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Executive summary

BACKGROUND AND OBJECTIVE

In 2019, following a request from the Codex Committee on Food Hygiene (CCFH), 
the Codex Alimentarius Commission (CAC) approved new work at its 42nd 
session on the development of guidelines for the control of Shiga toxin-producing 
Escherichia coli (STEC) in leafy vegetables and in sprouts.1 

To support the work of CCFH and to update and expand the information 
available in MRA14,2 JEMRA convened a series of expert meetings on preventing 
and controlling microbiological hazards in fresh fruits and vegetables.

In September 2021, the JEMRA meeting on the Prevention and Control of 
Microbiological Hazards in Fresh Fruits and Vegetables reviewed relevant 
measures for control of microbiological hazards from primary production to 
point of sale in fresh, ready-to-eat, and minimally processed fruits and vegetables, 
including leafy vegetables, and identified problem areas and subsequent measures 
to address and avoid potential microbiological contamination.3

In November 2021, a subsequent meeting was held with a subset of the JEMRA 
expert committee to collect, review and discuss relevant measures for the control 
of microbiological hazards in sprouts, from the production of seeds for sprouting 
to the production of sprouts and point of sale.4

1　 FAO & WHO. 2018. Codex Alimentarius. Report of the fiftieth session of the Codex 
Committee on Food Hygiene. Rome. www.fao.org/fao-who-codexalimentarius/sh-proxy/
en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252F
Meetings%252FCX-712-50%252FReport%252FREP19_FHe.pdf 

2　 FAO & WHO. 2008. Microbiological hazards in fresh leafy vegetables and herbs. 
Microbiological Risk Assessment Series No. 14. Rome. www.fao.org/publications/card/
en/c/819bd604-e5f9-5ee5-8bd4-3a9b14d39bed/

3　 FAO & WHO. 2021a. Summary report of the Joint FAO/WHO Expert Meeting on 
Microbiological Risk Assessment on the Prevention and Control of Microbiological Hazards in 
Fresh Fruits and Vegetables (Part 1: Administrative procedures, meeting scope/objectives, data 
collection; Part 2 General principle and fresh fruits and vegetables). Rome. www.fao.org/3/
cb7664en/cb7664en.pdf 

4　 FAO & WHO. 2022. Summary report of the Joint FAO/WHO Expert Meeting on 
Microbiological Risk Assessment on the Prevention and Control of Microbiological Hazards in 
Fresh Fruits and Vegetables (Part 3: Sprouts). Rome. www.fao.org/3/cb8201en/cb8201en.pdf
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The purpose of this final meeting was to reconvene the expert committee to 
collect, review and discuss relevant commodity-specific interventions in all other 
fresh fruits and vegetables from primary production to point of sale.

SCOPE 

The objective of the meetings was to evaluate commodity-specific interventions 
used at all stages of fresh fruit and vegetable production from primary production 
to post-harvest activities, transportation, point of sale, and consumer use. 
Emphasis was placed on the identification and evaluation of interventions 
used throughout the world to reduce microbiological hazards of fresh fruits 
and vegetables that contribute to the risk of foodborne illnesses, taking into 
consideration their effectiveness, practicality and suitability.

The expert committee addressed four subdivided commodity groups: 1) leafy 
vegetables and herbs, 2) berries and tropical fruits, 3) melons and tree fruits, and 4) 
seeded and root vegetables. These commodities were grouped based on similarity 
in physical characteristics, intervention measures, and the potential volume of 
published literature to be reviewed. Interventions were identified for specific 
commodities against various target pathogens (including bacteria, parasites and 
viruses) and indicator organisms in the following categories: 

• Intervention stage (primary production [open field or protected facilities], 
post-harvest handling, minimal processing, distribution, retail, and consumer 
handling)

• Intervention type (physical, chemical or biological)

 > Physical interventions included: ultrasound, UV, high-pressure 
processing, irradiation, pulsed light, plasma and others.

 > Chemical interventions included: natural antimicrobials, chlorine-based 
chemicals, chlorine alternatives (e.g. organic acids, peracetic acid), 
modified atmosphere packaging (MAP), gas treatments (e.g. ozone, 
chlorine dioxide) and others.

 > Biological interventions or biocontrols included: bacteriophages, 
protective cultures and others. 

The scientific literature assessed included studies published between 2008 
and early 2022 that were aimed at interventions meant to reduce levels of 
microbial contamination of fresh fruits and vegetables. The available studies 
describing physical, biological, chemical, and multiple hurdle technologies 
were identified using scoping review methodology. Relevant search terms, 
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identified by the JEMRA expert committee, were used to develop a search 
algorithm consisting of fresh produce (68 terms), pathogen (49 terms), and 
intervention (143 terms) constructs. A full search in PubMed and limited searches 
of Web of Science and CABI abstracts databases was conducted. The identified 
records were deduplicated and imported into Covidence software for further 
screening and data extraction. After a review of 3 931 references at the title and 
abstract level, and 1 097 references at the full-text level, a database of 488 relevant 
studies resulted. The database included studies on the effectiveness of physical 
and biological interventions in the fresh produce value chain and contained 
information about intervention, studied pathogens, commodity groups, and types 
of produce. Given the large number of studies on chemical interventions in the 
scientific literature, recently published comprehensive reviews were used in the 
assessments.

For each intervention, the experts reviewed available published literature and 
data, and assessed if the intervention showed efficacy for different commodities. If 
an intervention showed efficacy, experts identified how much efficacy was shown 
and considered factors such as consistency in levels of reduction, prevention of 
growth if the pathogen is likely to grow on the target commodity, likelihood of 
being used alone or in combination with other interventions, and practical merit. 
Several criteria were considered in the assessment of the interventions, including 
the scale at which research was performed (e.g. laboratory, pilot plant, commercial 
scale), rigour of both experimental design and data analysis, and practical merit 
of the proposed approach or technology.

Factors considered in the assessment of practical merit included potential cost, 
availability of resources, environmental impact, difficulties in performing the task, 
training needs, regulatory hurdles, consumer acceptance, and recognition that 
each of the factors are likely to vary across geographies. Applicability to similar 
commodities or pathogens, when no data was available, was also assessed. 

CONCLUSIONS WERE DERIVED FROM AN ASSESSMENT 
OF PUBLISHED RESEARCH ON COMMODITY-SPECIFIC 
INTERVENTIONS USED AT ALL STAGES OF FRESH FRUIT 
AND VEGETABLE PRODUCTION.

All fruits and vegetables 

• The application of preventive measures such as good agricultural practices 
(GAPs) and good hygiene practices (GHPs) during primary production 
remains the most effective means of reducing the risk of contamination with 
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human pathogens in all fruit and vegetable commodities. Post-harvest activities 
require GHPs, good manufacturing practices (GMPs), and a hazard analysis 
and critical control point (HACCP)-based system to prevent microbiological 
contamination, reduce cross-contamination, or avoid pathogen growth 
during different post-harvest handling steps. These preventive measures 
include effective training, personal hygiene of those that handle fresh 
produce, and sanitary facilities and food safety resources that must be 
provided so all workers can reduce risks.5

• Irrigation water of poor or variable microbiological quality is a major risk 
factor during fruit and vegetable production. Treatment may be advisable to 
ensure the consistent removal of microbiological hazards if there is a need 
for this water to contact the harvestable part of the crop and there are known 
risks. Where a sufficient supply of water treated by conventional methods (e.g. 
nutrient removal, chlorination) is unavailable, alternative means to ensure 
consistent water quality may be needed. For example, treatment using UV or 
filtration-based systems can reduce populations of bacterial pathogens by up 
to 6 log in irrigation water, thereby reducing the risk of contaminating the 
growing plants. While such treatments are effective, practical considerations 
have hampered their application, notably access to electricity in field settings, 
controlling flow rates, or the cost of the technologies.

• The microbiological quality of process water is of critical importance due to 
the risk associated with potential cross-contamination during post-harvest 
handling and processing operations. Extensive research on biocides to 
inactivate microorganisms at each step has been conducted. Where there is a 
reliance on biocides, validation of treatments for process water under pilot or 
commercial conditions is desirable but rare. 

• Several physical methods (e.g. UV, plasma, pulsed light, ultrasound) have 
been evaluated alone or in combination with other processes or antimicrobial 
compounds to assess their potential for the disinfection of process water. 
Some of this research has led to the identification of promising treatments 
that not only inactivate spoilage microorganisms and/or human pathogens in 
process water but also on the surface of produce. However, most of this work 
has remained experimental, and there is scant evidence of industry uptake. 

5　 FAO & WHO. 2021a. Summary report of the Joint FAO/WHO Expert Meeting on Microbiological 
Risk Assessment on the Prevention and Control of Microbiological Hazards in Fresh Fruits and 
Vegetables (Part 1: Administrative procedures, meeting scope/objectives, data collection; Part 2 
General principle and fresh fruits and vegetables). Rome. www.fao.org/3/cb7664en/cb7664en.
pdf
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• Lack of industry uptake of interventions indicates a need for future research 
to more carefully address the practicality of new technologies, and to 
examine their performance under conditions that either closely simulate 
in-field production, on-farm packing and commercial processing, or by 
experimentation in commercial-processing facilities. Research should include 
more thorough examination of treatment effects on shelf-life and sensory 
quality, which are often overlooked in laboratory-based research.

• Of note, public health data indicates that outbreaks of illness caused by 
viral or parasitic pathogens are common, but that research on interventions 
disproportionately addresses control of bacterial pathogens. Survival of viral 
and parasitic pathogens is typically very different from bacterial pathogens. 
Additional research focused on non-bacterial pathogens that are implicated 
in outbreaks would be valuable for assessing the effectiveness of interventions.

Leafy vegetables and herbs 

• None of the post-harvest interventions intended for the treatment of whole 
produce immediately after harvest (e.g. washes, post-processing chemical 
and physical treatments) reliably deliver significant reductions in human 
pathogens.

• Irradiation (i.e. gamma, electron beam, X-ray) is the most effective post-harvest 
treatment against human pathogens on fresh and fresh-cut leafy vegetables. 
Technology is likely to have similar results in other commodities, but doses 
will need to be developed for commodity and target pathogens (bacteria, 
virus, parasite). Reductions in excess of 5 log or complete eradication have been 
reported with a range of commodities. There are few technological limitations 
to the use of irradiation, but the cost and adverse consumer response continue to 
hinder commercial applications.

• Experimental evidence suggests that electrolyzed water in combination with 
other physical treatments, including ultrasound or exposure to UV, can reduce 
bacterial pathogens by 3 to 5 log on the surface of leafy vegetables. Potential 
impediments to commercial applications include engineering complexity 
and cost. Moreover, little data is available regarding efficacy against viruses or 
parasites.

• Application of bacteriophage or phage lysins have been reported to reduce 
bacterial pathogens by > 3 log on fresh and fresh-cut leafy vegetables. However, 
the approach is relatively new, and data are presently limited. Potential 
constraints on commercial application include narrow strain specificity, 
absence of effects against viruses and parasites, and cost. 
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• Research on alternative biocides for use in fresh and fresh-cut processing 
is scarce. Only one reference on novel biocides describing a nanoparticle 
preparation of silica particles was reviewed. Use of the novel biocide resulted 
in > 5 log reductions of some human pathogens on cut lettuce leaves. 
Trisodium phosphate was also very effective against some bacteria and 
viruses. Reasons for the scarcity of research on alternative biocides for use 
in fresh and fresh-cut processing are unclear; perhaps barriers to regulatory 
approval contribute to this situation. 

Berries and tropical fruits 

• Specifically, limited papers are available on the mitigation of protozoa on 
berries, while several papers exist on virus mitigation. Information is mostly 
on strawberries, blueberries and raspberries, but it is uncertain how these 
data may translate to other berries (especially on a global scale). Publications 
on mitigation efforts for tropical fruits are less common than for berries. 

• Water-assisted light treatments (e.g. UV, pulsed light) resulted in > 4 to 5 
log reductions in some situations; however, the efficacy depends on how the 
berries are inoculated (e.g. spot vs dip, calyx vs skin). Some of the studies 
assessed the disinfection effect of process water to avoid cross-contamination. 
Ultrasound treatment in combination with a biocide showed some efficacy, 
2 to 3 log reductions in some situations, although some adverse effects on 
product quality were reported, such as reduced firmness in strawberries. 

• Gaseous treatments (e.g. controlled-release pads, fumigation, fogging with 
chlorine dioxide or sulfur dioxide) had variable effects depending on the dose 
and pathogen assessed. 

Melons and tree fruits 

• The most important strategy for improving the safety of melons and tree fruits 
involves hygienic handling and hygiene control including environmental 
monitoring during the sorting and packing of these products. Keeping the 
packing environment and packaging equipment free from contamination is 
essential to reducing risks. 

• Water management is a key strategy to maintain the microbiological quality 
of process water and prevent cross-contamination through the use of biocides 
or ultraviolet C (UV-C) light treatments of the water.

• There are many decontamination treatments currently available or in the 
research phase that aim to reduce the levels of pathogenic microorganisms 
on the surface of melons and tree fruits. However, the degree of reduction 
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that can be expected from these technologies when applied by the industry is 
relatively low and will be affected by the characteristics of the rind or surface 
of the fruit as well as by many other factors. The degree of contamination 
reduction achieved is typically low. The treatment most commonly found in 
the literature are UV-C light (e.g. 254 nm, 11 kJ/m2) and heat (e.g. 65 to 80 ̊ C applied 
for times from 45 s to 5 min), which generally achieve 1 to 2 log reductions. 

• Specific for pome fruit, the use of gaseous biocides in the atmosphere during 
prolonged refrigerated storage (e.g. controlled atmosphere of low oxygen and 
ultra-low oxygen) of selected fruits (i.e. pome) was a critical and effective 
intervention.

Seeded and root vegetables

• As previously stated for other commodities, irradiation is the most effective 
post-harvest treatment against human pathogens on seeded and root 
vegetables. Irradiation doses were sufficient for 3 to 5 log inactivation of 
Salmonella on green onions, baby carrots and grape tomatoes. Treatment was 
not detrimental to quality and was able to slightly extend shelf-life. As previously 
noted, limitations exist with the availability of technology and consumer 
acceptance.

• Gas phase chlorine dioxide (ClO2) treatment has shown efficacy ranging from 2 to 5 
log reduction on vegetables contaminated with human pathogens. In-package 
aerosolized ClO2 (400 ppm) reduced populations of human pathogens in the 
stem scar area of tomatoes and lower populations of human pathogens on 
washed carrots by 2 log units. 

• Ultraviolet C shows promise for bacterial surface decontamination of vegetables 
(approximately 2 log reduction compared to controls) with evidence for 
inactivation on multiple crops (e.g. tomatoes, cucumber, jalapeno pepper). 
Crops with greater shadowing or porosity will have less efficacy. Integrated 
treatment using a low dose of UV-C light with biocides (e.g. organic acids [1 
percent], hydrogen peroxide [3 percent], and a novel antimicrobial preparation 
containing hydrogen peroxide, ethylenediaminetetraacetic acid (EDTA) and 
nisin) provided a greater than 4 log reduction in Salmonella populations on 
tomatoes.

• Delivery of biocides can be improved by physical means. Incorporation of 
vacuum impregnation into a washing process (with 2 percent malic acid) 
reduced levels of human pathogens on paprika, peppers and carrots. The 
extended processing time and necessity to make this a batch process will be 
drawbacks to commercial applications.
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Introduction

1.1       BACKGROUND

Fresh fruits and vegetables are an important part of a healthy diet and are 
protective against many chronic health conditions. Yet, fresh fruits and 
vegetables are increasingly being implicated in food safety incidents involving 
microbiological hazards around the globe. Fresh produce contaminated with 
foodborne pathogens (bacteria, viruses, protozoa, helminths, etc.) have resulted 
in numerous outbreaks of foodborne illness and trade disruptions.

The Codex Alimentarius Commission (CAC) initially developed the “Code of 
Hygienic Practice for Fresh Fruits and Vegetables” in 2003 then later revised it in 
2010 following a Joint FAO/WHO Meeting on Microbiological Risk Assessment 
(JEMRA), held in 2008, to address microbiological hazards associated with leafy 
vegetables and herbs (MRA14). In addition, several commodity specific annexes 
were added to the code of practice in 2012, 2013 and 2017 (CXC 53-2003).

Subsequently, in 2018, FAO and WHO published the report “Shiga toxin-
producing Escherichia coli (STEC) and food: attribution, characterization and 
monitoring” (MRA31) wherein fresh fruits and vegetables were identified as 
important sources of STEC infection. In 2019, following a request from the 
Codex Committee on Food Hygiene (CCFH), the CAC approved new work at its 
42nd session on the development of guidelines for the control of STEC in leafy 
greens and in sprouts. More recently, in October 2020, a Joint FAO/WHO Expert 
Meeting on Microbiological Risk Assessment (JEMRA) of Listeria monocytogenes 
in ready-to-eat (RTE) foods noted increased reports of listeriosis linked to fresh 
and minimally processed fruits and vegetables.

1
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To meet the request of the CCFH and to update and expand the information 
available in the previous report “Microbiological Hazards in Fresh Leafy 
Vegetables and Herbs” (MRA14), FAO and WHO held a series of expert meetings 
on preventing and controlling microbiological hazards in fresh fruits and 
vegetables. The goal of these meetings was to gather recent data, evidence and 
scientific opinions on the topic.

1.2       OBJECTIVES

The purpose of the JEMRA meeting was to collect, review and discuss measures 
for the control of microbiological hazards during primary production, harvest, 
post-harvest handling and processing of fresh fruits and vegetables. Emphasis 
was placed on the identification and evaluation of preventive measures to 
reduce foodborne illnesses associated with fruits and vegetables, taking into 
consideration their effectiveness and practicalities.

The objectives of the meeting included the following:

• Identify and characterize microbiological hazards associated with fruits and 
vegetables, including the main pathogens of concerns, their potential sources 
and routes of contamination. 

• Review mitigation and intervention measures being used at different stages 
and assess their effectiveness at reducing microbiological hazards.

• Review publicly available literature, guidelines from competent authorities 
and industry associations (e.g. compliance guidelines, code of practices, etc.) 
to assess the current state of the knowledge in controlling microbiological 
hazards in leafy vegetables.

• Respond to CCFH questions (Annex 1).



3

Scope and definitions

2.1       SCOPE

Fresh, ready-to-eat or minimally processed fruits and vegetables are a leading 
cause of foodborne infections associated with the consumption of fresh produce. 
This report describes existing interventions or current research regarding 
interventions meant to reduce the risk of contamination with foodborne human 
pathogens during the preharvest (primary production) and post-harvest stages in 
the production of fruits and vegetables. 

This report covers risk reduction measures specific to the primary production, 
harvest, post-harvest handling and processing of fruit and vegetables.

2.2       DEFINITIONS

Fresh (fruits and vegetables): These are fruits and vegetables that are not 
processed in a manner that changes their physical properties. Cooked, canned, 
juiced, frozen, candied, dried, pickled, fermented or otherwise preserved foods 
derived from fruits and vegetables were excluded from this definition and this 
report.

Ready-to-eat (fruits and vegetables, including minimally processed): These 
are fruits and vegetables intended for direct human consumption without any 
additional steps or action taken to reduce or eliminate microbial contamination 
(modified from FAO and WHO, 2017).

Minimally processed (fruits and vegetables): These are fruits and vegetables 

2
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that have undergone processes that do not affect their fresh-like quality such as 
washing, trimming and cutting (modified from FAO, 2020). Fruits and vegetables 
that are peeled, cut into pieces, chopped, frozen or dried, with the exception of leafy 
green vegetables, are not included in this report.

STEC (Shiga  toxigenic E. coli): These are strains of the bacterium Escherichia 
coli that produce Shiga toxin, a potent cytotoxin in humans.

4
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Leafy vegetables and herbs

3.1       OVERVIEW OF LEAFY VEGETABLES AND HERBS

Highly diverse production systems (open field, closed, conventional, organic, 
peri-urban, urban, and less-defined systems) are used to grow a wide range of 
leafy vegetables worldwide in geographic regions with variable environments, 
biodiversity, and climate subject to extreme events and changing patterns due 
to the climate crisis. Moreover, crops derived from these systems are delivered 
to consumers through varied market channels adapted to a range of cultural 
practices, consumption patterns, regulatory frameworks and transportation 
systems. Consequently, there is no prototypical production and distribution 
scheme for leafy vegetables, and some microbiological hazards are undoubtedly 
unique to commodities in specific supply chains. 

3.2       MICROBIOLOGICAL HAZARDS IN LEAFY 
VEGETABLES

The presence of robust food safety surveillance systems in high-income countries 
(HICs) enables the monitoring of microbiological hazards in foodstuffs, effective 
trace back and epidemiological studies required for source attribution and the 
identification of foodborne illness outbreaks caused by such hazards. Analysis 
of data collected in HICs worldwide has shown that leafy vegetables are a 
leading cause of foodborne infections caused by bacterial, viral or parasitic 
microorganisms in several jurisdictions. In contrast, the lack of such surveillance 
systems in low- and middle-income countries (LMICs) means that the prevalence 

3
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of microbiological hazards in the food supply is not well documented and that 
the sources of foodborne outbreaks are often not formally identified. However, 
alternative data sources (for example, records maintained by local public health 
authorities, medical practitioners, clinicians or hospitals, research reports, etc.) 
support the notion that leafy vegetables also contribute significantly to the burden 
of foodborne illness in LMICs. 

A wide range of bacterial, viral and parasitic human pathogens may cause 
outbreaks of foodborne illness transmitted by fresh produce. Analysis of North 
American and European data collected since 2000 showed that Cryptosporidium 
spp. (20.5 percent) in Europe and Salmonella enterica (52.2 percent) in North 
America caused outbreaks at the highest frequency, and that norovirus (54.3 
percent) and S. enterica (61.3 percent) were associated with the highest number 
of cases in Europe and North America, respectively (Aiyedun et al., 2021). All 
of these pathogens have also been reported as the cause of outbreaks associated 
with leafy vegetables, although at variable frequencies. For example, the data in 
the United States of America for the period 1973–2012 showed that norovirus 
was responsible for 55 percent of leafy vegetables outbreaks with confirmed 
etiology, and S. enterica for 11 percent (Herman, Hall and Gould, 2015). 
Moreover, STEC from both O157 and non-O157 serogroups, which caused 
comparatively few outbreaks linked to other fresh produce commodities, were 
responsible for 18 percent of outbreaks in the United States of America linked to 
leafy vegetables. Leafy vegetables are currently considered to be a major source 
of STEC infections in the United States of America (Marshall et al., 2020). Other 
types of pathogenic E. coli , Listeria monocytogenes, Shigella spp., Yersinia enterocolitica 
and Y. pseudotuberculosis, Campylobacter spp., Legionella spp., Staphylococcus 
aureus, Leptospira spp., Klebsiella pneumoniae and K. aerogenes, Cronobacter spp., 
Vibrio parahaemolyticus, V. cholera and V. vulnificus, Aeromonas hydrophila and 
A. sobria, and Enterobacter cloacae have also been reported to cause sporadic 
outbreaks linked to leafy vegetables.

While norovirus is clearly a leading cause of viral foodborne illness transmitted by 
leafy vegetables, their role in the transmission of other foodborne viral pathogens 
is poorly understood. Several viruses have been detected in commercial products, 
including hepatitis A, nipah virus, rotavirus, enterovirus, adenovirus, astrovirus, 
aichivirus, and sapovirus (Shin et al., 2019; Cuevas-Ferrando et al., 2021). 
Similarly, epidemiological evidence has confirmed the role of leafy vegetables in 
the transmission of infections caused by Cryptosporidium spp. while comparatively 
little is known about their role in the transmission of other parasitic species such 
as Cyclospora cayatenensis, Giardia lamblia and G. duodenalis, Toxoplasma gondii, 
Angiostrongylus cantonensis and A. costarrisensis, Echinococcus multilocularis, 
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Ascaris lumbrecoides, Trypanosoma cruvy, Ancylostoma duodenale, Entamoeba 
spp., Balantidium coli, Cystoisospora belli, Blastocystis spp. and Enterocytozoon 
bieneusi.

3.3       MITIGATION AND INTERVENTION MEASURES 
EVALUATED WITH LEAFY VEGETABLES

Contamination with bacterial, viral or parasitic microbiological hazards and 
the proliferation of bacterial species capable of growth outside animal hosts 
may occur during the cultivation, harvest, post-harvest handling, processing, 
storage, distribution or consumer handling of leafy vegetables. Consequently, 
control measures that prevent contamination, inactivate microbiological hazards 
or restrict the growth of bacterial pathogens before, during or after harvest are 
needed to reduce risks to consumers. However, several constraints affect the 
selection of measures intended to ensure the safety of leafy vegetables. Notably, 
some of the more widely grown and consumed commodities (e.g. lettuce) are 
primarily eaten raw and have limited shelf-life.

3.3.1 Preharvest applications

Soil and irrigation water are known to be primary sources of hazardous 
microbiological contaminants in the production environment. Treatment of 
soil amendments such as animal fertilizers by physical or biological means is 
known to inactivate a wide range of potential foodborne pathogens that could 
be transferred to growing crops. Composting, a widely practiced treatment 
for animal fertilizers, has been shown to reduce the transfer of E. coli from 
amended soil to growing lettuce plants (Chukwu et al., 2022). Treatment of soil 
amendments is mandated or recommended for leafy vegetable production in 
many jurisdictions. Additional control may be achieved by the use of physical 
barriers to prevent contact between soil and edible portions of a growing plant. 
For example, plastic mulch was shown to reduce the transfer of Salmonella from 
contaminated soil to growing lettuce in laboratory scale experiments (Honjoh 
et al., 2014). The latter hints that cultivation of leafy vegetables in plastic mulch 
beds, a common agronomic strategy in some production systems, may contribute 
to risk reduction. 

Interventions aimed at the control of microbiological hazards in soil are generally 
applied once, at the start of a production cycle. In contrast, the control of 
microbiological hazards in irrigation water must be exercised over a complete 
production cycle, during which large volumes of water may be applied to the 
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crop. In the absence of a consistent, reliable supply of irrigation water, treatment 
to inactivate potential hazards is desirable. Evidently, practical irrigation water 
treatments should be scalable to accommodate small to large production systems. 
Experimental irrigation water treatment by UV or with filtration-based systems 
employing zero-valent iron sand has been shown to reduce populations of 
bacterial pathogens by up to 6 log in irrigation water, and to significantly reduce 
the risk of transfer to growing leafy vegetable plants (Beauvais et al., 2021; Marik   
et al., 2019; Ingram et al., 2012). Several practical considerations may hamper 
application of these technologies however, including access to power in more 
remote field settings, controlling flow rates, and the cost of the technologies. 

Some attempts have been made to develop treatments that inactivate microbiological 
hazards on growing plants using chemical or biological agents. Application of the 
antimicrobial compounds chitosan and tea tree oil acid had little effect against 
E. coli O157:H7 on growing lettuce (Goñi, 2014). However, an acetic acid-based 
spray treatment applied 1 day prior to harvest was shown to affect the prevalence 
of E. coli O157:H7 or Salmonella on leaf lettuce, spinach, or cabbage, although the 
effect was variable and depended on the type of leafy green (Erickson et al., 2019). 
Treatment of spinach plants with Bacillus spp. reduced Salmonella by 1 log (Zhao, 
2021), and lactic acid bacteria applied electrostatically within the first 4 weeks of 
the growing cycle were shown to reduce E. coli O157:H7 by nearly 3 log (Laury-
Shaw et al., 2019). 

3.3.2 Post-harvest applications

The availability of treatments for the disinfection of leafy vegetable plants 
immediately after harvest would find value both for food safety enhancement 
in commodities distributed in an unprocessed format, and for the control of 
microbiological hazards in raw materials destined for minimal processing. 
Washing in ozonated water has been examined for the control of Salmonella on 
green leaf lettuce heads. While Salmonella inactivation was observed in process 
water, the treatment had no effect on the prevalence of the pathogen on the 
lettuce tissues (Xu and Wu, 2014). An attempt was made to develop an in-package 
cold plasma treatment for the control of E. coli O157:H7 on bulk romaine lettuce 
inside a commercial plastic clamshell container. Using this approach, reduction 
in E. coli O157:H7 was limited to 1.1 log (Min et al., 2017). Hence, it appears that 
there has been little progress in the development of treatments that can reliably 
disinfect whole leafy vegetable plants.

Several approaches are under consideration for the control of microbiological 
hazards in leafy vegetables during minimal processing. Some rely on the 
application of a single physical process or biocide for the inactivation of 
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microbiological hazards, while others combine two or more to enhance the 
efficacy of the treatments. The following provides a summary of progress in the 
development of approaches examined to date.

3.3.2.1     Natural antimicrobials applied as dips, sprays, coatings, and 
packaging films 

Numerous natural antimicrobial compounds (NACs) are under consideration for 
the development of interventions against foodborne pathogens during or after 
minimal processing of fruits and vegetables. Research is primarily focused on 
the antimicrobial activity of plant-based NACs, including a wide range of crude 
extracts, essential oils obtained by distillation, or highly purified compounds 
recovered from various plants or plant parts. Given the intense sensory character 
and potential phytotoxicity of some plant extracts, effects on sensory, visual and 
textural quality are also crucial considerations in the assessment of potential 
interventions applicable to minimally processed leafy vegetables. Applications 
considered to date have primarily consisted of direct immersion of the commodity 
in disinfecting “dips” applied during or after washing, application in the form 
of sprays or coatings after washing, or incorporation into packaging for release 
onto the product during storage and distribution. The scientific literature in this 
research area is extensive. A few examples are presented in Table 1 to illustrate 
the range of potential applications and commodities that have been investigated 
to date. Overall, the findings from these investigations show that NACs can 
inactivate enteric bacterial foodborne pathogens at various stages of processing 
and on a variety of leafy vegetables. However, the reported antimicrobial activity 
of some NACs is muted, and there is variability in efficacy reported in different 
studies or on diverse commodities. In addition, there is a dearth of data on 
antiviral or antiparasitic effects, and a lack of solubility has necessitated the 
development of means to improve the functionality of many NACs of interest 
such as essential oils, by emulsification for example. While effects on product 
quality are generally assessed and often reported to be slight to non-existent, it 
must be stressed that such conclusions are derived from laboratory-scale studies. 
To the best of the experts’ knowledge, no plant-based NACs are currently being 
used in the commercial production of minimally processed leafy vegetables. 
Consequently, there is a lack of realistic and practical data, knowledge and 
experience about their impact on the quality of products delivered through 
commercial processes and distribution channels.

Table 1.  Examples of experimental outcomes from research on the inactivation of 
foodborne pathogens by numerous natural antimicrobial compounds (NACs) 
from plants in minimally processed leafy vegetables
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Natural 
antimicrobial

Target product and 
treatment

Experimental outcome References

Oregano oil 
nanoemulsion

Fresh-cut lettuce; dipped 
in 0.05% nanoemulsion 
for 1 min

3.44 log reductions in L. 
monocytogenes, 2.31 log in 
S. Typhimurium, and 3.05 
log in E. coli O157:H7

O'Beirne et 
al., 2015

Oregano oil Fresh-cut lettuce; dipped 
in 25, 40 and 75 ppm for 
5, 10, 15 and 20 min 

Maximum 1.92 
log reduction in S. 
Typhimurium

Gündüz, 
Gönül and 
Karapınar, 
2010a

Oregano, clove, 
zataria oil 
emulsions

Baby leaf lettuce; applied 
by spray

3.5 and 0.5 log reductions 
in E. coli O157:H7 after 
5 days at 7 °C after 
treatment with zataria 
and oregano, respectively; 
clove oil was ineffective.

Azizkhani et 
al., 2013

Cinnamon leaf oil Spinach, romaine, 
iceberg lettuce; dipped in 
0.1, 0.3, and 0.5% v/v for 
up to 2 min

Concentration, time and 
commodity dependent 
effects against S. Newport 
during subsequent storage 
at 8 °C

Todd et al., 
2013

Cinnamon leaf oil 
emulsion

Kale; applied in a wash Immediate 1.83 and 1.54 
log reductions against L. 
monocytogenes and E. coli  
O157:H7 

Kang et al., 
2019

Basil and mint 
essential oils 

Lettuce and purslane; 
dipped in 0.01 ml/L, 
0.032 ml/L or 0.08 ml/L 
mint for 10 or 15 min 

Slight reductions in 
E. coli O157:H7 and S. 
Typhimurium populations 
during refrigerated storage 
at 4 °C. Mint essential oil 
was most effective.

Karagözlü, 
Ergönül and 
Özcan, 2019

Clove bud 
essential oil 
emulsion 

Pak choi; sprayed 
with 0.02% clove 
bud oil + 0.002% 
benzethonium chloride

1.97 and 2.00 log 
reductions in S. 
Typhimurium and 
L. monocytogenes, 
respectively

Park, Kang 
and Song, 
2019

Nanoemulsified 
carvacrol

Baby spinach, romaine, 
iceberg lettuce; dipped in 
0.25 or 0.75% for 2 min

Treatment with 0.75% 
immediately reduced E. 
coli O157:H7 by 1.3 log on 
romaine lettuce, 2.3 log 
after 14 days at 10 °C

Chen et al., 
2021
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Natural 
antimicrobial

Target product and 
treatment

Experimental outcome References

Cinnamaldehyde 
and carvacrol 
essential oils

Basil, cilantro, dill, 
parsley, tarragon; dipped 
in cinnamaldehyde (0.3 
and 0.5%) and carvacrol 
(0.1 and 0.3%) 

Commodity- and 
concentration-dependent 
on effects on bactericidal 
activity; 5 log reduction 
in E. coli O157:H7 and 
Salmonella on cilantro and 
dill with 0.3% carvacrol, 
or 0.5% cinnamaldehyde; 
Bactericidal effects 
continued during storage 
at 4 °C

Patel, 
Keelara and 
Green, 2018

Cinnamaldehyde 
with Tween, 
Sporan® or 
acetic acid

Romaine and iceberg 
lettuce; dipped in 
800 and 1 000 ppm 
cinnamaldehyde and 
Sporan® alone or in 
combination with 200 
ppm acetic acid 

2.89 log reduction in E. 
coli O157:H7 on iceberg 
lettuce dipped in 800 ppm 
cinnamaldehyde-Tween

Yossa et al., 
2013

Honeybush 
ethanol extract

Swiss chard; washing in 6 
mg/L solution

2.31–2.67 log reductions L. 
monocytogenes and E. coli 
O157:H7

Kang and 
Song, 2021

Peanut skin 
extract/ 
benzethonium 
chloride 
emulsion

Romaine lettuce; 
washing in 5 mg/mL 

3.06 and 2.83 log 
reductions in L. 
monocytogenes and E. coli 
O157:H7 

Lee et al., 
2021

Polypropylene 
film with oregano 
essential oil or 
citral

Mixed leafy vegetable 
salad; film containing up 
to 5%

Release during storage 
inhibited the growth 
of E. coli , Salmonella 
enterica and Listeria 
monocytogenes at abusive 
temperatures

Muriel-Galet  
et al., 2012

Edible films 
containing 
carvacrol and 
cinnamaldehyde

Romaine and iceberg 
lettuce; in sealed plastic 
bags made from carvacrol 
or cinnamaldehyde 
containing films made 
from apple, carrot, and 
hibiscus 

5 log reduction in E. coli 
O157:H7, Romaine lettuce 
placed in 3% carvacrol-
containing film 

Zhu et al., 
2020
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3.3.2.2     Modified atmospheres and gas phase antimicrobials

Modified atmosphere packaging (MAP) is widely used to improve the shelf-life, 
sensory, appearance and quality of minimally processed leafy vegetables. The 
effects of various packaging films or gas mixtures used in commercial MAP 
systems on the behaviour of foodborne pathogens appears to be variable. E. coli   
O157:H7 was shown to grow in shredded cabbage stored at 10 °C in air, under 5 
percent, 10 percent and 15 percent CO2, and in MAP systems designed to generate 
oxygen-depleted atmospheres using either high- or low-oxygen transmission 
permeability films (Izumi and Inoue, 2018). Oxygen-depleted atmospheres (0.25 
percent O2 + 12 percent CO2 and 2 percent O2 + 6 percent CO2) were reported to 
stimulate the growth of L. monocytogenes on fresh-cut Iceberg lettuce (O'Beirne  
et al., 2015). In contrast, composition of the atmospheres in packages made 
with films of different permeability had no significant effect on the survival and 
growth of E. coli O157:H7, Salmonella spp. and L. monocytogenes in shredded 
lettuce stored at 5° C (Oliveira et al., 2010). Consequently, it appears unlikely that 
MAP or other systems designed to alter atmospheric gas composition in leafy 
vegetable packaging systems can be relied upon to control human pathogens. 
In contrast, exposure to antimicrobials in the gas phase has been shown to 
inactivate foodborne pathogens. At lab scale, treatment with 10 percent hydrogen 
peroxide for 10 min was shown to reduce S. Typhimurium, E. coli O157:H7 and L. 
monocytogenes populations on lettuce by 3.12, 3.15 and 2.95 log per g, respectively 
(Back, Ha and Kang, 2014). However, these results should be taken with caution 
and cannot be directly extrapolated to industry scale. The potential use of gaseous 
ozone for the disinfection of leafy vegetables also remains to be fully explored (Fan, 
2021). In all cases, applications in leafy vegetable processing would require the 
design of equipment to accommodate small to large commercial operations that 
operate at very high line speeds.

3.3.2.3     Irradiation

Irradiation by gamma ray, electron beam or X-ray is well known to inactivate 
microorganisms in foodstuffs. Consistent reductions in bacterial foodborne 
pathogens reaching 5–6 log in leafy vegetables have been reported, usually without 
negative effects on quality (Gobeil, Shankar and Lacroix, 2020; Mahmoud, 
Bachman and Linton, 2010; Moosekian, Jeong and Ryser, 2014; Niemira 2008; 
Niemira and Cooke, 2010; Rezende et al., 2014; Sanglay et al., 2011). Equipment 
adaptable to the processing of fresh produce is commercially available. Obstacles 
to the use of irradiation in food processing are not technological and have been 
dealt with elsewhere (Castell-Perez et al., 2021)
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3.3.2.4     Plasma and combinations

Partially ionized molecules generated by applying energy to gases have long 
been known to have antimicrobial activity. Electrical discharges generated by 
various means (dielectric barrier, radiofrequency, microwaves, etc.) can be used 
to generate plasma at temperatures close to ambient, allowing for the treatment 
of heat-sensitive materials. Because the active antimicrobial species are present 
in the gas phase, plasmas are also well-suited to the treatment of food contact 
surfaces. Given these properties, there is considerable interest in the use of plasma 
technology for the disinfection of fresh produce, including leafy vegetables. 
Research has shown that treatment with plasma can inactivate enteric bacteria 
on the surface of leafy vegetables, with reductions ranging from 1.6 log E. coli  
on cut lettuce immediately after treatment (Bermúdez-Aguirre and Barbosa-
Cánovas, 2013); to 3.18 and 3.77 log for Salmonella enterica and E. coli O157:H7 
on spinach, measured 14 days in storage after treatment; 2.19 log E. coli O157:H7 
on lettuce treated with plasma in combination with essential oil of clove (Cui, 
Ma and Lin, 2016); and up to 5 log Aeromonas hydrophila on lettuce (Jahid, Han 
and Ha, 2014). The treatment can also be applied inside packages. For example, 
a 1.5 log reduction in Salmonella was measured on cabbage slices in polyethylene 
terephthalate (PET) containers treated with hydrogen peroxide in combination 
with plasma generated by dielectric barrier discharge (Kim and Min, 2021). 

Although it is clear that plasma is a promising technology for the disinfection of 
fresh produce including leafy vegetables, and that considerable progress has been 
made in the development of equipment suitable for commercial-scale processing, 
there is presently little evidence of industrial uptake. A wide range of plasma 
technologies, commodities and experimental conditions have been employed in 
the assessment of plasma-based disinfection treatments, leading to considerable 
variability in experimental outcomes. Consequently, additional research and 
development are needed to support the transition to commercial applications, 
notably with respect to the standardization of treatments across commodities and 
to the cost of the treatment (Asghar et al., 2022). 

3.3.2.5     Ultrasound and combinations

Sound waves with frequencies above 20 kHz, referred to as ultrasound, have 
long been applied in the processing of liquids because they can improve mixing 
and accelerate chemical reactions. High power and intensity ultrasound alone 
can disrupt bacterial cell membranes and produce free radicals leading to 
cellular damage and death. However, such conditions can induce undesirable 
ultrastructural changes in food matrices, notably in fresh produce where the 
maintenance of cellular integrity and physiological processes are essential for 
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the extension of shelf-life. Consequently, ultrasound has primarily been applied 
in combination with other antimicrobial strategies as a means to improve their 
efficacy. For example, the biocidal effect of sodium hypochlorite solutions 
against E. coli is enhanced by the application of sonication (Duckhouse et al., 
2004). Mild sonication was shown to improve the efficacy of chlorine, acidified 
sodium chlorite, peroxyacetic acid, and acidic electrolyzed water washes by 0.7 
to 1.1 log over those measured when washing with sanitizer alone against E. coli  
O157:H7 on spinach, without affecting organoleptic quality (Zhou, Feng and Lou, 
2009). Additional work showed that reductions in E. coli O157:H7, Salmonella 
Typhimurium and L. monocytogenes on lettuce washed in malic, citric or lactic 
acids were 8.0 to 1.0 log higher when ultrasound was applied during treatment 
(Sagong et al., 2011), and inactivation of Salmonella on lettuce was improved when 
ultrasound was combined with washing in solutions containing oregano and 
thyme essential oils (Millan-Sango et al., 2016). Hence, it appears that ultrasound 
can improve the performance of a range of sanitizers applied during the washing 
of leafy vegetables. 

3.3.2.6     Ultraviolet light and combinations

Ultraviolet (UV) radiation comprises the region of the electromagnetic spectrum 
between 100–400 nm. The region is further divided into three subregions, 
including ultraviolet C (UV-C) which includes wavelengths between 100–280 
nm. Ultraviolet C has well-known microbicidal properties that are exploited 
for disinfection in many contexts, including food processing and the control 
of post-harvest diseases in fruit and vegetable storage. Early attempts to adapt 
UV-C for the disinfection of leafy vegetables showed that treatments designed to 
inactivate microorganisms often induce tissue damage affecting overall quality 
and/or shelf-life (Allende et al., 2006). More recent research has shown that lower 
intensity UV-C or higher wavelength UV treatments can be combined with other 
approaches to lessen adverse physiological effects in leafy vegetables. For example, 
a low intensity UV-C treatment combined with peracetic acid reduced Salmonella 
on shredded iceberg lettuce by 3.24 log (Lippman et al., 2020). Treatment with 
aerosolized malic acid and UV-C could reduce E. coli O157:H7, S. Typhimurium 
and L. monocytogenes by 2.89, 1.38 and 2.95 log on shredded lettuce (Lee et al., 
2021; Lee, Kim and Yoon, 2021), and a UVA treatment combined with washing in 
acetic acid reduced the same pathogens 3.50, 3.29 and 4.30 log in spinach (Jeong 
and Ha, 2019). No adverse quality effects were found with either treatment, 
although long treatment times (50 min for shredded lettuce, 90 min for spinach) 
were needed to obtain the stated reductions. 
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3.3.2.7     Pulsed light and combinations

Pulsed light consisting of continuous broad-spectrum infrared, visible and 
ultraviolet radiation applied for short periods of time (typically 100–400 
microseconds) has been shown to inactivate foodborne bacteria and viruses in 
a range of food products, including fresh produce (Salehi, 2022; Jubinville et 
al., 2022). The light source is commonly a Xenon lamp, which emits radiation 
from deep UV-C (200 nm) to near-infrared (1 100 nm) wavelengths. Pulsed 
light treatments are generally applied in chambers engineered for the purpose 
and can be used with packaged products. Recent work has shown that treatment 
of unpackaged romaine lettuce can reduce E. coli O157:H7 by 2.68 log, and by 
2.52, 2.31 and 2.18 log in packages of 0.00254, 0.00508 and 0.00762 cm thickness 
(Mukhopadhyay et al., 2021). Pulsed light has also been shown to inactivate 
Cryptosporidium parvum oocysts by 2.4, 4.3 and 2.5 log on cilantro, mesclun 
lettuce, and spinach, respectively (Craighead et al., 2021). Risks of light-induced 
alterations in the quality of target produce have led to the consideration of 
combined treatments designed to reduce the intensity or length of exposure 
during treatment. Using this approach, reductions of > 5 log E. coli O157:H7 were 
measured on spinach when a brief pulsed light treatment was combined with 
the use of a novel sanitizer consisting of hydrogen peroxide, EDTA and nisin 
(Mukhopadhyay et al., 2019). While equipment needed for pulsed light processing 
is available, there is little evidence of industry uptake for the processing of leafy 
vegetables.

3.3.2.8     Alternative biocides

Little research effort has been directed to the development of novel biocides for 
use in the minimal processing of fresh produce. One exception concerns a novel 
biocide consisting of sodium hypochlorite bound to the surfaces of modified 
silica microparticles which can generate localized high concentrations of chlorine. 
Using these particles, > 5 log reductions in E. coli O157:H7 and Listeria innocua 
populations were achieved during washing of produce, even in the presence 
of high-organic loads (Huang and Nitin, 2019). Reasons for the slow pace of 
progress in the development of new, more effective biocides are unclear. 

3.3.2.9     Biocontrol methods

Biocontrol strategies employing antimicrobials produced by microorganisms 
and bacteriophage have been investigated for the control of foodborne bacterial 
pathogens in leafy vegetable products. Various bacteriocins and peptides 
including nisin, reuterin, and novel compounds produced by lactic acid bacteria 
have been shown to either inactivate or slow the growth of the Gram-positive 



PREVENTION AND CONTROL OF MICROBIOLOGICAL HAZARDS IN FRESH FRUITS AND VEGETABLES 
PART 4: SPECIFIC COMMODITIES

bacterium L. monocytogenes in stored, packaged lettuce (Asare et al., 2018; Dong  
et al., 2021; Randazzo et al., 2009; Yi et al., 2021). In addition, these post-process 
treatments have little to no effect against Gram-negative foodborne pathogens, 
which restrict their utility to the control of a single microbiological hazard. In 
contrast, bacteriophage preparations that target Salmonella, E. coli O157:H7 and 
L. monocytogenes, the most common bacterial foodborne pathogens associated 
with leafy vegetables, are all available commercially. A commercial bacteriophage 
preparation that targets E. coli O157:H7 was shown to reduce populations by 2.5 
log on lettuce leaves, thereby reducing the risk of cross-contamination during 
processing (Ferguson et al., 2013). Using the same bacteriophage preparation, 
E. coli O157:H7 populations were significantly reduced in romaine, green leaf 
lettuce and spinach stored at 4 °C and 10 °C (Boyacioglu et al., 2013). In addition, 
a commercial bacteriophage preparation that targets Salmonella was shown to 
reduce populations by 2–3 log, and a preparation that targets L. monocytogenes 
reduced populations from 1 to 2 logs on lettuce leaves and fresh-cut curly endive, 
respectively (Perera et al., 2015; Truchado et al., 2020; Zhang et al., 2019). 
These findings suggest that bacteriophage preparations could be useful in the 
development of interventions that target one or more foodborne pathogen in 
minimally processed leafy vegetables. 

Bacteriophage used in the formulation of commercial preparations inactivate 
target bacteria through the release of lysins, phage-encoded enzymes that degrade 
the bacterial cell wall resulting in lysis and death. A recent report describes 
a novel lysin with potent bactericidal activity against several Gram-negative 
bacterial pathogens including E. coli, Salmonella, Shigella and Acinetobacter 
(Xu et al., 2021). The lysin could inactivate 99.7 percent of E. coli O157:H7 on 
the surface of lettuce leaves. While there is anecdotal evidence of industrial 
application of bacteriophage in leafy vegetable processing, there remains a lack of 
available technical data to guide applications in commercial settings.

16
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Berries and tropical fruits

4.1       OVERVIEW OF BERRIES AND TROPICAL FRUITS

Berries are a highly perishable food commodity, which is widely consumed 
without prior treatments to inactivate pathogens. Tropical fruits, like mangoes, 
may have a longer shelf-life from farm to fork but are largely consumed without 
further treatment. Examples of berries are strawberries, blueberries, raspberries, 
blackberries and gooseberries. The class known as tropical fruits includes 
avocados, mangoes and papayas among many others. 

Berries can be produced in open fields and controlled environment agriculture 
(CEA), which includes indoor agriculture (e.g. greenhouse, low tunnels and net 
houses) and vertical farming. Plants grown in CEA are usually produced using 
different types of hydroponic systems, such as drip hydroponics, deep water 
culture, aeroponic or aquaponic systems among others. The same preventive 
measures, such as GAP, GHP, and GMP (for enclosed production facilities) apply. 
In order to prevent bruising or injury, most berries are harvested manually and 
picked directly into baskets, punnets, boxes or other containers that are further 
used for distribution and retail. After harvest, the products are typically cooled 
(to rapidly remove field heat) before transport, distribution and retail. Since 
berries are prone to mechanical damage and rapid growth of moulds resulting in 
soft rots, further interventions such as washing are not commonly used. Tropical 
fruits, considered here, grow mostly above ground on trees or bushes in open 
fields and CEA. The food safety preventive measures mentioned above apply here 
as well. These fruits may be harvested mechanically or by hand. Water sprays are 
commonly applied, and in packing lines, fruits are usually transported in flumes 
containing biocides. Fruits may be cooled on the farm using hydro-, forced air- or 
room-cooling methods. 

4
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4.2       MITIGATION AND INTERVENTION MEASURES 
EVALUATED WITH BERRIES

Given the frequency of contamination events, in particular those involving non-bacterial 
contaminants, it is likely that future research will include studies to enhance 
mitigation strategies directed to protozoa and viruses. Data gaps and uncertainty 
regarding commercialization of mitigation strategies are evident in the review of 
available data. 

4.2.1 Post-harvest applications

Several interventions have been tested on berries focused on the removal and 
inactivation of bacterial pathogens, e.g. different kinds of washing procedures, 
gaseous treatments and films and coatings. A general observation for most of 
the studies is that they have been carried out in experimental or small scale 
(from a few berries to 100 g samples) and that testing in more industrial settings 
is lacking. Information is mostly on strawberries, blueberries, raspberries, and 
bacterial pathogens, while there is limited information available on mitigation of 
protozoa on berries. Several papers exist on virus mitigation. It is uncertain how 
the existing data may translate to other berries (especially on a global scale). 

4.2.1.1     Water-assisted ultraviolet and pulsed light treatments

Water-assisted light treatments (e.g. UV, pulsed light) have been tested alone 
or in combination with biocides. A combination of water-assisted pulsed light 
treatment and H2O2 resulted in 4.0 to > 5.5 log CFU/g reduction of Salmonella for 
raspberries and blueberries, respectively. No viable bacterial cells were recovered 
from process water after this treatment even in the presence of a high-organic 
load (Huang et al., 2015). 

Other authors have reported different efficacies for water-assisted pulsed light 
treatments depending on how the berries were inoculated. Blueberries spot 
inoculated on skin, followed by calyx inoculation, showed the largest reductions 
of Salmonella and E. coli O157:H7 compared to dip inoculation which resulted in 
the lowest reductions. No significant improvement of shelf-life was observed (Cao, 
Hang and Chen, 2017; Huang and Chen, 2014). 

In another study, water-assisted pulsed light decontamination was compared 
with water-assisted UV light decontamination against Salmonella in blueberries. 
Depending on inoculation method, water-assisted pulsed light and water-assisted 
UV reduced numbers of Salmonella by approximately 5 log CFU/g (4.5 to  > 
5.6 log CFU/g) on berries that were calyx- or stem-inoculated, and 2 log CFU/
g for berries that were dipinoculated. Viable Salmonella were recovered from the 
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process water after the treatments, and the authors recommended including a 
biocide to prevent cross-contamination through the process water (Huang and 
Chen, 2019). 

Testing of water-assisted UV light indicated reductions of Salmonella and E. 
coli O157:H7 in the same range as for water-assisted pulsed light with a similar 
dependency on inoculation method (Huang and Chen, 2020; Liu, Huang and 
Chen, 2015). For murine norovirus on blueberries the reduction ranged from 
1.81 to > 4.3 log PFU/sample depending on inoculation method and scale of 
experiment (Liu, Huang and Chen, 2015). The results from testing application of 
water assisted UV-light indicated that increased chemical oxygen demand (COD) 
in the water reduced the efficacy of decontamination (Huang and Chen, 2020; 
Liu, Li and Chen, 2015). 

4.2.1.2     Ultrasound and combinations 

Ultrasound has also been applied in combination with different chemical 
sanitizers. The reductions varied from approximately 3 log CFU/g for L. innocua 
on blueberries to 2 log CFU/g for Salmonella on strawberries (Zhang, Tsai and 
Tikekar, 2021; do Rosário et al., 2017). However, there were still viable bacteria 
in the process water. Some adverse effects of ultrasound treatment have been 
reported. The results from a study on L. innocua on blueberries indicated some 
influence on colour, while low frequency ultrasound significantly reduced the 
firmness. High frequency ultrasound had little impact on blueberry firmness 
(Zhang, Tsai and Tikekar, 2021). Another study reported reduced firmness of 
strawberries with treatments that included ultrasound, while reporting a variable 
reduction of aerobic mesophiles and yeast and moulds (de Sao José and Vanetti, 
2015). Other studies have reported little loss in sensory quality, with 1–2 log CFU/
g reductions of Salmonella and E. coli O157:H7 in strawberries and blueberries (do 
Rosário et al., 2017; Wang and Wu, 2022). 

4.2.1.3     Hydrocooling and temperature stabilization

After harvest, berries are cooled before storage and distribution. In a study on 
intact strawberries inoculated with Salmonella, forced-air cooling was compared 
with hydrocooling in water containing 100 or 200 ppm hypochlorous acid 
(HOCl). Hydrocooling significantly reduced the levels of Salmonella, ranging 
from almost 2 log CFU/berry when hydrocooling with water alone, to more than 
4 log CFU/berry reduction when hydrocooling with 200 ppm HOCl. Storage 
after the initial cooling led to further reductions of Salmonella (Sreedharan et al., 
2015). In another study looking at the fate of E. coli O157:H7 and Salmonella on 
strawberries and blueberries, it was observed that at a storage temperature of 2 
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°C the populations declined over 7 days under all conditions applied for both 
strawberries and blueberries. At 15.5 °C numbers of E. coli O157:H7 and Salmonella 
declined on strawberries, while on blueberries, the Salmonella populations 
initially declined but increased to a population close to the initial level after 7 days 
(Nguyen, Friedrich and Danyluk, 2014). 

4.2.1.4     Gaseous treatments and coatings

Assessment of surface treatments includes evaluation of coatings and gaseous 
treatments, of which the use of gaseous treatment with chlorine dioxide may 
have potential for large-scale production (Malka and Park, 2021). Edible coatings 
and surface treatments studied include traditional mitigation strategies like 
silver nanoparticles, sodium alginate, chitosan, and essential oils. These surface 
treatments provide variable bacterial inactivation against E. coli , E. coli O157:H7, 
Listeria monocytogenes and Salmonella. Berries were treated at the post-processing 
stage prior to storage. Bacterial enumeration across the studies was variable 
and some studies commented on improved shelf-life correlated with surface 
treatment. 

4.2.1.5     Irradiation, ultraviolet (UV), and pulsed light treatments

A few studies have investigated the use of irradiation or light treatments. 
Electron-beam inactivation of a norovirus surrogate in strawberries indicated 
less than 1 log reduction at doses up to 6 kGy with a maximum reduction of 
approximately 2 log CFU/g at 12 kGy (Sanglay et al., 2011). Blueberries inoculated 
with Toxoplasma gondii oocysts were exposed to low-dose gamma radiation 
at 4 °C. The results indicated that the viability of the oocysts was significantly 
reduced after even the lowest level of treatment (0.2 kGy). Immediately after the 
treatment, no adverse effect was observed on product quality (Lacombe et al., 
2017). Two other studies have looked at pulsed light and UV-C inactivation of  
E. coli O157:H7 and Salmonella on fresh raspberries and E. coli O157:H7 and L. 
monocytogenes on strawberries and raspberries. Variable bacterial inactivation 
was observed. Both studies indicated that surface characteristics influenced the 
efficacy of the treatments (Adhikari et al., 2015; Xu and Wu, 2016).

4.3       MITIGATION AND INTERVENTION MEASURES 
EVALUATED WITH TROPICAL FRUITS

Considerably less information is available for interventions tested on tropical 
fruits with regard to mitigation efforts, while several studies on pathogen 
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persistence on tropical fruits exist. As observed for berries, the studies carried 
out have mainly focused on bacterial pathogens such as Salmonella and L. 
monocytogenes. Although some studies have included shelf-life and sensory 
quality studies to some extent, the treatments’ effect on these important qualities 
is often overlooked.

4.3.1 Post-harvest applications

4.3.1.1     Antimicrobial dips and sprays

Different biocides have been tested on whole mangoes, papaya, and Hass avocados. A 
combined treatment using alkaline electrolyzed oxidizing water and acid electrolyzed 
oxidizing water reduced numbers of L. monocytogenes, Salmonella and E. coli 
O157: with 4–5 log CFU/cm2 on inoculated Hass avocados (Rodriguez-Garcia, 
Gonzalez-Romero and Fernandez-Escartin, 2011). Another study indicated that using 
aqueous ClO2 (10 ppm) generated with different acids, especially ClO2 generated 
with malic acid, reduced numbers of S. Typhimurium and L. monocytogenes on 
whole papaya (Dong and Li, 2021). A third study looked at the antibacterial effect 
of different roselle calyx extracts tested on 11 foodborne bacteria inoculated 
on whole mangoes. Acetonic, ethanolic and methanolic extracts of roselle calyx 
resulted in greater reductions in all the foodborne bacteria than the chemical 
sanitizers tested (sodium hypochlorite, colloidal silver and acetic acid) (Rangel-
Vargas et al., 2018).

4.3.1.2     Antimicrobial blue light and irradiation treatment

The antibacterial effect of 405 ± 5 nm light emitting diode illumination has 
been tested towards E. coli O157:H7, L. monocytogenes and Salmonella on the 
surface of fresh-cut mango and towards Salmonella on fresh-cut papaya (Kim et 
al., 2017; Kim, Bang and Yuk, 2017). In combination with chilling, the numbers 
of bacteria were reduced by approximately 1 log CFU/g after treatment of 36–48 
hrs. There was no impact on the physiochemical quality of fresh-cut mango after 
storage. X-ray treatment of whole mangoes inoculated with E. coli O157:H7, L. 
monocytogenes, Shigella flexneri and Salmonella resulted in reductions from less 
than 2 log CFU/cm2 (L. monocytogenes) to approx. 5 log CFU/cm2 (Salmonella) 
using 0.5 kGy (Kim et al., 2017; Mahmoud et al., 2015). The populations of all the 
foodborne pathogens were reduced to numbers below the detection limit using 1.5 
kGy (Mahmoud et al., 2016) 
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4.3.1.3     Antimicrobial films

The effect of nisin-incorporated cellulose films was tested on minimally processed 
mangoes inoculated with L. monocytogenes and S. aureus (Barbosa et al., 2013). 
After 4 days of storage at 5 °C, populations of L. monocytogenes were below the 
detection limit in the quantitative analyses. For S. aureus, a 6 log reduction was 
observed after 6 days of storage. Similar to previous studies, these results should 
be taken with caution and cannot be directly extrapolated to industry scale.



23

5
Melon and tree fruits

5.1       OVERVIEW OF MELONS

It is well known that contamination of melons in the field cannot be avoided 
entirely and additional barriers can be applied to reduce the prevalence and 
concentration of pathogens. Numerous intervention strategies have been 
suggested to efficiently reduce the risk of contamination at the preharvest and 
harvest stage and during post-harvest handling. When selecting an intervention, 
it is important to consider the effectiveness of controlling pathogens against 
economic, legal, and fruit-quality implications that will influence the sanitizer 
concentration and contact times applied by the industry (Bartlett et al., 2020). 

5.2       MITIGATION AND INTERVENTION MEASURES 
EVALUATED WITH MELONS

5.2.1 Preharvest applications

5.2.1.1     Antimicrobial treatments

Biocides to reduce the concentration of pathogens in melons are mostly applied 
at the post-harvest stage, but some studies have been reported at the preharvest 
and harvest stage. This is the case of the use of in-field stem scar injections of 200 
µl of 7.5 percent levulinic acid (LVA) with 0.5–1.0 percent sodium dodecyl sulfate 
(SDS) followed by a spray of 30 ml 7.5 percent LVA with 0.5 percent SDS to 
prevent L. monocytogenes and S. Poona contamination from post-harvest through 
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transport to the packhouse (Webb et al., 2015a, 2015b). The pathogens inoculated 
on field-treated cantaloupe rind exhibited a greater reduction when cantaloupes 
were treated with LVA/SDS compared to chlorine in the dump tank. However, as 
previously highlighted by Bartlett et al. (2020), the application of biocide sprays 
and injections in the field to control pathogens is unlikely to be feasible in a 
commercial setting.

5.2.2 Post-harvest applications

5.2.2.1     Prevention of cross-contamination during washing

Washing of melons has the main objective of removing dirt, dust and soil. 
Washing can be a dedicated process step or a combination to cool and transport 
the melons. If water is used in the post-harvest process to wash, cool or transport 
melons, the initial source water should meet the microbial standards of drinking 
water. However, after product contact and subsequent reuse of the process water 
(e.g. when multiple batches of melons are washed in the same tank or in a water 
recirculating system), microbiological contamination of the process water may 
occur, resulting in cross-contamination to other melons exposed to the water, 
redistributing pathogens to a much larger volume of produce. Therefore, the use 
of biocides during washing is primarily applied to maintain the microbiological 
quality of process water. The washing system should be adapted based on the 
organic load of the incoming melons (i.e. melons grown in open field or CEA, 
dust storm during production). Washing of melons with water allows the physical 
removal of soil and microorganisms. This is often done with overhead sprays in 
conjunction with brushing to enhance removal. However, brushing also removes 
a portion of the natural waxy cuticle on the product surface that acts as a barrier 
to microorganisms (Gil and Selma, 2006). During washing, any pathogens which 
may be present on the rind surface may be reduced, but they are unlikely to be 
eliminated by washing (USFDA, 2013).

Most of the available literature regarding the use of biocides during washing of 
fruit and vegetables concluded that washing with a residual concentration of a 
biocide is used to maintain the microbiological quality of the water and does 
not considerably enhance the reduction of microorganisms on the surface of 
the produce (Gil et al., 2009). On the other hand, water systems might become 
a harbourage and a reservoir for L. monocytogenes. Maintenance of storage 
tanks, tubing systems and filtration systems used in water distribution should be 
performed to avoid biofilm formation and potential L. monocytogenes presence 
(PROFEL, 2020).

While disinfection or decontamination applied to melon rinds can reduce the 
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prevalence and populations of pathogenic microorganisms, interventions that 
prevent contamination in the packing house, and the potential contamination of 
fruit due to cross-contact from the environment, appear to be just as important 
(Bartlett et al., 2020). There are many decontamination treatments currently 
available that aim to reduce the levels of pathogenic microorganisms on the 
surface of the product. However, the degree of contamination reduction that can 
be expected from these technologies when applied by the industry is relatively 
low and will be affected by the characteristics of the rind of the melons as well as 
by many other factors. 

5.2.2.2     Ultraviolet light

Available scientific evidence shows a large variability among the efficacy of 
different physical treatments to eliminate pathogens on the surface of melons. 
In lab-scale studies, UV-C was effective at reducing the microbial load on the 
melon surface (Terao et al., 2021). However, implementing the treatment at a 
commercial scale seems to be difficult because a homogenous application of the 
treatment for all surfaces of the product has technological limitations. 

5.2.2.3     Heat 

Heat treatments seem to be a promising intervention strategy to reduce contamination 
of melons. Lab-scale studies reported large microbial reductions after the use 
of thermal treatment on melons (Selma et al., 2008; Ukuku, 2006), and these 
results have been supported by some studies performed at pilot scale (Bezanson 
et al., 2018). The study published by Bezanson et al. (2018) concludes that 
steam sanitization provides an effective means for the control of pathogen and 
spoilage organisms, but proliferation of microorganisms on heated cantaloupes was 
observed during storage, which raises concern regarding the impact of post-processing 
contamination on consumer health risk. Few research studies evaluate the 
microbial reduction on the melon rinds after heat treatment. However, studies 
done in the natural microbiota or spoilage microorganisms indicated that a 
thermal water immersion of fresh melons can result in a 3 log reduction of surface 
contamination (Fouladkhah and Avens, 2010). Bartlett et al. (2020) summarized 
the relevant information previously published in two studies (Suslow and Callejas, 
2015; Ukuku et al. 2016), indicating that the use of heat treatment (65–80˚C 
applied for times from 45 s to 5 min) managed a reduction of L. monocytogenes 
and L. innocua greater than 3 log CFU on the surface of rock melons. However, 
there are few studies investigating the potential of hot water treatments alone as a 
sanitization treatment. Based on conclusions made by Bartlett et al. (2020), there 
is also an increased risk of recontamination following the treatment that is not 
well understood.
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5.2.2.4     Antimicrobial dips and sprays

Many research papers have been published evidencing the efficacy of chlorine 
(50–200 ppm) to reduce the contamination of pathogenic bacteria in the rinds 
of the melons (Araya-Rodriguez et al., 2008; Svoboda et al., 2016; Ukuku, 
Mukhopadhyay and Olanya, 2018). In a very comprehensive review of the efficacy 
of chemical treatments, Bartlett et al. (2020) concluded that several studies 
have demonstrated the effectiveness of chlorine and other biocides to reduce L. 
monocytogenes and other pathogens on the surface of whole melons. However, 
log CFU reductions of > 3 for L. monocytogenes on the surface of melons were 
not achieved in any study that assessed chlorine at 100 or 200 ppm for a 2 min 
contact time. In general, the available studies indicate that 100 ppm or 200 ppm 
concentrations for 2 min at ambient temperature can achieve a < 2 log reduction 
in pathogenic microorganisms on the surface of whole melons. In studies 
mimicking industrial conditions, the observed reductions are usually very low, 
while those studies using more artificial experimental designs show the greatest 
reductions (Trinetta, Linton and Morgan, 2013). 

The same trends observed for chlorine have been reported for other decontamination 
agents such as hydrogen peroxide, chlorine dioxide, peroxyacetic acid, ozone, and 
quaternary ammonium (Svoboda et al., 2016). Bartlett et al. (2020) concluded 
that there is insufficient research to confidently recommend an optimal contact 
time for sanitizers. However, standard recommendations including free chlorine 
(15–20 ppm), peroxyacetic acid (80 ppm), and chlorine dioxide (aqueous; 3 ppm) 
for contact times up to 2 min could be applied. Levulinic acid (LVA) and sodium 
dodecyl sulfate (SDS) have been applied as a post-harvest decontamination 
treatment to whole melons (Webb et al. 2015b). In these studies, different inoculum 
sizes and combinations of treatments were applied, but the most efficient 
treatment (2.5 percent LVA/2.5 percent SDS) reduced initial populations of S. 
Poona (4.26–5.04 log CFU/sample) on rind tissue to levels only detectable by 
culture enrichment when cantaloupes were subsequently exposed to the LVA/
SDS solution. The efficacy of the treatments was compared by the authors to a 
simulated commercial dump tank treatment incorporating 200 ppm chlorine.

5.2.2.5     Natural antimicrobials applied as dips, sprays and coatings

There are many research studies that focus on the use of natural compounds 
and extracts as antimicrobial compounds to reduce contamination on melons. 
However, these studies are performed using high inoculum levels and high 
concentration of the extract, which in many cases affect the sensory qualities 
of the final product (e.g. flavour, appearance, odour). Although the microbial 



CHAPTER 5 – MELON AND TREE FRUITS 27

reductions reported by these studies are in most of the cases very significant (> 3 
log units), the suitability of these treatments under commercial conditions is not 
well understood. 

Lactic acid as well as other organic acids are often used as bio-preservatives and have 
been extensively investigated as processing aids for fresh produce (Bartlett  et al., 
2020). Examples of research studies focused on the use of organic acids include the 
study of Singh, Hung and Qi (2018) who evaluated the efficacy of 2 percent lactic acid 
wash against L. monocytogenes and Salmonella on the surface of whole rock melons. 
Kang and Kang (2017) evaluated the antimicrobial effect of vacuum impregnation 
(VI) applied with 2 percent malic acid against Salmonella Typhimurium, E. coli 
O157:H7 and L. monocytogenes on muskmelons, showing that after 20 min of VI 
treatment, population decrease of the three pathogens ranged from 2 to 3 log CFU/
cm2. In general, although some organic acids demonstrated a > 3 log CFU reduction 
of different pathogens, which indicates that acid washes may have an application as 
part of hurdle technology, further studies are needed to confirm the suitability of these 
treatments (Bartlett et al., 2020). 

Many research studies focus on the use of essential oils as potential replacements 
for other chemicals to reduce microbial contamination in melons, which lately 
have included the development of essential oil nanoemulsions (Bartlett et al., 
2020). Most of these studies evaluate the essential oil’s efficacy using experimental 
designs that do not mimic industrial conditions. Therefore, most of the results 
obtained from available research articles do not demonstrate to industry that 
they are effective. In the future, research done under more realistic conditions is 
necessary to confidently specify recommendations for optimal application.

The most commonly used post-harvest fungicide (i.e. imazalil) is now banned in 
Europe, and this will favour the application of edible coatings to avoid spoilage of 
the fruit, which might have an impact on foodborne pathogens. Edible coatings 
are being explored utilizing polysaccharides as coating materials (e.g. alginate or 
chitosan).

5.2.2.6     Biocontrol methods

Several biological decontamination treatments meet regulatory requirements for 
use on food, such as bacteriophages and bacterial protective cultures. The efficacy 
of these post-process treatments in reducing the microbial load of food has been 
mostly investigated in food of animal origin, particularly on ready‐to‐eat (RTE) 
meat and cheese products. Previous studies have shown very promising results, 
but optimization of the use of these treatments should be done under commercial 
conditions on specific fresh products to get insight into their real potential.
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The use of bacteriocin-producing (Bac+) strains of lactic acid bacteria (LAB) 
either singly or in combination as protective cultures has been proven to be an 
efficient method for the reduction of specific pathogenic bacteria on melons. For 
instance, Tran et al. (2020) demonstrated that Bacillus amyloliquefaciens ALB65 
is an effective biological control agent for the reduction of L. monocytogenes 
growth on intact cantaloupe melons under both pre- and post-harvest conditions. 
However, it should be taken into account that the reported bacteriocin-producing 
strains exerted a minimal control over the growth of the pathogen when tested on 
naturally contaminated vegetables. 

In 2016, Bai et al. defined bacteriophages as the next-generation biocontrol agents 
due to the potential of single phage and phage cocktail treatments to control 
various foodborne pathogens, and bacteriophages can be used as an alternative for 
conventional food preservatives. Specifically, in fresh produce, 2 log reductions in 
the level of L. monocytogenes have been reported (Oliveira et al., 2014). Leverentz 
et al. (2003) evaluated the use of phages to inactivate L. monocytogenes on melons. 
These authors obtained reductions of about 2.0–4.6 log CFU per sample. In 
general, application of 6.0–8.0 log PFU/g or ml phage significantly (p < 0.05) reduced  
L. monocytogenes populations inoculated on fresh produce (EFSA Panel on 
Biological Hazards [BIOHAZ], 2016). However, most of the studies were conducted 
using lab-scale experiments, and thus, results are difficult to extrapolate to the 
industrial conditions.

5.2.2.7     Edible coatings 

Edible antimicrobial coatings or films to extend the shelf-life and deliver 
antimicrobials to fresh produce are being evaluated. Commercial edible coatings 
are currently being used in the fresh produce industry to increase shelf-life of 
products, but their use specifically as a control for foodborne pathogens has 
garnered a lot of interest (Bartlett et al., 2020). 

Several studies are available on the efficacy of edible coatings as an intervention 
strategy to reduce microbial contamination in melons up to 5 log CFU. Zhang 
et al. (2020) showed that the use of cellulose nanofiber (CNF)-based coating 
containing chitosan (CHI, 1 percent) and trans-cinnamaldehyde (TC, 1 percent) 
was effective in eliminating S. enterica and E. coli  O157:H7 inoculated at densities 
of 6–6.2 log (CFU/cm2). After evaluating several studies on the use of coatings 
as an antimicrobial strategy, Bartlett et al. (2020) concluded that antimicrobial 
coatings have the advantage of prolonging exposure to the antimicrobial, but 
it is important to determine whether antimicrobial coatings actually inactivate 
pathogens or only suppress growth. They also revealed that, although large 
reductions of pathogens were reported for specific coatings, the methods of 
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enumeration in the studies may not be sufficiently rigorous to rule out that 
pathogens were, in fact, not inactivated on the surface of melons rather than being 
removed with the film, trapped under the film, or suppressed on growth media 
by active ingredients that were transferred from the coating during the sampling 
and enumeration procedure (Bartlett et al., 2020). Future research will need to 
confirm the effectiveness of antimicrobial coatings before they can be effectively 
applied by the industry.

5.3       OVERVIEW OF POME FRUIT

The term pome fruit encompasses well-known crops such as apples and pears but 
also less-known commodities as quince, rowan, loquat, toyon and whitebeam. 
Pome fruits are members of the plant family Rosaceae, subfamily pomoideae 
(Webster and Palmer, 2017). They are generally considered low-risk commodities 
for foodborne illnesses. However, these commodities are very sensitive to 
outgrowth of Penicillium expansum, a mycotoxigenic mould, producing the 
mycotoxin patulin. Therefore, for processed apple and pear products (e.g. juice, 
concentrates), where often lower quality or infected fruits are used, the presence 
of patulin must be considered. The distinctive softness and delicate smooth 
surfaces of these fruits means they are easily damaged by impact or friction; 
hence, they are not always washed or treated with aqueous sanitizers. Application 
of water in post-harvest activities is mainly conducted to remove pesticides’ 
residues or dust but also to reduce the heat (cooling), and to sort the fruits and 
their transportation in a packhouse. Typically, pome fruits are subjected to 
controlled atmosphere (i.e. ultra-low oxygen conditions) and cold storage to 
reduce their metabolic activity and to preserve the fruits year round.

5.4       MICROBIOLOGICAL HAZARDS IN POME FRUIT

Contamination of the surface of the (mature) fruit may increase during harvest 
and packing, through exposure to handlers and via cross-contamination from 
food contact surfaces and packaging. The extent to which pathogens may adhere, 
attach, colonize and survive on pome fruits is a critical issue. The surface of the 
skin is formed by the cuticle, an extracellular hydrophobic coating composed of 
a cutin polyester polymer, which consists of esterified fatty acids and cuticular 
waxes. The smooth surface of apples and pears is not a good adhesion surface for 
pathogens.

At a low-inoculation level (3 log CFU per apple), L. monocytogenes inoculated 
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at the stem end and the equatorial surface survived but did not grow on fresh 
Gala and Granny Smith apples stored at 25 °C for 49 days (Salazar et al., 2016). 
Although certain conditions did not support growth, the pathogen was always 
detectable by enrichment culture. The inoculation procedure had a significant 
effect on results; when the inoculum was allowed to dry for 24 h at 5 °C, growth 
was significantly slowed compared with inoculum allowed to dry for 2 h at 25 °C 
(Salazar et al., 2016). Survival of Salmonella on apples stored at room temperature 
showed that the pathogen was capable of surviving for 12 days, only showing 
a significant drop at the end of the experiment (Perez-Rodriquez, Begum and 
Johannessen, 2014). As stated above, acid resistant STEC may also survive on 
the apples or in the juice. In relation to the intrinsic properties of the flesh of 
pome fruits, it is typically acidic and protective against the growth of the main 
foodborne pathogens such as Salmonella sp. and Listeria monocytogenes. The pH 
of apples is typically less than 4.0 (even reported as 3.5) (Beuchat, 2002). 

The most important strategy for improving the safety of pome fruits involves 
hygienic handling and hygiene control including environmental monitoring 
during the sorting and packing of these products. Keeping the packing 
environment and packaging equipment free from contamination is essential by 
an effective cleaning and disinfection plan and preventive technical maintenance 
to avoid microbiological proliferation in a production site. Emphasizing that 
implementing preventive pathogen controls in packing houses is essential (Ruiz-
Llacsahuanga et al., 2021). 

Good hygiene is essential for ensuring product safety at each stage of the 
production and processing of pome fruits. This will normally be achieved through 
the application of GAPs, GHPs and GMPs. The Codex General Principles of Food 
Hygiene provide general guidance for ensuring food hygiene and a foundation 
for further commodity-specific codes of practice and guidelines (FAO and WHO, 
2021a).

5.5       MITIGATION AND INTERVENTION MEASURES 
EVALUATED WITH POME FRUIT

5.5.1 Post-harvest applications 

5.5.1.1     Prevention of cross-contamination during washing

Unlike many forms of fresh produce, the stem scar on pome fruits is not reported 
in the literature as the main site of contamination by pathogens. Nevertheless, due 
to the delicate nature of most pome fruits, they require care during handling and 
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prompt removal of field heat. Apples are often transported using water and held 
in water baths for prolonged periods. Fresh produce operations that use flume 
water are very effective in transferring contamination and much less effective in 
removing it. This, together with the fact that the water used inside the production 
lines is not frequently refreshed, with use up to one week or longer and not always 
at refrigerated conditions, can result in a microbiological “broth” of pathogens, 
spoilage microorganisms and mould spores.

This was demonstrated in the work of Perez-Rodriguez et al. (2014), in which the 
cross-contamination of apples by Salmonella during processing of commercial 
fresh apples and the pathogen’s survival on apples at room temperature was 
followed. Simulated post-harvest handling at a laboratory scale in which an apple 
artificially contaminated with Salmonella at different concentration levels (8, 6 and 
5 log CFU/apple) was introduced in one batch of apples and processed through a 
simulated transport/washing step and a drying step using sponges to mimic the 
porous material used in the industry. Results indicated that at 8 log CFU/apple, 
50 percent uninoculated apples were contaminated post-processing, with all 
analysed environmental samples (water and sponges) positive for the pathogen. 
However, at lower inoculum levels (5–6 log CFU/apple), no cross-contamination 
was detected in apples, and only environmental samples showed contamination 
by Salmonella post-processing.

Washing pome fruits is mainly practiced to remove agricultural chemicals and 
dust residues. If water is used, it must meet the microbial standards of drinking 
water, involving validated treatments such as chlorination, filtration, ultraviolet 
light or ozonation to avoid proliferation of microorganisms in the process water 
and cross-contamination amongst fruits. A study by Kenney et al. (2001) assessed 
the effectiveness of washing and rubbing in physically removing E. coli  O157:H7 
on the surface of apples. The location of cells on or in undamaged and bruised 
areas of apples that were not washed or rubbed did not differ significantly. 
Washing apples resulted in an approximate 2 log reduction in CFU of E. coli  
O157:H7 per cm2 of apple surface. On unwashed apples, cells were detected at 
depths up to 30 µm below the surface. No E. coli  O157:H7 cells were detected at 
locations more than 6 µm below the surface of washed apples. Cells that remained 
on the surface of rubbed apples appeared to be sealed within naturally occurring 
cracks and crevices in waxy cutin platelets. These cells may be protected from 
disinfection and subsequently released when apples are eaten or pressed for cider 
production (Kenney et al., 2001).

Various decontamination treatments have been proposed to reduce the levels 
of pathogenic microorganisms on the surface of fruits. However, the degree of 
reduction achieved is typically low. Plus, the cost, feasibility, impact on fruit 
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quality and effect on shelf-life are rarely reported. 

5.5.1.2     Ultraviolet light

Ultraviolet C irradiation of apple peels immersed in water resulted in a 2 to 3 log 
reduction of E. coli, Salmonella and L. monocytogenes at UV-C doses below 500 
mJ/cm2 (Nicolau-Lapeña et al., 2022). Efficacy of UV-C light irradiation is also 
correlated with fruit surface roughness, contact angle and surface energy, as fewer 
hydrophobic fruits with smooth surfaces (pears or apples) are more susceptible 
to UV-C irradiation than hydrophobic and rough surface fruits (cantaloupe or 
strawberry) (Adhikari et al., 2015).

5.5.1.3     Antimicrobial dips and sprays

The efficacy of washing pome fruit may be enhanced by the use of antimicrobials 
such as electrolyzed water, chlorine dioxide and photocatalysis. These washing 
treatments have been found to have a high disinfectant activity on the epiphytic 
microbiota of pome fruits and are effective for the control of post-harvest rots. 
Some studies investigated the efficacy of applying the principle of the hurdle 
technology to reduce microbial population of pome fruit. For instance, Pietrysiak 
et al. (2020) used a hurdle technology for whole fresh apples based on a washing 
step containing surfactants, lauric arginate, sodium dodecyl sulfate, and 
Tween®20, combined with peracetic acid (PAA), followed by hot air impingement 
drying. They concluded that washing apples with solutions containing surfactants 
combined with PAA followed by hot air impingement drying helped to reduce the 
microbial loads to some extent and may help to reduce drying times significantly. 
On the other hand, Pietrysiak et al. (2019) indicated that the application of the 
hurdle technology and rotating use of sanitizers to avoid development of bacterial 
biofilm resistance may give the best results, although not conclusively. Despite the 
microbial reductions reported by these studies, the suitability of these treatments 
under commercial conditions may be low.

5.5.1.4     Edible coatings or waxes

Often apples are treated with edible wax to avoid post-harvest decay and 
transpiration losses. The study of Macarisin et al. (2019) evaluated the effect of 
conventional fruit coating with wax on the survival of L. monocytogenes. After 2 
months of storage, significantly (p < 0.05) larger L. monocytogenes populations 
were recovered from apples coated with wax than those unwaxed, regardless 
of the cultivar. No differences in survival amongst L. monocytogenes strains 
(serotypes 1/2a and 4b) from clinical, food, and environmental sources were 
observed. The novel observation was that coating with wax facilitates prolonged 
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survival of L. monocytogenes on whole apples. Therefore, more research is needed 
to determine if edible coatings can be used as an antimicrobial treatment or if 
they actually favour microbial growth. 

5.5.1.5     Sorting and packaging 

Optical sorting is typically conducted to remove apples infected with Penicillium 
expansum. While not inherently impacting contamination, sorting and 
packaging may provide conditions that enhance pathogen growth by influencing 
microenvironments and humidity.

5.5.1.6     Storage and ultra-low oxygen storage

Fresh apples are typically stored for up to 1 year commercially, and optimal 
storage temperatures for preserving quality will differ depending on apple 
variety. There is little information available about L. monocytogenes survival on 
fresh apples under different storage temperatures. While L. monocytogenes did 
not proliferate on apple surfaces during 12 weeks of refrigerated storage, only a 
limited reduction of L. monocytogenes was observed in this study (Sheng et al., 
2017). Therefore, the apple industry cannot rely on cold storage alone to control 
this pathogen.

Additional interventions are needed to eradicate Listeria on fresh apples during 
long-term cold storage (Sheng et al., 2017). Sheng et al. (2018) experimented 
with continuous low dosing of ozone in commercial cold storage of Fuji apples 
(air conditions and low-oxygen conditions) and concluded that ozone gas has the 
potential to be used as a supplemental intervention method to control Listeria 
spp. A more recent study demonstrated the control of Listeria over a 9-month 
refrigerated storage of Red Delicious apples by use of low-dose continuous 
gaseous ozone in the atmosphere of the storage facilities (Shen et al., 2021).

The review by Guan et al. (2021) concluded that gaseous interventions are 
suitable for L. monocytogenes decontamination on apples. For example, cold 
storage of apples, which requires waterless interventions, may benefit from gaseous 
antimicrobials such as chlorine dioxide and ozone. To reduce the contamination 
risk during cold storage, research is still needed to develop effective methods to 
reduce microbial loads on fresh apples. This requires commercial-scale validation 
of gaseous interventions and integration with existing apple cold-storage practices. 
Additionally, the impact of the interventions on final apple quality should be 
taken into consideration.
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5.6       OVERVIEW OF STONE FRUIT

In some stone fruits, such as a peach, the surface is covered by a dense 
indumentum composed of trichomes (fine hairs). This gives the peach its typical 
furry surface, which provides protection against environmental factors and attack 
by plant pathogens. Trichomes confer a non-polar character to the peach surface, 
and processes which result in their removal make the fruit more susceptible to 
interactions with water, water-soluble compounds, and contaminants.

5.7       MICROBIOLOGICAL HAZARDS IN STONE FRUIT

In a study of pathogen survival along a simulated commercial export chain, 
E. coli O157:H7 and L. monocytogenes were found to survive on artificially 
contaminated peaches and plums (Collignon and Korsten, 2010). In a situation 
where high inocula were applied to fruit, time and temperature regimes did not 
suppress pathogen populations, indicating potential food safety issues requiring 
intervention strategies. Specifically, a significant increase was observed following 
4 °C storage for 13 to 20 days, with no significant difference between 20 and 21 
days on peach surfaces (Collignon and Korsten, 2010). 

The intrinsic properties of the flesh of stone fruits are typically acidic and 
protective against the growth of the main foodborne pathogens such as Salmonella 
spp. and L. monocytogenes. The pH ranges for different fruits are white nectarine 
(3.98–4.32), yellow nectarine (3.63–3.88), white peach (4.34–4.98), yellow peach 
(3.50–3.72), and plums (3.84–4.35).

The most important strategy for improving the safety of stone fruits involves 
hygienic handling and hygiene control including environmental monitoring 
during the sorting and packing of these fruits (Williamson et al., 2018). Keeping 
the packing environment and packaging equipment free from contamination is 
essential. Kuttappan et al. (2021) found that handling conditions for stone fruit 
did not favour Listeria growth, but once the fruit was contaminated, the pathogen 
would survive, emphasizing that implementing preventive pathogen controls in 
packing houses is essential. 
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5.8       MITIGATION AND INTERVENTION MEASURES 
EVALUATED WITH STONE FRUIT

5.8.1 Post-harvest applications 

5.8.1.1     Antimicrobial dips and sprays

The efficacy of washing stone fruit may be enhanced using antimicrobials such as 
electrolyzed water, chlorine dioxide, and photocatalysis (Calvo et al., 2019). These 
washing treatments have been found to have a high disinfectant activity on the 
epiphytic microbiota of stone fruits and are effective for the control of post-harvest 
rots. But there are limited studies on their efficacy against pathogens on stone 
fruit, and there is scant evidence of industry uptake.

5.8.1.2     Edible coatings or waxes 

Nanoemulsions containing lemongrass oil have been proposed as a coating for 
plums, with the goal of improving microbial safety and enhancing physicochemical 
properties during storage (Kim et al., 2013). The coatings were assessed as having 
the potential to inhibit Salmonella and E. coli O157:H7 contamination of plums 
and may extend plum shelf-life, but as with chemical treatments there remain 
questions about practicality, cost, and impact on sensory properties. 
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Seeded and root vegetables

6.1       OVERVIEW OF SEEDED AND ROOT VEGETABLES 

This category of crops is quite expansive in the commodities encompassed which 
include those that grow above ground such as the Solanaceae family (e.g. tomato, 
pepper, eggplant), Cucurbitaceae (e.g. cucumber, squash, zucchini), Brassicaceae 
(e.g. broccoli, cauliflower, cabbage), Fabaceae (e.g. peas, beans, lentils), as well as 
root vegetables spread across many plant families (e.g. onions, carrots, radishes). 
Therefore, interventions that work well in one crop may not necessarily translate 
to success in others.

6.2       MICROBIOLOGICAL HAZARDS IN SEEDED AND 
ROOT VEGETABLES

Within seeded and root vegetable production systems, there are many preventive 
measures farms can employ that are based upon GAPs, GHPs and GMPs (FAO 
and WHO, 2017; FAO and WHO, 2021a; FAO and WHO, 2021b). Even with 
strong programmes used throughout the continuum of growing, harvesting, 
holding and packing produce, contamination with foodborne pathogens cannot 
be completely avoided given that these products are vulnerable to environmental 
contamination during production. For this reason, it is important to explore 
additional mitigation strategies that could be applied to seeded and root 
vegetables, while understanding the importance of GAPs, GHPs and GMPs.

6
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6.3       MITIGATION AND INTERVENTION MEASURES 
EVALUATED WITH SEEDED AND ROOT 
VEGETABLES

For decades, researchers have been evaluating interventions that can be applied 
to seeded and root vegetables. Many of these interventions have not been applied 
at the commercial scale, which is an important distinction given that there will be 
significant work for industry uptake. Caution should be taken for interventions 
that have shown promise at the lab scale because factors such as product volume, 
uniformity of treatment, and organic load can drastically affect the efficacy of 
interventions. 

6.3.1 Post-harvest physical treatments

6.3.1.1     Irradiation

Ionizing irradiation is a non-thermal processing method that has been utilized 
through E-beam, gamma and x-ray technologies and has been used for a wide 
array of purposes ranging from disinfestation of insects to inactivation of 
microorganisms. All products must be evaluated to determine the dose required 
to achieve the food safety goals while maintaining product quality. Within 
the realm of seeded and root vegetables, a 1.6 kGy dose supplied by e-beam 
was determined to be sufficient for 5 log inactivation of Salmonella on green 
onions, with D-values reported from 0.26–0.32 kGy (Murugesan et al., 2011). 
At this dose, the product did not demonstrate any differences in quality from 
the untreated control and was able to slightly extend shelf-life. A dose of 1 kGy 
supplied by gamma radiation reduced Salmonella populations on baby carrots 
and grape tomatoes by 3.7 to 5.6 log CFU, respectively (Berrios-Rodriguez et al., 
2022). Treatment of seeds has also been evaluated with a 7 kGy dose resulting in 
a 4 log reduction of Salmonella on tomato seeds and no impact on germination 
rates (Trinetta et al., 2011). While this technology has been evaluated with food 
systems for quite some time, consumer acceptance is a major hurdle to overcome 
for widespread adoption in the future. 

6.3.1.2     Ultraviolet light

Ultraviolet C has been used as a non-thermal surface treatment for decontamination 
of all types of surfaces including that of fresh vegetables. A > 3 log reduction of 
Salmonella was achieved on green tomatoes when treated with a UV dose of 22.3 
mJ/cm2 without signs of dark repair or photoreactivation post-treatment (Lim 
and Harrison, 2016). Salmonella and E. coli  O157:H7 were reduced > 2 log CFU/
tomato when treated with 60 mJ/cm2 UV-C, with less effect when the stem scar 
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was inoculated (1.6–1.9 log CFU) demonstrating how surface characteristics 
can play a role in UV efficacy (Mukhopadhyay et al., 2014). Much higher doses 
ranging from 500–4 000 mJ/ cm2 did not demonstrate significantly higher 
inactivation rates for Salmonella or L. monocytogenes when Roma tomatoes 
and jalapeno peppers were treated (2.59–3.82 log CFU/g) (Sommers, Sites and 
Musgrove, 2010). When treated in polyethylene film, which does block some 
UV-C light, non-pathogenic E. coli was reduced up to 1.6 log CFU/g with a UV dose 
of 746.6 mJ/cm2 (Abdussamad, Rasco and Sablani, 2016).

6.3.2 Post-harvest aqueous treatments

Chemical treatments are the most studied interventions for reduction of microbial 
contamination in fresh fruits and vegetables, either through prevention of 
cross-contamination during processing and handling or by direct reduction of 
microbial load on the product. The treatments can be applied during post-harvest 
processing or during storage. The commodities can be treated in bulk or in 
individual packages. Efficacy of chemical treatment is influenced by how the 
treatment is applied (aqueous, gaseous, or aerosolized). Delivery of chemical 
treatment can be facilitated by physical means (e.g. sonication and vacuum 
impregnation). Combination treatments with multiple chemical treatments 
or combined chemical and physical methods can enhance treatment efficacy. 
Examples of decontamination methods that have been applied to seeded and root 
vegetables are summarized below. Further validation of these interventions under 
commercial conditions and regulatory approval will be needed before their use 
commercially.

6.3.2.1     Prevention of cross-contamination during washing

Washing is frequently applied during post-harvest processing of seeded and 
root vegetables to remove dirt, debris and other contaminants. Antimicrobial 
chemicals are added in the wash water to prevent spreading of microbial 
contamination in the production batch. Commonly used antimicrobial chemicals 
for produce washing include chlorine (as sodium or calcium hypochlorite), 
peracetic acid, chlorine dioxide, and ozone (Gombas et al., 2017). 

The use of sufficient sanitizers in wash water is critical to minimize the potential 
of cross-contamination. Many factors may influence the effectiveness of sanitizers 
and thus the amount needed in wash water, including concentration, pH, organic 
load, water temperature, product-to-water ratio, rate of water replenishment, and 
water agitation (USFDA, 2018). Lab-scale studies have been conducted to determine 
the free chlorine level needed to prevent Salmonella cross-contamination of tomatoes 
in model flume systems and how the minimum effective chlorine level may be 
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influenced by the inoculation level, contact time and presence of organic matter 
(Sreedharan et al., 2017; Bertoldi et al., 2021). 

Industry guidelines have recommended specific performance criteria to maintain 
the quality of post-harvest wash water, e.g. maintaining free chlorine concentrations 
at high levels (> 50 ppm) (International Fresh Produce Association, 2018, 2019), yet 
these standards have not been adequately validated. Guidelines for validating 
antimicrobial washes for fresh-cut leafy greens have been developed (Gombas et 
al., 2017) which may serve as examples for validating washing processes for other 
fresh produce commodities.

6.3.2.2     Antimicrobials applied as dips, sprays, and through aerosolization

Chlorine-based biocides (e.g. sodium and calcium hypochlorite) are the most 
used sanitizers in the commercial production of fresh produce, especially during 
the washing step. The effectiveness of these sanitizers, at the concentration of 
use, varies between commodities and between published studies (Goodburn 
and Wallace, 2013; Gombas et al., 2017; Yoon and Lee, 2018; Deng et al., 2020). 
For tomatoes, studies showed that treatment with 200 ppm chlorine for up to 
3 min achieved a reduction in Salmonella of 1–2 log (Beuchat, 1998; Sapers 
and Jones, 2006), but in other studies, a higher log reduction was observed. 
Sreedharan et al. (2017) showed that washing tomato in chlorinated water (HOCl 
concentration 100 ppm) containing a high-organic load prevented Salmonella 
cross-contamination in a model flume system and reduced the Salmonella levels 
by > 4.5 log CFU/tomato. Felkey et al. (2006) showed that washing tomatoes in 
a model flume system containing 150 ppm free chlorine (pH 6.5) at 25 °C for 
up to 2 min reduced the Salmonella population on the smooth surface by 6.4 
log, but Salmonella inoculated on puncture wounds or stem scar were reduced 
by only 0.7 or 1.9 log units, respectively. Similar reductions in Salmonella counts 
were observed when the temperature of the wash water was raised to 35 °C. 
However, these extremely high chlorine concentrations (≥ 100 ppm) are no longer 
recommended, and maintenance of a residual free chlorine of about 25 ppm at the 
optimum pH (6.0) and temperature (< 4 °C) have been recommended to avoid 
cross-contamination but also to reduce the formation of disinfection by-products 
such as chlorates (Gombas et al., 2017).

Chlorine production through electrolyzed water (EW) for onsite generation has 
been evaluated for post-harvest washing. Washing tomatoes in neutral electrolyzed 
water (155 ppm free chlorine, pH 6.5) for 5 min reduced E. coli O157:H7 and 
Salmonella Typhimurium DT 104 by 4.8 and 5.4 log CFU/tomato, compared with 
a reduction of 2.5 or 3.2 log CFU/tomato after washing in deionization water (DI 
water). Both pathogens were completely inactivated in the wash water, suggesting 
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that neutral electrolyzed water is effective in preventing crosscontamination (Afari 
et al., 2016). Deza, Araujo and Garrido (2003) showed that treatment of tomato with 
neutral EW (chlorine concentration 89 mg/L, pH 8, and 23 °C) for 30 sec reduced 
populations of E. coli O157:H7, Salmonella Typhimurium and L. monocytogenes by 
4.4, 3.7 and 4.7 log CFU/cm2, respectively, compared with a 2 log reduction of all 
three pathogens in tomatoes treated with DI water. 

Park et al. (2009) used acidic EW containing 37.5 ppm of available chlorine at 
pH 2.06 to treat grape tomatoes inoculated with E. coli O157:H7, Salmonella 
Typhimurium or L. monocytogenes and found that all three pathogens decreased 
by > 5 log CFU/g after a 1 min treatment. But the efficacy of EW was much lower 
in the presence of added organic matter. 

Large or pilot plant scale studies have been conducted to determine the efficacy 
of sanitizer on produce and in preventing cross-contamination. Washing with 
25 ppm free chlorine resulted in cross-contamination of tomatoes when the 
inoculum load of Salmonella was 6 log CFU/tomato in water with 300 mg/l COD, 
but cross-contamination was prevented under these challenging conditions when the 
inoculum was log 4 CFU/tomato (Bertoldi et al., 2022). Wang and Ryser (2014) found 
that washing tomatoes (~ 11.3 kg) in a pilot-scale processing line containing 890 
L of EW (40 ppm of available chlorine, pH 6.7) for 2 min yielded a significantly 
lower log reduction for Salmonella on tomatoes compared with that observed 
in tomatoes washed in water containing 40 ppm of chlorine adjusted to pH 6.0 
with citric acid (2.1 log vs 3.1 log CFU/g). The authors attributed this difference 
to the lower pH, means of inoculation, and/or method of exposure. Although 
inexpensive to produce, the relatively slow rate of generation of EW may limit its 
usefulness for large-scale processors.

Chlorine dioxide (ClO2) effectiveness for decontamination of vegetables is 
relatively limited (Han et al., 2001; Yoon and Lee, 2018). Pao et al. (2007) found 
that, while immersion of tomatoes in 5 ppm ClO2 solution completely prevented 
cross-contamination by Salmonella, populations of the pathogen on air-dried 
tomatoes were not significantly reduced after immersion in ClO2 solutions at ≤ 20 
ppm for 1 min. 

Aerosolization of aqueous ClO2 resulted in a better penetration capability and 
an improved treatment efficacy. Cho et al. (2017) showed that treatment with 
aerosolized ClO2 at 400 ppm for 30 min reduced E. coli O157:H7, Salmonella 
Typhimurium and L. monocytogenes on washed carrots by 2.4, 2.3 and 2.1 
log, respectively. Chlorine dioxide residues were 1 ppm or less in all treated 
carrots, showing no appearance or discolouration defects. Jiang et al. (2017a, b) 
evaluated the efficacy of in-package treatment of aerosolized aqueous sanitizers 
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in reducing Salmonella Typhimurium on cherry tomatoes. A 1-min treatment with 
aerosolized ClO2 at ≥ 100 ppm achieved a > 5 log reduction of S. Typhimurium on 
the smooth surface of tomatoes. Four hundred ppm aqueous ClO2 achieved a 
4.89 log reduction in Salmonella population in the stem scar area. The efficacy of 
ClO2 treatment increased during the 3-week storage at 10 °C, achieving a ~ 6 log 
inactivation of Salmonella in the stem scar area. 

Hydrogen peroxide (H2O2) The antimicrobial efficiency of H2O2 as a wash 
sanitizer is generally low, being comparable to 100–200 ppm of chlorine treatment 
at concentrations of 4–5 percent (Ölmez and Kretzschmar, 2009). Aerosolization 
can enhance the penetration capability of sanitizers. There has been increasing 
interest in the use of aerosolized biocides for decontamination of fresh produce 
(Jiang et al., 2017a; Song and Fan, 2020). Song and Fan (2020) showed that 
aerosols generated from 7.8 percent of H2O2 reduced the level of Salmonella 
Typhimurium on smooth surface and stem scar of grape tomatoes by 3.17 and 1.54 
log CFU/tomato, respectively. 

Ozone applications for post-harvest treatment and vegetables has been reviewed 
(Deng et al., 2020; Fan, 2021; Goodburn and Wallace, 2013; Horvitz and 
Cantalejo, 2014; Warriner and Namvar, 2014; Yoon and Lee, 2018). Ozonated 
water is used for washing a variety of fresh fruits and vegetables to reduce 
microbial load and prevent cross-contamination (Yoon and Lee, 2018; Deng et al., 
2020). Washing broccoli florets in ozonated water at 7 ppm for 2.5 min and 5 min 
reduced inoculated L. monocytogenes by 1.02 and 1.15 log, respectively, compared 
with reductions of 0.63 and 0.89 log CFU/g observed in broccoli washed in 
sterile water (Severino et al., 2014). Alexandre et al. (2011) showed that washing 
red pepper in ozonated water at 2 ppm for 3 min added an additional 0.5 to 1.0 
log reduction in L. innocua inoculated on pepper compared with that found on 
pepper washed in water alone. Tomatoes washed in ozonated water at 0.5 mg/
L for 15–30 min reduced E. coli by 2.0–2.9 log CFU/fruit (Venta et al., 2010). 
Excessive exposure to ozone can result in discolouration, loss of flavour/aroma, 
and degradation of phytochemicals (Yoon and Lee, 2018).

Organic acids have been evaluated for reduction of pathogens on fresh vegetables 
(Deng et al., 2020; Yoon and Lee, 2018). Their efficacy varies among published 
studies, depending on acid type, concentration, treatment time, microorganism 
and commodity. Peroxyacetic acid (PAA) is an organic acid that has been widely 
used in the produce industry and is approved for applications on fruits and 
vegetables (up to 80 ppm in wash water). Unlike that of chlorine-based sanitizers, 
the efficacy of PAA is only minimally impacted by changes in pH and organic 
load of the wash water (Wang and Ryser, 2014). Treatment with PAA (75 ppm) 
for 60 or 120 s in the simulated flume reduced Salmonella populations on smooth 
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surfaces of bell peppers and cucumbers to below detection (about a 4 and 5 log 
reduction, respectively). The same treatment reduced Salmonella populations in 
stem scar of the two commodities by 2.5–3 log CFU/g and that inoculated on 
puncture wounds by < 2 log CFU/g (Yuk et al., 2006). Singh et al. (2018) washed 
tomato in an automated washer with 85 ppm PAA reduced Salmonella and E. coli  
O157:H7 by 6.8 and 5.4 log CFU/g. Wang and Ryser (2014) assessed the ability 
of 40 ppm of peroxyacetic acid to reduce Salmonella on tomatoes, in wash water, 
and on equipment surfaces using a pilot-scale processing line. They showed that 
washing tomatoes in PAA for 2 min reduced Salmonella on tomatoes by 2.5 log 
CFU/g and reduced Salmonella in wash water by > 5 log CFU/ml. The efficacy 
of PAA applied in an overhead spray and brush roller system was examined for 
reducing Salmonella on tomatoes. A 60-s spray treatment with 80 ppm of PAA 
decreased Salmonella populations by > 5 log on tomato surface, similar to that 
found when 100 ppm sodium hypochlorite was applied (Chang et al., 2012). 
However, it should be noted that the efficacy of PAA in industrial settings has not 
been able to be demonstrated as much as that of chlorine (López Gálvez et al., 
2020).

The efficacy of other organic acids used as antimicrobial wash has been 
investigated. Velázquez et al. (2009) found that treatment with 0.2 percent and 
1 percent lactic acid for 1 min reduced E. coli O157:H7 on tomatoes by 2.2 log 
CFU/tomato. Singh et al. (2018) found that washing with 2 percent lactic acid 
for 5 min in chilled water (4 °C) reduced Salmonella and E. coli O157:H7 by 4.8 
and 2.4 log CFU/g. Treatment with citric acid for up to 3 percent for 15 min did 
not lead to a significant reduction in E. coli inoculated on carrots and can only 
achieve a low inactivation (0.7 log) of E. coli inoculated on tomatoes (Bermúdez-
Aguirre and Barbosa-Cánovas, 2013; Barbosa-Cánovas et al., 2013). Gurtler et 
al. (2012) showed that relatively high concentrations of combined organic acids 
were effective at reducing Salmonella inoculated onto the stem scar of red round 
tomatoes during 2-minute immersion treatments. Treatment with 2 percent and 
6 percent total of lactic+ acetic acid reduced Salmonella by 4.4 and 5.5 log CFU/
stem scar. Treatment with 1, 3 and 6 percent total of lactic+acetic+levulinic acids 
reduced Salmonella by 2.2, 4.4 and 6.9 log, respectively, compared with a reduction 
of 1.91 log CFU/stem scar when treated with 90 ppm of PAA. The antimicrobial 
efficacy of organic acids may be enhanced with the combined use of surfactants. 
Washing grape tomatoes in citric or lactic acid (0.35 to 0.61 percent) with two 
surfactants generally recognized as safe (0.025 percent sodium-2-ethyl-hexyl 
sulfate and 0.025 percent sodium dodecylbenzene-sulfonate) for 2 min reduced 
Salmonella, E. coli  O157:H7 and L. monocytogenes on grape tomatoes by up to 4.90, 
4.37 and 3.98 log CFU/g, respectively (Gurtler, 2020).
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Aerosolization of organic acids for in-package decontamination of fresh produce 
has been investigated. Jiang et al. (2017a) evaluated the efficacy of aerosolized 
aqueous sanitizers in reducing populations of Salmonella Typhimurium on 
cherry tomato packaged in clam-shells. Treatment with 400 ppm PAA, or two 
organic acid mixtures (2 percent lactic acid + 2 percent acetic acid + 2 percent 
levulinic acid or 3 percent acetic acid + 3 percent lactic acid) for 1 min reduced 
populations of S. Typhimurium on smooth surfaces > 5 log CFU/fruit and that 
on the stem scar by 2.6, 1.9, or 1.7 logs, respectively. During 3 weeks of storage at 
10 °C, Salmonella populations on fruit treated with the acid combinations were 
reduced by additional 1.4–1.6 log. 

Incorporation of vacuum impregnation in a produce washing process helps 
to improve the delivery of sanitizers to protected sites and thus enhance 
antimicrobial efficacy of the wash water. Kang and Kang (2017) showed that 
vacuum impregnation (21.3 kPa) applied during washing in 2 percent malic acid 
reduced levels of Salmonella Typhimurium, E. coli  O157:H7 and L. monocytogenes 
on paprika fruit and carrot from 5–7 log CFU/cm2 to below detection (< 1 log 
CFU/cm2) after 3–5 min and 15–20 min, respectively. The colour, texture and 
titratable acidity values of treated paprika and carrots were not significantly 
different from those of untreated control samples during the 7-day storage.

Natural antimicrobials. Essential oils have been evaluated as vapour phase 
treatments and as post-harvest washes with and without emulsification, with the 
vast majority of work evaluated in tomatoes in lab-scale experiments. Typical 
concentrations required for antimicrobial efficacy are in the range of 0.5 to 2 
percent (v/v) for whole oil (e.g. thyme oil, clove bud oil) or 0.2 to 1 percent (v/v) 
when applying purified active compounds (e.g. thymol, eugenol, carvacrol) (Dunn 
et al., 2019; Gündüz, Gönül and Karapınar 2010b; Landry et al., 2016; Lu and Wu, 
2010; Mattson et al., 2011; Yun, Fan and Li, 2013). Thymol (0.4 percent) or thyme 
oil (2 percent) rinses of Salmonella-inoculated cherry tomatoes resulted in a > 4 log 
reduction after 5 min and were reported not to cause any organoleptic changes 
to the finished product (Lu and Wu, 2010). Similar wash interventions have also 
been evaluated with eugenol, cinnamaldehyde and carvacrol on plum tomatoes 
which resulted in a > 6 log reduction of Salmonella at the highest concentrations 
evaluated (0.75 percent; Mattson et al., 2011). 

When used in the vapour phase, mustard essential oils and allyl isothiocyanante 
caused a > 5 log reduction of Salmonella but also resulted in negative organoleptic 
changes ranging from decreased firmness to ascorbic acid and lycopene decreases 
(Yun, Fan and Li, 2013). Cinnamon essential oil, carvacrol and cinnamaldehyde 
resulted in a > 3 log reduction without negative changes to the treated tomatoes. 
Carvacrol, cinnamon essential oil and cinnamaldehyde achieved 3.37, 4.56 and 
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3.79 log CFU/g reductions of S. Typhimurium, respectively, and did not affect the 
colour, texture, level of ascorbic acid, or lycopene content. 

6.3.3 Post-harvest gaseous treatments

6.3.3.1     Gaseous treatment with chlorine dioxide 

The gaseous form of ClO2 has a greater penetration capacity and has been shown 
to be more effective than aqueous ClO2 in reducing microbial contamination. Han 
et al. (2000) showed that treatment with 3 ppm gaseous ClO2 for 10 min at 20 
°C reduced L. monocytogenes population on green pepper by 7.4 or 3.7 log units 
on uninjured and injured surfaces, respectively, compared with 3.7 and 0.4 log 
reductions achieved by treatment with 3 ppm aqueous ClO2. Gaseous ClO2 was 
also effective in reducing E. coli O157:H7 population on green pepper, achieving 
a 6.5 log reduction after a 30 min treatment with 1.2 ppm gaseous ClO2 (Han 
et al., 2000). Lee et al. (2018) showed that chili peppers treated with ClO2 gas 
(peak concentration 357 ppm) for 6 h at 25 °C and 100 percent relative humidity 
reduced S. Typhimurium (initial level 5.6 log CFU/g) population to below detection 
(< 1 CFU/10.8 g) without affecting the colour or moisture content of the treated 
chili peppers. 

Sy et al. (2005) reported that treatment of tomato and onion with gaseous ClO2 
at 4.1 ppm for 25 min reduced Salmonella by 4.33 log CFU/tomato and 1.94 log 
CFU/onion, respectively, without markedly adverse effects on sensory qualities. 
Bhagat, Mahmoud and Linton (2010) showed that treatment of tomatoes with 0.5 
mg/L ClO2 gas for 12 min at 22 °C and a relative humidity of 90 percent reduced 
Salmonella and Listeria by > 5 log units on the tomato skin and extended the 
shelf-life by 7 days. The efficacy of ClO2 gas was significantly influenced by ClO2 
level, exposure time and treatment temperature when applied to grape tomatoes. 
Grape tomatoes exposed to 0.15–0.85 mg of ClO2 gas for up to 58 min resulted 
in population reductions of S. Typhimurium of up to 3.95 and 7.3 log CFU/fruit, 
when treatments were conducted at 4 and 25 °C, respectively (Netramai et al., 
2016).

Variations in relative humidity greatly influence the solubilization of ClO2 gas 
on tomato surfaces which is positively correlated with the level of inactivation 
of pathogens (Park, Kim and Kang, 2018). Exposure to 30 ppm of ClO2 gas (50 
percent relative humidity) for 20 min resulted in ~ one log reduction of E. coli  
O157:H7, Salmonella Typhimurium and L. monocytogenes on tomato surfaces. 
When the tomatoes were treated with 30 ppm ClO2 gas at 90 percent relative humidity, 
populations of the three pathogens reduced to below detection (< 0.48 log CFU/cm2) 
within 10 min of exposure (Park, Kim and Kang, 2018). 
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The efficacy of ClO2 gas treatment varies between commodities. It has been 
observed that a higher level of microbial reduction (≥ 5 log) after treatment with 
ClO2 on fruits and vegetables that have smooth surfaces (e.g. tomatoes) occurs. 
In contrast, pathogenic bacteria inoculated on produce that have relatively 
rough surfaces (e.g. cucumber) showed lower reductions (Yoon and Lee, 2018). 
However, exceptions to this observation exist. Yuk et al. (2006) showed that 
ClO2 gas treatment of cucumber reduced Salmonella cells to undetectable levels 
at all inoculation locations. For bell peppers, ClO2 gas treatment resulted in 
approximately two log reductions for all inoculation sites. The authors attributed 
this inconsistency to differences in experimental conditions. 

Gaseous ClO2 treatment can also be applied during storage of fresh fruits and 
vegetables. A 2 kg pilot-scale study simulating industrial storage conditions was 
conducted to evaluate the efficacy of gaseous ClO2 against bacterial pathogens 
on produce (Bridges, Rane and Wu, 2018). Five hours of ClO2 exposure at 
concentrations of 0.07 mg ClO2 per g of sample resulted in reductions of E. 
coli  O157:H7, Salmonella and L. monocytogenes on tomato by > 7 log to below 
detection. The same treatment lowered the population of the three pathogens on 
baby-cut carrots by 7.7, 4.8 and 2.5 log, respectively.

A controlled-release ClO2 pouch that was made by sealing ClO2 into semipermeable 
polymer film and affixed to the inside of a perforated clamshell reduced E. coli  
populations by 3.08 log CFU/g on grape tomatoes after 14 days of storage. The 
ClO2 concentration in the clam-shell reached 3.5 ppm and remained constant 
until day 10 and decreased to 2 ppm by day 14 (Sun et al., 2017). The treatment 
also reduced softening and weight loss and extended the overall shelf-life of 
the tomatoes. Other formulations involving the use of diatomaceous earth for 
sustained release of chlorine dioxide gas against foodborne pathogens on produce 
have also been developed (Park, Kim and Kang, 2021)

6.3.3.2     Gaseous treatment with ozone

Treatment of produce with ozone in its gaseous form has a wider application. 
It can be applied either at the processing stage or during storage (Fan, 2021). 
However, gaseous sanitizers have some disadvantages, including inconsistent 
results and the requirement of on-site generation (Fan, Sokorai and Gurtler, 
2020). The efficacy of gaseous ozone for decontamination of fresh produce varies 
between studies, depending on treatment methods, concentration and time, target 
microorganism, type of produce, inoculation and enumeration methods. Han et al. 
(2001) reported that a > 5 log reduction of E. coli O157:H7 on green peppers was 
achieved after treatment with 7 mg/L ozone for 20 and 40 min at 22 °C. Alwi and 
Ali (2014) showed that treatment with 9 ppm of gaseous ozone for 6 h reduced 
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E. coli O157:H7, S. Typhimurium and L. monocytogenes populations on fresh-cut 
bell pepper by 2.89, 2.56 and 3.06 log CFU/g. 

Treatment with 856 mg/m3 gaseous ozone (or 1.71 µg O3/g of produce) reduced E. 
coli O157:H7, Salmonella and L. monocytogenes on tomatoes and baby-cut carrots 
by 1.1–1.6 log and 0.5 –1.2 log CFU/g, respectively, but resulted in noticeable 
bleaching of carrot and tomato tissue (Bridges, Rane and Wu, 2018). Wang et al. 
(2019) showed that 6.85 mg/L ozone for 2 and 4 h treatments reduced Salmonella 
populations by approximately 2 log CFU/fruit on both the smooth surface 
and stem scar area of tomatoes but caused deterioration in the quality of grape 
tomatoes. Daş, Gürakan and Bayındırlı (2006) found that 20 ppm gaseous O3 
treatment (20 ppm) completely reduced Salmonella on tomato surfaces to below 
detection (> 7 log CFU/tomato) after 15 min. However, a surface colour change 
from red to yellow was observed on ozone-treated tomatoes.

A novel in-package ozonation device, capable of generating 1 000 ppm of O3 
inside sealed film bags was evaluated for its efficacy for decontamination of 
tomatoes and for its effect on fruit quality (Fan et al., 2012). Within 40 sec of 
treatment, L. innocua on the tomato surface or stem scar was reduced to below 
detection or by 4 log CFU/tomato, respectively. Levels of Salmonella and E. coli  
O157:H7, either surface or stem scar-inoculated, were reduced by 2–3 log CFU/
tomato after 2- to 3-min treatment. No negative effects on fruit colour or texture 
were observed during a 22-day post-treatment storage of treated tomatoes. 

6.3.4 Post-harvest plasma treatments and combinations

Plasma is the fourth state of matter that creates highly oxidative species, such 
as atomic oxygen and ozone. Plasma is a non-thermal technology that has 
been applied directly to produce the water used to wash and transport produce 
post-harvest in lab-scale experiments. Limited efficacy (< 1 log inactivation of 
Salmonella on grape tomatoes) was observed when tomatoes were treated in 
containers, but there was an improved efficacy (> 3 log reduction) when the 
treatment was applied to rolling tomatoes (Min et al., 2018). Treatment conditions 
did not result in differences for colour, firmness, or weight loss. When tomatoes 
were treated for 5–15 min, a 1–3 log reduction of Salmonella and surrogate E. 
coli  was observed (Bermúdez-Aguirre and Barbosa-Cánovas, 2013; Prasad et 
al., 2017; Timmons et al., 2018). When incorporated into post-harvest water, a 
contact time of 1–2 min was required to have a greater microbial reduction on 
grape tomatoes compared to the chlorine controls, with additional exposure time 
resulting in increased inactivation of Salmonella, L. monocytogenes and E. coli (Hou 
et al., 2021).
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Cold plasma activation of aeros O2 resulted in the formation of ionized hydrogen 
peroxide (iHP). Application of iHP further improved efficacy of H2O2 treatment, 
reducing the Salmonella population on the smooth surface and stem scar by 5.28 and 
2.35 log CFU/tomato, respectively. The efficacy of iHP was evaluated in a pilot-scale 
study (Song, Annous and Fan, 2020). Although Salmonella Typhimurium and 
Listeria innocua inoculated on the smooth surface of tomatoes were reduced to 
below detection, only one log reduction was achieved against bacteria inoculated 
on stem scar. Treatment with iHP did not significantly affect the quality attributes 
of the produce. 

6.3.5 Post-harvest biocontrol treatments and combinations

Bacteriocins have shown promise for inactivating foodborne pathogens on fresh 
vegetables, with nisin being most frequently studied in lab-based experiments. 
Nisin coatings (103 IU/ml) and washes had a > 2 log difference from untreated 
controls. Nisin in combination with essential oil coatings (carvacrol and mountain 
savoury) and irradiation (0.5 and 1 kGy) were more effective than individual 
treatments. Coatings with nisin and 1 kGy γ-irradiation treatment resulted 
in a > 6.5 log CFU/g inactivation of Salmonella on mini carrots within 3 days 
after treatment (Ndoti-Nembe et al., 2015). In another study, a combination of 
pulsed light with a novel wash containing nisin resulted in a > 5 log reduction of 
Salmonella on tomato stem scars with the only organoleptic change being slightly 
softer texture at the end of shelf-life (Leng et al., 2020). Another study evaluated 
a novel nisin-containing antimicrobial wash on cherry tomatoes, resulting in a 
> 2 log CFU/g inactivation of Salmonella outperforming 200 ppm free chlorine 
(Berrios-Rodriguez et al., 2022). 

Bacteriophage combinations have been evaluated for Gram-negative targets on 
fresh produce, most demonstrating some efficacy compared to control samples. 
Phage-treated cherry tomatoes resulted in a > 4 log difference of S. Newport 
compared to untreated controls when the multiplicity of infection (MOI) was 
105, and two log difference was observed when the MOI was decreased to 103 (El-
Dougdoug et al., 2019). Bacteriophage have also shown activity against Shigella 
on treated cherry tomatoes, resulting in a > 3.5 log difference between control 
and treated samples with an MOI of 104 (Shahin et al., 2021). Another study 
found an initial 2 log difference of S. Newport in control and phage-treated whole 
cucumbers when the MOI was 104. However, populations continued to decline 
on control samples when held at 10 °C and 22 °C to a point where there were no 
differences in S. Newport populations in control and treated cucumbers by day 
7 (Sharma et al., 2017). Coatings have also been explored for their potential to 
deliver phage to produce surfaces, with one study finding a > 2 log difference in 
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E. coli O157:H7 on tomato surfaces for chitosan films with phage incorporated 
(Amarillas et al., 2018). The phage cocktail was stable over the course of a week, 
and the film did not deter phage activity (Amarillas et al., 2018). 

6.3.6 Post-harvest combined treatments

Combination treatments incorporating chemical and physical methods for 
synergetic effects in decontamination of fresh fruits and vegetables have been 
increasingly investigated (Yoon and Lee, 2018; Fan and Wang, 2022). The 
effectiveness of combining aerosolized H2O2 and gaseous O3 to inactivate 
Salmonella on tomatoes has been investigated (Fan, Sokorai and Gurtler, 2020). 
The combined treatment is based on the principle that reaction of ozone with 
H2O2 can produce hydroxyl radicals, which are among the strongest oxidants, 
and that aerosolized sanitizers have a greater ability to penetrate into small 
crevices and protective sites where microorganisms are located. It was found 
that combination treatments reduced the populations by up to 5.2 log CFU/
fruit on smooth surface and 4.2 log CFU/fruit on the stem scar, compared with 
a reduction of < 0.6 log CFU/fruit on both the smooth surface and the stem scar 
area, and aerosolized hydrogen peroxide alone reduced the populations by up to 
2.1 log CFU/fruit on the smooth surface and 0.8 log CFU/fruit on the stem scar 
area.

The application of UV-C light for improved efficacy of antimicrobial washes has 
been investigated. Mukhopadhyay et al. (2015) showed that integrated treatment 
using a low (0.6 kJ/m2) dose UV-C light followed by immersion in selected 
sanitizers (1 percent lactic acid, 1 percent citric acid or their binary mixtures, 3 
percent H2O2 or a novel antimicrobial preparation containing hydrogen peroxide, 
EDTA and nisin) for 2 min achieved higher log reductions (> 4 log) in Salmonella 
populations on tomatoes compared with that obtained from treatment with 
combined UV-C and 200 ppm chlorine (3.95 log reduction) or 200 ppm chorine 
alone (2.4 log reduction). 

The use of ultrasound in combination with sanitizers for enhanced antimicrobial 
efficacy has been investigated. Combined treatment of ultrasound at 45 kHz 
frequency and 40 mg/L peracetic acid (PAA) for 10 min resulted in a reduction of 
Salmonella Typhimurium on cherry tomatoes by 3.9 log CFU/g, compared with 
a reduction of 2.7 log CFU/g after treatment with 40 ppm PAA only (Brilhante 
São José and Vanetti, 2012). Combining electrolyzed water (EW) treatment with 
ultrasonication resulted in improved efficacy. Neutral EW combined with 210 W 
ultrasonication for 5 min completely inactivated E. coli O157:H7 and Salmonella 
Typhimurium DT 104 on tomatoes, resulting in a reduction of > 8.44 and 8.47 log 
CFU/tomato, respectively (Afari et al., 2016). 
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Conclusions
Several technologies have been identified which show efficacy in reducing 
foodborne pathogens on the commodities evaluated. While there has been a great 
deal of work done with these commodities, it has primarily been associated with 
a limited number of bacterial foodborne pathogens, leaving gaps in knowledge 
connected to protozoan or viral targets. Additionally, among lab-scale technologies, 
there is a significant amount of evaluation that is necessary to discern how well 
these technologies work when scaled up and what impact, positive or negative, they 
may have with regard to shelf-life and quality. 
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The following questions (Q1–Q7) were presented by the Codex Committee on 
Food Hygiene (CCFH) electronic working group (eWG) on the development of 
“Guidelines for the control of STEC in raw beef, fresh leafy vegetables, raw milk 
and raw milk cheeses, and sprouts” in July 2021. The answers were addressed 
separately by the experts convened as part of the Joint FAO/WHO Expert Meeting 
on Microbiological Risk Assessment (JEMRA) on the Prevention and Control of 
Microbiological Hazards in Fresh Fruits and Vegetables.

Q1. Most control measures in Annex 2 “Fresh leafy vegetables” of the draft 
“Guidelines for the control of STEC in raw beef, fresh leafy vegetables, raw milk and 
raw milk cheeses, and sprouts” are not specific for STEC (and thus information in 
the Code of Hygienic Practice for Fresh Fruits and Vegetables would suffice). JEMRA 
– Please provide input on control measures that have been studied scientifically 
with respect to control of STEC and thus warrant inclusion. (These measures may 
also control other pathogens, but we need to know if there is sufficient scientific 
information related to control of STEC to warrant including them in this annex.) 

A1. Many potential measures have been scientifically studied with respect to 
control of microbiological hazards in fresh fruits and vegetables, including leafy 
greens. However, based on the experts’ opinions, while much of this research was 
not carried out with STEC, the conclusions are valid for STEC control as well. 
Specific experiments using different STEC are not necessary; there is no evidence 
to indicate that STEC behaves differently in response to these control measures. 
The most significant control measures include:

• maintenance of the cold chain at every stage along the farm-to-fork continuum;
• addition of biocides to process water to prevent cross-contamination. It is 

noted that biocides use can reduce microbiological load on product, but the 
data are not sufficient to provide consistent outcomes; however, inclusion is 
prudent to prevent cross-contamination;

• avoiding direct application of untreated animal manures (e.g. ruminant 
species, pigs, poultry) to leafy vegetable fields as it may increase the likelihood 
of STEC contamination. Composting reduces risk of contamination, but 
the quality and effectiveness of composting can be variable, so the primary 
recommendation is to avoid the application of untreated raw manures to leafy 
vegetable fields in the year of production; and 

• ensuring water that contacts the crop directly is fit-for-purpose. If growers 

A1. Part 1 
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do not have the resources to monitor or determine water quality, adopting 
practices that prevent direct water contact with the edible part of the crop are 
recommended. 

Q2. It has been suggested that the guidelines address HACCP system principles. 
Please provide input on whether good hygiene practices (GHPs) or good agricultural 
practices (GAPs) at a step provides adequate control of STEC or whether there are 
applicable critical control points (CCPs).

A2. Good hygiene practices or good agricultural practices provide an effective means 
of establishing farming practices, which minimize potential contamination by 
microbiological hazards, including STEC. Providing guidance to producers on 
minimizing contamination should be encouraged. For example, the introduction 
of HACCP system prerequisite programmes in fruit and vegetable production will 
reduce contamination as they include practices captured in GHPs and GAPs. It 
is appropriate to use the HACCP system during minimal processing activities; 
however, there are no CCPs that eliminate microbiological hazards.

Q3. It has been proposed that we add here that growers should be looking at 
distances between fields and nearby animal operations, and should be considering 
a minimal distance, if possible, based on recent scientific studies and publications. 
Is there scientific evidence to support recommendations for distance between fields 
growing leafy vegetables and animal operations? If not, is there specific guidance 
you can provide on what to consider in evaluating and controlling the risk from 
animal operations close to leafy vegetable growing fields?

A3. There is insufficient data to determine a minimum distance between fields and 
nearby animal operations, though it is noted that risks should decrease as distance 
increases. It is important for each operation to make an assessment based on their 
situation. Factors that should be considered include wildlife (e.g. type, abundance, 
movement), air movement and prevailing winds, hydrologic system and likely 
run-off, topography, human factors including intrusion and movement, and other 
related conditions. 

Evidence indicates that the risk of airborne transport of E. coli O157:H7 from 
cattle production increases when cattle pens are very dry and when this situation is 
combined with cattle management or cattle behaviours that generate airborne dust 
(Berry et al., 2015). Based on these results, distances between fields and nearby 
animal operations greater than 180 m would be recommended because E. coli  
O157:H7-positive leafy greens were found at that distance. However, additional 
research is needed to determine safe set-back distances between cattle feedlots and 
crop production.
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Q4. Should we indicate that fresh leafy vegetables should not be harvested in areas 
where animal faeces are found and evaluate the risk when other evidence of animal 
intrusion is found? If so, what is the size of the area (e.g. around/right next to where 
faeces were observed? Or larger areas/field?). Is it practical to delineate an area 
that should not be harvested? What is the scope of vegetables which should not 
be harvested (e.g. Would this be limited to vegetables which are damaged by wild 
animals and/or contaminated by wild animal faeces)?

A4. Fresh leafy vegetables that have direct faecal contamination (visible) on the 
edible portion of the crop must not be harvested. There is insufficient data to 
provide a standard no-harvest buffer zone recommendation, but there are several 
considerations that should be taken into account when considering a no-harvest 
buffer zone. Where there is animal intrusion and evidence of localized faecal 
contamination, an assessment of the extent of contamination should be conducted. 
Factors that should be considered in determining the size of the no-harvest zones 
should include the extent (e.g. volume/mass/area) of contamination, the distribution 
of contamination (e.g. localized, widespread), type of harvest (e.g. hand, mechanical), 
impact of irrigation or rain influencing splash or spread and the perceived timing 
of the contamination (e.g. recent, past). The purpose of establishing a buffer zone 
is to minimize risks of direct faecal contamination as well as preventing cross 
contamination with equipment, hands, and harvest tools.

Q5. Can JEMRA provide advice on the role of testing of water to control STEC in 
fresh leafy vegetables? Is testing for STEC warranted and under what circumstances? 
What results would indicate a concern? Are there appropriate indicator organisms 
that could be used in lieu of or in addition to testing for STEC? What would be 
acceptable levels (or levels of concern)? What should the frequency of water testing 
be?

A5. The Secretariat of the Joint FAO/WHO Expert Meetings on Microbiological 
Risk Assessment (JEMRA) does not recommend the routine testing of irrigation 
water for the presence of STEC. Information on testing and indicator organisms 
was addressed during a JEMRA meeting on the use and reuse of water in vegetable 
production (FAO and WHO, 2021b).

Q6. It has been suggested that we include a recommendation for storage under 7 
°C here. JEMRA, does the science support this as an appropriate temperature for 
preventing growth of STEC in fresh leafy vegetables? Are there other temperatures 
combined with time that could apply?

A6. There is no convincing scientific evidence that E. coli O157:H7 can grow on leafy 
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vegetables at temperatures lower than 7 °C. Moreover, there is little data available 
concerning the growth of non-O157 STEC in leafy vegetables. The following 
references are offered in support of this assessment:

Q7. The EWG is considering these alternative sentences. What is the role of testing 
fresh leafy vegetables for STEC and/or indicator organism (including acceptable 
levels of organisms or levels of concern and frequency of testing)? (See Q5 where 
we asked about testing water for questions that also apply to product testing.)

The working group is also considering these alternative sentences:

Microbiological testing of fresh leafy vegetables and of water for primary 
production for STEC is currently of limited use due to difficulty in detecting STEC 
resulting from low prevalence and low numbers of STEC in fresh leafy vegetables 
and in water.

STEC, if present, is usually only present in low numbers in fresh leafy vegetables, 
and this makes direct testing for these pathogens technically challenging.

Question: What is the role of testing fresh leafy vegetables for STEC and/or indicator 
organisms (including acceptable levels of organisms or levels of concern and 
frequency of testing)?

A7. Routine STEC testing at any stage is not recommended by the experts because 
the information derived from testing does not provide an accurate estimate of risk. It is 
strongly suspected that most contamination is sporadic and is non-homogeneously 
distributed within a lot and with low or very low numbers of contaminating 
microorganisms. This combination results in statistical challenges, resulting in 
most lots testing negative regardless of the contamination status of the lot. There 
are situations where targeted testing for STEC may be valuable, for example, to 
test system or product integrity where gross contamination is suspected. Product 
testing for indicators is also not recommended; however, like STEC testing, it can 
be useful in limited and specific situations where there is a need to verify or test a 
system. 
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The following questions (Q8–Q12) were presented by the CCFH eWG on the 
development of “Guidelines for the control of STEC in raw beef, fresh leafy 
vegetables, raw milk and raw milk cheeses, and sprouts” in October 2022. 

Q8. What (if any) interventions/practices/control measures have been shown to 
reduce STEC (or the risk of illness from STEC) during primary production of fresh 
leafy vegetables and post-harvest?

A8. None of the interventions/practices/control measures examined by the expert 
committee were deemed sufficiently effective, practical or cost effective to ensure 
consistent reduction in STEC on leafy vegetables either during production or after 
harvest.

Q9. Does the JEMRA report support the following statement? “Once product is 
contaminated with STEC it is not possible to eliminate it, and there are limited 
control measures that can be implemented to reduce it.”

A9. Yes. However, irradiation is an effective and reliable treatment for the 
elimination of microbiological hazards such as STEC in leafy vegetables. It is 
acknowledged that a range of cultural, economic, and market factors continue to 
impede commercial application of food irradiation. It should also be noted that 
some traditional preparation methods or culinary styles involve blanching or 
cooking of some leafy vegetable commodities before consumption, which would 
eliminate STEC. Additional control measures currently available such as leafy 
green washing using commercial sanitizers or natural extracts only manage to 
reduce levels of pathogens by about 1 log and sometimes even less.

Q10. Should water  used for irrigation and the application of fertilizers and 
pesticides for fresh leafy vegetables be tested for indicator microorganisms? For 
STEC? If so, should microbiological testing of water be routine, periodic, or “where 
necessary”? If “where necessary,” what conditions would warrant such testing?

A10. It is generally agreed that methods based on the presence of indicator 
microorganisms do not provide a good correlation of risk associated with 
STEC. Testing for STEC is preferable, although technical issues (sample size, 
methodological complexities) may affect the accuracy, sensitivity and practicality 
of available analytical methods in different laboratories. 

A2. Part 2
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However, indicator microorganisms such as E. coli have been widely used to 
indicate the presence of faecal contamination. In general, correlation between 
faecal indicator organisms and pathogens is usually observed in heavily polluted 
waters, but this correlation becomes erratic and biologically improbable in water 
with a low contamination. The use of logistic regression analysis and longitudinal 
studies have shown high E. coli concentrations could reasonably predict the 
probability of pathogen presence (e.g. STEC) in surface water. The use of indicator 
microorganisms should thus be used with the correct interpretation. 

The following accounts are from experts with country-specific knowledge of industry 
practices and some of their thoughts on water testing and risk assessment.

Spain: As in many other countries there are huge differences between growers from 
big and small companies. Big companies all export their products, and they have to 
comply with all the Private Standards that are in place (Global GAP., BRC, IFS, etc.). 
In these cases, they comply with the requirements included in the standards. Small 
growers sometimes do not even analyse the water at all, but rather do something 
in between, such as analysing water near harvest sights. In my opinion, even if we 
can have a risk assessment approach, some numbers are still needed, so I believe 
periodic water analyses could help the grower to validate that the assessment is 
somehow controlling the quality of the water. 

Norway: In Norway, the requirements for water testing are rather general. According 
to the Norwegian Quality System in Agriculture, all water sources used for irrigation 
should be (risk) assessed and protected against pollution. It is required that at least 
one water sample per water intake is tested every year, and the result must be ready 
by the time the product is harvested. I think that the samples are analysed for E. 
coli and some of the wholesale companies require testing for Salmonella as well. 
I do not think it is tested for STEC. It is required that the last day of irrigation 
prior to harvest is documented. If the growers are certified according to the private 
standards, they do have to comply with the requirements there. 

Africa: In Africa, commercial growers exporting their products will do annual 
water testing based on indicator organisms according to local legislation, Global 
GAP or other requirements.

Q11. What is the role of testing fresh leafy vegetables for (1) indicator microorganisms 
and (2) STEC?

A11. See comment above regarding the limited value of “indicator microorganisms” 
in the assessment of risk associated with STEC. 

Regarding testing for STEC, there is a need to improve sampling protocols and 
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analytical methods for the analysis of leafy vegetables. The expert committee 
thought there is no sufficient evidence to support testing before or after harvest.

Q12. Are there practices which, although they have not been shown to specifically 
reduce STEC, could be expected to reduce the risk from STEC, and thus should be 
included in the annex for fresh leafy vegetables?

A12. The expert committee are not aware of any practices that could specifically 
and reliably reduce STEC in leafy vegetables. Some interesting or promising 
approaches were noted in the scientific literature, notably the use of bacteriophage 
that targets STEC, but all remain at the research stage.
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