Change Biology, 27: 71-83.

Rai, M., y Ingle, A. 2012. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94 (2): 287-293 [en línea]. [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1007/s00253-012-3969-4

Raliya, R., Saharan, V., Dimkpa, C. y Biswas, P. 2018. Nanofertilizer for precision and sustainable agriculture: Current state and future perspectives. Journal of Agricultural and Food Chemistry, 66(26): 6487-6503.

Ramesh, K., Matloob, A., Aslam, F., Florentine, S.K. y Chauhan, B.S. 2017. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Frontiers in Plant Science, 8: 95 [en línea]. [Acceso: 28 de diciembre de 2020]. https://doi.org/10.3389/fpls.2017.00095

Ramirez-Cabral, N.Y.Z, Kumar, L. y Shabani, F. 2017. Future climate scenarios project a decrease in the risk of fall armyworm outbreaks. The Journal of Agricultural Science, 155(8): 1219-1238.

Ramirez-Cabral, N.Y.Z., Kumar, L. y Shabani, F. 2019. Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change. Theoretical and Applied Climatology, 135: 409-424.

Ramsfield, T.D., Bentz, B.J., Faccoli, M., Jactel, H. y Brockerhoff, E.G. 2016. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry, 89: 245-252.

Rathee, M., y Dalal, P. 2018. Emerging insect pests in Indian agriculture. Indian Journal of Entomology, 80: 267-281.

Reineke, A., y Thiéry, D. 2016. Grapevine insect pests and their natural enemies in the age of global warming. Journal of Pest Science, 89: 313-328.

Revich, B., Tokarevich, N. y Parkinson, A.J. 2012. Climate change and zoonotic infections in the Russian Arctic. International Journal of Circumpolar Health, 71: 18792 [en línea[en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.3402/ijch.v71i0.18792

Reynaud, B., Delatte, H., Peterschmitt, M. y Fargette, D. 2009. Effects of temperature increase on the epidemiology of three major vector-borne viruses. European Journal of Plant Pathology, 123: 269-280.

Richerzhagen, D., Racca, P., Zeuner, T., Kuhn, C., Falke, K., Kleinhenz, B. y Hau, B. 2011. Impact of climate change on the temporal and regional occurrence of Cercospora leaf spot in Lower Saxony. Journal of Plant Diseases and Protection, 118: 168-177.

Rizzo, D., Garbelotto, M. y Hansen, E. M. 2005. Phythophora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests. Annual Review of Phytopathology, 43: 309-335.

Robinet, C., y Roques, A. 2010. Direct impacts of recent climate warming on insect populations. Integrative Zoology, 5: 132-142.

Roth, M.G., Webster, R.W., Mueller, D.S., Chilvers, M.I., Faske, T.R., Mathew, F.M., Bradley, C.A., Damicone, J.P., Kabbage, M. y Smith, D.L. 2020. Integrated management of important soybean pathogens of the United States in changing climate. Journal of Integrated Pest Management, 11: 17 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1093/jipm/pmaa013

Ruttledge, A., y Chauhan, B.S. 2020. Climate change and weeds of cropping systems. En K. Jabran, S. Florentine y B.S. Chauhan, eds. Crop protection under changing climate, págs. 57-84. Springer International Publishing.

Sabry, K., y Ragaei, M. 2018. Nanotechnology and their applications in insect’s pest control. En K.A. Abd-Elsalam & R. Prasad, eds. Nanobiotechnology applications in plant protection, págs. 1-28. Cham, Springer International Publishing AG. https://doi.org/10.1007/978-3-319-91161-8.

Salinari, F., Giosuè, S., Rettori, A., Rossi, V., Tubiello, F.N., Spanna, F., Rosenzweig, C. y Gullino, M.L. 2006. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Global Change Biology, 12: 1299-1307.

Salinari, F., Giosuè, S., Rossi, V., Tubiello, F.N., Rosenzweig, C. y Gullino, M.L. 2007. Downy mildew outbreaks on grapevine under climate change: Elaboration and application of an empirical-statistical model. EPPO Bulletin, 37: 317-326.

Salvacion, A.R., Cumagun, C.J.R., Pangga, I.B., Magcale-Macandog D.B., Cruz, P.C.S., Saludes, R.B., Solpot, T.C. y Aguilar, E.A. 2019. Banana suitability and Fusarium wilt distribution in the Philippines under climate change. Spatial Information Research, 27: 339-349.

Santini, A., y Battisti, A. 2019. Complex insect–pathogen interactions in tree pandemics. Frontiers in Physiology, 10: 550 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.3389/fphys.2019.00550

Saponari, M., Boscia, D., Nigro, F. y Martelli, G.P. 2013. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (Southern Italy). Journal of Plant Pathology, 95(3): 668.

Saunders, D.G.O., Pretorius, Z.A. y Hovmøller, M.S. 2019. Tackling the re-emergence of wheat stem rust in Western Europe. Communications Biology, 2: 51 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1038/s42003-019-0294-9

Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N. y Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3: 430-439.

Scalone, R., Lemke, A., Stefanic, E., Kolseth, A.K., Rasic, S. y Andersson, L. 2016. Phenological variation in Ambrosia artemisiifolia L. facilitates near future establishment at northern latitudes. PLoS ONE, 11: e0166510 [en línea]. [Acceso: 31 de marzo de 2021]. https://doi.org/10.1371/journal.pone.0166510

Scheffers, B.R., De Meester, L., Bridge, T.C.L., Hoffmann, A.A., Pandolfi, J.M., Corlett, R.T., Butchart, S.H.M. et al. 2016. The broad footprint of climate change from genes to biomes to people. Science, 354 (6313): aaf7671.

Schneider, K., van der Werf, W., Cendoya, M., Mourits, M., Navas-Cortes J.A., Vicent, A. y Lansink, A.O. 2020. Impact of Xylella fastidiosa subspecies pauca in European olives. PNAS, 117: 9250-9259.

Schumann, G.L. 1991. Plant diseases: Their biology and social impact. St Paul, USA, APS Press.

Scott, N.R., Chen, H. y Cui, H. 2018. Nanotechnology applications and implications of agrochemicals toward sustainable agriculture and food systems. Journal of Agricultural and Food Chemistry, 66(26): 6451-6456.

Scott, P., y Williams, N. 2014. Phytophthora diseases in New Zealand forests. NZ Journal of Forestry, 59: 14-21.

Secretaría de la CIPF. 1997. Convención Internacional de Protección Fitosanitaria. Roma, Secretaría de la CIPF, FAO (disponible en inglés: https://assets.ippc.int/static/media/files/publication/en/2019/02/1329129099_ippc_2011-12-01_reformatted.pdf).

Secretaría de la CIPF. 2012. Estrategia de la CIPF de creación de capacidad fitosanitaria nacional. Roma, Secretaría de la CIPF, FAO, 27 págs., (disponible en inglés: https://assets.ippc.int/static/media/files/publication/en/2016/01/IPPCCapacityDevelopmentStrategy-en.pdf)

Secretaría de la CIPF. 2016. Vigilancia Fitosanitaria - Guía para comprender los principales requerimientos de los programas de vigilancia para las organizaciones nacionales de protección fitosanitaria. Roma, Secretaría de la CIPF, FAO (disponible en: http://www.fao.org/3/ca3764es/CA3764ES.pdf)

Secretaría de la CIPF. 2020a. The first detection of Spodoptera frugiperda, fall armyworm (FAW), in United Arab Emirates. Pest report, 10 May 2020. En: Convención Internacional de Protección Fitosanitaria [en línea]. Roma, FAO. https://www.ippc.int/es/countries/united-arab-emirates/pestreports/2020/05/the-first-detection-of-fall-armywormfam-spodoptera-frugiperda-in-united-arab-emirates/

Secretaría de la CIPF. 2020b. Report of first detection of Spodoptera frugiperda, fall armyworm (FAW) in Jordan. Pest report, 27 September 2020. En: Convención Internacional de Protección Fitosanitaria [en línea]. Roma, FAO.https://www.ippc.int/es/countries/jordan/pestreports/2020/09/report-of-first-detection-of-spodoptera-frugiperda-fall-armyworm-faw-in-jordan-1/

Secretaría de la CIPF. 2021. Spodoptera frugiperda (fall armyworm) detections Australia. Pest report, 5 May 2021. En: Convención Internacional de Protección Fitosanitaria [en línea]. Roma, FAO. [Acceso: 20 de mayo de 2021]. https://www.ippc.int/es/countries/australia/pestreports/2021/05/spodoptera-frugiperda-fall-armyworm-detections-australia/e

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano G., Wild, J. et al. 2017. Forest disturbances under climate change. Nature Climate Change, 7: 395-402.

Shabani, F., y Kumar, L. 2013. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS ONE, 8: e83404 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0083404

Shabani, F., Ahmadi, M., Kumar, L., Soljouy-Fad, S., Tehrany, M.S., Shabani, F., Kalantar, B. y Esmaeili, A. 2020. Invasive weed species’ threats to global biodiversity: Future scenarios of changes in the number of invasive species in a changing climate. Ecological Indicators, 116: 106436 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1016/j.ecolind.2020.106436

Shaibu, A.S., Li, B., Zhang, S. y Sun, J. 2020. Soybean cyst nematode-resistance: Gene identification and breeding strategies. The Crop Journal, 8(6): 892-904 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1016/j.cj.2020.03.001

Sharma, S., Hooda, K.S. y Goswami, P. 2019. Scenario of plant diseases under changing climate. Journal of Pharmacognosy and Phytochemistry, 8: 2490-2495.

Shaw, M.W., y Osborne, T.M. 2011. Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 60: 31-43.

Sicard, A., Zeilinger, A.R., Vanhove, M., Schartel, T.E., Beal, D.J., Daugherty, M.P. y Almeida, R.P.P. 2018. Xylella fastidiosa: Insights into an emerging plant pathogen. Annual Review of Phytopathology, 56: 181-202.

Siciliano, I., Berta, F., Bosio, P., Gullino, M.L. y Garibaldi, A. 2017a. Effect of different temperatures and CO2 levels on Alternaria toxins produced on cultivated rocket, cabbage, and cauliflower. World Mycotoxin Journal, 10: 63-71.

Siciliano, I., Bosio, P., Gilardi, G., Gullino, M.L. y Garibaldi, A. 2017b. Verrucarin A and roridin E produced on spinach by Myrothecium verrucaria under different temperatures and CO2 levels. Mycotoxin Research, 33: 139-146.

Sidorova, I., y Voronina, E. 2020. Terrestrial fungi and global climate change. En J. Marxsen, ed. Climate change and microbial ecology: Current research and future trends, 2a ed., cap. 5., Poole, Reino Unido, Caister Academic Press. (disponible en: https://doi.org/10.21775/9781913652579.05).

Singh, V.K., Shukla, A.K. y Singh, A.K. 2019. Impact of climate change on plant-microbe interactions under agroecosystems. En K.K. Choudhary, A. Kumar y A.K. Singh, eds. Climate change and agricultural ecosystems, págs. 153-179. Cambridge, Reino Unido, Woodhead Publishing, Elsevier.

Skelsey, P., Cooke, D.E.L., Lynott, J.S. y Lees, A.K. 2016. Crop connectivity under climate change: Future environmental and geographic risks of potato late blight in Scotland. Global Change Biology, 22: 3724-3738.

Sousa, E., Naves, P., Bonifácio, L., Henriques, J., Inácio, M.L. y Evans, H. 2011. Survival of Bursaphelenchus xylophilus and Monochamus galloprovincialis in pine branches and wood packaging material. EPPO Bulletin, 41: 203-207.

Sparks, A.H., Forbes, G.A., Hijmans, R.J. y Garrett, K.A. 2014. Climate change may have limited effect on global risk of potato late blight. Global Change Biology, 20: 3621-3631.

Srivastava, A., Kumar, S.N. y Aggarwal, P.K. 2010. Assessment of vulnerability of sorghum to climate change in India. Agriculture, Ecosystems & Environment, 138: 160-169.

St. Marseille, A.F.G., Bourgeois, G., Brodeur, J. y Mimee, B. 2019. Simulating the impacts of climate change on soybean cyst nematode and the distribution of soybean. Agricultural and Forest Meteorology, 264: 178-187.

Stack, J.P., Fletcher, J. y Gullino, M.L. 2013. Climate change and plant biosecurity: A new world disorder? En B. Bodo, C. Burnley, I. Comardicea, A. Maas y R. Roffey, eds. Global environmental change: New drivers for resistance, crime and terrorism?, págs. 161-182. Baden-Baden, Alemania, Nomos.

Stoeckli, S., Felber, R. y Haye, T. 2020. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. International Journal of Biometeorology, 64: 2019-2032 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1007/s00484-020-01992-z

Storkey, J., Stratonovitch, P., Chapman, D. y Vidotto, F. 2014. A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS ONE, 9: e88156 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0088156

Stover, R.H. 1986. Disease management strategies and the survival of the banana industry. Annual Review of Phytopathology, 24: 83-91.

Strand, J.F. 2000. Some agrometeorological aspects of pest and disease management for the 21st century. Agricultural and Forest Meteorology, 103: 73-82.

Sturrock, R.N., Frankel, S.J., Brown, A.V., Hennon, P.E., Kliejunas, J.T. y Lewis, K.J. 2011. Climate change and forest diseases. Plant Pathology, 60: 133-149.

Su, C., Ji, Y., Gao, S., Cao, S., Xu, X., Zhou, C. y Liu, Y. 2020. Fluorescence-labeled abamectin nanopesticide for comprehensive control of pinewood nematode and Monochamus alternatus hope. ACS Sustainable Chemistry & Engineering, 8(44): 16555-16564 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1021/acssuschemeng.0c05771

Suggitt, A.J., Wilson, R.J., Isaac, N.J., Beale, C.M., Auffret, A.G., August, T., Maclean, I.M.D. et al. 2018. Extinction risk from climate change is reduced by microclimatic buffering. Nature Climate Change, 8(8): 713-717.

Sun, Y., Ding, J., Siemann, E. y Keller, S.R. 2020. Biocontrol of invasive weeds under climate change: Progress, challenges, and management implications. Current Opinion in Insect Science, 38: 72-78.

Sutherst, R.W. 1991. Pest risk analysis and the greenhouse effect. Review of Agricultural Entomology, 79: 1177-1187.

Sutherst, R.W., Baker, R.H.A., Coakley, S.M., Harrington, R., Kriticos, D.J. y Scherm, H. 2007. Pest under global change – meeting your future landlords? En J.G. Canadell, D.E. Pataki & L.F. Pitelka, eds. Terrestrial ecosystems in a changing world. Berlin, Springer, págs. 211-226.

Sutherst, R.W., Constable, F., Finlay, K.J., Harrington, R., Luck, J. y Zalucki, M.P. 2011. Adapting to crop pest and pathogen risks under a changing climate. WIREs Climate Change, 2: 220-237.

Sutherst, R.W., Maywald, G.F. y Russell, B.L. 2000. Estimating vulnerability under global change: Modular modelling of pests. Agriculture, Ecosystems & Environment, 82(1-3): 303-319.

Taylor, R.A.J., Herms, D.A., Cardina, J. y Moore, R.H. 2018. Climate change and pest management: Unanticipated consequences of trophic dislocation. Agronomy, 8(1): 7 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.3390/agronomy8010007

Tenllado, F., y Canto, T. 2020. Effects of a changing environment on the defences of plants to viruses. Current Opinion in Virology, 42: 40-46.

Thomas J.E., Wood, T.A., Gullino, M.L. y Ortu, G. 2017. Diagnostic tools for plant biosecurity. En M.L. Gullino, J. Stack, J. Fletcher & J. Mumford, eds. Practical tools for plant and food biosecurity, págs. 209-226. Dordrecht, The Netherlands, Springer.

Thomas-Sharma, S., Abdurahman, A., Ali, S., Andrade-Piedra, J., Bao, S., Charkowski, A., Crook, D. et al. 2016. Seed degeneration in potato: The need for an integrated seed health strategy to mitigate the problem in developing countries. Plant Pathology, 65: 3-16.

Thomson, L.J., MacFadyen, S. y Hoffmann, A.A. 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52: 296-306.

Torney, F., Trewyn, B.G., Lin, V.S.-Y. y Wang, K. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5): 295-300.

Torresen, K.S., Fykse, H., Rafoss, T. y Gerowitt, B. 2020. Autumn growth of three perennial weeds at high latitude benefits from climate change. Global Change Biology, 26: 2561-2572.

Trebicki, P. 2020. Climate change and plant virus epidemiology. Virus Research, 286: 198059. https://doi.org/10.1016/j.virusres.2020.198059

Trebicki, P. y Finlay, K. 2019. Pests and diseases under climate change; its threat to food security. En S.S. Yadav, R.J. Redden, J.L. Hatfield, A.W. Ebert & D. Hunter, eds. Food security and climate change, págs. 229-249. New York, John Wiley & Sons Inc.

Tresson, P., Brun, L., de Cortazar-Atauri, I.G., Audergon, J.M., Buléon, S., Chenevotot, H., Combe, F. et al. 2020. Future development of apricot blossom blight under climate change in Southern France. European Journal of Agronomy, 112: 125960.

Tylka, G.L. y Marett, C.C. 2014. Distribution of the soybean cyst nematode, Heterodera glycines, in the United States and Canada: 1954 to 2014. Plant Health Progress, 15: 85-87.

Valerio, M., Tomecek, M.B., Lovelli, S. y Ziska, L.H. 2011. Quantifying the effect of drought on carbon dioxide-induced changes in competition between a C3 crop and a C4 weed (Amaranthus retroflexus). Weed Research, 51: 591-600.

Van der Fels-Klerx, H.J., Liu, C. y Battilani, P. 2016. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin Journal, 9: 717-726.

Van der Putten, W.H., Macel, M. y Visser, M.E. 2010. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365: 2025-2034.

Vilà, M., Beaury, E.M., Blumenthal, D.M., Bradley, B.A., Early, R., Laginhas, B.B., Trillo, A., Dukes, J.S., Sorte, C.J.B. y Ibáñez, I. 2021. Understanding the combined impacts of weeds and climate change on crops. Environmental Research Letters, 16: 034043.

Viswanath, K., Sinha, P., Kumar, S.N., Sharma, T., Saxena, S., Panjwani, S., Pathak, H. y Shukla, S.M. 2017. Simulation of leaf blast infection in tropical rice agro-ecology under climate change scenario. Climatic Change, 142: 155-167.

Wan, J.Z. y Wang, C.J. 2019. Contribution of environmental factors toward distribution of ten most dangerous weed species globally. Applied Ecology and Environmental Research, 17: 14835-14846.

Wang, C., Hawthorne, D., Qin, Y., Pan, X., Li, Z. y Zhu, S. 2017. Impact of climate and host availability on future distribution of Colorado potato beetle. Scientific Reports, 7: 4489 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1038/s41598-017-04607-7

Wang, C., Zhang, X., Pan, X., Li, Z. y Zhu, S. 2015. Greenhouses: Hotspots in the invasive network for alien species. Biodiversity and Conservation, 24: 1825-1829.

Wang, R., Li, Q., He, S., Liu, Y., Wang, M. y Jiang, G. 2018. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE, 13: e0192153 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0192153

Watt, M.S., Kriticos, D.J., Lamoureaux, S.L. y Bourdot, G.W. 2011. Climate change and the potential global distribution of serrated tussock (Nassella trichotoma). Weed Science, 59: 538-545.

Wattanapongsiri, A. 1966. A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Department of Agriculture Science Bulletin. Bangkok, Department of Agriculture Science.

Wells, J.M., Raju, B.C., Hung, H.Y., Weisburg, W.G., Mandelco-Paul, L. y Brenner, D.J. 1987. Xylella fastidiosa gen. nov., sp. nov.: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. International Journal of Systematic Bacteriology, 37(2): 136-143.

West, A.M., Kumar, S., Wakie, T., Brown, C.S., Stohlgren, J., Laituri, M. y Bromberg, J. 2015. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in Rocky Mountain National Park. PLoS ONE, 10: e0117893 [en línea]. [Acceso: 29 de diciembre de 2020]. https://doi.org/10.1371/journal.pone.0117893

Wilkinson, K., Grant, W.P., Green, L.E., Hunter, S., Jeger, M.J., Lowe, P., Medley, G.F. et al. 2011. Infectious diseases of animals and plants: An interdisciplinary approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 366: 1933-1942.

Williams, A.L., Wills, K.E., Janes, J.K., Van der Schoor, J.K., Newton, P.C.D. y Hovenden, M.J. 2007. Warming and free-air CO2 enrichment alter demographics in four co-occurring grassland species. New Phytologist, 176: 365-374.

Williamson, V.M. y Gleason, C.A. 2003. Plant–nematode interactions. Current Opinion in Plant Biology, 6: 327-333.

Wolfe, D.W., Ziska, L., Petzoldt, C., Seaman, A., Chase, L. y Hayhoe, K. 2008. Projected change in climate thresholds in the Northeastern U.S.: Implications for crops, pests, livestock, and farmers. Mitigation and Adaptation Strategies for Global Change, 13: 555-575.

Woolhouse, M.E.J., Webster, J.P., Domingo, E., Charlesworth, B. y Levin, B.R. 2002. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics, 32 (4): 569-577.

Wright, D., Hammond, N., Thomas, G., MacLeod, B. y Abbott, L.K. 2018. The provision of pest and disease information using Information Communication Tools (ICT); an Australian example. Crop Protection, 103: 20-29.

Wu, E., Wang, Y.-P., Yahuza, L., He, M.-H., Sun, D.-L., Huang, Y.-M., Liu, Y.-C., Yang, L.N., Zhu, W. y Zhan, J. 2020. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evolutionary Applications, 13(4): 768-780.

Wuebbles, D.J. y Hayhoe, K. 2002. Atmospheric methane and global change. Earth-Science Reviews, 57: 177-210.

Yadav, S., Stow, A.J. y Dudaniec, R. 2019. Detection of environmental and morphological adaptation despite high landscape genetic connectivity in a pest grasshopper (Phaulacridium vittatum). Molecular Ecology, 28: 3395-3412.

Zacarias, D.A. 2020. Global bioclimatic suitability for the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), and potential co-occurrence with major host crops under climate change scenarios. Climatic Change, 161: 555-566.

Zhao, X., Cui, H., Wang, Y., Sun, C., Cui, B. y Zeng, Z. 2018. Development strategies and prospects of nano-based smart pesticide formulation. Journal of Agricultural and Food Chemistry, 66(26): 6504-651.

Ziska, L.H., Blumenthal, D.M. y Franks, S.J. 2019. Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management, 12: 79-88.

Ziska, L.H., Epstein, P.R. y Schlesinger, W.H. 2009. Rising CO2, climate change, and public health: Exploring the links to plant biology. Environmental Health Perspectives, 117: 155-158.