

WALKTHROUGH – THE DIGITAL FEATURES – INTRODUCTION TO THE DIGITAL PRISM

Kornel Kalman Land and Water Division (NSL), FAO Tunis, 13 December 2022

Regional gathering Tunis, 12 – 16 December 2022

O

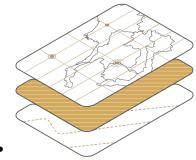
GOALS OF DEVELOPMENT

- Simplify a complex but well-defined, well-understood process. • **Expected return on irrigation investments**
- Data provision → Data extraction →
 → Data processing / analysis → Interpretation of results
 ○Intuitive web-based user interface (UI)

• Composite indicator & multi-layer geospatial analysis

HOW IT WORKS?

- 1. User to specify target areas
 - Drawing on map / Uploading geographical features (GeoJSON)
- 2. Indicator extraction & processing, composite indicator
 - High-performant components leveraging Google Earth Engine, Python
- 3. Results presented through informative charts
 - Relative rating of target areas


coordinates": [125.6, 10.1]

GEOSPATIAL INDICATORS

- High-quality global datasets (raster & vector).
- Resolution between tens of meters and a few kilometers.
- Google Earth Engine assets & data extraction capabilities.
- Types of indicators:

Mean / Max of pixel values. (e.g. Precipitation / Food insecurity)
 Ratio of area according to some condition. (e.g. Land Degradation)
 Distance from geospatial features (e.g. Acces to water storage)

DEMO

NEXT STEPS

Integration of field data

Support for popular vector formats to upload areas

Country-PRISM

THANK YOU.