

Food and Agriculture Organization of the United Nations

EMERGING INNOVATIONS IN IRRIGATION PERFORMANCE ASSESSMENT

Remote sensing techniques for irrigation performance assessment and benchmarking

Waqas Ahmad

Land and Water Division (NSL), FAO Tunis, 13 December 2022

Regional gathering Tunis, 12 – 16 December 2022

0

CONTENTS

- **Solution** Importance of irrigated agriculture systems
- **> Performance indicators**
- **Solution Tools and techniques used for performance assessment**
- **Solution** Review of Remote Sensing applications in irrigated agriculture
- \sum Recommended resources for further studies

IMPORTANCE OF IRRIGATION SYSTEMS

IMPACTS OF IRRIGATION

THE NEED OF PERFORMANCE ASSESSMENT

Land and water resources are limited

System performance degrades with time

Systems are diverse and large scale

PERFORMANCE INDICATORS

Irrigation related performance indicators

- Benchmarking of irrigation infrastructure
- Water resources monitoring
- Water delivery functions (irrigation related
- Agriculture related performance indicators
 - Cropping pattern
 - Cropping intensity
 - Crop management

TOOLS AND TECHNIQUES USED FOR PERFORMANCE ASSESSMENT

Performance of irrigated agriculture can be assessed with several techniques and methods, such as

Method and Tool	Pros and cons
Direct measurements for performance indicators	Extensive field measurement data intensive and small scale
Analytical methods (examples are AHP and fuzzy set theory)	Computational complexity, data intensive and small scale
Remotely sensed performance indicators	Low complexity, highly scalable, higher measurement frequency, readily available data, low cost

REVIEW OF REMOTE SENSING APPLICATIONS IN IRRIGATED AGRICULTURE

BENCHMARKING OF IRRIGATION INFRASTRUCTURE

Objective: Remote methods can be used to evaluate the construction progress of designed canal length and other irrigation and drainage infrastructure.

Data and methods Multi spectral satellite images (NIR, R bands) NDVI map of project area

Data sources: USGS Earth Explorer, ESA Copernicus Open Access Hub, NASA Earth Data Search, DigitalGlobe Open Data Program, +++. Analysis tool: Open-source RS/GIS software: (QGIS), Sentinel Toolbox, SAGA GIS, GRASS, PolSARPro, +++.

Main canal offtake

Pipe outlet

Lateral covered with vegetation

Pending construction

Pending structure

BENCHMARKING OF IRRIGATION INFRASTRUCTURE

Regulators

Progress monitoring on

irrigation development

Head Regulator Bridges

Cross Regulator

Escape Regulator

Foot/Cart bridge Super passages

WHY VEGETATION APPEARS DISTINCT IN NDVI MAP?

$$NDVI = \frac{NIR - RED}{NIR + RED}$$

REMOTE MONITORING OF RESERVOIR STORAGE

Objective: Remote monitoring of water storage in irrigation reservoir prior to the cropping season helps in decision making on the choice of crops and area to be cultivated during the next season.

Data and methods

Multi spectral satellite images (NIR, G bands) OR Synthetic Aperture Radar (SAR) imagery (Day night observation).

NDWI map of reservoir or Water area mask using SAR

Data sources: USGS Earth Explorer, ESA Copernicus Open Access Hub, NASA Earth Data Search, DigitalGlobe Open Data Program, +++.

Analysis tool: Open-source RS/GIS software: (QGIS), Sentinel Toolbox, SAGA GIS, GRASS, PolSARPro, +++.

Babu et al., 2012. Satellite derived geospatial irrigation performance indicators for benchmarking studies of irrigation systems. Cited 5 Dec 2022.

Satellite Water Image Spread

REMOTE MONITORING OF RESERVOIR SEDIMENTATION

Objective: Remote sensing methods can be used to monitor sediments deposition in the reservoirs and how the capacity of reservoir is reduced.

Data and methods

Multi spectral satellite images (NIR, G bands) OR

Synthetic Aperture Radar (SAR) imagery (Day night observation).

NDWI map of reservoir or Water area mask using SAR

Data sources: USGS Earth Explorer, ESA

Copernicus Open Access Hub, NASA Earth Data Search, DigitalGlobe Open Data Program, +++.

Analysis tool: Open-source RS/GIS software: (QGIS), Sentinel Toolbox, SAGA GIS, GRASS, PolSARPro, +++.

DISCHARGE MONITORING INTO RESERVOIRS

Objective: Remote monitoring of river discharge

Data and methods

Synthetic Aperture Radar (SAR) imagery (observation during day-night and all-weather condition).

Water area mask using thresholding of SAR images

Data sources: ESA Sentinel Open Access Hub. **Analysis tool:** Open-source RS/GIS software: Sentinel Toolbox.

Ahmad, W., & Kim, D., 2019. Estimation of flow in various sizes of streams using the Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea. International Journal of Applied Earth Observation and Geoinformation, 83, 101930. Cited 5 Dec 2022.

IRRIGATION PERFORMANCE ASSESSMENT

Objective: Remote sensing is widely used to assess the performance of irrigation systems using different indicators i.e NDVI, ETc, NDWI, biomass growth, moisture deficit and soil moisture etc.

Data and methods

Multi spectral satellite images of LandSAT 8. Surface Energy balance model (SEBAL) to compute ETc OR **Data sources:** USGS Earth Explorer

Analysis tool: Open-source RS/GIS software: (QGIS), SAGA GIS, GRASS, PolSARPro, +++.

REMOTE ASSESSMENT OF CROPPING PATTERN

Babu et al., 2012. Satellite derived geospatial irrigation performance indicators for benchmarking studies of irrigation systems. Cited 5 Dec 2022.

CROP MANAGEMENT

Objective: Assessment of canopy cover and Relative Nitrogen Content (GNDVI) in paddy fields to identify critical zones for better crop management

Data and methods

Multi spectral images of various EOS and UAV can be used.

NDVI, Green NDVI (GNDVI), and Triangular Greeness Index (TGI)

Data sources: ESA Sentinel Open Access Hub, and UAV. **Analysis tool:** Open-source RS/GIS software: Sentinel Toolbox, QGIS

> Waruth et al., 2022.). Application of UAVs to Monitor Paddy Crop Growth, Chlorophyll, and Nitrogen Content for Informed Decision Making in Water and Nutrient Management. Thesis, Water Engineering and Management (WEM), Asian Institute of Technology (AIT), Thailand. Cited 5 Dec 2022.

0

CROP MANAGEMENT

Chlorophyll content

Relative Chlorophyll Content (TGI)

Relative Nitrogen Content (GNDVI)

^{*}Triangular greenness index

REMOTE SENSING DATA RESOURCES

ONLINE READY TO USE RESOURCE

Earth Observation Satellite (EOS) Data Analytics https://eos.com/

Products: Crop monitoring, Forest monitoring, yield prediction, crop classification and harvest dynamics

شکرًا MERCI THANK YOU