UN Enviroment Programme

Chapter 13. Actions to tackle soil pollution


Abreu, M.M., Bech, J., Carvalho, L.C. & Santos, E. 2014. Potential hazardous elements fluxes from soil to plants and the food chain. In C. Bini & J. Bech, eds. PHEs, Environment and Human Health, pp. 309–337. Dordrecht, Springer Netherlands. (also available at http://link.springer.com/10.1007/978-94-017-8965-3_8).

Ashraf, M.Y., Ashraf, M., Mahmood, K., Akhter, J., Hussain, F. & Arshad, M. 2010. Phytoremediation of Saline Soils for Sustainable Agricultural Productivity. In M. Ashraf, M. Ozturk & M.S.A. Ahmad, eds. Plant Adaptation and Phytoremediation, pp. 335–355. Dordrecht, Springer Netherlands. (also available at https://doi.org/10.1007/978-90-481-9370-7_15).

ASTM International. 2016. ASTM E2893 - 16e1, Standard Guide for Greener Cleanups., p. 30. No. ASTM E2893-16e1. West Conshohocken, PA, ASTM International. (also available at http://www.astm.org/cgi-bin/resolver.cgi?E2893-16E1).

Atagana, H.I. 2004. Bioremediation of creosote-contaminated soil in South Africa by landfarming. Journal of Applied Microbiology, 96: 510–520. https://doi.org/10.1111/j.1365-2672.2003.02168.x

Atagana, H.I., Haynes, R.J. & Wallis, F.M. 2003. Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation, 14: 297–307. https://doi.org/10.1023/a:1024730722751

Aven, T. 2016. Risk assessment and risk management: Review of recent advances on their foundation. European Journal of Operational Research, 253(1): 1–13. https://doi.org/10.1016/j.ejor.2015.12.023

Bocini, P., Cozzani, N. & Falconi, M. 2017. Torrente Ritorto in Colline Metallifere (Tuscany): constructed wetlands for remediation of acid mine drainage, Italy. In S. Peláez Sánchez & A. Payá Pérez, eds. European achievements in soil remediation and brownfield redevelopment: a report of the European Information and Observation Network’s National Reference Centres for Soil (Eionet NRC Soil)., pp. 163–171. European Commission. (also available at https://publications.jrc.ec.europa.eu/repository/bitstream/JRC102681/kj0217891enn.pdf).

Bozek, F., Komar, A., Dvorak, J. & Obermajer, J. 2010. Implementation of best available techniques in the sanitation of relict burdens. Clean Technologies and Environmental Policy, 12(1): 9–18. https://doi.org/10.1007/s10098-009-0217-4

Brusseau, M.L., Pepper, I.L. & Gerba, C.P., eds. 2019. Environmental and Pollution Science. Third edition. Elsevier. 662 pp. (also available at https://linkinghub.elsevier.com/retrieve/pii/C20170004809).

Chachina, S.B., Voronkova, N.A. & Baklanova, O. 2016. Biological Remediation of the Petroleum and Diesel Contaminated Soil with Earthworms Eisenia Fetida. Procedia Engineering, 152: 122–133. https://doi.org/10.1016/j.proeng.2016.07.642

Chempolis. 2019. Indian-European joint venture for the first commercial scale cellulosic biorefinery in Asia. Paper presented at, 3 December 2019. [Cited 2 July 2020]. https://ec.europa.eu/info/sites/info/files/10_juha_anttila.pdf

Chen, S.-Y. & Lin, P.-L. 2010. Optimization of operating parameters for the metal bioleaching process of contaminated soil. Separation and Purification Technology, 71(2): 178–185. https://doi.org/10.1016/j.seppur.2009.11.018

Cooke, R.J. 2015. Independent expert evaluation of three pilot/laboratory scale technology demonstrations on dioxin contaminated soil destruction from the Bien Hoa airbase in Viet Nam., p. 135

CRC CARE. 2019. Introduction to the National Remediation Framework., p. 21. Newcastle, Australia, Cooperative Research Centre for Contamination Assessment and Remediation of the Environment. (also available at https://www.remediationframework.com.au/download-nrf-guidelines/1-nrf-intro/file).

Denyes, M.J., Rutter, A. & Zeeb, B.A. 2013. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime. Environmental Pollution, 182: 201–208. https://doi.org/10.1016/j.envpol.2013.07.016

Dermont, G., Bergeron, M., Mercier, G. & Richer-Laflèche, M. 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1): 1–31. https://doi.org/10.1016/j.jhazmat.2007.10.043

Di Gregorio, S., Gentini, A., Siracusa, G., Becarelli, S., Azaizeh, H. & Lorenzi, R. 2014. Phytomediated Biostimulation of the Autochthonous Bacterial Community for the Acceleration of the Depletion of Polycyclic Aromatic Hydrocarbons in Contaminated Sediments. BioMed Research International, 2014: 1–11. https://doi.org/10.1155/2014/891630

Di Gregorio, S., Siracusa, G., Becarelli, S., Mariotti, L., Gentini, A. & Lorenzi, R. 2016. Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes. Environmental Science and Pollution Research, 23(11): 10587–10594. https://doi.org/10.1007/s11356-015-5944-y

Elgh Dalgren, K., Waara, S., Düker, A., von Kronhelm, T. & van Hees, P.A.W. 2009. Anaerobic Bioremediation of a Soil With Mixed Contaminants: Explosives Degradation and Influence on Heavy Metal Distribution, Monitored as Changes in Concentration and Toxicity. Water, Air, and Soil Pollution, 202(1): 301–313. https://doi.org/10.1007/s11270-009-9977-z

Environmental Decontamination Ltd. 2020. MCD treatment of dioxin contaminated soil - Bien Hoa Airbase, Viet Nam., p. 28

European Commission. 2019. Landfilling of waste. In: European Commission [online]. [Cited 1 July 2020]. https://ec.europa.eu/environment/waste/landfill_index.htm

FAO. 2019. Recarbonization of global soils. Rome, Italy. 12 pp. (also available at http://www.fao.org/documents/card/en/c/ca6522en/).

FAO. 2020a. Environmental Management Tool Kit for Obsolete Pesticides Volume 5. FAO Pesticide Disposal Series No. 17. Rome, FAO. 132 pp. (also available at http://www.fao.org/3/ca7480en/ca7480en.pdf).

FAO. 2020b. Environmental Management Tool Kit for Obsolete Pesticides Volume 6. FAO Pesticide Disposal Series No. 18. Rome, FAO. 82 pp. (also available at http://www.fao.org/3/ca7499en/ca7499en.pdf).

FAO. forthcoming. Technical Guidelines for Assessing, Mapping, Monitoring and Reporting Soil Pollution. Food and Agriculture Organization of the United Nations.

FAO. forthcoming. Online Database on Best Management and Remediation Techniques for Polluted Soils. Food and Agriculture Organization of the United Nations. http://www.fao.org/global-soil-partnership/areas-of-work/soil-pollution/en/

FAO, ITPS, GSBI & EC-JRC. forthcoming. State of Knowledge on Soil Biodiversity: Status, Challenges, and Potentialities. Rome, Italy, Food And Agriculture Organization of the United Nations, ntergovernmental Technical Panel on Soils (ITPS), the Global Soil Partnership, the Global Soil Biodiversity Initiative, and the Joint Research Centre of the European Commission. (also available at https://www.globalsoilbiodiversity.org/global-soil-biodiversity-report).

Federal Remediation Technology Roundtable (FRTR). 2007. Remediation technologies screening matrix and reference guide. In: Remediation technologies screening matrix and reference guide [online]. [Cited 8 March 2020]. https://frtr.gov/scrntools.htm

Gavaskar, A., Tatar, L. & Condit, W. 2005. Cost and Performance Report Nanoscale Zero-Valent Iron Technologies for Source Remediation: Fort Belvoir, VA, Defense Technical Information Center. (also available at http://www.dtic.mil/docs/citations/ADA446916).

Germaine, K.J., Byrne, J., Liu, X., Keohane, J., Culhane, J., Lally, R.D., Kiwanuka, S., Ryan, D. & Dowling, D.N. 2015. Ecopiling: a combined phytoremediation and passive biopiling system for remediating hydrocarbon impacted soils at field scale. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00756

Ghosh, M. 2005. A review on phytoremediati on of heavy metals and utilization of its byproducts. Applied Ecology and Environmental Research, 3(1): 1–18. https://doi.org/10.15666/aeer/0301_001018

Government of Canada, P.S. and P.C. 2017a. Fact sheet on the decontamination technology Biosparging [online]. Last Modified: 2020-06-17. [Cited 17 June 2020]. https://gost.tpsgc-pwgsc.gc.ca/tfs.aspx?ID=4&lang=eng

Government of Canada, P.S. and P.C. 2017b. Fact sheet: Dehalogenation—ex situ. In: Government of Canada - Environment and Natural Resources [online]. Last Modified: 2020-06-30. [Cited 30 June 2020]. https://gost.tpsgc-pwgsc.gc.ca/tfs.aspx?ID=46&lang=eng

GRS Valtech. undated. Industrial site remediation in Serbia

Heaton, A.C.P., Rugh, C.L., Wang, N. & Meagher, R.B. 1998. Phytoremediation of Mercury- and Methylmercury-Polluted Soils Using Genetically Engineered Plants. Journal of Soil Contamination, 7(4): 497–509. https://doi.org/10.1080/10588339891334384

Hijamutiti, M., Hasheela, I., Leonard, L., Shaningwa, O. & Mupewa, I. 2014. Soil contamination studies around the Berg Aukas abandoned mine. Paper presented at 7th Conference of the African Association of Women in Geosciences, 3 November 2014, Windhoek, Namibia. [Cited 16 April 2020]. http://www.mme.gov.na/gsn/CAAWG7/presentations/Thursday/Hijamutiti_Soil%20contamination%20studies%20around%20the%20Berg%20Aukas%20Abandoned.pdf

Holm-Nielsen, J.B. & Ehimen, E.A. 2014. Biorefinery plant design, engineering and process optimisation. Advances in Biorefineries, pp. 89–111. Elsevier. (also available at https://linkinghub.elsevier.com/retrieve/pii/B9780857095213500041).

Huang, X.-D., El-Alawi, Y., Gurska, J., Glick, B.R. & Greenberg, B.M. 2005. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchemical Journal, 81(1): 139–147. https://doi.org/10.1016/j.microc.2005.01.009

ISO. 2017. ISO 18504:2017 Soil quality — Sustainable remediation. International Organization for Standarization. [Cited 1 October 2020]. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/26/62688.html

Karn, B., Kuiken, T. & Otto, M. 2009. Nanotechnology and in Situ Remediation: A Review of the Benefits and Potential Risks. Environmental Health Perspectives, 117(12): 1813–1831. https://doi.org/10.1289/ehp.0900793

Khan, F.I., Husain, T. & Hejazi, R. 2004. An overview and analysis of site remediation technologies. Journal of Environmental Management, 71(2): 95–122. https://doi.org/10.1016/j.jenvman.2004.02.003

Kloke, A., Sauerbeck, D.R. & Vetter, H. 1984. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. Changing metal cycles and human health, pp. 113–141. Springer.

Kubal, M., Fairweather, J., Crain, P. & Kuraš, M. 2004. Treatment of solid waste polluted by polychlorinated contaminants (pilot-scale demonstration). Waste management and the environment II, pp. 13–23. Southampton, UK ; Boston, WIT Press.

Kumar, A., Bisht, B.S., Joshi, V.D. & Dhewa, T. 2011. Review on Bioremediation of Polluted Environment: A Management Tool. International Journal of Environmental Sciences, pp. 1079–1093. (also available at http://www.ipublishing.co.in/jesvol1no12010/EIJES2061.pdf).

Kumar, B., Smita, K. & Cumbal Flores, L. 2017. Plant mediated detoxification of mercury and lead. Arabian Journal of Chemistry, 10: S2335–S2342. https://doi.org/10.1016/j.arabjc.2013.08.010

Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K. & Naidu, R. 2016. Ex-Situ Remediation Technologies for Environmental Pollutants: A Critical Perspective. In P. de Voogt, ed. Reviews of Environmental Contamination and Toxicology Volume 236, pp. 117–192. Reviews of Environmental Contamination and Toxicology. Cham, Springer International Publishing. (also available at https://doi.org/10.1007/978-3-319-20013-2_2).

Kurion Veolia. 2016. Kurion Technologies for radioactive waste management. Paper presented at, September 2016.

Leombruni, A., Mueller, M., Collina, L., Avogadri, M., Trezzi, A., Trefiletti, P., Consonni, M. & Di Carlo, C. 2019. Full-scale application of EHC® liquid technology for the ISCR and ERD treatment of an aquifer contaminated with tetrachloromethane and chloroform. Geologia dell’Ambiente, Supplemento(2/2019): 174–180. (also available at https://www.sigeaweb.it/documenti/gda-supplemento-2-2019.pdf).

Li, Y., Zhang, J., Miao, W., Wang, H. & Wei, M. 2015. Disposal of historically contaminated soil in the cement industry and the evaluation of environmental performance. Chemosphere, 134: 279–285. https://doi.org/10.1016/j.chemosphere.2015.04.048

Liu, Y.-G., Zhou, M., Zeng, G.-M., Li, X., Xu, W.-H. & Fan, T. 2007. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. Journal of Hazardous Materials, 141(1): 202–208. https://doi.org/10.1016/j.jhazmat.2006.06.113

Lucas García, J.A., Grijalbo, L., Ramos, B., Fernández-Piñas, F., Rodea-Palomares, I. & Gutierrez-Mañero, F.J. 2013. Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere, 90(11): 2654–2661. https://doi.org/10.1016/j.chemosphere.2012.11.042

Luo, J., Wu, J., Huo, S., Qi, S. & Gu, X. 2018. A real scale phytoremediation of multi-metal contaminated e-waste recycling site with Eucalyptus globulus assisted by electrical fields. Chemosphere, 201: 262–268. https://doi.org/10.1016/j.chemosphere.2018.03.018

Ma, Y., Oliveira, R.S., Freitas, H. & Zhang, C. 2016. Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00918

Mapani, B., Ellmies, R., Kamona, F., Krˇíbek, B., Majer, V., Knésl, I., Pašava, J., Mufenda, M. & Mbingeneeko, F. 2010. Potential human health risks associated with historic ore processing at Berg Aukas, Grootfontein area, Namibia. Journal of African Earth Sciences, 58: 634–647. https://doi.org/10.1016/j.jafrearsci.2010.07.007

Margesin, R., Zimmerbauer, A. & Schinner, F. 2000. Monitoring of bioremediation by soil biological activities. Chemosphere, 40(4): 339–346. https://doi.org/10.1016/s0045-6535(99)00218-0

McGregor, R. 2018. In Situ treatment of PFAS-impacted groundwater using colloidal activated Carbon. Remediation Journal, 28(3): 33–41. https://doi.org/10.1002/rem.21558

McMahon Services. undated. Project Profile: Penrice Soda Soil Bioremediation., p. 2. (also available at https://www.mcmservices.com.au/projects/penrice-soda-soil-bioremediation/).

Ministry of Environment & Korea Environment Corporation. undated. Soil risk reduction project at vegetation area including pine forest surrounding ex- Janghang smelter

Mohanty, M. 2016. Post-Harvest Management of Phytoremediation Technology. Journal of Environmental & Analytical Toxicology, 6(5): 1–8. https://doi.org/10.4172/2161-0525.1000398

Mulligan, C.N. & Yong, R.N. 2004. Natural attenuation of contaminated soils. Environment International, 30(4): 587–601. https://doi.org/10.1016/j.envint.2003.11.001

NICOLE & Common Forum. 2013. Joint position statement on risk-informed and sustainable remediation. [Cited 11 June 2020]. https://nicole.org/uploadedfiles/2013%20NICOLE-Common-Forum-Joint-Position-Sustainable-Remediation.pdf

O’Connor, D., Peng, T., Zhang, J., Tsang, D.C.W., Alessi, D.S., Shen, Z., Bolan, N.S. & Hou, D. 2018. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of The Total Environment, 619–620: 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132

Otto, M., Floyd, M. & Bajpai, S. 2008. Nanotechnology for site remediation. Remediation Journal, 19(1): 99–108. https://doi.org/10.1002/rem.20194

Pavel, L. & Gavrilescu, M. 2008. Overview of ex situ decontamination techniques for soil cleanup. Environmental Engineering and Management Journal, 7: 815–834.

Pearl, M. 2007. Understanding Soil Washing, technical bulletin TB13. CL:AIRE (Contaminated Land: Applications in Real Environments). [Cited 29 June 2020]. https://www.claire.co.uk/component/phocadownload/category/17-technical-bulletins?download=54:technicalbulletin13

Pearlman, L. 1999. Subsurface Containment and Monitoring Systems: Barriers and Beyond Overview Report., p. 66. United States Environmental Protection Agency.

Pidlisnyuk, V., Erickson, L., Stefanovska, T., Popelka, J., Hettiarachchi, G., Davis, L. & Trögl, J. 2019. Potential phytomanagement of military polluted sites and biomass production using biofuel crop miscanthus x giganteus. Environmental Pollution, 249: 330–337. https://doi.org/10.1016/j.envpol.2019.03.018

Pure Earth. 2017. Globel Lead Program: proven strategies to remediate lead pollution and reduce public health risks., p. 10. (also available at pureearth.org/wp-content/uploads/2017/10/ http://www.pureearth.org/wp-content/uploads/2017/10/Pure-Earth-Global-Lead-Program-10.30.17.pdf).

Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F. & Kim, K.-H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125: 365–385. https://doi.org/10.1016/j.envint.2019.01.067

Reeves, R.D., Baker, A.J.M., Jaffré, T., Erskine, P.D., Echevarria, G. & Ent, A. van der. 2018. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2): 407–411. https://doi.org/10.1111/nph.14907

Regenesis. undated. Enhanced Anaerobic Bioremediation | REGENESIS. In: REGENESIS Remediation Solutions [online]. [Cited 16 March 2020]. https://regenesis.com/en/site-remediation-solutions/enhanced-anaerobic-bioremediation/

Regenesis Inc. 2019. PFAS at non-detect after a year, following pilot study case study: Michigan Dept. of Military and Veteran Affairs employs PlumeStop barrier at Grayling Army Airfield. Regenesis Inc. www.regenesis.com

Rehman, F. 2020. Fate of trace elements in biomass refining.

Rizzo, A.C. de L., dos Santos, R. da M., dos Santos, R.L.C., Soriano, A.U., da Cunha, C.D., Rosado, A.S., Sobral, L.G. dos S. & Leite, S.G.F. 2010. Petroleum-contaminated soil remediation in a new solid phase bioreactor. Journal of Chemical Technology & Biotechnology, 85(9): 1260–1267. https://doi.org/10.1002/jctb.2425

Rizzo, E., Bardos, P., Pizzol, L., Critto, A., Giubilato, E., Marcomini, A., Albano, C., Darmendrail, D., Döberl, G., Harclerode, M., Harries, N., Nathanail, P., Pachon, C., Rodriguez, A., Slenders, H. & Smith, G. 2016. Comparison of international approaches to sustainable remediation. Journal of Environmental Management, 184: 4–17. https://doi.org/10.1016/j.jenvman.2016.07.062

Robinson, B.H., Bañuelos, G., Conesa, H.M., Evangelou, M.W.H. & Schulin, R. 2009. The Phytomanagement of Trace Elements in Soil. Critical Reviews in Plant Sciences, 28(4): 240–266. https://doi.org/10.1080/07352680903035424

Salt, D.E., Blaylock, M., Kumar, N.P., Dushenkov, V., Ensley, B.D., Chet, I. & Raskin, I. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology (Nature Publishing Company), 13(5): 468–474. https://doi.org/10.1038/nbt0595-468

Shin, Y.-J., Park, S.-M., Yoo, J.-C., Jeon, C.-S., Lee, S. & Baek, K. 2015. A new approach for remediation of As-contaminated soil: ball mill-based technique. Environmental Science and Pollution Research, 23. https://doi.org/10.1007/s11356-015-5896-2

Šimonovičová, A., Peťková, K., Jurkovič, Ľ., Ferianc, P., Vojtková, H., Remenár, M., Kraková, L., Pangallo, D., Hiller, E. & Čerňanský, S. 2016. Autochthonous Microbiota in Arsenic-Bearing Technosols from Zemianske Kostoľany (Slovakia) and Its Potential for Bioleaching and Biovolatilization of Arsenic. Water, Air, & Soil Pollution, 227(9): 336. https://doi.org/10.1007/s11270-016-3038-1

Singh, A. & Ward, O.P., eds. 2004. Applied Bioremediation and Phytoremediation. Soil Biology. Berlin Heidelberg, Springer-Verlag. (also available at https://www.springer.com/gp/book/9783540210207).

Sinha, R., Bharambe, G. & Ryan, D. 2008. Converting wasteland into wonderland by earthworms - A low-cost nature’s technology for soil remediation: A case study of vermiremediation of PAHs contaminated soil. Environmentalist, 28: 466–475. https://doi.org/10.1007/s10669-008-9171-7

Siracusa, G., Becarelli, S., Lorenzi, R., Gentini, A. & Di Gregorio, S. 2017. PCB in the environment: Bio-based processes for soil decontamination and management of waste from the industrial production of Pleurotus ostreatus. New biotechnology, 39. https://doi.org/10.1016/j.nbt.2017.08.011

Song, Y., Kirkwood, N., Maksimović, Č., Zheng, X., O’Connor, D., Jin, Y. & Hou, D. 2019. Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Science of The Total Environment, 663: 568–579. https://doi.org/10.1016/j.scitotenv.2019.01.347

Stablex Canada Inc. 2020. Stablex process [online]. [Cited 1 July 2020]. http://www.stablex.com/en/content/process/7-acceptable-wastes.html

Sumikura, M. & Shiiba, K. 2016. Insolubilization of hexavalent chromium in highly alkaline cement sludge by anaerobic bioremediation. Bioremediation Journal, 20(3): 209–216. https://doi.org/10.1080/10889868.2016.1148008

SuRF-UK. 2010. A Framework for Assessing the Sustainability of Soil and Groundwater Remediation. Contaminated Land: Applications in Real Environments (CL:AIRE),. 63 pp. (also available at https://www.claire.co.uk/projects-and-initiatives/surf-uk/20-framework-and-guidance/89-framework-document).

Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011: 31. https://doi.org/10.1155/2011/939161

Terratherm Inc. undated. Steam Enhanced Extraction at the Beede Waste Oil Superfund Site - Case Study

Terratherm Inc. undated. Teterboro Landing Brownfield Redevelopment - Case Study World’s Largest In Situ Thermal Desorption Site Teterboro, NJ

Thatoi, H., Das, S., Mishra, J., Rath, B.P. & Das, N. 2014. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management, 146: 383–399. https://doi.org/10.1016/j.jenvman.2014.07.014

The Canadian Council of Ministers of the Environment. 2007. Soil Quality Index 1.0: Technical Report., p. 10. (also available at https://www.ccme.ca/files/Resources/calculators/soqi_tech_report_e_1.1.pdf).

The Canadian Council of Ministers of the Environment. 2014. CCME summary table of environmnetal quality standards. In: The Canadian Council of Ministers of the Environment [online]. [Cited 2 July 2020]. http://st-ts.ccme.ca/en/index.html

Toichuev, R.M., Zhilova, L.V., Makambaeva, G.B., Payzildaev, T.R., Pronk, W., Bouwknegt, M. & Weber, R. 2017. Assessment and review of organochlorine pesticide pollution in Kyrgyzstan. Environmental Science and Pollution Research, 25(32): 31836–31847. https://doi.org/10.1007/s11356-017-0001-7

Tratnyek, P. & Johnson, R. 2006. Nanotechnologies for Environmental Cleanup. Nano Today, 1: 44–48. https://doi.org/10.1016/S1748-0132(06)70048-2

Tsitonaki, A., Petri, B., Crimi, M., Mosbæk, H., Siegrist, R.L. & Bjerg, P.L. 2010. In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Critical Reviews in Environmental Science and Technology, 40(1): 55–91. https://doi.org/10.1080/10643380802039303

United States Environmental Protection Agency. 2010. Reference guide to non-combustion technologies for remediation of persistent organic pollutants in soil, second edition – 2010., pp. 35–38. United States Environmental Protection Agency.

US EPA. 2019a. Remediation technologies for cleaning up contaminated sites. In: US EPA [online]. [Cited 8 March 2020]. https://www.epa.gov/remedytech/remediation-technologies-cleaning-contaminated-sites

US EPA. 2019b. RE-Powering America’s Land Initiative: Tracking Completed Projects on Contaminated Lands, Landfills, and Mine Sites. US EPA. https://www.epa.gov/sites/production/files/2019-10/documents/re_tracking_matrix_final_508_100219.pdf

US EPA. 2020. CLU-IN technologies: Bioremediation overview. In: CLU-IN [online]. [Cited 15 June 2020]. https://clu-in.org/techfocus/default.focus/sec/Bioremediation/cat/Anaerobic_Bioremediation_(Direct)/

US EPA, O. 2014. RE-Powering America’s Land. In: US EPA [online]. [Cited 12 March 2020]. https://www.epa.gov/re-powering

US EPA, O. 2015. In Situ Treatment Technologies for Contaminated Soil: Engineering Forum Issue Paper. In: US EPA [online]. [Cited 16 March 2020]. https://www.epa.gov/remedytech/situ-treatment-technologies-contaminated-soil-engineering-forum-issue-paper

Van der Ent, A., Echevarria, G., Baker, A.J.M. & Morel, J.L., eds. 2018. Agromining: farming for metals: extracting unconventional resources using plants. Mineral Resource Reviews. Cham, Springer International Publishing. 312 pp. (also available at http://link.springer.com/10.1007/978-3-319-61899-9).

Vander Linden, L. & McCreery, I. 2013. Thermal Desorption. In: Geoengineer [online]. [Cited 1 October 2020]. https://www.geoengineer.org/education/web-class-projects/cee-549-geoenvironmental-engineering-winter-2013/assignments/thermal-desorption

Veolia Nuclear Solutions. 2017. Soil remediation - GeoMelt waste treatment technology. Paper presented at, March 2017.

Vidonish, J.E., Zygourakis, K., Masiello, C.A., Sabadell, G. & Alvarez, P.J.J. 2016. Thermal Treatment of Hydrocarbon-Impacted Soils: A Review of Technology Innovation for Sustainable Remediation. Engineering, 2(4): 426–437. https://doi.org/10.1016/J.ENG.2016.04.005

Vijgen, J., de Borst, B., Weber, R., Stobieck, T. & Forter, M. 2018. HCH and Lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue. Paper presented at Global symposium on Soil Pollution, 2 May 2018, FAO - Rome, Italy.

Vijgen, J. & Egenhofer, C. 2009. Obsolete (lethal) Pesticides, a ticking time bomb and why we have to act now

Vithanage, M., Dabrowska, B.B., Mukherjee, A.B., Sandhi, A. & Bhattacharya, P. 2012. Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environmental chemistry letters, 10(3): 217–224.

Weber, R., Bell, L., Watson, A., Petrlik, J., Paun, M.C. & Vijgen, J. 2019. Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health. Environmental Pollution, 249: 703–715. https://doi.org/10.1016/j.envpol.2019.03.066

Weber, R., Herold, C., Hollert, H., Kamphues, J., Blepp, M. & Ballschmiter, K. 2018. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environmental Sciences Europe, 30(1): 42.

Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L. & Ruan, C. 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1–3): 1–8. https://doi.org/10.1016/j.jhazmat.2009.09.113

Yan, D., Peng, Z., Karstensen, K.H., Ding, Q., Wang, K. & Wang, Z. 2014. Destruction of DDT wastes in two preheater/precalciner cement kilns in China. The Science of the Total Environment, 476–477: 250–257. https://doi.org/10.1016/j.scitotenv.2014.01.009

Younis, U., Qayyum, M.F., Shah, M.H.R., Danish, S., Shahzad, A.N., Malik, S.A. & Mahmood, S. 2015. Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar-amended sewage-irrigated contaminated soil. Journal of Plant Nutrition and Soil Science, 178(2): 209–217. https://doi.org/10.1002/jpln.201400325

Zero Waste South Australia. 2013. Management of Contaminated Soils in South Australia., p. 117. (also available at https://www.greenindustries.sa.gov.au/publications-management-of-contaminated-soils).