

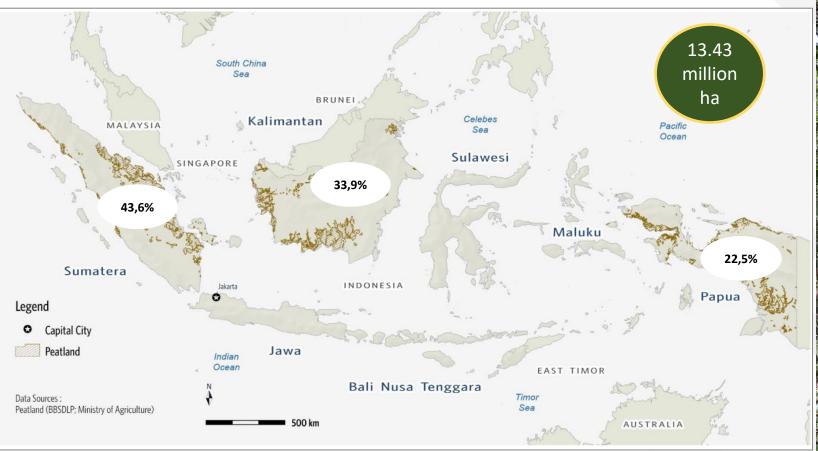
Indonesia's Mangrove and Tropical Peatland Research and related carbon accounting

Haruni Krisnawati National Research and Innovation Agency Republic of Indonesia

Why are mangroves and tropical peatlands?

- High carbon density and provide various important ecosystem services.
- Significant contributors to global GHG emissions due to their high rates of degradation and land use change.
- Potential for climate change mitigation and adaptation.
- Understanding the source and size of historical emissions is important for planning mitigation actions as well as assessing the potential impact of land management options on future emissions.
- A number of studies have been conducted in Indonesia to provide scientific information on emission factors and address a significant knowledge gap in the main parameters to improve the accuracy of emission estimation due to

Mangroves in Indonesia



Ministry of Environment & Forestry (2021)

Peatlands in Indonesia

Source: Ministry of Agriculture (2019)

Global Forest Plenary Observations Initiative 9-11 May 2023

How research has contributed to the national emission reporting?

Improvement of emission estimation

1st Indonesia FREL Wetland Emission Calculation

- Mangrove
 - AGB emission
- Peatland
 - ► AGB emission
 - SOC emission from peat decomposition

Uncertainty analysis

Propagation error from activity data and emission factor

Global Forest Plenary Observations Initiative 9-11 May 2023 2nd Indonesia FREL Wetland Emission Calculation

Mangrove

- ▶ AGB, BGB, DOM emission
- SOC emission from mangrove conversion
- Peatland
 - ► AGB, BGB, DoM emission
 - SOC emission from peat decomposition and peat fire

Uncertainty analysis

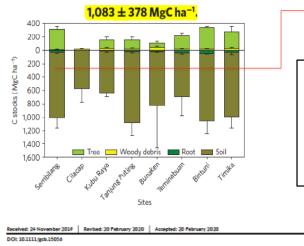
- Adding sources of uncertainty (improved allometrics, increased samples, etc.)
- Applying uncertainty calculation (Montecarlo simulation)

Some studies on Indonesia's mangroves

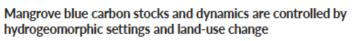
nature climate change

PRIMARY RESEARCH ARTICLE

LETTERS PUBLISHED ONLINE: 27 JULY 2015 | DOI: 10.1038/NCLIMATE273


Root

Trees 17%


The potential of Indonesian mangrove forests for global climate change mitigation

Daniel Murdiyarso^{1,2}*, Joko Purbopuspito^{1,3}, J. Boone Kauffman⁴, Matthew W. Warren⁵, Sigit D. Sasmito¹, Daniel C. Donato⁶, Solichin Manuri⁷, Haruni Krisnawati⁸, Sartji Taberima⁹ and Sofvan Kurnianto^{1,4}

Global Change Biology WILEY

Sigit D. Sasmito^{1,2} | Mériadec Sillanpää^{5,4} | Matthew A. Hayes⁵ | Samsul Bachri⁶ | Meli F. Saragi-Sasmito² | Frida Sidik⁷ | Bayu B. Hanggara² | Wolfram Y. Mofu⁸ | Victor I, Rumbiak^a | Hendri^a | Sartii Taberima^a | Suhaemi^a | Julius D, Nugroho^a | Thomas F. Pattiasina⁹ | Nurvani Widagti⁷ | Barakalla¹⁰ | Joeni S. Rahajoe¹¹ Heru Hartantri¹¹ | Victor Nikijuluw¹⁰ | Rina N. Jowey⁸ | Charlie D. Heatubun^{8,12,15} Philine zu Ermgassen¹⁴ | Thomas A. Worthington¹⁵ | Jennifer Howard¹⁶ Catherine E. Lovelock¹⁷ | Daniel A. Friess⁸ | Lindsay B. Hutley¹ | Daniel Murdiyarso^{2,18}

70% Indonesia mangroves: High C-stocks - could meet a quarter of a 26% emission reduction target by 2020 by conserving mangroves from deforestation AGBC BGBC Dead wood Soil C (<100 cm)</p> Soil C (>100 cm)

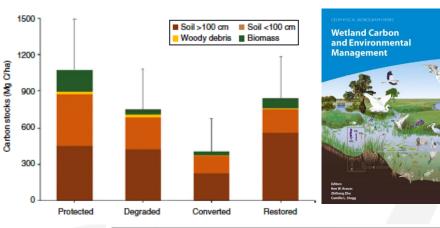
Interior

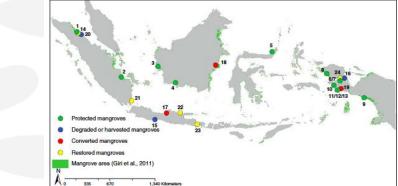
Hydrogeomorphic settings

Estuarine

Fringe

Open coast


Interior


Fringe

Mangrove carbon stocks

Optimizing Carbon Stocks and Sedimentation in Indonesian Mangroves under Different Management Regimes

Daniel Murdiyarso^{1,2}, Virni B. Arifanti³, Frida Sidik⁴, Meriadec Sillanpää⁵, and Sigit D. Sasmito^{1,6}

Global Fore: Observations Initiativ

Mangrove carbon sequestration

JOURNAL OF THE INDIAN OCEAN REGION https://doi.org/10.1080/19480881.2019.1605659 Routledge Taylor & Francis Group

Check for updates

Carbon sequestration and fluxes of restored mangroves in abandoned aquaculture ponds

Frida Sidik^{a,b}, Maria Fernanda Adame^c and Catherine E. Lovelock^b

Tidal re-instatement facilitates natural regeneration 10 years – restoration

Components of carbon cycle have restored

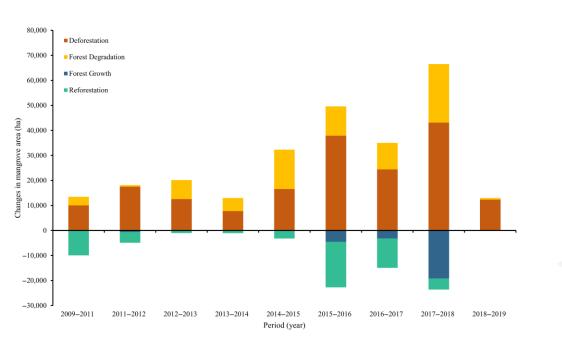
	Natural (Mg C ha ⁻¹ yr ⁻¹)	Restored (Mg C ha ⁻¹ yr ⁻¹)		
AB biomass + leaf litter	16.6	16.2		
Soil	2.2	1.5		

PAPER • OPEN ACCESS

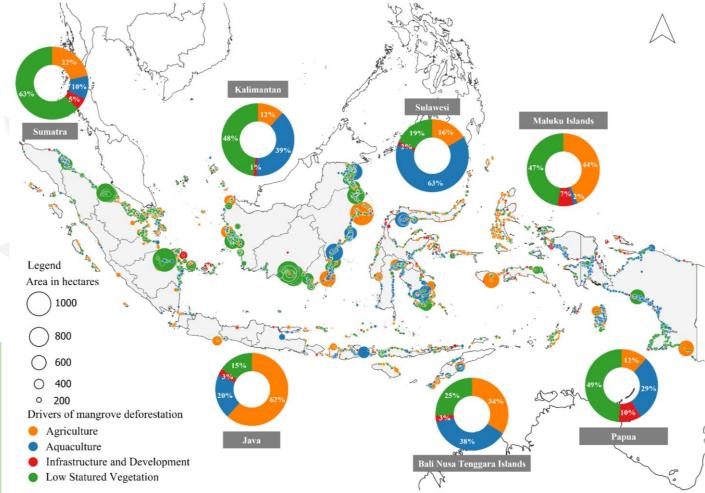
Mangrove deforestation and CO₂ emissions in Indonesia

V B Arifanti¹, N Novita², Subarno² and A Tosiani³

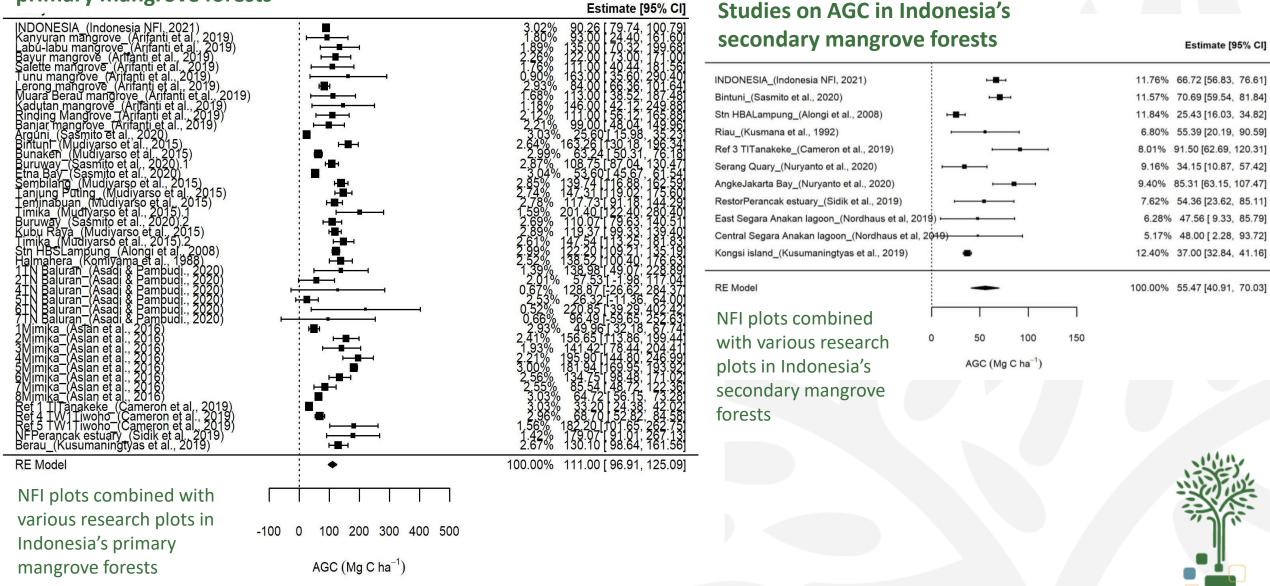
Published under licence by IOP Publishing Ltd


IOP Conference Series: Earth and Environmental Science, Volume 874, International Conference of Indonesia Forestry Researchers VI 2021 - Stream 3: Enhancing Resilience Capacity of Disaster and Climate Change 7-8 September 2021, Jakarta, Indonesia

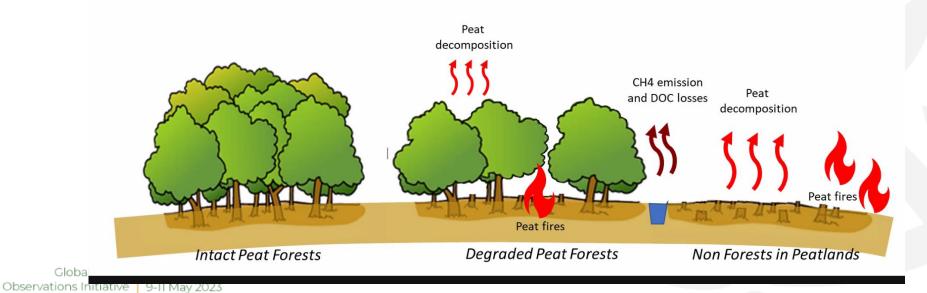
Global Change Biology


RESEARCH ARTICLE 🖻 Open Access 💿 🛈 🗐 🏵

Contributions of mangrove conservation and restoration to climate change mitigation in Indonesia


Virni Budi Arifanti 🔀, John Boone Kauffman, Subarno, Muhammad Ilman, Anna Tosiani, Nisa Novita First published: 25 April 2022 | https://doi.org/10.1111/gcb.16216

- Deforestation exceeds reforestation
- Mangrove gross deforestation rate in Indonesia is estimated at 18,209 ha yr⁻¹ (Arifanti et al., 2021)
- Mangrove net emission rate is 28 Tg CO₂e r⁻¹ (Arifanti et al., 2022)


Studies on AGC in Indonesia's primary mangrove forests

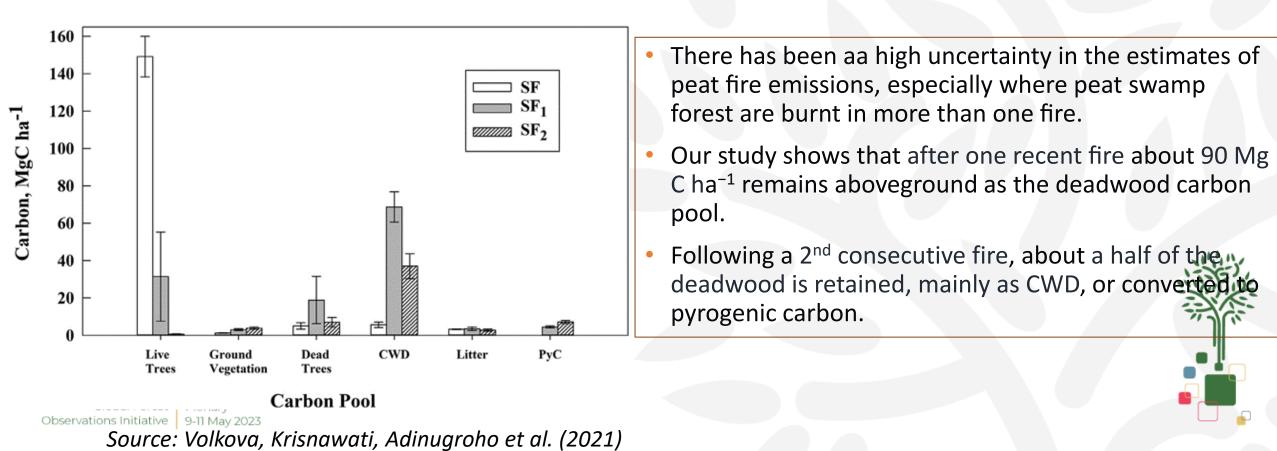
Studies in Indonesia's tropical peatlands

Scope

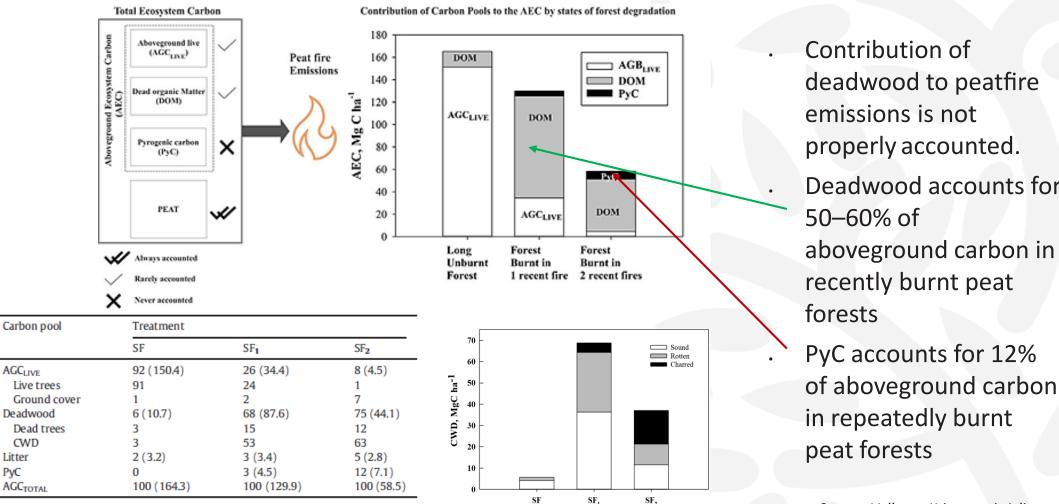
- Carbon Stocks
- Emissions from Organic Soils on Degraded Peatlands
 - Peat Decomposition
 - Peat Fires

Improving emission estimates from tropical peatland fires

Measuring trees in secondary peat swamp forest


212

Observations Initiative 9-11 May 2023


Impact of fire frequency on AGC

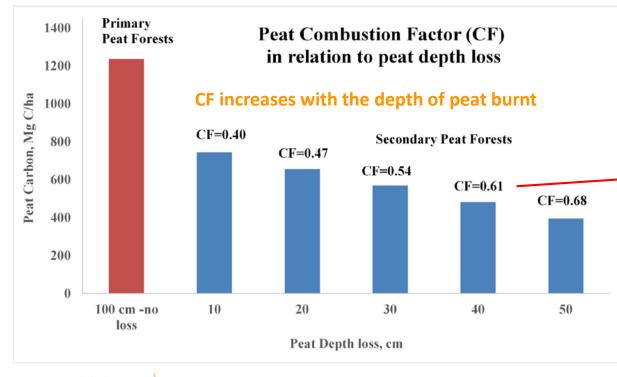
A comprehensive assessment of the above-ground and peat carbon pools as they are affected by recurring fires

Improved knowledge on peat fires emissions estimates

Treatment

CWD

Litter


PyC

Contribution of deadwood to peatfire emissions is not properly accounted. Deadwood accounts for 50-60% of aboveground carbon in recently burnt peat forests PyC accounts for 12%

Source: Volkova, Krisnawati, Adinugroho et al. (2021)

New Combustion Factors for Peat swamp forests

Current assumption: complete combustion of peat (CF = 1) is an oversimplification

Global Forest Plenary Observations Initiative 9-11 May 2023 Source: Krisnawati et al. (2021)

Table 5

Combustion factors for aboveground and peat biomass.

Combustion factor	This study	IPCC default
CF _{AGC} ^a	0.564	0.50
CF _{PEAT-10cm}	0.399	1.0
CFPEAT- 20cm	0.469	1.0
CF _{PEAT-30cm}	0.540	1.0
CE _{PEAL} - 40cm	0.610	1.0
CF _{PEAT-50cm}	0.681	1.0

Table 6

Estimated CO_2 emissions (Mg CO_2 -e) from 1 ha of peat burnt down to 10 cm and 30 cm depth using the IPCC default and study derived CF_{PEAT} .

Peat	Estimated CO ₂	Estimated CO ₂	Emission reduction
depth	emissions using the	emissions using study	per hector of peat
burnt	IPCC default CF	derived CF _{PEAT}	burnt
10 cm	262	104	2.51
30 cm	1275	688	1.85

Parameter to estimate peat fire emission

Parameter	Mean (SE)	Unit	Source
Cf (combustion factor)	0.54 (0.05)	-	Krisnawati et al. 2021;
Gef CO ₂ (CO ₂ emission factor)	1670.13 (34.03)	g kg ⁻¹ CO	Stockwell <i>et al.</i> 2016; Stockwell <i>et al.</i> 2015; Stockwell <i>et al.</i> 2014; Christian <i>et al.</i> (2003); Huijnen <i>et al.</i> 2016; Setyawaty <i>et al.</i> 2017; Wooster <i>et al.</i> 2018; Nara <i>et al.</i> 2017
Gef CH4 (CH4 emission factor)	177,87 (24,36)	g kg ⁻¹ CO _{2eq}	Stockwell <i>et al.</i> 2016; Stockwell <i>et al.</i> 2015; Stockwell <i>et al.</i> 2014; Christian <i>et al.</i> (2003); Huijnen <i>et al.</i> 2016; Setyawaty <i>et al.</i> 2017; Wooster <i>et al.</i> 2018; Nara <i>et al.</i> 2017
BD (bulk density)	0.16 (0.015)	g cm- ³	Konecny et al. 2016; Warren <i>et al.</i> 2012, Agus <i>et al.</i> 2011; Lampela <i>et al.</i> 2014; Kononen <i>et al.</i> 2015; Shimada <i>et al.</i> 2001
Db (Burn depth)	31.88 (4.68)	cm	Stockwell <i>et al.</i> 2016; Ballhorn <i>et al.</i> 2009; Konecny <i>et al.</i> 2016; Usup <i>et al.</i> 2004; Page <i>et al.</i> 2002; Saharjo 2007; Simpson <i>et al.</i> 2016; Saharjo and Munoz 2005

Thank you.

Haruni Krisnawati

Global Forest Plenary Observations Initiative 9-11 May 2023