

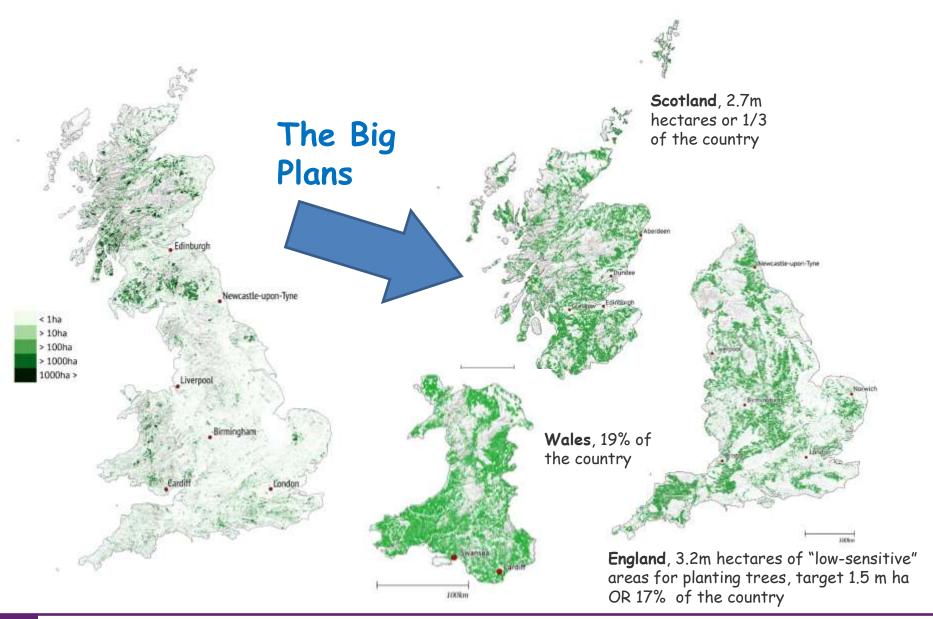
New forest inventories in Britain using remote sensing and proximal data collection methods

Juan Suárez

Forest Research, Northern Research Station, UK

Juan Suarez Corestresearch gov uk

GFOI, Rome 9-11th May 2023


How many trees are in the world?

3.04 trillion trees or 422 per person

How many trees are in the UK?

3 billion trees or 45 per person

The BIG Challenge

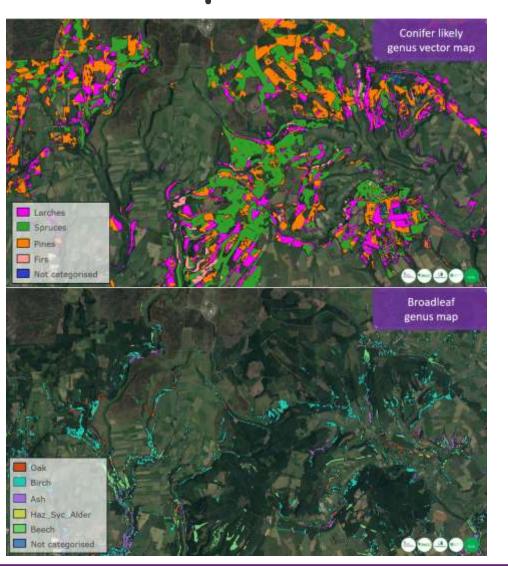


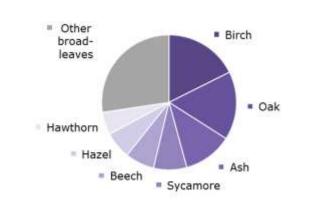
There are other questions... the 5 Ws

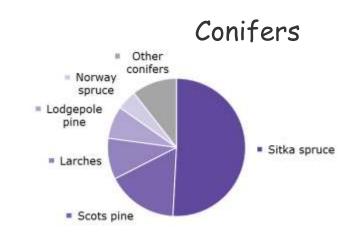
- -Which species do we have?
- -Where are trees located?
- -What happened to them?
- -What are they doing?

Can we monitor Forests dynamic processes?

-Where are we going?



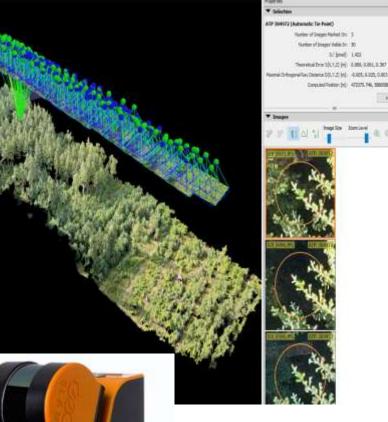




Which species do we have?

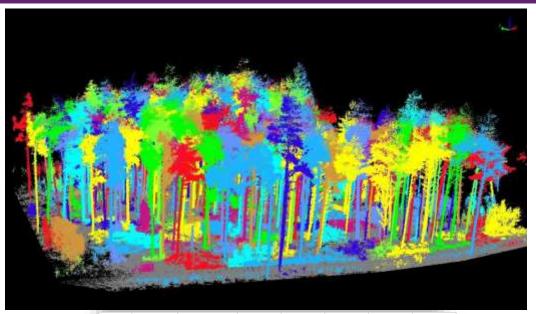
Broadleaves

Source: Scott Dearden and Conor Strong

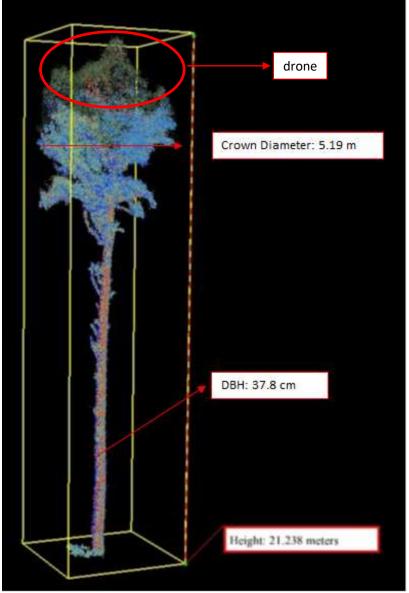


Where are trees located?

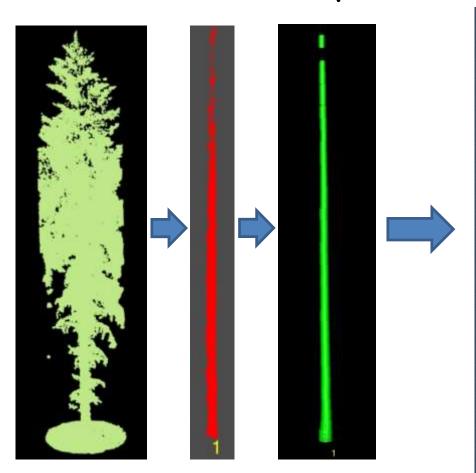
Structure from Motion (SfM)



CECHO SURVEYING

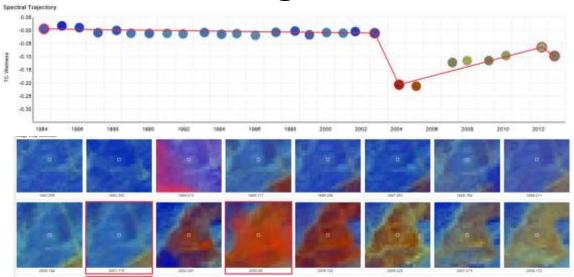


Where are trees located?



TreelD	Tree LocationX	Tree LocationY	Tree Height	DBH	Crown Diameter	Crown Area	Crown Volume
1	241136.5	708116.752	22.683	0.108	6.158	29.787	171.204
2	241156.6	708130.169	16.734	0.141	2.807	6.189	23.876
3	241156.6	708114.448	20.412	0.315	4.182	13.738	63.35
4	241144.5	708118.63	20.983	0.283	4.684	17.23	103.962
5	241145	708129.461	17.014	0.233	4.981	19.486	66.312
6	241153.9	708130.09	17.943	0.275	3.867	11.742	61.339
7	241139.7	708117.187	2.516	0	0.837	0.55	0.779
8	241151.3	708126.85	17.599	0.269	4.815	18.21	87.958
9	241154.7	708113.868	5.206	0.085	2.328	4.258	5.464
10	241142.6	708109.197	2.785	0.908	0.483	0.184	0.142
11	241156.4	708127.288	4.584	0.127	0.454	0.162	0.492
12	241147.3	708121.923	17.541	0.309	5.152	20.847	114.277
13	241129	708120.23	2.18	0.42	0.859	0.58	0.708
14	241139.3	708130.346	17.071	0.203	4.423	15.367	57.879
15	241143.8	708117.128	2.196	0.325	2.191	3.769	3.87
16	241140	708128.533	17.83	0.273	3.776	11.2	64.24
17	241130.8	708120.931	17.424	0.578	6.754	35.823	161.829
18	241126.6	708124.623	3.986	0.373	0.655	0.337	0.487
19	241150.2	708120.727	17,765	0.263	4.931	19.095	98,912

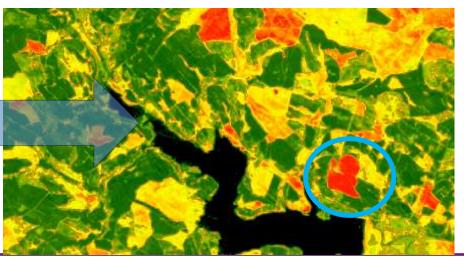
Reconstruction of stem profiles


	TreeID ‡	Segment ‡	x ÷	γ ‡	Radius ‡	Error ‡	AvgHeight ‡	N ‡
			-17.53903	7.037840	0.29234796	0.0014862970	0.3656768	1084
		2	-17.56081	7.025208	0.25654544	0.0007262826	0.7480973	2598
3		3	-17.57246	7.033874	0.23164961	0.0007324386	1.2470507	2187
4		4	-17.59054	7.043299	0.21158950	0.0006658642	1.7538767	2279
		5	-17.59245	7.062224	0.20760750	0.0006143630	2.2538120	2349
6		6	-17.59744	7.061986	0.20681464	0.0007376114	2.7449919	1980
		7	-17.60485	7.075518	0.20374520	0.0008178060	3.2450518	1911
8		8	-17.60522	7.087647	0.20018794	0.0006331408	3.7421126	1806
9		9	-17.60551	7.097774	0.19801973	0.0006362345	4.2541146	1592
10		10	-17.60834	7.101378	0.19314777	0.0007074113	4.7416008	1620
11		11	-17.60534	7.111123	0.19282668	0.0007393210	5.2472676	1739
12		12	-17.59714	7.115566	0.19008622	0.0009818980	5.7443693	1301
13		13	-17.59986	7.115121	0.17958328	0.0008372263	6.2580303	1273
14		14	-17.59743	7.119706	0.18212190	0.0009800801	6.7533206	1263
15		15	-17.60035	7.123136	0.18225153	0.0011998649	7.2562225	1098
16		16	-17.60144	7.124760	0.17653747	0.0011435685	7.7432031	1112
17		17	-17.60380	7.137519	0.18135210	0.0012792960	8.2274332	962
18		18	-17.60251	7.152461	0.18171898	0.0013329007	8.7584915	968
19		19	-17.60418	7.132808	0.16686686	0.0015148452	9.2613016	817
20		20	-17.60565	7.136744	0.16927358	0.0022116890	9.7254893	606
21		21	-17.60639	7.161991	0.17636872	0.0013957290	10.2471290	731
22		22	-17.60936	7.137662	0.15913918	0.0017389435	10.7609714	573
23		23	-17.62312	7.140086	0.15708909	0.0024288684	11.2370986	436
24		24	-17.61830	7.152087	0.15605877	0.0023002041	11.7480889	378
25		25	-17.61791	7.151719	0.14960401	0.0024284949	12.2424251	371
26		26	-17.61489	7.160408	0.15124548	0.0030171064	12.7291011	275
27		27	-17.61248	7.165521	0.14717513	0.0031003842	13.2232044	270
28		28	-17.61167	7.153258	0.13773561	0.0041274031	13.7534276	174
29		29	-17.60246	7.165888	0.14434142	0.0045682638	14.2172584	113
30	1	30	-17.59347	7.178635	0.14867545	0.0052401965	14.7412882	102

Source: Jaz Stoddart

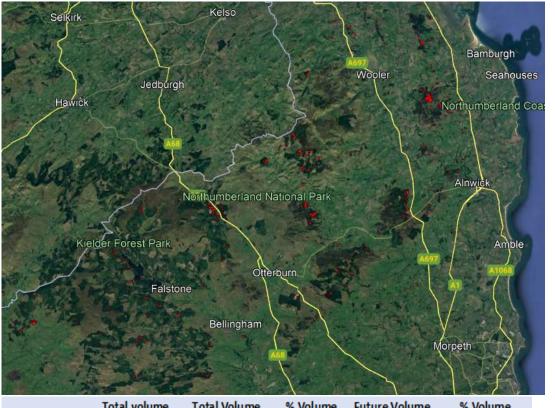
What happened to them?

Monitoring disturbances-GE Engine



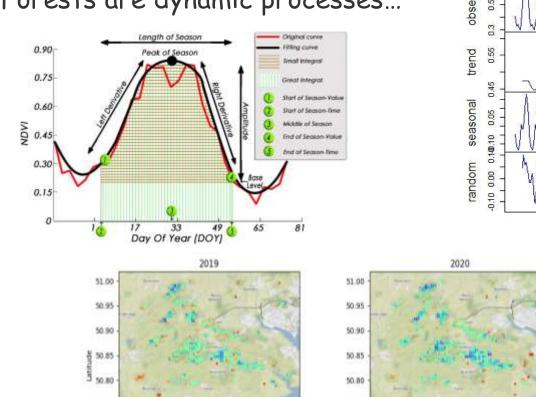
Identifies trends in noisy data e.g. central Summer period

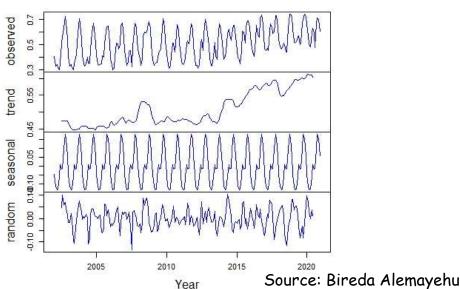
Date, magnitude, duration of periods of change


Source: TimeSync, DEFRA EODIP9 project

What happened to them?

Sentinel-1 detection of windthrow




	Total volume Standing Before storm (m³)	Total Volume lost after the storm (m³)	% Volume Lost after storm (%)	Future Volume Lost in 2025 (m³)	% Volume Lost in 2025 (%)
Sitka spruce	9,436,930	760,182	8.1%	827,239	7%
Other species	2,336,057	194,543	8.3%	N/A	N/A
IFT in NFI	12,689,341	727,213	5.7%		
Grand Total					

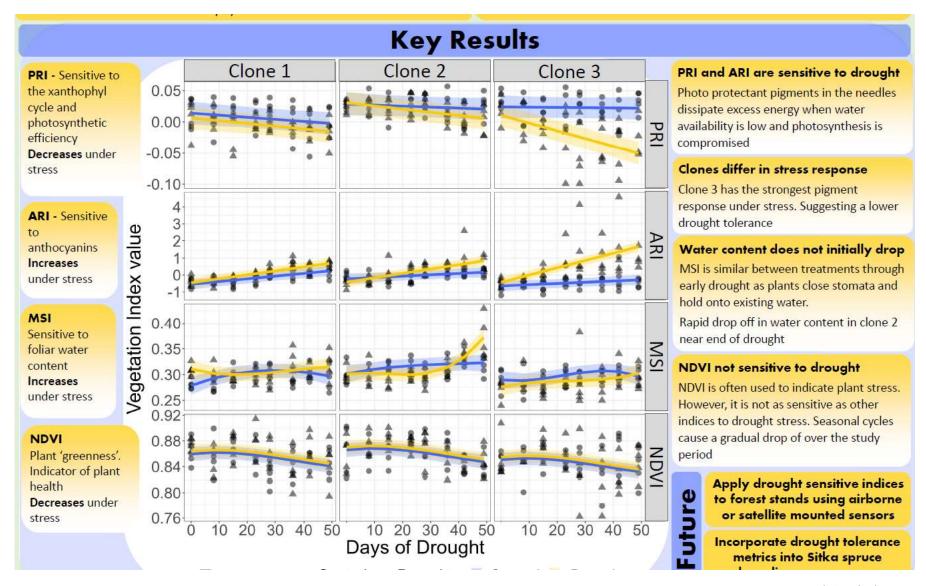
Species	Volume (m³)
Birch	457
Corsican pine	6,291
Douglas fir	10,577
European larch	39
Grand fir	376
Hybrid larch	955
Japanese larch	10,479
Lodgepole pine	44,267
Mixed broadleaves	546
Mixed conifers	2,094
Mixed Conifer Plantations	345
Noble fir	161
Norway spruce	65,052
Red cedar	1,596
Scots pine	51,252
Sycamore	54
Total	194,543

What are they doing?

Forests are dynamic processes...

2021
51.00
50.95
50.95
50.85
50.80
50.75
50.70
50.65 Strength Were bis of control Walturier
-1.00 -1.75 -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40
Longitude

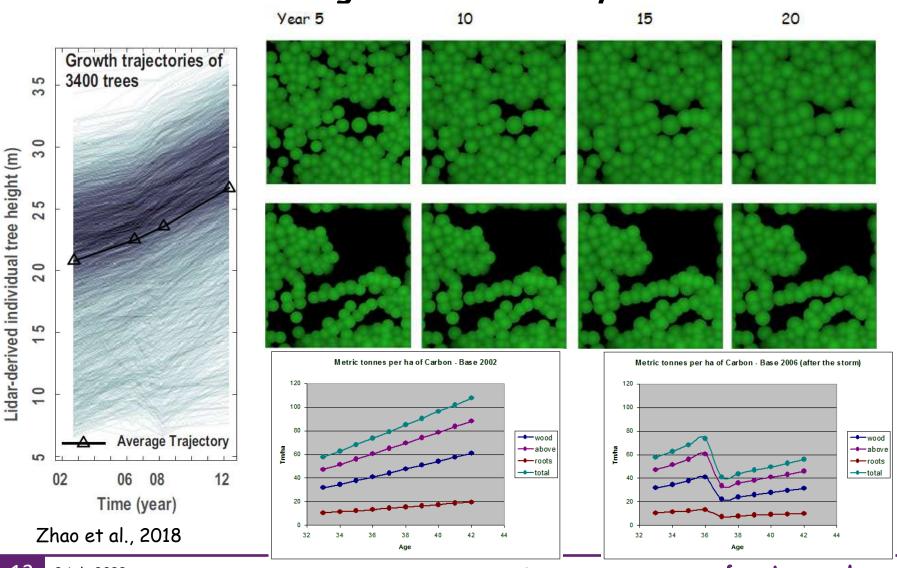
50.75

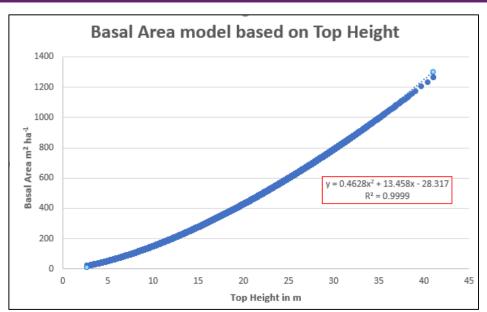

apities de Marries Deuger (C. Po.) () Magnitual)

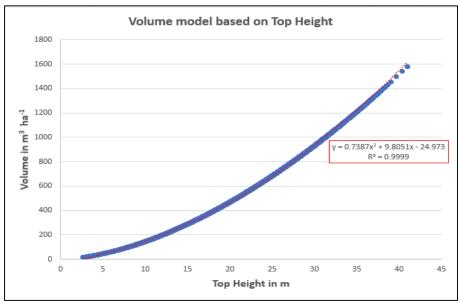
-1.80 -1.75 -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40

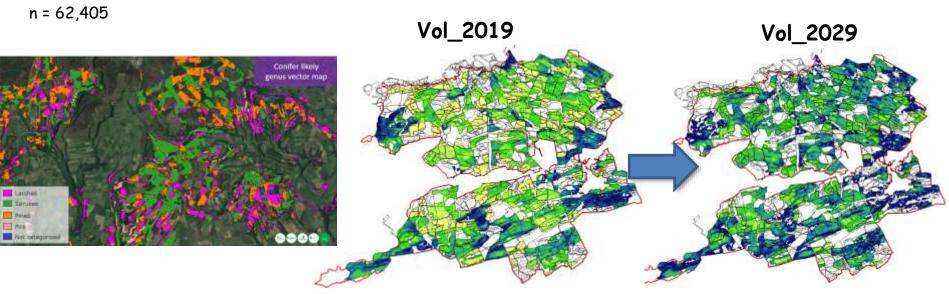
tachis by committeeping (In Fig. Haz sing Ci

-1.80 -1.75 -1.70 -1.65 -1.60 -1.55 -1.50 -1.45 -1.40


50.75

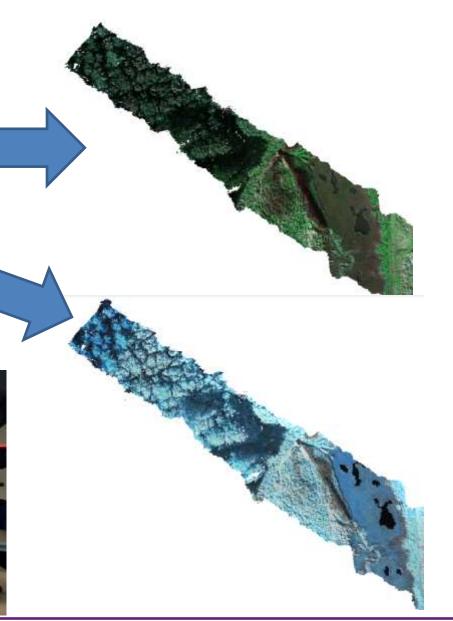

Source: Gerrard English



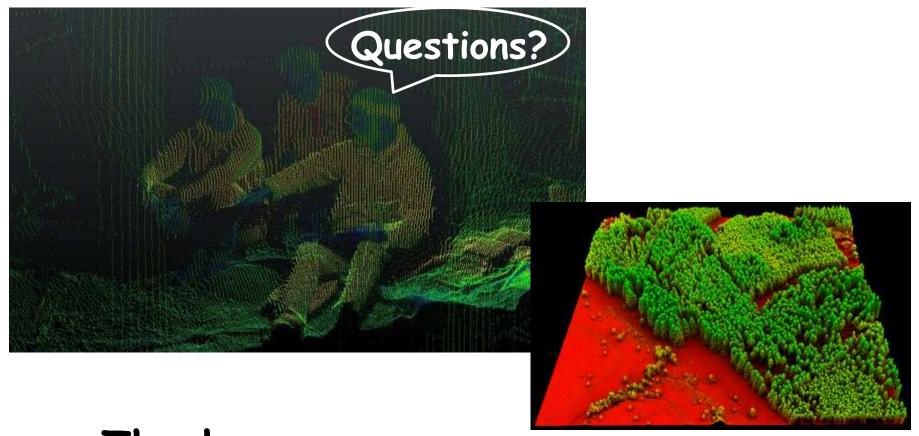

Monitoring forest stand dynamics

The blueprints for F-Lux UAV-LIDAR (BVLOS, VTOL)





- Wing Span: 4,000 mm
- Overall length: 3,000mm
- Maximum take-off weight: -35Kg
- Cruse air speed: -25 m/s (56 mph, 90 kph)
- Cruse fuel consumption: 0.46 Litres /ph
- Fuel capacity: 8 litres
- Fuel configurable to: Jet-A / TS-1 / JP-8 / JP-5, non-ethanol
 93-100 octane gasoline: (R+M)/2
- Max flight time @ cruse: 17 hours
- Min flight time: 5 hours


Co-aligned Hyperspectral and LiDAR Headwall systems

Thank you

Juan.Suarez@forestresearch.gov.uk