Soils for nutrition: state of the art
Soils for nutrition: state of the art

General coordination
Ronald Vargas Rojas, FAO-GSP Secretary

Managing editors
Miguel Taboada, Universidad de Buenos Aires, Argentina
Vinisa Saynes Santillán, FAO-GSP Secretariat
Carolina Cardoso Lisboa, FAO-GSP Secretariat
Carolina Olivera, FAO-GSP Secretariat

Reviewers
Natalia Rodriguez Eugenio, FAO-GSP Secretariat
Dan Pennock
Silvia Pioli, FAO-GSP Secretariat
Maria Cruz Ferro Vazquez, FAO-GSP Secretariat
Yuxin Tong, FAO-GSP Secretariat

Edition and publication
Isabelle Verbeke, FAO-GSP Secretariat

Art direction
Matteo Sala, FAO-GSP Secretariat

Food and Agriculture Organization of the United Nations
Rome, 2022
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>VI</td>
</tr>
<tr>
<td>Acronyms and abbreviations</td>
<td>VIII</td>
</tr>
<tr>
<td>Chemical formulae and elements</td>
<td>IX</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1. Status and trends of global soil nutrient budget</td>
<td>2</td>
</tr>
<tr>
<td>1.1. Soils as a source of nutrients</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Soil fertility loss and crop production</td>
<td>17</td>
</tr>
<tr>
<td>1.3. Assessing, mapping, and monitoring soil fertility: towards a</td>
<td>19</td>
</tr>
<tr>
<td>global soil nutrient budget.</td>
<td></td>
</tr>
<tr>
<td>2. The role of soil fertility on crop, animal, and human nutrition</td>
<td>23</td>
</tr>
<tr>
<td>2.1. Soil fertility and human health</td>
<td>23</td>
</tr>
<tr>
<td>2.2. Soil fertility and crop nutrition</td>
<td>28</td>
</tr>
<tr>
<td>2.3. Strategies to increase soil macronutrient and micronutrient</td>
<td>31</td>
</tr>
<tr>
<td>availability and the role of fertilizers in crop production and nutrition</td>
<td></td>
</tr>
<tr>
<td>3. Impacts of misuse and overuse of nutrients on environmental</td>
<td>33</td>
</tr>
<tr>
<td>pollution and climate change</td>
<td></td>
</tr>
<tr>
<td>3.1. Nutrient imbalances: a disturbance in the global nutrient budget</td>
<td>33</td>
</tr>
<tr>
<td>3.2. Overuse and misuse of soil nutrients</td>
<td>38</td>
</tr>
<tr>
<td>3.2.1. Status of soil, water, and air pollution derived from the</td>
<td>39</td>
</tr>
<tr>
<td>overuse or misuse of fertilizers.</td>
<td></td>
</tr>
<tr>
<td>3.3. The impact of overuse and misuse of fertilizers on climate change.</td>
<td>41</td>
</tr>
<tr>
<td>3.4. The quality of fertilizers and its role in food safety, human</td>
<td>43</td>
</tr>
<tr>
<td>health, and pollution.</td>
<td></td>
</tr>
<tr>
<td>3.5. Alternatives to improve nutrient use efficiency</td>
<td>47</td>
</tr>
<tr>
<td>3.5.1 Integrated soil fertility management</td>
<td>47</td>
</tr>
<tr>
<td>3.5.2. Nature-based solutions: soil microorganisms to reduce</td>
<td>51</td>
</tr>
<tr>
<td>externalities of fertilizer use</td>
<td></td>
</tr>
<tr>
<td>3.5.3. Technology-oriented solutions for fertilizer optimization</td>
<td>54</td>
</tr>
<tr>
<td>3.6. The role of reused and recycled nutrient sources.</td>
<td>60</td>
</tr>
<tr>
<td>3.7. Sustainable soil fertility management</td>
<td>62</td>
</tr>
<tr>
<td>References</td>
<td>64</td>
</tr>
<tr>
<td>Glossary</td>
<td>75</td>
</tr>
</tbody>
</table>
Tables

Table 1. Essential nutrients used by plants, and their concentration in plant tissue 4
Table 2. Mobility in the plant, form of adsorption, and mechanism of mobilization from soils to roots of different soil nutrients 5
Table 3. The main forms and processes occurring in the N cycling in terrestrial ecosystems 7
Table 4. Micronutrient concentration (mg/kg) in rocks 15
Table 5. Concentration range of some micronutrients1 in mineral soil and its commonly found forms of in the soil solution 16
Table 6. Some cases of links between dimensions of soil security and human health 24
Table 7. Micronutrient deficiencies in humans and effects on human health 25
Table 8. Average nutritional value decline in 43 crops between 1950-1999 26
Table 9. Food groups nutritional values, in percentage of the total required for a balanced-healthy diet 27
Table 10. The status of undernourishment and food insecurity in the world, 2018-2020 28
Figures

Figure 1. The integral concept of soil fertility 2
Figure 2. The terrestrial nitrogen cycle 9
Figure 3. The P cycle in soils 12
Figure 4. The global K reserves 14
Figure 5. Land cover of black soils 17
Figure 6. The soil cation exchange capacity 30
Figure 7. Nutrient budgets for a plant-soil system 34
Figure 8. Soil nutrient imbalances 37
Figure 9. Anthropogenic global N₂O emissions on land 42
Figure 10. Cadmium life cycle in fertilizers and impacts on human health 44
Figure 11. The International Code of Conduct for the Sustainable Use and Management of Fertilizers 46
Figure 12. Evolution of the technologies towards integrated soil fertility management 48
Figure 13. Nitrogen-fixing organisms 52
Figure 14. The microbial consortia concept 58
Figure 15. Recycling nutrients for circular economy and zero wastes 61
Figure 16. Fertilizer use recommendations based on an integral approach 63
Soils are fundamental to life on earth, and the ability of soils to provide safe and nutritious food is a key contribution they make to us and to nature as a whole. About 95 percent of our food nutrients come from soils, which have a natural capacity to provide nutrients to support crop growth. Globally, however, not all soils have the same ability to provide nutrients. Currently we are facing a contrasting scenario of nutrient imbalances. In some regions, soils are naturally unfertile with little or no agricultural capability; in other regions, soil degradation has reduced fertility. In both situations, crop growth is reduced due to a lack of nutrients in the soil. On the other hand, there are soils in which excessive additions of nutrients through improper management has led to the soil, air, and water pollution and serious terrestrial and aquatic biodiversity effects. These highly contrasting nutrient imbalance scenarios both contribute to food insecurity and are not environmentally or economically sustainable or socially fair; both also lead us down a path that exacerbates global climate change and greenhouse gas emissions.

The overarching goal of the United Nations is sustainable development via the achievement of the Sustainable Development Goals (SDGs). As part of this global program, the Global Soil Partnership (GSP) was established to develop a robust interactive partnership and enhanced collaboration and synergy of efforts between all stakeholders for sustainable soil management (SSM). Ten years after its creation, the GSP has developed critical documents for the conservation and improvement of the world’s soils, including the Status of the World’s Soil Resources (SWSR) report, the Voluntary Guidelines for Sustainable Soil Management (VGSSM), and the International Code of Conduct for the Sustainable Use and Management of Fertilizers (Fertilizer Code), which have been milestones in the protection of soils and their positioning on the global agenda. The SWSR reported on the ten main threats to soil health, including erosion, soil organic carbon loss, nutrient imbalances, salinization, and acidification, and the VGSSM outlined key actions to counteract and reverse these soil degradation drivers. In both documents nutrient imbalance was identified as a major threat affecting soil health globally (FAO, 2015), leading to devastating environmental, social, and economic effects. Even though 195 million tonnes of fertilizers were applied in 2020, with an annual application rate increasing every year, hunger still affected 768 million people (FAO, 2019b).

Nutrient imbalance is a significant obstacle on the road to food security as it directly affects food production, quality, and safety. One of the main dimensions of food security is sufficient food production, which can be supported by improving soil fertility. Soil fertility is the ability of soil to support plant growth by providing the essential nutrients and adequate chemical, physical, and biological conditions as a habitat for plant growth and the maintenance of ecosystem services (FAO, 2015). The lack of essential nutrients, including macro and micronutrients, leads to the underdevelopment of plants and a decrease in yield and in crop nutritional value.
Efforts and investments focused on increasing plant nutrient uptake and balance, and ultimately, human and animal nutrition can be lost if soils are not healthy. When soils are compacted, eroded, have their nutrient and soil organic matter (SOM) depleted, or have chemical toxicity issues due to contamination by pollutants, acids, or salts, they cannot produce food that contains the nutrients necessary for human health or even assimilate nutrients added by fertilizers application. While the need to increase food production for an increasing population is unquestionable, the focus should be not only on producing more food but also on producing better food. Sustainable soil management (SSM) is essential to preserve and increase nutrient content in soils, plants, animals and humans. The use of nutrient-rich varieties of staple crops, in conjunction with soil health, represents a technological advance for reducing malnutrition, especially if the staple crops are grown with, or in rotation with, other species like native species or legumes, which encourage dietary diversity and improve nutrient cycling and biodiversity.

Nutrient imbalance is also a significant driver of environmental degradation and greenhouse gas emissions. Although adding fertilizers represents indisputable benefits for agricultural production, and their proper use may contribute to increased SOM and soil health, misuse and overuse of fertilizers increase global climate change, degradation of soil and water resources, and harm human, animal and soil health. A growing concern associated with using some mineral fertilizers and recycled nutrient sources is their quality and safety. Harmful microbes and heavy metal content may be a cause of severe and persistent environmental pollution and induce significant human health problems. Maintaining soil fertility should not be responsible for environmental pollution from fertilizer extraction and processing. In addition, mineral reserves depletion derived from mining for fertilizer production highlights the urgency of using soil nutrients efficiently, safely and sustainably.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMB</td>
<td>Arbuscular mycorrhizal fungi</td>
</tr>
<tr>
<td>BNF</td>
<td>Biological nitrogen fixation</td>
</tr>
<tr>
<td>CPFP</td>
<td>Combined Phytoremediation and Food Production</td>
</tr>
<tr>
<td>EEF</td>
<td>Enhanced Efficiency Fertilizers</td>
</tr>
<tr>
<td>Fertilizer Code</td>
<td>International Code of Conduct for the Sustainable Use and Management of Fertilizers</td>
</tr>
<tr>
<td>FUE</td>
<td>Fertilizers use efficiency</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GSP</td>
<td>Global Soil Partnership</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of things</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>ISFM</td>
<td>Integrated soil fertility management</td>
</tr>
<tr>
<td>MIRS</td>
<td>Mid-infrared spectroscopy</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal solid waste</td>
</tr>
<tr>
<td>NbS</td>
<td>Nature Based Solutions</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NF</td>
<td>N₂ fixing</td>
</tr>
<tr>
<td>Nr</td>
<td>Reactive nitrogen</td>
</tr>
<tr>
<td>NUE</td>
<td>Nitrogen use efficiency</td>
</tr>
<tr>
<td>POP</td>
<td>Persistent organic pollutants</td>
</tr>
<tr>
<td>PSS</td>
<td>Proximal soil sensing</td>
</tr>
<tr>
<td>SDG</td>
<td>Sustainable Development Goals</td>
</tr>
</tbody>
</table>
SOM Soil organic matter
SSA Sub Saharan Africa
SSM Sustainable soil management
SWSR Status of the World’s Soil Resources
USDA United States Department of Agriculture
VGSSM Voluntary Guidelines for Sustainable Soil Management
vis-NIRS Visible and near-infrared spectroscopy
VRNF Variable Rate Nitrogen Fertilization
WHO World Health Organization

Chemical formulae and elements

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Chemical formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminum</td>
</tr>
<tr>
<td>B</td>
<td>Boron</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>H</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>Hg</td>
<td>Mercury</td>
</tr>
<tr>
<td>HNO₃</td>
<td>Nitric acid</td>
</tr>
<tr>
<td>I</td>
<td>Iodine</td>
</tr>
<tr>
<td>Element</td>
<td>Compound</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>Mn</td>
<td>Manganese</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>Mo</td>
<td>Molybdenum</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>N₂</td>
<td>Dinitrogen</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>Na</td>
<td>Sodium</td>
</tr>
<tr>
<td>NH₃</td>
<td>Ammonia</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>Ammonium</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>Nitrites</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>Nitrates</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>S</td>
<td>Sulfur</td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanium</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
Introduction

Food starts with soils, and as the target date to accomplish the SDGs grows closer, it is more urgent than ever to reverse soil degradation and tackle its effects on agrifood systems. *Soils for Nutrition: state of the art* addresses the contribution of healthy soils to the achievement of SDG 2 (Zero hunger), SDG 3 (Good health and well-being), SDG 6 (Clean water and sanitation), SDG -12 (Responsible production and consumption), SDG 13 (Climate action), and SDG 15 (Life on land). Clearly, soils hold an enormous potential to provide a healthy environment that sustains the production of food, fodder, energy (biomass), fiber and meets life basic needs.

In pursuing our intensive production of food, we may be threatening our health and that of many other species on the planet, harming the environment and worsening the already difficult global scenario of environmental degradation, poverty, malnutrition, migration, disease, and climate change. Is it possible to unlock the productive potential of soils naturally and sustainably to obtain sufficient, nutritious, and safe food? Or do we rely exclusively on external inputs to replace mined soil nutrients and at what environmental and socioeconomic cost? This booklet attempts to answer these questions.

This booklet aims to review the role of soil fertility in producing sufficient, safe, and more nourishing food for healthier plants, animals, and people.

Soil fertility and nutrition involve processes at scales ranging from molecules to the entire planet. Our interventions in these processes may exacerbate the global challenges we face but can also be modified to solve them. This booklet contributes to understanding processes related to soil fertility from the perspectives of food production and food security, and the environmental and climate change impacts associated with fertilizer misuse and overuse. Finally, this booklet outlines the main areas of opportunity and the way forward to solve the nutrient imbalance prevailing in our current agrifood systems.
1. Status and trends of global soil nutrient budget

Malnutrition and food insecurity are long-standing problems for humanity. When discussing solutions and strategies to combat these problems, plant-based alternatives such as biofortification and improved crop varieties are frequently considered. However, the connection of soil with nutrient deficiencies in crops, food and humans is generally not so conspicuous. This lack of connection is perplexing since the primary source of the nutrients we all need to thrive are in soils. Plants acquire vital resources from two entirely different environments—the air and the soil. The nutrients we find in animal foods come from plants or plant-based foods, which obtain their nutrients from soils. Therefore, the nutritional quality of foods is directly related to the quality and health of soils. Healthy soils can sustain the productivity, diversity and environmental services of terrestrial ecosystems (FAO, 2020). If soils are not healthy, their ability to produce healthy and nutritious food is reduced or lost. Soils are complex ecosystems that perform the astonishing functions of originating, storing, transforming and recycling the essential elements that we all need and which are transferred from the soil to plants and then to animals. This storage and transfer of nutrients is possible through the intricate physical, chemical and biological processes involved in the transformation of inaccessible sources of nutrients such as nitrogen and phosphorus into plant-available forms. Soils are not inert: they are living ecosystems that provide the physical structure and support, and the chemical and biological environment for nutrient flow to the roots, affecting the mechanisms and amount for crop nutrient uptake and the regulation of nutrient leakage to the surrounding environment (Peoples et al., 2014).

For the performance of all these functions, it is necessary to understand, value, and conserve the processes of soils that make possible the production of our food and its nutritional value, on which our health depends.

1.1. Soils as a source of nutrients

Soil fertility is the ability of a soil to sustain plant growth by providing essential plant nutrients and favorable chemical, physical and biological characteristics as a habitat for plant growth (Figure 1) (FAO, 2019c). Plants require essential nutrients to complete their life cycle (Hodges, 2010).
Soil biological properties, allow the continuity of nitrogen and phosphorous cycles and provide usable forms for plants.

Soil physical properties such as soil structure drive gas, water, and nutrient flow through soil pores and channels.

Soil chemical properties such as pH and cation exchange capacity are involved in the availability of nutrients.

Atmosphere
- Gases: carbon dioxide and other gases

Biosphere
- Plants, animals, microbes, their products and residues

Lithosphere
- Minerals in rocks, clays, and sediments

Hydrosphere
- Water and dissolved substances

Soil or pedosphere
- Soil air

Figure 1. The integral concept of soil fertility encompasses physical, chemical, and biological properties, as well as the confluence of soil components including water, air, minerals, and biota. The interaction between soil properties and the different soil elements (mineral, water, air, and biota) make possible the continuity of relevant processes affecting directly or indirectly the nutrient availability for plants. The figure shows some examples of those processes.

Nutrients required in large amounts by plants (i.e. nitrogen (N), phosphorus (P), and potassium (K)) are classified as macronutrients. Elements such as iron (Fe), manganese (Mn), and zinc (Zn) are required in lesser quantities, and they are called micronutrients (Table 1). The solid soil phase (Figure 1) is the main nutrient reservoir of essential nutrients. The soil supplies 15 mineral elements required for the nutrition of higher plants, which are taken up by plants only in mineral form from the soil solution; the elements are made available from SOM mineralization, biological cycles, chemical and physical processes, or can be added as fertilizers.

<table>
<thead>
<tr>
<th>Major nutrients</th>
<th>Symbol</th>
<th>Primary forms used by plants</th>
<th>Plant content (% range percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>N</td>
<td>NH₄⁺, NO₃⁻</td>
<td>0.5 - 5</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>P</td>
<td>HPO₄²⁻, H₂PO₄⁺</td>
<td>0.1 - 5</td>
</tr>
<tr>
<td>Potassium</td>
<td>K</td>
<td>K⁺</td>
<td>0.5 - 5</td>
</tr>
<tr>
<td>Calcium</td>
<td>Ca</td>
<td>Ca²⁺</td>
<td>0.05 - 5</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>Mg²⁺</td>
<td>0.1 - 1</td>
</tr>
<tr>
<td>Sulphur</td>
<td>S</td>
<td>SO₄²⁻</td>
<td>0.05 - 0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micronutrients</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Fe</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zn</td>
</tr>
<tr>
<td>Copper</td>
<td>Cu</td>
</tr>
<tr>
<td>Boron</td>
<td>B</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Mo</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl</td>
</tr>
</tbody>
</table>

The availability of macro and micronutrients must be balanced and continuous for the correct metabolic functioning of crops. Justus von Liebig and Carl Sprengel established the “the law of the minimum” in 1840 which states that “plant production can be no greater than that level
allowed by the growth factor present in the lowest amount relative to the optimum amount for that factor”. If any of the essential elements is not supplied, it will limit plant growth, which may stop completely in absence of essential nutrients.

It is important that plant nutrients are present at adequate levels, but they should be also in bioavailable forms. Bioavailability (defined as the fraction of absorbed and utilized micronutrients, Davidsson and Tanumihardjo, 2012) depends on an adequate supply of these nutrients in the forms that can be absorbed by plants. For example, plants can only take up N in the form of nitrates (NO₃⁻) and ammonium (NH₄⁺) and this process occurs by mass flow. In contrast potassium can only be adsorbed by plants in the cationic (positively charged) form of K⁺ through diffusion (Bertsch, 1995). For more examples about the absorption form of different soil nutrients see Table 2. Furthermore, a soil may have a good nutrient supply, but if its physical condition (e.g. compaction, waterlogging, etc.) or biological properties (soil biodiversity, biological cycles) is poor, the available nutrients cannot be used. That is why the concept of soil fertility requires a definition in a broad sense, which includes the chemical, physical and microbiological aspects that determine adequate plant nutrition.

Of the 18 essential elements that plants require for their growth, 15 of them are provided by the soil. The other three are carbon (C), hydrogen (H) and oxygen (O), which are taken up by plants from the atmosphere during the photosynthesis process (Hodge, 2010; Jones, 2012).

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Adsorption form</th>
<th>Metabolic form</th>
<th>Mobility in the plant</th>
<th>Mobilization soil to roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>NO₃⁻</td>
<td>NH₄⁺</td>
<td></td>
<td>Mass flow</td>
</tr>
<tr>
<td></td>
<td>NH₄⁺</td>
<td>NH₃</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urea</td>
<td>NH₂OH⁻</td>
<td>++</td>
<td>Mass flow (through diffusion)</td>
</tr>
<tr>
<td></td>
<td>Amidas</td>
<td>NH₂OH⁻</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>H₂PO₄⁻</td>
<td>H₂PO₄⁻</td>
<td>+</td>
<td>Diffusion</td>
</tr>
<tr>
<td></td>
<td>HPO₄⁻²</td>
<td>HPO₄⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO₄⁻³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>K⁺</td>
<td>K⁺</td>
<td>++</td>
<td>Diffusion</td>
</tr>
<tr>
<td>Ca</td>
<td>Ca⁺⁺</td>
<td>Ca⁺⁺</td>
<td></td>
<td>Interception</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mass flow</td>
</tr>
<tr>
<td>Element</td>
<td>Charge</td>
<td>Reaction</td>
<td>Mass Flow</td>
<td>Interception</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Mg</td>
<td>Mg^{2+}</td>
<td>Mg^{2+}</td>
<td>Mass flow</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>SO_4^{2-}</td>
<td>S-H/SS-S</td>
<td>±</td>
<td>Mass flow</td>
</tr>
<tr>
<td>Mn</td>
<td>Mn^{2+}</td>
<td>Mn^{2+}</td>
<td>±</td>
<td>Mass flow</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn^{2+}</td>
<td>Zn^{2+}</td>
<td>±</td>
<td>Mass flow</td>
</tr>
<tr>
<td>Cu</td>
<td>Cu^{2+}</td>
<td>Cu^{2+}</td>
<td>Mass flow</td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>Fe^{2+}</td>
<td>Fe^{2+}</td>
<td>Mass flow</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B(OH)_4^-</td>
<td>B(OH)_4^-</td>
<td>±</td>
<td>Mass flow</td>
</tr>
<tr>
<td>Mo</td>
<td>MoO_4^{2-}</td>
<td>MoO_4^{2-}</td>
<td>+</td>
<td>Mass flow</td>
</tr>
<tr>
<td>Cl</td>
<td>Cl^-</td>
<td>Cl^-</td>
<td>+</td>
<td>Mass flow</td>
</tr>
</tbody>
</table>

The global cycles of N, P, and K are depicted in Figures 2, 3 and 4. The Figure 2 shows the global N cycling indicating approximate magnitudes of the major pools (boxes) and fluxes (arrows). Nitrogen cycling takes place integrally in the atmosphere, soil, microbes and plants. The atmosphere contains most of the Earth’s N. Although we may not realize it, we find ourselves surrounded and immersed in a cloud of N, in the form of dinitrogen (N₂), a stable gaseous N form which accounts for approximately 78 percent of the atmosphere volume (Erisman et al., 2008). However, 99 percent of this N cannot be used by 99 percent of life forms of the planet, since it is an extremely stable chemical form or non-reactive form (Galloway et al., 2003). Only through certain natural processes such as lightning and N fixation by microbes
in which soil biodiversity plays a key role, N\textsubscript{2} can be transformed into reactive N (Nr), which refers to those forms of N capable of combining with other chemical forms in the environment (Galloway et al., 2003). The Nr includes reduced form such as ammonia (NH\textsubscript{3}) and NH\textsubscript{4}+, inorganic N in oxidized states like NO\textsubscript{3}-, nitric acid (HNO\textsubscript{3}), N oxides (NOx), nitrous oxide (N\textsubscript{2}O), and the N present in organic forms like proteins and nucleic acids (Groffman and Rossi-Marshall, 2013). The main reactive and non-reactive forms and processes of N cycling are summarized in the Table 3.

Table 3. The main forms and processes occurring in the N cycling in terrestrial ecosystems.

<table>
<thead>
<tr>
<th>Pools/Chemical Forms</th>
<th>Reactive/Nonreactive</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N\textsubscript{2}</td>
<td>Dinitrogen (non-reactive)</td>
<td>Main global reserve, 79% of atmosphere.</td>
</tr>
<tr>
<td>N\textsubscript{2}O</td>
<td>Nitrous oxide (reactive)</td>
<td>GHG gas, with a global warming potential of 298, destroys stratospheric ozone.</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide (reactive)</td>
<td>Toxic, precursor of tropospheric ozone</td>
</tr>
<tr>
<td>NH\textsubscript{3}</td>
<td>Ammonia (reactive)</td>
<td>Plant available (soluble), can be toxic, rapidly deposited</td>
</tr>
<tr>
<td>NO\textsubscript{y}</td>
<td>Atmospheric N produced by combustion of fossil fuels and/or atmospheric chemical reactions (reactive)</td>
<td>Plant available (soluble), component of acid rain, rapidly deposited</td>
</tr>
<tr>
<td>Ions/Soluble Forms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH\textsubscript{4}+</td>
<td>Ammonium (reactive)</td>
<td>Available to plants</td>
</tr>
<tr>
<td>NO\textsubscript{2}-</td>
<td>Nitrite (reactive)</td>
<td>Toxic, rarely found at high levels in nature, precursor of NO\textsubscript{3}-</td>
</tr>
<tr>
<td>NO\textsubscript{3}-</td>
<td>Nitrate (reactive)</td>
<td>Available to plants, highly leachable.</td>
</tr>
<tr>
<td>DON</td>
<td>Dissolved organic nitrogen (reactive)</td>
<td>Mixture of many different chemical forms.</td>
</tr>
</tbody>
</table>
Under natural conditions, N fixation is the main N input pathway to terrestrial ecosystems. The highest rates of N fixation, typically 5 to 20 gm²/yr have been observed in legumes and other organisms with symbiotic capacity to fix N (Chapin, Matson and Mooney, 2002). Nitrogen input flows are enhanced by anthropogenic activities mainly through fertilizer production and application, combustion of fossil fuels and by planting N-fixing crops (Galloway et al., 2003). Denitrification, defined as the biochemical reduction of NO₃⁻ or nitrite (NO₂⁻) to gaseous N, either as N₂ or as NOx, is the main N outflow accounting for more than 60 percent (Chapin, Matson and Mooney, 2002) of the N outputs (Figure 2). The large size of the soil organic N pool (2 000 - 6 000 kg N/ha in organic matter (Powlson, 1993) reflects soil type and management, being greatest in soils containing clay which can stabilize SOM. Some fractions of SOM are very stable, with turnover times reaching hundreds or even thousands of years (Horward, 2015). Other SOM fractions, including plant or animal residues, are easily broken down by microorganisms producing carbon dioxide (CO₂) and inorganic N over periods of days or weeks (Horward, 2015).
The terrestrial nitrogen cycle

Figure 2. Global N inputs, outputs, and reserves occurring in the global circulation of N in terrestrial ecosystems. Units are Teragrams per year (1 Teragram = 10^{12} g)

Plants take up N mainly in the form of NO$_3^-$, which are formed in the soil by the process of nitrification, involving the transformation of NH$_4^+$ to NO$_2^-$, followed by its transformation to NO$_3^-$ (Robertson and Groffman, 2015). Nitrate N is distributed in the soil pore space and the soil solution. However, not all the pore space is colonized by roots, so that NO$_3^-$ that is not adsorbed by plant roots or utilized by soil microorganisms can be transported from the surface part of the soil to deeper parts by leaching (Robertson and Groffman, 2015), or it can be lost in gaseous forms such as N$_2$O or NH$_3$. Leaching involves the removal and transport of materials in solution in percolation water, in this case NO$_3^-$ (Weil and Brady, 2017). Due to its negative charge, N in the form of NO$_3^-$ is much more mobile compared with the NH$_4^+$ form. Soil mineral particles often have negative charge which attract positively charged NH$_4^+$ ions (Groffman and Rossi-Marshall, 2013). For this reason, the nitrification process is one of the factors controlling hydrological N losses and is an important pathway for N outflow. Another important pathway of N outflow is denitrification which refers to the biochemical reduction of NO$_3^-$ or NO$_2^-$ to gaseous N, either as N$_2$ or as an NOx such as N$_2$O. Nitrous oxide is produced in cropped soils by different microbial-mediated processes, but most is produced during the denitrification process. Denitrification is an important process especially in heavily fertilized or manured agricultural soils and rice paddies (Weil and Brady, 2017). Nitrification and denitrification reactions are driven by several factors such as soil temperature, water filled pore space, and the availability of mineral N and soluble carbon (Zhang and Liu, 2018). Ammonium volatilization to the gaseous form of NH$_3$ represents gaseous losses of N, which can occur during the decomposition of organic plant and animal wastes, excrement, and by the addition of fertilizers in the form of NH$_3$ and urea. Volatilization of NH$_4^+$ is more pronounced under certain conditions including elevated soil pH, high temperatures, soil desiccation, and in sandy, calcareous soils (Weil and Brady, 2017).

Phosphorus is present in small amounts in the Earth’s crust and is rarely found in highly concentrated forms (Weil and Brady, 2017). It is an element that becomes available mainly through weathering of primary soil minerals such as apatite (Figure 3). For this reason, P is a scarce and limiting nutrient for the growth and production of terrestrial ecosystems (Elser et al., 2007) and needs to be added as fertilizer or biofertilizer to some cultivated soils. The most frequent forms of P found in soils are phosphates including PO$_4^{3-}$, HPO$_4^{2-}$, H$_2$PO$_4^-$, and H$_3$PO$_4^-$ so that P exists almost exclusively in its oxidized form as PO$_4^{3-}$ either in its inorganic, organic, dissolved or particulate form (Weil and Brady, 2017).

One of the greatest challenges regarding the agronomic management of P is how to induce the transformation of the immobilized P in the solid phase of soils to bioavailable forms. Most P molecules found in soils are insoluble, making them difficult for plants to absorb. The main natural P source in crop soil is the mineral apatite contained in the parental material, and when P is released from rocks by weathering it can cycle mainly by processes of sorption–desorption (interactions between P in soil solution and solid phases), dissolution–precipitation (mineral equilibria), and mineralization–immobilization processes (biologically mediated conversions of P between inorganic and organic forms) (Figure 3) (Weil and Brady, 2017). The adsorption process involves the attraction of phosphate ions to the surface of soil colloids (Bennett and Schipanski, 2013); in this process of “getting fixed” the phosphate ions are converted from a soluble or exchangeable form to a much less soluble or to a nonexchangeable form (Weil and Brady, 2017). The precipitation reactions fix phosphate ions, transforming them into relatively unavailable forms which largely depend upon soil pH. In acid soils, these reactions
involve dissolved ions of oxides, or hydrous oxides of Al, Fe or Mn. At moderate pH values, adsorption occurs on the edges of kaolinite or on the Al oxide coating on kaolinite clays. In alkaline and calcareous soils, the reactions involve the precipitation of various calcium phosphate minerals.

Soil P can also be in organic forms, including inositol phosphate and nucleic acids. Organic P accounts for 20 to 80 percent of the total soil P which circulates through mineralization and immobilization processes (Weil and Brady, 2017). Soil P can also be in the soil solution in very low concentrations, generally ranging from 0.001 mg/L in very infertile soils to about 1 mg/L in rich or heavily fertilized soils. Because of the low concentrations of dissolved P in the soil solution the movement via mass flow is limited, therefore the most significant P flows occurs predominantly through diffusion (movement through soil pores in response to a concentration gradient) inside soils (Table 2). All these processes affect the concentration of P in the soil solution and soil solid phases, ultimately regulating the amount of available P for plant uptake, microbial assimilation, and transport to surface and groundwater (Bennett and Schipanski, 2013).

The main P input pathway is fertilization; between 10 and 15 Tg of P are added annually through fertilizers, which represents between 20 and 30 percent of the natural circulation of P in terrestrial ecosystems (Chapin, Matson and Mooney, 2002). Losses of P from soils occur mainly by crop harvest, erosion, and surface runoff, (particulate and dissolved P) and leaching, because gaseous losses of P are negligible.
The P cycle in soils

Agricultural, municipal, and industrial by-products

Fertilizers
- H_2PO_4^-, HPO_4^{2-}

Crop residues

Erosion
- (Sediment)

Surface waters
- (Eutrophication)

Runoff
- (Sediment and soluble P)

Soil solution P
- H_2PO_4^-, HPO_4^{2-}

Sorbed P
- Clays, Al and Fe Oxides

Desorption

Precipitation

Weathering

Sorption

Leaching

Immobilization

Mineralization

Internal cycling

Inputs

Outputs

Secondary P Minerals
- Ca, Fe, Al, Phosphates

Primary P Minerals
- Apatites

Organic P
- Soil organic matter
- Soluble organic P

Crop uptake and crop removal

Figure 3. Phosphorus cycling in the plant-soil system, showing the principal stores, movement, retention, and transformation processes of this element in soil.

Although K stored in soils accounts for less than two percent of the world’s K stocks, soils supply K to many of the world’s crops (Brouder, Volene and Murrell, 2021). In soils, about 98 percent of the K is unavailable for plants and microbes since it is stored in primary minerals. The fraction of plant-available K is generally less than one percent, as shown in Figure 4. Potassium can be found in soils mainly as part of the primary minerals in the form of feldspars or micas. Potassium in the primary minerals account for 90 to 98 percent of the total K content in soils and it is unavailable or only very slowly available for plant uptake. Potassium can also be part of the nonexchangeable pool in secondary minerals (representing about 1 to 10 percent of the total K content in soils) and it is slowly available for plants and microbes. The exchangeable K on soil colloids and the K soluble in water are readily available K pools, however they only represent between 1-2 percent and less than 0.2 % respectively, of the total soil K (Weil and Brady, 2017). Potassium assessments in soils have gained more interest in regions where K balances are negative on a sustained basis leading to K deficiencies in crops and soils. Significant progress has been accomplished in the knowledge of the fundamental mechanisms of K cycling in soils and about its role in plants and animals. Although K is an essential nutrient for crop, animal, and human nutrition, its intake does not meet the minimum requirements in diets of most of the world population. The origin of the deficiency of this element in animals and humans is K-depleted agricultural soils, which, being impoverished in this element, cannot supply plants in adequate quantities, resulting in K-deficient crops that end up contributing to nutritional deficiencies in animals and humans (Bhaskarachary, 2011). Recently, a list of challenges regarding soil K management was developed by Brouder, Volene and Murrell (2021) and includes: (i) the great variability of K concentration in soils and poor calibration of soil laboratory analysis with crop responses in some areas, which makes the recommendations for fertilization with K less precise; (ii) genetic changes in crops that impact progressive K demand through the growing season and root development that may in turn influence requirements for soil K, and its release to the soil solution; and (iii) abandonment of K soil testing approaches in some parts of the world due to poor access to soil testing or limited supporting correlation, calibration, and interpretation of laboratory soil and plant analysis. In addition, new K-deficient soils have been identified worldwide due to higher harvest rates and the lack of K replenishments in soils.
The global K reserves

Atmosphere

0.66 x 10^9 t K/yr deposition per year

Oceans

Erosion from continental waters
1.4 x 10^9 t year\(^{-1}\) K

K content in oceans
552 686 x 10^9 t K

Soil

K Fertilization
0.028 x 10^9 t year\(^{-1}\) K

Plant available
(in soil solution plus exchangeable)
(0.01 - 2% of total soil K)

K Fertilizer reserves
6.7-14.6 x 10^9 t K

Non-exchangeable
57.7 x 10^9 t K
(1-10% of total soil K)

In primary minerals
3 773-7 662 x 10^9 t K
(90-98% of total soil K)

Figure 4. Global K stores and fluxes. Although soils have a significant amount of K, only a small fraction is directly available for plants, since the remaining K is in a nonexchangeable form or as part of the primary mineral nutrients.

Soils are the result of hundreds or thousands of years of pedogenic processes, soil forming factors and weathering of parental material (Bowen, 1979). Weathering transforms the primary geological materials into the compounds from which soils will be formed. It is a process that involves, on the one hand, the destruction of the parent rocks and the minerals that form them by physical, chemical and biological processes. Through these processes new soil particles and secondary minerals are formed, as well as the release of nutrients from these minerals (Weil and Brady, 2017). Therefore, soil nutrient content including macro- and micronutrients (Table 4) is directly influenced by the primary mineral’s concentration present in the parental material (Mitchell, 1964). The primarily nutrient concentration found in the different soils is the foundation for the synthesis of secondary minerals (Singh and Schulze, 2015). The secondary minerals modulate the main mechanisms regulating nutrient availability in soils, through adsorption-desorption, dissolution-precipitation, and oxidation-reduction reactions. The interactions among these mechanisms are highly dynamic and can also be greatly influenced by soil microbiologic activity (Horward, 2015).

Table 4. Micronutrient concentration (mg/kg) in rocks

<table>
<thead>
<tr>
<th>Micronutrient</th>
<th>Granite</th>
<th>Basalt</th>
<th>Limestone</th>
<th>Sandstone</th>
<th>Shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>15</td>
<td>5</td>
<td>20</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>Cu</td>
<td>10</td>
<td>100</td>
<td>4</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Fe</td>
<td>27000</td>
<td>86000</td>
<td>3800</td>
<td>9800</td>
<td>4700</td>
</tr>
<tr>
<td>Mn</td>
<td>400</td>
<td>1500</td>
<td>1100</td>
<td><100</td>
<td>850</td>
</tr>
<tr>
<td>Mo</td>
<td>2</td>
<td>1</td>
<td>0.4</td>
<td>0.2</td>
<td>2.6</td>
</tr>
<tr>
<td>Zn</td>
<td>40</td>
<td>100</td>
<td>20</td>
<td>6</td>
<td>95</td>
</tr>
</tbody>
</table>

The soil dry mass (mineral) represents approximately 95-98 percent of its volume while 2-5 percent is composed by organic material. Yet, nine major elements, silicon (Si), O₂, aluminum (Al), iron (Fe), titanium (Ti), Ca, Mg, sodium (Na), and K, make most of the mass of the soil mineral fraction, representing circa of 99 percent. Additionally, 75 other elements, including essential micronutrients, occur at extremely low concentrations, less than 0.1 percent. Some of those elements may cause health issues, as they can be toxic when present at ‘high’ concentration; these include lead (Pb), cadmium (Cd), and mercury (Hg). These often occur because of pollution caused by human interventions but may also be of natural origin (Davies, 1997).
In addition to soil micronutrient concentration, the chemical form of the micronutrients also plays a role on soil micronutrient availability, deficiencies, and toxicities. Micronutrients can be present in soil as inorganic forms (silicates, oxides, sulfides), and organic forms (micronutrient chelation by organic substances of SOM). Table 5 lists the common range of micronutrient concentrations commonly found in mineral soils in different regions of the world and their dominant form in the soil solution.

Table 5. Concentration range of some micronutrients in mineral soil and its commonly found forms in the soil solution.

<table>
<thead>
<tr>
<th>Micronutrient</th>
<th>Regions</th>
<th>Dominant soil solution forms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global2</td>
<td>Temperate3</td>
</tr>
<tr>
<td>Manganese</td>
<td>34.8</td>
<td>28.3</td>
</tr>
<tr>
<td>Zinc</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Copper</td>
<td>5.6</td>
<td>5.7</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Boron</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

1 Micronutrient as mg/L

2 Average of 1635 samples from 21 countries

3 Average of 1244 samples from 5 countries

4 Average of 391 samples from 16 countries

Although soils may have a substantial amount of nutrients, their availability can be limited due to several reasons, such as natural deficiencies, nutrients that are in highly immobilized forms in the solid phase, or due to degradation processes related to improper soil management. The WRSR (FAO, 2015) documents the extent to which soil fertility has been affected by unsustainable management practices. These practices, based on extractive and intensive farming systems (Lal, 2009), negatively affect soil productivity and lead to serious nutrient deficiencies in the harvested crops. Because of soil degradation worldwide, soil in many regions is becoming less fertile, and is losing its capacity to provide nutrients to plants, animals and people who rely upon them.
1.2. Soil fertility loss and crop production

Soil fertility varies due to factors related to the parent material, climate, vegetation and land use (Augusto et al., 2017). There are areas of the world with naturally high or low soil fertility. An example of naturally fertile soils are black soils found in mid-latitudes of North America, Eurasia, and South America (Figure 5)(Kravchenko et al., 2011; Liu et al., 2012; Rubio, Pereyra and Taboada, 2019). In contrast, other regions have naturally low soil fertility, low SOM content and high acidity (Barrett and Bevis, 2015; FAO, 2015). Harsh climates (e.g. very cold, or very arid) also play a role in lowering soil nutrient levels (Alewell et al., 2020). Most ecosystems of the world are limited by N and/or P. In the case of N limitation this is best explained by climate effects that are less important in temperate zones and in soils with moderate to high organic matter contents. In contrast, P crop limitation is less regulated by climatic conditions, and more influenced by the mineralogical characteristics, soil type and parent materials (Augusto et al., 2017).

Figure 5. The global terrestrial surface covered by black soils distributed in the different regions of the world
Although low fertility is a natural feature of some soils, in others fertility is reduced or lost due to degradation processes, which affect up to 33 percent of global soils (FAO, 2015). These processes include erosion, reduction of organic carbon in the soil and effects on biodiversity, acidification, salinization, urbanization, sealing and nutrient imbalance mainly caused by unsustainable soil management practices (FAO, 2015). Agricultural systems lose nutrients with each harvest, and if soils are not managed sustainably, fertility is progressively lost. Global harvested crop N was 73 Tg N/yr in 2010, while the total inputs were 161, leading to a N surplus of 86 in 2010 (Zhang et al., 2020). Nitrogen surplus is evidence that the use efficiency of this nutrient is low. N use efficiency has been estimated to have decreased from 53 percent in the 1960s to 44 percent in the 2010s (Zhang et al., 2021). This means that nearly half of the N applied is unused by plants in the year it is applied. In the case of P, the application of fertilizer to agricultural soils increased by 3 percent annually (from 2002 to 2010), and soil P deficit still prevail in 32 percent of the world’s cropland and 43 percent of the pasture (Lun et al., 2018). With regard to regional P balances, some regions in America and Europe have negative P balances (e.g. net P losses from agricultural systems, while others including Asia, Oceania and Australia have net P accumulation.

Despite these regional N and P surpluses, deficits are still observed, which indicates that fertilizers use optimization is urgently required. To overcome naturally low soil nutrient content and depleted nutrient content due to unsustainable practices, fertilizers have been applied, but inequalities in fertilizer applications are commonly observed. For example, across most of sub-Saharan Africa (SSA) access to mineral N fertilizers is limited, and fertilizer application rates are about 8–10 kg N/ha/year as compared with ten times this amount in many developed countries (Vitousek et al., 2009). It has been estimated annual total nutrient deficits of 5.5 Tg N, 2.3 Tg P, and 12.2 Tg K, and potential worldwide production losses of more than one teragram of these nutrients per year (Tan, Lal, and Wiebe, 2005).

Unsustainable agricultural practices, lack of resources and capacity development and nutrient underuse in sub-Saharan Africa (SSA) have resulted in significant soil nutrient depletion, low crop yields, and poverty, leaving many farm families in a scenario of vulnerability and food insecurity. The situation is aggravated by low use of fertilizers by farmers (Chianu, Chianu and Mairura, 2011) and increasing soil degradation that is affecting SOM, pH, and cation exchange capacity (Tully et al., 2015). Decades of nutrient mining have depleted soil fertility, putting the region’s food security at risk (Bekunda, Sanginga and Woomer, 2010). There are some regions in South America with high rates of chemical fertilizer applications, and high losses as well, mainly through erosion and high P exports derived from organic P management. In contrast, the eastern European Union has shown low erosion losses and low chemical fertilizer input (Alewell et al., 2020).

The supply of P is essential not only for croplands but also for other productive systems such as grasslands. Natural and induced grasslands support livestock grazing and receive no mineral fertilizer. To accomplish the 80 percent increase in grass production (for the dairy and meat industries) while preserving soil P levels, mineral and organic fertilization in grasslands would have to grow more than fourfold in 2050 compared to 2005 (Sattari et al., 2016).

Fertility loss is not exclusively due to the loss of macronutrients. Soil micronutrients deficiencies are widespread around the globe, with 49 percent of soils deficient in Zn, 31
percent deficient in B, 15 percent deficient in Mo, 10 percent deficient in Mn and 3 percent deficient in Fe (Sillanpää, 1982, 1990; Bowell and Ansah, 1993; Graham, 2008). For example, 40 percent of African soils have naturally low soil fertility but degradation processes such as nutrient mining have reduced it even further. In some areas of SSA, micronutrient deficiencies can be particularly pronounced (Nube and Voortman, 2011) as the soil has undergone nutrient mining over an extended period. In India, soil Zn deficiency is present in 47 percent of the soils (Rathore et al., 1980; Katyal and Vlek, 1985), and in Indonesia (Southeast Asian region) 29 percent of soils (Welch et al., 1991). The consumption of food with low nutritional value is also underlined by soil mismanagement and degradation issues. Therefore, the transformation of food production systems which includes the adoption of SSM is critical to support the provision of high-density nutrition food. ‘Nutrient-sensitive agriculture’ which is a complex approach with different pathways has been reckoned as an efficient alternative to overcome this issue of micronutrient deficiencies and associated health problems.

1.3. Assessing, mapping, and monitoring soil fertility: towards a global soil nutrient budget.

The accelerated use of nutrients for crop production and other human activities has significantly impacted and modified the global nutrient cycles in the planet, especially for N and P (Sutton et al., 2013; Steffen et al., 2015). Despite the critical role played by nutrients such as N, P, and other macro and micronutrients, their significance in global challenges such as climate change and contamination has gotten far less public attention than other drivers of environmental change including CO₂ and non-CO₂ emissions (Sutton et al., 2013).

Since soil fertility is not static and it is linked to degradation processes and soil fertility loss, soil mapping and fertility modelling efforts should be based on a soil monitoring system capable of accurately representing the actual soil conditions through time and at an appropriate scale. Evidence-based decision making on soil fertility requires data and information about the status, availability, and dynamics of soil nutrients at plot level if planning a fertilization action, or at national, regional, and global levels for balances, policy advice and resource management. Monitoring data and information are also key for the development of policies and actions regarding soil fertility and fertilizers use. Understanding the status and spatial trends of soil nutrients is key to guide policymaking in a coordinated and data-driven way to close yield gaps and reduce the pressure on natural resources upon which many communities rely.

Overtime, there have been different efforts to quantify soil nutrient budgets. Hence it is important to understand the state of the art and identify the gaps that need to be addressed with solid information and trends about availability (both natural and human added) of soil nutrients in the soils to guide better interventions. More recently, Hengl et al. (2017) used a digital soil mapping approach to predict 15 soil nutrients at a 250 m resolution in Africa, using a random forest model (Wright and Ziegler, 2016). In the case of K, information on the spatial distribution of global reserves has been less documented, even though this element is limiting in 70 percent of terrestrial ecosystems (Sardans and Pañuelas, 2015). An important factor that must be considered when dealing with the spatial distribution of K is depth. Recent
studies indicate that the vertical stratification of K is not pronounced, so that not considering storage of this element at depths greater than 20 cm could lead to the underestimation of K storage in soils (Correndo et al., 2021).

Soil fertility data and information are key resources for making proper fertilization recommendations. These decisions and recommendations are based on the 4R approach (4R Nutrient Stewardship), which seeks to apply nutrients with the right rate, the right location, at the right time and from the right source. The fertilizer industry established the 4R approach as a process to guide fertilizer best management practices in many parts of the world (Johnston and Bruulsema, 2014). Slaton et al. (2022) have established a core set of required and recommended information from United States soil test P and K correlation and calibration investigations. Slaton and collaborators (2022) developed a Fertilizer Recommendation Support Tool, consisting of a national database that will support a soil-test-based nutrient management decision aid tool, and similar examples have been developed around the world. This type of information supports modeling, and the development of various decision-support systems can increase agricultural efficiency while reducing environmental problems caused by excess nutrient losses.

Tziolas et al. (2021) reviewed the most efficient practices for the advancement of an Earth-Observation data-driven soil mapping. The most frequent limitations that hinder its implementation are the area covered and data to be shared, thresholds for bare soil and soil surface detection, and infrastructure and capacities. According to Tziolas et al. (2021) the best practices for advancement on Earth-Observation data-driven soil mapping include: (i) the major boost of recent artificial intelligence techniques to increase representativeness and reliability; (ii) harmonization of labelled datasets; (iii) data fusion with in situ sensing systems; (iv) a continued effort to overcome the current limitations in terms of sensor resolution and processing of this Earth-Observation data; and (v) political and administrative issues (e.g. funding, sustainability). Drawbacks of this type of approach include the low availability to most stakeholders involved in soil nutrient management, and the fact that the applicability of this methodology in mapping soil nutrient content is uncertain.

Internet of Things (IoT) is “an open and comprehensive network of intelligent objects that have the capacity to auto-organize, share information, data and resources, reacting and acting in face of situations and changes in the environment” (Ashton, 2009). Crop management can benefit from the IoT in terms of accessibility, cost savings, and efficiency, thanks to the timeliness of interventions. It is becoming widely used as an approach to crop management issues, including soil fertility and fertilizer use, most of which are yet unsolved (Vitali et al., 2021). The IoT approach has been used for addressing relevant factors in agriculture including weather, water availability, pests and diseases and GHG emissions. Examples of applications in the soil fertility field is the use of soil water sensors for inferring information about soil nutrient content, and the observation of nutritional crop status from multispectral and hyperspectral camera sensors set on field cameras (Vitali et al., 2021). However, caution should be exercised in expecting the use of tools such as IoT. As Vitali et al. (2021) argue “Excitement in Internet of Things is pumping the belief that many less expensive sensors could increase data granularity in space and time with an acceptable decrease in data quality. However, data (sensor) reliability remains a fundamental aspect of any technology”.
2. The role of soil fertility on crop, animal, and human nutrition

2.1. Soil fertility and human health

Whether the impacts are positive or negative, direct or indirect, soil has a significant impact on human health. There is abundant historical evidence from the time of the Greek and Roman civilizations linking soils to human health. Keesstra et al. (2016) highlighted the important links of soil science to several of the SDGs, showing how soil functions are linked to the ecosystem services and human well being. A number of articles quoted by Brevik and Sauer (2015) have been published over the last 10 years reviewing the status of our knowledge of soils and human health. Contemporary research has revealed that soils have an impact on human health through influencing food availability and quality (food security), as well as human exposure to numerous pollutants and pathogens (Brevik, 2013; Burras, Nyasimi and Butler, 2013).

The research about soils and human health addresses a wide range of subjects. The transmission of nutrients from soil to people is one of the primary topics. This could be a transfer from soils to plants to people, a transfer from soils to plants to animals to people, or a direct transfer from soils to people.

Soils are the primary source of essential nutrients that nourish humans and other animals (Mitchell and Burridge, 1979).

According to Steffen et al. (2018), approaches like soil security may provide a framework within which interdisciplinary and transdisciplinary approaches can be used to explore issues related to soil and human health. McBranney, Field and Koch (2014) identified five dimensions of soil security, and each of them are linked to human health (Brevik et al., 2017) (Table 6).
Table 6. Some cases of links between dimensions of soil security and human health

<table>
<thead>
<tr>
<th>Dimension of soil security</th>
<th>Links to human health</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Capability</td>
<td>Production of plenty food</td>
</tr>
<tr>
<td></td>
<td>Ability to pass essential nutrients up the food web</td>
</tr>
<tr>
<td></td>
<td>Waste filtration function of soils, particularly in the supply of clean water</td>
</tr>
<tr>
<td>2. Condition</td>
<td>Ability to pass essential nutrients up the food web</td>
</tr>
<tr>
<td></td>
<td>Presence or absence of potentially harmful chemicals or organisms</td>
</tr>
<tr>
<td>3. Capital</td>
<td>Ecosystem services that support human health have value</td>
</tr>
<tr>
<td></td>
<td>Soil conditions that negatively influence human health have a cost</td>
</tr>
<tr>
<td></td>
<td>Medicines developed from soils or soil organisms have economic value and save money when they shorten or prevent illness</td>
</tr>
<tr>
<td>4. Connectivity</td>
<td>The value that society places on soils influences how soils are managed or treated, which in turn influences soil condition</td>
</tr>
<tr>
<td></td>
<td>The terroir concept provides an example of a way to connect people to the soils that produce their food and encourage a more positive image of soil and better management</td>
</tr>
<tr>
<td></td>
<td>Contact with healthy soil has been shown to have potential human health benefits</td>
</tr>
<tr>
<td>5. Codification</td>
<td>Government-sponsored conservation programmes can improve soil and water quality, leading to human health benefits</td>
</tr>
<tr>
<td></td>
<td>Non-binding initiatives such as the United Nations proposed Sustainable Development Goals can positively influence soil and water quality and thus human health through capability and condition</td>
</tr>
</tbody>
</table>

One of the main connections of soils with human health is malnutrition. Human micronutrient deficiency is defined as a lack of essential vitamins and minerals in the diet. Micronutrients enable the body to produce enzymes, hormones and other substances that are essential for proper growth and development (WHO, 2022). Micronutrient deficiency is a major threat to the health and development of the population particularly affecting children and pregnant women in low-income countries (WHO, 2022). Besides undernourishment, micronutrient deficiency also underlines other health issues including overweight, obesity, cardiovascular diseases, certain cancers and diabetes (WHO, 2022). Human micronutrient demands are very small in quantity when compared to macronutrient demands. To meet the main human micronutrient needs, the proper supply of Fe, Zn, Ca, iodine (I), vitamin A, complex B
vitamins, and vitamin C is necessary, although other micronutrients also play important roles on human and plant health - e.g. selenium (Se).

The health issues related to each micronutrient deficiency vary (Table 7), and they can be co-dependent. To list a few: Fe deficiency is the underline cause of anemia, particularly affecting pregnant women, young women (from 15 to 19 years old) and infants (WHO, 2015); Zn deficiency can impair the functionality of the central nervous, gastrointestinal, immune, epidermal, reproductive and skeletal systems (Jurowski et al., 2014). Iron deficiency in 2000 was estimated at 50 percent of the global population and similar estimates have been made for Zn deficiency (Cakmak, 2002; Welch and Graham, 2005; Alloy, 2008). In fact, micronutrient deficiencies are now recognized as one of the leading causes of worldwide illness burden (Kenz and Graham, 2013).

<table>
<thead>
<tr>
<th>Micronutrient</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (Fe)</td>
<td>Anemia, impaired motor and cognitive development, increased risk of maternal mortality, premature births, low birthweight, low energy</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>Weakened immune system, increased exposure to infections, stunning</td>
</tr>
<tr>
<td>Iodine (I)</td>
<td>Brain damage in newborns, reduced mental capacity</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>Severe visual impairment, blindness, increase risk of severe illness and death from common infections, as diarrhea and measles in preschool age children; night blindness in pregnant women, increased risk of death</td>
</tr>
</tbody>
</table>

Globally, the cause of malnutrition is not only due to insufficient caloric intake, but it is also the result of a poor micronutrient intake/diet, as human diet is essentially dependent on the cultivation of only 12 crops which accounts for 75 percent of the global crop production (Scientific Panel on Responsible Plant Nutrition, 2020). In 2014 the United States Department of Agriculture reported a decline in the food nutritional value (Table 8) mainly due to the change in varieties whereas breeding programs have historically, focused only on yield gain and lead to a tradeoff between yield and nutrient content (Davis, Epp and Riordan, 2004).
Table 8. Average nutritional value decline in 43 crops between 1950-1999.

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C</td>
<td>15</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>38</td>
</tr>
<tr>
<td>Protein</td>
<td>6</td>
</tr>
<tr>
<td>Iron</td>
<td>15</td>
</tr>
<tr>
<td>Calcium</td>
<td>16</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>9</td>
</tr>
</tbody>
</table>

A healthy and diversified diet that includes fruits, vegetables, legumes and animal sources consumption (Table 9) are out of reach for 3 billion people (FAO, IFAD, UNICEF, WFP and WHO, 2021). All these factors together increase the risk for widespread micronutrient deficiency, increasing morbidity and mortality. The whole food chain production system, focused solely on spiking-up crop yield commodities, has severely compromised crop nutritional value (Miller and Welch, 2013). However, sustaining a healthy diet can cost up to 60 percent more than a diet that just includes basic nutrients, and approximately five times more than a diet that meets the bare minimum of energy requirements through the consumption of starch-rich foods (FAO, IFAD, UNICEF, WFP and WHO, 2021).
Table 9. Food groups nutritional values, in percentage of the total required for a balanced-healthy diet.

<table>
<thead>
<tr>
<th>Nutritional indicator</th>
<th>Starchy/Staples</th>
<th>Vegetables and legumes</th>
<th>Fruits and nuts</th>
<th>Meat</th>
<th>Dairy and eggs</th>
<th>Oils and fats</th>
<th>Fish and seafood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>65.6</td>
<td>8.4</td>
<td>4.6</td>
<td>0.4</td>
<td>4.4</td>
<td>15.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Element</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>60.1</td>
<td>31.8</td>
<td>4.1</td>
<td>2.1</td>
<td>0.4</td>
<td>0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Zinc</td>
<td>67.2</td>
<td>18.9</td>
<td>5.4</td>
<td>2.5</td>
<td>4.8</td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>Copper</td>
<td>47.8</td>
<td>22.3</td>
<td>7.7</td>
<td>20.7</td>
<td>0.5</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Selenium</td>
<td>87.6</td>
<td>3.0</td>
<td>1.1</td>
<td>2.2</td>
<td>2.8</td>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td>Vitamins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin C</td>
<td>14.9</td>
<td>59.7</td>
<td>20.4</td>
<td>0.3</td>
<td>1.1</td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>3.3</td>
<td>48.1</td>
<td>0.5</td>
<td>39.3</td>
<td>8.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>70.3</td>
<td>19.4</td>
<td>3.8</td>
<td>3.2</td>
<td>2.4</td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td>Vit. B12</td>
<td>0.2</td>
<td>73.6</td>
<td>9.7</td>
<td></td>
<td></td>
<td></td>
<td>16.5</td>
</tr>
</tbody>
</table>

According to UNICEF, WHO and World Bank (2021), approximately half of child mortality under 5 years old is related to malnutrition. Food insecurity and malnutrition impacts human health in different ways (Table 10), e.g. hunger and undernutrition, obesity and overnutrition and micronutrient deficiency related diseases.
Table 10. The status of undernourishment and food insecurity in the world, 2018-2020

<table>
<thead>
<tr>
<th>Regions</th>
<th>Undernourishment</th>
<th>Food Insecurity Moderate or severe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>percentage</td>
<td></td>
</tr>
<tr>
<td>World</td>
<td>8.9</td>
<td>27.6</td>
</tr>
<tr>
<td>Africa</td>
<td>18.9</td>
<td>55.5</td>
</tr>
<tr>
<td>Asia</td>
<td>8.2</td>
<td>23.6</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td>7.7</td>
<td>34.8</td>
</tr>
<tr>
<td>Oceania</td>
<td>6.2</td>
<td>12.9</td>
</tr>
<tr>
<td>Northern America and Europe</td>
<td><2.5</td>
<td>8.0</td>
</tr>
</tbody>
</table>

2.2. Soil fertility and crop nutrition

Nutrient-deficient soils will produce nutrient-deficient plants, ultimately causing people suffering with nutrient deficiencies. The chronic lack of micronutrients derived from nutrient-deficient soils and crops cause severe and invisible health problems known as hidden hunger, which affects more than 2 billion people in the world (WHO, 2016). Globally, about two-thirds of the world’s population is at risk of deficiency in one or more essential mineral elements (White and Broadley, 2009). Malnutrition or hidden hunger is caused due to, in part, unsustainable agricultural practices that have focused only on maximizing crop yields and, therefore, have led to a decline in food nutritional value (Mayer et al., 2020). Several studies have shown the close relationship between nutrient deficiency in soils and nutrient deficiency in humans in Africa. In 2017, Cakmak, McLaughlin and White highlighted the geographical overlap between areas with soil Zn deficiency and areas showing human Zn deficiencies. In this publication, the authors indicate the narrow relationship among these deficiencies. Other studies show the variation in human Se nutrition is highly variable and part of this variation is linked to the influence of soil types on Se content in crops. Therefore, Se deficiencies are spatially dependent (Belay et al., 2020). The factors that have the greatest influence on crop micronutrient concentration and covary with grain micronutrient concentration are soil organic matter content, temperature, pH and topography. These results show the close relationship between the physicochemical and biological characteristics of soils and the concentration of micronutrients in crops (Gashu et al., 2021). Complex scenarios also occur in other regions of the world such as the Middle East–West Asia where several combined factors contribute to food insecurity, including low agricultural yields associated with drought, abundance of calcareous soils, low SOM content, limited access and scarcity of fertilizers and nutrient deficiencies in soils. These conditions make Zn and Fe deficiencies in soils particularly pronounced (Ryan et al., 2013).
Soil micronutrient cycling relies on several edaphic and biological factors, such as soil pH, redox potential, co-interactions with other ions, soil mineralogy and organic matter content, microbial activity and diversity (Dhaliwal et al., 2019). In fact, soil physical, chemical and biological properties underpin the complexity of the processes and interactions regulating macro and micronutrients availability and, or deficiency in the soil (Jones and Darrah, 1994). Soil nutrient content including macro and micronutrients is directly influenced by the primary mineral concentration present in the parent material (Table 4). Table 4 lists the range of micronutrient concentration that are commonly found in mineral soils in different regions of the world and their dominant form in the soil solution. In general, the higher is the soil clay content (soil secondary minerals), the stronger is the retention of positively charged micronutrients (e.g. Zn$^{2+}$, Fe$^{2+}$, Cu$^{2+}$, Mn$^{2+}$) by soil colloids, countering leaching (Kenz and Graham, 2013) and nutrient losses. The availability of cationic micronutrients commonly decreases with increase of pH, as opposed to the ionic micronutrient (e.g. Mo$^-$, Cl$^-$). For example, in Malawi over 80 percent of rural households living on low-pH soils (acidic soils) had inadequate dietary Se supplies compared to 55 percent on calcareous soils. In addition, in areas with non-calcareous soil and low pH, an inadequate supply of Ca, Se, and Zn were observed in more than 80 percent of the poorest rural households (Joy et al., 2015, 2015a).

Soil organic matter (SOM) has a leading role regulating the physicochemical reactions that drive the micronutrients availability in agricultural soils (Dhaliwal et al., 2019). The organic compounds - part of the SOM - from the microbial activity and roots exudates can bind to some micronutrients through chelation reactions resulting in the formation of more stable complexes of micronutrients (Neumann and Römheld, 2012). The SOM can contribute with 20-70 percent of the soil cation exchange capacity (CEC) and increase micronutrient availability (Fe, Mn, Zn, Cu, Co) (Stevenson, 1994) (Figure 6). Equally, soil microorganisms can produce organic acids (citric, tartic, malic and α-ketogluconic) that can form chemical complexes with metallic cations in the soil and minimize potential toxicity (Stevenson and Cole, 1999).
The soil cation exchange capacity

2.3. Strategies to increase soil macronutrient and micronutrient availability and the role of fertilizers in crop production and nutrition

The understanding of the processes that regulate nutrient availability, soil properties, and environmental conditions, need to be improved to be further harnessed and adapted to a wider geographic extend. Only then, it can effectively enable the implementation of bespoke fertilization-practices that can improve micronutrient management and support soil and human health. To address the issues related to organic and chemical nutrient management, not only the technical and scientific data-driven knowledge needs improvement, but also issues related to the lack of resources must be addressed.

A balanced application of micronutrients to soils, through organic amendments alone or in combination with chemical fertilizers, is a feasible option to enhance micronutrient availability (Mortvedt, 1985; Malavolta, 1996; Heisey and Mwangi, 1996; Rengel, Batten and Crowley, 1999; Graham, 2008; Kihara et al., 2020; IPCC, 2021). For example, the application of Zn-enriched urea (three percent) has increased rice nutritional value by 56 percent and yield by 23 percent in India (Shivay, Kumar and Prasad, 2008). A similar effect on the Zn enrichment content in cereal grains has been observed in Turkey (Cakmak, 2009).

A review from Africa reported a positive impact of Zn fertilization on maize productivity and pointed out that both organic and inorganic Zn application supported not only grain yield increases but the benefits were even greater on grain nutritional quality, in 60-80 percent of the cases (Kihara et al., 2017). An additional benefit was the suppression of root pathogens and root nematode infestation (Graham and Webb, 1991).

Yield increases due to micronutrient fertilization - mainly focused on Zn fertilization - have been observed worldwide, although the amplitude of those yield gains is highly variable (e.g. Zn fertilization can reach an average yield gain of 30 percent) (Mortvedt, 1995; Cakmak, 2008; Liew et al., 2010; Kihara et al., 2017, 2020; Abdoli, 2020). In Zimbabwe, the adoption of improved soil fertility management (chemical and organic) resulted in a reduction on dietary Zn deficiency from 68-55 percent (Manzeke-Kangara et al., 2021). This effect was estimated through EXANTE calculation applying data from a previous study which reported a two-fold greater concentration of plant-available soil Zn on fields receiving organic nutrient resources. The authors associated those increases in plant-available Zn in soil to larger grain Zn concentrations, averaging 25 mg/kg in maize (Manzeke-Kangara et al., 2019).
3. Impacts of misuse and overuse of nutrients on environmental pollution and climate change

3.1. Nutrient imbalances: a disturbance in the global nutrient budget

The evaluation of nutrient budgets, or the inputs and outputs of nutrients in a system, is a fundamental step toward soil fertility conservation and improved nutrient management. The differential between nutrient inputs and outputs, including productive outputs like crop harvest and losses to the environment, affects the nutrient stock of a system (Figure 7).
Figure 7. A schematic of nutrient budgets for a system. The left side of the figure shows the inputs, and the right side shows the outputs. The arrows indicate input and output fluxes. The outputs include those nutrients harvested and removed from the system, such as crops, straw, and animal products, which are usually economically valuable products. Different colours represent different nutrients.
When the inputs (e.g. atmospheric deposition, fertilizers) are higher than the outputs (e.g. leaching, crop harvest) or vice versa, nutrient imbalances occur in the crop system. Soil nutrient imbalance is one of the main causes of soil degradation because it induces some soils to be nutrient depleted, losing their capacity to support crops, while others have such a high nutrient concentration that they represent a toxic environment to plants and animals (Figure 8). To boost crop yields, increasing levels of N, K, and P-containing fertilizers have been utilized in croplands since the end of World War II. These fertilizer applications have prevented soil nutrient depletion and, in some cases, even built-up soil nutrient stores. However, in many developing countries, including many sub-Saharan African, Latin American and Asian countries, soil N and P depletion remains a key problem for food security. Soil nutrient depletion does not occur exclusively because of macronutrients losses, as soil micronutrient abatement is still widespread. Despite the micronutrient deficiencies there are only a few global studies of the issue (Bouwman et al., 2017; Vitousek et al., 2009). Nutrient-deficient soils will produce nutrient-deficient plants, forages, and crops, causing animals and people suffering with nutrient deficiencies. Because of soil fertility loss, vegetables do not contain the same levels of vitamins and nutrients as they did 70 years ago, which poses a risk to human health (Colino, 2022).
Soil nutrient imbalances

Nutrient-depleted soils

- **Plant nutrient deficiencies**
 - Reduced availability of essential macro and micro nutrients
- Low yields
 - Crop failure
- **Less nutritious food**
- **Human and animal nutrient deficiencies**
- **Decreased soil biodiversity**
- **Reduced nutrient flow through soil food web**
- **Nutrient leaching**
 - Leads to downstreaming of coastal ecosystems and eutrophization
 - Toxicity for plants and animals
 - Low yields
 - Crop failure
 - Less nutritious food
 - Human and animal nutrient deficiencies
 - Crops more prone to diseases
- **GHG emissions**
 - Warming the planet
- **Mn**, **Zn**, **S**, **Fe**, **Si**, **Cl**, **Ca**, **B**, **Mo**, **Cu**, **Na**, **Mg**, **K**, **N**, **P**
- **H+**, **OH+**

Nutrients overuse

Nutrient-overloaded soils

- Reduced availability of essential macro and micro nutrients
- Decreased soil biodiversity
- Reduced nutrient flow through soil food web
- Nutrient leaching leads to downstreaming of coastal ecosystems and eutrophization
- Toxicity for plants and animals
- Low yields
- Crop failure
- Less nutritious food
- Human and animal nutrient deficiencies
- Crops more prone to diseases
- GHG emissions warming the planet
- Plant lodging

- **Excessive use of N fertilizer**
- **N2O**, **CH4**, **CO2**
Soil nutrient imbalances

Nutrients overuse

Nutrient-overloaded soils

Nutrient-depleted soils

Plant nutrient deficiencies

Reduced availability of essential macro and micro nutrients

Decreased soil biodiversity

Reduced nutrient flow through soil food web

NO$_3$ leaching

Nutrient leaching leads to downstreaming coastal ecosystems and eutrophization

Crops more prone to diseases

GHG emissions warming the planet

Plant lodging

Toxicity for plants and animals

Excessive use of N fertilizer change pH

Nutrient leaching leads to downstreaming coastal ecosystems and eutrophization

Figure 8. Soil nutrient imbalances effects on crops, animals, and the environment
3.2. Overuse and misuse of soil nutrients

Soils used for agriculture cover 38 percent of the Earth’s ice-free surface and use 70 percent of freshwater for irrigation. Fertilizer use has increased by 500 percent in the past 50 years (Foley et al., 2011). Fertilizer application is essential for intensive food production; however, its excessive use has generated problems of water, soil and atmospheric pollution and is also an important source of GHG that cause global warming (Erisman et al., 2008).

The excessive use of fertilizers has detrimental effects that undermine the stability of ecosystems and the services they provide. Soil nutrients such as N and P are essential for crops, but once they leave the plant-soil system, they often become environmental polluting agents that are very difficult and expensive to retrieve (Figure 8). Globally, there is a scientific perspective that can be summarized in the phrase “too much of a good thing” (Sutton et al., 2011), which expresses those fertilizers have brought benefits and are essential for human societies but are simultaneously threatening human and animal health.

There are global studies that show serious planetary effects of N and P cycles associated with excessive fertilizer use. Intensive, unsustainable agricultural activities have caused such intense environmental disturbances that they are undermining the stability of the Earth system. The biogeochemical cycles of N and P are included in the four planetary processes with the greatest anthropogenic impacts (Steffen et al., 2015), mainly because of unsustainable agricultural activities. The amount of N and P that have been added to terrestrial and aquatic ecosystems is so large that both global cycles have been modified (Stevens, 2019; Elser and Bennett, 2011; Sutton et al., 2020). This excessive use of fertilizers has contributed to exceeding the threshold of N entering the systems and has reached half of the threshold in the case of P (Röckstrom et al., 2009; Steffen et al., 2015).

Other studies show also global soil input increases in the N and P and low use efficiency of both macronutrients. For example, tile-drained fields lose on average nearly half of the N remaining after harvest but can lose as much as 85 percent (Greer and Pittelkow, 2018; Lory and Scharf, 2003). According to a global N and P fertilizer use budget (Lu and Tian, 2017), N and P fertilizer use rates per unit cropland area increased by approximately 8 times and 3 times, respectively, since the year 1961, and cropland expansion probably raises total fertilizer consumption even more. Increasing fertilizer use efficiency, and utilization of accumulated residual soil P has enabled a continuous increase in yields. However, the environmental risks associated with the legacy of excessive nutrient mobilization caused severe environmental pollution and human health problems in the 1970s and 1980s (Bouwman et al., 2017).

Inequalities in fertilizer use are part of the complexity of the problem of fertilizer misuse. Most of the use of available synthetic fertilizer is concentrated in 50 countries while the rest of the countries have restricted access, restraining crop production. Fertilizer use in high-income countries has not decreased in recent years (except in European countries). Hotspots of agricultural N fertilizer application shifted from the United States and western Europe in the 1960s to eastern Asia in the early 21st century, while P fertilizer input showed a similar pattern with an additional current hotspot in Brazil. A global increase in fertilizer N/P ratio by 0.8 g N/g P per decade occurred during 1961–2013, which may have an important global
implication for agroecosystem functions in the long run (Lu and Tian, 2017). In the last decades farmers in developed countries - also including China and India -, have accumulated a large store of residual P in crop soils which might be eventually available for plant uptake.

Concerns have been raised regarding the duration of reserves of this element, which are limited. Unlike N, P cannot be produced synthetically. P used in the manufacture of fertilizers is obtained from mines and is a non-renewable natural resource. The largest reserves of P are concentrated in five countries and studies predict that these could be reduced in 50–100 years, with extraction peaking in 2030 (Cordell, Drangert and White, 2009). However, more recent research suggests that the magnitude of reserves is uncertain and comprehensive assessment methods are needed to better predict the state of mineral reserves (Scholz and Wellmer, 2013). These findings are consistent with a reevaluation of global phosphate reserves and the advances enabling higher extraction and processing efficiency, which is an indicator that P reserves have the possibility of lasting much longer. So far, there is no known chemical or technological substitute for P in agricultural ecosystems, which places us in a dependence on natural reserves of this element and forces us to optimize its use.

3.2.1. Status of soil, water, and air pollution derived from the overuse or misuse of fertilizers.

Fertilizer overuse can lead to serious impacts on soils, freshwater, groundwater, air and biodiversity in terrestrial and aquatic systems (Galloway et al., 2003). Continuous cropping and misuse, and overuse of chemical fertilizers can diminish SOM content very rapidly, leading to soil structural decline and soil acidification, thereby affecting beneficial organisms, stunting plant growth, causing variations in the soil solution pH, pest proliferation and even contributing to the undesirable release of GHG (Figure 8).

As far as soils are concerned, N fertilizer overuse induces changes in soil pH (in general, acidification), and thus in the soil microbes (Hickman et al., 2020). The lower biological activity ends up affecting the SOM cycling, biological N fixation and various physical properties associated with water supply and air exchange. The excessive use of N fertilizers increases NO\textsubscript{3}- leaching and surface runoff, seriously threatening human health and polluting the environment (Wang and Li, 2019). Approximately half of the N applied in fertilizers is lost to the surrounding environment in the form of Nr (Delgado and Follet, 2010). Nr in the form of NO\textsubscript{3}- moves very easily in water and this causes it to disperse easily and to travel long distances with respect to the place where it was originally applied, which is known as an N cascade (Galloway et al., 2003). Nitrate ions are prone to leaching because the negative charge prevents them from being adsorbed onto the negatively charged colloids that dominate most soils. NO\textsubscript{3}- leaching from farming systems can cause:

• Groundwater contamination, since NO\textsubscript{3}- is frequently detected as a pollutant in drinking water and in groundwater (Weil and Brady, 2017).
• Deterioration of water quality leading to severe and difficult to reverse problems including eutrophication, hypoxia, biological invasions and biodiversity loss in aquatic environments (Schlesinger, 2009).
• Biodiversity destabilization and species invasion. An example of this is the massive *Sargassum* blooms in the Atlantic Ocean, due to (among other causes) the higher nutrient supply and discharge from farming systems in West Africa and the Amazon River resulting in impacts on distant areas (Wang *et al*., 2019).

• Anthropogenic acidification of soils, since high levels of N fertilization can drive both, direct and indirect soil acidification (Guo *et al*., 2010).

The excessive applications of N through fertilizers also contaminate the air. In addition to their contribution to climate change, once the NOx gases reach the atmosphere, they affect the environment in other ways including (Galloway *et al.* 2003):

• NOx gases react with volatile organic pollutants to form ground-level ozone (O_3_), a major air pollutant in the photochemical smog affecting urban areas;

• NO and N_2O contribute to the formation of nitric acid (HNO_3_), one of the principal components of acid rain;

• Destruction of ozone (O_3_) in the stratosphere, which is a gas that helps to protect our planet from ultraviolet solar radiation through N_2O reactions. The O_3_ protective layer depletion is associated with annually growing cases of skin cancer.

Since the middle of the 20th century, the input of P into terrestrial ecosystems has quadrupled (Falkowski *et al*., 2000), creating a unidirectional flow of this element from rocks extracted from mines to crops (Elser and Bennet, 2011). The main impacts that human activities have had on the global P cycle include its extraction from mines and the global redistribution of P in the form of fertilizers, animal feed and detergents (Bennett and Schipanski, 2013). Erosion and land-use change, as well as the movement of P from terrestrial to aquatic ecosystems through sewage sludge discharge and septic tank leakage also contribute to modifying the P cycle. Annually, these human activities promote the anthropogenic input to soils of 23 Tg P in the form of fertilizers and animal feed, exceeding the natural input of 15-20 Tg P that occurs through weathering of parent material (MacDonald *et al*., 2011).

Progress has been made in nature-based solutions to increase the solubility of P in soils, such as the use of soil organisms and algae, which at the same time have a purifying effect on eutrophication (Mau *et al*., 2021). The path towards reducing eutrophication because of N and P inputs to aquatic ecosystems includes several innovative technologies, such as the use of biological waste to produce organic fertilizers (Chojnacka, Moustakas and Witek-Krowiak, 2020), aquaculture input (Deng *et al*., 2021) or the generation of biofuels from algae (Behera *et al*., 2015). These novel technologies indicate that nutrient use can truly be a closed loop towards a circular economy.
3.3. The impact of overuse and misuse of fertilizers on climate change.

Nitrogen fertilizers are a major source of N inputs to managed agricultural systems, contributing significantly to direct and indirect N$_2$O emissions from managed agricultural soils (Figure 9). N$_2$O is a GHG that mostly originates in agricultural soils. Although N$_2$O occurs at lower concentrations in atmosphere compared to CO$_2$, it has a global warming potential 298 larger than that of CO$_2$. That implies a huge capacity to trap infrared energy radiated from Earth, thus contributing to global warming (IPCC, 2021). Planetary anthropogenic N$_2$O emissions have reached 7.3 Tg yr$^{-1}$ (1 Tg$=10^{12}$g). Farming activities are the main source of these emissions which represents approximately half of the anthropogenic agricultural emissions (Figure 9), with N additions to croplands the main driver (Tian et al., 2020). Synthetic N fertilizers are a major source of N entering managed soils and then being released as N$_2$O emissions. However, the misuse and overuse of organic fertilizers, urine and dung deposited by grazing livestock, organic crop residues and SOM decomposition can also significantly contribute to N$_2$O emissions.

The emissions of N$_2$O from croplands can act synergistically with other soil processes relevant to climate change mitigation such as soil organic carbon (SOC) sequestration. According to a meta-analysis (Guenet et al., 2021) climate change mitigation induced by increased SOC storage is generally overestimated if associated N$_2$O emissions are not considered. Because of the high global warming potential of N$_2$O even small changes in the emissions of this GHG could offset SOC increments and atmospheric CO$_2$ mitigation (FAO, 2021). There are reports indicating that N$_2$O emissions offset between 56 – 61 percent of the CO$_2$ reduction associated with C sequestration in no-till crops (Grandy and Robertson, 2006).
Anthropogenic global N$_2$O emissions on land

Global human-induced emissions of N$_2$O amount to 7.3 Tg /yr (1 Tg = 1012g), with agriculture being the largest source. Agriculture accounts for 52 percent of anthropogenic emissions, which are dominated by N additions to croplands.

N$_2$O is a GHG with a global warming potential 298 greater than that of CO$_2$.

Figure 9. Diagram illustrating the anthropogenic sources of N$_2$O emissions on land

3.4. The quality of fertilizers and its role in food safety, human health, and pollution.

The risks of the use of fertilizers (mineral and organic) for human and environmental health depend largely on the origin of the raw material with which these fertilizers are produced. In the case of mineral fertilizers, the presence of polluting elements in the parent material used for fertilizers production is associated with the presence of natural and anthropogenic polluting elements in the mining area. This risk typically appears in some mineral sources of P, which comes from phosphate rock that can be rich in Cd and other pollutants (Khan et al., 2018).

During the phosphate rocks extraction in the mines the mobilization of radionuclides and trace elements occurs, including As, Cd, Cr, lead (Pb), mercury (Hg), fluorine (Fl), uranium (U), radium (Ra) and thorium (Th) (Reta et al., 2018). These harmful compounds are transferred to soils through phosphate fertilizer and then to plants and the food chain (Pan et al., 2010). Other risks are determined by the characteristics of the soil at the application site, since the greater risk that acid soils generally imply, due to the increased bioavailability of some trace elements (Fe, Mn, Cu, Zn among others) and heavy metals (Figure 10). In addition to soils characteristics, it has been observed that sustained phosphate fertilizer applications overtime increase Cu, Zn and Cd concentrations in soils. The Cd content of phosphate rocks is variable, and it is associated with the rock type they derive from, with sedimentary deposits significantly higher with a concentration of up to 150 mg/g compared to igneous phosphate rock with a concentration of 2 mg/kg. The sedimentary deposits account for 85 percent of global P fertilizer (Van Kauwenbergh, 2010), which suggests that innovations for increasing the availability of this element on crop soils should be a priority.
Cadmium life cycle in fertilizers and impacts on human health

Figure 10. Life cycle of Cadmium in P fertilizers and soils. Cadmium enters soils and bioaccumulates until it reaches the human body, affecting its health, especially the functions of the thyroid, kidneys, and bone system.

The use of organic fertilizers is not risk-free, especially when they come from industrial, biological, or household waste, or are derived from sewage sludge. It is recommended to analyse these types of fertilizers for the presence of contaminants with a risk of transfer to humans, or the food chain. The most common pollutants are heavy metals such as Pb, Cr, Cd, and Hg, organic chemicals, such as those derived from the oil, refinery and pesticide industries, or biological ones such as highly persistent pathogens in soil and water. Any of these pollutants is (or should be) regulated in the different countries, with clearly established criteria to separate fertilizers or products suitable for application, those applicable with certain restrictions on use, or those that, given their level of risk, are classified directly as hazardous waste, and must be taken to a final disposal site (Mayer and Wang, 2018). Chromium can be present in organic and mineral fertilizers, organic amendments and limestone. The major contents are found in fertilizers consisting of tanning residues (100-99 000 mg/kg), sewage sludges (8-40 600 mg/kg), municipal solid waste (MSW) composts (1.8-5 000 mg/kg), and phosphatic fertilizers (66-245 mg/kg) (Soler Rovira et al., 1997).
The International Code of Conduct for the Sustainable Use and Management of Fertilizers

Figure 11. The International Code of Conduct for the Sustainable Use and Management of Fertilizers (Fertilizer Code) as a crosscutting approach for a complex problem. The Fertilizer Code is an instrument that considers recommendations for direct and indirect stakeholders involved in the use of fertilizers.
Considering the severe adverse effects that poor fertilizer quality can have on soil, animal and human health and the environment, the evaluation of fertilizer quality is a priority issue to achieve SSM. The quality of fertilizers and their bioavailability ensures that fertilizers and recycled nutrients are compliant with quality and safety standards. Fertilizer quality should be assessed and monitored at national level. The GSP has launched a global effort to assess the quality of fertilizers through the International Network on Fertilizer Analysis (INFA), which is focused on enhancing the capacity of laboratories in fertilizer analysis laboratories and improving quality standards to support a more sustainable use of fertilizers.

3.5. Alternatives to improve nutrient use efficiency

3.5.1 Integrated soil fertility management

Integrated soil fertility management (ISFM) is an approach to improve crop yields, while preserving sustainable and long-term soil fertility through the combined judicious use of fertilizers, recycled organic resources, responsive crop varieties and improved agronomic practices. Together, these measures minimize nutrient losses and improve the nutrient-use efficiency of crops. As defined operationally by Vanlauwe et al. (2015) ISFM includes a set of soil fertility management practices that necessarily include the use of fertilizer, organic inputs and improved germplasm combined with the knowledge on how to adapt these practices to local conditions, aiming at maximizing agronomic use efficiency of the applied nutrients and improving crop productivity. All inputs need to be managed following sound agronomic principles. The ISFM approach has been mainly applied in sub-Saharan Africa, where there is the need for improved agronomic practices to combine these various interventions over time and space.

The vision and content of the technology development research over 50 years in sub-Saharan Africa are illustrated in Figure 12. It indicates the approximate periods of development of different technologies, their evaluation and validation, and the assessment of uptake, adoption and impact. Its goal was the replacement of assumedly outdated production systems by new, more productive ones. This is particularly obvious work on tillage, land clearing, and fertilizer use (Vanlauwe et al., 2017).
Evolution of the technologies towards integrated soil fertility management

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated soil fertility management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual purpose grain legumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbaceous legumes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alley cropping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land clearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 12. Historical trends in the technologies and practices prioritized by associated soil fertility research and programs at the International Institute of Tropical Agriculture (IITA)

Soil management initiatives should focus on providing holistic solutions covering both biophysical and socio-economic aspects along the entire value chain and creating an enabling environment for adoption. A broader view of soil fertility improvement, including the access to inorganic fertilizers, using all available options including both inorganic and organic sources of nutrients, and farming system approaches are highly recommended (Stewart et al., 2020).

A fundamental component for the implementation of strategies focused on ISFM is capacity building, aimed directly to farmers. An example of capacity building approaches is the Global Soil Doctors program which counts with specific modules targeted at training farmers on the sustainable management of soil nutrients and on good practices in relation to fertilizer use (Box 1). This and other capacity building programs are key to rise consciousness on farmers on the importance of physical, chemical, and biological soil properties for the determination of the nutrient availability and cycling (including micro-nutrients) and thus to assess the fertilizer needs.

Boosting farmers capacity on sustainable soil nutrient management: the Global Soil Doctors Program

The maintenance and enhancement of soil fertility through sustainable nutrient management is of great importance for achieving food security for present and future generations. However, practices aiming at increasing soil fertility and crop production should consider the preservation of soil health as a priority which has been often overlooked by policy makers and end users, the farmers. It is therefore essential to carry out specific actions to raise awareness that degraded soils provide limited access to nutrients for plant uptake preventing crops response to nutrient additions and causing soil nutrient losses.

The Global Soil Doctors Program is farmer- to-farmer training initiative launched in 2020 that aims to build the capacity of farmers on the principles and practices of sustainable soil management using targeted
educational tools. The program is based on the Farmer Field Schools (FFSs) approach (FAO, 2021) and implemented to emphasize the role of sustainable soil management practices in reversing the increasing trend of soil degradation. Specific modules were developed to address the issues of nutrient management and fertility, each one including theoretical and practical sessions.

The educational material consists in a series of posters that explain the importance of soil physical chemical and biological components for enhancing nutrients availability. A series of field exercises guide the farmer for the qualitative assessment of soil conditions using simple protocols and common tools. The final evaluation of the overall soil conditions will serve as a baseline for the practical recommendation provided at the end of each module.

The Global Soil Doctors Program in action: Bolivia as a case study

The implementation of the module on soil fertility in Bolivia started in March 2022 to support the activity of technicians and producers from Bolivian organizations and improve the capacity of local farmers on management practices applicable in agroforestry. In the module 1, emphasis was given to the role of pH and soil SOM in regulating nutrients supply. As a matter of fact, variations in soil pH and SOM can greatly influence the soil fertility status. A specific field exercise was developed to understand the factors limiting nutrients availability, counting also on the support of available soil laboratory analyses. The program was enriched by local examples and personal experiences of the Soil Doctors trainers that actively contributed to the implementation at the country level. A second module will be developed to address the need of a more judicious use of fertilizers owing to the capacity of healthy soils balance nutrient supply with crop demand the natural ecosystem balance to avoid nutrient deficiency or excess.
3.5.2. Nature-based solutions: soil microorganisms to reduce externalities of fertilizer use

Nature-based solutions (NbS) are defined as actions to protect, sustainably manage, and restore natural or modified ecosystems and that address societal challenges effectively and adaptively, simultaneously providing benefits for human well-being and biodiversity. NbS mimic natural processes relying on ecosystem functioning to ensure food and livelihood security, healthier diets and more inclusive rural economies (Arné-García and Santiváñez, 2021). Such solutions bring more, and more diverse, nature and natural features and processes into cities, landscapes, and seascapes, through locally adapted, resource-efficient, and systemic interventions. NbS have been conceived to benefit biodiversity and support the delivery of a range of ecosystem services.

NbS can be practiced to improve soil fertility and soil nutrient approaches including the by biological nitrogen fixation (BNF). Currently, symbiotic plants such as legumes are utilized but at least thirteen genera belonging to the prokaryote N (Figure 13). BNF is one of the main alternatives to overcome the overuse of synthetic N fertilizers. Indeed, more than 60 percent of the fixed N on Earth results from BNF. NbS in agriculture is urgent to help meet the demand of the food production needs for the growing world population (Soumare et al., 2020). NbS also include the solubilization of precipitated forms of P to increase its availability for plants by harnessing soil biodiversity; the use of microorganisms to recover contaminated soils and waters because of the excessive use of fertilizers and (environmental contamination); and of biofertilizers.
Nitrogen fixing organisms

- **Cyanobacteria**: Anabaena, Nostoc, Toplypothrix, Anabaenopsis
- **Bacteria**: Rhizobium, Frankia, Azotobacter, Azospirillum, Bacillus, Mycobacterium, Azotobacter, Methanococcales, Methanobacteriales, Methanomicrobiales

Figure 13. Different groups of N-fixing organisms including some examples of the main genera. In red: Symbiotic N-fixing species; orders or genera (in italics) including free living N-fixing species depicted in black.

Nitrogen fixing organisms
- genera including symbiotic N-fixing species
- orders or genera including free living N-fixing species.

Nitrogen fixers:
- Cyanobacteria
 - Anabaena
 - Nostoc
 - Toplypothrix
 - Anabaenopsis
- Bacteria
 - Rhizobium
 - Frankia
 - Azotobacter
 - Mycobacterium
 - Azospirillum
 - Bacillus

Methanococcales
- Methanobacteriales
- Methanomicrobiales

For more examples about applications of soil biodiversity on enhancing soil fertility and improving soil health see the State of Knowledge on Soil Biodiversity (FAO, ITPS, GSBI, CBD and EC, 2020) which includes a comprehensive review of the utility of soil microorganisms in the development of different strategies to improve and recover soil fertility.

Remediation of polluted agricultural soils using biological methods has been adopted successfully. Phytoremediation has proven to be a promising alternative to conventional approaches as it is cost effective, environmentally friendly and aesthetically pleasing. To date, based on the natural ability of extraction, approximately 500 taxa have been identified as hyperaccumulators of one or more metals (Li et al., 2019). Strategies based on Combined Phytoremediation and Food Production (CPFP) may be appropriate options for most pollutants in virtually all climatic or socioeconomic contexts, but several challenges need to be surpassed. The challenges include remediation technological issues such as undeveloped post-harvest technology and inadequate soil governance (Haller and Jonsson, 2020).

In the case of environmental contamination with persistent organic pollutants (POP), bioremediation is a key to eliminate these harmful pollutants from the environment. Scientific knowledge upon microbial interactions with individual pollutants over the past decades has helped to abate environmental pollution. Traditional bioremediation approaches have limitations for their applications; hence, it is essential to discover new bioremediation approaches with biotechnological interventions for best results (Mishra et al., 2021). For a wider view on soil contamination, impacts and solutions, see the Global Assessment on Soil Pollution (FAO and UNEP, 2021).

One of the most relevant NBS strategies to sustainably increase soil nutrient content is the use of biofertilizers, especially in view of rapidly decreasing P stocks and the need to increase NUE (Schütz et al., 2018). According to the Fertilizer Code, a biofertilizer is a broad term used for products containing living or dormant micro-organisms such as bacteria, fungi, actinomycetes and algae, alone or in combination, which on application help in fixing atmospheric N or solubilize/ mobilize soil nutrients (FAO, 2019c). Biofertilizers increase particularly the availability of P, K, and other nutrients. Fungi and plant roots establish symbiotic relationships called mycorrhizae (Sattar et al., 2019; Bhatt et al., 2021) which increase the growth, yield, and absorption of nutrients in the plant mostly by increasing the effective absorptive area of the roots by formation of an extensive extra-radical hyphal network (Etesami, 2020). Based on a meta-analysis that quantified the benefits of biofertilizers in terms of yield increase, N and P use efficiency from 171 peer reviewed publications, Schütz and collaborators (2018) found that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers. The analysis also revealed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. In addition to physical and chemical soil properties, climatic conditions seem to play a relevant role since the biofertilizer performance was better in dry climates over other climatic regions (Schütz et al., 2018). The application of biofertilizers is shown to be effective in improving not only soil nutrients but also soil health by direct suppression of pathogens (for example the Fusarium disease) or antagonistic interactions via modification of the indigenous microbial community (Zhang et al., 2020). While the importance of microbes, and host plant is undeniable for the success...
in the biofertilizer use, it has also been emphasized the relevance of soil properties and management, particularly SSM and SOM content (Tosi et al., 2020) because of the strong influence of physical and chemical properties on soil microbes. Among the most important challenges to the successful use of biofertilizers that are related to the soil are the negative biological interactions such as competition with the native microbiome, the high variability of physico-chemical conditions (pH, SOM, nutrient status), and the interaction with other agricultural practices (pesticide and herbicides application), represent a challenge for the successful performance of fertilizers (Mitter et al., 2021).

Biofertilizers commercialization has significantly increased. The global market for biofertilizers accounted for USD 1,254.2 million in 2016, and it is expected to increase 13 percent between 2017 to 2025. According to the Global Biofertilizers Market, Europe and Latin America are currently the top consumers of biofertilizers followed by China and India, because in many countries from these regions there are stringent regulations imposed on chemical fertilizers. In the worldwide market for biofertilizers, N fixing is largely predominant (79 percent). In contrast, the phosphate solubilizing biofertilizers barely accounts for 14 percent of the total (Soumare et al., 2020).

Since P reserves are finite, fertilizers prices have increased, and the possibility of acquiring P fertilizers is limited for many farmers, biofertilizers play a leading role especially in the case of P and represent an advantageous and environmentally friendly approach to increase the solubilization of this element in the soil solution (Kalayu, 2019). Phosphate solubilizing microorganisms can transform non-soluble forms of organic and inorganic P by hydrolysis. Soil bacteria and fungi P-solubilizing microorganisms account for up to 50 percent and < 1 percent, respectively, of the total microbial population (Chen, Lin and Huang, 2006; Khan et al., 2009). Although research associated with P-solubilizing organisms is extensive, a leap towards scaling up production and commercialization at more affordable prices is needed. It should also be considered that biofertilizers do not function in the same way as their synthetic counterparts, so work still needs to be done on the development of suitable formulations, rate recommendations, and applications.

3.5.3. Technology-oriented solutions for fertilizer optimization

Technologically oriented solutions for better management of nutrients and fertilization include a wide range of options including the use of sensors, variable rate applicators, nitrification inhibitors, modelling, etc. These options range from a better diagnosis of deficiencies with sensors, a more efficient application in terms of dose, time, and application methodology, to alternative sources of N that reduce losses and increase use efficiency. The modeling tools contribute to a better diagnosis of the behavior of the nutrients added with fertilizer and the reduction of the risks of contamination and eutrophication.

Sensor technology represents a useful strategy in soil monitoring with the advantage of obtaining information at a high spatial density, but without externalities such as chemical waste production. The concept of soil sensing was coined in 2011 and implies the use of soil sensors directly on the field. Proximal soil sensing technique is a multidisciplinary
approach that involves instrumentation, data science, geostatistics, and predictive modeling. The integration of these disciplines has allowed successful sensor application for the spatial diagnosis of soil fertility attributes. Advances in sensors compatible with on-line measurement systems and portable sensor systems complement each other well and have proven to be useful. An example are measurement methodologies such as mobile laboratories (Pandey et al., 2017).

Spectroscopy is the study of the interaction between matter and electromagnetic radiation. Visible and near-infrared spectroscopy (Vis-NIRS) and mid-infrared spectroscopy (MIRS) have been successfully used in situ and on-line measurement platforms for determining total soil N. Modeling and management of spectral data are important steps for the development of these techniques, such as the variable rate N fertilization. This refers to the application of the right rate of N fertilizer in the right place at the right time using advanced precision agriculture technologies (Guerrero Castillo, De Neve and Mouazen, 2021). The adoption of Vis-NIRS and MIRS techniques has increased their cost-effectiveness and accuracy not only in the case of soil N, but also for the determination of different aspects of soil analysis directly affecting soil fertility. Some soil properties that can be estimated using Vis-NIRS and MIRS are particle sizes, aggregation, surface roughness and water content (FAO, 2022). The Global Soil Partnership through the Global Soil Laboratory Network (GLOSOLAN) launched the soil spectroscopy initiative (GLOSOLAN-Spec) in 2020, which focused on national capacity development and the creation and development of national and regional soil spectral libraries. These libraries allow different countries to access a wide range of soil, and over the long term, national and regional soil maps can be improved and used to enhance the implementation of SSM practices.

The use of optical sensors has been shown to be a useful tool to increase the NUE and apply the appropriate dose of N and P fertilizer in different regions of the world (Ortiz-Monasterio and Raun, 2007; Lapidus et al., 2017). This technology is based on the use of a variation of the Normalized Vegetation Index (NDVI) and a linear relationship with crop N content to determine the required fertilizer dose (Crain, Ortiz-Monasterio and White, 2012). This technology allows to accurately predict the amount of N and P needed by a crop at a specific site which allows to achieve the maximum expected yield (Crain, Ortiz-Monasterio and White, 2012). Drawbacks of this type of strategies are the costs. The sensor costs vary depending on the level of technification, automation and synchronization with crop mechanization. However, technological advances have made possible the development of a smaller, cheaper, and portable but efficient version (Ortiz-Monasterio, 2017) that has increased the profits of farmers and has significantly reduced GHG emissions, specially N\textsubscript{2}O (Lapidus et al., 2017). Even so, the adoption of this technology in peasant agricultural production would be complex due to costs, training, technical support, and the lack of studies on the performance of these sensors in hillside agriculture. However, in the case of technified agriculture, it has been shown to generate savings for producers and reduce the addition of N without affecting yields.

Enhanced-efficiency fertilizers (EEF) have the potential to reduce N\textsubscript{2}O emissions and improve crop productivity. Their efficiency depends on site characteristics and type of crop. In a meta-analysis covering 43 studies in different continents, Thapa et al., (2016) found that nitrification inhibitors, double inhibitors (urease plus nitrification inhibitors) and controlled-
release N fertilizers consistently reduced N$_2$O emissions compared with conventional N fertilizers across soil and management condition (grand mean decreases of 38, 30, and 19 percent, respectively).

Nutrient models are often developed integrated with crop growth simulation models, which require robust ecophysiological functionality to support reliable simulation of diverse genotype, management and environment combinations. Soufizadeh et al. (2018) tested and implemented a conceptual framework for functional modelling of maize crop N dynamics based on expressing crop N demand relative to canopy expansion, rather than on tissue N concentrations. A Windows program was developed to calculate the required seasonal N, P and K rates and the most cost-effective combination of commercial fertilizers (including estimates of the Ca, Mg and S balances in the field resulting from the fertilizer program chosen). It allows the users to determine the best complex fertilizer for pre-plant applications to avoid blending of simple fertilizers at the farm, a task usually complex for farmers (Villalobos et al., 2020).

An important limitation for a more widespread adoption of crop and nutrient models is the need of available local robust information. In countries in sub-Saharan Africa recommendations and crop management fertilization decisions are often based on traditional field experimentation. There is a gross limitation of the use of models as agricultural decision-making tools, which could be attributed to factors such as low capacity development due to limited training opportunities, and the general lack of support from national governments for model development and application for policy formulation (MacCarthy et al., 2018).

The use of alternatives to fertilizers such as biochar for the improvement of NUE has been evaluated, but data are still scarce in tropical soils. In these soils, biochar N fertilizers had an average maize yield that was 26 percent higher than that of urea and resulted in a NUE 12 percent higher than that observed for urea. Both effects on yield and NUE were attributed to lower N release rates of the biochar-amended fertilizers compared to that of the conventional soluble N sources (Puga et al., 2020).

In the case of P, academia, in collaboration with farmers, has advanced in the understanding of P fate and transport in diverse environments. However, there is still much to be researched and implemented to produce innovations in products and/or application techniques with a wide potential for adoption and above all that are efficient in the acquisition of P by plants. Important advances have been reported under specific scenarios such as highly calcareous soils where liquid formulations of phosphates have been applied replacing dry granules, which drastically reduced precipitation as poorly soluble calcium phosphate minerals.

Biostimulants are alternatives to improve soil fertility and include humic and fulvic acids, amino acids and peptide mixtures. Other N molecules also considered biostimulants include betaines, polyamines and non-protein amino acids, which are very diverse in the plant world and their beneficial effects on crops are poorly characterized. Algae and plant extracts, chitosans, and other biopolymers are also used as biostimulants (Du Jardin, 2015). There are also inorganic compounds that are considered beneficial elements (e.g. Al, Co, Na, Se and Si) because they promote plant growth and may be essential for some but not all species. Some advantages of biostimulant application include the improvement of efficiency in the
absorption and assimilation of nutrients, tolerance to biotic or abiotic stresses, or improving any of their agronomic characteristics. Biostimulants could complement and in some cases substitute chemical agro products; that could improve plants metabolism and biochemical activities. A wide variety of microbes can perform as plant biostimulants improving the efficiency of nutrition, several crop quality features, plant growth, and the tolerance to abiotic stress. However, biostimulants are relatively new products, so their regulation is not yet completely clear and non-existent in some cases, which may lead to the marketing of low-quality products. Therefore, regulation and quality assessment is needed. More research is needed to understand the mechanisms and functioning in crops and soils. In addition, price is a factor that could hinder the experimental research and adoption of biostimulants can be more expensive than certain type of fertilizers.

The combination of the use of beneficial and environmentally friendly microorganisms for agricultural production such as P solubilizers and N fixers together with inorganic fertilizers is an increasingly important line of research aimed at developing microbial formulations that enhance the benefits of mineral inputs reducing negative effects on the environment. Since most agricultural systems are N- and P-limited, this novel approach is likely to be of global interest. Evidence shows that even a single polymicrobial inoculation (Figure 14) can have positive effects on agricultural productivity (Bargaz et al., 2018).
The microbial consortia concept

Direct effects
- Enhanced nutrient uptake (P solubilization, N₂ fixation, etc)
- Enhanced water use efficiency
- Phytohormone production
- Root growth stimulation
- Root nodule development

Indirect effects
- Resiliency to biotic and abiotic stress
- Improvement of soil structure and property
- Changes in carbon allocation

Figure 14. This figure summarizes the main elements and processes involved in the microbial consortium concept. It includes the direct and indirect beneficial effects of the rhizosphere on plants. In healthy soils, the heterogeneity and complexity of the rhizosphere positively affects the growth and yield of the associated plants. AMF: arbuscular mycorrhizal fungi; PSB: phosphorus solubilizing bacteria; BNF: biological nitrogen fixation

The microbial consortia concept

Direct effects
- Enhanced nutrient uptake (P solubilization, N_2_ fixation, etc)
- Enhanced water use efficiency
- Phytohormone production
- Root growth stimulation
- Root nodule development

Plant growth and development
- Increased aboveground biomass
- Higher yield (quantity & quality)
- Resiliency to constraints (abiotic & biotic)

Root growth, plasticity and architecture
- Biomass, length, surface
- Soil exploration
- Nutrient cycling
- Nutrient use

Root and soil microbial diversity
- Bacterial and fungal communities shift
- Rhizosphere (soil and root-associated) microbes diversity
- Recruitment of beneficial microbes

Microbial synergism
- Competitive advantage

Provider / supplier of
- Bioavailable nutrients (i.e. N, P, K, S, micronutrients)
- Energy rich C compounds & exudates
- Phytohormones
- Vitamins
- Siderophores
- Antimicrobials

AMF
- Arbustcular mycorrhizal fungi
- P supplying
- N supplying
- Micronutrient supplying

PSB
- Phosphorus solubilizing bacteria
- P supplying

BNF
- Biological nitrogen fixation

Mycorrhizosphere

Rhizoplane

Mycorrhizosphere

Bulk soil

Endophyte microbiome

Nodule microbiome

Hyphosphere microbiome

Resiliency to biotic and abiotic stress

Improvement of soil structure and property

Changes in carbon allocation
3.6. The role of reused and recycled nutrient sources.

According to the Fertilizer Code, recycled nutrients are plant nutrients applied to and taken up by growing plants that can be returned to the nutrient cycle after consumption by humans or animals, as by-products of food processing, or as plant residues returned to the soil (FAO, 2019c). The reuse of nutrients and recycled materials that come from various sources including wastewater, algae biomass, aquatic plants, sewage sludge, biosolids, animal manure, urban wastes, composts, vermicompost, digestates, biochar, inorganic or organic byproducts such as struvite, ammonium sulfate and residues from food, agroindustry, and other industries aims at closing fertilizer products life cycles and achieving circular economy objectives (Figure 15). Plant growth and yield potentials with recovered nutrients can be either similar or better than that of the conventional fertilizer. To ensure eco-friendly application of the recovered nutrient, the presence of undesirable contaminant fractions (e.g. heavy metals) should be eliminated (Saliu and Oladoja, 2021).

The reuse of edible food material is the most socially responsible utilization approach. Because of this, actions against the wastage of food consequently have an impact on the feedstock availability of utilization processes. It is assumed that due to economic reasons more edible food fractions are processed for instance in biorefineries to produce high value products. The inedible fraction of wasted food material can find its way in recycling processes where it is most efficiently converted into new products (Pleissner, 2018).

The transition to the circular nutrient economy calls for policy measures that encourage the production and use of composts and digestates, as well as the necessary logistics to enable their use. These policies should avoid inefficient nutrient use; generate demand for recycled fertilizers; and provide support for biomass processing before the markets for recovered resources are up and running. Public and private investments, technological developments and institutional shifts can create conditions for profitable and safe production and consumption of recycled nutrients (Valve, Ekholm and Luostarinen, 2020).
Recycling nutrients for circular economy and zero wastes

Figure 15. Several nutrient sources, wastes, and byproducts of fertilizers could be processed under a circular economy framework and be used again to improve soil fertility.

3.7. Sustainable soil fertility management

Nutrients present in soils and added through fertilizers function as nutrients when they are within the plant-soil-atmosphere system. However, under a scheme of fertilizer overuse or misuse, nutrients are prone to leaking out of the system, behaving as triggering agents of environmental pollution, climate change and damage to human health. In this sense, it is more cost-effective to direct efforts towards preventive, more than corrective approaches. However, the matter of what to do and how to retrieve leaked nutrients from the atmosphere and water bodies back to the soils require also research and investment.

Fertilizer use recommendations based on an integral approach
Since most fertilizers come from the extraction of minerals, which are non-renewable natural resources with an uncertain life span, it is necessary to optimize the use of fertilizers. Amid environmental problems and climate change, it is necessary to develop and strengthen alternatives that complement or replace the use of mineral fertilizers. Underuse, overuse and misuse of fertilizers is a multifactorial problem, and proper recommendations to optimize fertilizer use can contribute significantly to avoid the externalities associated with inappropriate fertilizer use. There is currently a wide array of strategies and tools to support fertilization plans including NbS, management-based strategies and technological tools which have been included in this review. The cost effectiveness and adoption of these strategies can greatly benefit from essential pillars for SSM including soil monitoring, soil information, soil analysis, capacity development, fertilizer quality assessment and the inclusion of circular economy approaches (Figure 16).
References

Colino, S. 2022. Fruits and vegetables are less nutritious than they used to be. In: National Geographic. Cited 26 June 2022. https://www.nationalgeographic.co.uk/environment-and-conservation/2022/05/fruits-and-vegetables-are-less-nutritious-than-they-used-to-be

Heisey, P.W. & Mwangi, W.M. 1996. Fertilizer use and maize production in sub-Saharan Africa. CIMMYT. (available at https://repository.cimmyt.org/handle/10883/929)

Ortiz-Monasterio, J.I. & Raun, W. 2007. Reduced nitrogen and improved farm income for irrigated spring wheat in the Yaqui Valley, Mexico, using sensor based nitrogen management. Journal of agricultural science. (also available at https://doi.org/10.1017/S0021859607006995)

Glossary

Adsorption: The attraction of ions or compounds to the surface of a solid. Soil colloids adsorb large amounts of ions and water (Weil and Brady, 2017).

Ammonia volatilization: The loss of nitrogen to the atmosphere in the form of ammonia after applications of fertilizers (FAO, 2019c).

Bioavailability: The measure of fractional utilization of orally ingested nutrient and also defined as the proportion of a particular nutrient that can be used by the body to provide its associated biological function. The amount of an element in a food constituent or a meal that can be absorbed and used by a person. Bioavailability also refers to the portion of an ingested nutrient that can be absorbed in the human gut. The bioavailability of minerals can be reduced or enhanced by the consumption of food rich in antinutrients (inhibitors of absorption) or nutritional enhancers, respectively (Singh et al., 2016).

Biofertilizer: A broad term used for products containing living or dormant micro-organisms such as bacteria, fungi, actinomycetes and algae, alone or in combination, which on application help in fixing atmospheric nitrogen or solubilize/mobilize soil nutrients (FAO, 2019c).

Biogenic nitrogen: Biogenic emissions of N_2O from soils result primarily from the microbial processes nitrification and denitrification (Dolman, Valentini and Freibauer, 2008).

Biological invasion: When an organism arrives at a point beyond its previous range (Williamson and Griffiths, 1996).

Biological nitrogen fixation: The biological conversion of elemental nitrogen (N_2) to organic combinations or to forms readily utilized in biological processes. Occurs at ordinary temperatures and pressures. It is commonly carried out by certain bacteria, algae, and actinomycetes, which may or may not be associated with higher plants (Weil and Brady, 2017).

Black soils: Soils with thick, dark-coloured horizons, that are rich in organic carbon (FAO, 2022).

Cation exchange capacity: The total of exchangeable cations that a soil can adsorb. Sometimes called total-exchange capacity, base-exchange capacity, or cation-adsorption capacity. Expressed in centimoles of charge per kilogram (cmolc/kg) of soil (or of other adsorbing material, such as clay) (Weil and Brady, 2017).

Chelation: The coordinate bonding of a metal with a molecule, usually of organic matter (Weathers, Strayer and Likens, 2013).

Circular economy: An economic system designed with the intention that maximum use is extracted from resources and minimum waste is generated for disposal (Deutz, 2020).

Colloid: Organic and inorganic matter with very small particle size and a correspondingly large surface area per unit of mass (Weil and Brady, 2017).
Controlled release fertilizers: Fertilizers that release nutrients in a controlled manner to satisfy the nutrient uptake of a crop (Rajan et al., 2021).

Decomposition: Chemical breakdown of a compound (e.g. a mineral or organic compound) into simpler compounds, often accomplished with the aid of microorganisms (Weil and Brady, 2017).

Denitrification: The biochemical reduction of nitrate or nitrite to gaseous nitrogen, either as molecular nitrogen or as an oxide of nitrogen (Weil and Brady, 2017).

Desorption: The removal of sorbed material from surfaces (Weil and Brady, 2017).

Dissolution: Process by which molecules of a gas, solid, or another liquid dissolve in a liquid, thereby becoming completely and uniformly dispersed throughout the liquid’s volume (Weil and Brady, 2017).

Enhanced efficiency fertilizers: Fertilizers that reduce loss to the environment and/or increase nutrient availability compared to conventional fertilizers (Olson-Rutz, Jones and Dinkins, 2011).

Erosion: The wearing away of the land surface by running water, wind, ice, or other geological agents, including such processes as gravitational creep. Detachment and movement of soil or rock by water, wind, ice, or gravity (Weil and Brady, 2017).

Eutrophication: The excessive enrichment of surface waters with plant nutrients, primarily Nitrogen and Phosphorus (FAO, 2019c).

Fertilizer: Any organic or inorganic material of natural or synthetic origin added to a soil to supply certain elements essential to the growth of plants (Weil and Brady, 2017).

Fertilizer use efficiency: An estimate or determination of the amount of nutrients in a fertilizer that are taken up by the crop after the fertilizer is applied to the soil as a proportion of the amount added. This can be for the crop grown after the initial fertilizer application is made or after one or more crops are grown (FAO, 2019c).

Fixation: For other than elemental nitrogen: the process or processes in a soil by which certain chemical elements are converted from a soluble or exchangeable form to a much less soluble or to a nonexchangeable form; for example, potassium, ammonium, and phosphorus fixation. (2) For elemental nitrogen: process by which gaseous elemental nitrogen is chemically combined with hydrogen to form ammonia (Weil and Brady, 2017).

Hypoxia: State of oxygen deficiency in an environment so low as to restrict biological respiration (in water, typically less than 2 to 3 mg O₂/L) (Weil and Brady, 2017).

Immobilization: The conversion of an element from the inorganic to the organic form in microbial tissues or in plant tissues, thus rendering the element not readily available to other organisms or to plants (Weil and Brady, 2017).

Labile: A substance that is readily transformed by microorganisms or is readily available for uptake by plants (Weil and Brady, 2017).
Leaching: The removal of materials in solution from the soil by percolating waters (Weil and Brady, 2017).

Life cycle: Consecutive and interlinked stages of a product system, from raw material acquisition or generation from natural resources to final disposal (ISO, 2006).

Micas: Primary aluminosilicate minerals in which two silica tetrahedral sheets alternate with one alumina/magnesia octahedral sheet with entrapped potassium atoms fitting between sheets. They separate readily into visible sheets or flakes (Weil and Brady, 2017).

Mineral apatite: A phosphate of calcium, with fluorine and chlorine \(\text{[Ca}_5(\text{F, OH, Cl})\text{(PO}_4\text{)}_3] \); the main source of phosphorus in the Earth’s crust (Deb and Sarkar, 2017).

Microbiome: The combined genetic material of all microorganisms living in a given ecosystem, including in the human body (FAO, 2019a).

Mineralization: The conversion of an element from an organic form to an inorganic state because of microbial decomposition (Weil and Brady, 2017).

Morbidity: The consequences and complications (other than death) that result from a disease (Morgan and Summer, 2008).

Mortality rate: The annual measurement of how many people die and the causes. Mortality data allow health authorities to evaluate how they prioritize public health programs. Deaths can be represented as a total number per year, or as a rate per 100 000 population per year. The numbers of deaths per 100 000 population are influenced by the age distribution of the population (WHO, 2022b).

Nitrification: The biochemical oxidation of ammonium to nitrate, predominantly by autotrophic bacteria (Weil and Brady, 2017).

Biological Nitrogen fixation: The biological conversion of elemental nitrogen (\(\text{N}_2 \)) to organic combinations or to forms readily utilized in biological processes (Weil and Brady, 2017).

Nitrification inhibitor: A substance that inhibits biological oxidation of ammoniacal nitrogen to nitrate (FAO, 2019c).

Nutrient bioavailability: The fraction of a nutrient in a food that is absorbed and utilized (Wood, 2005).

Nutrition-sensitive agriculture: An approach that seeks to ensure the production of a variety of affordable, nutritious, culturally appropriate and safe foods in adequate quantity and quality to meet the dietary requirements of populations in a sustainable manner (FAO, 2017).

Organic fertilizer: By-product from the processing of animal or vegetable substances that contain sufficient plant nutrients to be of value as fertilizers (Weil and Brady, 2017).

Oxidation: The loss of electrons by a substance; therefore, a gain in positive valence charge and, in some cases, the chemical combination with oxygen gas (Weil and Brady, 2017).

Pedogenic processes: At the macro-scale there are five main principal pedogenic processes acting on soils: laterization, podzolization, calcification, salinization and gleization (Pidwirny, 2021).
Pool: A portion of a larger store of a substance defined by kinetic or theoretical properties. For example, the active pool of soil organic matter is defined by its rapid rate of microbial turnover (Weil and Brady, 2017).

Primary mineral: A mineral that has not been altered chemically since deposition and crystallization from molten lava (Weil and Brady, 2017).

Properties of soil colloids: The general properties of soil colloids are size, surface area, surface charges, adsorption of cations, adsorption of water, cohesion, adhesion, swelling and shrinkage, dispersion and flocculation, brownian movement, and non permeability (Channarayappa and Biradar, 2018).

Reactive nitrogen: All forms of nitrogen that are readily available to biota (mainly ammonia, ammonium, and nitrate with smaller quantities of other compounds including nitrogen oxide gases) as opposed to unreactive nitrogen that exists mostly as inert N₂ gas (Weil and Brady, 2017).

Reduction: The gain of electrons, and therefore the loss of positive valence charge, by a substance. In some cases, a loss of oxygen or a gain of hydrogen is also involved (Weil and Brady, 2017).

Runoff: The portion of the precipitation on an area that is discharged from the area through stream channels. That which is lost without entering the soil is called surface runoff and that which enters the soil before reaching the stream is called groundwater runoff or seepage flow from groundwater. (In soil science runoff usually refers to the water lost by Surface flow; in geology and hydraulics runoff usually includes both surface and subsurface flow (Weil and Brady, 2017).

Secondary mineral: A mineral resulting from the decomposition of a primary mineral or from the reprecipitation of the products of decomposition of a primary mineral (Weil and Brady, 2017).

Soil organic matter: The organic fraction of the soil that includes plant, animal and microbial residues in various stages of decomposition, biomass of soil microorganisms, and substances produced by plant roots and other soil organisms. It is commonly determined as the total organic (non-carbonate) carbon in a soil sample passed through a 2-mm sieve (Weil and Brady, 2017).

Soil solution: The aqueous liquid phase of the soil and its solutes, consisting of ions dissociated from the surfaces of the soil particles and of other soluble materials (Weil and Brady, 2017).

Value Chain: A chain of activities for a firm operating in a specific industry (Porter’s, 1985).

Weathering: All physical and chemical changes produced in rocks, at or near the Earth’s surface, by atmospheric agents (Weil and Brady, 2017).
The Global Soil Partnership (GSP) is a globally recognized mechanism established in 2012. Our mission is to position soils in the Global Agenda through collective action. Our key objectives are to promote Sustainable Soil Management (SSM) and improve soil governance to guarantee healthy and productive soils, and support the provision of essential ecosystem services towards food security and improved nutrition, climate change adaptation and mitigation, and sustainable development.

Land and Water division
GSP-secretariat@fao.org
www.fao.org/global-soil-partnership

Food and Agriculture Organization of the United Nations
Rome, Italy

Thanks to the financial support of

Federal Ministry of Food and Agriculture