
A Python package for
Agro-Ecological Zoning

User Guide for PyAEZ (v2.0.0)

A Python package for Agro-Ecological
Zoning

User Guide for PyAEZ (v 2.0.0)

Published by
Food and Agriculture Organization of the United Nations
Rome and Bangkok 2023

Required citation:
FAO & AIT. 2023. A Python package for Agro-Ecological Zoning – User guide for PyAEZ (v 2.0.0). Rome and Bangkok.
https://doi.org/10.4060/cc4079en

The designations employed and the presentation of material in this information product do not imply the expression of any opinion
whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development
status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The
mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these
have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of
FAO.

ISBN 978-92-5-137570-9
© FAO, 2023

Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO
licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode).

Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that
the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization,
products or services. The use of the FAO logo is not permitted. If the work is adapted, then it must be licensed under the same
or equivalent Creative Commons licence. If a translation of this work is created, it must include the following disclaimer along with
the required citation: “This translation was not created by the Food and Agriculture Organization of the United Nations (FAO).
FAO is not responsible for the content or accuracy of this translation. The original [Language] edition shall be the authoritative
edition.”

Disputes arising under the licence that cannot be settled amicably will be resolved by mediation and arbitration as described in
Article 8 of the licence except as otherwise provided herein. The applicable mediation rules will be the mediation rules of the
World Intellectual Property Organization http://www.wipo.int/amc/en/mediation/rules and any arbitration will be conducted in
accordance with the Arbitration Rules of the United Nations Commission on International Trade Law (UNCITRAL).

Third-party materials. Users wishing to reuse material from this work that is attributed to a third party, such as tables, figures or
images, are responsible for determining whether permission is needed for that reuse and for obtaining permission from the
copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with
the user.

Sales, rights and licensing. FAO information products are available on the FAO website (www.fao.org/publications) and can be
purchased through publications-sales@fao.org. Requests for commercial use should be submitted via: www.fao.org/contact-
us/licence-request. Queries regarding rights and licensing should be submitted to: copyright@fao.org.

[OPTIONAL Cover photograph:]

iii

Contents

ACKNOWLEDGEMENTS VII

ABBREVIATIONS AND ACRONYMS VIII

INTRODUCTION 1

Background 1

What is PyAEZ? 2

DATA REQUIREMENT AND PREPARATION 5

Python dependencies 5

Data preparation 5

Climate data 5

Soil 6

Geographical location and terrain data 8

MODULE 1: CLIMATE REGIME 9

Introduction 9

Object class creation (mandatory) 10

Setting up geographical and terrain data (mandatory) 10

Read the climate data and load into the class (mandatory) 10

Setting study area inputs (optional) 11

Thermal climate 11

Thermal zones 14

Thermal length of growing period (LGPt) 15

Temperature summations (TS) 16

Temperature profiles 16

Length of growing period (LGP) 17

Reference evapotranspiration (ETo) 17

Maximum evapotranspiration (ETm) 18

Actual evapotranspiration (ETa) 18

LGP calculation 19

LGP equivalent 19

Multiple cropping zones classification 21

Fallow period requirements 22

Permafrost evaluation 23

iv

Agro-Ecological Zones classification 23

MODULE 2: CROP SIMULATION 25

Introduction 25

Setting up inputs for Module 2 27

Geographical and terrain input 27

Climate data input 27

Setting study area inputs (optional) 28

Crop parameters input 28

Soil water parameter input 28

Crop cycle parameter input 29

Thermal screening input 29

Adjustment for perennial crop (optional) 31

Calculations and outputs 31

Crop cycle simulation 31

Estimated maximum yield 32

Optimum crop calendar 32

MODULE 3: CLIMATE CONSTRAINTS 34

Introduction 34

Setting up parameter files 35

Applying climate constraints 35

MODULE 4: SOIL CONSTRAINTS 37

Introduction 37

Setting up parameter files 38

Calculate soil qualities 43

Calculate soil ratings 43

Extracting soil qualities 44

Extracting soil ratings 44

Applying soil constraints 44

MODULE 5: TERRAIN CONSTRAINTS 46

Introduction 46

Setting up parameter files 46

Setting up inputs 47

Climate and terrain inputs 47

Calculate Fournier index 48

Extract Fournier index 48

v

Applying terrain constraints 48

MODULE 6: ECONOMIC SUITABILITY ANALYSIS 50

Introduction 50

Crop parameters inputs 50

Net revenue 51

Classified net revenue 51

Normalized net revenue 52

UTILITY CALCULATIONS 53

Introduction 53

Monthly-to-daily interpolation 53

Daily-to-monthly aggregation 54

Create latitude map 54

Classify the final crop yield 55

Saving GeoTIFF rasters 55

Averaging raster files 56

Calculate wind speed at 2 m altitude 56

REFERENCES 58

vi

Figures
Figure 1. Overview of PyAEZ workflow 4
Figure 2. Example of the topsoil characteristic input format (.csv) 7
Figure 3. Overview of Module 1 (climate regime) workflow 9
Figure 4. Overview of Module 2 (crop simulation) workflow 26
Figure 5. Overview of crop simulation routine 26
Figure 6. Estimation of maximum attainable yield (rain-fed and irrigated) and optimum

starting date (Module 2) 33
Figure 7. Overview of Module 3 (climate constraints) workflow 34
Figure 8. Overview of Module 4 (soil constraints) workflow 38
Figure 9. Overview of Module 5 (terrain constraints) workflow 47
Figure 10. Overview of Module 6 (economic suitability) workflow 50

Tables
Table 1. Input climatic parameters 6
Table 2. Soil Data preparation 6
Table 3. Input soil parameters of topsoil and sub-soil properties 7
Table 4. Geographical and terrain data preparation 8
Table 5. Classification of thermal climate classes according to rainfall and temperature

seasonality 13
Table 6. Classification of thermal zone classes according to rainfall and temperature

seasonality 14
Table 7. Temperature profile classes 17
Table 8. Kc values used in Module 1 for the calculation of the maximum evapotranspiration

(Etm) 20
Table 9. Delineation of multiple cropping zones 22
Table 10. Net revenue classification 52
Table 11. Yield suitability classification 55

vii

Acknowledgements
The free and open source package Python Agro-Ecological Zoning (PyAEZ) was developed to
address country-specific spatial information needs on future agricultural production. The
finalization of this publication was led by Manzul Kumar Hazarika. Kittiphon Boonma and Swun
Wunna are the main authors for this publication with technical advice and contribution from
Prof. Rajendra P. Shrestha.

The authors acknowledge the contribution from the Asian Institute of Technology -
Geoinformatics Center and the Food and Agriculture Organization of the United Nations (FAO)
through the Geospatial Unit and the Regional Office for Asia and the Pacific (FAO-RAP). The
PyAEZ development received financial support under a regional initiative on “Capacity building
for Agro-Ecological Zone (AEZ) mapping and modelling to project climate suitability of crops and
land uses” in collaboration with the FAO-RAP and the “Strengthening agro-climatic monitoring
and information systems to improve adaptation to climate change and food security in Lao PDR
(GCP /LAO/021/LDF)” project.

The code development received contribution from Lakmal Nawarathnage, Thaileng Thol,
Gianluca Franceschini, Shraddha Sharma, Kavinda Gunasekara, Kittiphon Boonma and Swun
Wunna Htet. This achievement would have not been made possible without the technical
contribution and advice from Günther Fischer from the International Institute for Applied
Systems Analysis (IIASA) and Freddy Nachtergaele. The authors are also grateful for the
financial and management support from FAO, especially Beau Damon, Monica Petri, Federica
Chiozza, Joyce Ahimbisibwe and Matieu Henry.

viii

Abbreviations and acronyms
AEZ Agro-Ecological Zones

AIT-GIC Asian Institute of Technology - Geoinformatics Center

AWC available soil water capacity

BADC British atmospheric data centre

CMIP5 Coupled Model Inter-comparison Project Phase 5

CRU Climate Research Unit

DEM digital elevation model

ESM Earth System Model

ETa actual evapotranspiration

ETm maximum evapotranspiration

ETo reference evapotranspiration

FAO Food and Agriculture Organization of the United Nations

FAO-RAP FAO Regional Office for Asia and the Pacific

Fm modified Fournier index

GAEZ Global Agro-Ecological Zones

HI harvest index

HWSD Harmonized World Soil Database

IIASA International Institute for Applied System Analysis

LAI leaf area index

LGP length of growing period

LGPt5 temperature growing period

LGPt10 frost free period

LUTs land utilization types

P/ETo moisture availability index

SQ soil quality

1

Introduction
The world population is expected to reach 8.5 billion in 2030 and 9.7 billion in 2050 (UN DESA,
2022). With this eruptive growth in population, an unprecedented increase in demand for food,
feed, and fuel is expected, while the agricultural land needed for production continues to shrink
in many parts of the world.

The accelerating pace of climate change, combined with global population growth, threatens
food security globally. Higher temperatures eventually reduce yields of desirable crops while
encouraging weed and pest proliferation and changes in precipitation patterns increase the
likelihood of short-run crop failures and long-run production declines (Nelson et al., 2009).

Yield increases on existing croplands will, therefore, be an essential component to increase food
production (Ray et al., 2013). To this end, the Agro-Ecological Zoning (AEZ) framework was
developed as a tool to analyse the effect of climate on land use and agricultures, as well as
helping to optimise the crop cycle to produce the best yield possible. PyAEZ is an open-source
Python package which offers AEZ calculations for user to implement for their regional AEZ
analyses. This technical document contains detailed descriptions of all the AEZ modules and
functions in PyAEZ.

Background
Over the last thirty years, FAO and the International Institute for Applied Systems Analysis
(IIASA) have been developing Agro-Ecological Zoning (AEZ). AEZ is a modelling system for land
evaluation to support sustainable land use planning, stimulate agricultural investments,
monitor the status of agricultural resources, and assess the impacts of climate change on
agriculture.

The Agro-Ecological Zoning (AEZ) approach, developed by FAO jointly with IIASA, is based on
the principles of land evaluation and defines matching procedures to identify crop-specific
limitations of prevailing climate, soil, and terrain resources with simple and robust crop models,
under assumed levels of inputs and management conditions. Main outputs are maximum
potential and agronomically attainable crop yields and suitability levels for basic land resources
units under different agricultural production systems defined by water supply systems and
levels of inputs and management circumstances.

While most countries have adopted land evaluation, land suitability assessment, agro-ecological
zoning in the past to prepare agricultural investment plans, most of those are outdated. In
parallel, various generations of “AEZ Projects” have served as vehicles to consolidate efforts,
structure project goals, and promote funding and resources for the further development of
these concepts. And while new datasets and technologies are increasingly becoming available,
national capacities to develop, update and use agro-ecological zoning remain limited.

The GAEZ assessment, currently at its fourth update (GAEZ v4), uses seven different modules
that are run sequentially to generate agro-climatic and crop-specific information. Each module
is made up of a series of FORTRAN routines, documented in GAEZ version 4 model
documentation (Fischer et al., 2021), that are run through custom batch scripts. Additional
scripts in Delphi are used for specific modelling (to be clearly specified by IIASA). Data

2

preparation, although fully documented on the theoretical concepts, is mostly undocumented
when addressing the required process to input new data in the modelling system. Limited
knowledge on data preparation and lack of a systematic system to run FORTRAN routines make
the capacity to generate outputs, limited to a restricted number of experts at IIASA.

The main strategic shift of GAEZ v5 is to focus on how the strong scientific basis for GAEZ can be
made available to national entities to support decision-making. GAEZ v5 will focus on taking the
last three decades of knowledge and building a standardized, repeatable, accessible yet
extensible approach for countries to implement their own, fit for purpose, nationally-adjusted
Agro-Ecological Zoning project(s). Countries need guidance on how to collect relevant local
data, what tools they can use to create data if it does not exist, how to engage with farmers, local
representatives and other stakeholders, and how to process, manage, host and disseminate
results of an analysis

With a growing need to address country-specific Agro-Ecological Zoning modelling, the
“Strengthening Agro-climatic Monitoring and Information System (SAMIS)”1 project in Lao PDR,
in collaboration with the Geoinformatics Center of the Asian Institute of Technology (AIT-GIC)
developed a first prototype in Python language, named PyAEZ, that generate national AEZ
information. The code, with supporting documentation, and training material is publicly
available in the GitHub repository at the https://github.com/gicait/PyAEZ.

What is PyAEZ?
PyAEZ is the first step of GAEZ expansion that utilizes Python scripts to develop users’AEZ
projects. The PyAEZ package utilizes climate, soil, and terrain conditions relevant to agricultural
production and suitability using crop-specific land resource inventory parameters.

The package is developed with several Python routines and is operated with Jupyter Notebooks,
which means it has the capability to be uploaded onto Google Colab, an online Jupyter Notebook
system. This compatibility with an online platform such as Google Colab allowed the
development team to host two virtual hands-on trainings where attendants were guided
through the scientific concepts of AEZ as well as executing the scripts with country-specific
input data, through Google Colab.

PyAEZ has been developed to be used within the tropical region, hence some of the complexity
of GAEZ in non-tropical regions (e.g. vernalization requirements, permafrost evaluation) is not
accounted for. Moreover, the system has not been tested on larger areas where performances of
results may be an issue.

PyAEZ package consists of six main AEZ modules and one additional utility module (Figure 1):

 Module 1: Climate regime - calculation of agro-climatic indicators for evaluation of
climatic suitability of crops.

 Module 2: Crop simulation - simulate an optimal crop cycle for the highest attainable
yield.

1 Further information on the Strengthening agro-climatic monitoring and information systems to improve adaptation to climate
change and food security in Lao PDR (GCP /LAO/021/LDF) SAMIS project can be found at http://www.fao.org/in-
action/samis/en/

3

 Module 3: Climate constraints - application of agro-climatic constraints to the
calculated yield of a particular crop.

 Module 4: Soil constraints - application of edaphic constraints to the calculated yield of
a particular crop.

 Module 5: Terrain constraints - application of terrain constraints to the calculated yield
of a particular crop.

 Module 6: Economic suitability analysis - evaluation of economic profitability of a crop
based on crop price and the calculated yield.

 Utilities calculations, miscellaneous calculation routines used throughout the 6 main
AEZ modules.

The package is also equipped with additional calculation routines for:

i. water balance calculation and applying of yield reduction factors based on water
limitation (FAO CropWat algorithm) (Smith, 1992);

ii. biomass calculation produced by photosynthesis activities of plants under given
radiation conditions;

iii. reference evapotranspiration calculation using Penman-Monteith algorithm (Allen et al.,
1998; Monteith, 1965, 1981).

This documentation provides a step-by-step guideline for anyone looking to develop an AEZ
project using PyAEZ package, starting from the installation to the description of the functions in
each module, as well as the theoretical concepts behind each function/module.

The code, with supporting documentation, and training material (Jupyter Notebooks and example
data) is publicly available and can be downloaded and installed through:

 PyAEZ GitHub repository (https://github.com/gicait/PyAEZ).
 Python package management systems ‘pip’ and ‘conda’.

4

Figure 1. Overview of PyAEZ workflow

Source: Authors' own elaboration.

5

Data requirement and preparation
This section will cover all the system and data requirements to run PyAEZ. These subsections
also act as an essential checklist for the necessary elements to every PyAEZ project initiation.

Python dependencies

PyAEZ package requires the following additional open-source Python packages to be installed
and imported for the AEZ calculations to work:

 NumPy:2 NumPy array is the format used throughout PyAEZ for pixel-based calculation;

 GDAL:3 allow the package to utilize and generate geo-referenced output from non-
geocoded NumPy arrays;

 SciPy:4 offers statistical analyses and is interoperable with NumPy array;

 Pandas:5 allows PyAEZ to read MS Excel sheets with user-defined parameters ;

 Numba6 and NumPy: aware optimizing compiler used to speed up some computationally
heavy routines within PyAEZ.

Data preparation

Input-data preparation is essential as the current version of PyAEZ requires users to input data
of specific format and shape. Depending on the nature of each aspect, one might prepare to
transform into 2D or 3D NumPy arrays, in other cases, preparing additional excel sheet
information will be required.

Climate data

PyAEZ requires 6 climatic parameters (Table 1) to be prepared as 3D NumPy data cube for a
single year (row, column, day-of-year). We encourage users to use daily climatic data for more
accurate results. If the monthly climate data is used, it will need to be interpolated to daily data.
The input climate data can be Historical-type data or Future-projected data. Example of the
possible climate data sources are Corpernicus' Climate Data Store,7 European Centre for
Medium-Range Weather Forecasts (ECMWF),8 Google Earth Engine (GEE),9 and etc. Users can
also utilize own country data from their national sensor network/database.

2 NumPy: https://numpy.org/install

3 GDAL: e.g. https://anaconda.org/conda-forge/gdal

4 SciPy: https://scipy.org/install

5 Pandas: https://pandas.pydata.org/docs/getting_started/install.html

6 Numba: https://numba.readthedocs.io/en/stable/user/installing.html

7 Corpernicus’ Climate Data Store: https://cds.climate.copernicus.eu/

8 ECMWF: https://www.ecmwf.int/en/forecasts/datasets

9 Google Earth Engine: https://developers.google.com/earth-engine/datasets

6

Table 1. Input climatic parameters

Climatic parameter Data frequency Unit Data format

Minimum air temperature
(2 m above surface)

Daily or monthly Degree celsius
3D NumPy
(row, column, time)

Maximum air temperature
(2 m above surface)

Daily or monthly Degree celsius
3D NumPy
(row, column, time)

Total precipitation Daily or monthly mm/day
3D NumPy
(row, column, time)

Solar radiation Daily or monthly W/m2
3D NumPy
(row, column, time)

Relative humidity Daily or monthly Percentage
3D NumPy
(row, column, time)

Windspeed
(2 m above surface)

Daily or monthly m/s
3D NumPy
(row, column, time)

Source: Authors' own elaboration.

During the preparation of climatic data, all NaN values (different climate data tend to have some
specified no-value values, e.g. -9999) need to be set to zero to prevent any incomputable errors
further down the line.

Soil

PyAEZ requires two soil-related data preparations (Table 2).

Table 2. Soil Data preparation

Data Data source Data format

Soil map
 Harmonized World Soil

Database (HWSD)10
 Own local/regional soil map

 2D NumPy array
 Each pixel refers to a unique soil

mapping unit

Soil characteristics
(Table 3)

 Corresponding to the soil map

 .csv file with each soil characteristic
parameters as the column headers
(Figure 2)

 PyAEZ needs 2 .csv files, one for topsoil
and another for sub-soil*

*: Pay special attention to the abbreviations when used in the .csv file as PyAEZ reads the data using these

Source: Authors' own elaboration.

10 HWSD: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/

7

Figure 2. Example of the topsoil characteristic input format (.csv)

Source: Authors' own elaboration.

Table 3. Input soil parameters of topsoil and sub-soil properties

Abbreviation* Parameter name Data type

CODE Soil Mapping Unit ID11 Numerical

TXT Soil texture String

OC Soil organic carbon Numerical

pH Soil pH (0–14) Numerical

TEB Total exchangeable bases Numerical

BS Base saturation Numerical

CEC_soil Cation exchange capacity of soil Numerical

CEC_clay Cation exchange capacity of clay Numerical

RSD Effective soil depth Numerical

GRC Soil coarse material (gravel) percentage Numerical

DRG
Drainage classes (VP: very poor, P: poor, I: imperfectly, MW: moderately
well, W: well, SE: somewhat excessive, E: excessive

String

ESP Exchangeable sodium percentage Numerical

EC Electricity conductivity [dS/m] Numerical

SPH Soil phase rating (0 or 1) Numerical

SPR Soil property rating (0 or 1) Numerical

OSD Other soil depth/volume related characteristics rating Numerical

CCB Calcium carbonate content percentage Numerical

GYP Gypsum content percentage Numerical

VSP Vertical properties (0 or 1) Numerical

Source: Authors' own elaboration.

11 Soil Mapping Unit ID as obtained from the soil map

8

Geographical location and terrain data

PyAEZ requires the elevation and slope maps to be prepared (Table 4). Administrative
boundary mask is optional, however, is highly encouraged because it can help minimizing the
computational time by considering only area/region of interest.

Table 4. Geographical and terrain data preparation

Data Data source Data format

Elevation map
 global elevation map, or
 own national/regional data

 2D NumPy array
 unit: metre

Terrain slope map
 global slope map, or
 own national/regional data

 2D NumPy array
 unit: percentage

Administrative
boundary mask
(optional)

 global mask, or
 own national/regional mask

 2D NumPy array
 binary: 1 for wanted area, and 0 for

unwanted area

Source: Authors' own elaboration.

9

Module 1: Climate regime

Introduction
This module performs climate data analysis and compiling general agro-climatic indicators.
These general agro-climatic indicators summarize climatic profiles in the study area for each
grid. Figure 3 shows the overall workflow of Module 1. The key input data for this module is the
climatic data, and the geographical and terrain data. This section offers descriptions of the all
the functions within Module 1, with example code snippets.

It is advisable to always run this module first, as several agro-climatic indicators output from
Module 1 will get feed into Module 2 (crop simulation).

Figure 3. Overview of Module 1 (climate regime) workflow

Source: Authors' own elaboration.

Object class creation (mandatory)
PyAEZ codes utilizes ‘Object-Oriented Programming’ style, meaning that each module has its
own Classes containing separate attributes and functions. Therefore, it is essential that the
necessary object-classes are initiated at the beginning of each module.

10

For Module 1, the Class that we need is called ‘ClimateRegime’, and is imported and initiated as:

1
2
3

Import PyAEZ Module1:ClimateRegime object class
import ClimateRegime
clim_reg = ClimateRegime.ClimateRegime()

Setting up geographical and terrain data (mandatory)
The next mandatory step after object class creation is to input user’s elevation and geographic
latitude information into the object class by using this function.

1
2

Load geographical location and elevation data into the object class
clim_reg.setLocationTerrainData(lat_min, lat_max, elevation)

Function arguments

lat_min
a single value corresponding to the minimum latitude (decimal degrees) of the study

area

lat_max
a single value corresponding to the maximum latitude (decimal degrees) of the study

area

elevation 2D NumPy array, elevation of the study area in metres

Function returns

None

Read the climate data and load into the class (mandatory)
The third and final mandatory step of preparation is to incorporate all the required climatic
datasets into the object class. Depending on the temporal dimension of climatic datasets, user
can use either one of the following functions: one for daily datasets and the other for monthly.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

Load climate data from NPY files
min_temp = np.load(‘PATH_TO_FILE’) # Continue loading the rest of climate
data
Deal with NaN or inappropriate negative values, for example:
rel_humidity[rel_humidity<0] = 0
short_rad[short_rad<0]=0
wind_speed[wind_speed<0]=0
Use the line below if MONTHLY data are used
clim_reg.setMonthlyClimateData(min_temp, max_temp, precipitation, short_rad,
wind_speed, rel_humidity)
Use the line below if DAILY climate data are used
clim_reg.setDailyClimateData(min_temp, max_temp, precipitation, short_rad,
wind_speed, rel_humidity)

Function arguments

min_temp 3D NumPy array, daily or monthly minimum temperature (°C)

11

max_temp 3D NumPy array, daily or monthly maximum temperature (°C)

precipitation 3D NumPy array, daily or monthly total precipitation (mm/day)

short_rad 3D NumPy array, daily or monthly solar radiation (W/m2)

wind_speed 3D NumPy array, daily or monthly windspeed at 2 m elevation (m/s)

rel_humidity 3D NumPy array, daily or monthly relative humidity (percentage decimal, 0–1)

Function returns

None

Setting study area inputs (optional)
This function is set up as an optional step which set up the mask layer as input which reduces
the computation time outside the pixels of considerations.

1
2

Set up mask for the study area (country, regional, or local)
clim_reg.setStudyAreaMask(admin_mask, no_data_value=0)

Function arguments

admin_mask 2D NumPy array, extracted only region of interest (Binary 0/1)

no_data_value A single value, pixels equal to this value will be omitted during calculation

Function returns

None

Thermal climate
The thermal climate function calculates and classifies latitudinal thermal climate, which will be
used later in Module 2 for the assessment of potential crops and land utilization types (LUT)
presence in each grid cell. It is advisable to use an average of multiple years of temperature data
(e.g. 30 years) rather than a single-year data, to obtain better representation of the climate for
the study region.

Table 5 describes the classification of thermal climates based on (i) the monthly mean
temperature (sea-level adjusted12), (ii) the ratios between summer/winter rainfall and the
reference evapotranspiration (P/ETo), and (iii) the temperature amplitude as a measure of
continentality (i.e. the difference between temperatures of warmest and coldest month)
(Fischer et al., 2021).

1
2
3

Classification of rainfall and temperature seasonality into thermal climate
classes
tclimate = clim_reg.getThermalClimate ()

12 Sea-level adjusted monthly mean temperature with a fixed lapse rate of 0.55 °C/100 metres of elevation

12

Function arguments

None

Function returns

tclimate 2D NumPy array (map) of thermal climate classification

13

Table 5. Classification of thermal climate classes according to rainfall and temperature
seasonality

* Monthly temperature amplitude = monthly maximum temperature - monthly minimum temperature
** Seasonality = the difference in mean temperature of the warmest and coldest month

Source: Fischer, G., Nachtergaele, F., Velthuizen, H. van, Chiozza, F., Franceschini, G., Henry, M., Muchoney, D., & Tramberend, S. 2021.
Global Agro-Ecological Zones v4 - Model Documentation. Rome, FAO. https://doi.org/10.4060/cb4744en

Climate
Pixel

value
Rainfall and temperature seasonality

Tropics

All months with monthly mean sea-level

adjusted temperatures > 18 °C, and monthly

temperature amplitude* < 15 °C

1
Tropical

lowland

Tropics with actual mean

temperatures (Ta) above 20 °C

2
Tropical

highland

Tropics with actual mean

temperatures below 20 °C

Subtropics

One or more months with monthly mean

temperatures, corrected to sea level, below

18°C, but all above 5 °C, and 8–12 months

above 10 °C

3 Low rainfall
Annual rainfall less than 250

mm

4
Summer

rainfall

Northern hemisphere: P/ETo in

April-September ≥ P/ETo in

October-March.

Southern hemisphere: P/ETo in

October-March ≥ P/ETo in

April-September

5
Winter

rainfall

Northern hemisphere: P/ETo in

April-September ≤ P/ETo in

October-March.

Southern hemisphere: P/ETo in

October-March ≤ P/ETo in

April-September

Temperate

At least one month with monthly mean

temperatures, corrected to sea level, below 5

°C and four or more months above 10 °C

6 Oceanic Seasonality less than 20 °C**

7
Sub-

continental
Seasonality 20–35 °C **

8 Continental Seasonality more than 35 °C**

Boreal

At least one month with monthly mean

temperatures, corrected to sea level, below 5

°C and 1–3 months above 10 °C

9 Oceanic Seasonality less than 20 °C**

10
Sub-

continental
Seasonality 20–35 °C **

11 Continental Seasonality more than 35 °C**

Arctic 12 Arctic

All months with monthly mean

temperatures, corrected to sea

level, below 10 °C

14

Thermal zones
The thermal zone is classified based on actual temperature which reflects on the temperature
regimes of major thermal climates (Table 6).

1
2

Classification of thermal zone classes
tzone = clim_reg.getThermalZone()

Function arguments

None

Function returns

tzone 2D NumPy array (map) of Thermal Zones classification

Table 6. Classification of thermal zone classes according to rainfall and temperature
seasonality

Climate
Pixel

value
Thermal zones

Tropics

All months with monthly mean sea-level

adjusted temperatures > 18 °C, and monthly

temperature amplitude* < 15 °C

1 Warm
Tropics with annual mean

temperature above 20 °C

2
Cool/cold/very

cold

Tropics with annual mean

temperatures below 20 °C

Subtropics

One or more months with monthly mean

temperatures, corrected to sea level, below

18°C, but all above 5 °C, and 8–12 months

above 10 °C

3
Warm/moderately

cool

Annual mean temperature

above 20 °C

4 Cool

At least one month with

monthly mean

temperatures below 5 °C

and 4 or more months

above 10 °C

5 Cold

At least one month with

monthly mean

temperatures below 5 °C

and 1-3 months above 10

°C

6 Very cold

All months with monthly

mean temperatures below

10 °C.

Temperate

At least one month with monthly mean

temperatures, corrected to sea level, below

5 °C and four or more months above 10 °C

7 Cool

At least one month with

monthly mean

temperatures below 5 °C

and 4 or more months

above 10 °C

8 Cold

At least one month with

monthly mean

temperatures below 5 °C

15

*Monthly temperature amplitude = monthly maximum temperature - monthly minimum temperature

Source: Fischer, G., Nachtergaele, F., Velthuizen, H. van, Chiozza, F., Franceschini, G., Henry, M., Muchoney, D., & Tramberend, S. 2021.
Global Agro-Ecological Zones v4 - Model Documentation. Rome, FAO. https://doi.org/10.4060/cb4744en

Thermal length of growing period (LGPt)
The thermal length of growing period (LGPt) is defined as the number of days in a year during
which the daily mean temperature (Ta) is conductive to crop growth and development. PyAEZ
utilizes the AEZ three standard temperature thresholds for LGPt:

i. periods with Ta > 0 °C (LGPt0);

ii. periods with Ta > 5 °C (LGPt5) - the period conductive to plant growth and development;

iii. periods, and Ta > 10 °C (LGPt10) - a proxy for the period of low risks for late and early
frost occurrences and termed frost-free period.

1
2
3
4
5
6
7
8

Calculate Thermal Length of Growing Period (LGPt)
3 temperature thresholds
LGPt>0 degC
lgpt0 = clim_reg.getThermalLGP0()
LGPt>5 degC
lgpt5 = clim_reg.getThermalLGP5()
LGPt>10 degC
lgpt10 = clim_reg.getThermalLGP10()

and 1-3 months above 10

°C

9 Very cold

All months with monthly

mean temperatures below

10 °C

Boreal

At least one month with monthly mean

temperatures, corrected to sea level, below

5 °C and 1-3 months above 10 °C

10 Cold

At least one month with

monthly mean

temperatures below 5 °C

and 1-3 months above 10

°C

11 Very cold

All months with monthly

mean temperatures below

10 °C

Arctic 12 Arctic

All months with monthly

mean temperatures,

corrected to sea level,

below 10 °C

16

Function arguments

None

Function returns

lgpt0 2D NumPy arrays [days]

lgpt5 2D NumPy arrays [days]

lgpt10 2D NumPy arrays [days]

Temperature summations (TS)
Temperature summation corresponds to the accumulated temperature which represent the
crop-/LUT-specific heat requirements (Fischer et al., 2021).

Reference temperature sums (TS) are calculated for each grid-cell by accumulative daily
average temperature (Ta) for days when Ta is above the thresholds as follows: (i) 0 °C, (ii) 5 °C,
and (iii) and 10 °C.

1
2
3
4
5
6
7

Calculate temperature summation at 3 temperature thresholds
Tsum>0 degC
tsum0 = clim_reg.getTemperatureSum0()
Tsum>5 degC
tsum5 = clim_reg.getTemperatureSum5()
Tsum>10 degC
tsum10 = clim_reg.TemperatureSum10()

Function arguments

None

Function returns

tsum0 2D NumPy arrays [°C]

tsum5 2D NumPy arrays [°C]

tsum10 2D NumPy arrays [°C]

Temperature profiles
Temperature profiles (Table 7) can be classified into 9 classes of different daily ‘temperature
ranges’ between Ta < -5 °C to Ta > 30 °C. This classification uses 5 °C intervals as well as
distinguishes the increasing and decreasing temperature trends within a year (Fischer et al.,
2021). The output from this classification will be used in Module 2 (Crop Simulation), where
these profiles are matched with crop-specific temperature profile requirements to assess the
crop-growth suitability for any specific locations.

1
2
Classification of temperature ranges for temperature profile
tprofile = clim_reg.getTemperatureProfile()

17

Function arguments

None

Function returns

tprofile
18 2D NumPy arrays [A1-A9, B1-B9] correspond to each Temperature Profile class

[days]

Table 7. Temperature profile classes

Mean daily

temperature (°C)

Temperature trend

Increasing Decreasing

30 A1 B1

25–30 A2 B2

20–25 A3 B3

15–20 A4 B4

10–15 A5 B5

5–10 A6 B6

0–5 A7 B7

-5–0 A8 B8

< -5 A9 B9
Source: Fischer, G., Nachtergaele, F., Velthuizen, H. van, Chiozza, F., Franceschini, G., Henry, M., Muchoney, D., & Tramberend, S. 2021.
Global Agro-Ecological Zones v4 - Model Documentation. Rome, FAO. https://doi.org/10.4060/cb4744en

Length of growing period (LGP)
The length of growing period (LGP) is defined as the number of days during the year when the
temperature regime and moisture supply are conductive to crop growth and development. LGP,
therefore, acts as an agro-climatic indicator of the potential productivity of an area of land.

Reference evapotranspiration (ETo)

The reference evapotranspiration (ETo) represents evapotranspiration from a defined
reference surface, which closely resembles an extensive surface of green, well-watered grass of
uniform height (12 cm), actively growing and completely shading the ground. GAEZ calculates
ETo from the attributes in the climate database for each grid-cell according to the Penman-
Monteith equation (Allen et al., 1998; Monteith, 1965, 1981; Doorenbos and Pruitt, 1977). A
description of the implementation of the Penmann-Monteith equations is provided in Appendix
3-1 of Fischer et al., (2021).

Maximum evapotranspiration (ETm)

In Module 1, the calculation of maximum evapotranspiration (ETm) for a ‘reference crop’
assumes that sufficient water is available for uptake in the rooting zone. The value of ETm is
related to ETo through applying crop coefficients for water requirement (Kc), reflecting
phenological development and leaf area. The Kc values are crop- and climate-specific. They vary

18

generally between 0.3–0.5 at initial crop stages (emergence) to 1.0–1.2 at reproductive stages.
PyAEZ utilizes the ‘reference crop’ whose Kc values depend on the thermal characteristics of a
grid cell, as described Table 8.

𝐸𝑇𝑚 = 𝐾𝑐 × 𝐸𝑇𝑜

Actual evapotranspiration (ETa)

The actual uptake of water by the ‘reference’ crop is characterized by the actual
evapotranspiration (ETa, mm/day) resulting in the daily calculations of the reference crop
water balance. The calculation of ETa differentiates two possible cases depending on the
availability of water for plant extraction:

i. adequate soil water availability (Eta = ETm);

ii. limiting soil water availability (Eta < ETm).

Water balance calculation

The calculation of Eta involves daily soil water balance (Wb), which is defined as the volume of
water available for plant uptake. The water balance, Wb, accounts for the accumulation of daily
water inflow from precipitation (P), snowmelt (Sm), and outflow from the actual
evapotranspiration (Eta), and excess water lost due to runoff and deep percolation (amount of
water that exceeds the upper limit of water available to plants, Wx). For the ‘j’ day of the year, the
daily water balance is calculated as:

𝑊𝑏 = min (𝑊𝑏 + 𝑆𝑚 + 𝑃 − 𝐸𝑇𝑎 , 𝑊𝑥)

The upper limit Wx of water available to plants is the product of the available soil water (Sa) and
rooting depth (D),

𝑊𝑥 = 𝑆𝑎 × 𝐷

The threshold of readily available soil moisture Wr is, in turn, calculated from Wx and the soil
moisture depletion fraction (p),

𝑊𝑟 = 𝑊𝑥 × (1 − 𝑝)

Snow balance calculation

In seasonally cold climates the calculation of a snow balance (Sb, mm) affects the water balance
procedure outlined above. The snow balance increases when precipitation falls as snow and
decreases with snowmelt and snow sublimation. Precipitation (P) is assumed to fall as snow
(Psnow) when maximum temperature (Tx) is below a certain temperature threshold (Ts).

The snowmelt (Sm) is calculated as a function of daily maximum temperature, the snow melt
parameter (δ) and depends on the previously accumulated snow balance. The snow melt factor δ
is set to 5.5 mm/°C

𝑆𝑚 = min (𝛿 × (𝑇𝑥 − 𝑇𝑠), 𝑆𝑏)

Further details of the two possible cases of ETa calculation are as follows:

ETa for adequate soil water availability

A condition of ‘adequate soil moisture availability’ is defined when:

i. daily precipitation (P) is greater or equal to ETm, and/or

19

ii. combination of P and the difference between Wb and the readily-available-water
threshold Wr is greater than Etm

𝐸𝑇𝑎 = 𝐸𝑇𝑚, 𝑓𝑜𝑟
𝑃 ≥ 𝐸𝑇𝑚

𝑃 + (𝑊𝑏 − 𝑊𝑟) > 𝐸𝑡𝑚

ETa for limited water availability

When the soil water is limiting, then ETa falls short of ETm. In this case, ETa is calculated as a
fraction ρ of ETm, where

𝜌 = 𝑊𝑏/𝑊𝑟

The Eta is then calculated as

𝐸𝑇𝑎 = 𝑃 + 𝜌 × 𝐸𝑇𝑚

This procedure assumes rainfall is immediately available to plants on the day of precipitation,
prior to replenishing soil moisture.

LGP calculation

LGP refers to the number of days when average daily temperature is above 5 °C (LGPt5) and ETa
of this reference crop exceeds a specified fraction of ETm. In the current GAEZ
parameterization, LGP days are considered when Eta ≥ 0.4 × ETm, which aims to capture
periods when sufficient soil moisture is available that would allow the establishment of the
reference crop.

𝐿𝐺𝑃 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑤ℎ𝑒𝑛 𝐸𝑇𝑎/𝐸𝑇𝑚 ≥ 0.4

LGP equivalent

Reference LGPs account for both temperature and soil moisture conditions and do not
necessarily account for significant differences in wetness conditions especially within long LGPs
(> 225 days), for a better reflection of wetness conditions, so-called equivalent LGPs are used.
Equivalent LGP is defined based on regression analysis of the reference LGP and the humidity
index P/ETo as follows.

A quadratic polynomial is used to express the relationship between the number of growing
period days and the annual humidity index. Parameters were estimated using data of all grid
cells with essentially year-round temperature growing periods, i.e. with LGPt5 = 365.

𝐿𝐺𝑃 =
14.0 + 293.66 × (𝑃/𝐸𝑇𝑜) − 61.25 × (𝑃/𝐸𝑇𝑜) , 𝑤ℎ𝑒𝑛 (𝑃/𝐸𝑇𝑜) ≤ 2.4

366 , 𝑤ℎ𝑒𝑛 𝑃/𝐸𝑇𝑜) > 2.4

The equivalent LGP is used in the assessment of agro-climatic constraints, which relate
environmental wetness with the occurrences of pest and diseases and workability constraints
for harvesting conditions and for high moisture content of crop produce at harvest time.

In PyAEZ, the LGP, LGP classification, and LGP equivalent are obtained through the following
function,

1
2
3

Length of Growing Period (LGP)
lgp = clim_reg.getLGP(Sa=100, D=1)
Classification of LGP

20

4
5
6

lgp_class = clim_reg.getLGPClassified(lgp)
LGP Equivalent
lgp_equv = clim_reg.getLGPEquivalent()

Function arguments

Sa

A single value or A 2D NumPy array, corresponding to available soil moisture holding

capacity (mm = m). Usually, this value varies with soil texture. Hence, Sa can be provided

as single value for entire area or 2D NumPy array that represent variation of soil

moisture holding capacity depending on soil texture. Default value is 100 mm/m. This is

an optional argument

D
A single value, corresponding to corresponding rooting depth in meters. Default value is

1. This is an optional argument.

Function returns

lgp 2D NumPy arrays of LGP [days]

Table 8. Kc values used in Module 1 for the calculation of the maximum evapotranspiration
(Etm)

Daily temperature condition Remarks Kc

Areas with year-round temperature growing period - LGPt5 = 365 days

Daily Ta ≥ 5 °C; LGPt5 = 365 days In areas with year-round LGPt5, the Kc value stays at 1 1.0

Areas with dormancy period or cold break - LGPt5 < 365 days

Daily Ta ≤ 0 °C; Tmax < 0 °C Precipitation falls as snow and is added to snow bucket 0.0

Daily Ta ≤ 0 °C; Tmax ≥ 0 °C
Snowmelt takes place (water balance = precipitation +

snow melt); minor evapotranspiration
0.1

0° C < Daily Ta < 5 °C; Ta trend

upward

Some biological activities before the start of the growing

period
0.2

Daily Ta ≥ 5 °C; LGPt5 < 365 days;

Case 1
Kc used for the days prior the start of the growing period 0.5

Daily Ta ≥5 °C; LGPt5 < 365 days;

Case 2

Kc increases from 0.5 to 1.0 during the first month of

LGP
0.5–1.0

Daily Ta ≥5 °C; LGPt5 < 365 days;

Case 1
Kc = 1 until the daily Ta falls below 5 °C 1.0

0 °C < Daily Ta < 5 °C; Ta trend

downward
Reduced biological activities before dormancy 0.2

Source: Fischer, G., Nachtergaele, F., Velthuizen, H. van, Chiozza, F., Franceschini, G., Henry, M., Muchoney, D., & Tramberend, S. 2021.
Global Agro-Ecological Zones v4 - Model Documentation. Rome, FAO. https://doi.org/10.4060/cb4744en

Multiple cropping zones classification
Multiple cropping zones classification (Table 9) is an additional agro-climatic indicator, which
relates to the possibility of cultivating multiple sequential crops under rain-fed and irrigated
conditions.

21

The PyAEZ’s core modules perform calculation for single cropping systems. Additionally,
several potential multiple cropping zones have been defined through matching the growth cycle
with the temperature requirements based on thermal climate, length of growing period, thermal
growing period (LGPt0 and LGPt10), and the accumulated temperature summations (Tsumt0,
Tsumt10). For more details on the multiple cropping zones classification please refer to the GAEZ
v4 Model Documentation (Fischer et al., 2021).

1
2
3

Multiple Cropping Zones classification
multi_crop_zone = clim_reg.getMultiCroppingZones(tclimate, lgp, lgpt5, lgpt10,
tsum0,tsum10)

Function arguments

tclimate 2D NumPy array, thermal climate classes

lgp 2D NumPy array, length of growing period

lgpt5 2D NumPy array, thermal LGP of Ta > 5˚C

lgpt10 2D NumPy array, thermal LGP of Ta > 10˚C

tsum0 2D NumPy array, temperature summation for Ta ≥ 0˚C

tsum10 2D NumPy array, temperature summation for Ta ≥ 10˚C

Function returns

multi_crop_zone Python List of 2D NumPy arrays, as [multi_crop_rainfed, multi_crop_irrigated].

22

Table 9. Delineation of multiple cropping zones

Pixel values Zone Description

1 A Zone of no cropping (too cold or too dry for rain-fed crops)

2 B Zone of single cropping

3 C
Zone of limited double cropping (relay cropping; single wetland rice may be

possible)

4 D
Zone of double cropping (note, in Zone D sequential double cropping including

wetland rice is not possible)

5 E
Zone of double cropping with rice (sequential double cropping with one wetland rice

crop is possible in Zone E)

6 F
Zone of double rice cropping or limited triple cropping (may partly involve relay

cropping. A third crop is not possible in case of two wetland rice crops)

7 G
Zone of triple cropping (sequential cropping of three short-cycle crops; two wetland

rice crops are possible in Zone G)

8 H
Zone of triple rice cropping (sequential cropping of three wetland rice crops is

possible)
Source: Fischer, G., Nachtergaele, F., Velthuizen, H. van, Chiozza, F., Franceschini, G., Henry, M., Muchoney, D., & Tramberend, S. 2021.
Global Agro-Ecological Zones v4 - Model Documentation. Rome, FAO. https://doi.org/10.4060/cb4744en

Fallow period requirements
Fallow is an agricultural technique that consists of not sowing the arable land during one or more
growing seasons. In AEZ framework, the fallow factors have been established by main crop
groups and environmental conditions. The crop groups include cereals, legumes, roots and
tubers, and a miscellaneous group consisting of long-term annuals/perennials. The fallow factors
are expressed as percentage of time during the fallow-cropping cycle the land must be under
fallow. PyAEZ determines the fallow requirements using thermal zones. For further information
on the fallow period requirement, please refer to Appendix 6-10 of the GAEZ v4 Model
Documentation (Fischer et al., 2021).

1
2
Fallow period requirements
fallow = clim_reg.TZoneFallowRequirement(tzone)

Function arguments

tzone 2D NumPy array, corresponding to thermal zone

Function returns

fallow 2D NumPy array, corresponding to thermal zone for fallow requirements

Permafrost evaluation
Occurrence of continuous or discontinuous permafrost conditions are used in the suitability
assessment. Permafrost areas are characterized by sub-soil at or below the freezing point for two

23

or more years. In this section, PyAEZ utilizes the air frost index (FI) which is used to characterize
climate-derived permafrost condition into 4 classes: (i) Continuous permafrost; (ii)
Discontinuous permafrost; (iii) Sporadic permafrost; and (iv) No permafrost. For detailed
calculations for air frost index please refer to Chapter 3 of the GAEZ v4 Model Documentation
(Fischer et al., 2021).

1
2
Permafrost Evaluation
permafrost = clim_reg.AirFrostIndexandPermafrostEvaluation()

Function arguments

None

Function returns

permafrost Python List of 2D NumPy arrays, as [frost index, permafrost class]

Agro-Ecological Zones classification
The Agro-Ecological Zoning (AEZ) methodology provides a framework for establishing a spatial
inventory of land resources compiled from global/national environmental data sets and
assembled to quantify multiple spatial characteristics required for the assessments of land
productivity under location-specific agro-ecological conditions.

The inventory combines spatial layers of thermal and moisture regimes with broad categories of
soil/terrain qualities. It also indicates locations of areas with irrigated soils and shows land with
severely limiting bio-physical constraints including very cold and very dry (desert) areas as well
as areas with very steep terrain or very poor soil/terrain conditions. For further information on
the classification criteria, please refer to Chapter 10 of the GAEZ v4 Model Documentation (Fischer
et al., 2021).

1
2
3

AEZ classification
aez_class = clim_reg.AEZClassification(tclimate, lgp, lgp_equv, lgpt_5,
soil_terrain_lulc, permafrost)

Function arguments

tclimate 2D NumPy array, thermal climate classes

lgp 2D NumPy array, length of growing period

lgp_equv 2D NumPy array, LGP equivalent

lgpt5 2D NumPy array, thermal LGP of Ta > 5˚C

soil_terrain_lulc 2D NumPy array, soil/terrain/special land cover classes (8 classes)

 1: Dominantly very steep terrain;

 2: Dominantly hydromorphic soil;

 3: No or few soil/terrain limitations;

24

 4: Moderate soil/terrain limitations;

 5: Severe soil/terrain limitations;

 6: Irrigated soils;

 7: Water;

 8: Built-up/artificial.

permafrost 2D NumPy array, permafrost classes

Function returns

aez_class 2D NumPy array, 57 classes of AEZ

25

Module 2: Crop simulation

Introduction
This key module simulates all the possible crop cycles to find the best crop cycle that produces
maximum yield for a particular grid (Module 2 overview is shown in Figure 4. During the
simulation process for each grid, 365 crop cycle simulations are performed. Each simulation
corresponds to cycles that start from each day of the year (starting from Julian date 0 to Julian
date 365). Similarly, this process is performed by the program for each grid in the study area.

Schematic representation of this process is shown in Figure 5. The attainable yields under
irrigated and rain-fed conditions, during each crop cycle, are calculated with the help of several
deterministic and empirical models as follows.

 Total biomass (de Wit, 1965): This model calculates total biomass produced by
photosynthesis activities of plants under radiation condition of each grid. For more
detailed calculations, refer to Chapter 4 of the GAEZ v4 Model Documentation (Fischer et
al., 2021).

 Crop yield from total biomass: Crop yield is obtained as a portion of useful harvest
from the total biomass. This portion is defined by an index call Harvest Index (HI).
Harvest index is defined as the amount of useful harvest divided by the total above
ground biomass. For more detailed calculations, refer to Chapter 4 of the GAEZ v4 Model
Documentation (Fischer et al., 2021).

 Effects of water limitation on the crop yield: This component is carried out for the
rain-fed yield calculation only. In the case of irrigated conditions, this component is
abandoned, as we are assuming that the water is not a limiting factor for crop growth.
To address the water limitation on the crop yield, two major models are considered:

o reference Evapotranspiration - the Penman-Monteith equation (Doorenbos and
Pruitt, 1977). A description of the implementation of the Penmann-Monteith
equations is provided in Appendix 3-1 of Fischer et al. (2021);

o water balance calculation, together with applying the yield reduction factors
based on water limitation (Smith, 1992).

 Effects of temperature during crop cycle and screening of crop cycles based on
temperature requirements (termed Thermal Screening).

Similar to Module 1, we have to import and initiate the class for the crop simulation module.

1
2
3
4

import Module 2 Class
import CropSimulation
create an instance - initiate the Class
aez = CropSimulation.CropSimulation()

26

Figure 4. Overview of Module 2 (crop simulation) workflow

Source: Authors' own elaboration

Figure 5. Overview of crop simulation routine

Source: Authors' own elaboration.

27

Setting up inputs for Module 2

Geographical and terrain input

1
2
Load geographical location and elevation data into the object class
aez.setLocationTerrainData(lat_min, lat_max, elevation)

Function arguments

lat_min
a single value corresponding to the minimum latitude (decimal degrees) of the study

area

lat_max
a single value corresponding to the maximum latitude (decimal degrees) of the study

area

elevation 2D NumPy array, elevation of the study area in metres

Function returns

None

Climate data input

First, we have to read and load the climate data into Module 2 Class before proceeding with any
calculations.

Function arguments

min_temp 3D NumPy array, daily or monthly minimum temperature (°C)

max_temp 3D NumPy array, daily or monthly maximum temperature (°C)

precipitation 3D NumPy array, daily or monthly total precipitation (mm/day)

short_rad 3D NumPy array, daily or monthly solar radiation (W/m2)

wind_speed 3D NumPy array, daily or monthly windspeed at 2 m elevation (m/s)

rel_humidity 3D NumPy array, daily or monthly relative humidity (percentage decimal, 0–1)

Function returns

None

1
2
3
4
5
6

Use the line below if MONTHLY data are used
aez.setMonthlyClimateData (min_temp, max_temp, precipitation, short_rad,
wind_speed, rel_humidity)
Use the line below if DAILY data are used
aez.setDailyClimateData (min_temp, max_temp, precipitation, short_rad,
wind_speed, rel_humidity)

28

Setting study area inputs (optional)

This function is set up as an optional step which set up the mask layer as input which reduces the
computation time outside the pixels of considerations.

1
2

Set up mask for the study area (country, regional, or local)
clim_reg.setStudyAreaMask(admin_mask, no_data_value=0)

Function arguments

admin_mask 2D NumPy array, extracted only region of interest (Binary 0/1)

no_data_value A single value, pixels equal to this value will be omitted during calculation

Function returns

None

Crop parameters input

This function allows users to set up the main crop parameters necessary for PyAEZ. This step is
mandatory for Module 2 calculations.

1
2
Set crop paramaters input for Module 2
aez.setCropParameters(LAI, HI, legume, adaptability, cycle_len, D1, D2)

Function arguments

LAI A single value, Leaf Area Index

HI A single value, Harvest Index

legume A single binary value, Is the crop is legume? No = 0, Yes = 1

adaptability A single value, corresponding to adaptability class of the crop. Hence, value must be

either 1, 2, 3, or 4 corresponding to adaptability class of the crop.

cycle_len A single value, corresponding length of crop cycle [days]

D1 A single value, corresponding rooting depth in metres at the beginning of the crop

cycle

D2 A single value, corresponding rooting depth in metres after maturity (D1 and D2 can

also be same value. In this case, interpolations will not be applied, and same rooting

depth will be applying for the entire crop cycle)

Function returns

None

Soil water parameter input

This function allow user to set up the parameters related to the soil water storage.

1 # Set soil water parameter

29

2 aez.setSoilWaterParameters(Sa, pc)

Function arguments

Sa A single value or a 2D NumPy array, corresponding to available soil moisture holding

capacity [mm/m]. Usually, this value varies with soil texture. Sa can be provided as

single value for entire area or 2D NumPy array that represents variation of soil

moisture holding capacity depending on soil texture

pc A single value between 0 and 1, corresponding to soil water depletion fraction below

which

Function returns

None

Crop cycle parameter input

This function allow user to set up the parameters related to the crop cyles.

1
2
Set crop cycle parameter
aez.setCropCycleParameters(stage_per, kc, kc_all, yloss_f, yloss_f_all)

Function arguments

stage_per A 4-element numerical list, corresponding to percentage of each 4 stages of a crop

cycle, namely initial (d1), vegetative (d2), reproductive (d3), and maturation stage

(d4). Example: stage per = [10, 30, 30, 30]

kc A 3-element numerical list, corresponding crop water requirements for initial,

reproductive, the end of the maturation stage. Example: kc = [1.1, 1.2, 1]

kc_all A single value, corresponding to crop water requirements for entire growth cycle.

yloss_f A 4-element numerical list, corresponding to yield loss factors of each 4 stages of a

crop cycle, namely initial (d1), vegetative (d2), reproductive (d3), and maturation

stage (d4). Example: yloss_f = [1,2,2.5,1]

yloss_f_all A single value corresponding to yield loss factor for entire growth cycle

Function returns

None

Thermal screening input

The functions in this section will screen the suitability of grid-cells for the possible presence of
individual LUTs. The crops’ temperature requirements will be matched with the prevailing
thermal conditions (thermal Rregime characteristics calculated in Module 1.

Thermal climate

30

PyAEZ ‘s screening of crop/LUTs about thermal climate results in a ‘yes/no’ filter for further
calculations.

Thermal growing period

Growth cycle lengths of crop/LUTs are matched with LGPt5. The result of the matching provides
optimum match when the growth cycle can generously be accommodated within LGPt5.
Otherwise, the match is considered not suitable.

Accumulated temperature sum

The matching of the crop LUT heat unit requirements with the prevailing temperature sum is:

 optimum, when the requirements are within the specified optimum Tsum range;
 not suitable, when prevailing Tsum range are too high or too low.

Temperature profile

Potential crop calendars of each LUT are tested for the match of crop/LUT temperature profile
requirements and grid-cell temperature profiles, while considering growth cycle starting days
within the length of the growing period for rain-fed conditions, and separately within the year
for irrigated conditions.

For all feasible crop calendars within the LGP (rain-fed) or within the year (irrigated), the
temperature profile conditions are tested against optimum and suboptimum crop temperature
profile requirements and in each case an “optimum” or “not suitable” match is established.

1
2
3
4
5

Set parameters for Thermal Screening
aez.setThermalClimateScreening(tclimate,no_tclimate)
aez.setLGPTScreening(no_lgpt, optm_lgpt)
aez.setTsumScreening(no_Tsum, optm_Tsum)
aez.setTProfileScreening(no_Tprofile, optm_Tprofile)

Function arguments

tclimate 2D NumPy array, corresponding to thermal climate (an output of Module 1)

no_tclimate A numerical list, corresponding to pixel values of “not suitable” thermal climate zones

no_lgpt 3-elements numerical list, “not suitable” 3 LGPt conditions (as in Module 1)

optm_lgpt 3-elements numerical list, “optimum” 3 LGPt conditions (as in Module 1)

no_Tsum 3-elements numerical list, “not suitable” 3 Tsum conditions (as in Module 1)

optm_Tsum 3-elements numerical list, “optimum” 3 Tsum conditions (as in Module 1)

no_Tprofile 18-elements numerical list, “not suitable” 18 Tprofile conditions (as in Module 1)

optm_Tprofile 18-elements numerical list, “optimum” 18 Tprofile conditions (as in Module 1)

Function returns

None

31

Adjustment for perennial crop (optional)

If a perennial crop is introduced, PyAEZ will perform adjustment on the Leaf Area Index (LAI) and
the Harvest Index (HI) based on the effective growing period. For detailed calculates and
adjustment values, please refer to Chapter 4 of the GAEZ v4 Model Documentation (Fischer et al.,
2021).

1
2

Set parameters for adjusting for Perennial Crop
aez.adjustForPerennialCrop(aLAI, bLAI, aHI, bHI)

Function arguments

aLAI A single value, corresponding to αLAI . Example: Arabica coffee αLAI = 0

bLAI A single value, corresponding to βLAI . Example: Arabica coffee βLAI = 270

aHI A single value, corresponding to αHI . Example: Arabica coffee αHI = 120

bHI A single value, corresponding to βHI . Example: Arabica coffee βHI = 120

Function returns

None

Calculations and outputs

Crop cycle simulation

After setting up all of the related parameters, we can now run the crop cycle
simulations/calculations by executing the function below:

1
2
Crop cycle simulation
aez.simulateCropCycle(start_doy=1, end_doy=365, step_doy=1, leap_year=False)

Function arguments

start_doy A single value, corresponding to crop simulations starting Julian date. This is an

optional argument. Default value is 0

end_doy A single value, corresponding to crop simulations ending Julian date. This is an

optional argument. Default value is 365

step_doy A single value, corresponding to spacing (in days) between 2 adjacent crop

simulations.

This is an optional argument. Default value is 1

32

leap_year True or false, depending on whether the simulating year is a leap year or not. This

allows handing leap and non-leap year differently

 This is only relevant for monthly climate data because this value will be used in

interpolation processes

 In case of daily climate data inputs, length of daily climate data vector will be

taken as number of days in a year

This is an optional argument, and the default value is false

Function returns

None

Estimated maximum yield

These functions return the maximum attainable yield under the provided climate conditions in
both rain-fed and irrigated conditions. The result’s unit is in kilograms per hectare (kg/ha)
(Figure 6).

1
2
3
4

Estimation of Maximum Yield for Rainfed scenario
yield_map_rain = aez.getEstimatedYieldRainfed()
Estimation of Maximum Yield for Irrigated scenario
yield_map_irr = aez.getEstimatedYieldIrrigated()

Function arguments

None

Function returns

yield_map_rain 2D NumPy arrays, the maximum attainable yield under the provided climate

conditions, under rain-fed conditions [kg/ha]

yield_map_irr 2D NumPy arrays, the maximum attainable yield under the provided climate

conditions, under irrigated conditions [kg/ha]

Optimum crop calendar

1
2

Optimum starting date for crop cycle
starting_date = aez.getOptimumCycleStartDate()

Function arguments

None

Function returns

starting_date 2D NumPy arrays. Each pixel value corresponds to the Julian day of the optimum

crop cycle starting date

33

Figure 6. Estimation of maximum attainable yield (rain-fed and irrigated) and optimum starting date (Module 2)

Source: Authors' own elaboration.

34

Module 3: Climate constraints

Introduction
In this module, various yield reduction factors will be applied to the maximum attainable yield
estimated from Module 2 to consider the constraining effects which are difficult to simulate
during the crop cycle simulation (Figure 7). For example, climatic effects can be pests, diseases,
and poor workability due to excess soil moisture. These effects, in turn, depend on the different
levels of inputs and LGP Equivalent.

All of the reduction factors used in Modules 3, 4, and 5 are located in 2 parameter files
corresponding to irrigated and rain-fed conditions. These files MUST be edited with the
reduction factors values corresponding to each crop and input level. Users are strongly
encouraged to advise to use specific reduction factors based on national research for national-
level analysis.

This module considers types of agro-climatic constrains:

 long term limitation to crop performance due year-to-year rainfall variability;
 pests, diseases, and weeds damages on plant growth;
 pests, diseases, and weeds damages on produce’s quality;
 climatic factors affecting the efficiency of farming operations.

See the GAEZ v4 Model Documentation for further details on the climate constraints (Fischer et
al., 2021).

Similar to the previous modules, this module starts with importing and initiating the class.

1
2
3

Import and create a Class instgance
import ClimateConstraints
obj_constraints = ClimaticConstraints.ClimateConstraints()

Figure 7. Overview of Module 3 (climate constraints) workflow

35

Source: Authors' own elaboration.

Setting up parameter files
The following two parameter files contains the reduction factors values to be used in Module 3,
4, and 5.

File Remark

ALL_REDUCTION_FACTORS_IRR.py Reduction factors for irrigated conditions

ALL_REDUCTION_FACTORS_RAIN.py Reduction factors for rain-fed conditions

Within the two parameter files, the values related to climatic constraint are input as:

1
2
3
4
5
6
7
8
9

10
11
12

'''--'''
'''Reduction Factors for Climatic Constraints'''
'''--'''
#defining yield reduction factors based of LGP Equivalent class
lgp_eq_class = [[0,29],[30,59],[60,89],[90,119],[120,149],
 [150,179],[180,209],[210,239],[240,269],
 [270,299],[300,329],[330,366]]

lgp_eq_red_fr = [[25,25,25,25,25,25,25,50,50,50,75,75],
 [100,100,100,100,100,100,100,100,100,100,100,100],
 [50,50,50,50,50,75,75,100,100,100,100,75],
 [100,100,100,100,100,100,100,100,100,100,100,75]]

Function arguments

None

Parameters

lgp_eq_class 2D List, corresponding to the LGP Equivalent classes [days]

lgp_eq_red_fr 2D List, corresponding to reduction factors. The rows are corresponding to 4 types of

agro-climatic constraints which are mentioned in the above section and columns are

corresponding to LGP Equivalent classes as in lgp eq class

Applying climate constraints
This function applies the climate-related yield reduction factors to produce the reduced yield:

1
2

Apply climate constraints
yield_out =
obj_constraints.applyClimaticConstraints(lgp_eq,yield_in,irr_or_rain)

Function arguments

36

lpg_eq 2D NumPy array, corresponding to LGP Equivalent

yield_in 2D NumPy array, corresponding to the yield before applying the climatic reduction

factors

irr_or_rain A single character (string), indicating whether yield_in is under irrigated(I) or rain-

fed condition(R)

Function returns

yield_out 2D NumPy array. The yield reduced by climatic factors [same unit as yield_in]

37

Module 4: Soil constraints

Introduction
After applying the agro-climatic constraints onto the maximum attainable yield, we will now
apply the soil constraints (Figure 8).

The combination of 7 soil qualities (SQ), which are based on the soil characteristics of each soil
unit, and the input level gives us a single yield reduction factor - Soil Rating, which will be
applied to the remaining yield. For more details on this calculation, please refer to the GAEZ v4
Model Documentation (Fischer et al., 2021).

 SQ1: Nutrient availability;

 SQ2: Nutrient retention capacity;

 SQ3: Rooting conditions;

 SQ4: Oxygen availability to roots;

 SQ5: Excess salts;

 SQ6: Toxicity;

 SQ7: Workability (constraining field management).

The soil characteristic of each soil unit must be prepared as outlined in Table 3. The two .csv
files of the topsoil and subsoil characteristics are:

 soil_characteristics_topsoil.csv;

 soil_characteristics_subsoil.csv.

These two files are located in ./input_data/csv/ folder.

First, we must import Module 4 class:

1
2

import SoilConstraints
soil_constraints = SoilConstraints.SoilConstraints()

38

Figure 8. Overview of Module 4 (soil constraints) workflow

Source: Authors' own elaboration.

Setting up parameter files
The following two parameter files contains the reduction factors values to be used in Module 3,
4, and 5.

File Remark

ALL_REDUCTION_FACTORS_IRR.py Reduction factors for irrigated conditions

ALL_REDUCTION_FACTORS_RAIN.py Reduction factors for rain-fed conditions

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

'''Reduction Factors for Soil Constraints'''
Value - values of soil characteristics (mush be ascending order)
Factor - yield reduction factors corresponding to each value

Soil texture for SQ1
TXT1_value = ['Fine', 'Medium', 'Coarse']
TXT1_factor = [90, 70, 30]

Soil texture for SQ2
TXT2_value = ['Fine', 'Medium', 'Coarse']
TXT2_factor = [90, 70, 30]

Soil texture for SQ7
TXT7_value = ['Fine', 'Medium', 'Coarse']
TXT7_factor = [90, 70, 30]

Soil organic carbon
OC_value = [0, 0.8, 1.5, 2]

39

 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74

OC_factor = [50, 70, 90, 100]

Soil pH
pH_value = [3.6, 4.1, 4.5, 5, 5.5, 6]
pH_factor = [10, 30, 50, 70, 90, 100]

Total exchangeable bases
TEB_value = [0, 1.6, 2.8, 4, 6.5]
TEB_factor = [30, 50, 70, 90, 100]

Base saturation
BS_value = [0, 35, 50, 80]
BS_factor = [50, 70, 90, 100]

Cation exchange capacity of soil
CECsoil_value = [0, 2, 4, 8, 10]
CECsoil_factor = [30, 50, 70, 90, 100]

Cation exchange capacity of clay
CECclay_value = [0, 16, 24]
CECclay_factor = [70, 90, 100]

Effective soil depth
RSD_value = [35, 70, 85]
RSD_factor = [50, 90, 100]

Soil coarse material (Gravel)
GRC_value = [10, 30, 90] # %
GRC_factor = [100, 35, 10]

Drainage. VP: very poor, P: Poor, I: Imperfectly, MW: Moderately well, W:
Well, SE: Somewhat Excessive, E: Excessive
DRG_value = ['VP', 'P', 'I', 'MW', 'W', 'SE', 'E']
DRG_factor = [50, 90, 100, 100, 100, 100, 100]

Exchangeable sodium percentage
ESP_value = [10, 20, 30, 40, 100] # %
ESP_factor = [100, 90, 70, 50, 10]

Electric conductivity
EC_value = [1, 2, 4, 6, 12, 100] # dS/m
EC_factor = [100, 90, 70, 50, 30, 10]

Soil phase rating for SQ3
SPH3_value = ['Lithic', 'skeletic', 'hyperskeletic']
SPH3_factor = [100, 50, 30]

Soil phase rating for SQ4
SPH4_value = ['Lithic', 'skeletic', 'hyperskeletic']
SPH4_factor = [100, 50, 30]

Soil phase rating for SQ5
SPH5_value = ['Lithic', 'skeletic', 'hyperskeletic']
SPH5_factor = [100, 50, 30]

Soil phase rating for SQ6

40

 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100

SPH6_value = ['Lithic', 'skeletic', 'hyperskeletic']
SPH6_factor = [100, 50, 30]

Soil phase rating for SQ7
SPH7_value = ['Lithic', 'skeletic', 'hyperskeletic']
SPH7_factor = [100, 50, 30]

Other soil depth/volume related characteristics rating
OSD_value = [0]
OSD_factor = [100]

Soil property rating - vertic or not
SPR_value = [0, 1]
SPR_factor = [100, 90]

Calcium carbonate
CCB_value = [3, 6, 15, 25, 100] # %
CCB_factor = [100, 90, 70, 50, 10]

Gypsum
GYP_value = [1, 3, 10, 15, 100] # %
GYP_factor = [100, 90, 70, 50, 10]

Vertical properties
VSP_value = [0, 1]
VSP_factor = [100, 90]

Parameters

Soil texture

TXT1_value List of strings, corresponding to soil texture types for SQ1

TXT1_factor
List of numerical values, corresponding to respective reduction factors to TXT1

value

TXT2_value List of strings, corresponding to soil texture types for SQ2

TXT2_factor
List of numerical values, corresponding to respective reduction factors to TXT2

value

TXT7_value List of strings, corresponding to soil texture types for SQ7

TXT7_factor
List of numerical values, corresponding to respective reduction factors to TXT7

value

Soil organic carbon

OC_value
List of numerical values, corresponding to soil organic carbon. Values must me in

ascending order

OC_factor List of numerical values, corresponding to respective reduction factors to OC_value

Soil pH

41

Parameters

pH_value
List of numerical values, corresponding to soil pH. Values must me in ascending

order

pH_factor List of numerical values, corresponding to respective reduction factors to pH_value

Total exchangeable bases

TEB_value
List of numerical values, corresponding to total exchangeable bases. Values must

me in ascending order

TEB_factor
List of numerical values, corresponding to respective reduction factors to

TEB_value

Base saturation

BS_value
List of numerical values, corresponding to base saturation. Values must me in

ascending order

BS_factor List of numerical values, corresponding to respective reduction factors to BS_value

Cation exchange capacity of soil

CECsoil_value
List of numerical values, corresponding to cation exchange capacity of soil. Values

must me in ascending order

CECsoil_factor
List of numerical values, corresponding to respective reduction factors to

CECsoil_value

Cation exchange capacity of clay

CECclay_value
List of numerical values, corresponding to cation exchange capacity of clay. Values

must me in ascending order

CECclay_factor
List of numerical values, corresponding to respective reduction factors to

CECclay_value

Effective soil depth

RSD_value
List of numerical values, corresponding to effective soil depth. Values must me in

ascending order

RSD_factor
List of numerical values, corresponding to respective reduction factors to

RSD_value

Soil coarse material (gravel)

GRC_value
List of numerical values, corresponding to soil coarse material (Gravel) content as

percentage. Values must me in ascending order

GRC_factor
List of numerical values, corresponding to respective reduction factors to

GRC_value

Drainage class

DRG_value
List of strings, corresponding to drainage class (VP: very poor, P: Poor, I:

Imperfectly, MW: Moderately well, W: Well, SE: Somewhat Excessive, E: Excessive)

42

Parameters

DRG_factor
List of numerical values, corresponding to respective reduction factors to

DRG_value

Exchangeable sodium percentage

ESP_value
List of numerical values, corresponding to exchangeable sodium percentage. Values

must me in ascending order

ESP_factor
List of numerical values, corresponding to respective reduction factors to

ESP_value

Electric conductivity

EC_value
List of numerical values, corresponding to electric conductivity. Values must me in

ascending order

EC_factor List of numerical values, corresponding to respective reduction factors to EC_value

Soil phase rating - stagnic or gleyic, present or not

SPH3_value List of strings, corresponding to soil phase class for SQ3

SPH3_factor
List of numerical values, corresponding to respective reduction factors to

SPH3_value

SPH4_value List of strings, corresponding to soil phase class for SQ4

SPH4_factor
List of numerical values, corresponding to respective reduction factors to

SPH4_value

SPH5_value List of strings, corresponding to soil phase class for SQ5

SPH5_factor
List of numerical values, corresponding to respective reduction factors to

SPH5_value

SPH6_value List of strings, corresponding to soil phase class for SQ6

SPH6_factor
List of numerical values, corresponding to respective reduction factors to

SPH6_value

SPH7_value List of strings, corresponding to soil phase class for SQ7

SPH7_factor
List of numerical values, corresponding to respective reduction factors to

SPH3_value

OSD_value
List of numerical values, corresponding to other soil depth/volume related

characteristics rating

OSD_factor
List of numerical values, corresponding to respective reduction factors to

OSD_value

Soil property rating - vertic or not

SPR_value

List of numerical values, corresponding to soil property rating. Values in the list

can be either 0 or 1 depending on availability of particular soil phases. Values must

me in ascending order

43

Parameters

SPR_factor
List of numerical values, corresponding to respective reduction factors to

SPR_value

Calcium carbonate

CCB_value
List of numerical values, corresponding to calcium carbonate content as

percentage. Values must me in ascending order

CCB_factor
List of numerical values, corresponding to respective reduction factors to

CCB_value

Gypsum

GYP_value
List of numerical values, corresponding to gypsum content as percentage. Values

must me in ascending order

GYP_factor
List of numerical values, corresponding to respective reduction factors to

GYP_value

Vertical properties

VSP_value

List of numerical values, corresponding to vertical properties. Values in the list can

be either 0 or 1 depending on availability of vertical properties. Values must me in

ascending order

VSP_factor
List of numerical values, corresponding to respective reduction factors to

VSP_value

Calculate soil qualities
This function calculates 7 soil qualities for each soil unit based on the input soil characteristics.

1
2

Soil qualities
soil_constraints.calculateSoilQualities(irr_or_rain)

Function arguments

irr_or_rain Single character String, indicating calculations are considered under either rain-fed

condition or irrigated condition. 'R' is for rain-fed condition, and 'I' is for irrigated

condition

Function returns

None

Calculate soil ratings
This function calculates soil ratings for each soil unit, combining 7 soil qualities based on input
level.

44

1
2

Soil rating
soil_constraints.calculateSoilRating(input_level)

Function arguments

input_level Single character String, corresponding to input level. ‘L’ is for Low input level, ‘I’ is for

Intermediate input level, and ‘H’ is for Hight input level

Function returns

None

Extracting soil qualities
This function returns 7 soil qualities calculated for each soil unit based on the input soil
characteristics.

1
2

Extracting soil qualities
soil_qualities = soil_constraints.getSoilQualities()

Function arguments

None

Function returns

soil_qualities 2D NumPy array. Each row corresponds to soil units. The first column corresponds

to soil unit code. Column 2–8 correspond to the 7 soil qualities

Extracting soil ratings
This function returns 7 soil qualities calculated for each soil unit based on the input soil
characteristics.

1
2

Extracting soil qualities
soil_ratings = soil_constraints.getSoilRatings()

Function arguments

None

Function returns

soil_ratings 2D NumPy array. Each row corresponds to soil units. The first column corresponds

to soil unit code. The second column corresponds to the soil rating of each soil unit

Applying soil constraints
This function applies all soil-related yield reduction factors.

45

1
2
Soil Constraints
yield_out = soil_constraints.applySoilConstraints(soil_map, yield_in)

Function arguments

soil_map 2D NumPy array, corresponding to soil unit. Each pixel value must be soil unit code.

This code is used to match the soil rating with the input yield

yield_in 2D NumPy array, corresponding to the yield before applying the soil reduction

factors

Function returns

yield_out 2D NumPy array. The yield reduced by soil-related factors [same unit as yield_in]

46

Module 5: Terrain constraints

Introduction
This section introduces the yield reduction due to terrain slope, soil erosion, and Fournier index
(FI) (Figure 9). The FI is based on the monthly precipitation (climate-related). These yield
reduction factors will be applied to the maximum attainable yield. For detailed calculations for
this section, please refer to the GAEZ v4 Model Documentation (Fischer et al., 2021).

First, we must import Module 5 class:

1
2

import TerrainConstraints
terrain_constraints = TerrainConstraints.TerrainConstraints()

Setting up parameter files
The following two parameter files contains the reduction factors values to be used in Module 3,
4, and 5.

File Remark

ALL_REDUCTION_FACTORS_IRR.py Reduction factors for irrigated conditions

ALL_REDUCTION_FACTORS_RAIN.py Reduction factors for rain-fed conditions

1
2
3
4
5
6
7
8
9
1
0
1
1
1
2
1
3
1
4

'''Reduction Factors for Terrain Constraints'''
'''--'''
Classes of slopes (Percentage Slope)
Slope_class = [[0,0.5],[0.5,2],[2,5],[5,8],[8,16],[16,30],[30,45],[45,100]]
Classes of Fournier index
FI_class=[[0,1300],[1300,1800],[1800,2200],[2200,2500],[2500,2700],[1700,10000
0]]
Sample data are for irrigated-intermediate input-wetland rice
Rows corresponding to FI class and columns corresponding to slope class
Terrain_factor =[[100, 100, 75, 50, 25, 0, 0, 0],
 [100, 100, 100, 100, 100, 75, 0, 0],
 [100, 100, 100, 100, 75, 25, 0, 0],
 [100, 100, 100, 100, 50, 0, 0, 0],
 [100, 100, 100, 100, 25, 0, 0, 0],
 [100, 100, 100, 100, 25, 0, 0, 0]]

Parameters

slope_class 2D List, corresponding to slope classes. Slope unit must me percentage slope

FI_class 2D List, corresponding to Fournier index (FI) classes

47

Parameters

Terrain_factor 2D List, corresponding to reduction factors. The rows are corresponding to FI

classes and the columns correspond to slope classes

Figure 9. Overview of Module 5 (terrain constraints) workflow

Source: Authors' own elaboration.

Setting up inputs

Climate and terrain inputs

This function allows users to set up the monthly precipitation and terrain slope data. This is a
mandatory step before executing further calculations.

1
2
Set up climate and slope data
terrain_constraints.setClimateTerrainData(precipitation, slope)

Function arguments

precipitation 3D NumPy array corresponding to monthly precipitation. Unit of monthly

precipitation can be of any unit, since Fournier index (FI) is a ratio, unit conversion

factors will be cancelled out

slope 2D NumPy array, corresponding to terrain slope. [percentage slope]

Function returns

None

48

Calculate Fournier index

This function calculates Fournier index (FI) based on the input monthly precipitation. FI is a
simple index that indicates the potential of soil erosion based on monthly precipitation.

1
2
Calculate Fournier index
terrain_constraints.calculateFI()

Function arguments

None

Function returns

None

Extract Fournier index

This function returns Fournier index (FI), which is based on the input monthly precipitation. This
is an optional function. FI can be extracted with this function if required.

1
2
Extract Fournier index
fi = terrain_constraints.getFI()

Function arguments

None

Function returns

fi 2D NumPy array, corresponding to Fournier index (FI) based on the input monthly

precipitation

Applying terrain constraints
This function applies the terrain-related yield reduction factors.

1 # Apply terrain constraints

49

2 yield_out = terrain_constraints.applyTerrainConstraints(yield_in, irr_or_rain)

Function arguments

yield_in 2D NumPy array, corresponding to the yield before applying the terrain-related

reduction factor. This can be the yield under either irrigated or rain-fed conditions

from Module 4

irr_or_rain Single character String, indicating yield in is in either rain-fed or irrigated condition.

'R' is for rain-fed condition, and 'I' is for irrigated condition

Function returns

yield_out 2D NumPy array. The yield reduced by soil-related factors [same unit as yield_in]

50

Module 6: Economic suitability analysis

Introduction
Economical suitability analysis module is the most recent addition to AEZ framework (Figure
10). This module converts AEZ's final crop suitability (a result of the previous 5 modules) into
an economic suitability. Additionally, all crops of interest are compared to the umbrella crop
(crop with the highest economical potential) in order to indicate and map out its comparative
advantage in terms of an attainable net revenue relative to the best available option. For more
detailed calculations, refer to Module 6 chapter in national Agro-economic Zoning for major
crops in Thailand (NAEZ) report (FAO, 2017a).

First, we have to import the Module 6 class and create an instance of that class as below.

1
2

import EconomicSuitability
econ_su = EconomicSuitability.EconomicSuitability()

Figure 10. Overview of Module 6 (economic suitability) workflow

Source: Authors' own elaboration.

Crop parameters inputs
This function allows users to set up the crop parameters for an economic analysis. The key
inputs for Module 6 are the crop yield information generated from the previous 5 modules in
PyAEZ, market prices, and the costs of the crop.

This function will be called multiple times as it performs a comparative economic analysis. This
is a mandatory function to run before any further calculations.

1
2
Crop parameter input
econ_su.addACrop(crop_name, crop_cost, crop_yield, farm_price, yield_map)

Function arguments

crop_name A single string value, corresponding to the crop name that you are adding. This name

will be used later to extract output for each crop

51

crop_cost 1D NumPy array, corresponding to the cost of production for each yield

values in crop yield variable.

 Values of crop_cost and crop_yield must be corresponding to each other, and

they must be in ascending order.

 Units of this variable must be in cost per hectare.

 All the costs and prices in this module must be in same currency.

crop_yield 1D NumPy array, corresponding to the yield values.

 Values of crop_cost and crop_yield must be corresponding to each other, and

they must be in ascending order.

 Units of this variable must be in tonnes per hectare.

farm_price 1D NumPy array, corresponding to the historical crop price that farmers sell.

 The price array is used to calculate distribution (mean) of prices.

 Unit: price (same currency throughout unit per tonne).

yield_map 2D NumPy array, corresponding to yield map of the crop. Unit: tonnes per hectare

Function returns

None

Net revenue
This function returns net revenue from the crop identified with ‘crop_name’.

1
2

Get the Net Revenue
crop_rev = econ_su.getNetRevenue(crop_name)

Function arguments

crop_name A single string value, corresponding to the crop name

Function returns

crop_rev 2D NumPy array, net revenue of the input crop_name. Unit: revenue per hectare

Classified net revenue
This function returns classified net revenue for the crop ‘crop_name’. The classification scheme
for crop net revenue is outlined in Table 10.

1
2

Net revenue classification
crop_rev_class = econ_su.getClassifiedNetRevenue(crop_name)

52

Function arguments

crop_name A single string value, corresponding to the crop name

Function returns

crop_rev_class 2D NumPy array, classified net revenue of the input crop_name

Table 10. Net revenue classification

Pixel

value

Net revenue

class
Description

0 Not suitable Net revenue less than 0%

1 Very marginal Net revenue between 0% and 10%

2 Marginal Net revenue between 10% and 20%

3 Moderate Net revenue between 20% and 30%

4 Medium Net revenue between 40% and 50%

5 Good Net revenue between 50% and 63%

6 High Net revenue between 63% and 75%

7 Very high Net revenue is equivalent to 75% or more than the overall

maximum

Source: FAO. 2017. National Agro-Economic Zoning for Major Crops in Thailand (NAEZ) (Project TCP/THA/3403): NAEZ model
implementation and results : final report

Normalized net revenue
This function returns the normalized net revenue for the crop ‘crop_name’. The normalization is
done, firstly, by assigning the highest possible net revenue, among crops passed through the
module, to 1 (i.e. an umbrella crop). Secondly, the net revenue values of other crops are
normalized as a portion of the umbrella crop (0–1 scale). This normalization process is performed
separately for each pixel.

1
2

Normalized net revenue
crop_rev_norm = econ_su.getNormalizedNetRevenue(crop_name)

Function arguments

crop_name A single string value, corresponding to the crop name

Function returns

crop_rev_norm 2D NumPy array, normalized net revenue of the input crop_name. Output values

between 0 and 1

53

Utility calculations

Introduction
This section will outline the additional calculation routines used throughout the PyAEZ’s 6 main
modules. These functions are contained within a class called ‘UtilitiesCalc’.

The functions are as follows:

Functions in UtilitiesCalc Description

interpMonthlyToDaily Perform monthly-to-daily interpolation for climate data

averageDailyToMonthly Aggregate daily climate data into monthly data

generateLatitudeMap Generate latitude map as 2D NumPy array, by linearly interpolating the

bottom and top latitudes of the study area

classifyFinalYield Classify yield estimation and produce suitability map according to AEZ's

classification scheme

saveRaster Saving 2D NumPy arrays as GeoTIFF raster files

averageRasters Averaging a list of rasters in the time-dimension

windSpeedAt2m Convert windspeed from a particular altitude to 2 m above the surface

To use this UtilitiesCalc class, we first must import and create a class instance:

1
2

import UtilitiesCalc
obj_utilities = UtilitiesCalc.UtilitiesCalc()

Monthly-to-daily interpolation
This function performs interpolation of monthly climate data into daily climate data with
quadratic spline interpolation as recommended in AEZ framework. The interpolation is
performed between cycle_begin and cycle_end Julian dates.

1
2
3

Monthly-to-daily interpolation
daily_vector = obj_utilities.interpMonthlyToDaily(monthly_vector, cycle_begin,
cycle_end, no_minus_values=False)

Function arguments

monthly_vector 1D NumPy array with 12 elements corresponding to the monthly climate data

cycle_begin A single value corresponding to the beginning Julian date of the crop cycle

cycle_end A single value corresponding to the ending Julian date of the crop cycle

no_minus_values True or false. If this argument is True, negative values will be forced to be zero. This

helps getting rid of any unrealistic negative interpolated values in the climate

54

parameters such as precipitation data. If this argument is false, then negative values

are allowed. By default, this argument is set as false and it's not a mandatory

argument to pass

Function returns

daily_vector 1D NumPy array, corresponding to the output daily climate data between

cycle_begin and cycle_end Julian dates

Daily-to-monthly aggregation
This function aggregates daily climate data into monthly climate data. The aggregation is done
by averaging the data in each month.

1
2
Daily-to-monthly aggregation
monthly_vector = obj_utilities.averageDailyToMonthly(daily_vector)

Function arguments

daily_vector 1D NumPy array with 365 elements corresponding to the daily climate data

Function returns

monthly_vector 1D NumPy array with 12 elements corresponding to the aggregated monthly climate

data

Create latitude map
The latitude map is created by linearly interpolating the bottom and the top latitude values of
the study area, as defined by the user’s input.

1
2

Generate latitude map
lat_map = obj_utilities.generateLatitudeMap(lat_min, lat_max, im_height,
im_width)

Function arguments

lat_min A single value corresponding to the minimum latitude as decimal degree

lat_max A single value corresponding to the maximum latitude as decimal degree

im_height A single value corresponding to height of resulting latitude map as number of pixels

im_width A single value corresponding to width of resulting latitude map as number of pixels

Function returns

lat_map 2D NumPy array, corresponding to latitude map. The resulting dimension of the

latitude map will be im_height and im_width respectively

55

Classify the final crop yield
This function classifies yield estimations and produces suitability maps according to classification
scheme defined in AEZ framework. The classification scheme consists of 5 classes (very suitable,
suitable, moderately suitable, marginally suitable, and not suitable) (Table 11).

1
2
Classification of yield estimation
est_yield_class = obj_utilities.classifyFinalYield(est_yield)

Function arguments

est_yield 2D NumPy array corresponding to the estimated yield

Function returns

est_yield_class 2D NumPy array, corresponding to the suitability map after yield classification

Table 11. Yield suitability classification

Pixel

value
Suitability class Description

1 Not suitable Yields between 0% and 20% of the overall maximum yield

2 Marginally suitable Yields between 20% and 40% of the overall maximum yield

3 Moderately

suitable

Yields between 40% and 60% of the overall maximum yield

4 Suitable Yields between 60% and 80% of the overall maximum yield

5 Very suitable Yields are equivalent to 80% or more of the overall maximum

yield

Source: Fischer, G., Nachtergaele, F., Velthuizen, H. van, Chiozza, F., Franceschini, G., Henry, M., Muchoney, D., & Tramberend, S. 2021.
Global Agro-Ecological Zones v4 - Model Documentation. Rome, FAO. https://doi.org/10.4060/cb4744en

Saving GeoTIFF rasters
This function allows saving 2D numpy array as GeoTIFF raster file. This function can be used to
save any output of this PyAEZ package as a GeoTIFF raster file.

1
2
Save 2D NumPy to GeoTIFF
obj_utilities.saveRaster(ref_raster_path, out_path, numpy_raster)

56

Function arguments

ref_raster_path String, locating reference raster. This must be GeoTIFF raster file. Projection

information is copied from this raster to final raster. Any input GeoTIFF raster to

PyAEZ package with Projection information can be passed for this argument

out_path String, the desired location to save the output GeoTIFF file (with .tif extension)

numpy_raster 2D NumPy array, corresponding to the raster that user wants to save. Please be

aware that the dimensions of this NumPy array and that of reference GeoTIFF raster

must be the same in order to avoid error

Function returns

None

Averaging raster files
This function averages list of raster files in time dimension. Some calculations in the AEZ
framework are recommended to perform with averaged climate data for 30 years. This function
can be used for such calculations.

1
2
Averaging raster files
avg_raster = obj_utilities.averageRaster(raster_3d)

Function arguments

raster_3d 3D NumPy array, corresponding to any climate data. The averaging will be done by

the time dimension (across the years)

Function returns

avg_raster 2D NumPy array, the averaged climate data - into ‘one year’ worth of data

Calculate wind speed at 2 m altitude
This function converts wind speed from a particular altitude to wind speed at 2 m altitude. All of
the wind speed values used in PyAEZ calculations are at 2 m altitude, however, it is common for
climate data services to offer the wind speed at 10 m altitude, hence this conversion.

1
2
Converting to wind speed at 2 m altitude
wind_speed_2m = obj_utilities.windSpeedAt2m(wind_speed, altitude)

Function arguments

wind_speed A NumPy array (can be 1D, 2D or 3D), corresponding to wind speed

altitude A single value corresponding to the altitude (above ground)[m]

Function returns

57

wind_speed_2m Converted wind speed at 2 m altitude as a NumPy array. Units will be same as unit of

wind_speed

58

References
Allen, R.G., Pereira, L.S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration (guidelines for

computing crop water requirements). FAO Irrigation and Drainage Paper, 56. Rome, FAO.

de Wit, C.T. (1965). Photosynthesis of leaf canopies. Agricultural Research Reports, 663.

Doorenbos, J. & Pruitt, W.O. 1977. Guidelines for predicting crop water requirements, FAO
Irrigation and Drainage Paper N 24. FAO Irriga edition. Rome, FAO. 154 pp.

FAO. (2017a). National Agro-Economic Zoning for Major Crops in Thailand (NAEZ) (Project
TCP/THA/3403): NAEZ model implementation and results : final report

FAO. (2017b). The future of food and agriculture: trends and challenges. In D. Godoy, J. Dewbre,
C.J. Amegnaglo, Y.Y. Soglo, A.F. Akpa, M. Bickel, S. Sanyang, S. Ly, J. Kuiseu, S. Ama, B.P.
Gautier, R. Eberlin, E. Oduro-ofori, P. Aboagye Anokye, N.E.A. Acquaye, V.M. Dandelar & J.
Mineo (Eds.), The future of food and agriculture: trends and challenges (Vol. 4, Issue 4).
Rome

Fischer, G., Nachtergaele, F., Velthuizen, H. van, Chiozza, F., Franceschini, G., Henry, M.,
Muchoney, D. & Tramberend, S. (2021). Global Agro-Ecological Zones v4 - Model
Documentation. Rome, FAO. https://doi.org/10.4060/cb4744en

Kim, C. (2010). The Impact of Climate Change on the Agricultural Sector : Implications of the
Agro - Industry for Low Carbon , Green Growth Strategy and Roadmap for the East Asian
Region Table of Contents. Low Carbon Green Growth Roadmap for Asia and the Pacific, 1–
51.

Monteith, J.L. 1965. Evapotranspiration and the environment. The State and Movement of Water
in Living Organisms. XIXth Symposium. Society for Xp. Biology, Swansea. pp. 205–234. Paper
presented at, 1965, Cambridge, UK.

Monteith, J.L. 1981. Evapotranspiration and surface temperature. Quarterly Journal Royal
Meteorological Society, 107: 1–27.

Nelson, G.C., Rosegrant, M.W., Koo, J., Robertson, R.D., Sulser, T., Zhu, T., Ringler, C., Msangi, S.,
Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M. & Lee, D.R. (2009).
Climate change: Impact on agriculture and costs of adaptation.
https://doi.org/10.2499/0896295354

Ray, D.K., Mueller, N.D., West, P.C. & Foley, J.A. (2013). Yield Trends Are Insufficient to Double
Global Crop Production by 2050. PLOS ONE, 8(6), e66428.

UN DESA (United Nations, Department of Economic and Social Affairs, Population Division)
(2022). World Population Prospects 2022: Ten Key Messages.
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files
/undesa_pd_2022_wpp_key-messages.pdf

A Python package for
Agro-Ecological Zoning
Agro-Ecological Zoning (AEZ) framework was developed as a
tool to analyse the effect of climate on land use and agricultures,
as well as helping to optimise the crop cycle to produce the best
yield possible. PyAEZ is an open- source Python package which
offers AEZ calculations for user to implement for their regional
AEZ analyses. This technical document contains detailed
descriptions of all the AEZ modules and functions in PyAEZ.

