

AQUACROP CALIBRATION AND VALIDATION: A CRUCIAL STEP

Prof. Elias Fereres University of Cordoba and IAS-CSIC – Cordoba, Spain

Tunis, 12 December 2022

Regional gathering Tunis, 12 – 16 December 2022

WHY DO WE HAVE TO CALIBRATE AQUACROP? WHY IS IT A CRUCIAL STEP?

- A crop model is a simplified representation of reality
- Parametrization, calibration and validation
- Need for crop measurements at the local level
- What are the general steps in the calibration and validation processes?
- How are the simulation results assessed? How well do they fit real measurements?

HOW AQUACROP WORKS?

Figure by D. Raes

HOW AQUACROP WORKS?

We must check:

1. Canopy cover

2. Transpiration

3. Biomass

4. Yield

Figure by D. Raes

WHAT DO WE NEED FOR CALIBRATION

FIELD MEASUREMENTS AND OBSERVATIONS

AQUACROP CALIBRATION: STARTING WITH THE ASSESSMENT OF GREEN CANOPY COVER

Water stress parameters

Scenario

Non limited conditions Water limited conditions

EFFECTS OF WATER DEFICITS ON CANOPY EXPANSION AND SENESCENCE

1. Green canopy cover

Water stress parameters

- Canopy expansion (Ks_{exp,w})
- Early canopy senescence (Ks_{sen})

COMPARING SIMULATED CANOPY COVER AGAINST

MEASURED

1. Green canopy cover

WHAT ARE THESE INDICATORS?

DETERMINING PARAMETERS FOR THE CALIBRATION OF TRANSPIRATION

2. Crop transpiration

Check inputs:

- Precipitation
- Irrigation
- Soil depth
- Soil hydraulic characteristics
- Depth of groundwater table

CONSERVATIVE VS. NON-CONSERVATIVE PARAMETERS

IMPACT OF WATER STRESS ON TRANSPIRATION

2. Crop transpiration

Water stress parameters

- Stomatal closure (Ks_{sto})
- Waterlogging (Ks_{aer})

TRANSPIRATION CALIBRATION THROUGH SOIL WATER CONTENT

2. Crop transpiration

aluation of simulation results	Statistical indicators		
	R2	coefficient of determination	0.98
socii water content (SW(C)	RMSE	root mean square error (mm water)	24.2
raphical display Numerical display Statistics 600 mm	NRMSE	normalized root means square error (%)	13.4
Wr.	EF	Nash-Sutdiffe model efficiency coefficient	0.91
for the specified soil depth of sampling	d	Willmott's index of agreement	0.97
Scale Orm 22 March	simulate	ed soil water content WP = 1 0.0 mm - 0 time 24 July	

CALIBRATION OF SIMULATED BIOMASS PRODUCTION

3. Above ground biomass production

Taking biomass measurements:

- Collect representative samples (location and size of sampling areas)
- Appropriate sub-sampling and drying
- Losses of biomass in the field prior to sampling

WHAT ARE THE PARAMETERS AFFECTING BIOMASS PRODUCTION?

3. Above ground biomass production

Conservative parameters

WP*

Scenario

Non limited conditions

Temperature stress parameters

Non limited conditions

CHECKING THE SIMULATION OF BIOMASS PRODUCTION

3. Above ground biomass production

YIELD CALIBRATION

4. Yield

Cultivar specific 🔶

Non-conservative parameters

Harvest index (HIo)

Scenario

Non limited conditions

Scenario

Conservative parameters

Temperature stress parameters Non limited conditions
Water stress parameters Non limited conditions
+
Water limited conditions

REGRESSION OF SIMULATED VS. OBSERVED VALUES

4. Yield

Figure from Heng et al., 2009

HOW ARE THE SIMULATION RESULTS ASSESSED?

Observed vs. Simulated	Stat	Statistical indic	
1. Green canopy cover	R2	coefficient of o	
2. Crop transpiration/SWC	RMSE	root mean squ	
	NRMSE	normalized root mean	
3. Above ground biomass production	EF	Nash-Sutcliffe model e	
4. Yield	d	Willmott's index	

Statistical indicators				
R2	coefficient of determination			
RMSE	root mean square error (ton/ha)			
NRMSE	normalized root means square error (%)			
EF	Nash-Sutcliffe model efficiency coefficient			
d	Willmott's index of agreement			

HOW ARE THE SIMULATION RESULTS ASSESSED?

Statistical indicators

$$RMSE = \sqrt{\frac{\sum (P_i - O_i)^2}{n}}$$

- *P_i* = Model predictions (Simulated values)
- *O_i* = Observations (Observed values)

$$CV(RMSE) = \frac{1}{\overline{O}} \sqrt{\frac{\sum (P_i - O_i)^2}{n}} 100$$

$$EF = 1 - \frac{\sum (P_i - O_i)^2}{\sum (O_i - \overline{O})^2}$$

$$d = 1 - \frac{\sum (P_i - O_i)^2}{\sum \left(/ P_i - \overline{O} / + / Q_i - \overline{O} \right)^2}$$

HOW ARE THE SIMULATION RESULTS ASSESSED?

Acceptable ranges of indicator values

Statistical indicator & range	R ²	NRMSE	EF	d
Possible range	0 - 1	0 - 100%	-∞ - 1.0	0 - 1
Very good	≥0.90	≤ 5%	≥0.80	≥ 0.9
Good	0.80-0.89	6 - 15%	0.60 - 0.79	0.80 - 0.89
Satisfactory	0.70-0.79	16 – 25%	0.40 - 0.59	0.65 - 0.79
Unsatisfactory	< 0.70	>25%	<0.40	<0.65

TO CONCLUDE,

- In FAO I&D 66, <u>the four Hsiao's rules:</u>
- 1. Understand how the model simulates
- 2. Always pay attention to the graphic display of the output
- 3. Check your inputs before start chaning the parameters in the model
- 4. If simulations do not agree with measurements, the problema might be in the measurements

<u>Use more than one dataset for</u> calibration to be reliable, e.g., several years or different locations

THANK YOU