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FOREWORD

The Near East and North Africa (NENA) Region has always suffered from chronic water scarcity due to natural 
causes. However, in recent decades, several drivers related to demography, food security policies, and overall 
socio-economic development have intensified the scarcity of water. Additionally, the impacts of climate change 
and the food insecurity consequent to the war in Ukraine have rapidly and considerably amplified the pressure 
on the scarce water resources of the region.

Countries of the region are continuously searching for optimal ways for allocating these scarce water resources, 
promoting sound water accounting, monitoring water resources use from strategic hydrological systems, and 
enhancing water productivity and efficiency towards an improved saving of water to be reallocated.

One important variable to determine for these various actions is the consumption of water, or evapotranspiration, 
particularly from irrigated agriculture that consumes more than 85 percent of renewable fresh water resources, 
while continues to be essential to the sustainability of the food sector and farming systems.

The spatial scales involved are substantial and, with the rapid advances of space science and remote sensing 
technology, it was natural to call upon the satellites’ developments for the determination of evapotranspiration.

The FAO Regional Initiative on Water Scarcity for the Near East and North Africa (WSI), which is providing support 
to the countries’ efforts in addressing the sustainability of water resources management, has thus undertaken 
the enterprise to pull together major world-class experts in the determination of evapotranspiration through 
satellite remote sensing, to provide guidance to the different water actors of the NENA Region. Furthermore, 
the scope of the enterprise expanded to the other FAO regions around the world, through the inter-Regional 
Technical Platform on Water Scarcity (iRTP-WS).

First, a series of 25 webinars was thus organized to open the dialogue between experts and water actors. 
Second, the present publication was developed to report the outcome of the webinars series, along with 
further explorations, analysis, and insights on the subject of satellite remote sensing determination of 
evapotranspiration.

The present publication intends thus to provide: knowledge update and capacity development of water 
professionals; more awareness on the strengths, limitations, and fits-for-purpose for the range of remote sensing 
of evapotranspiration models and databases available; more clarity on issues related to operational aspects, 
including proper spatial and temporal resolutions for given applications and accuracy of the determinations 
provided by the various models and databases.

Overall, the publication is expected to serve as a useful reference for several water actors and professionals 
working for the sustainability of water resources management.

Abdulhakim Elwaer

Assistant Director-General and Regional Representative for the Near East and North Africa
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EXECUTIVE SUMMARY

1  https://dgroups.org/fao/wateraccounting/library/sqff8vmt?o=lc
2 Bastiaanssen W.G.M., Menenti M., Feddes R.A. and Holtslag A.A.M. (1998a). A remote sensing surface energy balance algorithm for Land 
(SEBAL), Part 1: Formulation. J. Hydrol., 212-213: 198–212.
Bastiaanssen W.G.M., Pelgrum H., Wang J., Ma Y., Moreno J.F., Roerink G.J. and van der Wal T. (1998b). A remote sensing surface energy balance 
algorithm for land (SEBAL)—Part 2. Validation. J. Hydrol., 212–213: 213–229
https://doi. org/10.1016/S0022-1694(98)00254-6
3 Allen R.G., Tasumi M. and Trezza R. (2007a). Satellite-based energy balance for mapping evapotranspiration with internalized calibration 
(METRIC) - model. J. Irrig. Drain. Eng. ASCE, 133: 380–394.
Allen R.G., Tasumi M., Morse A., Trezza R., Wright J.L., Bastiaanssen W., Kramber W., Lorite I. and Robison C.W. (2007b). Satellite-based energy 
balance for Mapping evapotranspiration with Internalized Calibration (METRIC) - Applications. J. Irrig. Drain. Eng., 133(4): 395–406. https://doi.
org/10.1061/(ASCE)0733-9437(2007)133:4(395).
4 Anderson M.C., Norman J.M., Diak G.R., Kustas W.P. and Mecikalski J.R. (1997). A two-source time-integrated model for estimating surface fluxes 
using thermal infrared remote sensing. Remote sensing Environ., 60: 195-216.
Anderson M.C., Norman J.M., Mecikalski J.R., Torn R.D., Kustas W.P. and Basara J.B. (2004). A multi-scale remote sensing model for disaggregating 
regional fluxes to micrometeorological scales. J. Hydrometeor., 5: 343-363.
Anderson M.C., Kustas W.P., Norman J.M., Hain C.R., Mecikalski J.R., Schultz L., González-Dugo M.P., Cammalleri C., d’Urso G., Pimstein A. and Gao 
F. (2011). Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. 
Sci., 15: 223-239.

In agricultural and other vegetated lands, Evapotranspiration (ET) nearly always represents the largest share of 
water outflow from the system, identified as the ‘consumptive’ fraction of water use.

Quantifying ET in space and time, thus, is extremely relevant for water resources management applications, 
including: monitoring water consumption by various land use systems; water allocation, transfer and regulations; 
management of irrigation at the scheme and on-farm levels; determination of crop water productivity; prediction 
of yield through models; assessment of agricultural drought indexes; performing water balance and water 
accounting within hydrologic systems at a wide range of scales; development of effective strategies of adaptation 
to climate changes.

At local or field scale several methods and instrumentations for ET determination have been developed over time 
(e.g. soil-moisture measurements for water depletion monitoring; weighing lysimeters; the Penman-Monteith 
equation; the Bowen-ratio/energy balance; the Eddy covariance; the Large Aperture Scintillometer). However, 
these methods are generally complex, expensive, often focused on limited spatial scales, and mostly confined 
to academic and research environments. Scaling them up to larger areas is still prohibitive due to cost. For large 
scales, such as irrigation schemes, watershed, sub-national, national and basin scales, the only feasible and 
affordable methods, so far, for ET determination are through satellite remote sensing (RS).

The literature provides ample and diversified offers of RS ET models and platforms, and users are concerned 
with operational issues such as: proper spatial and temporal resolution for given applications; accuracy of the ET 
determinations provided by the various models and databases; methods to conduct qualitative and quantitative 
error analyses of RS-ET determinations; modalities to test the RS ET with field ET measurements; and criteria to 
know which ET data sources best fit one’s purpose.

The FAO Regional Initiative on Water Scarcity for the Near East and North Africa (WSI) of the Near East and North 
Africa (NENA) region has then taken the initiative of addressing these concerns in consultations with various 
countries’ stakeholders in the region, partners and major experts in the RS ET domain, and with the support of 
the Swedish International Development Cooperation Agency (Sida). Two major enterprises were carried out: (i) 
a plan of a webinars series1, (ii) the present publication reporting on the major outcomes of the webinars series, 
adding further insights, and providing an enriched literature review.

The selected RS ET models, considered as most operational and presented to the webinars series and discussed 
in this publication, are: SEBAL (Surface Energy Balance Algorithm for Land;2 METRIC (Mapping Evapotranspiration 
at high Resolution with Internalized Calibration;3 ALEXI/DisALEXI (Atmosphere-Land Exchange Inverse);4 SSEBop 

https://dgroups.org/fao/wateraccounting/library/sqff8vmt?o=lc
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(Simplified Surface Energy Balance – Operational;5 PT-JPL (Priestley-Taylor from Jet Propulsion Lab);6 ETLook;7 
ETMonitor;8 ETWatch.9

The selected RS ET models can be grouped into different categories, depending on the core algorithms used 
(e.g. surface energy balance, Penman-Monteith, psychrometry), the way the ‘surface’ is characterized (e.g. 
single layer or two-layer, also referred to as single-source or two-source), the spatial resolution and coverage 
(e.g. coarse or fine resolution, with global or local coverage), and a few other distinguishing factors. However, 
the various RS ET models may not fall rigidly into only one category, and often, adopt a mix of approaches.

The key categories and related RS ET models are the following.

The Surface Energy Balance (SEB). The exchange of energy between the land surface and the overlying 
atmosphere, and the underlying ground, involves four important energy terms: the net radiation (Rn), 
representing the net between gain and losses of radiation energy by the surface; the sensible heat flux (H), 
representing the loss (or gain) of energy by the surface as heat transfer to the atmosphere; the ground heat 
flux (G), representing the loss (or gain) of energy by heat conduction through the lower boundary of the surface 
layer; the latent heat flux (λE), representing a loss (or gain) of energy from the surface due to evaporation.

All terms have the unit of W m−2 and they are in balance through the following equation:

λE = Rn − G – H

λE is the residual of the surface energy balance, as derived by the RS models that are based on SEB. To derive 
the amount of water evapotranspired, E, (expressed in kg), λE is divided by λ, the latent heat of vaporization 
(expressed in J kg-1).

Major RS ET models based on SEB are: SEBAL; METRIC; ALEXI-DisALEXI; and ETWatch (though, in combination 
with others). All of them are one-source models, except ALEXI-DisALEXI, which is a two-source model, and 
they all can achieve a fine spatial resolution (e.g. 30 m).

While the SEB is a reliable approach that is based on sound physics, cloud cover is considered a serious 
interference to RS ET applications in various parts of the world (e.g. Asia and other regions of Africa and Europe). 
In fact, cloud cover reduces the number of clear images to be processed and thereby extends time periods 
between clear images.

The Penman-Monteith (PM) model. To circumvent the problem of cloud-cover interference indicated for the SEB 
approach, the Penman-Monteith (P-M) model can be adopted, i.e. using the PM equation below:

5 Senay G.B., Budde M., Verdin J. and Melesse A. (2007). A coupled remote sensing and simplified surface energy balance approach to estimate 
actual evapotranspiration from irrigated fields. Sensors, 7(6): 979. https://doi. org/10.3390/s7060979.
Senay G.B., Bohms S., Singh R.K., Gowda P.H., Velpuri N.M., Alemu H. and Verdin J.P. (2013). Operational evapotranspiration mapping using 
remote sensing and weather datasets: A new parameterization for the SSEB approach. JAWRA, 49(3): 577-591. https://doi.org/10.1111/jawr.12057.
Senay G.B. (2018a). Satellite psychrometric formulation of the Operational Simplified Surface Energy Balance (SSEBOp) model for quantifying and 
mapping evapotranspiration. Amer. Soc. Agric. Biol. Eng., 34(3): 555-566.EST FIT-FOR-PURPOSE
Senay G.B. (2018b). Landsat-based illustrative implementation of Satellite Psychrometry for ET Mapping. U.S.
Geological Survey data release. doi.org/10.5066/F7ZS2VR6.
Senay G.B., Kagone S. and Velpuri N.M. (2020). Operational global actual evapotranspiration: development, evaluation, and dissemination. 
Sensors, 20: 1915 [doi:10.3390/s20071915].

6 Fisher J.B., Tu K.P. and Baldocchi D.D. (2008). Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, 
validated at 16 FLUXNET sites. Remote sensing Environ., 112: 901–919.
7 Bastiaanssen W.G.M., Cheema M.J.M., Immerzeel W.W., Miltenburg I.J. and Pelgrum H. (2012). Surface energy balance and actual 
evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model. Water Resour. Res., Vol. 48, 
W11512, doi: 10.1029/2011WR010482.
8 Hu G. and Jia L. (2015). Monitoring of evapotranspiration in a semi-arid inland river basin by combining microwave and optical remote sensing 
observations. Remote sensing, 7: 3056-3087 doi:10.3390/rs70303056.
9 Wu B.F., Xiong J. and Yan N.N. (2008). ETWatch for monitor regional evapotranspiration with remote sensing.
Advances Water Sci., 19(5): 671–678.
Wu B.F., Xiong J. and Yan N.N. (2011). ETWatch: models and methods. J. Remote sensing, 15(2): 224–239.
Wu B., Zhu W., Yan N., Xing Q., Xu J., Ma Z. and Wang L. (2020). Regional Actual evapotranspiration estimation with land and meteorological 
variables derived from multi-source satellite data. Remote sensing, 12, 332; doi:10.3390/rs12020332.
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where: Δ is the slope of the relationship between saturation vapor pressure and temperature (kPa oC-1); es is 
the saturation water vapor pressure at the air temperature (kPa); RH is the relative humidity at air temperature 
(%);  is the psychrometric constant (kPa ºC-1); ρa is the air density (kg m-3); cp is the specific heat of air at constant 
pressure (J kg-1 K-1); rs is the surface resistance (s m-1); ra is the aerodynamic resistance (s m-1), and Rn and H 
already defined.

While Rn and G terms are computed as for the SEB, the PM equation requires the determination of the vapor 
pressure deficit , the aerodynamic resistance (ra) and the surface resistance (rs).

The vapor pressure deficit  is derived by using meteorological data (Ta and RH), usually taken by other RS 
sources. The aerodynamic resistance (ra) is derived through numerical iteration and rs depends on the type 
of vegetation cover and minimum stomatal resistance, largely influenced by soil moisture content. Passive 
microwave radiometer (AMSR-E) imagery can be used to derive continuous surface soil moisture as it is little 
influenced by cloud cover. The root-zone soil moisture can then be derived through additional modeling (water 
balance, etc.) and thus providing the adjustment for the rS.

There are two approaches to having the model address the two-source of λE (soil and vegetation separately). 
One considers the aerodynamic resistance of the soil (ra-S) separated from the one of the vegetation, or 
canopy, (ra-C). Similarly, the surface resistance (rS) is disaggregated into the soil surface resistance (rS-S) and the 
vegetation (or canopy) surface resistance (rS-C). The other considers the Shuttleworth–Wallace (SW) equation, 
based on the PM equation, to solve for the two latent heat fluxes.

A reduced version of the PM model is represented by the Priestley-Taylor (PT) equation for the determination 
of the potential evapotranspiration (ETp) of an extensive areas of well-watered vegetation, and it is obtained by 
the product of equilibrium evaporation () and the Priestley-Taylor constant (θ=1.26).

Major RS ET models based on PM (or its SW and PT versions) are: ETLook (using the original PM equation, as 
dual-source); ETMonitor (using the SW equation, as dual-source); ETWatch (using a combination of the PM 
equation and the SEB approach); PT-JPL (using the PT equation).

The Satellite Psychrometric Approach (SPA). The Satellite Psychrometric Approach (SPA) follows an analogy with 
the principles of psychrometry for the determination of the water vapor content of the air.

The instrument used in psychrometry (the psychrometer) consists of two thermometers with one 
thermometer-bulb kept continuously wet (wet-bulb) while the other thermometer-bulb is measuring the 
ambient air temperature (dry-bulb). The wet-bulb thermometer registers a lower temperature than the dry-
bulb thermometer as a result of the cooling effect of evaporation, under equilibrium heat exchange condition. 
The actual water vapor pressure of the air (e

a, in kPa) is then determined through the difference between the 
dry- and wet-bulb readings along with a psychrometric constant (γ, in kP K-1), i.e.

where es is the saturation vapor pressure at the temperature of the wet bulb (kPa), and Tw and Td are the air 
temperature measured by the wet-bulb and dry-bulb thermometers (K), respectively.

The relative humidity (RH), obtained by the ratio ea/eS, is thus a measure of the ‘dryness’ of the air, and it is 
obtained as

The RS modeling of ET based on SPA adopts an analogy between the ‘dryness of the air’ (RH) and the ‘dryness 
of the surface’ expressed as ET fraction (ETƒ), i.e.

where ETƒ represents the ratio between actual and maximum ET, nominally varying between 0 and 1; γS is 
denoted as a “surface psychrometric constant” (SPC) based on the aerodynamic properties of a dry-bare 
surface (K-1); TS is the satellite-derived land surface temperature (LST, in K); and TC is the cold/wet limit surface 
temperature (K).
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The only RS ET model based on the SPA approach is the SSEBop.

A summary of the different features of the selected models (including conceptual approach, input variables, sources of 
inputs data, output spatial and temporal scales, and major application) is reported in the following table.

Model
Conceptual 

approach
Input variable Sources(*)

Output spatial 

scale

Output 

temporal 

scale(**)

Major 

application

SEBAL Residual 
Surface 
Energy 
Balance

1-source

(λE=Rn-H-G)

LST

Albedo, NDVI

Land surface 
elevation

Cloud cover 
(LandSAF)

Ta, RH, wind

VIIRS, Landsat, 
ECOSTRESS,

Sentinel, Landsat

SRTM, Copernicus

MSG

CFSR, GEOS

30 m (Landsat)

375 m (VIIRS)

1 Km (MODIS)

1 day  (VIIRS, 
MODIS)

8 days 
(Landsat)

District Water 
Balance Irrigation 
Crop yield

Carbon 
sequestration

METRIC Residual 
Surface 
Energy 
Balance

1-source 
(λE=Rn-H-G)

LST

Albedo

Land surface 
elevation

Land Cover 
Type

NDVI or LAI

ETr, Wind speed

Landsat or VIIRS

Landsat, Sentinel 2

SRTM - DEM

NLCD or ESA 
WorldCover

Landsat, Sentinel 2

Weather Stations or 
NLDAS or CFSV2 or 
GridMET

30 m (Landsat)

30 m (VIIRS 
LST sharpened 
using Sentinel 
2)

8 days 
(Landsat)

ET from 
parcels>5ha 

District Water 
Balance

Irrigation

Basin Water 
Balance

ALEXI-

DisALEXI

Residual 
Surface 
Energy 
Balance

2-source

(λE=Rn-H-G= 
λE

C+ λES)

LST

Albedo

NDVI or LAI

Land Cover

Ta profile 
& other 
meteorological 
inputs

GOES (for ALEXI)

LANDSAT (for 
DisALEXI)

MODIS (for ALEXI)

Landsat (for 
DisALEXI 

MODIS (for ALEXI)

Landsat (for 
DisALEXI

NLCD

CFSR

5-10 km 
(ALEXI)

30 m 
(DisALEXI)

1 day (ALEXI)

8 days 
(DisALEXI)

Continental ET 
Monitoring; 

Drought Indexing

(ALEXI)

Local ET 
Monitoring; 
District Water 
Balance;

Irrigation

(DisALEXI)



xxv

Model
Conceptual 

approach
Input variable Sources(*)

Output spatial 

scale

Output 

temporal 

scale(**)

Major 

application

SSEBop Psychrometric 
Approach

1-source

LST

Ta

Albedo

Land surface 
elevation

NDVI

ETr

MODIS or Landsat

PRISM or Chelsa/
WorldClim

MODIS or Landsat

SRTM - DEM

MODIS or Landsat

GRIDMET/GDAS

30 m (Landsat)

1 Km (MODIS)

1 day (MODIS)

8 days 
(Landsat)

Continental 
Drought 
Indexing, 

ET monitoring

Crop Water Use 
Assessment

PT-JPL Priestley-
Taylor

3-source 
including 
interception 
evaporation 

LST

Albedo

NDVI or LAI

meteorological 
inputs

ECOSTRESS, 
MODIS, VIIRS or 
Landsat

MODIS or Landsat

Landsat, MODIS, 
VIIRS, Planet, 
Sentinel-2

GEOS-FP, MODIS, 
CFSR for Ta, RH

3 m (Planet)

30 m (Landsat)

70 m 
(ECOSTRESS)

1 Km (MODIS)

1 day (MODIS)

2-5 days 
(ECOSTRESS)

8 days 
(Landsat)

Local to Global 
scale ET 
monitoring

ETLook Penman-
Monteith

2-source

LST

Albedo

NDVI

Land surface 
elevation

meteorological 
inputs

MODIS, VIIRS, 
Sentinel-3 or 
Landsat

MODIS/VIIRS/
Sentinel-3 or 
Landsat/Sentinel-2

MODIS, VIIRS, 
ProbaV, Sentinel2 
and 3, Landsat

Copernicus DEM or 
SRTM DEM 

GEOS-5, 
ERA51, Gridded 
Meteostations

10m 
(Sentinel-2)

30 m (Landsat)

375m (VIIRS)

1 Km (MODIS, 
Sentinel-3)

1 day

(inputs are 
interpolated/
extrapolated 
between 
observations)

Field-scale to 
continental ET 
monitoring

Agricultural 
water 
management
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Model
Conceptual 

approach
Input variable Sources(*)

Output spatial 

scale

Output 

temporal 

scale(**)

Major 

application

ETMonitor Shuttleworth–
Wallace

(modified PM)

2-source

Surface/Top 
Soil Moisture

Albedo

NDVI

Land Cover

Land surface 
elevation

Soil physical 
properties

meteorological 
inputs

AMSR-E

GLASS or MODIS

MODIS

Variable sources

Variable DEMs

Variable maps

Gridded or Weather 
Stations

1 Km (MODIS) 1 day (MODIS) Regional & 
National ET 
monitoring

Basin Water 
Balance

ETWatch Residual 
Surface 
Energy 
Balance

& Penman-
Monteith

& Water 
balance

1-source

LST

Albedo

Surface/Top 
Soil Moisture

Land surface 
elevation

NDVI

Sunshine 
Duration

Surface 
roughness

Boundary 
layer height & 
parameters

meteorological 
inputs

MODIS & MERSI-
LL2 & Landsat TM/
ETM/TIRS

MODIS & MERSI-LL 
& TM/ETM/OLI

AMSR-E, SMOS3, 
SMAP4

Variable DEMs

MODIS & MERSI-LL

TM/ETM/OLI & 
WFV5 & MSI6

MSC7 VISSR-II8/
AGRI9

SEVIRI10

MODIS & MERSI-LL 
GRD11 AIRS & MODIS 
& HIRAS-II12

Gridded or Weather 
Stations

5m (MSC)

10m (MCI)

16m (WFV)

30m (TM/OLI)

250m-1 Km 
(MODIS/ 
MERSI-LL )

1 day (MODIS 
& MERSI-LL)

4-10 day (MCI 
& GRD)

4-16 days 
(WFV/ TM)

Basin Water 
resource impact 
assessment of 
projects on water 
conservancy 
and ecological 
protection 

Water 
accounting 
of irrigation 
district Regional 
& National ET 
monitoring

(*) These sources are continuously evolving as more satellite missions are launched and more databases are made available. Furthermore, the geographic selection 
may provide alternative and more appropriate sources.
(**) This temporal scale refers to the minimum interval between key satellites overpasses

Notes: 1. The 5th generation ECMWF Reanalysis for the Global Climate and Weather data. 

2. Medium Resolution Spectral Imager-LL on board polar satellite Fengyun-3.

3. Soil Moisture Ocean Salinity Satellite.

4. Soil Moisture Active Passive Satellite.

http://www.nsmc.org.cn/nsmc/cn/instrument/VISSR-2.html
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5. Chinese GF-1 Wide Field View.

6. MultiSpectral Instrument (MSI) on board Sentinel-2.

7. Multi-spectral camera on board Resources satellite three of China.

8. Stretched Visible and Infrared Spin Scan Radiometer-II on board geostationary satellite Fengyun-2.

9. Advanced Geostationary Radiation Imager on board geostationary satellite Fengyun-4.

10. The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board MSG.

11. Sentinel-1 Ground Range Detected.

12. Hyperspectral Infrared Atmospheric Sounder-II on board polar satellite Fengyun-3.

Source: Author’s own elaboration.

All RS ET models reported carry over a certain degree of complexity, which implies specific algorithms, parameterization 
and associated risks of uncertainty. Though, a more complex model is not necessarily more accurate. We have seen that 
SSEBop (considered one of the relatively simplest models presented) can perform similarly to the other more complex 
models, on extended spatio-temporal scales.

An attempt to evaluate the selected RS ET models, in terms of their degree of complexity, ranks ALEXI-DisALEXI, ETLook, 
ETMonitor and ETWatch as “high”, followed by SEBAL and METRIC as “moderate”, and then followed by SSEBop and PT-
JPL as “low”.

Some of these models have been used for various water resources management applications in a few countries of the 
NENA Region, while two applications (SIMS and IrriWatch) have interested specifically on-farm irrigation management.

Some of the above RS ET models have generated data that are reported in databases or portals (here indicated also as 
platforms) made freely available to the public and accessible from the web. The platforms presented in the webinars 
series and discussed in this publication are: USGS FEWSN (Famine Early Warning Systems Network with data mostly from 
SSEBop); WaPOR (with ET data derived from ETLook); GloDET (with ET data derived from DisALEXI); EEFlux (with ET data 
derived from METRIC); OpenET (with ET data derived from an ensemble of algorithms including SEBAL, METRIC, SSEBop, 
ALEXI-DisALEXI, among others); and ECOSTRESS (with ET derived from PT-JPL). Some highlights on the ‘cloud’ platform of 
ETWatch (ETWatch Cloud) are provided as well.

Distinctive features of the various platforms discussed in this publication are summarized in the following synoptic table.

Database 

- Portal

Model 

used

ET of 

departure

Minimum 

Time 

resolution

Spatial 

resolution

Year of 

time 

series

Geographical 

coverage

Minimum 

latency
Major use

FEWS 

NET

SSEBop instantaneous Decadal 1 km 2003 Global

Continental

3 days Drought 
monitoring

WaPOR ETLook daily Decadal 250m 
100m

30m

2009 Continental

Basin

3 days Water 
Accounting

Water 
Productivity

GloDET ALEXI

DisALEXI

half-day

half-day

Daily 375m

30m

2013 By project 2 days Water 
Management

EEFlux METRIC instantaneous Daily 30m 1984 Global

(on user 
demand)

~3 days

following 
the most 
recent 
Landsat 
overpass

Water 
Management

Irrigation
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OpenET Ensemble1 instantaneous Daily 30m 2016 Western 
United States 
of America

2 days Water 
Management

Irrigation

ETWatch 

Cloud

ETWatch instantaneous

daily

monthly

yearly

Daily 250m-1 km

30m

16m

10m

5m

2000 Basin

By project

North China

~2 days

following 
the most 
recent 
satellite  
overpass

Integrated 
water 
resources 
assessment

Water 
Management

Irrigation

Water 
Accounting

Water 
Productivity

Notes: 1. The ensemble includes the following models: ALEXI-DisALEXI (version 0.0.27); METRIC (specifically eeMETRIC version 0.20.15); PT-JPL 
(version 0.2.1); SEBAL (specifically geeSEBAL version 0.2.1); SIMS (version 0.0.20); and SSEBop (version 0.1.5).

Source: Author’s own elaboration.

It is important to recall that the databases and portals carry over the uncertainty of the RS ET models from 
which they derive the ET products. In fact, a key discussion of this publication is about the issue of uncertainties 
involved in the RS-based determination of ET.

We need to be aware that the RS determination of ET is subject to several sources of error that need to be 
considered comprehensively. Typically, and among others, we may have: spatial and temporal error in the 
assessment of cloud, aerosol, dust, and smoke contamination of the atmosphere affecting the surface net 
radiation; the non-uniform underlying land surface affecting wind patterns, roughness and Land Surface 
Temperature (LST); daily variation of the atmospheric stability conditions affecting the aerodynamic conductance; 
insufficient spatial and temporal representation of some meteorological variables like wind speed and vapor 
pressure of the atmosphere, which influence aerodynamic and canopy conductance, respectively; etc.

Furthermore, the determination of the RS input variables for ET computation is mostly instantaneous at the 
time of the satellite overpass. Therefore, additional sources of uncertainty are in the time integration of ET over 
the daytime hours, and in the time interpolation of daily ET values over the period in between two satellite 
overpasses (e.g. like in the case of Landsat having eight days of revisit cycle). Additionally, some computations 
might require trained and knowledgeable operator skills while others might include processing for ‘data 
sharpening’, ‘data fusion’ and ‘cloud masking’, among others.

It is evident that the complexity of the various nested algorithms to derive ET, the adequacy of these algorithms 
to describe the various processes involved, the quite intertwined sources of errors involved in the input variables, 
the knowledge and skill of the operator, etc., requires a comprehensive uncertainty assessment of ET model 
performance and of the data they provide in databases. This is accomplished by comparisons against reliable 
field ET measurements or another model considered being of a higher standard. Several statistical methods 
can be adapted, from the sensitivity and regression analysis to the method of moments.

The variability of uncertainty in ET by the various models was observed to depend on several factors, including 
the extent of parameter calibration for a given terrain landscape and field, the accuracy of the input variables 
and their capacity to represent the actual conditions at the given scale, the uniformity of the land surface being 
scanned by the satellite sensors, and the spatial and time scales evaluated.

It was also observed some inconsistency in the degree of uncertainty with the period of the year (e.g. during 
the season) and with various climatic conditions (e.g. arid, sub-humid, etc.). In short, notwithstanding the good 
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performance in given conditions, there is no guarantee that the expected model accuracy remains consistent 
throughout space and time. Therefore, one way to look at the various models is on relative terms.

Being mindful of the magnitude of uncertainty allows one to properly identify and select the determination 
method most suitable for a given application, so that uncertainties are likely to be within acceptable limits for 
sound quantitative analysis leading to appropriate decisions. Therefore, the identification by the users of the 
type of application they will be using the RS ET data for (including the most appropriate spatial and temporal 
scales, if one-source or two-source type of model, etc.), will guide in selecting the likely model/method of RS 
ET determination with an expected uncertainty (or achievable accuracy) that falls within the acceptable limits, 
and thus to select the model/method that best fits the purpose.

While this simple logical framework appears straightforward, in reality there are still open questions on: (i) 
the acceptable limits of uncertainty for a given application; and (ii) the expected uncertainty (or achievable 
accuracy) by the various models/methods of RS ET determinations.

In fact, there is a need to investigate thoroughly with the various water users, decision makers and stakeholders 
in general, the acceptable limits of ET uncertainty for their applications. On the other side, the best RS ET 
determinations show uncertainty in the range of 10–20 percent. Furthermore, it has been observed that, overall, 
the RS ET uncertainty tends to decrease going from smaller to larger spatial scales and from shorter to longer 
time scales.

The importance of accurate representation of local conditions to reduce errors in RS ET determinations 
cannot be understated, particularly in complex landscapes having drastic changes in the micrometeorological 
variables and land surface properties. In fact, where the landscape is mostly uniform (e.g. flat and extensive 
field crops) and the meteorological conditions are fairly even (e.g. clear sky, moderate wind) the likelihood is 
higher to obtain accurate ET with any model, but when the terrain is significantly variable in elevation, slope, 
aspect, wetness, vegetation cover, etc., and the meteorological conditions are substantially uneven (e.g. 
variable humidity and temperature of the near-surface air, cloudy conditions, fluctuations in wind speed, etc.) 
the likelihood to obtain accurate ET is reduced and accuracy will depend on the specific model and how well it 
recognizes and incorporates the land/atmosphere variability.

The most difficult cases are represented by environments characterized by high cloudy conditions where all 
models requiring LST are mostly excluded from accurate ET estimation.

In regions having extensive cloudiness, major attempts to obtain ET is through those models that use microwave 
radar to estimate soil-surface moisture content (e.g. ETMonitor and ETWatch). This approach is however prone 
to error due to the coarse scale of the microwave radar (25 km pixel size) and due to the interference of the 
vegetation covering the soil.

Difficult tasks remain the time integration over the day and the interpolation between days of satellite overpasses.

It is part of the research nature that modeling groups tend to describe and project their models in the most 
positive ways and present comparisons that show the most promising results. However, we strongly encourage 
all modeling groups to expand the scope of their work towards producing dependable estimates of uncertainties 
in RS ET products that may vary with location, vegetation type and time of year. These estimates, which are 
probably best known or estimated by the model developers and operators, will be invaluable in guiding users of 
RS ET data on expected uncertainties and biases when employed to estimate water consumption for different 
purposes.

This places a large burden on developers and users alike, but we recognize that estimation of error and bias is 
imperative to the acceptance and adoption of spatially and remotely derived estimates of ET into operational 
practice.

We need to be aware of the challenges, tradeoffs and limitations we are facing when dealing with RS ET 
determinations. The complexity of the systems we are dealing with cannot be a justification for not becoming 
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more aware of such technologies and their challenges, tradeoffs and limitations and thereby proceeding blindly 
into the decision-making process involving the sustainable management of such a precious resource as water.

Therefore, RS ET models must continue to be explored, evaluated, scrutinized, tested, and refined.

The future of RS ET determination appears to be bright, offering continuously new opportunities. The missions 
and technology of satellites are unfolding at a rapid pace so that remote sensing applications are broadening, 
accuracy is increasing, and spectral, temporal and spatial resolutions are becoming more granular. Among the 
flagships programmes for the near future we can mention: ECOSTRESS and SBG, from the National Aeronautics 
and Space Administration (NASA, United States of America); Copernicus, from the European Commission (EU); 
WaPOR phase II (and III), from FAO; Hydrosat, from a private company; LSTM, from the European Space Agency; 
and TRISHNA, from a joint development by the French Space Agency (CNES) and Indian Space Research 
Organization (ISRO).

It is valuable that programmes around space science are very active and that a large number of competing 
groups of RS ET developers are offering methods and data that can be inter-compared and contrasted. This 
should make it easier and more apparent in recognizing ‘truth’. It is upon the user to seize these opportunities 
wisely.
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1. INTRODUCTION

Evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate 
feedback, agricultural management, and water resources (Fisher et al., 2017). Particularly in agricultural 
and other vegetated lands, ET nearly always represents the largest share of water outflow, identified as the 
‘consumptive’ fraction of water used by the system.

Quantifying ET in space and time, thus, is extremely relevant for water resources management applications, 
including: monitoring water consumption by various land use systems; water allocation, transfer and regulations; 
management of irrigation at the scheme and on-farm levels; determination of crop water productivity; 
prediction of yield through models; assessment of agricultural drought indexes; performing water balance and 
water accounting within hydrologic systems at a wide range of scales; development of effective strategies of 
adaptation to climate changes.

Occurring when liquid water is converted to the vapor phase, ET is regulated by complex land-plant-atmosphere 
interactions that are primarily impacted by weather and additionally influenced by variability in topography, 
wind patterns, soil moisture and vegetation type. As a result, ET is the most challenging to be quantified among 
all variables of the hydrological cycle.

In fact, despite the significant advance in ET science and applications over the last decades (e.g. Baldocchi, 
2005; Anderson et al., 2011; Mueller et al., 2013; Zhang et al., 2016), there is still a knowledge gap in hydrological 
and climatological dynamics due to insufficient capabilities in the determination and monitoring of ET from 
local to global scales (Fisher et al., 2017).

At local or field scale, several methods and instrumentations for ET determination have been developed 
over time, that include: soil-moisture measurements for water depletion monitoring; weighing lysimeters; the 
Penman Monteith equation; the Bowen-ratio/energy balance; the Eddy covariance; and the Large Aperture 
Scintillometer; (e.g. Howell et al., 1991; Baldocchi et al., 2001; Fisher et al., 2011; Liu et al., 2011).

However, these methods are generally complex, expensive, and often focused on limited field scales, and are 
therefore mostly confined to academic and research environments. Scaling them up to larger areas becomes 
prohibitive due to cost. For large scales (e.g. irrigation schemes, watershed, sub-national, national and basin 
scales) the only feasible and affordable methods for ET determination are through satellite remote sensing (RS), 
where the spatial distribution of ET is revealed.

Although the various satellites missions do not meet fully the spatial, temporal, spectral, and accuracy 
requirements for a complete ET-based science and applications (Fisher et al., 2017), the progress and advances 
in the availability of moderate resolution earth observations over recent years, along with the development of 
sophisticated algorithms, allows the determination of the spatial distribution of ET.

A review of the literature has led to the identification of several models, of which the following have been 
selected as most operational for RS determination of ET:

 X SEBAL (Surface Energy Balance Algorithm for Land; Bastiaanssen et al., 1998a, 1998b) 

 X METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration; Allen et al., 2007a and 
2007b)

 X ALEXI/DisALEXI (Atmosphere-Land Exchange Inverse; Anderson et al., 1997, 2004 and 2011)

 X SSEBop (Simplified Surface Energy Balance – Operational; Senay et al., 2007 and 2013; Senay 2018a, 2018b) 

 X PT-JPL (Priestley-Taylor from Jet Propulsion Lab; Fisher et al., 2008)

 X ETLook (Bastiaanssen et al., 2012)
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 X ETMonitor (Hu and Jia, 2015)

 X ETWatch (Wu et al., 2008, 2011 and 2020)

As can be expected, each method has specific advantages and limitations, spatial and temporal resolutions, 
strengths and weaknesses, uncertainties and best fitting domains of application.

Moreover, most of the above ET algorithms have been used to generate ET databases or portals (here indicated 
also as platforms) over different time series that have been made freely available to the public and accessible 
from the web, like USGS FEWSN (Famine Early Warning Systems Network with data mostly from SSEBop), 
WaPOR (with ET data derived from ETLook), GloDET (with ET data derived from DisALEXI), EEFlux (with ET 
data derived from METRIC), OpenET (with ET data derived from an ensemble of algorithms including SEBAL, 
METRIC, SSEBop, ALEXI-DisALEXI, among others), and ECOSTRESS (with ET derived from PT-JPL).

Confronted with this quite ample and diversified offer of RS ET models and platforms, users are concerned with 
operational issues such as: proper spatial and temporal resolution for given applications; accuracy of the ET 
determinations provided by the various models and databases; methods to conduct a qualitative (and at least 
partially quantitative) error analysis of RS-ET determinations for the various algorithms/models; modalities to 
test the RS ET with field ET measurements; criteria to know which ET data sources best fit one’s purpose.

Against this backdrop, the FAO Regional Initiative on Water Scarcity for the Near East and North Africa (WSI) of 
the NENA Region, with the support of the Sida Project (FAO, 2017), and in consultations with various countries’ 
stakeholders in the region, partners, and major experts in the RS ET domain, elaborated a plan of webinars 
addressing these various issues.

More specifically, the main objectives of the webinar series were the following:

1. updating and upgrading the knowledge regarding current RS ET determination, the most common and 
adopted algorithms and approaches, and the latest advances; 

2. increasing the capacity of key water professionals in the assessment of RS ET uncertainty and related 
acceptable limits for their field of application; 

3. building awareness on the strengths, limitations and fits-for-purpose for the range of RS ET models and 
databases available; 

4. providing the participants with a complete and advanced set of documentation on the various topics treated 
during the webinar series. 

The webinars were accompanied by ‘suggested readings’ providing basic background material promoting 
proficient attendance and relevant discussion session. Recording of the webinars, copies of the presentations 
and any other additional pertinent documentation is available on the following Dgroup link. 10

The major outcomes of the webinars series, along with further insights and an enriched literature review, are 
reported in the present publication. 

Chapters 2 and 3 attempt to provide a comprehensive outlook and a comparative analysis of the selected RS 
ET models, including inputs requirements, spatial-temporal and spectral resolutions, critical steps prone to 
errors, expected accuracy, strengths and weakness, and best fit for various applications.

Similarly, chapters 4 and 5 analyse and compare the identified database or portals (platforms) on the basis of 
their distinctive features, including spatial and temporal resolutions, geographical coverage, length of the time 
series, and other peculiarities.

Chapter 6 provides some field applications of certain RS ET models, and in particular some that have interested 
the NENA Region and the on-farm irrigation management. Moreover, this chapter illustrates two examples 
of operational platforms that integrate the RS ET determinations into a decision support system for irrigation 
management and scheduling, and that account for other agronomic, engineering and economic factors.

10  Water Accounting & Water for Food - D Group. https://dgroups.org/fao/wateraccounting/library/sqff8vmt?o=lc. 
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A relatively extended treatment on the subject of “uncertainty” related to RS ET determinations is then found 
in chapter 7. Here, a background on methods addressing uncertainty and some insights on the risks of errors 
related to the selected RS ET models are reported. Chapter 7 devotes also discussions on the limits of 
uncertainty that can be considered acceptable for specific purposes and on the way to decompose major 
sources of uncertainty in RS ET determinations. This chapter assumes particular relevance to increase the 
awareness of the reader about the challenges faced by RS ET determinations.

Chapter 8 gives just a brief background on some pertinent European, United States of America and other 
international RS flagships programmes for the near future, considering that the activities around space science, 
including missions and technology of satellites, are very dynamic.

The publication then closes with some concluding remarks in chapter 9, where critical reflections, inferences 
and key messages are offered, along with some prospects for the future directions of RS ET determination.

Finally, an extensive number of relevant references is provided in chapter 10.
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2. BACKGROUND ON THE 
SELECTED RS ET MODELS

The RS ET models presented in the webinar series can be grouped into different categories, depending 
on the core algorithms used (e.g. surface energy balance, Penman-Monteith, psychrometry), the way the 
‘surface’ is characterized (e.g. single layer or two-layer, also referred to as single-source or two-source), the 
spatial resolution and coverage (e.g. coarse or fine resolution, with global or local coverage), and a few other 
distinguishing factors.

Furthermore, the various RS ET models may not fall rigidly into only one category. Often, they adopt a mix of 
approaches, as well as various RS data sources and data fusion, to provide the best results.

One important aspect to consider in RS ET determination is that high or moderate resolution satellites can only 
take a ‘snap-shot’ image at one (or more) given instant of the day. Therefore, the determination of ET requires 
that ET estimated from an image to be integrated over the day-time and over the number of days between 
satellites overpasses. The various models often differentiate in their approaches to time-integration.

This section will present first the conceptual grounds of core algorithms and then a brief synoptic view and 
distinctive features of each RS ET model.

2.1 The Surface Energy Balance (SEB)
In RS of ET we cannot determine directly the flux of water, for instance like the eddy covariance method. 
However, we can derive it indirectly through conducting an energy balance over the land surface. In an energy 
balance, the exchange of energy between the land surface and the overlying atmosphere, and the underlying 
ground, involves four important processes of energy exchange, namely:

 X Absorption and Emission of ’natural’ electromagnetic radiation by the surface

 X Thermal conduction of heat energy into the ground

 X Turbulent transfer of heat energy towards or away-from the surface within the atmosphere

 X Latent heat of evaporation, including the energy required for evaporation of water from bare soil and free 
water present at the surface and the energy required for transpiration of water stored in the soil through 
plants. In rare cases, there may be latent heat of condensation of atmospheric water vapor onto the surface 
(i.e. negative evaporation).

Each of these processes is expressed as an energy flux density, i.e. the rate of transfer of energy normal to a 
surface per unit area and per unit of time. Energy flux density can be expressed as J m−2 s−1 (where ‘J’ is for Joule) 
which is equivalent to W m−2 (where ‘W’ is for Watt).

Considering that the land surface can be of a finite depth (e.g. including the depth of the vegetation canopy), 
the energy balance can be written as

dQ/dt = Rn − G − H − λE          (1)

where:

 X Q is the total heat energy stored in the unit surface layer (J m−2);
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 X Rn is the net surface irradiance (commonly referred to as the net radiation). It represents the gain (or loss) of 
energy by the surface from radiation (W m−2);

 X G is the ground heat flux. It is the loss of energy by heat conduction through the lower boundary of the 
surface layer (W m−2). G is negative when energy flows from soil to the surface;

 X H is the sensible heat flux. It represents the loss of energy by the surface as heat transfer to the atmosphere 
(W m−2). H is negative when sensible heat energy flows from the atmosphere to the surface;

 X λE is the latent heat flux. It represents a loss of energy from the surface due to evaporation (W m−2)

 X t is time (s).

Eq. (1) is relevant when the depth of the surface layer is significant (e.g. in the case of forest vegetation where the 
tree canopy and stem can absorb and hold significant heat energy during the day). For crop surfaces, generally 
the depth of the surface layer (vegetation canopy) can be considered negligible (theoretically as infinitely thin), 
so that the heat storage (Q) is zero and Eq. (1) reduces to

Rn − G − H − λE = 0          (2)

or

λE = Rn − G - H          (3)

Eq. (3) provides λE as the residual of the surface energy balance, and is used by RS models that are based on 
SEB to derive the amount of water evapotranspired, E, (expressed in kg), after dividing the latent heat flux for λ, 
the latent heat of vaporization, expressed in J kg-1).

We look now into the derivation of the righthand-side terms of Eq. (3).

 X Rn is computed by subtracting all outgoing radiant fluxes from all incoming radiant fluxes, i.e.

where:

RS↓ = incoming short-wave radiation, both direct and diffused (W m-2)

α = surface albedo (dimensionless)

RL↓ = incoming long-wave radiation (W m-2)

RL↑ = outgoing long-wave radiation (W m-2)

εo = broad-band surface thermal emissivity (dimensionless)

Similar to [α RS↓] representing the reflected portion of the incoming short-wave radiation (RS↓), [(1-εo) RL↓] 
represents the reflected portion of the incoming long-wave radiation (RL↓).

Putting Eq. (4) into the RS context, the incoming short-wave radiation (RS↓) is estimated assuming clear-sky 
conditions (a prerequisite also to the determination of land surface temperature), as a function of time, day of 
year, location, terrain slope and aspect. Furthermore, RS↓ and α RS↓must account for the sun angle from the 
zenith and the RS sensor angle with respect to the land surface, and the atmospheric transmissivity whose 
estimates vary with atmospheric thickness (elevation), and suspended aerosols and water vapor. While RS 
databases for RS↓ are available on the Internet (see, for example, this database by the Committee on Earth 
Observation Satellites - CEOS),11 the specific equations to account for all primary influencing variables of RS↓ 
are well described in literature (e.g. Chen and Ohring, 1984; Koepke et al., 1985; Duffie and Beckman, 1991; 
Vermote et al., 1997; Allen et al., 2007a, 2007b) and have adequate accuracy. In fact, ‘calculated’ RS↓ for clear 
sky conditions is often considered to have the same or even better accuracy than ‘measured’ RS↓ due to its 
reliance on reproducible geometry and atmospheric conditions, whereas measured Rs can be plagued by 
sensor calibration, levelness and sensor maintenance (Allen, 1996; ASCE-EWRI, 2005).

11 CEOS Database. 2023. https://database.eohandbook.com/measurements/overview.aspx
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The surface albedo (α), is the ratio of reflected to incident short-wave radiation (mostly solar) at the surface, 
integrated across the shortwave spectrum (0.2 to 3.2 µm). The reflected short-wave radiation is detected by 
the satellite sensors in selected bands. For instance, bands 1–5 and 7 of Landsat, bands 1–7 of MODIS and 
bands 1–9 of Advanced Spaceborne Thermal Emission and Reflection Radiometer (Allen et al., 2011b). When 
deriving albedo, weighting coefficients are then applied to each band to account for scattering, absorption, 
relative humidity, etc. (e.g. see Tasumi et al., 2008 and Berk et al., 1999 for further insights). RS-based derivation 
of α can be found in the databases of the CEOS as indicated above for RS↓. However, it is usually important 
that estimated albedo, as well as RL↓ and RL↑, be coincident, i.e. occurring at the same instant in time as the 
calculation of the SEB.

The incoming long-wave radiation (RL↓) is the downward thermal radiation flux originating from the atmosphere. 
RL↓ is generally the least certain radiation component in RS because it is not measured by RS. RL↓ is usually 
computed using the Stefan–Boltzmann equation:

where:

εa = apparent atmospheric emissivity (dimensionless)

σ = Stefan–Boltzmann constant (5.670374 x 10-8 W m-2 K-4)

Ta = near surface air temperature where Ta is used as a surrogate temperature for the total integrated effective 
atmospheric emitting temperature (K) 

In most RS determinations, the surface temperature (Ts) is used as proxy for Ta or to estimate Ta in Eq. (5), and 
empirical equations have been developed for εa (e.g. Bastiaanssen, 1995; Allen et al., 2007a).

The outgoing long-wave radiation (RL↑) is the upward thermal radiation flux originating from the land surface 
and is also computed using the Stefan–Boltzmann equation:

where:

ε0 = broad-band surface thermal emissivity (dimensionless)

σ = Stefan–Boltzmann constant (5.670374 x 10-8 W m-2 K-4)

Ts = land surface temperature (K) 

In the case of RL↑, estimates are more accurate than those for RL↓ because Ts is measured by RS. The surface 
emissivity (ε0) varies with the nature of the surface, soil and vegetation. In RS determinations of ε0, empirical 
equations are used to account for soil and vegetation through leaf area index (LAI), e.g. like those developed by 
Tasumi (2003). RL↓ and RL↑ derivations can also be found in the databases of the CEOS. The thermal emissivity 
of various surfaces (ε0) can be found in the MODIS UCSB Emissivity Library.12

G depends on the surface temperature (Ts), the temperature gradient establishing below the surface (dT/dx), 
and the thermal conductivity (κ) of the ground (typically soil and vegetation). While the theoretical basis of heat 
transfer through conduction is expressed by Fourier’s law

where:

Qh = heat flux density (W m-2)

κ = thermal conductivity (W m-1 K-1)

   = temperature gradient (K m-1)

12    MODIS UCSB Emissivity Library. 1999. https://www.icess.ucsb.edu/modis/EMIS/html/em.html
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in RS applications, because dT/dx is unknown, G is computed as a proportion of Rn through empirical equations 
like the one proposed by Bastiaanssen (2000)

where:

Ts = land surface temperature (K) 

α = surface albedo (dimensionless)

NDVI = Normalized Difference Vegetation Index

G is then derived by multiplying the results of Eq. (8) times Eq. (4). Additional equations have been developed 
and adapted to specific surface conditions (e.g. the one by Singh et al., 2008 and 2009 for maize fields), or as 
the one of Brutsaert (1982) and Stull (1988) to express G as a function of H, rather than function of Rn. See Purdy 
et al (2016) for a review of algorithms to estimate G.

H is derived through the aerodynamic transport equation (the flux-gradient equation in analogy to the Ficks’ 
law of diffusion), expressing the vertical flux of sensible heat from a surface as directly proportional to the 
vertical gradient of temperature and inversely proportional to the aerodynamic resistance, i.e.

where:

ρa = air density (kg m-3)

cp = specific heat of air at constant pressure (J kg-1 K-1)

dT = near-surface temperature difference between the surface and a near-surface height or between two 
near-surface heights. In traditional modeling, dT is estimated as Ts - Ta, with rah representing the aerodynamic 
resistance between the surface and some height above the surface, for example, at 2 m

rah = aerodynamic resistance to heat transfer between the surface to near-surface height or between two near-
surface heights (s m-1) as described below.

H is the most critical energy flux to solve in the SEB (Eqs. 1, 2 and 3) via RS, due to the quite complex nature of 
the variables dT and rah involved in Eq. (9) and the dependency of rah on wind speed and turbulence.

In fact, dT should be the difference between the ‘aerodynamic’ temperature of the surface (Taero) and the air 
temperature at some height above the surface (Ta). Both these temperatures cannot be derived easily through 
RS. Campbell and Norman (1998) indicated that an uncertainty of 1 °C in Taero – Ta can result in a 50 W m-2 
uncertainty in H, which is approximately equivalent to an evaporation rate of 1 mm day-1. Actually, satellites 
measure the bulk ‘radiometric’ temperature of the surface (Ts) and not the ‘aerodynamic’ temperature (Taero). 
These can be different from one another by several degrees (Friedl et al., 2002; Kustas et al., 2007) Furthermore, 
the determination of Ts via RS has its own uncertainties due to atmospheric attenuation or contamination and 
radiometric calibration of the sensors (Allen et al., 2007a). In addition, the air temperature above the surface (Ta) 
is unknown.

To solve for such complexity, Bastiaanssen (1995) proposed to express dT as a linear function of Ts, corrected 
for the lapse temperature due to elevation, i.e.

dT = a + bTs_datum            (10)

where:

a and b = empirically determined constants for a given satellite image and thermal conditions

Ts_datum = radiometric surface temperature adjusted to a common elevation for each image pixel, using a digital 
elevation model and the lapse temperature due to elevation

The approach and equations described so far are the basis for most ‘one-source’ RS ET models, i.e. treating 
the ‘surface’ as a single uniform layer (no distinction between ‘bare-soil surface’ and ‘vegetated surface’ within 
the satellite image). In fact, the temperature gradient dT in Eq. (9), calculated through Eq. (10), is conceived to 
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describe a vertical temperature gradient between the two near-surface heights that are both taken sufficiently 
above ‘d+zo’, where a ‘blended’ zone having sufficient turbulent mixing prompts a single temperature gradient 
(dT), thereby reducing the need to separate bare-soil from vegetation (Allen et al., 2007a).

Regarding the aerodynamic resistance to heat transfer, rah, the complexity is in its dependency on wind speed, 
atmospheric stability, and surface roughness (Brutsaert, 1982). The traditional formulation for rah where the 
endpoints are the surface where Ts is measured and some z2 height above the surface where Ta is measured is

where ‘d’ is the surface’s zero-plane displacement height (the height from the ground at which the mean wind 
velocity is zero due to large obstacles such as crop canopies and ‘zom’ and ‘zoh’ are the surface’s roughness 
length for momentum and heat transfer (the heights at which the mean wind velocity is zero due to substrate 
roughness). Parameters ψsm and ψsh are integrated stability functions between the surface and z2 height that 
account for buoyancy or nonbuoyancy boosts or retardation to the turbulent transport of momentum (m) and 
sensible heat (h) fluxes. 

The Bastiaanssen assumption of Eq. (9) and Eq. (10) requires a corresponding rah that represents the aerodynamic 
resistance between the two heights z1 and z2, rather than from the surface itself:

where:

 and  = heights above ‘d+zoh’ of the vegetation where the endpoints of dT are defined

 = friction velocity (m s−1)

K = von Karman’s constant (0.41).

For most of the day time, stable or unstable atmospheric conditions are usually establishing and ψsm and ψsh are 
estimated by calculating the Monin-Obukhov length (L). L is the height at which forces of buoyancy (or stability) 
and mechanical mixing (or instability) are equal, and is calculated as a function of heat and momentum fluxes:

where:

g = gravitational acceleration (= 9.807 m s-2), and the other terms are already defined in previous equations.

When L < 0, the atmospheric condition is unstable; when L > 0, the atmospheric condition is stable; and when 
L = 0, the atmospheric condition is neutral.

Therefore, the friction velocity in Eq. 11b () is calculated using the logarithmic wind law for neutral or nonneutral 
atmospheric buoyancy conditions:

where:

uz = wind speed (m s-1) at height z (m)

zom = momentum roughness length (m).

Functions for estimating ψsm and ψsh from L are provided in general biophysical texts (Brutsaert, 1982; Campbell 
and Norman 1998) and in Allen et al., (2007a). These functions for ψ =ƒ[L] typically use formulations by Paulson 
(1970) and Webb (1970). Furthermore, it must be realized that the momentum roughness length (zom) depends 
on the vegetation characteristics, and it is often derived as a function of the leaf area index (LAI) (e.g. Brutseart, 
1982; Bastiaanssen, 1998a; Tasumi, 2003).
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It must be noted that in order to calculate L (Eq. 12), the sensible heat flux (H) is needed (Eq. 9), and in order to 
calculate H, the aerodynamic resistance (rah) corrected for atmospheric stability through L is needed. In other 
words we have two unknowns and, therefore, the problem is solved through numerical iteration, starting with 
an assumption of neutral conditions for the first iteration (see also Allen et al., 2007a, and 2011b, for further 
details on the derivation of rah).

The complexity described above essentially doubles where there are reasons for utilizing ‘two-source’ RS ET 
models, i.e. treating the ‘surface’ as two components (distinguishing ‘bare-soil surface’ from ‘vegetated surface’). 
In this case, the SEB is adapted to account for separate fluxes from both ‘soil’ (here indicated with subscript ‘s’) 
and the ‘canopy’ (here indicated with subscript ‘c’).

The net radiation Rn is thus obtained as

where:

RnS = soil net radiation (W m-2)

RnC = canopy net radiation (W m-2)

with     

and     

where:

HS = sensible heat flux from the soil (W m-2)

HC = sensible heat flux from the crop (W m-2)

λES = latent heat flux from the soil (W m-2)

λEC = latent heat flux from the crop (W m-2)

and

where:

TS = soil surface aerodynamic temperature (K)

TC = canopy surface aerodynamic temperature (K)

Ta = air temperature usually at 2m above ‘d+zoh’, (K)

rah = aerodynamic resistance to heat transfer from surface to height of Ta (s m-1).

The criteria to disaggregate the two sources (soil and vegetation) are generally based on the knowledge of the 
LAI or of the NDVI. Different solutions are proposed in the literature for such disaggregation (Norman et al., 1995; 
Kustas and Norman 1999, 2000; Anderson et al. 2005).

SEB uses the RS surface temperature as a valuable metric because varying soil moisture conditions yield a 
distinctive thermal signature: moisture deficiencies in the root zone lead to vegetation stress and elevated 
canopy temperatures, while depletion of water from the soil surface layer causes the soil component of the 
scene to heat up rapidly (Anderson et al., 2007a).

Evapotranspiration computations based on SEB, though, are restricted to clear sky conditions, i.e. it requires 
thermal infrared radiation measurements from cloud free images, in addition to atmospheric transmissivity 
corrections, in order to produce accurate land surface temperature (LST) maps. Furthermore, thermal infrared 
radiation tends to be more sensitive to atmospheric water vapor than visible and near-infrared radiation 
(Lillesand and Kiefer, 2000). 
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In fact, while the SEB is a reliable approach that is based on sound physics (e.g. Anderson et al. 2005; Allen et 
al., 2010a; Allen et al., 2011a; Bastiaanssen et al., 2008), cloud cover is considered a serious hindrance to RS 
ET applications in various parts of the world (Bastiaanssen et al., 2012). Cloud cover reduces the number of 
clear images to be processed and thereby extends time periods between clear images where assumptions 
of linearity or curvilinearity in ET are expressed as a fraction of net radiation (Bastiaanssen et al., 1998a) or as a 
fraction of reference ET (Allen et al., 2007a) must be assumed for the periods between images.

2.2 The Penman-Monteith (PM) model
To circumvent the problem of cloud-cover interference indicated for the SEB approach, the Penman-Monteith 
(P-M) model (Monteith, 1963, 1964) can be adopted, i.e.

where:

Δ = slope of the relationship between saturation vapor pressure and temperature (kPa oC-1)

es = saturation water vapor pressure at the air temperature (kPa)

RH = relative humidity at air temperature (%)

 = psychrometric constant (kPa ºC-1)

rS= surface resistance (s m-1)

and the other terms already defined in previous equations.

While Rn and G terms are computed as for the SEB, Eq. 19 requires the determination of the vapor pressure 
deficit , the aerodynamic resistance (ra) and the surface resistance (rS).

The vapor pressure deficit  is derived by using meteorological data (Ta and RH), usually taken by other RS 
sources.

The aerodynamic resistance (ra) is derived through numerical iteration, as in the case of the SEB, to account for 
boundary layer stability (ψ), though this time H is derived as residual of the energy balance (H=Rn-G-λE) with the 
initial estimate of λE and friction velocity (u*) derived for a neutral atmospheric condition. The surface temperature 
(TS) required for the computation of the Monin-Obukhov length (Eq. 12) is either obtained by LST maps from 
other RS data or estimated from the meteorological data by iteration using the aerodynamic equation for H.

When the modeling of λE occurs as dual-source (maintaining a distinction between the λE of the soil from the 
λE of the vegetation), the aerodynamic resistance in the PM equation is also distinguished between soil (ra-S) 
and vegetation, or canopy, (ra-C). Similarly, the surface resistance (rS) is disaggregated into the soil surface 
resistance (rS-S) and the vegetation (or canopy) surface resistance (rS-C), which will lead to a separation of the 
soil latent heat of evaporation (λES) from the canopy latent heat of evaporation (λEC).

The PM equation for the two-source modeling approach is then reformulated as follows:
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The Shuttleworth–Wallace dual-source model (Shuttleworth and Wallace, 1985) is a well-established approach, 
based on the PM equation, to solve for the two latent heat fluxes. The LAI and/or NDVI are used to separate the 
bare soil surface from the vegetated surface. It is important to note that because surface temperatures of soil 
and canopy may be substantially different from one another, as may be the albedos, the values for (Rn)s and 
(Rn)c will generally vary substantially from one another. The soil and canopy surface resistances are influenced 
by the moisture content in the top soil and in the root zone, respectively. Microwave radiometry (e.g. Synthetic 
Aperture Radar – SAR; Advanced Microwave Scanning Radiometer–Earth Observing System – AMSR-E) can 
provide continuous surface top-soil moisture information as it is little influenced by cloud cover. However, 
revisit times and/or spatial resolutions of microwave imagery are generally large. With additional modeling, the 
root-zone soil moisture can be derived and thus provide the adjustment for rS-C. Several algorithms have been 
developed to parameterize these surface resistances (e.g. Clapp and Hornberger, 1978; Avissar et al., 1985. 
Camillo and Gurney, 1986; Stewart, 1988; Dolman, 1993; Bastiaanssen et al., 2012).

A reduced version of the Penman-Monteith is represented by the Priestley-Taylor (1972) equation for the 
determination of the potential evapotranspiration (ETp) for extensive areas of well-watered vegetation, obtained 
by the product of equilibrium evaporation () and the Priestley-Taylor constant (θ=1.26).

2.3 The Satellite Psychrometric Approach 
(SPA)
The Satellite Psychrometric Approach (SPA) follows an analogy with the principles of psychrometry for the 
determination of the water vapor content of the air.

In psychrometry, the instrument used (psychrometer) consists of two thermometers with one thermometer-bulb 
kept continuously wet (wet-bulb) while the other thermometer-bulb is measuring the ambient air temperature 
(dry-bulb). The wet-bulb thermometer registers a lower temperature than the dry-bulb thermometer as a result 
of the cooling effect of evaporation, under equilibrium heat exchange condition. The difference between the 
dry- and wet-bulb readings along with a psychrometric constant is used to determine the water vapor pressure 
of the air:

where: ea is actual vapor pressure (kPa); es is the saturation vapor pressure at the temperature of the wet bulb 
(kPa); Tw is the air temperature measured by the wet-bulb thermometer (K); Td is the air temperature measured 
by the dry-bulb thermometer (K); and γ is the psychrometric constant (kP K-1).

The relative humidity (RH) is a measure of the dryness of the air and is obtained by dividing both sides of Eq. 
(22) by es, expressed in fraction as

The RS modeling of ET based on SPA (Senay, 2018a, 2018b) adopts an analogy between the ‘dryness of the air’ 
(RH) and the ‘dryness of the surface’ expressed as ET fraction (ETƒ), i.e.

where ETƒ represents the ratio between actual and maximum ET, nominally varying between 0 and 1; γS is 
denoted as a “surface psychrometric constant” (SPC) based on the aerodynamic properties of a dry-bare 
surface (K-1); TS is the satellite-derived land surface temperature (LST, K); and TC is the cold/wet limit surface 
temperature (K).

Satellite measurements of LST are used to estimate both the equivalent dry-bulb (TS) at any pixel and the wet-
bulb (TC) surface reference temperatures. The equivalent of the psychrometric constant in Eq. (22) and Eq. (23) 
becomes the Surface Psychrometric Constant (SPC or γS) in Eq. (24).
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The SPC is computed as

where all terms are defined in the previous equation, but with the specification that  is determined over bare 
soil and specified as 110 sm-1 when Rn is under clear-sky condition. Higher SPC values are used when gray-sky 
conditions are used for Rn (Senay et al., 2022).

By knowing the reference ET (ETo), it is possible to derive the actual ET (ETa) as 

Depending on the reference crop being considered, ETO may refer either to the reference-grass of the FAO-PM 
equation (Allen et al., 1998) or to the alfalfa crop of the ASCE equation (ASCE-EWRI, 2005). If grass reference is 
used, then scaling factor (1.2 - 1.3) would be applied to scale grass reference to alfalfa type.

Eq. (26) is a simplification of the previous modeling approach as it solves for ETa with a reduced number of 
variables.

2.4 Specific peculiarities of the selected 
models
Eight RS ET models were selected for the webinar series. This section provides a synoptic view of each one, 
highlighting their key peculiarities. Major literature is included so that the reader can look at further details, have 
additional insights and expand the knowledge on the model.

2.4.1 SEBAL

SEBAL (Surface Energy Balance Algorithm for Land) is a RS ET model developed by Bastiaanssen (1993-1995), 
who pioneered the era of RS ET determinations. The International Association of Hydrological Sciences (IAHS) 
Blue Book Series - Special Report 2 – was the first public document defining and explaining all small steps in 
energy balance modelling that have been followed by many scientists since then. SEBAL is further elaborated 
by Bastiaanssen et al. (1998a, 1998b, 2005) and follows the core algorithms of the SEB illustrated in chapter 2.1.

A major break-through for SEBAL was the linear Eq. (10), proved to hold quite solidly (e.g. Wang et al., 1995; 
Franks and Beven, 1997; Farah, 2001), including the solution for deriving the parameter ‘a’ and ‘b’. 

A first step is to apply Eq. (10) in two specific conditions of a given satellite image: (i) on pixels when H=0, i.e. 
dT=0, which in SEBAL is obtained for TS taken over a water body surface or a well-vegetated/well-irrigated 
field, and corresponding to the ‘cold’ pixels of the image; (ii) when λE=0, which is obtained for TS taken over dry 
soil, and corresponding to the ‘hot’ pixels of the image.

Accordingly, we have:

using Eq. (9) for H and substituting it in Eq. (25), we obtain
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Different criteria are developed to select the ‘cold’ and ‘hot’ pixels, either based on the operator experience or 
through automated algorithms (Allen et al., 2013a).

Using Eq. (27) and Eq. (30), we can solve for ‘a’ and ‘b’ parameters (two equations with two unknowns). However, 
while the parameters ‘a’ and ‘b’ are considered constant for all pixels of a satellite image, rah varies from pixel to 
pixel due to the heterogeneity of the landscapes, including the variation in momentum surface roughness (zom), 
and variability in wind speed near the ground. H represents a convective process and the buoyancy caused by 
H reduces rah. This circularity of rah affecting H and H affecting rah can be solved by means of the Monin-Obukhov 
similarity theorem, as reported in chapter 2.1. 

The determinations of landcover maps (e.g. crop-cover maps), LAI or NDVI, take care of the surface roughness 
issue. To solve for spatial wind speed variability near the ground, one can start considering the wind speed to be 
spatially constant at a blending height (e.g. about 200 m above ground level), where wind speed is presumed 
not to be substantially affected by local surface heterogeneities (Allen et al., 2010b). Therefore, the wind speed 
at the blending height is computed by upward extrapolation of a known near-surface wind speed using a 
logarithmic wind profile and the associated surface roughness. The wind speed at each pixel is then obtained 
by similarly downward extrapolation, using zom estimated for each pixel from the land-cover map.

Thus, solving for dT and rah to get H, and using Rn and G, as illustrated in chapter 2.1, we can thus compute 
λE without any a priori information of the crop such as type, age, planting density, root depth etc. However, 
this value of λE is only instantaneous. To integrate the instantaneous value of λE over the whole day, SEBAL 
assumes the evaporative fraction (Λ) of the available energy to be constant during the day (Bastiaanssen et al., 
2005), i.e.

where Rn24h is the 24-h integrated value of  Rn, and G describes the seasonal cycle of soil temperature changes. 

The assumption of constant Λ in SEBAL seems to hold mostly for environmental conditions where advection 
does not occur and soil moisture does not significantly change (e.g. Brutsaert and Sugita 1992; Crago 1996; 
Franks and Beven 1997; Farah 2001).

This time integration for the day of the satellite overpass, and for the days between satellite overpasses, affect 
the accuracy of λE (and therefore ETa) determinations.

Landsat and Sentinel missions provide the infrared and visible bands used for albedo (α) and vegetation index 
calculations. Thermal infrared radiation for the determination of land surface temperature (Ts) is taken from low 
resolution MODIS, Sentinel and VIIRS satellites. It is expected that new missions for thermal determinations 
(such as cubesats) will become available in the period 2023 to 2025 for filling the gap in high resolution thermal 
data for on-farm crop management.

According to Bastiaanssen et al. (2005), the overall accuracy of ET from SEBAL is +/−15 percent, for single-day 
events (satellite overpasses) and for scales of the order of 100 ha, while the seasonal differences are smaller (1 
to 5 percent) due to reduction in the random error.

Several improvements of SEBAL have been introduced from the time of its original version. The reader is 
referred to the following suggested reading for further insights on the model: Teixeira et al. 2009, Jafaar and 
Ahmad, 2020. It is recommended to visit this web link for the latest version of the SEBAL. 13

13 GitHub, Inc. 2023. Water Accounting -  PySEBAL. https://github.com/wateraccounting/PySEBAL_dev
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2.4.2 METRIC

METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) is the RS ET model 
developed by Allen et al. (2007a) and Kilic et al. (2016) with its original foundation in SEBAL (Bastiaanssen et al., 
1998a). METRIC follows the core algorithms of SEB illustrated in chapter 2.1.

The distinctive feature of METRIC is in the use of ground weather-based reference ET (ETref, calculated on an 
hourly basis according to ASCE-EWRI, 2005, for alfalfa1) to (i) establish the energy balance conditions for the 
‘hot’ and ‘cold’ calibration pixels, used to compute the ‘a’ and ‘b’ parameters of Eq. (10), and (ii) to derive the 
reference ET fraction (ETrefF) used to convert the instantaneous ET values into daily values.

In essence, the use of ETref serves as a proven upper limit on ET as governed by energy availability (Allen et al, 
1998; ASCE-EWRI, 2005). The latent heat of evaporation (λ) is used for conversion between ET and λE.

Regarding the derivation of the parameters ‘a’ and ‘b’ in Eq. (10), METRIC does not assume λE=0 for the ‘hot 
pixel’ (expected to represent λE from dry bare soil) as does the traditional SEBAL method, but rather allows for 
a possible ‘residual’ soil evaporation (λEhot) that may occur due to recent precipitation events, so that

where λEhot is calculated according to the soil water balance procedure of the FAO-56 I&D Paper (Allen et al., 
1998) and Rn and G are values for the ‘hot pixels’.

Similarly, METRIC does not assume H=0 for the ‘cold pixel’ as does the traditional SEBAL method, but rather 
allows for a possible ‘residual’ positive or negative sensible heat flux (Hcold), so that

where λEcold is the estimated latent heat flux at the cold pixels, calculated using ETref increased by 5 percent 
to account for large populations of fields having a wet soil surface beneath the full vegetation canopy (Wright, 
1982), and using λ for converting ET in λE, i.e.

where ETref is the ASCE-EWRI (2005) alfalfa reference that is generally 20 to 40 percent greater than the 
FAO56 ETo reference representing clipped grass. Where the vegetation is not fully developed, NDVI measures 
complement the calculation to account for reduction in λEcold (Allen et al., 2013b). 

Using Eq. (9) for cold and hot pixels, one obtains

where TS_datum_cold and Ts_datum_hot represent delapsed surface temperature at the cold and hot pixels. The 
delapsing, as in SEBAL, removes artifacts from Ts caused by the effects of elevation change. From Eq. (36) one 
can derive the parameter ‘a’ as

and from Eq. (37) one can derive the parameter ‘b’ as

Substituting ‘a’ of Eq. (38) into Eq. (39) and solving, one obtains

Regarding the derivation of the reference ET fraction (ETrefF), METRIC uses the following equation
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Where ETinst is the computed instantaneous ET for each pixel and ETref is the standardized reference ET 
computed (hourly) according to ASCE-WERI (2005) for alfalfa, at the time of the satellite image.

METRIC derives the daily ET (ET24) assuming that ETrefF calculated according to Eq. (41), which is at the time of 
the satellite image, is the same as the 24 h average ETrefF, i.e.

Therefore, actual ET over the entire day (ET24h) is computed according to

where:

ET24h = the daily actual ET for the day of the satellite image

ETref_24h = the daily reference ET for the day of the satellite image (as integration of the hourly ETref)

and ETrefF is as derived from Eq. (41).

Thus, in the case of agricultural vegetation, METRIC uses Eq. (41), ETrefF, instead of Eq. (31) of SEBAL, Λ, to obtain 
ET24h. This generally produces an improvement in accuracy as the assumption of constant Λ during the day 
can under predict the actual ET in arid climates where afternoon advection or increased afternoon wind speed 
may increase ET in proportion to the available energy (Rn-G), as reported by Allen et al. (2007a). In the case of 
nonagricultural land uses such as forest and rangeland, METRIC follows SEBAL with the use of Λ, because of 
the assumption that natural vegetation generally exercises midafternoon stomatal control that causes the 24-
hour total ET to tend to follow trends in Rn-G.  

Some versions of METRIC are constructed with additional algorithms for calculating solar radiation in 
mountainous and other complex terrain and for estimating the impacts of terrain on aerodynamic roughness 
and wind speed (Allen et al., 2013b). These additional algorithms improve the accuracy of ET estimates in those 
systems.

To obtain the actual ET
24h for the days between satellites overpasses, METRIC interpolates ETrefF between the 

satellites images (similarly to the interpolation for crop coefficients along the season) and then multiplies it by 
the ETref_24h of each day. Typical interpolations between ETrefF values can be carried out as linear or as curvilinear 
(e.g. a spline function) to better fit the seasonal ETrefF trend, as for the case of crop coefficients (Wright, 1982).

The assumption is that the ET for any pixel will increase and decreases on any particular day in the same 
proportion that ETref increases or decreases due to weather conditions. Therefore the value for ETrefF can be 
assumed to be relatively consistent from day to day. This approach has been found to be relatively accurate for 
estimating actual ET24h for both clear and cloudy days in between the clear-sky satellite image dates (Tasumi 
et al., 2005). 

Essentially, the use of locally available weather data or gridded weather data to derive ETref (calculated on 
hourly base according to ASCE-WERI, 2005, for alfalfa), in turn used in Eq. (33), (35), (41), (42) and (43), provides 
the ‘internal calibration’ of METRIC for each satellite image (Allen et al., 2007a). Such ‘internal calibration’ 
incorporates biases in individual components that are systematically biased over an image. It thereby eliminates 
the need for atmospheric correction of TS and for albedo measurements (using radiative transfer models), and 
reduces the uncertainties in estimating aerodynamic stability correction and surface roughness, among others. 
Incorporating all systematic biases into the calculation of H, in turn cancel out, in large part, the biases in RN 
and G (Allen et al., 2007a) when calculating λE as residual of the SEB (Eq. 3).

According to Allen et al. (2007a, 2007b), METRIC is designed to produce high-resolution and accurate ET maps 
for regions smaller than a few hundred kilometers in scale. However, to achieve such accurate results highly 
qualified ‘users’ may be required to operate METRIC. This is the case for several other RS ET models. The 
expected accuracy in ET by METRIC can be of +/- 10 percent with a qualified and experienced operator. The 



17

version of METRIC as part of the OpenET platform utilizes an automation scheme described by Allen et al., 
(2013a) and modified by ReVelle et al. (2019), that tends to produce relatively good accuracy (Melton et al., 2022).

The satellite data for METRIC are provided primarily by the thermal-based Landsat satellite, but can be 
supplemented by a combination of VIIRS thermal and Sentinel 2 short-wave data when Landsat encounters 
extensive periods of cloudiness. For regional ET, MODIS and VIIRS can be used, with modification to calculations 
for surface reflectance. Local weather data are used for ETref and wind speed. Typical spatial resolution is 30 
m (sharpening the 60 m thermal band) while the temporal resolution is of 8 days (provided they are clear-sky) 
when using a combination of Landsat 7 and 8 or Landsat 8 and 9.

Several improvements to METRIC have been introduced from the time of its original version. The reader is 
referred to the following suggested reading-link for further insights on the model: https://openetdata.org/
methodologies/. 

It is recommended to visit the following web link for the latest version of the METRIC that is available in Python 
script.14

2.4.3 ALEXI - DisALEXI

ALEXI (Atmosphere-Land Exchange Inverse) is a RS ET model developed by Anderson et al. (1997; 2007a; 
2007b), following some of the core algorithms of the SEB (as illustrated in chapter 2.1), though presenting few 
innovative features as compared to SEBAL and METRIC.

The disadvantage to diagnostic modeling is that the output record often suffers large spatial and temporal 
gaps due to cloud cover, impacting the critical thermal band satellite input data. Recent advances have 
implemented the use of land surface temperature (LST) derived from the 37 GHz channel on routinely available 
passive microwave radiometers (AMSR-E, AMSR-2, SSMI, SSMIS; Holmes et al., 2009). This allows for “all-sky” 
retrievals of LST to be implemented within the ALEXI component of the modeling system, albeit at coarser 
spatial resolutions (on the order of 10 – 25 km). 

ALEXI incorporates methods for addressing the spatiotemporal limitations of diagnostic modeling.

Distinctive features:

 X ALEXI is based on a two-source land-surface representation (the TSEB), which treats the land surface as a 
composite of soil and vegetation elements with different temperatures, fluxes, and atmospheric coupling. 
This results in a single model formulation that can be applied to a wide range of canopy and moisture stress 
conditions, including partially vegetated surfaces.

 X ALEXI inherently uses the high-temporal resolution (hourly) information provided by geostationary satellites 
to reduce sensitivity to sensor bias and to provide time-continuous flux predictions over continental scales.  
For global applications, it uses day-night temperature differences from polar orbiting satellites.  

 X Techniques have been developed for predicting fluxes on cloudy days (gap-filling technique) when thermal 
satellite imagery is not available, and for extrapolating instantaneous fluxes estimated at discrete imaging 
times to full hourly coverage at each grid cell in the modeling domain.

In ALEXI, the two-source energy balance (TSEB) partitions the composite surface radiometric temperature 
(T

RAD) into characteristic soil and canopy temperatures (TS and TC, respectively), based on the local vegetation 
cover fraction ƒ(θ), apparent at the thermal sensor view angle, 

with

where F is the leaf area index, and Ω(θ) is the vegetation clumping factor apparent at view angle θθθ.

14  GitHub, Inc. 2023. WSWUP - Pymetric. https://github.com/WSWUP/pymetric
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Therefore, ALEXI evaluates the soil and canopy energy budget separately, as indicated in chapter 2.1, with the 
Eq. (11), (12), 13), (14) and (15).

Because angular effects are incorporated into the decomposition of TRAD (Eq. 44), ALEXI can accommodate 
thermal data acquired at off-nadir viewing angles and can therefore be applied to geostationary satellite images.

The Rn and G computation in ALEXI follows Eq. (4), (5), (6) and (8), but is applied to the two-sources components 
separately (soil and crop), and differing for the empirical parameterization (see Anderson et al., 2007a and 2007b 
for further details) .

What is quite unique, instead, are the solutions adopted for H and λE.

Consider first the sensible heat fluxes (Figure 1). For regional-scale applications of the TSEB model in ALEXI, 
meteorological boundary conditions in air temperature, TA, must be specified at the spatial resolution of the 
thermal data (typically 5-10 km). Due to localized feedback between the land and atmosphere, this input 
field cannot be spatially interpolated with adequate accuracy from standard synoptic measurements having 
typically large spacing (e.g. 100 km). To overcome this limitation, the TSEB model has been coupled with an 
atmospheric boundary layer (ABL) model, thereby simulating land-atmosphere feedback and its effect on local 
air temperature internally.

Thus, the TSEB is applied at two times during the morning ABL growth phase (approximately t1 = 1.5 and t2 = 5.5 
h after local sunrise), using radiometric temperature data obtained from a geostationary platform like GOES or 
Meteosat at spatial resolutions of 5 – 10 km.

The ABL model in ALEXI relates the rise in air temperature in the mixed layer to the time-integrated influx of 
sensible heat (between H1 at t1 and H2 at t2) from the land surface, assuming a linear functional form for H(t) 
during this morning interval, i.e.

Furthermore, McNaughton and Spriggs (1986) provides a conservation equation relating the rise in potential 
temperature (θm) with height (z) of the mixed layer to the time-integrated sensible heating from the surface (Eq. 
44) as

where θS(z) represents an early morning ABL potential temperature. The ABL is intended to start at an effective 
blending height, assumed to be at 50 m above ground level. Moreover, the mixed layer potential temperature 
(θm) and the air temperature (Ta) are related near the land surface through the following equation

where: R is the universal gas constant; cp is the specific heat capacity of air at constant pressure; p is the air 
pressure.

Figure 1: Schematic diagram representing the two-source land-surface scheme (left) and the time-integrated 
ABL closure component (right) of the ALEXI mode
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The surface and ABL components of the model iterate until the time-integrated sensible heat flux estimates 
from both components (Eq. 44 and Eq. 45, respectively) converge (energy-closure).

It is important to note that, as a result of this approach, ALEXI uses only time-differential temperature signals, 
thereby minimizing flux errors due to absolute sensor calibration and atmospheric and spatial effects (Kustas 
et al., 2001). 

Regarding the latent heat fluxes, we have

with 

and

where:

ƒg = the fraction of green vegetation;

                         = a modified Priestley-Taylor (PT) equation for transpiration (λEC);

θαc = the PT coefficient, adjusted for stress as described below;

and the other terms already defined in previous equations.

The TSEB has a built-in mechanism for detecting thermal signatures of stress in the soil and canopy. A modified 
Priestley-Taylor (PT) relationship, applied to the divergence of net radiation within the canopy (RnC), provides an 
initial estimate of canopy transpiration (θλEC), while the soil evaporation rate (θλES) is computed as a residual to the 
system energy budget. If the vegetation is stressed and transpiring at significantly less than the potential rate, 
the PT equation will overestimate θEC and the residual θλES will become negative. Condensation onto the soil is 
unlikely at midday on clear days, and therefore θλES < 0 is considered a signature of system stress. Under such 
circumstances, the PT coefficient is throttled back until θλES≈ 0 (expected under dry conditions). Both θλEC and 
θλES will then be some fraction of the potential ET rates associated with the canopy and soil components of the 
scene; these ratios are integral to the soil moisture estimation scheme.

At each GOES observation time, the TSEB simultaneously balances energy budgets associated with the 
canopy, the soil and the composite land-surface system.

Gapfilling and extrapolation to daily total fluxes 

The extrapolation of instantaneous satellite-based flux estimates to daily totals assumes that the ratio of ET 
to solar radiation (fsun) remains constant during the day. Of several scaling fluxes tested, Cammalleri et al. 2014 
found insolation to provide the best performance on average using flux data from towers sampling a range in 
cover and climate conditions. However, other scaling fluxes could be easily applied and evaluated within the 
ALEXI framework.

Gap-filling of daily ET between clear days, when direct retrievals can be obtained, is achieved by interpolating 
fsun to daily timesteps and multiplying by daily insolation derived from reanalysis datasets or geostationary 
imagery.  Because the revisit frequency from geostationary inputs is relatively high, we can use this time-series 
information to filter for undetected clouds, which can corrupt the temperature rise signal used in ALEXI and add 
noise to flux estimates.  Currently a Savitsky-Golay smoothing filter with a 2nd order smoothing polynomial is 
used to interpolate fsun to daily timesteps.

A disadvantage to this gap-filling scheme is that moisture updates will not occur until the first clear day following 
a precipitation event. In other words, there may be a few days lag before the impact of rainfall over a given pixel 
is reflected in the available water pools of that pixel. The average frequency of update varies spatially and 
temporally across the domain according to the regional cloud cover climatology. As an example, Anderson et 
al. (2007a) indicated that, on average, the moisture pools in 75 percent of the U.S. domain are updated at least 
once every 6 days, while 95 percent are updated at least every 20 days.

Needless to say that rigorous flagging of cloud-contaminated pixels is critical to obtaining accurate flux 
estimates.
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Input data required to execute ALEXI are listed in Table 1. Primary outputs from ALEXI are instantaneous values 
of TA, G, Rn, RnC, RnS, θE, θEC, θES, H, HC, and HS at times t1 and t2.

Source: Author’s own elaboration.

The accuracy of ALEXI-derived fluxes is difficult to assess directly due to the scale mismatch between the 
ALEXI pixel size (5-10 km) and the footprint of the surface flux measurement (typically 100 m – 1 km).  

Disaggregation of ALEXI to measurement scales is described below.

DisALEXI

The coarse-scale flux estimates by ALEXI (constrained to operate on spatial scales of 5–10 km) can be spatially 
disaggregated to micrometeorological scales (typically of 100 m) using a flux-disaggregation technique referred 
to as DisALEXI (Norman et al., 2003; Anderson et al. 2004). This technique uses air temperature diagnoses 
from ALEXI along with higher resolution TIR imagery available from aircraft or polar orbiting systems such as 
Landsat, MODIS, or VIIRS (Figure 2).

Figure 2: Schematic diagram representing the ALEXI (a) and DisALEXI (b) modeling schemes 
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Figure 1

Table 1: Primary ALEXI input data sources

Note: The schematic diagram, highlights fluxes of sensible heat (H ) from the soil and canopy (subscripts “s” and “c”) along gradients in temperature 
(T ), and regulated by transport resistances RA (aerodynamic), RX (bulk leaf boundary layer) and RS (soil surface boundary layer). DisALEXI 
uses the air temperature predicted by ALEXI near the blending height (TA) to disaggregate 10-km ALEXI fluxes, given vegetation cover (f (θ )) and 
directional surface radiometric temperature (TRAD(θ)) information derived from high-resolution remote-sensing imagery at look angle θ.

Source: Anderson M.C., Kustas W.P., Norman J.M., Hain C.R., Mecikalski J.R., Schultz L., González-Dugo M.P., Cammalleri C., d’Urso G., Pimstein 
A. and Gao F. 2011.  Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. 
Earth Syst. Sci., 15: 223-239.
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The boundary conditions (air temperature at the blending height and ET fluxes) are then iteratively adjusted at 
the ALEXI pixel scale, until the DisALEXI ET field reaggregates to the ALEXI baseline flux (convergence of TA and 
closure of energy fluxes between ALEXI and DisALEXI).

The disaggregation operated by DisALEXI provides high spatial resolution assessment of moisture flux and 
stress conditions, though the temporal resolution is constrained by the overpass frequency of the polar 
orbiting satellite. Fusing ET from multiple thermal sensors provides a means for improving temporal sampling 
capabilities at the critical field scale (Xue et al., 2022).

Together, ALEXI and DisALEXI facilitate scalable flux and moisture stress mapping using thermal imagery from 
a combination of geostationary and polar orbiting satellites, zooming in from the national scale to sites of 
specific interest (Anderson et al., 2011).

Based on multiple data fusion analyses using daily tower flux measurements over different vegetation cover 
types and climatic conditions, typical root-mean-square-deviation errors for DisALEXI ET fluxes are on the 
order of 1 mm d-1.

2.4.4 SSEBop

SSEBop (Simplified Surface Energy Balance – Operational) is a RS ET model developed by Senay et al. (2013, 
2020) following the Satellite Psychrometric Approach (SPA) described in chapter 2.3.

The equation for calculating actual evapotranspiration (ETa) is 

where: ETƒ is the ratio between actual and maximum ET, nominally varying between 0 and 1;

K is a maximum ET scaling factor (to convert ETo from grass to alfalfa; average at 1.2);

and ETO is the grass reference evapotranspiration (in mm) taken as the FAO-PM equation (Allen et al., 1998); if 
ETo is taken as the ASCE equation (ASCE-EWRI, 2005) for alfalfa crop, then the K scaling factor is not used in 
Eq. (52) 

As seen earlier, ETƒ is calculate as

where:  γS is the “surface psychrometric constant” (SPC), expressed in K-1;

TS is satellite-derived land surface temperature (LST), expressed in K;

TC is the cold/wet limit surface temperature (also expressed in K).

The distinctive feature of SSEBop is in the SPC (γS) being considered a constant function of the location and of 
the day of the year (as it is mainly driven by net solar radiation). In other terms, it can be predetermined using 
Eq. (25).

Furthermore, as demonstrated in Senay et al. (2013), γS is the inverse of the difference (dT) between the hot/
dry limit surface temperature (Th), corresponding to θE=0, and the cold/wet limit surface temperature (Tc), 
corresponding to H=0; i.e.

By substituting 1/dT in Eq. (24), we obtain
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Eq. (24), Eq. (54) and Eq. (55) are equivalent and provide the basis to explain the physical principles and working 
mechanisms of the SSEBop model.

The use of Eq. (55), though, eliminates the need to determine the hot/dry pixel reference limit (Th) as dT is 
derived by the inverse of Eq. (25). To solve Eq. (55), we are thus left with the need of getting Ts (derived through 
satellite LST) and Tc (the cold/wet limit surface temperature).

A key consideration for the application of the psychrometric analogy in RS ET determination is that measurements 
of Ts and Tc should be in close proximity. In a satellite image, finding well-distributed cold/wet pixels (to derive 
Tc) in the proximity of actual dry pixels (the LST Tc) is often a significant challenge (only a few pixels may qualify 
for wet/cold reference). Therefore, SSEBop introduces an important simplification to derive Tc, consequent to 
the stable and strong relationship between air temperature and satellite-based LST at the wet surface. Such 
simplification considers Tc as a ‘regional’ variable (Senay, 2018b) and consists in estimating Tc from daily Tmax 
(in K) of the air over well-watered and well-vegetated surfaces, at the location and day of the satellite overpass, 
through a conversion factor c (Senay et al., 2013, 2016, 2017), i.e.

Tc=c∙Tmax (56)

Due to the complexity of hydro-climatic regions, where elevation, slope, and aspect can bring marked 
differences in air and surface temperatures within short distances, it is recommends to use gridded Tmax in Eq. 
(56), instead of weather-station based Tmax (Senay et al., 2017, Senay, 2018b).

Furthermore, for localized applications, user can develop local-specific “c” values, for each satellite image, 
through

where Ts_cold is the satellite-based Ts at the cold pixel where NDVI > 0.8 and Tmax is the corresponding daily 
maximum air temperature at the same location and period (Senay et al., 2013).

SSEBop is considered one of the simplest surface energy balance models for large-scale ET estimation as it 
directly solves for latent heat flux without the need to solve for the other fluxes of the surface energy balance 
equation (Rn, H, and G). For such simplification, in fact, the model has received some criticisms (Senay, 2018b). 

However, most of the tests carried out on SSEBop have shown that the loss of accuracy due to the simplifications 
introduced is within the same order of magnitude of uncertainty of several other RS ET models that have a 
larger number of parameters (see chapter 7 for further insights on error analysis).

Finally, it is important to highlight that SSEBop, like METRIC, anchor ETa to ETo in order to remain within realistic 
boundaries of daily ET fluxes. Furthermore, the potential integration of Landsat 8 and Sentinel-2 data for 
estimating ET with SSEBop on higher temporal and spatial resolution has been attempted with good results, 
where errors where contained between 10 percent and 17 percent (Singh et al., 2020).

2.4.5 PT-JPL

PT-JPL (Priestley-Taylor Jet Propulsion Laboratory) model was developed by Fisher et al. (2008). This modelling 
approach is conceived by having two major terms as part of the actual ET (ETa) determination: (i) the potential 
ET of a surface (ETp), setting the upper boundary of ET flux, and (ii) a set of eco-physiological constraining 
functions, reducing ETp to ETa.

ETp is formulated through the Priestley-Taylor (1972) equation, which is a reduced version of the Penman-
Monteith equation (see chapter 2.2), eliminating the need to parameterize stomatal and aerodynamic 
resistances, i.e.

where: θ is the Priestley-Taylor constant (=1.26); ∆ is the slope of the saturation vapor pressure curve vs near 
surface air temperature (kPa °C-1), dependent also on water vapor pressure (ea); γ is the psychrometric constant 
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(kaP °C-1); and Rn is net radiation (W m-2 ). ETp is here expressed in energy terms, but can be converted into water 
mass by dividing it by the latent heat of evaporation (θ).

The PT-JPL model subdivides the total surface ETa in three ET contributions, i.e. from the soil (ETs), from the 
canopy (ETc), and from the water intercepted by the surface (canopy and soil) (ETi), each with its pertinent 
constraining functions, so that

where:

with the various constraining functions and additional variable as follow:

fwet is the relative surface wetness and expressed as relative humidity (RH) elevated to the 4th power (RH4);

fg is the green canopy fraction, obtained by the ratio of two additional functions (fPARA/fPARI), where fPARA is 
the fraction of the photosynthetic active radiation (PAR) absorbed by the green vegetation cover (function of 
the leaf area index - LAI) and fPARI is the fraction of the PAR intercepted by the total vegetation cover (green 
+ non-green); fPARA is expressed as linear function of the SAVI (soil adjusted vegetation index) and fPARI is 
expressed as linear function of the NDVI (normalized difference vegetation index);

fT is the plant temperature constraint and calculated as                                   with Tmax the maximum air temperature 
and Topt the optimum plant growth temperature;

fM is the plant moisture constraint and calculated as (fPARA/fPARAmax);

fSM is the soil moisture constraint and calculated a                 with VPD the saturation vapor pressure deficit of the 
atmosphere and θ defining the relative sensitivity of RH to VPD;

RnS is the soil net radiation; RnC is the canopy net radiation (Rn – RnS); and G is soil heat flux.

Further details on the parameterization and algorithms’ calculations are found in Fisher et al. (2008).

As we can see, the PT-JPL model (like SSEBop) avoids calculating the latent sensible heat flux (H) and invests 
most of its algorithms in the constraining functions that reduce ETp to ETa. Three of these constraints relate 
to the plant: leaf area index (LAI), the green fraction of the canopy that is actively transpiring (fg), the plant 
temperature constraint (fT), and the plant moisture constraint (fM). One of them relates to the soil (fSM) and one to 
the atmospheric relative humidity (RH). Furthermore, the novelty of these constraining functions is that, while 
remaining eco-physiological in nature, they are developed without using soil moisture, stomatal resistance and 
wind speed data, which are generally unavailable or often prone to large modeling errors. Moreover, ETp can 
be replaced with any preferred choice of ETp such as Penman-Monteith; this is how PT-JPL is being used in the 
OpenET project (Melton et al., 2022).

In fact, PT-JPL requires five general data inputs to derive ETa: Rn; air temperature (Ta); 3) vapour pressure of the 
atmosphere (ea); surface reflectance in the red (R) band; and surface reflectance in the near infrared (NIR) band. 
All of these inputs can be derived via satellite, and particularly from a single-source like MODIS (MODerate-
resolution Imaging Spectroradiometer).

Recently, PT-JPL is incorporating measurements of Ts from ECOSTRESS to reach the spatial resolution of 70 
m (Fisher et al., 2020). Similarly, it can incorporate Landsat vegetation cover information (from the Red and 
Near-Infra-Red bands) to reach the 30 m resolution. Due to Rn as the major driver of the energy fluxes, PT-JPL 
remains highly sensitive to LST measurements, and to a lesser extent on NDVI.
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It can be considered a three-source model (as opposed to the two-source ALEXI model) as it can disaggregate 
the contribution to the total ETa in the soil (ETs), canopy (ETc), and water intercepted by the surface (ETi), 
components.

Tests of the PT-JPL performance against field determinations showed very good accuracy of the modeled ETa 
(Vinukollu et al., 2011; Chen et al., 2014; Ershadi et al., 2014). Apparently, the parameters already entered the 
model do not require further site calibration (Fisher et al., 2008).

2.4.6 ETLook

ETLook is a model based on the P-M equation developed by Pelgrum et al. (2010) and Bastiaanssen et al. (2012) 
and designed to be applied also in the presence of cloudy conditions and across several scales, from field to 
continental level. It has gone through several refinements and represents the core ET model for the FAO Portal 
WaPOR.15 Though, the current version of ETLook uses soil moisture based on LST and is therefore not able 
anymore to operate under cloudy conditions. 

The ETLook algorithm is a two-source model and solves the P-M equation for soil evaporation (E) and crop 
transpiration (T) separately. A third component is derived by the model to account for the precipitation 
interception by the canopy (I). 

The main concepts of the ETLook model are schematically illustrated in in Figure 3.

Figure 3: Graphical conceptualization of ETLook

15  WaPOR 2.1. 2019. https://wapor.apps.fao.org/home/WAPOR_2/1

Note: Two sources for energy exchange are identified: canopy and soil. The ‘Interception’ of rainfall by the canopy (which evaporates) is accounted 
for reducing the available energy for transpiration from the canopy (T). Q* is the symbol equivalent of net radiation (Rn) and is also distinguished 
for the two sources (Q*canopy and Q*soil). Similarly, the sensible heat flux is distinguished for the two sources (Hcanopy and Hsoil). G is the soil heat flux. 
The canopy component is characterized by the ‘size’ of the T source (expressed through LAI) and the ‘intensity’ of T source (expressed through the 
canopy and aerodynamic resistances, rcanopy and ra, canopy respectively). The soil component is characterized by two sub-components, the topsoil and 
the subsoil. The subsoil moisture content is pertinent to the water uptake by the root-zone and going into T, while the topsoil is pertinent to E. The 
resistances to the E flux are expressed through the surface resistance (rsoil) and the aerodynamic resistance (ra, soil).

Source: FAO. 2018. WaPOR Database Methodology: Level 1. Remote Sensing for Water Productivity Technical Report: Methodology Series. Rome, 
FAO. 72 pages. Licence: CC BY-NC-SA 3.0 IGO.
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The precipitation interception by the canopy (I) is derived first to account for the energy that would be consumed 
to evaporate the water intercepted. The interception is made as a function of the vegetation cover (Cveg), Leaf 
Area Index (LAI) and precipitation (P). This interception (in mm of water) is expressed as

which assumes that a water film of maximum 0.2 mm is stored per unit LAI. The energy required to evaporate 
the intercepted water is subtracted from the total energy available for T.

The ETLook model solves two versions of the P-M equation: one for the soil evaporation (λE) and one for the 
canopy transpiration (λT):

                            (= Eq. 20 from chapter 2.2)

                                

           (= Eq. 21 from chapter 2.2)

The net radiation 𝑅𝑛 is described by the radiation balance Eq. (4) of chapter 2.1, where the net long wave 
radiation (net RL), i.e. the difference between the incoming (RL↓) and outgoing (RL↑) long wave radiation, is 
computed using the formulation described in FAO report no 56 (Allen et al., 1998), where net RL is a function of 
the air temperature (𝑇𝑎), actual vapor pressure (𝑒𝑎) and transmissivity (𝜏).

The separation of Rn in the soil and crop contributions is operated through the leaf area index (LAI) according to

Where α is the light extinction coefficient for net radiation (often set at 0.6).

The soil heat flux (𝐺), required to calculate evaporation from the soil surface, is derived with a formulation 
similar to one of FAO report no 56 (Allen et al., 1998).

While the aerodynamic resistances (ra_soil and ra_canopy) are calculated resembling the basic concepts reported 
in chapter 2.1 (introducing the stability correction through the Monin-Obukhov length and required iterations 
to solve for the stability correction), the way the surface resistances (rS_soil and rS_canopy) are derived is among the 
distinctive features of ETLook.

The soil resistance (rS_soil) is modelled using the minimal soil resistance (rS_soil_min) and relative soil moisture 
content (Se) by means of a constant power function, i.e.

The canopy resistance is expressed as a function of the LAI, minimum stomatal resistance and a number of 
reduction factors, according to Jarvis (1976) and Stewart (1988), i.e.

where:

𝑟S_c𝑎𝑛𝑜𝑝𝑦_𝑚𝑖𝑛 is minimum stomatal resistance (in s m-1);

LAI𝑒𝑓𝑓 is an effective leaf area index (adimensional), introduced because the canopy is assimilated to a big-leaf 
and therefore the surface resistance requires an adjustment of the LAI through the following equation
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𝑆𝑡 is the temperature stress, function of minimum, maximum and optimum temperatures as defined by Jarvis 
(1976);

𝑆𝑣 is the vapor pressure stress induced due to persistent vapor pressure deficit;

𝑆𝑟 is the radiation stress induced by the lack of incoming shortwave radiation;

𝑆𝑚 is the soil moisture stress originating from a lack of soil moisture in the root zone.

All the reduction factors are adimensional and scaled between 0 (maximum stress) and 1 (no stress).

It must be highlighted that λE and λT are determined providing directly the daily values, i.e. the daily values are 
not the day-time integration of the instantaneous values, like it is the case for the model previously described.

Key input data for ETLook are: surface soil moisture, spectral vegetation index, surface albedo, atmospheric 
optical depth, land use and land cover (LULC, used for determination of the minimum stomatal resistance and 
obstacle height), soil physical properties, and meteorological data (e.g. air temperature, relative humidity and 
wind speed) obtained either from field meteorological stations or from gridded satellite data.

Evidently, soil moisture is key for the calculation of both E and T, respectively, and their derivation represents an 
additional distinctive feature of ETLook. The so-called trapezoid method (Yang et al., 2015) is used to derive the 
soil moisture, making use of visible and LST information from satellite images.

The concept behind the trapezoid method indicates that soil moisture can be diagnosed by exploiting the 
relationship between LST and the vegetation coverage (F

C), as provided by the satellite thermal infrared band 
and the visible and near-infrared spectrum, respectively. In fact, at high value of FC generally corresponds low 
value of LST and high surface soil moisture, and vice versa.

The envelope of all points of the relationship LST vs FC is indicated as the FC/LST space, and theoretically 
represented by a trapezoid, as reported in Figure 4.

Figure 4: A sketch of the trapezoidal vegetation coverage/land surface temperature (Fc/LST) space. See text 
for explanation

Source: Yang Y., Guan H., Long D., Liu B., Qin G., Qin J. and Batelaan O. 2015. Estimation of surface soil moisture from thermal infrared remote 
sensing using an improved trapezoid method. Remote sensing, 7: 8250-8270.
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Four critical points, related to four extreme conditions, define the trapezoid of Figure 4 (Yang et al., 2015):

A is the bare soil LST (FC = 0) under completely dry conditions;

B is the full-vegetation LST (FC = 1) under completely dry conditions;

D is the bare soil LST (FC = 0) with no water stress;

C is the full-vegetation LST (FC = 1) with no water stress.

Points A and B constitute the warm edge of the trapezoid space, along which the pixels have the largest water 
stress for the entire range of FC (from 0 to 1) and where the soil moisture is assumed to be minimum (indicated 
also as residual soil water content, θR). Accordingly, soil evaporation (λE) and vegetation transpiration (λT) are 
assumed to be equal to zero.

On the other side, points C and D constitute the cold edge of the trapezoid, along which the pixels have no 
water stress for the entire range of FC (from 0 to 1) and where the soil moisture is assumed to be maximum, i.e. 
at field capacity (θF). Accordingly, λE and λT are assumed to occur at their potential.

It can be easily visualized that isolines of constant LST along the entire FC range can be interpolated between 
the A-D edge and the B-C edge of the trapezoid (Figure 4), along which corresponding constant soil moisture 
availability can be derived.

While LST is obtained from the thermal infrared band, FC is calculated through the NDVI, as obtained from the 
visible and near-infrared band, according to the following equation:

where the coefficient n is a function of leaf orientation and distribution within the canopy (value generally 
suggested is 2).

For a general pixel within the trapezoid space (point E of Figure 4), and having a defined value of FC, a difference 
can be derived between the pixel LST and the cold edge LST (indicated as a in Figure 4), as well as between 
the pixel LST and the warm edge LST (indicated as b in Figure 4). The interpolation for the variables a and b is 
calculated as:

The relative soil moisture (θ) for each pixel, the fraction between actual and saturated soil moisture content and 
expressed as a percentage, can be calculated as:

Evaluation of ETLook (e.g. FAO and IHE Delft, 2019; Blatchford et al., 2020) indicates the reliability of the model 
for a longer period (e.g. a year) and larger areas (e.g. a sub-basin). It appears that the 250m and 100m pixels are 
less suitable for detecting ET of vegetables and fruit crops in smaller fields as compared to 30 m pixels.

Furthermore, ETLook version 2 is overestimating ET in dry, hot and water-stressed conditions, likely due to the 
estimation of the soil moisture content (using the trapezoidal method) with relatively coarse spatial resolution. 
ETLook version 3 tackles this problem in two ways: (i) by increasing the spatial resolution of LST using thermal 
sharpening, and (ii) by including stability functions, in particular for calculating the aerodynamic resistance for 
non-neutral conditions where turbulence is created by buoyancy. 

However, ET underestimations are observed also under irrigation where advection conditions may develop 
(e.g. like the case of Egypt).

Nevertheless, ETLook is undergoing continuous spatial and temporal refinements and new versions are 
expected so that the degree of uncertainty will also continue to reduce.
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2.4.7 ETMonitor

ETMonitor has been developed by Hu and Jia (2015) to estimate the daily actual evapotranspiration (ETa) on 
large basins, having a spatial resolution of 1 km for the global standard model (Zheng et al., 2022).

ETMonitor uses microwave and optical remote sensing observations as input data to Penman-Monteith 
based algorithms (see chapter 2.2), specifically the Shuttleworth–Wallace dual-source model (Shuttleworth 
and Wallace, 1985), for calculating soil evaporation and vegetation transpiration separately at a regional scale. 
Therefore, ETMonitor provides daily ETa data, with no gaps due to clouds.

Considering the diverse landscapes and multi-climatic features of large basins, ETMonitor was conceived to 
cover several hydrological processes, including evaporation from bare soil and water surfaces, evaporation of 
canopy rainfall interception, transpiration from grasses, crops and forests, and sublimation of snow and glaciers 
(Hu and Jia, 2015; Zheng et al., 2022).

The flow chart of the different states and processes involved in ETMonitor is sketched in Figure 5.

Figure 5: Flowchart of the ETMonitor model

Like ETLook, ETMonitor also separates the energy fluxes of the soil-vegetation system into two sources, soil 
and vegetation. In ETMonitor, however, these two sources are part of a unique bi-dimensional system and 
where the aerodynamic mixing of the soil-vegetation system is assumed occurring at a mean-canopy source-
height within the canopy.

In fact, ETMonitor uses the Shuttleworth–Wallace equation (allowing for a bi-dimensional system, like soil and 
crop combined), which is a variant form of the Penman–Monteith equation (considered one-dimensional, i.e. 
either the crop closed canopy or the bare soil), and expressed as:

Source: Hu G. and Jia L. 2015. Monitoring of evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote 
Sensing Observations. Remote sensing, 7: 3056-3087 doi:10.3390/rs70303056.
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where: the subscripts S and C are for soil and canopy, respectively; PMS and PMC are variables related to soil 
evaporation and canopy transpiration (having the unit of W·m−2), respectively, and expressed as: 

where  is the net radiation at the top of canopy,  is the net radiation at the top of soil,  is conductive heat flux 
at soil surface, all have the unit of W·m−2; ra,a (s·m−1) is the aerodynamic resistance between the canopy source 
height and the reference height above the canopy, ra,S (s·m−1) (ra,C (s·m−1) ) is the aerodynamic resistance between 
the soil (canopy) and the canopy source height; rs,S (s·m−1) is the soil surface resistance , rs,C (s·m−1) is the bulk 
canopy surface resistance.

CS and CC (dimensionless) are the surface resistance coefficients for soil and canopy, respectively, and calculated 
as follows:

and

The terms Ra, Rs, and Rc (having the unit of Pa·K−1·s·m−1) are the total aerodynamic resistances to vapor transport 
for the whole soil–vegetation canopy system, for the soil and for the vegetation, respectively. They are derived 
from the corresponding surface resistance (rS) and aerodynamic resistance (ra), as follows:

The canopy source height is taken at d + z0,m (in m), with d (in m) and z0,m (m) are the zero plane displacement 
height and the aerodynamic roughness length, respectively, for momentum transfer of the whole soil–
vegetation canopy system (see also chapter 2.1). In ETMonitor, a machine learning model using Random Forest 
(RF) algorithm was developed and applied to estimate the conductive heat flux at soil surface G (Zheng et al., 
2022). 

These resistances and latent heat fluxes of the bi-dimensional soil-canopy system are sketched in Figure 6.

Figure 6: Schematic representation of the relevant resistances and latent heat fluxes of the soil–vegetation 
canopy system considered in ETMonitor

Source: Hu G. and Jia L. 2015. Monitoring of evapotranspiration in a Semi-Arid Inland River Basin by Combining Microwave and Optical Remote 
Sensing Observations. Remote sensing, 7: 3056-3087 doi:10.3390/rs70303056.
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The use of the dual-source Shuttleworth–Wallace equation is a distinctive feature of ETMonitor, while the 
surface and aerodynamic resistances are parameterized similarly to what is done in ETLook.

For instance, the derivation of the atmospheric stability correction follows the iterative approach (see also 
chapter 2.2) and the partitioning of fluxes between soil and canopy is made function of LAI. The soil surface 
resistance to vapor flux is parameterized through the same power function of ETLook (see Eq. 66, except 
that the power set at -3 instead of -2.1. The relative water content of soil surface layer is derived from the 
observations by the passive microwave radiometer and is downscaled to 1 km resolution using a machine 
learning algorithm by taking NDVI, albedo, DEM and soil properties as input and the algorithm is trained by 
combination with in-situ soil moisture measurements. The canopy surface resistance is parameterized using 
Jarvis-Stewart type of equation, similar to ETLook (see Eq. 67).  

ETMonitor derives the interception of different vegetation types using as a basis the Gash analytical model 
(Gash et al., 1995; Van Dijk and Bruijnzeel, 2001), but reformulated and adapted to remote sensing inputs (Cui 
and Jia, 2014; Cui et al., 2015; Zheng and Jia, 2020) and called RS–Gash model.

The sublimation of snow and ice is derived using the Penman combination equation (Penman, 1948), in which 
G was taken as the conductive heat flux at the interface between the snowpack and the soil surface and 
calculated as a constant proportion of Rn received at the snow surface following the study of Wang et al. (2017).

The evaporation from the water surface is derived using the classical Penman equation (Penman, 1948), with 
surface resistance equal to zero.

ETMonitor has also been refined for high resolution ET (at 250 and 30 m), adopting different data-fusion 
algorithms, for particular use in agriculture. 

Calibration of the major model parameters and model validation were carried out in a regional scale (the 
Heihe River basin in China, the Kingdom of the Netherlands and Thailand) and in global scale using flux tower 
measurements and for inter-comparison with other models (Cui and Jia, 2014; Hu and Jia, 2015; Zheng et al., 
2019a; Zheng and Jia, 2020; Zheng et al., 2022). ETMonitor has been applied in a few projects in China, The 
Kingdom of the Netherlands and Morocco.

The level of accuracy is considered good, though continuous improvements are ongoing particularly for the 
soil moisture determination at high spatial resolution (e.g. using machine learning methods to downscale the 
microwave information) and input data quality. Furthermore, a dedicated information platform on ETMonitor 
and its results is under development.

2.4.8 ETWatch

ETWatch has been developed by Wu et al. (2008, 2012, 2020), integrating the surface energy balance, 
aerodynamic theory and water balance to determine ET at a resolution from 5m to 1km. It uses multiple sources 
of satellite data (Wu et al., 2020) including optical, thermal, microwave, together with geostationary and ground 
meteorological observation data to characterize the earth surface. As an integrated package of algorithms, 
ETWatch is designed to estimate regional ET at different resolutions and spatiotemporal scales for basin water 
resources management and agricultural irrigation management, including basin level ET with 1km/250m 
resolution and irrigation district ET with 5-30m resolution.

ETWatch was initiated in 2005. At that time the SEBAL model (Bastiaanssen et al., 1998a) was programmed and 
used to generate ET data for the Hai Basin. In order to produce high quality data for the Hai basin, additional 
algorithms and methods were developed such as seasonal lapse rates of air temperature, atmospheric 
boundary conditions, aerodynamic roughness at urban and mountain area, and so on. Radar data were 
introduced to quantify the surface roughness. Therefore, the first version of ETWatch was gradually formed. 
From its initial version, algorithms and methods as well as parameters in ETWatch have been continuously 
refined, replaced and replenished.
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ETWatch is now characterized by a high degree of complexity in managing and processing the multi-type data, 
as well as by having the algorithms of the various components of the model highly parameterized with multi-
source data to quantify fluxes between surface and atmospheric boundary layer, in the attempt to make the 
model more accurate and reduce the complex influence of multicollinearity problem. ETWatch is embedded 
with various algorithms for specific land surfaces such as water and ice surface, and bare land. A typical flow 
chart of ETWatch is represented in Figure 7.

Figure 7: Typical ETWatch processes flowchart

To solve the mismatching issue between the complex underlying surface within pixel of remote sensing and the 
homogeneous underlying surface hypothesis, ETWatch developed new surface resistance algorithm based 
on the canopy stomatal conductance, replacing the empirical value of the maximum stomatal conductance 
with a mathematical model to reflect the spatial heterogeneity of vegetation types and the influence of the 
atmospheric environment, reducing the impact of heterogeneous surface on the model (Xu et al, 2020,2021). 

As it can be seen in the flowchart of Figure 7, ETWatch can use both satellite and ground meteorological data, 
including air temperature, air pressure, air humidity and wind speed, typically interpolated into daily maps at 
250m/1 km resolution. The sunshine duration is extracted using FY2 geostationary satellite cloud product. 
Nevertheless, where the quality of ground data and their spatial interpolation is unsatisfactory, only gridded 
data are used. The model also develops multiple data fusion and ET allocation algorithms to integrate data at 
different resolutions, reaching spatial scales down to field scale at 5 m (Wu et al., 2011).

While the reader is referred to Wu et al. (2012; 2020), Zhuang et al. (2016), and Xu et al. (2018, 2021) for the 
detailed description of the various updates and algorithms of ETWatch, some examples of corrections and 
equations are reported here for the sake of illustrating the extent of complexity and parameterization of the 
model.

For instance, to conduct atmosphere correction for the calculation of net radiation, ETWatch has embedded the 
atmospheric radiative transfer models derived by Stein and Zaadnoordijk (1999) and Vermote et al. (1997). For 
better estimation of net radiation, ETWatch developed a new satellite -based net radiation approach integrating 
FY2 cloud classification product derived sunshine duration, which increases the spatial representation 
compared with interpolated sunshine hour method (Wu et al, 2017).

Source: Wu B.F., Xiong J. and Yan N.N. 2008. ETWatch for monitor regional evapotranspiration with remote sensing. Advances Water Sci., 19(5): 
671–678.
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Concerning the determination of land surface temperature, the split-window algorithm proposed by Wan and 
Li (1997) and Mao et al. (2005) is used to eliminate the effects resulting from atmospheric water vapor on the 
transmittance of long wave radiation through the atmosphere. ETWatch proposed an optimized algorithm to 
derive near-surface actual vapor pressure from MODIS profile data, NDVI and surface data, and improves the 
estimation of instantaneous VPD calculation (Zhang et al, 2014).

where k12 is a constant determined by statistical analysis, and k10, k11 are regression coefficients.

Regarding the surface energy balance equations, the instantaneous surface soil heat flux (G0,i) is estimated 
using the following equation (Wu et al., 2020):

where: Rn,i is the instantaneous net radiation; TS is the surface temperature, RVI is the radar vegetation index; soz 
is the solar zenith angle; a1, a2, a3, b1, b2, b3, α3 and α4 being empirical parameters requiring calibration. The daily 
soil heat flux is then obtained from the daily integral of the instantaneous surface soil heat flux, with diurnal 
variation of the surface temperature simulated with land surface temperatures from multiple temporal satellite 
passages (Wu et al., 2020).

The sensible heat flux (H) is estimated using the following equation:

where:  ρa, Cp, TS, Ta, LAI, e*
S, eS and ea have been already defined earlier; rc,min is the minimum canopy resistance, 

and F1, F2, F3, and F4 are constraining factors linked to photosynthetic active radiation, soil moisture affecting 
canopy water stress, VPD, and the air temperature, respectively.

Furthermore, to express a comprehensive and effective roughness length (zo,m) for the calculation of the 
aerodynamic resistance on large scale, four components are accounted for: the vegetation (zv

0,m); the terrain 
(zT

0,m); the non-vegetation obstacles (zr
0,m); and the change of the vegetation canopy structure (znir

0,m).

These four components of the roughness length are calculated as follows (Wu et al., 2020):

where b1, b2, and b3 are empirically determined coefficients;

where the terrain slope is derived from the 90m digital elevation model (DEM) data from Shuttle Radar 
Topography Mission (SRTM) aggregated to 1 km spatial resolution, and a and b are empirically determined 
coefficients;

where σ0 represents the radar backscattering coefficient data acquired from Sentinel-1 and aggregated to 1 km 
spatial resolution using the nearest neighbor method;
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where: c1 and c2 are empirically determined coefficients; k0 is the weighting factor of the isotropic scattering 
component; and k2 is the weighting factor based on surface scattering and the shadow casting theory (see Wu 
et al., 2020 for further details).

The total roughness length (z0,m) is then calculated as:

From the above, it is evident that ETWatch is a complex computational model requiring multiple sources data 
and to reduce the uncertainties of input data, a demanding calibration procedure of the numerous parameters 
is involved. As an example, the characteristic of the atmospheric boundary layer height is a key factor in 
the ET process, ETWatch developed new method to derive atmospheric boundary layer height (ABL) from 
MODIS and AIRS atmospheric profile data (Feng et al., 2015), which reduces the sensitivity of ETWatch to the 
thermal character of ground, such as air temperature and LST data, then improves the accuracy of ET model. 
Planetary boundary layer parameterization is validated from several meteorological stations equipped with 
weather balloons. Furthermore, for an effective validation platform, a combination of ground-flux network and 
hydrological modelling is required.

After calculating clear day surface resistance, daily surface resistance is derived by inverting the Penman-
Monteith (P-M) equation, and it is scaled at daily level accounting for the LAI, soil moisture, wind speed and 
radiance. The P-M equation is then used again to derive daily ET in cloudy conditions, which overcomes the 
influence of cloudy and rainy days. The daily surface resistance (r

s,daily) is thus calculated as (Wu et al., 2020):

where: rs,clear is the bulk stomatal resistance of the well-illuminated leaf on the clear-day and obtained by P-M 
inversion; LAIclear is the LAI calculated using clear-day satellite data and adopted as a scalar to relate surface 
resistance with environmental constraints such as air temperature and vapour pressure deficit (VPD).; SMclear is 
the soil moisture content retrieved from the microwave radar information; LAIdaily is the daily Leaf Area Index 
(LAI) values (irrespective if under clear or cloudy day); and SMdaily is the daily soil moisture content also retrieved 
from the microwave radar information (irrespective if under clear or cloudy day). U is wind speed; and Rn is net 
radiation calculated at clear and daily.

Therefore, ETWatch provides preset values of model parameters and achieves its best performance when 
customized for specific basins, with parameters to be re-calibrated case by case.

The overall accuracy of ETWatch is then the result of many concurring factors, internal and external to the 
model itself. For example, satellite data availability is a prime concern due to the frequent presence of clouds. 
In fact, the most difficult part of temporal-scaling is the ET estimation during cloudy and rainy weather (spatial 
and temporal scaling still remains a major challenge).

A major performance assessment of ETWatch was conducted in Hai river basin, Turpan Basin, the Loess Plateau 
and Hei river basin (in China), covering multiple regions of China dryland where the results of ETWatch were 
validated against various methods, including soil moisture depletion, lysimeters, eddy covariance and classical 
water balances (Wu et al., 2012, 2020). There were some concerns with the comparison between ETWatch and 
the eddy covariance (EC) showing significant deviation on a daily scale, with EC presenting problems of closure 
with typical errors often of 15-20 percent. Better comparisons were found with the other methods. 

Overall, the results of the validation in Hai river Basin indicated that (i) annual ET data were more reliable 
(deviations of 3.8 percent) than the daily ET data, and (ii) basin-scale ET data were more reliable (deviation of 1.8 
percent) than those of single pixels (Wu et al., 2012). In Hei river basin, the overall deviation between the annual 
ETWatch results and ground-based water balance measurements was 1 percent for the entire basin and 9.44 
percent for small watersheds (Wu et al., 2020).

Cloud cover and the long intermittence between consecutive high resolution thermal images (i.e. the low 
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frequency of high-resolution Landsat images) is a likely cause of a lower accuracy of ET measurements at 
the field scale, rather than the methodology per se. Though, data fusion errors (not quantified) could have 
contributed as well. ETWatch has developed a pixel level downscaling method based on remote sensing 
vegetation indices, phenology, and surface resistant (Tan, et al 2017, 2019). To break the bottleneck of thermal 
infrared remote sensing that cannot monitor the evapotranspiration of fragmented plots with low resolution, 
and realizes the evapotranspiration monitoring at the block level of 5-10 meters, ETWatch developed field 
scale ET allocation method considering the soil moisture and crop growth condition (Ma, et al 2021).

ETWatch is now proposed in two vers ions, the standalone software and the ‘cloud’ version with APIs for 
modules (Wu, et al 2021) (ETWatch.cn). For specific basins and/or regions, the standalone software provides 
users with functions of data preprocessing, batch processing of ETWatch algorithms, internal calibration of 
model parameters, data quality control and result analysis.

ETWatch.cn cloud provides open-access, free to use cloud computation capability for any users who want to do 
ET calculation for their regions of interest. Every module of ETWatch model and water resources management 
methods were packaged in APIs, ETWatch.cn helps users to build their own applications with self-customized 
APIs of ET calculation and single components such as net radiation, sunshine duration and sensible heat flux. 
The applications are equipped with a flexible-sized cloud storage that can automatically download satellite 
data. Users can upload their own data to fulfill their purposes. ETWatch cloud platform is open to upload 
and manage self-developed APIs by users who develop their own models while keeping the copyright, which 
makes the calculation procedure more flexible and open to satisfy different needs.
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3. COMPARATIVE ANALYSIS OF 
THE SELECTED RS ET MODELS

16  EOS Data Analytics, Inc. 2023. Cloud Mask: What makes a difference for data accuracy. https://eos.com/blog/cloud-mask/ 

The individual RS ET models described in chapter 2 are compared here in terms of their distinctive features, 
peculiarities, relative strengths and weaknesses and primary types of application, in order to help the reader 
to become more aware of what the present-day modeling landscape can offer and what the models might be 
that best fit a given purpose.

A first attempt to organize a comparative analysis is to categorize and separate models based on their primary 
reliance on Surface Energy Balance (SEBAL, METRIC and ALEXI/DisALEXI) and on psychrometry (SSEBop) 
from the others. This is because these SEB-based and psychrometry models all require satellite-based 
determination of Land Surface Temperature (LST), and this can be feasibly done only when there are clear 
views of the land surface, i.e. when there are the conditions of a cloud-free sky.  Even thin clouds such as cirrus 
and jet contrails can influence the LST measurement due to their emission of thermal radiation.

Impacts of clouds and their masking. Cloudiness in a satellite image will severely limit the ability to produce 
ET estimates from that image. This applies to both LST-based models and short-wave based models. Several 
techniques for cloud masking are available to identify cloudy and cloud-free pixels of a satellite image,16 often 
using spectral disaggregation and the so-called convolutional neural network (CNN; e.g. Hughes and Kennedy, 
2019). Cloud masks are also offered as a product of certain satellites, like the one of MODIS generated at 1-km 
and 250-m spatial resolutions. It is important to note that a cloud mask typically applies to the specific satellite 
image and time that it is collected. This is because clouds tend to continually move, so that the locations of 
clouds must be paired with the spectral information collected at the same time. Some cloud identification 
approaches employ the use of thermal imagery, if available for the satellite, in addition to shortwave imagery.

However, notwithstanding the various techniques, some uncertainties can remain when assessing the 
“clearness” of an image due to the influence of aerosols, dust, and smoke contamination of the atmosphere. 
This contamination, which is often invisible to the human eye and may even be difficult to detect in any of 
the shortwave bands, can impact both shortwave reflectance and LST determination. It can therefore impact 
estimates of the surface net radiation.

The resulting satellite image, after screening for cloud cover (e.g. high-altitude clouds, dense clouds, cirrus 
clouds, cloud-shadows, opaque clouds, etc.), haze, and different atmospheric vapor concentrations, thereby 
often suffers from large spatial gaps that may then create large temporal gaps for specific locations. Thus, 
a high potential for cloudy conditions can create a serious weaknesses of models that are based on SEB 
that requires the determination of LST. Models that are based on optical imagery only are also plagued by 
cloudiness. However, there tends to be a larger population of shortwave (only) satellites (for example, Sentinel 
2 and SPOT) so that the likelihood of minimizing long time periods between a clear look at a location may 
be reduced. As indicated in chapter 2.4.3, recent advances in “all-sky” retrievals of LST have used the 37 GHz 
channel on routinely available passive microwave radiometers (Holmes et al., 2009), although the tradeoff is 
coarser spatial resolution (on the order of 10 – 25 km).

Where cloudy conditions are significant and prevalent, one might be better off using the shortwave-only 
models that are based on the P-M equation (either single source or double source) such as ETMonitor. A special 
case is ETWatch as it implements a combination of the two methods (SEB and P-M) so that the model can 
derive certain parameters during the clear-sky conditions and use them during cloudy conditions. However, 
in this case a more appropriate spatial scale may be at the regional level (1 km or more). Nevertheless, these 
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models make use of the NDVI derived from the NIR and Red wave lengths that are also affected by cloudy 
conditions, but are affected to a lesser degree by haze and aerosols. Therefore, the major advantage of using 
these P-M based models is partially due to their capacity to use microwave radiometers and to then derive 
missing parameters from different sources. The introduction of data processing (e.g. fusion and sharpening) 
having different scales and temporal resolution may constitute a major weakness. Another weakness of the 
P-M-based models can be the lack of LST United States of Americage that may preclude detection of effects 
of water stress and consequent lowering of ET.

SEBAL and METRIC models. Within the domain of the SEB-based models, we can say that their strength is in 
their ability to estimate actual ET rates, even during periods of water shortage, when they are locally calibrated. 
Application of SEB for field-scale ET estimates remains restricted to satellites that have high spatial resolution 
of LST determinations, down to 60 m with Landsat 7 and 100 m with Landsats 8 and 9, albeit a 16 day repeat 
orbit for each system.

More specifically, we can say that the highest spatial resolution with minimal data sharpening is generally 
obtained by SEBAL and METRIC, where ET estimates are produced at the 30-m scale of the shortwave images 
(although, ETLook can also provide images at 10m scale using thermal sharpened LST data from Landsat or 
VIIRS). However, the ET estimates are degraded to some degree by the 60 to 100-m spatial scale of the original 
LST information. In traditional applications, SEBAL and METRIC have been applied to single Landsat scenes 
where their calibrations are scene and date-specific. Therefore, their area of implementation is often confined 
to only about 25 000 square kilometers in extent. More recently, the implementation of SEBAL and METRIC on 
cloud-based computing platforms such as Google Earth Engine, where the calibration of the models, while still 
conducted scene-by-scene, is fully automated. This allows for the processing of hundreds of Landsat images 
at a time over a larger spatial range and over a larger range in time.

Both SEBAL and METRIC employ a similar approach to overcome the problem of inferring the surface 
aerodynamic temperature from the surface radiometric temperature (or LST) and the challenge of directly 
estimating the temperature difference between two near-surface air temperatures, assigned to two arbitrary 
heights above the surface to derive the sensible heat flux (H). The establishment of the temperature difference 
is done via inversion of the function for H at two known evaporative conditions in the model using the calibration 
through inverse modeling at extreme conditions (CIMEC) technique (see chapter 2.4.2; Allen et al, 2010a). This 
approach requires the identification of ‘hot’ and ‘cold’ pixels within the area of pertinence. This implies a certain 
level of skill by the operator in selecting these reference pixels. The effort to automate the procedure (Allen 
et al., 2013a) has not completely eliminated uncertainty risks associated to these hot/cold pixel selections. 
However, extensive testing of SEBAL and METRIC model results by the OpenET Consortium in the United 
States of America indicates relatively accurate and performance of the automation schemes (Melton et al., 
2022). If this critical step of the procedure is not properly conducted, it may constitute the main weakness of 
SEBAL and METRIC models.

However, once the calibration step is properly enacted, the CIMEC approach generally guarantees a valid 
‘internal’ calibration. By using locally available weather data within the calibration, a number of computational 
biases common to SEB models are corrected (Irmak et al., 2012), including: atmospheric correction; albedo 
calculation; net radiation calculation; surface temperature from the satellite thermal band; air temperature 
gradient function used in sensible heat flux calculation; aerodynamic resistance including stability functions; 
soil heat flux function; and wind speed field.

As with all ET models that produce ET estimates from the higher resolution polar-orbiting satellites such as 
Landsat and Sentinel 2, where spatial resolution ranges from 10- to 30-m, these two SEB one-source models 
derive ET on an instantaneous basis, and therefore they have to interpolate and integrate ET over the entire 
days between satellite revisits. The basic assumption for this integration is that the ratio between actual ET 
and the available energy (Λ=Rn-G, in the case of SEBAL), or reference ET over alfalfa (ETr, also indicted as ET

ref, 
in the case of METRIC), at the time of the satellite overpass remains constant over the day and varies only 
gradually from one satellite image date to the next. It seems that the selection of Λ is more appropriate for 
rainfed conditions while ETr is more appropriate for irrigated crops in arid climates, as the use of alfalfa-based 
reference ET (ETr) allows one to better capture effects of regional advection of H and dry air, which can be 
substantial in irrigated deserts (Allen et al. 2007b). 
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Here in fact, we may state that a major strength of METRIC is in its ‘anchoring’ the SEB using CIMEC and the 
application of an ET ratio relative to ground weather-based reference ET calculated hourly for purposes of 
interpolation over time. This strength is however exercised provided well-calibrated and well-maintained 
weather stations exist in the area of interest. Gridded values of ETr (also used by SEBAL) are an alternative when 
local weather stations are lacking. However, gridded weather data sets can be biased by the incorporation of 
weather data collected over dry surfaces so that ETr is overestimated.

Time integration. In addition to the daily integration, where instantaneous estimates of ET at the overpass time 
are translated into ET estimates for the overpass day, SEB-based models, as with VI-based models, have the 
challenge of interpolating ET between satellite overpass dates to construct monthly and seasonal ET maps. In 
addition to the inaccuracies that might occur in the interpolation method [these are typically based on the ratio 
of ET divided by Rn-G (θ^) or ETr (ETrF)], they all suffer from the inability to capture specific evaporation that may 
occur from episodic precipitation and irrigation events occurring between the satellite overpass dates (Allen 
et al., 2010a). Ratios ofθ (^) or ETrF tend to be closely related to the amount of vegetation present, which, in turn, 
tends to vary slowly and continually between overpass dates. The interpolated θ(^) or ETrF values for each day 
between overpass dates mimic the evolution of the vegetation. The θ(^) or ETrF for each day are then multiplied 
by Rn-G or by ETr for each day to capture the effects of changing weather (sunny or cloudy, windy or calm, 
humid or dry, hot or cool). This method tends to work well and it is very similar to the use of crop coefficients 
that are multiplied by ET. 

The low temporal interpolation of models like SEBAL and METRIC, which at best (with no clouds) is eight days 
using Landsat, may be avoided at the expense of the spatial resolution. For example, using MODIS or VIIRS 
instead of Landsat, one can gain a nearly daily temporal resolution, but loses the spatial resolution that will 
change from 30 m to 375 m with VIIRS or 1 km with MODIS (or 500 m with some sharpening procedure). This 
change of spatial scale may severely limit the application of the models for field-scale water monitoring and 
management. Thus, RS ET models that better fit purposes such as agricultural (e.g. water allocation, irrigation), 
aquifer depletion from pumpage, watershed water accounting, among others, often require a higher spatial 
resolution, like SEBAL and METRIC, but also DisALEXI, all of which tend to use thermal-based Landsat imagery.

The ALEXI-disALEXI model. With regard to the two-source ALEXI SEB model, we have seen (chapter 2.4.3) that 
H is derived differently from SEBAL and METRIC. The rise in air temperature (T

A) of the atmospheric mixed layer 
between two times in the morning (approximately at 1.5 hr and 5.5 hr after local sunrise and derived departing 
from the radiometric temperature data) is related to the time-integrated influx of sensible heat over the two 
times. The sensible heat flux is derived through an atmospheric boundary layer (ABL) model that simulates 
land-atmosphere feedback and its effect on local air temperature. The surface and ABL components of ALEXI 
iterate until there is convergence towards energy-closure. Although the complexity of the model is significant, 
it is important to note that ALEXI uses only time-differential temperature signals, thereby minimizing flux errors 
due to absolute sensor calibration and atmospheric and spatial effects (Kustas et al., 2001).

However, it is clear that ALEXI can be applied only for RS ET determination at regional scales (5-10 Km), and 
relies on satellites that can give multiple shots per day for the diurnal aspect (such as the geostationary ones). 
An important application of ALEXI has been in drought indices determination, such as the evaporation stress 
index (ESI).

The post-ALEXI model DisALEXI produces a disaggregation of the fluxes down to a scale of 30 m (when 
using Landsat), though the temporal resolution is constrained by the overpass frequency of the satellite (e.g. 
8-16 days when using Landsat). In DisALEXI, the boundary conditions (T

A and ET) are iteratively adjusted until 
convergence of TA and closure of energy fluxes between ALEXI and DisALEXI are achieved. DisALEXI can thus 
be applied to fit the same purposes of SEBAL and METRIC to produce field-scale (30 m) ET. Based on the 
experience of the large US OpenET computations (Melton et al., 2022), DisALEXI can struggle in areas having 
frequent and distinct transitions between irrigated and arid land uses. This occurs during the disaggregation 
and ET distribution phase. In addition, DisALEXI tends to be impacted to a greater extent by bias in LST retrievals 
caused by atmospheric correction uncertainties than are the CIMEC-driven SEBAL and METRIC models.
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While the complexity of ALEXI/DisALEXI can be seen as a weak point for these models, their strength is in 
the two-source development (separating crops from soil) and the fact that they offer a consistent set of RS ET 
modeling approach in scaling the continuum from the national scale to sites of specific interest.

SSEBop. While ALEXI/DisALEXI brings in a higher complexity as compared to SEBAL and METRIC, SSEBop 
goes in the opposite direction. For instance, user-directed selection of the hot and cold reference pixels for a 
study area is not required. In fact, Senay et al. (2013) argue that under clear skies the hot and cold boundary 
conditions do not vary significantly among years, and more importantly the difference between the hot and 
cold reference values can be assumed constant for a given location and day of year (e.g. the values for the cold 
pixel temperature can be estimated from daily maximum air temperature along with a psychrometric-based 
calculation for wet-bulb temperature). An additional assumption of SSEBop is that the latent heat flux (λE) varies 
linearly between hot and cold reference pixels.

SSEBop is considered one of the simplest thermally-based one-source models, as it directly solves for λE 
without the need to solve for H and G, and thus require a reduced number of calculations. Its substantial 
simplification is also considered as one of its weaknesses, although several tests have shown that the loss 
of accuracy due to the simplifications is within the same order of magnitude of uncertainty as several other 
RS ET models that have a larger number of parameters (see chapter 7). In fact, Chen et al. (2016) determined 
that uncertainty in the simplification of the model did not significantly affect how well SSEBop estimates ET at 
a regional scale. Also McShane et al. (2017) concluded that SSEBop is a simple model, having reduced data 
requirements and greater ease of implementation without a substantial loss of accuracy in estimating ET. The 
reduced loss of accuracy, notwithstanding the simplification, is considered a SSEBop’s strength.

It is important to highlight that SSEBop, like METRIC, can anchor ET to ETr in order to remain within realistic 
boundaries of daily ET fluxes, and that Landsat and Sentinel-2 data can be integrated within SSEBop to obtain 
higher temporal and retain spatial resolution. Although greater accuracy is possible with the incorporation of 
ground-based data, no ground-based data are required. Weather data are obtained from gridded data sets that 
may be subject to the aridity biases as previously discussed.

We need to recognize that the initial development of SEBop was for the purpose of drought monitoring and 
famine early warning in regions having sparse ground-based data, mapping of water use by different land cover 
classes, and estimation of ET in the United States of America at regional to continental scales with default 
spatial resolution of 1 km, using mostly MODIS data (McShane et al., 2017). Although it can scale down its ET 
determinations, more tests may be required to consolidate its accuracy at higher granular scales and in new 
regions.

PT-JPL. Among the non-SEB based models, a special case is represented by the PT-JPL model (Fisher et al 
2008). The major two terms are (i) the potential ET of a surface (ETp), setting the upper boundary of ET flux, and 
(ii) a set of eco-physiological constraining functions, reducing ETp to actual ET (see chapter 2.4.5).

The net radiation (Rn) is the major driver for ETp while the constraining functions, reducing ETp to ET, are related 
to plant temperature, plant moisture and soil moisture, where canopy and soil surfaces are distinguished through 
a green canopy cover fraction relationship. While these constraining functions remain eco-physiological in 
nature, they are developed without using the actual eco-physiological constraining data such as the soil 
moisture, stomatal resistance and wind speed (which are generally unavailable or often prone to large modeling 
errors). In fact, they are derived using air temperature (Ta), vapour pressure of the atmosphere (e

a), and surface 
reflectance in the red (R) and in the near infrared (NIR) bands, all obtained through satellite sources, or from 
field weather stations if appropriate.

Beyond MODIS and VIIRS, PT-JPL can use Landsat and ECOSTRESS to retrieve LST measurements to reach a 
higher spatial resolution (Fisher et al 2020). The LST measurements assume relevance for the determination of 
Rn, a major driver of the energy fluxes. Thus, PT-JPL, like the SEB models, is impacted by clear sky conditions 
in the determination of LST and NDVI.

We can see that PT-JPL can be also considered to be a relatively ‘simple’ model, in a similar fashion to SSEBop. 
In fact, the parameters already entered into the model do not seem to require further site calibration. This 
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has been substantiated by the numerous tests against field ET determinations under a variety of land surface 
covers (see chapter 2.4.5). In fact, PT-JPL is one of the top performing models in the OpenET system.

As such, PT-JPL can fit the ET monitoring purposes over the continuum from local to global scale (like ALEXI/
DisALEXI). However, for local scales it is recommended to conduct further local tests of validation to confirm 
that the model parameters do not require further site calibration.

PM-based models. The initial versions of ETLook, ETMonitor and ETWatch distinguish themselves from the 
previous models because, among others, they attempt to solve the problem of cloudiness to derive ET by 
following an approach different from the cloud masking used in SEB based models. Instead, these models 
adopt the Penman-Monteith (P-M) equation on a daily basis (see chapters 2.2, 2.4.6, 2.4.7 and 2.4.8).

Nevertheless, the P-M equation is a combination of (i) the energy and (ii) the aerodynamic terms, so that Rn 
is required for the 1st term and the surface and aerodynamic resistances (rS and ra) are required for the 2nd 
term, respectively. While Rn may be parameterized without the LST requirement, the ra is derived in the usual 
numerical iteration (as in the case of the SEB model), though with H (instead of λE) derived as residual of the 
energy balance (H=Rn-G-λE), with the initial estimate of λE and friction velocity (u*) for a neutral atmospheric 
condition. The derivation of rS differentiates these three models that are based on the P-M equation.

The initial versions of ETLook and ETMonitor use passive microwave radiometer (AMSR-E) imagery to derive 
continuous surface soil moisture as it is little influenced by cloud cover. The root-zone soil moisture can then be 
derived through additional modeling (water balance, etc.) and thus providing the adjustment for the rS.

ETWatch, instead, adopts the approach of deriving λE during the clear sky days, based on the integration of 
surface energy balance and aerodynamics, and obtaining rS by inverting the P-M equation. The rS from the 
clear-sky days is then used with the P-M approach during cloudy conditions (see chapter 2.4.8).

Additional distinctive features of these original models are that ETLook derives soil evaporation (E) and canopy 
transpiration (T) using the P-M equation in both situations (as the two sources are in parallel), while ETMonitor 
derives the two sources of evaporation using the modified P-M equation to account for the two sources as 
part of a single integrated system, i.e. using the Shuttleworth–Wallace dual-source model (see chapter 2.4.7). 
ETWatch, instead, remain as single source model.

To draw some inferences on the strength and weakness of these P-M based models, it is necessary at this point 
to provide some sensible considerations. The transition from a SEB modeling approach to a P-M one introduces 
a significant addition of parameters, which increases the complexity of the models. The trade-offs in terms of 
gains and losses of accuracy need to be carefully assessed. Furthermore, the soil-surface moisture obtained 
through microwave has a quite coarse spatial resolution (25 km), so that substantial sharpening and data fusion 
computation is required to bring the ET estimates to reasonable operational scales. This same coarseness 
makes it impossible to monitor soil wetness caused by irrigation of an individual field and to incorporate that 
wetness into the r

S estimate.

ETMonitor has in fact developed a quite elaborate parameterization for operating on large basin scales. The 
parameterization of ETWatch and the various procedures for data sharpening and fusion, with substantial 
multiple sources of satellite data, is even more sophisticated, particular for deriving ET of each arable parcel 
based on water balance. Both models rely on a heavy calibration of the various parameters within the area 
of interest. The complexity of these models is one of their weaknesses, while the capacity to be used under 
cloudy conditions is their strength.

ETLook is a special case as its recent version has abandoned the use of deriving soil moisture through 
microwave radiometry and has introduced the trapezoid method (see chapter 2.4.6), which makes use of visible 
and LST information. The requirement of LST as input has defeated the initial intent of using the P-M equation to 
address ET under dominant cloudy conditions. In fact, the initial version of ETLook was utilized in the monsoon 
region of the Indus Basin, dominated by continuous cloudy conditions (Bastiaanssen et al., 2012).

Therefore, ETMonitor may be better suited to fit regions with a high presence of cloudy conditions, while 
ETWatch can function under both cloudy and clear-sky conditions. The reliability of ETLook, instead, remains 
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for longer periods (e.g. a year) and larger areas (e.g. a sub-basin). Similar to the case of PT-JPL, it is recommended that 
validation tests also be conducted for ETLook for local conditions.

Summary of features of models. To conclude this chapter, the different features of the selected models are summarized 
and reported in Table 2.

Table 2: Distinctive features of the selected models

Model
Conceptual 

approach
Input variable Sources(*)

Output 

spatial scale

Output 

temporal 

scale(**)

Major 

application

SEBAL Residual 
Surface Energy 
Balance

1-source

(λE=Rn-H-G)

LST

Albedo, NDVI

Land surface 
elevation

Cloud cover 
(LandSAF)

Ta, RH, wind

VIIRS, Landsat, 
ECOSTRESS,

Sentinel, Landsat

SRTM, Copernicus

MSG

CFSR, GEOS

30 m 
(Landsat)

375 m (VIIRS)

1 Km (MODIS)

1 day  (VIIRS, 
MODIS)

8 days 
(Landsat)

District Water 
Balance 
Irrigation Crop 
yield

Carbon 
sequestration

METRIC Residual 
Surface Energy 
Balance

1-source 
(λE=Rn-H-G)

LST

Albedo

Land surface 
elevation

Land Cover 
Type

NDVI or LAI

ETr, Wind 
speed

Landsat or VIIRS

Landsat, Sentinel 2

SRTM - DEM

NLCD or ESA 
WorldCover

Landsat, Sentinel 2

Weather Stations or 
NLDAS or CFSV2 or 
GridMET

30 m 
(Landsat)

30 m 
(VIIRS LST 
sharpened 
using 
Sentinel 2)

8 days 
(Landsat)

ET from 
parcels>5ha 

District Water 
Balance

Irrigation

Basin Water 
Balance
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ALEXI-

DisALEXI

Residual 
Surface Energy 
Balance

2-source

(λE=Rn-H-G= 
λEC+ λES)

LST

Albedo

NDVI or LAI

Land Cover

Ta profile 
& other 
meteorological 
inputs

GOES (for ALEXI)

LANDSAT (for 
DisALEXI)

MODIS (for ALEXI)

Landsat (for 
DisALEXI 

MODIS (for ALEXI)

Landsat (for 
DisALEXI

NLCD

CFSR

5-10 km 
(ALEXI)

30 m 
(DisALEXI)

1 day (ALEXI)

8 days 
(DisALEXI)

Continental 
ET Monitoring; 

Drought 
Indexing

(ALEXI)

Local ET 
Monitoring; 
District Water 
Balance;

Irrigation

(DisALEXI)

SSEBop Psychrometric 
Approach

1-source

LST

Ta

Albedo

Land surface 
elevation

NDVI

ETr

MODIS or Landsat

PRISM or Chelsa/
WorldClim

MODIS or Landsat

SRTM - DEM

MODIS or Landsat

GRIDMET/GDAS

30 m 
(Landsat)

1 Km (MODIS)

1 day (MODIS)

8 days 
(Landsat)

Continental 
Drought 
Indexing, 

ET monitoring

Crop 
Water Use 
Assessment

PT-JPL Priestley-Taylor

3-source 
including 
interception 
evaporation 

LST

Albedo

NDVI or LAI

meteorological 
inputs

ECOSTRESS, MODIS, 
VIIRS or Landsat

MODIS or Landsat

Landsat, MODIS, 
VIIRS, Planet, 
Sentinel-2

GEOS-FP, MODIS, 
CFSR for Ta, RH

3 m (Planet)

30 m 
(Landsat)

70 m 
(ECOSTRESS)

1 Km (MODIS)

1 day (MODIS)

2-5 days 
(ECOSTRESS)

8 days 
(Landsat)

Local to 
Global scale 
ET monitoring
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ETLook Penman-
Monteith

2-source

LST

Albedo

NDVI

Land surface 
elevation

meteorological 
inputs

MODIS, VIIRS, 
Sentinel-3 or 
Landsat

MODIS/VIIRS/
Sentinel-3 or 
Landsat/Sentinel-2

MODIS, VIIRS, 
ProbaV, Sentinel2 
and 3, Landsat

Copernicus DEM or 
SRTM DEM 

GEOS-5, 
ERA5,1 Gridded 
Meteostations

10m 
(Sentinel-2)

30 m 
(Landsat)

375m (VIIRS)

1 Km (MODIS, 
Sentinel-3)

1 day

(inputs are 
interpolated/
extrapolated 
between 
observations)

Field-scale to 
continental ET 
monitoring

Agricultural 
water 
management

ETMonitor Shuttleworth–
Wallace

(modified PM)

2-source

Surface/Top 
Soil Moisture

Albedo

NDVI

Land Cover

Land surface 
elevation

Soil physical 
properties

meteorological 
inputs

AMSR-E

GLASS or MODIS

MODIS

Variable sources

Variable DEMs

Variable maps

Gridded or Weather 
Stations

1 Km (MODIS) 1 day (MODIS) Regional & 
National ET 
monitoring

Basin Water 
Balance

Note: 1. The 5th generation ECMWF Reanalysis for the Global Climate and Weather data.
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ETWatch Residual 
Surface Energy 
Balance

& Penman-
Monteith

& Water 
balance

1-source

LST

Albedo

Surface/Top 
Soil Moisture

Land surface 
elevation

NDVI

Sunshine 
Duration

Surface 
roughness

Boundary 
layer height & 
parameters

meteorological 
inputs

MODIS & MERSI-LL17 
& Landsat TM/ETM/
TIRS

MODIS & MERSI-LL 
& TM/ETM/OLI

AMSR-E, SMOS,18 
SMAP19

Variable DEMs

MODIS & MERSI-LL

TM/ETM/OLI & 
WFV20 & MSI21

MSC22, VISSR-II23/
AGRI24

SEVIRI25

MODIS & MERSI-LL 
GRD26

AIRS & MODIS & 
HIRAS-II27

Gridded or Weather 
Stations

5m (MSC)

10m (MCI)

16m (WFV)

30m (TM/
OLI)

250m-1 Km 
(MODIS/ 
MERSI-LL )

1 day (MODIS 
& MERSI-LL)

4-10 day (MCI 
& GRD)

4-16 days 
(WFV/ TM)

Basin Water 
resource 
impact 
assessment 
of projects 
on water 
conservancy 
and 
ecological 
protection 

Water 
accounting 
of irrigation 
district 
Regional & 
National ET 
monitoring

Source: Author’s own elaboration. 

(*) These sources are continuously evolving as more satellite missions are launched and more databases are made available. Furthermore, the geographic selection 
may provide alternative and more appropriate sources.

(**) This temporal scale refers to the minimum interval between key satellites overpasses

17  Medium Resolution Spectral Imager-LL on board polar satellite Fengyun-3.
18  Soil Moisture Ocean Salinity Satellite.
19  Soil Moisture Active Passive Satellite.
20  Chinese GF-1 Wide Field View.
21  MultiSpectral Instrument (MSI) on board Sentinel-2.
22  Multi-spectral camera on board Resources satellite three of China.
23  Stretched Visible and Infrared Spin Scan Radiometer-II on board geostationary satellite Fengyun-2.
24  Advanced Geostationary Radiation Imager on board geostationary satellite Fengyun-4.
25  The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board MSG.
26  Sentinel-1 Ground Range Detected.
27  Hyperspectral Infrared Atmospheric Sounder-II on board polar satellite Fengyun-3.

Note: 1. The 5th generation ECMWF Reanalysis for the Global Climate and Weather data.

http://www.nsmc.org.cn/nsmc/cn/instrument/VISSR-2.html
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4. BACKGROUND ON THE 
SELECTED RS ET DATABASES/
PORTALS

28 USGS - science for a changing world. https://earlywarning.usgs.gov/fews
29 USGS - science for a changing world. International programs. https://www.usgs.gov/international-programs/fews-net

Some of the RS-ET models presented in chapter 2.4 are part of monitoring programmes that have generated 
ET databases over different time series and that have been made freely available to the public and accessible 
from the web.

In this chapter we are briefly addressing five of these databases (and portals): USGS FEWS NET (Famine Early 
Warning Systems Network with ET data mostly from SSEBop); WaPOR (with ET data derived from ETLook); 
GloDET (with ET data derived from ALEXI-DisALEXI); EEFlux (with ET data derived from METRIC); and OpenET 
(with ET data derived from an ensemble of algorithms including SEBAL, METRIC, SSEBop, ALEXI-DisALEXI, and 
PT-JPL among others). The reader is referred to the specific web-link to gain further insights and updates on 
the respective data base and/or portals. Furthermore, the reader is recommended to visit also the web site of 
ECOSTRESS (see also chapter 8).

4.1 USGS FEWS NET
FEWS NET (Famine Early Warning Systems Network) is a data portal provided by the United States Geological 
Survey (USGS) in support of drought monitoring efforts of Africa, Central and South Asia, Latin America and 
Caribbean, and the Middle East.28

Several climatological data are present in the portal, including among others: monthly and annual precipitation 
(from CHIRPS 2 - Climate Hazards group InfraRed Precipitation with Station data); monthly mean of maximum 
temperatures, obtained by combining  geostationary satellite thermal infrared (TIR) observations with sets of 
in situ station observations (from CHIRTSmax Climate Hazards group InfraRed Temperature with Station data); 
decadal, monthly and annual actual evapotranspiration (from SSEBop). The spatial scale is of predominantly 
5km for precipitation and temperature, and of 1km for evapotranspiration. The time series are dating back to 
1981 for precipitation, to 1983 for maximum temperature, and to 2003 for actual evapotranspiration.

As vegetation cover, the Normalized Digital Vegetation Index (NDVI) is also reported on dekad basis (when 
derived from MODIS; and dating back to 2002) and every five days (when derived from VIIRS; and dating back 
to 2012), and with a spatial resolution of 250m.

Data are provided as raster in GeoTIFF format.

The latency (lag time between access to data on the portal and actual time of the data determination) is three 
days.

Further reading on methods and data validation of FEWS NET can be found in Brown (2008), Ross et al. (2009) 
and FEWS NET.29
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4.2 WaPOR
WaPOR (Water Productivity Open-access of Remote sensing data) is the FAO’s portal to assist countries in 
monitoring water productivity, identifying water productivity gaps, and proposing solutions to reduce these 
gaps It is the output of a project funded by the Ministry of Foreign Affairs of the Kingdom of the Netherlands.30

WaPOR makes available a time series (dating back to 1st of January 2009) of basic variables such as: qualitative 
Land Cover Classification (LCC); Evaporation (E); Transpiration (T); water Interception (I); the integrated actual 
evapotranspiration and interception (ETIa); Net Primary Production (NPP); Total Biomass Production (TBP); 
Phenology; Reference Evapotranspiration (RET); Precipitation (P); and Water Productivity (WP) expressed as 
both ‘Gross Biomass WP’ [=TBP/(E+T+I)] and ‘Net Biomass WP’ [=TBP/T]. Quality layers are available that inform 
on time passed between valid observations for key input data Land Surface Temperature (LST) and Normalized 
Digital Vegetation Index (NDVI), and also on the reliability of the land cover classification at level 3. Both ‘Gross 
Crop WP’ {[(TBP*HI*AoT)/(1-θ)]/(E+T+I)} and ‘Net Crop WP’ {[(TBP*HI*AoT)/(1-θ)]/T} can be calculated on-line 
by users of the portal, accounting for the HI of the specific crop, the ratio between above-ground and total 
biomass production (AoT), and the moisture content of the harvested product (θ).

E, T, I, and therefore ETIa, are derived from ETLook.

The database is reported at three ground resolutions:31

 X level 1 (250 m), covering Africa and Near East;

 X level 2 (100 m), covering (i) the countries of Morocco, Tunisia, Egypt, Ghana, Kenya, Niger (the), Sudan, South-
Sudan, Mali, Benin, Ethiopia, Rwanda, Burundi, Mozambique, Uganda, Sri Lanka, Iraq, West Bank and Gaza 
Strip, Yemen, Jordan, Syrian Arab Republic (the)n Arab Republic and Lebanon; and (ii) the river basins of 
Niger (the), Nile, Awash and Jordan and Litani. 

 X level 3 (30 m), covering Irrigation schemes and rainfed areas in Egypt, Ethiopia, Mali, Lebanon, Kenya, 
Mozambique Iraq, Libya, Rwanda, Senegal, Tunisia, Yemen, Sri Lanka and Sudan.

The development of the operational methodology and input data variables used to calculate water and 
land productivity was originally granted through an open tender to the FRAME Consortium whose members 
are Vito, eLEAF, the International Institute for Geo-Information Science and Earth Observation at the University 
of Twente, the University of Twente and the WaterWatch Foundation. 

The minimum temporal resolution is decadal, and variables are also integrated at monthly, seasonal, and 
annual scales.

Data are provided as raster in GeoTIFF format.

The latency is three days.

Further reading on methods and data validation of WaPOR can be found in FAO (2018, 2020) and FAO and IHE 
Delft (2019).

30   FAO. 2023. Land and Water. WaPOR - FAO portal to monitor Water Productivity through Open access of remotely sensed derived data. 
https://www.fao.org/land-water/databases-and-software/wapor/en/ 
31  The coverage of the database is continuously expanding and it is expected to include global coverage at level 1 in 2023. For an updated list of 
areas and countries covered at different levels of resolution, please visit wapor.apps.fao.org or the project website: https://www.fao.org/in-action/
remote-sensing-for-water-productivity/en/

https://www.fao.org/in-action/remote-sensing-for-water-productivity/en/
https://www.fao.org/in-action/remote-sensing-for-water-productivity/en/
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4.3 GloDET
GloDET (Global Daily ET) is a free portal hosted by the Daugherty Water for Food Global Institute (DWFI), at the 
University of Nebraska, providing global daily evapotranspiration (ET) spatial datasets at 375 meter resolution, 
calculated by the ALEXI two-source energy balance model.32

The effort is a collaboration between DWFI, and researchers at USDA-ARS, NASA and ESSIC at the University 
of Maryland.   The ALEXI ET at 375 m resolution can be subsequently downscaled to 30 meter resolution using 
the PyDisALEXI (Anderson et al., 2011; Schull et al., 2017).33

In Nebraska, RS-ET data are periodically checked against eddy covariance towers equipped with the 
SmartFlux system developed by LI-COR Biosciences that are measuring ground ET for different crop types 
and climate conditions in the central plains of the United States of America.34 These eddy covariance towers 
represent a collection of equipment being part of the “Parallel 41 Flux Network” only for Nebraska and Iowa, at 
this stage, the two sources of data (GloDET data sets and eddy covariance ET of the Parallel 41 Network) are 
being integrated to provide high-quality spatial information on daily crop water use.35

Some of the ET time series of GloDET date back to 2013, however the various time series differ in their starting 
time because they depend on the duration of the project and funding. In fact, the geographical coverage is 
for the time being limited to the MENA Region, and to some areas of Brazil and United States of America. The 
database itself cannot be considered a monitoring time series of ET in these areas, but rather a repository of 
data.

Data are provided in GeoTIFF raster format and the latency is two days.

Further reading on methods and data validation of GloDET can be found at the GloDET Website.36

4.4 EEFlux
EEFlux (Earth Engine Evapotranspiration Flux) is a tool system providing the METRIC RS model data on-demand, 
including among others, Landsat scene-sized imagery on: albedo, NDVI, Digital Elevation Model (DEM), Land 
cover, LST, alfalfa reference ET (ETr), grass reference ET (ETo) and actual ET (ETa) derived from the EEFlux 
version of METRIC. More specifically, ETa is expressed in terms of ETr fraction (ETrF), i.e. ETrF=ETa/ETr. Thus, the 
uniqueness and advantage of EEFlux is that data generation is on-demand rather than being from a database.

The tool system has been developed by the consortium of the University of Nebraska-Lincoln, the University 
of Idaho and the Desert Research Institute, with initial funding support by Google, Inc.

EEFlux uses the full archive of Landsat images collection that is housed in the Google Earth Engine so that ETa 
maps can date back to 1984 with geographical coverage for nearly every land area of the Globe. The various 
calculations and data processing take advantage of the Google cloud computing system.

ETa is derived as residual of the surface energy balance, following the METRIC approach, first at the instant 
of the satellite overpass and then integrated over the day. Data are provided as rasters in GeoTIFF format, at a 
ground resolution of 30 m and every 8 to 14 days (depending on the time of subsequent satellites’ launching). 
Furthermore, the Landsat scenes available include an assessment of the percent cloud cover, as determined 
by the USGS Earth Resources Observation System (EORS) data centre. As of now, the EEFlux web site does not 
provide the time interpolation between the dates of the satellite overpass. This task is left to the user.

32   University of Nebraska. GloDet. https://glodet.nebraska.edu/#/ 
33  GitHub, Inc. 2023. Bucricket - ProjectMAS. https://github.com/bucricket/projectMAS/tree/master/pydisalexi
34  LI-COR, Inc. 2023. Eddy Covariance Systems. https://www.licor.com/env/products/eddy_covariance/ 
35  University of Nebraska. Parallel 41 Flux Network. https://parallel41.nebraska.edu/#/
36  University of Nebraska. GloDet. https://glodet.nebraska.edu/#/ 
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For the automated calibration of the surface energy balance of the RS images, EEFlux uses gridded weather 
data from two sources: the North American Land Data Assimilation System (NLDAS) for the Unite States 
coverage; and the Climate Forecast System Version 2 (CFSV2) for the rest of the globe. Calibration is performed 
automatically using the statistical procedure by Allen et al. (2013a) that applies population statistics to NDVI and 
LST for agricultural areas within a Landsat image. These statistics are used to identify suitable candidates for 
the hot and cold calibration pixels of METRIC.

The latency is about three days following the most recent Landsat overpass.

Further reading on methods and data validation of EEFlux can be found in Allen et al. (2015), Nisa et al. (2021) 
and at this link.37

4.5 OpenET
OpenETm is developed by several partners to provide daily, monthly and annual ET data, at a spatial resolution 
of 30 meters, covering the western United States of America (for the time being).38

The actual ET available includes data from an ensemble of six satellite-driven ET models, as well as  a single 
‘ensemble ET’ value determined from multiple satellite-driven models that use the Google Earth Engine as a 
shared platform for data processing, cloud computing and web development.

The models currently included in OpenET are: ALEXI-DisALEXI (version 0.0.32); METRIC (specifically eeMETRIC 
version 0.20.26); PT-JPL (version 0.2.1); SEBAL (specifically geeSEBAL version 0.2.2); SIMS (version 0.1.0); and 
SSEBop (version 0.2.6).39

The basis for using an ‘ensemble’ ET value (from the six models above) is that the ensemble facilitates the 
identification and removal of outlier values, and the mean of the remaining ensemble values is expected to 
offset some of the individual model’s biases and, therefore, to likely provide a more accurate estimate of actual 
ET than any one model on its own, across a diversity of crops and vegetation types. Nevertheless, there may 
be cases when a single model, or a subset of models, may be consistently more accurate than the ensemble, 
so that users may choose whether to use the ensemble ET value or an individual model or a subset of the 
models. The OpenET team is currently conducting accuracy assessments to characterize the accuracy of both 
the individual models and ensemble ET value, using data from more than 142 eddy covariance sites across the 
U.S. (Melton et al., 2022). 

While Landsat data is the most relevant input to the models, OpenET includes inputs also from Sentinel-2, 
Geostationary Operational Environmental Satellite (GOES), Suomi National Polar-orbiting Partnership (Suomi 
NPP), Terra, Aqua and other satellites.

OpenET also uses weather station measurements across the western United States of America that are 
integrated into assimilation systems to produce spatially distributed or gridded weather datasets, such as 
gridMET,40 Spatial California Irrigation Management System (Spatial CIMIS),41 Daily Surface Weather and 
Climatological Summaries (DAYMET),42 PRISM,43 and Land Data Assimilation System (LDAS).44

Similar to EEFlux, the fraction of reference ET (EToF=ETa/ETo) is used to derive daily ETa for each satellite 

37  EEFlux. 2022. https://eeflux-level1.appspot.com/
38 OpenET. https://openetdata.org/
39 gridMET. Climatology Lab. https://www.climatologylab.org/gridmet.html
40  gridMET. Climatology Lab. https://www.climatologylab.org/gridmet.html
41  State of California. 2023. CIMIS. https://cimis.water.ca.gov/SpatialData.aspx
42  Oak Ridge National Laboratory. DAYMET. https://daymet.ornl.gov/
43  Northwest Alliance for Computational Science & Engineering (NACSE), based at Oregon State University. 2023. PRISM Climate Group. https://
prism.oregonstate.edu/
44  Land Data Assimilation System. 2023. NLDAS-2 Forcing Dataset Information. https://ldas.gsfc.nasa.gov/nldas/v2/forcing

https://www.climatologylab.org/gridmet.html
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overpass. One minor difference is that OpenET uses grass reference ET (ETo), as opposed to alfalfa reference 
ET (ETr). The daily values of EToF are then linearly interpolated for all days in between clear satellite overpass 
dates, and pixel-by-pixel. The EToF are then multiplied by the daily ETo values to obtain the daily time series of 
ETa for every pixel, which are further aggregated to monthly and annual time periods. The data latency varies 
between 2 and 16 days from the day of satellite overpass (except under cloud cover).

Currently, monthly and daily data products are available from the OpenET Data Explorer, although the daily 
data are only available in ‘Raster View’ for selected pixels, due to the very large number of agricultural fields 
and growing length of the data record available from OpenET. Data can be downloaded from the Data Explorer 
in comma separated value (CSV) data formats, as well as various image formats. Data will also be available in 
the near future from the OpenET Application Programming Interface (API), which will facilitate automated data 
retrieval in multiple formats, including CSV, JavaScript Object Notation (JSON), GeoJSON, and GeoTIFF data 
formats.

Further reading on methods and data validation to date for OpenET can be found at the link.45 The OpenET 
framework, data processing, and Phase I of the OpenET Accuracy Assessment is described by Melton et al. 
(2022), also available in the Journal of the American Water Resources Association as an open access paper at 
this  link.46

45 OpenET. https://openetdata.org/
46  John Wiley & Sons, Inc. 2023. OpenET: Filling a Critical Data Gap in Water Management for the Western United States. https://onlinelibrary.
wiley.com/doi/full/10.1111/1752-1688.12956
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5. COMPARATIVE ANALYSES OF 
THE SELECTED RS ET 
DATABASES/PORTALS

The databases/portals (here after indicated as platforms) presented in chapter 4 are here compared in terms of 
their distinctive features, peculiarities and major use, in order to orient the reader towards selecting a platform 
that better suits his/her needs.

In addition, we include references to the platform of ETWatch Cloud, although not elaborated in chapter 4. In fact, 
the peculiarity of ETWatch is in its multi-scale operation for multiple uses, like for watershed water resources 
allocation, water productivity assessment, and irrigation management. It allows users to rapidly and easily set 
up an ET generation project for any region of interest by invoking APIs directly to produce ET data using a web 
browser or local integrated development environment. This means that ETWatch Cloud can provide a highly 
scalable and interoperable ET generation tool for stakeholders from the ET community, helping to facilitate the 
application of remote sensing-based ET algorithms for water management in the hydrology sector.

The first aspect to consider is the RS ET model that provides ET to the database or portal, as the implications 
associated with each model are reflected in the related platform. The reader is referred to chapter 3 for 
comparisons among RS ET models and a list of data inputs, spatial and temporal scales and general types of 
application.

For different operational reasons and purposes, the temporal and spatial resolutions reported for the platforms 
are not necessarily the same of those that the RS ET models are able to provide. Examples are the FEWS 
NET platform which reports ET at decadal time resolution and 1 km spatial resolution, although its RS ET 
model (SSEBop) can provide higher resolutions. Similarly, WaPOR reports ET data aggregated at decadal time 
resolution from the daily values obtained through its RS ET model (WaPOR ETLook).

According to the author of ETWatch, the ETWatch Cloud reports ET data at daily/monthly temporal resolutions, 
1km-250m and 10-30m spatial resolutions, and can even provide higher resolutions, such as 5m, for irrigation 
areas and cropland parcels. 

One important distinctive feature among platforms is in how many years back a platform can extend in the time 
series, i.e. the year when the time series of ET has started. ETWatch could go back to 2000, SSEBop ET time 
series dates back to 2003, followed by WaPOR (back to 2009), GloDET (back to 2013) and OpenET (back to 2016 
for the western United States of America).

A special case is represented by the web-based EEFlux, which cannot be considered to be a database (like the 
other platforms) but instead can only process on-demand the ET of selected Landsat scene areas all the way 
back to 1984, i.e. when the 1st thermally-equipped mission of Landsat was launched and corresponding to the 
image collection of the Google Earth Engine which is generally world-wide. Users of EEFlux must download 
individual images of ET or ETrF (ET divided by ETr) and then perform the time integration themselves.

Another important feature of a platform is the geographical area that it can cover. The ET product provided 
can be available around the globe (covering most of the world), like FEWS NET and EEFlux, or continental, like 
WaPOR (although, coverage is continuously expanding and it is expected to also have a global geographical 
coverage in the near future), or regional, like OpenET (covering for the time being mostly the Western United 
States of America) and ETWatch Cloud (where the geographical area can be set up by users, mostly covering 
the drylands in the northern part of China), or for specific areas depending on the projects implemented, like 
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GloDET and ETWatch Cloud. More than a database, GloDET can rather be considered to be a repository of data from 
projects developed in the MENA Region and in some areas of Brazil and the United States of America (see chapter 4.3).

Depending on the use of the ET product, the platforms can be distinguished for the total time elapsed between when data 
are acquired by the satellite(s) and when the ET data are made available to the user (this elapsed time is called latency). All 
platforms have reached a latency that generally does not go beyond 2-3 days, which is generally considered satisfactory 
for most user applications (except than for irrigation scheduling with drip and micro-sprinkler methods, requiring daily ET 
information).

In terms of major use of the selected databases and portals, FEWS NET has been conceived mostly for drought monitoring, 
WaPOR for water accounting and water productivity and the others for water and irrigation management.

It is important to consider that, beyond a required registration as a user, the platforms reported here are all free of charge 
and of open access and most of the data are downloadable as ‘tiff’ format, ready to be used with GIS software.

In addition to major ET products, the platforms may provide several ancillary products (e.g. NDVI, ETo, precipitation, DEM 
and LST, among others). The reader is referred to chapter 4, and to the web sites for the various databases and portals, to 
identify all ancillary products available.

Thus, depending on the specific purpose, the user can select the best fitting platform in terms of the most appropriate 
temporal and spatial scale, if the interest is on present periods or there is a need to go back in time to observe trends, and 
if the area of specific interest is covered by the selected platform.

The distinctive features of the various databases and portals discussed above are summarized in the synoptic table 3.

Table 3: Comparison of key features among the RS ET databases and portals

Database 

- Portal

Model 

used

ET

of departure

Minimum 

time-

resolution

Spatial 

resolution

Year of 

time 

series

Geographical 

coverage

Minimum 

latency
Major use

FEWS 
NET1

SSEBop instantaneous Decadal 1 km 2003 Global

Continental

3 days Drought 
monitoring

WaPOR2 ETLook daily Decadal 250m 
100m

30m

2009 Continental

Basin

3 days Water 
Accounting

Water 
Productivity

GloDET3 ALEXI

DisALEXI

half-day

half-day

Daily 375m

30m

2013 By project 2 days Water 
Management

EEFlux4 METRIC instantaneous Daily 30m 1984 Global

(on user 
demand)

~3 days

following 
the most 
recent 
Landsat 
overpass

Water 
Management

Irrigation

OpenET5 Ensemble* instantaneous Daily 30m 2016 Western 
United States 
of America

2 days Water 
Management

Irrigation
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ETWatch 
Cloud6

ETWatch instantaneous

daily

monthly

yearly

Daily 250m-1km

30m

16m

10m

5m

2000 Basin

By project

North China

~2 days

following 
the most 
recent 
satellite  
overpass

Integrated 
water 
resources 
assessment

Water 
Management

Irrigation

Water 
Accounting

Water 
Productivity

Notes: 1. USGS - science for a changing world. USGS FEWS NET Data Portal. https://earlywarning.usgs.gov/fews

2. FAO. WaPOR 2.1. 2019. https://wapor.apps.fao.org/home/WAPOR_2/1

3. University of Nebraska. GloDet. https://glodet.nebraska.edu/#/ 

4. EEFlux. 2022. https://eeflux-level1.appspot.com/

5. OpenET. 2023. https://openetdata.org/

6. ETWatch. 2020. https: //www.etwatch.cn

Source: Author’s own elaboration.
* The ensemble includes the following models: ALEXI-DisALEXI (version 0.0.27); METRIC (specifically eeMETRIC version 0.20.15); PT-JPL (version 0.2.1); SEBAL 
(specifically geeSEBAL version 0.2.1); SIMS (version 0.0.20); and SSEBop (version 0.1.5).

It remains to be stressed that the databases and portals carry over the uncertainty of the RS ET models they derive the ET 
products from. Therefore, the user is always recommended to test and validate the ET data from the platform with some 
valid and verified ground reference data or through cross validation. The reader is thus referred to chapter 7 to gain further 
insights on the uncertainties of the various models and to chapter 7.3, to better frame the limits of uncertainty he/she can 
accept vis-à-vis the specific purpose of the ET use.



56

REMOTE SENSING DETERMINATION OF EVAPOTRANSPIRATION
ALGORITHMS, STRENGTHS AND WEAKNESSES, UNCERTAINTY AND BEST FIT-FOR-PURPOSE

©FAO



57

6. SOME FIELD APPLICATIONS

The RS models presented in chapter 2.4 have been used in several water resources management applications. 
In this chapter we are summarizing some of these applications, presented during the webinar series, and in 
particular some that have interested the Near East and North Africa region and two that interested specifically 
on-farm irrigation management.

6.1 Experience from the NENA Region
A Python version of SEBAL (pySEBAL), processing images from Landsat-8, was used by Caiserman et al. (2021) to 
determine ET of crops in the plain of Marvdasht, in the Fars Province of Islamic Republic of Iran (the). Sentinel-2 
images were used for crop mapping. The objective was to identify situations of high water consumption by 
irrigated crops to advice political decision-making to revise cropping pattern towards the reduction of water 
consumption and groundwater depletion, while sustaining food security. Such reduction in water consumption, 
and a possible corresponding increase in water productivity, is a necessity for Islamic Republic of Iran (the) in 
view of its population growth and the increase of drought frequency over the last two decades, expected to 
further increase as results of future climate change scenarios. The authors observed an underestimation by 
pySEBAL ET of the order of 10 percent for most of the cases. This underestimation was confirmed through both 
farmer surveys and comparison with FAO-56 method. They concluded that PYSEBAL seems to underestimates 
the reality, but at the same time the model seems robust enough in its application in the plain of Marvdasht, as 
the uncertainty of pySEBAL (in the way it was determined) remains low.

Islamic Republic of Iran (the) was also the subject of another study, this time on the Urmia Lake Basin (ULB) 
where the METRIC model was operated for the RS ET determination (using Landsat thermal resolution of 100 
m) to gain more insights on the basin hydrology and water resources management, as the lake was subject 
to rapid progressive shrinking due to multiple factors, including climate change and overuse of water by 
agriculture. The study was conducted by Tasumi (2019), on the western area of the basin, who also investigated 
the accuracy of the model, providing local refinements related to terrain characteristics. The estimation of the 
RS ET accuracy was assessed by comparison with the ET estimated using the FAO-56, as a widely accepted 
method for field ET estimation. Thus, assuming that the difference between the ET obtained through FAO-
56 and the ET obtained by METRIC is the estimation error of METRIC, some of the statistical indicators for 
accuracy were determined for apple, grape, and bare soils. Specifically: for apple orchard, the mean bias error 
(MBE), the mean absolute error (MAE) and the root mean square error (RMSE) were 0.20, 0.57 and 0.73 mm d−1, 
respectively; for grape vine, MBE, MAE and RMSE were 0.16, 0.72 and 0.84 mm d-1, respectively; and for bare 
soil, MBE, MAE and RMSE were 0.36, 0.59 and 0.68 mm d-1. The author found that MBE, MAE and RMSE tended 
to be similar among the three different land use types, suggesting that the error range in METRIC tends to be 
constant, rather proportional to the amount of ET occurring. The ET RMSE for apple orchard (having the highest 
ET of the three land use type, i.e. avg=5.29 mm d-1) was equivalent to 14 percent of the average ET, while for bare 
soil (very low ET, i.e. avg=0.41 mm d-1) RMSE was of 166 percent (which is expected for such very low ET value). 
The conclusion of the study was that the estimation accuracy of METRIC in the ULB was comparable to other 
similar applications and that the estimation of ET in this region was successful.

Owaneh and Suleiman (2018) tested two RS ET models (ALARM and SEBAL) against the ET of a lysimeter in 
Jordan. A potato crop of 1.5 ha was cultivated from January to May 2016, with the lysimeter located at the center 
of the field. The RS ET was derived for three Landsat-8 images: on March 22 (partially cloudy but not for the 
area of the potato field); on April 7 (clear sky); and on April 23 (clear sky). Six pixels of the images covered the 
main area of the potato field surrounding the lysimeter (surface area of approximately 7 m2 and 2.5 m deep). 
Complementing field measurements included: hourly solar radiation, temperature, wind speed and humidity 
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from an automated weather station; LAI derived with a portable ceptometer (Decagon LP-80) to obtain values 
(direct or interpolated) on the date of the Landsat-8 images; canopy height. The two models under study are 
both based on the SEB approach (Eq. 3), calculate Rn and G in the same way, but they differ significantly in the 
calculation of the sensible heat flux (H): SEBAL derives dT (the difference between two near-surface heights) 
as a linear function of the surface temperature (Eq. 10 in chapter 2.1) through the ‘hot pixel’ and ‘cold pixel’ to 
derive the intercept and the slope of the linear function; ALARM, instead, derives dT (as previously mentioned) 
after converting the radiometric temperature in aerodynamic temperature, having no need to identify hot or 
cold pixels, though requiring the vegetation temperature profile and the satellite’s sensor zenith view angle. 
Furthermore, leaf area index (LAI), canopy height, fractional cover and leaf angle distribution along the canopy 
are also required to obtain the roughness length for sensible heat (z

oh). The evaporation fraction (Λ) was used to 
integrate the instantaneous ET value at the time of overpass over the day. A first ET comparison was conducted 
by keeping the standard assumptions and empirical relationships used by each model and averaging the ET 
of the six pixels surrounding the lysimeter. The daily ET for the three date increases from 5.00 to 7.48 mm 
for the lysimeter, from 4.00 to 5.60 mm for SEBAL, and from 4.38 to 5.11 mm for ALARM. The results of the 
comparison at each date showed that ALARM underestimated the daily lysimeter ET by 8 percent on March 
22, by 16 percent on April 7 and by 33 percent on April 23, while SEBAL underestimated the daily lysimeter ET 
by 4 percent on March 22, by 15 percent on April 7 and by 37 percent on April 23. A second comparison was 
conducted after: accounting for the variability in LAI among the six pixels; removing the night-time ET of the 
lysimeter; selecting manually the hot and cold pixels in SEBAL, rather than automatically; and using a locally 
derived relationship between LAI and NDVI. The new daily ET for the three dates increased from 4.74 to 6.85 
mm for the lysimeter, varied from 4.43 to 4.97 mm for SEBAL, and increased from 4.82 to 5.34 mm for ALARM. 
The results of the second comparison showed that the modified ALARM overestimated ET by 1 percent on 
March 22 and underestimated ET by 6 percent and by 22 percent on April 7 and on April 23, respectively. The 
modified SEBAL underestimated ET by 0.7 percent, by 10 percent and by 35 percent on March 22, April 7, and 
April 23, respectively. Some of the conclusions indicate that: the extent of underestimation by the two models 
increases with the increase of ET; ALARM requires air temperature for each pixel; the selection of the hot and 
cold pixels in SEBAL is crucial to the accuracy of ET.

Remote sensing determinations of ET were carried out in Syrian Arab Republic (the) over a palm and olive 
mix orchard in the Palmyra oasis. RS ET and field eddy-covariance ET were carried out during the years 2003, 
2004 and 2005 by a team of scientists of the Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD). 
The RS ET was derived using the SEB approach (Eq. 3) with: LST, albedo and NDVI coming from MODIS; 
incoming solar radiation coming from Solar Data Intelligent System (from METEOSAT). The net radiation (Rn) 
calculation followed Eq. (4), with typical parameterization for the incoming and outgoing long-wave radiation. 
The sensible heat flux (H) calculation followed Eq. (9), with typical parameterization and stability correction 
for the aerodynamic resistance (r

ah), while dT (difference between two near-surface heights) was derived after 
converting the radiometric temperature in aerodynamic temperature through the ALARM model (Analytical 
Land and Atmosphere Radiometric Model) developed by Crago (1998) and Suleiman and Crago (2002a; 
2002b). The soil heat flux (G) was taken as 20 percent of Rn. It can be realized that the calculation procedure 
does not follow strictly any of the model described in this report, nevertheless it is still a SEB approach and 
represents one of the few cases of RS ET determination in the country. The average daily ET from RS and field 
eddy-covariance, for 152 days, resulted in 5.61 mm and 5.67 mm, respectively. The RMSE was 11.45 percent 
and the MBE was -0.5 percent indicating a slight underestimation (due to underestimation in Rn). These very 
encouraging results provided an important contribution to the water resources management of the Palmyra 
oasis. The same team of scientists at ACSAD compared the reference ET (ETo) provided by WaPOR and the 
ETo calculated through the Penman-Monteith (PM) equation with field meteorological data coming from a 
well maintained agro-meteorological station, operated by the University of Damascus. The PM calculation was 
carried out through the FAO software ‘ETo calculator’ and its comparison with WaPOR ETo spanned the period 
30 November 2020 – 31 August 2021. The comparison showed a very close matching during the winter period 
while an overestimation by WaPOR,  of about 15 percent, was observed during the warmer seasons (from May 
to August). Nevertheless, the overall RMSE was of 0.85 mm d-1. This can be considered a very good result with 
very important implications for the irrigated agriculture of the country (and of the NENA Region as well), due to 
the very limited presence of agro-meteorological field stations and often not well maintained.
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Studies conducted in Tunisia aimed at correlating wheat yield (a strategic crop for the country’s food security) 
with the evaporative stress index (ESI), with rainfall (P), with leaf area index (LAI) and with land surface temperature 
(LST), derived through satellite remote sensing over the years 2002-2013. The area under investigation was 
within the northern part of the country where more than 90 percent of durum wheat production in Tunisia comes 
from. The crop is cultivated under rainfed conditions and, therefore, the most limiting factor for wheat yield 
and its inter-annual variability is due to insufficient and irregular rainfall patterns over time and space, which is 
reflected in the crop water status. The degree of correlation between yield and the RS indexes provides insights 
on the crop response to soil moisture for yield forecast purposes. Yield data were obtained from the statistical 
department of the Ministry of Agriculture. ESI was computed as a standardized anomaly of the ET Ratio (ET/ETr), 
where ET was derived through the ALEXI surface energy balance model. ESI effectively integrates information 
on both LST and LAI, which are critical inputs to the physically-based modeling system.  Daily rainfall was 
obtained from CHIRPS (v 1.8 dataset). LAI maps were obtained from MODIS at 1km ground resolution, with 
gap-filling according to Gao et al. (2008). LST was also obtained from MODIS. The results of the study indicated 
that ESI provided the earliest signal of yield anomalies, with correlations reaching maximum values during the 
booting/heading growth stage. Correlation strength was regionally variable, with higher correlations in semi-
arid regions and lower correlation in coastal governorates where rainfall is more reliable year-to-year. During 
the dry year of 2002, LST recorded the highest anomalies, capturing the impacts of the drought on canopy 
and soil temperatures. In contrast, during the wet years of 2003 and 2004, LAI anomalies showed the highest 
value during the grain filling period, one of the most sensitive stages of the wheat crop. Standardized CHIRPS 
anomalies were able to explain the yield variability in relation to rainfall variability in the early growing phases of 
the crop (seedling-tillering). In fact, a higher effectiveness of precipitation was observed when occurring at the 
beginning of the crop season (crop establishment) as compared to subsequent rainfall. This result is consistent 
with the findings of Laatiri et al. (2010) that demonstrated the substantial effect of the autumn precipitation on 
wheat yield and the lower contribution of the spring rainfall, in northern Tunisia. Overall, ESI appears to be a very 
good indicator to explain wheat yield variability, though its performance is higher in semi-arid governorates 
where soil moisture is the most important factor limiting crop yields. It is hypothesized that a combination of 
multiple indicators, including ESI, LAI, LST and P, may provide an improved yield estimate in terms of timing and 
accuracy, and this will be a topic of future research. 

6.2 SIMS (Satellite Irrigation Management 
Support)
With support from the NASA Applied Science Program, Melton et al. (2012) have developed the NASA Satellite 
Irrigation Management Support (SIMS) framework, synthesizing data from multiple sensors to enhance the 
utility and accessibility of satellite data to derive crop ET for irrigation management and scheduling.

For the time being, SIMS crop ET (ETc-SIMS) data are available across the Western United States of America, 
where agriculture is typically the largest user of water, groundwater is rapidly depleting in multiple basins that 
support agricultural production, and electricity used for pumping is accelerating. Over time, it is expected that 
SIMS would cover the entire United States of America and eventually extend to other regions of the world. In 
the interim, the SIMS application programming interface (API), currently allows the user to define any area of 
interest globally, specify a crop type, and retrieve a time series of satellite derived basal crop coefficient (Kcb) 
values calculated from satellite measurements of the crop growth stage and condition. The API parameterizes 
the SIMS equations using the crop type specified by the user, and can be applied over any agricultural area 
globally. 

Two key considerations are at the base of the SIMS rationale: (i) an effective irrigation schedule requires that 
near real-time information is available to the agricultural producer and, therefore, the estimates of crop ET (ETc) 
should adopt algorithms compatible with full automation; (ii) rather than deriving ETc through the surface energy 
balance approach (requiring RS data in the thermal band that are only available at field scales from Landsat at 
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present), ETc can be obtained from the NDVI (requiring RS data in the red and near-infrared bands) using a well-
established and robust method (Allen et al., 1998), i.e. by the product of reference evapotranspiration (ETo) and 
specific crop coefficients (Kc), highly suitable for irrigation scheduling, with ETo derived from either agricultural 
weather networks (e.g. the California Irrigation Management Information System –CIMIS–, the Columbia-Pacific 
Northwest region meteorological network –AgriMet–, and the Arizona Meteorological Network –AZMET) or 
other sources of gridded meteorological data.

SIMS currently uses Google Earth Engine to automate the processing of the satellite inputs and to integrate the 
satellite and surface observations in near real-time, but can also be run on any local or cloud-based compute 
resource.

More specifically, ETc is derived through the following equation (following Allen et al., 1998)

with ETo being the reference ET calculated by the PM equation using solar radiation (Rs), air temperature (Ta), 
relative humidity (RH), wind speed (u) and according to the FAO-PM formulation (Allen et al., 1998), and with

where Kcb is the basal crop coefficient representing the ratio between crop transpiration and ETo, Ke is a soil 
evaporation coefficient representing the ratio between soil evaporation and ETo (Allen et al., 1998, 2005; Allen, 
2011) and Ks is a dimensionless stress coefficient whose value (ranging from 1, no stress, and 0, full stress) is 
dependent on available soil water in the root zone and soil and crop salinity related characteristics (Allen et al., 
1998).

SIMS derives ET under well-watered (unstressed) conditions with minimal soil evaporation using satellite data 
to account for the current crop stage, condition and fractional cover, and a gridded soil water balance model to 
account for soil evaporation resulting from precipitation, such that:

Two steps are involved in SIMS Kcb derivation: (i) first, to convert satellite NDVI to crop fractional canopy cover 
(FC) based on a generalized empirical equation derived in literature (Trout et al., 2008; Johnson and Trout, 2012); 
(ii) then, to convert Fc to Kcb by considering a vegetation density coefficient (Kd), as developed by Allen and 
Pereira (2009), and further described by Pereira et al. (2020) and Wang et al. (2021), which accounts for the cases 
when plant density or leaf area fall below full ground cover, often when LAI < 3. 

SIMS relates Fc to NDVI by the following equation after Johnson and Trout (2012):

Then, according to Allen and Pereira (2009), Kcb relates to Fc and Kd through the following equation:

with

where: Kcb,full is the estimated Kcb during nearly full ground cover (or LAI >3); Kc,min is the minimum Kcb for bare 
soil (taken equal to 0.15 for typical agricultural conditions); Fc,eff is the effective fraction of ground covered or 
shaded by vegetation near solar noon (ranging from 0.01 to 1); ML is a multiplier on Fc,eff describing the effect of 
canopy density on shading and on maximum relative ET per fraction of ground shaded (ranging from 1.5 to 2); 
and h is the mean height of the vegetation in m. As a simplification, SIMS uses Fc rather than Fc,eff to calculate 
Kd.  

To derive NDVI, SIMS uses data from Landsat 8 and Landsat 9 (and data from Landsat 5 and 7 for studies prior to 
November 2011 and December 2021, respectively), and Sentinel-2A/2B. SIMS is able to ingest Landsat Collection 
2, Level 2 surface reflectance data products from USGS, as well as top-of-atmosphere (TOA) reflectance data 



61

from USGS, and then apply fully automated atmospheric corrections using the LEDAPS (Masek et al., 2006) and 
L8SR (Roy et al., 2014) software packages to calculate top-of-canopy (TOC) surface reflectance and screen out 
clouds within the satellite scene.

After the automated atmospheric correction, cloud masking, and gap-filling procedures, SIMS maps of Fc and 
Kcb are derived every eight days and interpolated to a daily timestep at spatial resolutions of 30 m. After deriving 
Ke from precipitation using a soil water balance model (Allen et al., 1998), ETc-SIMS is derived through Eq. (95).

However, in scheduling irrigation, other factors beyond ETc need to be considered, including soil type, salinity 
and leaching fraction, irrigation system type, distribution uniformity, root zone soil moisture, among others. 
Therefore, information from SIMS has been integrated with a browser-based irrigation management decision 
support system that serves water managers and agricultural producers. Presently, SIMS is integrated with the 
CropManage platform,47 developed by the University of California, Division of Agriculture and Natural Resources.

SIMS has also been included in the suite of models available from OpenET (openetdata.org; see chapter 
6.5) due to the ETC reliability and accuracy across irrigated agricultural lands. While a more comprehensive 
uncertainty discussion of remote sensing based ET models and inter-comparisons between models and field 
data will be reported later in chapter 7, here we highlight the results of some of the SIMS accuracy assessments 
conducted in field trials.

Relative to actual ET measured in commercial fields of 15 major California crops (including vegetables, field 
crops, trees and vines), and over six years, SIMS has shown a mean absolute error (MAE) within +/-10 percent, 
for seasonal total ETc of well-watered crops, and within +/-15 percent for all crops (Pereria et al., 2020).

On a daily basis, MAE increases to 16 percent for annual crops and 21.7 percent for perennial crops. ETC errors on 
seasonal scale are reduced to 8 percent when Ks and Ke are calculated via soil water balance models (Allen et 
al., 1998). In fact, SIMS tends to underestimate ETa during the initial development stage of field crops due to the 
effects of soil evaporation, since irrigation is not currently considered by the gridded soil water balance model. 
Overall, SIMS shows the highest ETc accuracy for well irrigated crops during the mid- to late-season, when the 
crop canopy is fully established.

We may thus conclude that the major strengths of SIMS are computational efficiency, full automation over 
large areas, and the ability to derive consistent, reasonably accurate canopy cover and ETc values under well 
irrigated conditions.  Finally, the integration of SIMS with CropManage provides growers (both on personal 
computers and smart phone Apps) with a complete set of information to make data-driven decisions about 
irrigation (and nutrient) management.

6.3 IrriWatch
IrriWatch is a commercial web-based platform (operated on both personal computer and smart-phone Apps) 
developed by Wim Bastiaanssen to provide farm managers, food processors and agricultural supply chain with 
daily guidance in key on-farm processes such as irrigation, fertilizers and crop protection.48 It also serves public 
agencies responsible for irrigation schemes to monitor water consumption and to support irrigation priority 
setting and water allocation decisions. It also estimates net soil carbon capture for carbon trade purposes 
being part of climate-smart agriculture and regenerative agriculture.

IrriWatch analyses every 10 m x 10 m of user-defined fields, with a daily revisit time, using RS data coming 
from Landsat, EcoStress, VIIRS and Sentinel and advance data processing techniques (such as irrigation 
tiles). The primary engine of IrriWatch is SEBAL (see chapter 2.4.1) converting satellite measurements of crop 
temperature, vegetation cover, solar radiation and other crop parameters into actual crop evapotranspiration 
(and transpiration separately) and related parameters.

47 University of California. CropManage. https://cropmanage.ucanr.edu/
48 IrriWatch. 2022. https://irriwatch.com/en/
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Focusing on the Irrigation component, the IrriWatch technology senses soil moisture content and actual soil 
water potential checked against the crop critical value, beyond which stress is triggered, and provides irrigation 
scheduling advice for every 10m x 10m. Furthermore, weather forecasts in combination with today’s satellite 
measurements of soil moisture status are then used to forecast soil moisture conditions for the next eight days 
to be compliant with irrigation systems of South Asia.

In practice, IrriWatch provides every morning a daily irrigation advice to growers, ranking fields requiring 
irrigation based on the priority to needed water (urgent irrigation; irrigation; no irrigation; over-irrigation; no 
vegetation) using color code. A minimum value required to replenish daily crop water use will be recommended 
for each field needing irrigation. In addition, a maximum value will be provided to refill the root zone to a certain 
pre-defined moisture level to be set by the farm managers. This can be near field capacity but also near to the 
point of easily available soil moisture in case deficit irrigation is practiced. But the final decision of how much 
water to actually apply is made by growers and their consultants that can factor in additional agronomic and 
economic conditions.

Instead of a uniform irrigation amount, it is thus possible to modify the irrigation by management zones. This 
recognizes local crop and soil variability. In fact, it is possible to upload local soil maps to consider differences 
of soil physical characteristics such as storage of soil moisture.

Users of IrriWatch can subscribe for three types of “packages”: (i) Premium, providing maps of soil water 
potential, soil moisture and ET values, along with information on daily crop production and information on 
irrigation scheduling and irrigation performance; (ii) Dryland, meant for rainfed farmers with information on 
crop production, the impact of droughts, soil moisture in the root zone and crop fertilizer status and (iii) Climate 
Smart Agriculture that includes greenhouse gas emissions, carbon capture in soil and the resource efficiencies 
of light, water and Nitrogen .

Expected levels of ET accuracy are within the range of ± 5  percent on a seasonal basis.

As up the present, IrriWatch is serving more than 200 000 individual fields across more than 60 countries 
around the world. 

Further information on IrriWatch can be found on its portal.49

49  IrriWatch. 2022. https://irriwatch.com/en/
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7. UNCERTAINTY REVIEW ON RS 
ET DETERMINATIONS

The present chapter addresses, in part, the issue of uncertainties involved in satellite remote sensing (RS)-
based determination of evapotranspiration (ET). Uncertainties (also referred to as error) are unavoidable in all 
types of models and in any other kind of determinations and measurements. Being aware of the magnitude 
of uncertainty allows one to properly identify and select the determination method most suitable for a given 
application, so that uncertainties are likely to be within acceptable limits for sound quantitative analysis leading 
to appropriate decisions. In fact, the issue of error and uncertainty is generally the first question asked regarding 
a model or method for determining ET. Decision-makers and policymakers ask “how good is the method” or 
“how accurate is the method” or “how far off can the estimates be?” These very important questions are in 
regard to uncertainty and reproducibility.

After illustrating some of the most adopted methods for analyzing uncertainty, the chapter will provide some 
results of tests conducted to compare RS ET determinations with field ET measurements, which are, in turn, 
subject to error. The results of these comparisons will then be discussed within the context of the various 
models presented in chapter 2.4.

The chapter will close with a special session devoted to the elaboration of some criteria for determining what 
acceptable limits of uncertainty are for given types of applications.

7.1 Background on methods for addressing 
and applying uncertainty analysis
It is appropriate to start this chapter by recalling that the RS determinations of ET are based on mathematical 
models, and therefore they are a ‘simplification’ of reality. A real system (e.g. hydrological, social, agricultural, 
biological, etc.) is extremely complex, and through ‘modeling’ we try to identify and formulate a set of algorithms 
that best simulate those ‘status’ (or structural components) and ‘processes’ that best capture most of the real 
system, accounting of course for the objective of the modeling work.

The more we simplify the system (through its structure conceptualization), the higher the risk of system 
misrepresentation by the model, and therefore the higher the uncertainty. Similarly, the more we increase the 
model complexity in order to more closely represent the real system (e.g. incorporating more processes and 
algorithms), the larger the risk of uncertainty due to the introduction of increasing numbers of parameters, 
each of which can have its own error and uncertainties. The qualitative relationship between uncertainty and 
complexity in modeling is graphically expressed in Figure 8 (Passioura, 1996; Affholder et al., 2012).
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Figure 8: Relationships between uncertainty and complexity in modeling 

Note: The yellow line represents the change in uncertainty of the model conceptual structure with increasing complexity. The red line represents the 
change in uncertainty with the increase of the model number of parameters. The green line represents the total change in uncertainty of the model 
(inclusive of conceptual structure and number of parameters).

Source: Passioura J.B. 1996. Simulations models: science, snake oil, education, or engineering? Agron. J., 88: 690-694.  Affholder F., Tittonel P.A., 
Corbeels M. and Roux S. (2012). Ad hoc modeling in agronomy: what have we learned in the last 15 years? Agron. J., 104(3): 735-748.

It is evident that there is an optimal balance between a sufficiently complex representation of the model (its 
conceptual structure) and the number of parameters required for such a complex representation. While on 
the one hand, it is not an easy task to identify such an optimal balance, on the other hand, it is clear that a very 
sophisticated model for a system is not necessarily better than a simpler model in regard to the accuracy of 
results.

We observed in chapter 2 that there is a relatively large number of models, each determining ET with multiple 
purposes (e.g. drought monitoring, water resources management, irrigation scheduling, etc.), addressing 
different scales (farm-field, basin, global), and having different conceptual structures (e.g. Surface Energy 
Balance; Penman Monteith, Psychrometric Satellite Approach, etc.) requiring different numbers of parameters.

We will now provide an overview of the most common methodological approaches to analyze the uncertainty 
in the ET determinations of these RS models, considering that uncertainty stems from three major sources: 
inadequate model structure, poorly defined parameters within the model’s algorithms (e.g. inadequate 
calibration), and model input errors. To have everybody on the same page, the reader should be acquainted 
with a few terms, notations and definitions, such as those reported in Box 1. 
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Box 1 – Some terms, notations and definitions in uncertainty analysis

Error: is the difference (or deviation) between the measured value and the ‘true value’ of the variable being 
measured. As in reality the ‘true value’ is unknown, we generally refer to the expected value of a measured 
quantity (x), determined as its best estimate (xbest) associated with an error (±δx) so that the expected value lies 
somewhere between (xbest – δx) and (xbest + δx), with an associated confidence, or level of probability (e.g. 95  
percent). Thus,

x = xbest ± δx  with a given level of probability

where xbest and δx are obtained through repeated measurements of the same quantity, and the level of 
probability is obtained by knowing the statistical law governing the measurement process (e.g. ‘Gaussian’, 
‘Binomial’ or Poisson’ probability distributions).

Precision: is the closeness of agreement between values obtained by repeated measurements. A 
measurement is precise if the readings cluster closely together (low extent of reading scatter), without 
reference to the true value. It is associated with the random error, i.e. reading fluctuations in either direction (+/-) 
of the measured value. To increase the precision requires increasing the number of repeated measurements.

Accuracy: is the closeness of agreement between a measured value and a true or expected value. It is 
associated with the systematic error (or bias), i.e. reproducible inaccuracies that are consistently in the same 
direction. To increase the accuracy requires calibration against a standard or reference value.

A way to visualize low and high degrees of measurement precision and accuracy, in the different combinations, 
is provided by the following sketch: 

       

A way to visualize the different variables involved in the precision and accuracy determinations with repeated 
measurements (values) obeying a Gaussian probability distribution is provided by the following figure:

The Gaussian (or normal) probability function is expressed by the standard deviation (s)
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with: xi being the individual measurements, θθ   is the mean of the repeated measurements, calculated as        

                and representing the best estimate (xbest) of the expected value (x), and  is the total number of 
repeated measurements. 

For the same number of measurements, the higher the precision the smaller the standard deviation. 

For a large enough sample, approximately 68 percent of the readings will be within one standard deviation 
of the mean value, 95 percent of the readings will be in the interval x ± 2s, and nearly all (99.7 percent) of 
readings will lie within 3 standard deviations from the mean. 

Uncertainty: the interval within which the expected value can be considered to lie with a given level of 
confidence or probability. It represents the degree of confidence we have in our measurements (or the doubt 
that exists about the result of the measurements), and is influenced by accuracy (systematic error or bias) and 
precision (random errors) of the measurement, as well as by the measurement method. Thus, the expected 
value (x) should be expressed as 

The uncertainty of the expected value can be also expressed as percent .

In the case of repeated measurement, with a well calibrated instrument (to minimize the systematic error), 
the uncertainty is expressed as the standard deviation of the mean, often called the standard error (SE)

so that 

The term error (without being qualified, e.g. random or systematic) is often used as synonym of uncertainty 
as it generally refers to SE.

The number of significant figures when reporting a measurement value has to be properly defined as it 
implies an approximate relative uncertainty, i.e.:

1 significant figure suggests a relative uncertainty of about 10 percent to 100 percent

2 significant figures suggest a relative uncertainty of about 1 percent to 10 percent

3 significant figures suggest a relative uncertainty of about 0.1 percent to 1 percent

Source: The Language of Measurement’ published by the Association for Science Education (ASE), ISBN 978086357424545) 

Some considerations need to be highlighted when dealing with ET determinations by RS. First of all, they 
cannot be assimilated specifically and completely to laboratory or field measurements and, strictly speaking, 
they cannot provide ‘repeated measurements’ of the same quantity under the same conditions. Moreover, the 
ET determination is the modeling resulting from the use of multiple input variables, such as measurements 
of radiation of different bands of the solar and thermal spectrum (e.g. in the visible, infrared, near-infrared, 

etc.) derived from multiple sensors (e.g. multi-spectral optical sensor, thermal radiometers, etc.) and often 

installed on different satellites. Therefore, there is a need to estimate a compounded uncertainty on ET 

resulting from the propagation of errors for each individual measurement.

As an example, if we have a model formulating λE as a function of a certain number of input variables (x1, x2, x3, 
…, xn), i.e.

4 Box 1 continue
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for which we would like to determine the error (δλE), with each variable x (x1, x2, x3, …, xn) having their own error 
δx (δx1, δx2, δx3, …, δxn) based on technical specifications or experience, then, the overall error in λE can be 
obtained as (Taylor, 1982).

However, the assumption behind Eq. (100) is that the errors (δx) follow the Gaussian probability distribution 
and are independent of each other (i.e. they are uncorrelated), and this is not necessarily the case in RS 
measurements. For example, error in spatial registration of a satellite image will impact albedo derived from 
shortwave bands in a similar way as it impacts surface temperature derived from longwave bands. Similarly, 
the vegetation index NDVI used to estimate aerodynamic roughness can be impacted by error in shortwave 
bands or error in atmospheric corrections similar to how albedo is impacted. We’ll see later how to estimate the 
propagation of errors avoiding the risk of any possible correlations between errors.

One important implication of Eq. (100) is that generally, depending on their magnitude, only a few of its terms 
(causing errors of high magnitude) are the main contributors to the overall uncertainty, so that other terms 
(causing errors of low magnitude) can generally be ignored. In fact, if one of the terms causes uncertainty that 
is more than three times greater than that for the other terms, then it can be considered to be the term that is 
determining the largest uncertainty. This shortcut allows saving time in model development and calibration 
without losing substantial accuracy in the estimate and overall uncertainty.

The number of sensors on the various satellites used for RS of ET is quite large and the reader is referred to the 
websites such as those of the Committee on Earth Observation Satellites (CEOS), of the National Air and Space 
Administration (NASA) and the European Space Agency (ESA) for specific instruments and measurements.50

Methods to determine uncertainty. When there are doubts regarding the correlation of parameters and error, 
we can use the ‘method of moments’, which does not require the specification of the probabilistic distributions 
of the repeated measurements (Rushidi and Kafrawy, 1988). This method calculates the uncertainty in the 
output (e.g. H, λE) using the propagation of the partial derivatives of output vs. the input variables and their 
respective covariance (Hansen, 1982).

Using as an example the same λE function of Eq (99), the method of moments estimates the compounded error 
in λE, resulting from the propagation of error from the input variables, as

where the new terms introduced (r1
2, r2

2, r3
2, …rn

2) are the coefficients of determination of the cross-correlations 
between input variables taken as pairs of all combinations.

The method of moments has been utilized by Fisher et al. (2008) to analyze the error propagation on λE, as derived 
through the PT-JPL model, and the sensitivity analysis of the model, with four input variables: net radiati0on 
(Rn), Normalized Difference Vegetation Index (NDVI), maximum air temperature (Tmax), and atmospheric water 
vapor pressure (ea). Attributing 10 percent and 25 percent error for each of the four input variables, the resulting 
compounded error on θE was 11.3 percent and 28.3 percent, respectively. Subsequently, the authors varied the 
error (set at 10 percent) of only one input at a time, while holding the error for the other inputs constant at zero. 
The major result of the uncertainty analysis was the heavy dependency of PT-JPL on the accuracy of Rn. NDVI 
was second in total error contribution. Minimal error contribution was coming from Tmax and ea.

50 CEOS. 2023. https://ceos.org/

CEOS. 2023. The CEOS Database. CEOS EO Handbook - Catalogue of Satellite Instruments. https://database.eohandbook.com/database/
instrumenttable.aspx

CEOS. 2023. The CEOS Database. CEOS EO Handbook - Measurements. https://database.eohandbook.com/measurements/overview.aspx

NASA. Earth Data - Open Access for Open Source. https://www.earthdata.nasa.gov/

The European Space Agency. https://www.esa.int/
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It is important at this point do clarify the difference (and similarity) between ‘sensitivity analysis’ and ‘uncertainty 
analysis’. In a broad meaning, a sensitivity analysis (Saltelli et al., 2008) aims to describe how much the model 
output values are affected by (i.e. how sensitive the model is to) relative changes in model input values. 
More specifically, the sensitivity analysis aims to identify the relative contribution of each error source to the 
overall uncertainty in the model prediction and therefore to pinpoint which variables are most influential in the 
determination of ET. The analysis can examine the effects of changes in a single input variable, assuming no 
changes in all other inputs, or it examines the combined effects of multiple sources of error.

The uncertainty analysis (Morrison, 2021), instead, attempts to describe the compounded uncertainty of model 
predictions as affected by multiple sources of uncertainty in model input. The quantification is often performed 
by estimating statistical quantities of interest such as probability distribution, mean and standard deviation that 
describe the likely error and uncertainty in inputs and in model algorithms and parameters.

In fact, sensitivity and uncertainty analyses are run in tandem, where the sensitivity analysis is used to reduce 
the number of variables to be involved in the uncertainty analysis (Saltelli et al., 2000). Several methods are 
available to perform sensitivity and uncertainty analysis, including Maximum Likelihood (Rossi, 2018), Monte 
Carlo (Kroese et al., 2014), and the method of moments previously described, each one with its own merit and 
drawbacks.

The most commonly used method in modeling appears to be the Monte Carlo method, which simulates 
numerical values that follow a parameterized probability distribution through repeated random sampling 
(e.g. like random errors following the Gaussian probability distribution). It is considered very powerful as it can 
simulate almost any type of uncertainty, particularly when associated with a valid random generator, because 
the nowadays high processing capacity of computers allows very large numbers of simulation runs. However, 
when the per-pixel distributions of ET appear to be non-Gaussian (Cawse-Nicholson et al., 2020) and therefore 
precision and accuracy may not be sufficiently adequate metrics to describe uncertainty, an alternative method 
can be the one of “quantiles” (Cawse-Nicholson et al., 2020).

The method of moments, though, is also a powerful technique as being very efficient and not requiring the 
specification of the probabilistic distributions of the uncertainties in input variables (Rushidi and Kafrawy, 1988). 
It is usually based on a multivariable Taylor expansion of the system function that, in the case of the RS ET 
models, is truncated at the second-order moment (i.e. beyond the mean, it takes into consideration variance 
and covariance), as the higher-order moments (e.g. skewness and kurtosis) are considered to be negligible. 

Sources of model errors. We need to be aware that the RS determination of ET is subject to several sources 
of error that need to be considered comprehensively. Typically, and among others, we may have: spatial and 
temporal error in the assessment of cloud, aerosol, dust, and smoke contamination of the atmosphere affecting 
the surface net radiation; the non-uniform underlying land surface affecting wind patterns, roughness and 
Land Surface Temperature; daily variation of the atmospheric stability conditions affecting the aerodynamic 
conductance; insufficient spatial and temporal representation of some meteorological variables like wind speed 
and vapor pressure of the atmosphere, which influence aerodynamic and canopy conductance, respectively; 
etc.

Here we provide the magnitudes of accuracy for some typical RS measurements or determinations.

Uncertainty in Land Surface Temperature (LST) measurements. The thermal band of MODIS (1 km resolution) 
provides an expected absolute accuracy of surface temperature in the range of 0.3-0.5 K over oceans and of 1 
K over land (MODIS Brochure, 2000). Sekertekin and Bonafoni (2020) reported an accuracy of LST derived from 
Landsat varying between 0.1 K to 0.4 K (with a typical mean accuracy value of 0.25 K).

Uncertainty in Radiation measurement. According to Sai Krishna et al. (2014), the daily net radiation under clear 
sky derived from Clouds and Earth’s Radiation Energy Systems (CERES) has a typical accuracy of 17-25 W m-2 
for downward long-wave radiation, and 73-89 W m-2 for downward short-wave radiation, while Mira et al. (2016) 
reported a global uncertainty in surface net radiation (Rn) derived from Landsat in the range of 40–100 W·m−2.

Error in radiation measurements can vary over time with atmospheric conditions such as haze, aerosols and 
humidity, and the means to measure and to correct for these. In addition, the detection of clouds and cloud 
shadows, even thin clouds, can introduce errors in radiation measurements, especially when cloud detection is 
automated, which is required for most web-based RS systems.
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Uncertainty in time integration/interpolation of ET. The determination of the RS input variables for ET 
computation is mostly instantaneous at the time of the satellite overpass. Therefore, additional sources of 
uncertainty are in the time integration of ET over the daytime hours, and the typical time interpolation of daily 
ET values over the period in between two satellite overpasses (e.g. like in the case of Landsat having 8 days of 
revisit cycle).

The important passage of up-scaling the instantaneous ET to daily values has been addressed differently by 
different authors. For example, originally Bastiaanssen et al. (2005) assumed the instantaneous ration between 
the latent heat (λE) and the available energy (Rn-G), indicated as evaporative fraction (Λ), to be constant during 
the day (see chapter 2.4.1). Similar assumption was retained by Allen et al. (2007a), with the major difference that 
the instantaneous ratio was taken between actual ET and the reference ET (ETr), indicated as the reference ET 
fraction (ETrF; see chapter 2.4.2). Recall that ETr refers to the reference ET using alfalfa (ASCE-EWRI, 2005) and 
ETo refers to reference ET using grass (Allen et al., 1998) and that there is a relationship between the two (see 
chapter 2.4.2 or later description).

The use of reference ET fraction instead of the evaporative fraction is considered an improvement in the 
accuracy of ET determinations, particularly under arid climates, due to afternoon advection or increased 
afternoon wind speed, which tend to increase ET and not being captured if considering the available energy 
only (Allen et al., 2007a). However, this improvement has not been observed under land use different from 
irrigated agriculture (e.g. Cammalleri et al., 2014).

Additionally, error in weather parameters input to the calculation of ETr (or of ETo), either from point ground 
measurements or from gridded weather data sets, can introduce some uncertainty in the reference ET estimate 
and therefore into the final ET estimate. The error produced by daily upscaling of ETrF and error produced by 
the reference ET (either ETr or ETo) determinations are estimated to be on the order of +/- 10 percent and are 
generally considered to be randomly distributed around 0.0 (Allen et al., 2011a). 

Additional methods based on ‘fraction’ with respect to other climatic variables, like extraterrestrial solar radiation 
(SR), incoming shortwave radiation (Rs) and net radiation (Rn), among others, have been proposed and tested 
over time (e.g. Ryu et al., 2012; Cammalleri et al., 2014; Liu, 2021). The overall conclusion on the daily ET up-
scaling from instantaneous values was that all methods can be accurate as their performance will depend on 
the variability of the sky transmissivity around the time of the satellite overpass and on the availability of data 
for the area of interest (Liu, 2021).

Nevertheless, where possible, the ETrF remains a solid method as it is anchored to the reference ET. In fact, 
SEBAL, METRIC, SSEBoP and PT-JPL all utilize the “fraction of reference ET” (either ETrF or EToF).

The second important passage of interpolating between consecutive satellite overpasses has been illustrated 
by Allen et al. (2010a). These authors indicate that this interpolation of ET information between image dates 
represents ‘at least half the total effort in producing a quantitative ET product’. While the numerical interpolation, 
per se, is not a problem (splines have shown to be perfectly feasible for this purpose), a major challenge in the 
interpolation is to capture evaporation that may take place following episodic precipitation and/or irrigation 
events occurring between overpass dates. In fact, the ET retrieval may be biased ‘high’ or ‘low’ when the 
overpass respectively ‘follows’ or just ‘precedes’ one of these events. To account for these biases, one approach 
is to adjust the ‘background’ soil evaporation of the processed images. The ‘background’ evaporation for bare 
soil is computed using a gridded FAO-56 two-stage evaporation model of Allen et al. (1998) with modification 
to account for ‘flash’ evaporation from the soil skin (Allen 2010) or some other soil evaporation model such as 
Hydrus51 or DAISY.52 The soil evaporation model is on a daily time step using spatially distributed precipitation, 
reference ET, and soil properties. In addition to the background evaporation, the interpolation also involves 
the treatment of clouded areas of images, using cloud masking techniques. The reader is referred to Allen 
et al. (2010a), Kjaersgaard et al. (2011), and Singh et al (2020), for further details on the method addressing the 
interpolation challenges.

51  Finite element model for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media.
52  Danish Soil-Plant-Atmosphere System model.
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Georegistration error. In addition to the radiometric sensor and atmospheric error, additional errors in RS 
readings can come from errors in spatial registration. In other words, how well each particular pixel is mapped to 
the correct actual area on the earth. The spatial error varies with satellite and location. Common expected spatial 
error for Landsat, for example, ranges from 12 to 15 m prior to about year 2021 and 8 m beginning in year 2021 
(Storey et al., 2019). The processes of georeferencing (alignment of imagery to its correct geographic location) 
and orthorectifying (correction for the effects of relief and view direction on pixel location) are components of 
geometric correction necessary for the accurate positioning of an image. Imagery can be positioned relative to 
the datum, topography, or other data types, including reference data and additional geospatial layers. Landsat 
Level-1 products, for example, are precision registered and orthorectified through the use of ground control 
points and a digital elevation model (DEM). The Landsat Level-1 products are termed “terrain-corrected” and 
the majority of images can be used as delivered by the USGS. Collection 1 images are classified into tiers based 
on quality and processing level.53

Georegistration error, especially when interest is for parcel-sized ET estimation, can cause sensor data from 
outside a parcel to be incorrectly utilized to represent inside that parcel. The amount of error will depend on the 
similarity of vegetation status between inside and outside the parcel. Landsat Tier 1 products are consistently 
georegistered within ≤12 m (Young et al., 2017). This represents only one-half of a standard 30-m pixel, so that, 
in general, the impact on parcel-sized ET should be small. Other satellites, however, can have much larger 
georegistration error, including level 3 products from MODIS and VIIRS.

Some computations might require trained and knowledgeable operator skills while others might include 
additional processing for ‘data sharpening’, ‘data fusion’, ‘cloud masking’, among others, which are themselves 
models with their own parameters. Thus, it is evident that the complexity of the various nested algorithms to 
derive ET, the adequacy of these algorithms to describe the various processes involved, the quite intertwined 
sources of errors involved in the input variables, along with the implicit assumption of the probability distributions 
for the input values, requires one to go beyond the sensitivity and uncertainty analysis and may require some 
degree of subjectivity.

A comprehensive uncertainty assessment of ET model performance, and particularly of the data they provide in 
databases, benefits by a comparison with reliable field ET measurements or against another model considered 
to be of a higher standard.

Field ET measurement error. Although there is not a standardized field reference to test RS ET models, the 
eddy covariance (EC) micrometeorological measurement is often considered to be a ‘golden’ standard method 
for field ET determination, provided it is well calibrated, well maintained and operated by highly qualified 
technicians. However, the EC method is not without errors and/or systematic bias (Allen et al., 2011b).

Some of the critical issues to be aware of when comparing RS ET with EC data are: (i) the extent of energy 
balance closure with the EC flux-measurements (possibly only 80 to 90 percent); (ii) the EC fluxes foot-print to 
evaluate possible pixel-to-footprint mismatch. Energy balance closure refers to the frequent inability of the sum 
of the EC measurements of the latent energy of evaporation (λE) and sensible heat flux (H) to equal the sum of 
the net radiation (Rn) and soil heat flux (G) measurements, and to therefore “close” the energy balance (see Eq. 1 
in chapter 2). The frequent inability for λE + H to equal Rn – G is usually considered to be caused by the inability 
for the high frequency sonic anemometer, temperature and humidity measurements to adequately account 
for the entire vertical fluxes of λE and H. The λE and H measurements are typically adjusted by multiplying 
each measurement by a constant needed for their sum to equal Rn – G.  However, there is always uncertainty 
as to whether λE should be corrected more than or less than H, and thus there is always uncertainty on the 
“correction” made to LE and its equivalent ET. Generally, EC measurements where the average energy balance 
closure is less than 85 percent should be avoided (Allen et al., 2011b; Melton et al., 2022).

The EC footprint is defined as the spatial area that contributes λE and H fluxes that are measured at the location 
of the EC system, which is typically located 2 to 5 m above the ground. This area is also referred to as the 
“source area” for the two fluxes and the amounts of fluxes are largest toward the center of the source area. The 
size and shape of the footprint area and the distribution of LE and H fluxes within the area can be estimated 

53 USGS - science for a growing world. 2023. Landstat Collection 1. https://www.usgs.gov/landsat-missions/landsat-collection-1
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using footprint models (Kljun et al., 2015). When comparing EC or other ET measurements to RS of ET data, the 
RS pixels lying within the area should be weighted according to the amount of LE flux originating from each 
pixel.

Other than using footprint models (e.g. Kljun et al., 2015), one can assess the EC footprint area using flux 
measurements at several heights on the same tower, and with more stations about 200m in the surrounding of 
the main flux tower. However, these measurements are very expensive and are generally reserved for research 
settings. It is important that the flux measurements of the main EC instrumentation be within the fully adjusted 
atmospheric boundary layer.

Precision weighing lysimeters have often been used for testing ET model performance (Allen et al., 2007b) and 
can be used to compare against RS of ET models. One challenge with lysimeters, however, is that they measure 
relatively small areas on the order of 1 to 20 m2, whereas the smallest pixel size of a satellite-based ET estimate 
will be nearly 1000 m2 for a 30 m pixel size and 10 000 m2 for a 100 m thermal pixel size. Therefore, the 10 000 
m2 (1 ha) or larger area sampled from the RS of ET must have vegetation and ET characteristics that are identical 
to those of the smaller lysimeter. This is often difficult to accomplish and often research-grade lysimeters are 
placed in land parcels that are smaller than 1 ha. In addition, in order to guarantee that one entire satellite pixel 
lies completely within the field interior, one needs a parcel nearly 4 ha in size. Thus, the main critical issues to 
be aware of with lysimeters are: (i) the variability in vegetation type and amount and availability of soil moisture 
of a sufficiently large area surrounding the lysimeter; (ii) tendencies for vegetation inside a lysimeter to be more 
dense or less dense or of shorter or taller height than vegetation outside the lysimeter; this can cause the ET 
measured by the lysimeter to be unrepresentative of the area sampled from the RS of ET model (Allen et al., 
2011b); and (iii) possible negative ET occurring during dew or frost formation (e.g. ET becomes negative at night). 
Similarity in soil water available to the vegetation requires that the soil profile inside the lysimeter itself to be 
well representative of the soil moisture, and at sufficient depth, of the surrounding area.

Assuming that the field ET measurements can be proven to be of good quality, we are going to review here 
some of the most common methods and indicators providing the assessment of the RS ET performance and 
related uncertainty, making use of regression analysis.

Some notations we need to consider in the regression of our interest are reported in Figure 9.

Figure 9: Linear regression between modeled values (e.g. RS ET) and reference values (e.g. Field ET)

Source: Author’s own elaboration. 

The modeled values and the reference values are reported along the Y axis (e.g. RS ET data) and the X axis (e.g. 
field ET data), respectively. The straight line is the regression (forced to be linear) between the Y values and X 
values. The dots represent the location in the data space as derived from the number (n) of individual pairs of 
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Y and X values, indicated as yi and xi, respectively. The mean of the entire set of Y and X values is indicated as  
and , respectively. The regressed values associated to the pair values along the straight line are indicated as ŷi.

Adopting the previous notation, we can now abstract a set of statistical indicators of performance for the 
modeled regression.

Coefficient of determination (r2) represents (for the specific case of a linear regression, as in Figure 9) the 
goodness of fit of the data to the linear equation. It tells us how strong the linear relationship is between Y & X. 
It is calculated as:

Its value is the square of the correlation coefficient (r) that varies from +1 (perfect positive correlation) to -1 
(perfect inverse correlation).

Examples of r2 values are visually represented in Figure 10

Figure 10: Examples of r values that can be encountered in regression analysis

Source: Author’s own elaboration. 

Absolute Error (AE) is the absolute difference between the modeled value (yi) and the reference value (xi), and 
it is calculated as:

Relative Error (RE) is the ratio between the Absolute Error (AE) and the reference value (xi).

Mean Absolute Error (MAE) is an arithmetic average of the absolute error, representing an overall measure of 
error between paired observations. It is measured as:

Mean Relative Error (MRE) is the ratio between the Mean Absolute Error (MAE) and the mean reference value ().

Mean Absolute Percentage Error (MAPE). expresses in percentage the average difference between the 
modeled value and the reference value, and it is calculated as:

Mean Bias Error (MBE) corresponds to the MAE without taking the absolute value of differences between the 
model estimate and measurement, i.e.

Y

X

r2=-1r2=-0.5r2=0

r2=+0.1r2=+0.8r2=+1

Figure 10
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Root Mean Square Error (RMSE), also referred to as Root Mean Square Deviation or Difference, (RMSD), is the 
standard deviation of the residuals (distance of the data point from the regression line), which is a measure 
of the differences between the values resulting from the regression (ŷi) and the values resulting from the ET 
model (yi). It is calculated as:

The RMSE is an actual measure of the ET model uncertainty, including precision (random errors) and accuracy 
(systematic errors). A perfect fit between ET modeled data and field ET data would give a RMSE=0. For normally 
distributed data, 68 percent of ‘expected’ values will be within ±1 RMSE, 95 percent within ±2 RMSE, and 99 
percent within ±3 RMSE.

The unit of the RMSE is the same as for the Y and X values. To abstract from its specific units, but more specifically 
to compare different models results and scales, we generally use the Normalized Root Mean Square Error 
(NRMSE) that can be expressed as a fraction or  percent. The normalization is generally obtained by dividing 
the RMSE by the mean of the Y values ().

Index of Agreement (d) by Willmott (1981) is considered to be a standardized measure of the degree of model 
prediction error and is calculated as the ratio between the mean square error and the potential error:

The index of agreement varies between zero (no agreement at all) and 1 (perfect agreement). Furthermore, 
Willmot (1981) recommended using a statistical procedure that re-samples a single data set to create several 
simulated samples (called ‘bootstrapping’ method) to evaluate the confidence interval and significance 
associated with the d index.

Nash-Sutcliffe Efficiency coefficient (NSE) by Nash and Sutcliffe (1970) is used to assess the predictive skill of 
a model, expressed as a function of the error variance of the modeled values and the variance of the observed 
values. It is calculated as:

A qualitative rating of model performance used for the FAO model AquaCrop, and that can be used for any 
model, is reported in table 4 (Raes et al., 2017)

Table 4: Qualitative rating of model performance

Source: Raes D., Steduto P., Hsiao T.C. and Fereres E. 2017. AquaCrop 6.0 - Reference Manual. Chapter 2: User guide. FAO, Rome.
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The qualitative rating for NSE can be considered to be the same as the one for d in table 4.

The indices above assume that all errors occur within the model predictions and that the reference measurements 
(field measurements) are error free. In reality this is not the case, and to be fully fair and correct, we need to 
consider also the error in the measurements. While the above indexes are still valid for an assessment of model 
performance, the ‘method of moments’ is recommended for comprehensive analytics in ‘variables regression 
problems’, where errors are considered in both measurements and model predictions.

7.2 Overview of the selected RS ET models’ 
uncertainty
With the background overview on uncertainty analysis provided in the previous chapter, here we’ll review major 
uncertainty assessments carried out on the models in chapter 2.4. We will refer primarily to peer-reviewed 
articles describing assessments, bearing in mind that each assessment may have had limited scope, geographic 
area, climate and vegetation type. Each assessment will have, no doubt, included some measurement error, 
either random error that would impact the precision of the measurement or a systematic error that may have 
introduced some higher or lower bias in the measurement. These errors are very difficult to qualify and quantify. 
Only a few very experienced and qualified experts exist in the world who are able to thoroughly evaluate an ET 
measurement system and elucidate and quantify the probable error and its behavior.

Also important to bear in mind is that the various assessment studies span more than two decades and tested 
a specific version of a model, whereas models typically continue to evolve over time as refinements and new 
data sources occur. Some assessments have been carried out by the model developers, whereas others are 
more independent.

SEBAL

Bastiaanssen et al. (1998b) have provided the first results of the model validation of ET determination using 
large-scale field experiments conducted in Spain, Niger (the), China and Egypt. Different field methods of ET 
determination were used, including eddy covariance, airborne turbulent flux measurements, soil moisture 
profiles measurements and surface and groundwater hydrological models.

The resulting accuracy of SEBAL varied with the scale and the field ET method used to test the model. The 
authors observed the highest accuracy, within the range of 90-99 percent, when the model ET was compared 
against the airborne flux and soil moisture measurements, while the lowest accuracy (81 percent) resulted from 
the comparison against the groundwater hydrological model. The accuracy was in the range of 92-95 percent 
when the model was compared against the surface hydrological model, and in the range of 85-95 percent 
when compared against the eddy covariance.

Teixeira et al. (2009) carried out a local calibration (in Brazil) of several SEBAL parameters in order to study 
the impacts on the accuracy of the model. The study area was characterized by irrigated crops (wine grape, 
table grape, mango orchards) and natural vegetation. Several field agro-meteorological stations and other 
field instrumentations were utilized to obtain the data to test and revise the following parameters: surface 
albedo; surface temperature; surface and atmospheric emissivity; roughness length for momentum transport; 
net radiation; soil heat flux; air temperature gradient; sensible heat flux; latent heat flux; and photosynthetically 
active radiation (PAR).

The instantaneous values of the energy fluxes from the revised SEBAL were compared against those obtained 
from Bowen-ratio and eddy covariance towers. The linear regressions between the modeled and reference 
fluxes reported coefficients of determination (r2) of 0.94, 0.93, 0.83 and 0.81 for Rn, λE, H and G, respectively. The 
corresponding root mean square errors (RMSE) were found to be 17.5 W m2, 33.8 W m2, 41.8 W m2 and 13.3 W m2, 
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respectively. When the comparison was conducted with daily values, the regression for the evapotranspiration 
(ET) showed a r2 of 0.91 and a RMSE of 0.38 mm d-1.

SEBAL prediction of ET has been also tested against weighing lysimeters and scintillometers. The difference 
between modeled-ET and lysimeter-ET, on a monthly scale and for a sugarbeet crop, was found to be in the 
range ±16 percent and ±20 percent (depending on the year of observation). These differences were reduced 
to about four percent (or less) if ET was computed on a seasonal scale (Bastiaanssen et al., 2005). This latter 
reduction suggests that much of the estimation error was random in nature and therefore decreased with the 
repeated sampling occurring over time. 

De Bruin et al. (1995)  and Hemakumara et al. (2003) tested SEBAL ET against scintillometers in Sri Lanka and 
Indus Basin. Errors were variable, ranging from four percent to 32 percent for 10-day ET values. Errors reduced 
to three percent when ET values were compared on a monthly basis.

Errors tend to reduce with longer time integration caused by the partial cancellation of the random error as well 
as integration over a larger spatial scale. This was also noted for the METRIC model by Allen et al., (2007a,b). For 
instance, the SEBAL ET for the period June 1999 to June 2000 for the two river basins in Sri Lanka was found to 
be between one percent and 11 percent different from the water balance ET (Bastiaanssen and Chandrapala, 
2003). The same authors indicated an average deviation in annual ET for large catchments in Pakistan and Sri 
Lanka of about four percent. This same value has also been reported by Mohamed et al. (2004) in estimating 
the monthly evaporation of the vast swamps of the upper Nile Basin in South Sudan.

Bastiaanssen et al., (2005), thus, claim that the overall accuracy of ET from SEBAL for single-day events and for 
scales of the order of 100 ha is ±15 percent, considering that space and time integration further improves the 
accuracy. Moreover, the catchment-scale studies conducted in Pakistan, Sri Lanka and South Sudan reveal an 
overall ET accuracy of four percent on an annual basis.

METRIC

Allen et al. (2007a, b) reported the first test of the model comparing METRIC ET against high quality ET 
measurements obtained from both weighing and drainage lysimeters, at Kimberly and Montpellier (Idaho), 
United States of America, respectively.

The comparison with the drainage lysimeters was conducted for four months in 1985 with an irrigated forage 
crop. Deviations in weekly ET during the crop season showed a large variability, going from -14 percent 
(observed in October) to 28 percent (observed in July), with an average deviation of 18 percent over the period 
July-October. When assessed on a monthly basis, the deviation went from -18 percent (observed in the month 
of August) to 22 percent (observed in September), with an average deviation of 16 percent over the same 
period. However, the seasonal difference between METRIC ET and lysimeters, calculated by summing the ET 
over the 4 month period, was only 4 percent. This is due, again, to a reduction in the random error components 
present the model, in addition to those of the lysimeter measurements.

The comparison with the weighing lysimeter, measuring ET from irrigated sugarbeets, was conducted on eight 
dates of 1989. Excluding one of the dates, considered to be affected by inadequate field size and placement 
of the thermal pixel of Landsat, the deviations of the daily ET of an individual date varied from -23 percent on 
May 4 to 34 percent of September 25, with an average deviation of 14 percent. Also in this case, the deviation 
decreased when the comparison was conducted over the entire crop season and, for this particular comparison, 
showed to be less than 1 percent without any recalibration.

In a regional study to estimate the evapotranspiration (ET) from the western part of Urmia Lake Basin (Islamic 
Republic of Iran (the)), Tasumi (2019) compared the ET obtained by METRIC with an independent estimation of 
ET obtained using the FAO-56 approach, for apple, grape and bare soil over the period 2014 through 2016. Taking 
the difference between daily ET of FAO-56 and daily ET of METRIC as the estimation error of METRIC, mean bias 
error (MBE) for apple, grape, and bare soils was 0.20, 0.16, and 0.36 (mm d−1 ), respectively, the mean absolute 
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error (MAE) was 0.57, 0.72, and 0.59 (mm d−1 ), respectively, and the Root Mean Square Error (RMSE) was 0.73, 
0.84, and 0.68 (mm d−1 ), respectively. Expressing the RMSE in percentage of average ET, the accuracy for the 
well-watered apple resulted in 14 percent (the highest accuracy observed). The accuracy decreased for grapes 
which had intermediary soil moisture conditions, and was poor for dry soil due to the very low evaporation rates. 
When the accuracy assessment was carried out on a monthly time scale, the MBE ranged from 0.1 to 8.3 mm 
mo−1, MAE was between 9.0 to 16.0 mm mo−1 and RMSE was between 10.8 to 20.5 mm mo−1.

He et al. (2017) investigated the accuracy of METRIC ET over irrigated almond in the San Joaquin Valley, California. 
The comparison was carried out against field ET obtained as a residual of the energy balance (λE=Rn-H-G), 
where Rn, H and G where measured with a flux tower where the eddy covariance method was used to derive 
H. The diurnal value of field ET was provided every half hour, allowing the comparison for the instantaneous 
value of METRIC ET, in addition to the comparison of daily and monthly values. The instantaneous METRIC ET 
at the time of the Landsat overpass (around 10:30 a.m.) was regressed with field measurements over a total of 
46 Landsat overpass cloud-free days, from 2009 to 2012. The regression had a r2 of 0.74, a RMSE of 0.11 mm 
hr-1 and a mean relative difference (MRD) of 21 percent. When aggregated at daily time scale, r2 increased to 
0.87, the RMSE was 0.80 mm day-1 and the MRD remained the same. However, when the comparison of ET was 
conducted by selecting the images of the satellite overpasses occurring during the growing season only (34 
cloud-free days), higher accuracy was found, where: for the instantaneous ET value, r2 slightly decreased to 
0.71, RMSE increased to 0.45 mm hr-1 and the MRD decreased to 11 percent; for daily ET values, r2 remained the 
same, RMSE was reduced to 0.53 mm/day and mean relative difference (MRD) lowered to 8.0 percent. When 
the comparison was conducted with ET values aggregated at a monthly time scale, METRIC ET expressed its 
highest accuracy, i.e. r2 of 0.90, RMSE of 12.08 mm mo-1 and a RMD of 9.7 percent.

Choi et al., (2009) used Landsat imagery collected during the Soil Moisture Atmosphere Coupling Experiment 
(SMACEX) in 2002 and compared METRIC model results with observations from a network of EC flux towers 
over soybeans and corn in Iowa, United States of America. The METRIC model yielded RMSE of 38 W/m2 over 
all EC flux sites combined, assuming a Bowen ratio-based energy balance closure technique for EC.

Several other accuracy assessments of METRIC were conducted with various crops, and the mean absolute 
difference (MAD), evaluated against field measurements, was found to range between 16 percent for monthly 
ET values over irrigated meadow (Allen et al., 2007b) to 20  percent for daily ET values over olive (Paço et al., 
2014), although the MAD decreased to 4 percent when comparing seasonal ET values (Allen et al., 2007b). 
Furthermore, RMSE of 1.1 mm d-1 was reported by Lian et al. (2015) over spring wheat fields, while French et al. 
(2015) found a RMSE of 1.9 mm d-1 over cotton and Jin et al. (2018) observed a RMSE of 1.4 mm d-1 over pistachio.

The lists of METRIC performance assessments against field data are extensive and continue to add over time. 
So far, it can be stated that the overall model accuracy is expected to vary from 85 percent, for daily ET values, 
to 95 percent for seasonal ET values, provided a skillful operator of METRIC is assured. For the fully automated 
version of METRIC (named eeMETRIC) in the OpenET platform, the accuracy of METRIC was found to average 
about 3 percent for total growing season weighted mean ET assessed over 15 EC sites representing 40 total 
growing seasons (Melton et al., 2022).

ALEXI/DisALEXI

Both models associated with ALEXI/DisALEXI, the regional-scale (5 km) ALEXI and the higher-resolution (10-100 
m) disaggregated version DisALEXI, have gone through various degrees of validation, including comparisons 
with flux towers and aircraft in the United States of America and Europe with satisfactory results (NASA-JPL, 
2018).

Anderson et al. (2007b) compared the λE determined by ALEXI (including the algorithm for gap-filling of 
cloudy days) with the λE obtained by all towers of the SMACEX study noted above for METRIC, conducted in a 
watershed of Iowa, the United States of America. The results of this comparison indicated an error of about 20 
percent in ET at the hourly time scale and of ≤ 15 percent at daily time scale.



79

The various tests have indicated that ALEXI is more suitable for spatial scales of 5-10 km, where the land surface 
influence on the mean atmospheric conditions and on the boundary layer growth is observed to be effective 
(Anderson et al., 2004). Therefore, to compare ET at a regional scale with ground-based flux measurements it 
is appropriate to disaggregate the large-scale fluxes. DisALEXI (Norman et al., 2003) is the disaggregated high-
resolution version of ALEXI.

Anderson et al. (2004) applied DisALEXI to remote sensing data obtained from aircraft at 24 m resolution, over 
4 days, during the 1997 Southern Great Plains field experiment. The resulting λE from the model was compared 
with the λE measured with eddy covariance and the differences were within 12 percent.

DisALEXI, using Landsat data, was tested against measurements on irrigated cotton and rainfed grass in 
semi-arid, advective environments, obtained during the field campaign ‘Bushland evapotranspiration and 
Agricultural Remote sensing Experiment’ (BEAREX) of 2008 (Anderson et al., 2012). The comparison between λE 
data of DisALEXI with the two lysimeters and eight eddy covariance data showed an error of ≈ 17 percent on an 
instantaneous scale at the Landsat overpass time. The error was reduced to ≈ 11 percent when the comparison 
was conducted at a daily scale.

DisALEXI was tested over vineyards in California (Knipper et al., 2018), specifically on two drip-irrigated Pinot 
noir vineyard sites in Central Valley during the 2013-2016 growing seasons. These sites are being monitored 
as part of the Grape Remote-Sensing Atmospheric Profile and evapotranspiration eXperiment (GRAPEX). ET 
determined by the model was compared against the ET measured by eddy covariance flux-towers (one for 
each vineyard). Data sharpening (Gao et al., 2012) and data fusion (Gao et al., 2006) were used to generate daily 
ET maps at 30 m resolution. The comparison resulted in relative errors of 17 percent and 12 percent at daily and 
weekly time scale, respectively.

After the launch of the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) 
in June 2018, DisALEXI has been applied as one of the RS models to derive ET over large areas. More specifically, 
a model version revised by the Jet Propulsion Lab of NASA (DisALEXI-JPL) has been adopted to produce ET 
at the ECOSTRESS resolution of 70 m, and using the LST as input, the most recently available acquisition 
of Landsat 8, and different visible to shortwave infrared (VSWIR) input processing approaches. DisALEXI-JPL 
has been applied to cover the entire continuous U.S. (CONUS) and has been evaluated by comparing its ET 
determinations against the ET measurements taken at 26 eddy covariance sites across the United States of 
America, over a variety of landcover classes (Cawse-Nicholson et al., 2021). The results of the comparison 
reported a r2 = 0.80 and RMSE = 0.81 mm d-1.

Overall, ALEXI and DisALEXI have demonstrated to have good accuracy in a number of ET determinations. This 
is in part due to the time differential temperature approach (day-minus-night LST differences from MODIS/
VIIRS) used in ALEXI to predict the morning LST rise. By coupling a time-integration computation with an 
atmospheric boundary layer (ABL) model implemented over the morning period of ABL growth, near-surface 
air temperature is computed internally rather than used as a model input (Cammalleri et al., 2012).

SSEBop

Senay et al. (2013) tested SSEBop estimates of actual ET over diverse ecosystems across the contiguous the 
United States of America (CONUS), using the MODIS and Global Data Assimilation System (GDAS) data streams. 
The validation test was conducted for 1 km pixels, at monthly and seasonal time scales, against monthly 
datasets from 45 eddy covariance sites of AmeriFlux for the year 2005 and for different land cover types. While 
SSEBop was able to capture the seasonality of ET, with a strong correlation for individual stations (r2 between 
0.70 and 0.97), overestimation and underestimation of absolute values varied from station to station and from 
season to season.

SSEBop ET was also tested against lysimeters ET measurements in the semi-arid High Plain of Texas (Senay et 
al., 2014). SSEBop used a total of 14 Landsat-5 cloud-free images acquired during the growing season (March to 
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October) of the years 2006 and 2007. Field ET was derived from cultivated large monolithic precision weighing 
lysimeters located at the US Department of Agriculture-Agricultural Research Service (USDA-ARS) Conservation 
and Production Research Laboratory (CPRL) in Bushland, Texas. Two of the lysimeters were irrigated and two 
were under dryland conditions. The modeled and observed daily ET values were evaluated by differentiating 
the “irrigated” and “dryland” lysimeters and considering four aggregation periods, i.e. 1-day, 2-day, 3 day and 
“seasonal”. The results of the comparison showed an overall strong linear relationship, with r2 values ranging 
from 0.87 to 0.97 (higher for the “irrigated” lysimeters). Generally, the performance between irrigated and 
dryland fields was comparable with an overall under-estimation bias of around 11  percent. Furthermore, the 
RMSE, expressed as percent of the mean values, reduced progressively from 28 percent to 24 percent, to 16 
percent and to 12 percent when passing from 1-day, to 2-day, to 3-day, and to “seasonal” aggregation periods, 
respectively. The random error contribution to the total error was reduced from 86 to 20  percent, while the 
bias contribution increased from 14 to 80  percent when aggregated from daily to seasonal scale, respectively.

An uncertainty analysis conducted on SSEBop by Chen et al. (2016) utilized eddy covariance flux data from 42 
selected AmeriFlux tower sites, from 2001 to 2007, to test the model performance in determining monthly ET. 
Overall, ET estimates by SSEBop accounted for about 86 percent of the monthly ET measurements over all 
land uses, though performing best for cropland where it accounted for 92 percent variability with an RMSE of 13 
mm/month. Furthermore, the uncertainty analysis showed that error in land surface temperature (LST) within 
±1 K (0.35 percent) can lead to ET errors having a range of 20 percent. This is the case for most globally available 
LST data at 1-Km resolution, though in arid or semiarid climatic conditions errors in LST may increase up to ±5 
K (Hulley et al., 2012). In fact, it was highlighted that SSEBop is most sensitive during the non-growing season 
and in more arid regions, where ET errors might go up to 30 percent. It was also observed that lower uncertainty 
(e.g. ≈ 5 mm/month) is associated with a coarser spatial resolution (e.g. ≈ 14 Km), while higher uncertainty (e.g. ≈ 
10–15 mm mo-1) is associated to finer resolution (e.g. ≈ 1–8 km).

These findings imply that SSEBop may more suitable for ET prediction at regional scale. However, the OpenET 
study of Melton et al., (2022) indicates relatively good accuracy by the 2021 version of SSEBop at the field scale 
when applied with Landsat imagery. Accuracy at higher spatial resolution may be improved if the accuracy in 
the input variables and in key model parameters is adequately improved.

The daily ET determinations by SSEBop for irrigated and non-irrigated farmlands in the mid-western the United 
States of America were compared with eddy covariance measurements during the 2001 growing season over 
three sites planted with maize and soybean (Sing and Senay, 2016). The results showed an r2 of 0.92 and a RMSE 
of 84 mm over the season.

In generating ET maps for nine irrigation districts in California over 31 years (1984–2014), SSEBop processed 
a total of 3396 Landsat images (Landsat 5, 7, and 8) to generate monthly and annual ET data for each district 
(Senay et al., 2017). To validate the model performance, its ET determinations were compared against the global 
estimates of monthly land ET, over the period 1984-2011, from the Max Planck Institute (MPI) in Germany. These 
MPI ET estimates, available at ≈ 50-km spatial resolution, are compiled using a machine learning approach to 
upscale eddy covariance measurements (FLUXNET), meteorological data, climate data, and the fraction of 
absorbed photosynthetic active radiation data (Jung et al. 2009; Jung et al. 2010). The result of the comparison 
showed r2 up to 0.88 and RMSE as low as 14 mm/month.

SSEBop is currently used by the US Geological Survey (USGS) Famine Early Warning System Network (FEWS 
NET) to routinely provide multitemporal ET and ET anomalies for drought monitoring and early warning purposes. 
In one of the operationalizations of global ET determinations (Senay et al., 2020), SSEBop was evaluated 
using field ET data measured at 12 eddy covariance flux tower sites (provided by FluxNet) selected over six 
continents: two in Europe, two in North America, two in South America, two in Asia, two in Africa and two in 
Australia. The time period for the EC data was 2003–2014, based on the availability of flux tower measurements 
and the comparison of ET was on a monthly basis. Overall, the result of the comparison showed an r2 as high 
as 0.76 (with the exception of a site in South America, with an r2 = 0.008), while the RMSE ranged between 7.5 
mm/month and 43.7 mm/month. The strongest correlations occurred in Australia (r2 = 0.76, RMSE = 13.6 mm/
month) and Europe (r2 = 0.67, RMSE = 15.8 mm/month), while the lowest correlations were in South America (r2 
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= 0.008, RMSE = 43.7 mm/month). While the observed overall bias for SSEBop ET ranged from 3 percent to 50 
percent, in both negative and positive directions, the measured EC flux tower ET was also subject to biases and 
uncertainties, as indicated by relatively large energy balance closure error at some sites. 

However, SSEBop seemed to under-estimate in Europe and Asia, but partly over-estimate in Africa and Australia. 
Despite the concerns with SSEBop ET biases and energy balance closure error with EC flux tower data, SSEBop 
ET captured the temporal variability and anomalies so that it can be used for drought monitoring and early 
warning applications from 1 km decadal to basin-scale annual estimates. Nevertheless, a comprehensive 
investigation using complete water budgets and more quality-controlled EC station datasets is recommended.

PT-JPL

The PT-JPL model has been selected (among others) by the ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS) mission of the National Aeronautics and Space Administration 
(NASA) of the United States of America and it has been tested across a wide range of ecosystems, climate and 
land covers (NASA-JPL, 2018).

Using the net radiation, air temperature and air vapor pressure deficit measurements at 16 FLUXNET sites in 
various regions worldwide and over the years 2000-2003, Fisher et al (2008) tested the ET accuracy of PT-JPL 
on a monthly scale. Apart from two sites reporting an r2 of o.55 and 0.78, respectively for tropical evergreen 
broadleaf forest and for cold-temperate deciduous broadleaf, all other 14 sites had an r2 ranging from 0.81 to 
0.96. When data from all sites were combined, the r2 was 0.90 with a RMSE of 16 mm/month. When the ET 
comparison was made on an annual scale, r2 was 0.94 with a RMSE of 12 mm/month. Furthermore, Fisher et al. 
(2008) separated the systematic RMSE from the random (or unsystematic) RMSE so that the PT-JPL accuracy 
resulted in ± 4 mm yr-1 with a precision of 68 mm yr-1.

Vinukollu et al. (2011) carried out an inter-comparison of the PT-JPL latent heat fluxes with 12 eddy-covariance 
towers across the U.S. over the period 2003-2006. The eddy-covariance sites had different land uses, including 
cropland, grassland, evergreen needle-leaf forest, deciduous broadleaf forest, mixed forests and woody 
savannas. The results of the comparison at a monthly scale, using the data of all sites, showed a relatively 
low regression coefficient (r2 = 0.54) a mean RMSE of ≈ 20 Wm-2, and a mean bias of ≈ - 6 Wm2. The authors 
highlighted the difficulties and challenges encountered in conducting the inter-comparisons between satellite 
ET and eddy covariance ET, including the mismatch between instantaneous values of the satellite and hourly 
values of the eddy covariance, the difference in spatial scales (and heterogeneity of the land surface) between 
the satellite footprint and the eddy-covariance tower footprint, and the lack of energy balance closure of the 
eddy covariance measurements.

Chen et al. (2014) compared the PT-JPL ET with the measured ET at 23 eddy covariance sites within or 
around China, covering diverse terrestrial biomes, including cropland, grassland, evergreen and deciduous 
broadleaf forests, evergreen and deciduous needle-leaf forests, and mixed forests. The results showed a good 
performance of the PT-JPL model, with an r2 = 0.80, a slope of the regression line of 1.05, and a RMSE = 0.5 mm 
d-1.

In evaluating the performance of four commonly applied satellite ET models against measured ET of 20 
FLUXNET towers, Ershadi et al. (2014) highlighted the overall good performance of PT-JPL. The eddy covariance 
sites encompassed a number of biomes including cropland, grassland, shrubland, evergreen needle-leaf forest 
and deciduous broadleaf forest, spanning a period of high-quality data between 1.5 and 10 years. In order to 
provide high-quality data, the eddy covariance values used in the comparison were filtered to daytime only (to 
avoid negative net radiation and nighttime condensation), for a number of meteorological conditions (e.g. rain 
events, frozen periods, etc.), and other quality-control checks. The results of the comparison across all biomes 
showed a mean r2 = 0.70, a mean RMSE = 66 Wm-2 and mean relative error (the RMSE normalized by the mean 
values of observed data) = 0.37.
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ETLook

The initial version of ETLook used radar microwave radiation to estimate the soil moisture of the top soil and 
in turn the evaporation component (E) of the surface ET. The first model validation with field measurements 
was conducted using this version of ETLook to determine the actual ET in the Indus Basin (Bastiaanssen et al., 
2012) at 1 km ground resolution. A first challenge was then to downscale the 25 km ground resolution data of 
the Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua Satellite, obtained from the National 
Snow and Ice Data Center (NSIDC). Most of the additional satellite data input were derived from MODIS, 
while the source of meteorological data varied between the countries of the Indus Basin. Specifically data 
from 65 meteorological station were used in Pakistan (provided by the Pakistan Meteorological Department) 
while the data for India, China and Afghanistan were abstracted from the National Oceanic and Atmospheric 
Administration (NOAA) National Climatic Data Center (NCDC). Modeled annual ET was compared with measured 
values obtained in the same basin by the Pakistan Agricultural Research Council (1982) over the period 1975-
1980, including soil moisture and lysimeter data, and by Ahmad (2002) over the period 2000-2001, including 
ET data obtained with a Bowen ratio energy balance system. The result of the comparison over irrigated crops 
for the year 2007 showed an r2 of 0.70, and an annual RMSE of 163 mm. The relative error (RE) between ETLook 
and measured ET values ranged from –1.9 percent to –28 percent with an average of –11.5 percent, indicating a 
tendency of the model to underestimate ET.

The same authors (Bastiaanssen et al., 2012) presented the results of the comparison of ETLook with the annual 
ET data provided by the Australian Water Resources (AWR) for the year 2005, showing an r2 of 0.70 and an RMSE 
of 112 mm. The RE between the ETLook and AWR ET values ranged from –40 percent to 36 percent. They also 
presented the results of the comparison of ETLook with ET measured with eddy covariance flux measurement 
station in China for the year 2009. The results of the comparison showed an r2 of 0.92, an RMSE of 11 mm, and 
an RE of 9.5 percent.

When ETLook was adopted by the WaPOR project in FAO, a new version of the model was developed, using 
the ‘trapezoid’ method and no longer used microwave data to derive the top soil moisture (see chapter 2.4.6), 
and additional validations where carried out. The quality assessment of WaPOR 1.0, conducted by FAO and IHE 
Delft (2019), concluded that the ET obtained via ETLook is reliable for a longer period (e.g. a year) and larger 
areas (e.g. a sub-basin), and that the quality reduces with a higher aridity, systematically underestimating (20-
60 percent) seasonal crop ET in comparison with eddy covariance measurements.

After further development of the ETLook model (WaPOR 2.0), including an improved parameterization of the soil 
moisture content and of the reference ET (ETo), along with the use of the EU Copernicus land cover classification 
rather than the previous Globcover (used in WaPOR 1.0), an additional quality assessment was carried out 
by FAO and IHE Delft (2020). The actual ET from ETLook was compared to the in-situ actual ET measured 
with eddy covariance flux towers at a 10-day (dekad) and monthly scale over 14 locations, encompassing 
different climatic zones ranging from the equatorial to warm temperate, to semi-arid to arid. The results of the 
comparison showed an r2 ranging from 0.119 to 0.924 and an RMSE ranging from 0.4 mm d-1 to 2.2 mm d-1. The 
variations among the sites appears to be linked to the quality of NDVI and LST data, as a better performance 
of ETLook is observed when these variable have high quality and when the sites are water limited rather than 
energy limited. From the performance assessment conducted in Africa, it was concluded that ETLook appears 
to overestimate ET in dry irrigated areas (e.g. in irrigation areas of the Nile Delta). The overall mean average 
percent error on daily and monthly scale is 40.4 percent and 26.3 percent, respectively, while on annual basin 
scale is 29.5 percent (Blatchford et al., 2020).

ETMonitor

Hu and Jia (2015) validated ETMonitor in the Heihe River basin, located in the arid region of northwest China. The 
daily land surface soil moisture was derived from the Advanced Microwave Scanning Radiometer (AMSR-E) on 
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the Aqua satellite, at 25 km spatial resolution and 4 days temporal resolution, obtained from the National Snow 
and Ice Data Center (NSIDC). Using the bilinear resampling method, the soil moisture data were downscaled 
to 1 km, which is considered the operational ground resolution at basin scale. Also the meteorological data, 
derived at 5 km ground resolution from the Weather Research and Forecasting model (WRF) simulation, had 
to be downscaled to 1 km. The estimated daily ET by ETMonitor was then evaluated against ET measurements, 
during the period 2009-2011, at three eddy covariance flux sites differing in vegetation type (cropland, alpine 
meadow and forest), cover and climatic conditions. The results of the comparison showed an r2 of 0.70, 0.82 and 
0.87 for forest, cropland and alpine meadow, respectively, and an RMSE of 17.9 Wm-2, 18.9 Wm-2 and 24.8 Wm-2, 
for forest, alpine meadow and cropland, respectively.

In attempting to generate global daily ET at 1 km spatial resolution during the period 2008-2012, and utilizing as 
much as possible open accessed remote sensing data, Zheng et al. (2016, 2017) tested ETMonitor against high-
quality ground ET measurements obtained from 10 eddy covariance observation sites, with landcover of forest, 
shrubland, grassland, and cropland. Overall, the estimated ET shows good accuracy when compared with 
ground observations, with r2 = 0.74, Bias = -0.05 mm d-1, RMSE = 0.87 mm d -1. Nevertheless, the performance 
varied from site to site, with r2 ranging from 0.36 to 0.93, the bias ranged between -0.74 mm d-1 and 0.88 mm d-1, 
and RMSE ranging from 0.34 mm d-1 to 1.40 mm d-1. 

In estimating ET in Thailand (a tropical monsoon area) based on earth observation products from 2001 to 2015 
(Zheng et al., 2019a and 2019b), the ETMonitor algorithm was improved and the modeled daily ET at 1 km spatial 
resolution was tested against the ground ET measured at six eddy covariance flux towers. The estimated daily 
ET agreed well with the ground observations, with mean bias error (MBE) ranging from −0.44 to 0.89 mm d−1, 
root mean square error (RMSE) ranging from 1.08 to 1.58 mm d−1, and r2 ranging from -0.004 and 0.28. Overall, 
ETMonitor performed better over cropland.

Sriwongsitanona et al. (2020) tested seven global remote-sensing ET products across Thailand, where ETMonitor 
was one of them, adopting a water balance based on high-quality hydrological data from 1,743 gauged rainfall 
stations and 172 streamflow stations across the country. The water balance equation was expressed as

ETWB = P - Q - ∆S  (110)

where ETWB is the ET derived through the water balance, P is the precipitation, Q is the stream flow and ∆S is 
the change in water storage of the system over time. The innovative aspect of this approach is that the Gravity 
Recovery and Climate Experiment (GRACE) was adopted to represent monthly ΔS in terms of the terrestrial 
water storage change. Thus, the monthly ET validation was conducted by inverting the water balance equation 
109 where ET is the one obtained by remote sensing (ETRS), i.e.

∆S = P - Q – ETRS  (111)

so that the monthly ∆S obtained through the inverted water balance equation 110 is compared with the monthly 
∆S obtained through GRACE (∆SGRACE). The annual modeled ET is instead validated directly against the ETWB (Eq. 
110) using ∆SGRACE. The results of the comparison where excellent for ETMonitor, which showed an r2 = 0.98 and 
a Nash-Sutcliffe coefficient (NSE) = 98.42  percent for annual ET. The monthly comparison between ∆S from 
remote sensing and ∆SGRACE showed an r2 = 0.60 and a NSE = 67.02  percent.

ETWatch

Wu et al. (2012) have tested ETWatch in the complex terrain of the Hai Basin, by comparing the modeled ET 
with field ET measurements obtained with a variety of methods, including soil moisture depletion at three 
locations, one lysimeter, six eddy covariance systems (EC), three large aperture scintillometers (LAS), and the 
water balance at six sub-watersheds.

For the comparison of seasonal ET (during 2005 in 20 fields) between ETWatch and the soil moisture depletion 
method, the overall correlation showed an r2 = 0.88. The RMSE was 16 mm for the whole season, and the average 
relative error (RE) was + 4 percent, indicating a slight seasonal ET overestimation by ETWatch. The comparison 
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with the lysimeter, during the year 2003,  was more complex to be analyzed due to the disturbance by rain 
during the winter months. Thus, limiting the season to the period July 1st to September 30th, ET estimated by 
ETWatch for maize was 324 mm while 304 mm were recorded by the lysimeter, thus showing a -6.6 percent 
deviation. Furthermore, it was observed that ETWatch performed better in maize than in wheat and predicted 
a 9 percent lower ET for the annual cycle of 365 days. The comparison with EC over the years 2003-2005 was 
limited to a few fragmented data periods due to weather conditions. A high correlation (r2 = 0.91) was observed 
over wheat and maize crops. The total ET for 10 days measured by the EC system over wheat and maize was 
19.9 mm, whereas ETWatch predicted 19.2 mm, thus showing a difference of -3.7 percent. The daily absolute 
average ET deviation by ETWatch was 8.7 percent, whereas for two days the error was larger than 15 percent. A 
more comprehensive comparison with EC data set, generated from the Chinese Ecosystem Research Network 
and GEF funded sites, showed an r2 ranging from 0.64 to 0.79, with one site showing the largest deviation (30 
percent) over a period of 40 days. The comparison with LAS, between 2007 and 2009, showed a range of 
deviation between +1.15 percent and -4.7 percent for the daily ET and between +4.3 percent and +11.8 percent 
for the monthly ET. The water balance method was conducted between 2002 and 2005 in six sub-watersheds 
of the Hai Basin, which altogether represent about 25 percent of the entire basin surface area. The deviations 
between ETWatch and the water balance annual ET estimates ranged between -15.4 percent and +16.9 percent. 
When the annual ET was integrated for the entire Hai Basin, the deviation of ETWatch was +1.8 percent.

ETWatch was also tested after the elaboration of a method for downscaling ET from 1-km to 30-m resolution 
(Tan et al., 2019). The test was conducted over the period between April to October 2003, at four EC sites in the 
Zhangye Oasis of the Gansu Province in China, and encompassing cropland, wetland and sparse grass. The 
overall results of the comparison of daily downscaled ET from ETWatch against the EC ET showed an r2 ranging 
from 0.80 to 0.91, the mean bias ranging from 0.17 to 0.72 mm d-1, the RMSE ranging from 0.23 and 0.69 mm d-1 
and the index of agreement (d) ranging from 0.93 and 0.98.

An improved version of ETWatch for continuous ET determinations at regional scale, using algorithms acquiring 
satellites data from multiple sources, was validated using ground observations from the Heihe River Basin of 
northwest China (Wu et al., 2020). Field ET measurements were collected during the period 2008-2014 using 
six EC and automatic weather stations encompassing different land surface types, including alpine meadow, 
irrigated oases, and sparse vegetation. Furthermore, additional field annual ET during the period 2012-2013 
were derived through the water balance method. The validation results for daily ET at 1 km resolution against 
EC data at the six stations showed an r2 ranging between 0.71 and 0.84, a mean absolute error (MAE) ranging 
between 0.229 and 0.582 mm d-1, a RMSE ranging between 0.278 and 0.768 mm d-1, and the Nash–Sutcliffe 
efficiency coefficient (NSE) ranging from 0.70 and 0.83. When the ET comparison was scaled to monthly values, 
the r2 ranged between 0.78 and 0.99 and the RMSE ranged between 1.02 and 5.47 mm/month. The comparison 
of annual ET values by ETWatch with the water balance estimates, conducted on the entire Heihe River Basin 
and one small watershed, resulted in deviation of +1 percent and +9.44 percent, respectively.

7.2.1 Some highlights on model inter-comparisons

The previous section has provided some descriptions and examples of specific model performance with 
associated values of some statistical indicators. The variability of uncertainty in ET by the various models was 
observed to depended on several factors, including the extent of parameter calibration for a given terrain 
landscape and field, the accuracy of the input variables and their capacity to represent the actual conditions 
at the given scale, the uniformity of the land surface being scanned by the satellite sensors, and the spatial 
and time scales evaluated. There was also some inconsistency on the degree of uncertainty with the period 
of the year (e.g. during the season) and with various climatic conditions (e.g. arid, sub-humid, etc.). In short, 
notwithstanding the good performance in given conditions, there is no guarantee that the expected model 
accuracy remains consistent throughout space and time.

One way to look at the various models is on relative terms. In other words, given the same conditions monitored 
by more than one model can provide a comparative assessment of their individual performance. This has not 
always been possible and here some of these multiple model inter-comparisons are reported.
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A first opportunity has been offered by the OpenET platform that has provided a series of tests on various 
models.54 Figure 11 shows the comparison between the seasonal ET derived by the six models adopted by 
OpenET, and by the ensemble of all six models, against the mean seasonal ET measured by EC at 15 sites 
and over 40 crop seasons in the Western United States of America (Melton et al., 2022). Apart from GEESEBAL 
(Google Earth Engine-SEBAL), all other model determinations are within ±10 percent of the mean of all EC 
measurements, corrected for energy balance closure.

Figure 11: Total growing season weighted mean ET (n = 15 sites with 40 total growing seasons) for six satellite-
driven ET models, the ensemble mean ET, and ET calculated from the closed and unclosed energy balances 
at each flux tower site

Source: Melton F.S., Huntington J., Grimm R., Herring J., Hall M., Rollison D., Erickson T. et al. 2022. OpenET: Filling a Critical Data Gap in Water 
Management for the Western United States. J. Amer. Water Resour. Association, 58 (6):

A similar multi-model inter-comparison was provided by Blatchford et al. (2020) in evaluating the yearly ET 
determination for the WaPOR extent (Africa and MENA Region) compared to WaPOR values (indicated as WPR 
in ET of Figure 12).

Figure 12: Comparison of ETa obtained from various models and ETIa-WPR (represented by the orange 
dashed line) used as reference to compare the other model performances

Source: Blatchford M.L., Mannaerts C.M., Njuki S.M., Nouri H., Zeng Y., Pelgrum H., Wonink S. and Karimi P. 2020. Evaluation of WaPOR V2 
evapotranspiration products across Africa. Hydrol. Process., 34 (15): 3200–3221. 

54 OpenET. 2023. https://openetdata.org/
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It appeared that the best performance was expressed by the ETLook of the version 2 of WaPOR, along with 
SSEBop and ALEXI. SEBAL and METRIC models were not included in the comparison.

An additional inter-comparison between ETLook and the Two Source Energy Balance – Priestley Taylor (TSEB-
PT) model was conducted in Tunisia (over olive) and Spain (over almond, grapevine, festuca, wheat and potato), 
during the period 2017-2019 (DHI-Gras and Compluting, 2022). The field measurements of ET were conducted 
with EC over irrigated almond, and rainfed olive and wheat and with lysimeters over potato, festuca and 
grapevine, all under irrigation. The result of the inter-comparison are reported in Figure 13

Figure 13: Scatterplot between the in situ decadal ET (observed ET) and estimated decadal ET by TSEB-PT 
(left graph) and ETLook (right graph). Subscripts ‘w’ and ‘c’ refer to WaPOR-like and Copernicus input data 
source, respectively

Source: DHI-Grass and Compluting 2022. Increasing Crop Water Use Efficiency at Multiple Scales Using Sentinel.

Evapotranspiration. ET4FAO D4.2 – Final Report. https://et4fao.dhigroup.com-/ET4FAO_Final_Report.pdf. While 
ETLook shows a systematic and larger underestimation, as compared to TSEB-PT, its performance increases 
when input data from Copernicus are adopted. Nevertheless, the improvement is not realized when isolating 
challenging crops such as the olive grove in Tunisia (Figure 14).

Further ET model inter-comparisons were conducted by ICARDA (data not yet published) on a pomegranate 
orchard in Egypt. The in situ ET was derived as the residual of the energy balance where the sensible heat flux 
(H) was measured via EC and the soil heat flux (G) was obtained through the soil heat flux plate method. The 
results of the cumulative ET by ETLook (WaPOR), SSEBop, METRIC (EEFlux), ALEXI (GloDET) and the in-situ 
measurements, for the period March 2018-March 2019, is reported in Figure 15.

With the apparent exception of METRIC (labeled as EEFlux) for some periods of the growing season, all other 
models seem to underestimate the in situ ET determinations.
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Figure 14: Scatterplot between the in situ decadal ET and estimated decadal ET by TSEB-PT (left graph) 
and ETLook and WaPOR (right graph). Subscripts ‘w’ and ‘c’ refer to WaPOR-like and Copernicus input data 
sources, respectively. The WaPOR ET product was downloaded from the FAO Portal
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Figure 15: Cumulative ET of pomegranate orchards cultivated in the Newland area of Egypt, as determined by 
ETLook (WaPOR), SSEBop, METRIC (EEFlux), ALEXI (GloDET) and in-situ (ICARDA, unpublished)

Source: DHI-Grass and compluting 2022. Increasing crop water use efficiency at multiple scales using sentinel evapotranspiration. ET4FAO D4.2 
– Final Report. https://et4fao.dhigroup.com-/ET4FAO_Final_Report.pdf.

Source: Swelam A., Govind A , Abdallah M., Steduto P. and Taha A. 2019. Validation of remote sensing evapotranspiration data of selected crops in 
the Nile Delta. 3rd World Irrigation Forum (WIF3), 1-7 September 2019, Bali, Indonesia.
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7.3 On the acceptable limits of uncertainty 
towards best fit-for-purpose
We would like to close chapter 7, on the uncertainty review on RS ET determinations, by addressing an 
operational dimension of uncertainty. An important reminder here is that “all measurements, however careful 
and scientific, are subject to some uncertainties” (Taylor, 1982). This is valid not only for measurements but for 
any determination, direct, indirect, through modeling, or any other approach. Therefore, the two most relevant 
questions we should ask to ourselves, in dealing with uncertainty, are: how much uncertainty is generally 
associated to a determination that I need? Is such uncertainty acceptable for my application?

A typical and simple example is the case of the weighing uncertainty of a scale. If the scale is used to weigh 
gold to sell, then one needs a very low uncertainty (say ±1 mg). If instead the scale is used to weigh apples 
to be sold at the farmers’ market, one can accept a higher degree of uncertainty (say ±100 g). Knowing the 
acceptable weighing uncertainty for a given application (selling gold or apples) will allow one to make a better 
decision on which scale on the market best fits the purpose.

The same reasoning applies to the uncertainty of RS ET determinations, whose higher or lower uncertainty 
becomes acceptable depending on the type of application the ET determinations will be used for. Therefore, 
a simple logical framework in dealing with uncertainty is: first identify the type of application (the domain) you 
will be using the RS ET data for; second define the limits of uncertainty that are acceptable for the identified 
application; third select the model/method of RS ET determination with an expected uncertainty (or achievable 
accuracy) that falls within the acceptable limits, i.e. select the model/method that best fit the purpose.

While this simple logical framework appears straightforward, in reality there are still open questions on: (i) 
the acceptable limits of uncertainty for a given application; and (ii) the expected uncertainty (or achievable 
accuracy) by the various models/methods of RS ET determinations.

In fact, there is a need to investigate thoroughly with the various water users, decision makers and stakeholders 
in general, what are the acceptable limits of ET uncertainty for their application. Furthermore, the various RS ET 
models are being continuously improved, calibrated and refined, so that they may achieve different degrees 
of accuracy and therefore be selected in principle for multiple applications, or not be able to achieve at all the 
acceptable limits due to intrinsic limitations.

As a first attempt to provide a categorization of the type of applications, the quantitative order of magnitude of 
water involved per application, and the corresponding acceptable limits of uncertainty are reported in Table 5.



89

Table 5: Draft categorization of application type, order of magnitude of water amount per application, approximated 
acceptable limits of uncertainty per application, and likely classes of RS ET model and satellite to be used

Application type

Order of 

magnitude of 

water amounts 

involved

Approximate 

acceptable 

uncertainty (± or %)

Likely RS ET 

model classes to 

be used (1)

Likely satellite 

classes to be 

used

National Water Balance Million Cubic 
Meters (on a yearly 
basis)

5 – 10% SEB or thermal-
PM

Geostationary 
MODIS/VIIRS 
Landsat/S2

River Basin Water Balance Million Cubic 
Meters (on a yearly 
basis)

5 – 10% SEB or thermal-
PM

MODIS/VIIRS 
Landsat/S2

Irrigation District 
Allocation

ThoUnited States 
of Americands 
Cubic Meters

(on a yearly basis)

5 – 15 % SEB

or thermal-PM

or SIMS

MODIS/VIIRS

Landsat/S2

Seasonal Crop Water Use 
per Parcel

Hundreds Cubic 
Meter

10 – 15 % SEB

or thermal-PM

or SIMS

Landsat/S2

On-farm Irrigation 
Management

Variable from a 
few to several mm 
depending on the 
period of crop 
cycle considered 
and on irrigation 
method

± 1 mm/day

± 5 mm/week

± 5-20  mm/month

± 50-100 mm/year

SEB

Landsat/S2

Ground Water Use Variable Million 
Cubic Meters

5 – 15 % SEB  or thermal-
PM

Geostationary

MODIS/VIIRS

Landsat/S2

Inter-basin allocation

(compliance with water 
rights/water regulation)

Variable Million 
Cubic Meters

5 – 10 % SEB

MODIS/VIIRS

Landsat/S2

(1) Note: SEB = surface energy balance (SEBAL, eeMETRIC, disALEXI) or other LST driven models (SSEBop, PT-JPL); thermal-PM = Penman-Monteith 
method using thermally derived land surface temperature to inform the PM parameters; SIMS = vegetation-index-based estimation of crop coefficient.

Source: Author’s own elaboration.

An additional question that can be asked in estimating acceptable uncertainty and error in a RS ET model (or any 
model for that matter) is what amount of error will cause severe damage to the water management, water balance 
or water regulation system? In other words, if a regulation entity must begin to curtail groundwater pumping to 
a sustainable, long term level, how much error in the ET estimate will create severe economic damage? Will 
a substantial overestimation of ET result in too many water users being incorrectly curtailed from pumping or 
irrigating? This creates both economic and personal/emotional harm to those incorrectly curtailed. By the same 
token, will a substantial underestimation of ET result in too much water consumption that result in unrecoverable 
aquifer depletion? 
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Even though RS of ET methods do have error and uncertainty, one can ask what the alternative to estimating 
total water consumption over an area is. Clearly, and at the present time, parcel-by-parcel measurement of ET (or 
well-by-well metering) is cost prohibitive. Application of the traditional crop coefficient x reference ET approach 
may be too general and it may overstate ET because its standardized form and crop coefficients assume full 
water availability, which may not be the case. A basin water balance may be too general for managing diverse 
water users within the basin.

Therefore, as cycling through these questions and deliberations, one may need to conclude that RS of ET 
models, although they have uncertainty and potential bias, may be a primary solution and means to assess 
water consumption on large scale. Selection of an appropriate model will require study and effort.

A semi-empirical decomposition of uncertainty for RS of ET. As discussed earlier, a number of factors affect 
the accuracy of daily, monthly and annual values for spatial ET estimates produced by RS of ET. These factors 
include user capabilities in the case of manually operated models, such as the manual versions of METRIC 
and SEBAL, and they include the user’s ability to review and confirm the good performance of a model. These 
capabilities depend on user experience and understanding of the RS model and its physical processes, 
familiarity with the vegetation types in a region, and familiarity with expected ranges of ET according to energy 
availability for evaporating water. 

The accuracy of RS of ET interpolated over several days also depends on the number of clear-sky satellite 
images per month and year, types of vegetation, and the time of year.

A way of accounting for these additional factors (user skills and interpolation) in expressing the accuracy in RS 
ET can be done through estimating the accuracy in the daily reference ET fraction (ET

rF; chapter 2.4.2), intended 
to normalize relative errors as fraction of reference ET. A semi-empirical expression of RS ET accuracy has been 
proposed by Rick Allen (personal communication) and derived from the following equation that parses the final 
estimate of accuracy into three components:

where: parameter n represents the number of cloud-free images processed during a month of interest, or a 
growing season of interest, or a year of interest for a particular location or parcel; ETrFrepresentation error represents the 
ability of any particular image date to specifically represent the net, integrated and averaged ETrF over a month, 
or over a growing season or year; ETrFimage_systematic error represents systematic user error in ETrF; ETrFimage_random error 
represents random user or model error that results in over- and under- estimation of ETrF that is expected to 
vary from image date to image date.

ETrF is the actual ET expressed as a fraction of reference ET for a specific date and location (pixel or parcel), and 
generally ranges from 0 (no ET) to about 1.0 (for the alfalfa reference) and to about 1.4 (for the grass reference). 
The reference ET can be either the standard grass ETo or it can be an alfalfa reference ET (ETr) that is used in 
METRIC. Alfalfa reference ET is generally 20 to 40 percent greater than ETo due to the taller and leafier alfalfa 
characteristics and generally, alfalfa reference ET can be used to represent a maximum ET value based on 
available environmental energy. In the above equation, the use of either grass reference ET or alfalfa ET is valid.

The (1.0 + ETrFrepresentation error/n) expression represents the expected error in the monthly or growing season 
ETrF estimate under perfect model estimation, but where the time integrated ET, by necessity, is estimated 
based on one or more periodic satellite image dates. Division of ETrFrepresentation error by n considers the reduction 
in representation error as more image dates are processed per month or growing season. This is similar to 
repeated sampling. ETrF varies during the growing season as crops grow and more fully cover the ground. 
Generally, a Landsat image is made available every eight days if two Landsat satellite systems are in orbit. 
However, the cloudiness of images or parts of images reduces the number of clear dates per month to as few 
as one or two for representing the ETrF (or EToF) for that month. Cloudiness can reduce the number of clear 
views by Landsat to as few as 5 to 20 over a growing season. ETrFrepresentation error is estimated to contribute as 
much as 0.5 (50 percent error) to the error for the growing season average ETrF if only a single image date is 
used to represent the season-long ETrF. Of course, using a single image date to represent the growing season 
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is not advised. ETrFrepresentation error is estimated to be 0.15 for a single image date used to represent monthly ETrF. 
Increasing the number of image dates is expected to improve the definition of the ETrF curve during a month 
or during the year by more accurately following the progression of ETrF as crops develop during the spring or 
during the growing season and as they senesce in the fall. ETrFrepresentation error also applies to the variation in ETrF 
over time caused by surface wetting by individual irrigation events on individual fields. 

The second parenthetical expression in Eq. 112 estimates an adjustment to the overall error in the ETrF estimate 
introduced by any systematic and random user error or model error.  Systematic user error in ETrF (ETrFimage_

systematic_error) can be caused by a lack of understanding by the user of a need to impose limits on model output 
due to energy availability to evaporate water, or by the tendency for the RS ET model to consistently over- or 
under- calibrate ET images. 

Random user or model error (ETrFimage_random_error) represents an over- or under- estimation of ETrF that is 
expected to vary from image date to image date. The division of the ETrFimage_random_error term by the square root 
of n represents the reduction in random error expected from the impact of repeated sampling over multiple 
locations (fields) for the same crop type or over multiple image dates for any particular location. This term 
represents the error of the mean that reduces with the square root of the number of observations (McDonald, 
2015). ETrFimage_random_error includes the reduction in uncertainties in ETrF that may stem from a random error 
in calibration or processing of individual images, including RS ET model calibration. ETrFimage_systematic_error and 
ETrFimage_random_error are additive. Variable n in Eq. 112 can represent the number of clear images for one location 
or field, or it can represent the number of fields that are sampled and aggregated into a single estimate of ET.

The reader is encouraged to read ANNEX II for an applicative example of semi-empirical decomposition of RS 
ET uncertainty using METRIC.
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8. PROSPECTS FOR THE NEAR 
FUTURE

55 NASA. Jet Propulsion Laboratory. California Institute of Technology. ECOSTRESS. https://ecostress.jpl.nasa.gov/

The missions and technology of satellites are unfolding at a rapid pace so that remote sensing applications are 
broadening, accuracy is increasing, and spectral, temporal and spatial resolutions are becoming more granular.

The programmes around space science are very active and it is challenging to be updated on everything is 
on-going.

Here we are providing just some brief background on four flagships programmes for the near future, with 
particular attention to the determination of ET: (i) ECOSTRESS from the National Aeronautics and Space 
Administration (NASA, United States of America); Copernicus from the European Commission (EU); WaPOR 
phase II from FAO; and Hydrosat (private company).

Obviously, the rider is highly recommended to visit the web pages of these programmes for a more 
comprehensive and updated information.

8.1 ECOSTRESS
The ECOSTRESS mission (The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) 
was built by NASA’s Jet Propulsion Laboratory and was launched to the International Space Station on June 
29, 2018 (Fisher et al., 2020).55 The primary measurements are in the thermal infrared, which are combined with 
ancillary meteorological and surface reflectance data to produce data products for surface temperature, ET, 
vegetation water use efficiency (WUE), and the Evaporative Stress Index (ESI). ET and ESI are derived through 
the PT-JPL model, while the Gross Primary Production (GPP) for WUE is derived through the Breathing Earth 
System Simulator (BESS; Jiang and Ryu, 2016; Jiang et al., 2020).

The surface temperature is measured through a multispectral thermal infrared radiometer (Prototype HyspIRI 
Thermal Infrared Radiometer - PHyTIR) capturing instantaneous scenes of 400 km2 with wavelength ranging 
8-12.5 μm, 38x69 m ground resolution and 1-5-day repeat in low Earth orbit (LEO). However, the data are further 
processed for the users to reach an operational ground resolution of 70 m., except than the poles, the coverage 
of ECOSTRESS is essentially global (50S-50N).

The distinctive feature of ECOSTRESS is the combination of high spatial resolution and high temporal resolution 
in the thermal bands, at least relative to Landsat.

Several applications of ECOSTRESS data are continuously developing within domains from agriculture, to 
natural forests, volcanoes, urban sector, coastal ecology, geology, etc.
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8.2 Copernicus
Copernicus is the European Union’s Earth observation and monitoring flagship programme offering information 
“services”, specifically designed to meet user requirements, drawing from satellite Earth Observation and in-
situ (non-space) data such as airborne, seaborne and ground-based measurement sensors56. While the satellite 
data cover the whole globe, they suit also local and regional needs.

The Programme is coordinated and managed by the European Commission in cooperation with partners such 
as the European Space Agency (ESA) and the European Organization for the Exploitation of Meteorological 
Satellites (EUMETSAT).

The different dedicated satellites serving the Copernicus programme are part of a constellation (the Sentinel 
family), eight of which have been already launched and recurrent satellites will be launched to ensure the 
operational continuity of the Sentinels beyond 2030. In addition to the Sentinel family of satellites, Copernicus 
uses additional contributing missions to make the earth observation and monitoring more comprehensive.

Copernicus delivers near-real-time data that are analyzed and processed to monitor trends and changes, 
to derive maps, identify features and anomalies and extract statistical information, which are addressing six 
thematic streams of “services”: the Copernicus Atmosphere Monitoring Service (CAMS), the Copernicus Marine 
Environment Monitoring Service (CMEMS), the Copernicus Land Monitoring Service (CLMS), the Copernicus 
Climate Change Service (C3S), the Copernicus Emergency Management Service (CEMS) and the Copernicus 
Security Service. The information provided by the services is free and openly accessible to all users.

The “services” of main interest for agriculture are : (i) the one on land monitoring (CLMS), particularly through its 
components on ‘Land cover and land use mapping’ provided through satellite data of Sentinel 1 and 2;  (ii) the 
ESA satellite ground segment, particularly for the data on land surface temperature coming from Sentinel 3 and 
land surface reflectance coming from Sentinel 2; and (iii) C3S for the access to global, near-real-time surface 
and atmospheric meteorological parameters. 

Regarding Sentinel 2, there are two twins polar-orbiting satellites (sun-synchronous) equipped with a multi-
spectral optical sensor detecting 13 spectral bands (in the visible, in the near infrared and in the short-wave 
infrared). The spatial resolution can be 10 to 20 m, depending on the spectral band, with a revisit time at the 
equator of 5 days (with both satellites operating).

Also for Sentinel 3 there are two twins near-polar orbiting satellites (sun-synchronous), but equipped with 
different sensors, of which the one of interest for ET is the Sea and Land Surface Temperature Radiometer 
(SLSTR), which is a dual view scanning radiometer with 3 spectral bands in the thermal infrared and 6 in the 
visible, near and short-wave infrared. The spatial resolution is 1 km for the thermal bands with a revisit time of 1 
day (under clear sky and both satellites operating).

However, new monitoring missions are planned for the near future (Copernicus 2.0) of which the key one for the 
determination of ET is the Land Surface Temperature Monitoring (LSTM) mission. The LSTM mission, expected 
to be launched not before the end of 2028, has the objective of providing high spatio-temporal resolution 
Thermal Infra-Red (TIR) observations over land and coastal regions.

The two satellites of the LSTM mission will be equipped with multi-spectral sensor detecting 11 spectral 
bands (5 in the thermal infrared, 4 in the visible and near infrared, and 2 in the short-wave infrared). The spatial 
resolution will be of 50 m (37 at nadir), with a revisit time of 2 days at the equator (under clear sky and both 
satellites operating). The targeted accuracy in ET is 15 percent mm d-1 (threshold 20 percent) and a precision of 
5 percent (threshold 10 percent) over a field scale of 0.5 ha.

In waiting for the launch of the LSTM mission, there have been determinations of ET using data from the SLSTR 
radiometer on Sentinel-3 and the optical observations from multispectral instrument (MSI) on Sentinel-2. 
This approach was developed by Guzinski and Nieto (2019) to derive ET at 20m resolution in an agricultural 

56 Copernicus. https://www.copernicus.eu/en
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landscape in Denmark and Italy, using a Two-Source Energy Balance (TSEB) modeling scheme (Norman et 
al., 1995 and Kustas and Norman, 1999). To reach the fine resolution ET estimates, the thermal observations 
by SLSTR (at 1 km resolution) have been sharpened using the optical observations taken by MSI (at 20 m 
resolution), some additional ancillary RS data (e.g. DEM), and a machine learning algorithm based on the data 
sharpening approach of Gao et al. (2012), followed by flux disaggregation using the scheme of Guzinski et al. 
(2014). 

The higher resolution ET maps were compared in part against field eddy covariance measurements and 
in part against ET maps obtained from Landsat. Results indicated, on the one side, the overall applicability 
of the proposed methods to be used with Sentinel-2 and Sentinel-3 images to obtain high-resolution ET 
estimates and, on the other side, the inherent limitations of these methods in terms of achievable accuracy. 
Guzinski and Nieto (2019) pointed out that while the methodologies proposed are valuable for filling in data 
gap, the accuracy is considerably less than what would be possible with high-resolution thermal infrared (TIR) 
observations, indicating the need for direct high-resolution TIR to complement the existing capabilities of the 
Sentinel satellite constellation.

These findings were confirmed also in another study of Guzinski et al. (2020) where the sharpening method 
of the TIR of Sentinel 3 with the optical MSI observation of Sentinel 2 was used to derive ET through METRIC, 
Priestley-Taylor TSEB (Kustas et al., 2016), and the End-member-based Soil and Vegetation Energy Partitioning 
(ESVEP, Tan and Li, 2017), and comparing ET against field eddy covariance. This was followed by another study, 
Guzinski et al. (2021), where the methodology was applied at the country extent and evaluated against flux 
tower measurements and ET estimates from the FAO WaPOR database (wapor.apps.fao.org/). Although with 
a relative RMSE of instantaneous latent heat flux of around 30 percent in agricultural areas, the proposed 
methodology is a sound solution to the lack of high spatio-temporal resolution of TIR observation for ET 
modeling and can fill this data gap until the next generation of thermal satellites are launched.

8.3 WaPOR Phase II
The basic features of WaPOR  have been described in chapter 4.2.57

The WaPOR II, launched in June 2019 and expected to continue at least until 2025, is an extension of the phase 
1 of WaPOR which intended to provide mainly actionable information at three levels (250 m, 100 m and 30 m), 
to cover river basins, countries and irrigation schemes. Key data and information provided, among others, are 
actual evapotranspiration and interception (ETIa) and water productivity (WP) of agricultural land.

The phase 2 of WaPOR is also taking advantage of the various quality assessments periodically conducted to 
improve methods and accuracy. Some functionalities of the portal have been updated (such as the ability to 
explore, overlay and compare thoUnited States of Americands of FAO and external partners’ data sources) and 
new ones have been added (such as cumulated time series, direct comparison on the charts between different 
areas or different period). New and higher quality documentation is also provided.

This second phase of WaPOR  intends to support partner countries in monitoring and improving water and land 
productivity, of rainfed and irrigated agriculture, through three project components:58

(i) continue to expand the coverage of the WaPOR database, containing data related to biomass production, 
evapotranspiration and agricultural land and water productivity in Africa and the Near East,  ensuring an 
uninterrupted data availability dating back to 2009 and that will continue to be archived in quasi real-time.59 
The data at 30m resolution will be created for partner countries aiming at specific field applications, such as 

57 FAO. 2023. WaPOR, remote sensing for water productivity. https://www.fao.org/in-action/remote-sensing-for-water-productivity/en/
58 FAO. 2023. WaPOR, remote sensing for water productivity. WaPOR data. https://www.fao.org/in-action/remote-sensing-for-water-
productivity/wapor-data/en
59 FAO. WaPOR 2.1. 2019. https://wapor.apps.fao.org/home/WAPOR_2/1
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monitoring pest and diseases of crops or developing high-precision irrigation scheduling. The input data of 
WaPOR database continue to be processed and provided by a Consortium comprising eLEAF and VITO;

(ii) focus on a large capacity development programme to enhance the capacity of local stakeholders of 
partners countries to make use of the WaPOR database in the elaboration of practical solutions to locally-
identified issues, and end-users to put them in practice. The capacity development will also cover policy-
relevant applications that support sustainable water management, water governance and agricultural policies. 
The capacity development efforts will account for long-term sustainability, focusing on partner countries that 
can continue to provide services after the end of the project;

(iii) co-design and co-develop user-centered solutions and practical tools to effectively improve agricultural 
land and water productivity at different scales. Such solutions and tools might vary from practical ICT solutions 
to improve agricultural production systems (e.g. monitoring of the health of specific crops in the fields), to 
de-risk investments (e.g. credit and insurance), to support water management (e.g. modernization of irrigation 
systems), to water governance (e.g. water accounting and auditing) and agricultural policies in river basins and 
countries, etc. With this component, and in combination with capacity development efforts, the project aims to 
create a community of practice.

Partner countries in WaPOR phase 2 are Algeria, Mali, Tunisia, Iraq, Jordan, Palestine, South Sudan, Ethiopia, 
Egypt, Kenya and Mozambique. Local stakeholders include research institutes, universities, policy-makers, 
extension service officers, water user groups, irrigation scheme managers, local and international NGOs, 
relevant private companies, and others.

The international partners are IHE-Delft Institute for Water Education and the International Water Management 
Institute  (IWMI). 

The intended outcome of the project (continued to be funded by the Ministry of Foreign Affairs of the Kingdom 
of the Netherlands) remains the increased capacity of FAO members in monitoring terrestrial biomass production 
and evapotranspiration to assess land and water productivity in rainfed and irrigated agriculture, and contribute to 
sustainable crop production intensification adapted to a changing climate.

8.4 Hydrosat
Hydrosat is a space and data analytics company providing geospatial intelligence for agriculture, food security, 
public safety, climate and environment, through high resolution thermal imagery monitored globally, with a 
major focus on the determination of water consumption of land (evapotranspiration) (Fisher et al 2022).60

A major driver behind the establishment of Hydrosat is the need to fill the gap in simultaneous high resolution 
of spatial and temporal scales of thermal measurements, necessary to adequately capture the large variability 
and dynamics of the processes involved in land-vegetation-water-atmosphere exchange.

The targeted spatial resolution is set at 10 m and 50 m pixels in the Visible and Near-Infrared (VNIR-seven 
bands) and in the Long Wavelength Infrared (LWIR-multiple bands), respectively, with daily revisits (and 
multiple time per days in the long-term). 

To achieve these resolutions, Hydrosat is launching a constellation of 16 sun-synchronous satellites, 
progressively starting from 2024 (at 500-550 km altitude – Low Earth Orbit), hosting a new generation of thermal 
sensor with accuracy of LWIR measurements equivalent to that of Landsat.

The innovative feature of the thermal sensor mounted on the Hydrosat satellites is in the elimination of the 
cryocooling, required by traditional thermal sensors like the one of Landsat, Sentinel 3 and ECOSTRESS, among 
others. Cryocooling is very expensive, energy intensive and utilizes large mass and volume.

60 HYDROSAT, Inc. 2022. https://www.hydrosat.com/



97

The thermal sensor of Hydrosat is based on the “microbolometer” technology, measuring radiant heat by 
means of a material having a temperature-dependent electrical resistance and typically used as a detector in 
thermal cameras. The sensor is compact (about the size of a coffee can), accurate, low-cost, and without the 
need of cryocooling. The drawback of the microbolometer is in the long response time, which restitutes blurred 
images in fast moving objects.

While the microbolometer technology is consolidated and already used on remote sensing (e.g. installed in the 
Thermal Emission Imaging Spectrometer –THEMIS– mounted on board of the NASA’s Mars Odyssey, launched 
in 2001), the long integration time causing the blurry effect was not resolved, until Hydrosat overcame the 
problem through a breakthrough solution (not yet publically disclosed). The Hydrosat microbolometer was 
tested over time and is being readied for space launch.

In this way, the 16-satellite constellation will enable an unprecedented high-spatial, multi-spectral VNIR and 
LWIR measurements, on a daily temporal resolution. This will represent a game-change for different agricultural 
and ecosystem applications, including vegetation health, crop water stress, irrigation recommendations, and 
yield forecast.

A series of analytic products regarding these applications are already provided by the Hydrosat platform 
currently through their ‘Fusion Hub’, which provides surface temperature at 20 m pixel, obtained through the 
fusion of satellite data inputs from MODIS, VIIRS, Landsat, ECOSTRESS and the Harmonized Landsat-Sentinel 
(HLS).

While Hydrosat intends to provide insightful products for commercial and government customers, it offers 
an Academic Data Use Policy, which allows making data freely available, provided they are not used for 
commercial purpose. 
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9. CONCLUDING REMARKS

In this final chapter, we provide some reflections, draw some inferences, and convey some key messages about 
the described and reviewed RS ET models, related databases and portals, and the uncertainty impacts. We’ll 
also look ahead at the near-future perspectives as well, as models continue to evolve, as their use increases 
and additional testing occurs.

As clearly stated by Fisher et al. (2017), “ET is a keystone climate variable that uniquely links the water cycle 
(evaporation), energy cycle (latent heat flux), and carbon cycle (transpiration–photosynthesis tradeoff)”. In 
agriculture and other vegetated systems, the determination of ET is crucial for several applications including, 
among others, water accounting, enforcing water regulations, sustainable water resources allocation and 
management (irrigation in primis), and analysis of ecosystem functioning. Furthermore, the imperative of 
knowing ET is amplified by the anticipated impact of climate change. It is the ET process that transforms liquid 
water into vapor and causes water to leave the water resource system. Because of the volumes of ET required 
to produce vegetation are large, ET has a very large impact on liquid water resources.

It is clear that satellite remote sensing (RS) represents the most suitable method to capture the large variability 
in ET over large areas and over time. Nevertheless, the determination of ET through RS comes with several 
challenges, and making the readers aware of these challenges is among the objectives of this publication.

In this regard, we wish to distinguish between at least two types of readers and users of this publication: one 
type that is interested in the possibility of applying a RS ET model; and one type that is interested in using 
the ET data provided by the databases and portals (platforms) associated with the RS ET models. To make 
reliable choices regarding the model or the platform to select, both of these reader types need to identify 
the purpose for which the ET data are going to be used and the various assumptions, theory and data sources 
from which the ET data are being, or have been, derived. In fact, the purpose may be a primary determinant in 
the selection of the most appropriate spatial and temporal scales, the preference or suitability of a complete 
surface energy balance model, a one-source or two-source type of model, and the uncertainties in model 
parameterization and how that model addresses those uncertainties, that can be considered acceptable. In 
turn, the assumptions, theory and data sources will be determinant in deciding on the suitable RS ET model to 
use and in understanding the likelihood and risks of exposure to errors that can possibly occur.

We have observed that in general there is an inverse relationship between spatial scales and temporal scales 
for the satellite imagery of interest. This is particularly true for satellites providing thermal infrared radiation, 
i.e. instantaneous thermal images with higher spatial resolution (e.g. with 60 m – 100 m pixels, like those of 
Landsat) that have a 16 day interval between two overpasses for the same satellite. Vice versa, daily (or twice-
a-day) instantaneous thermal images (like from MODIS or VIIRS) have 1 km and 375 m pixel sizes. We have also 
the case of geo-stationary satellites (like GOES and Meteosat) that monitor the land surface temperature nearly 
continuously, but at a spatial scale of 2-10 km.

The future prospect is to hopefully reduce (if not to eliminate) the trade-off between space and time resolutions 
through missions of new generation of satellites (e.g. VIIRS that is already retrieving LST at 375m every day; 
Sentinel 3 that retrieves the LST at 300 m ground resolution every 2 days; or ECOSTRESS that has an interval 
between overpasses of a maximum five days, depending on latitude, with an operational pixel size of 70 m), or 
using a constellation of satellites carrying a similar type of sensor and that may provide the LST on a 10 m pixel 
every day (like is anticipated for the Hydrosat satellite constellation that may be planned to be launched in 2024, 
or the LSTM, TRISHNA ad and SBG missions from 2025 onward).

Overall, the projected spatial and temporal resolutions for a global coverage in the future are down to 10 m and 
at a one/two-day or even a sub-daily scale, respectively, and are associated with a relative error of less than 10 
percent (Fisher et al., 2017). These developments paint a bright future for the use of LST-based RS ET models 
for producing high resolution ET on a nearly continuous basis.
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Presently, the trade-off between space and time resolutions has been in part addressed by several techniques 
of data fusion (merging and leveraging images of different spatial and temporal resolutions) and data sharpening 
(to increase the ground resolution of ET maps). In fact, the improvement in ground resolution assumes great 
relevance for local applications (e.g. irrigation water consumption and scheduling, small watershed water 
balances, groundwater depletion, etc.). 

It is important to recognize that multiple sources of inputs will incrementally feed RS ET models as new satellite 
missions, with new sensors at higher spectral resolution, are launched so that the practice of data fusion and 
data sharpening will become more common and more sophisticated while being supported by the higher 
computing power of the ‘cloud’. However, we recognize that these data processing techniques increase the risk 
of additional biases as well as the confounding of the sources of biases.

The reader can refer to Table 2 in chapter 3 and Table 3 in chapter 5 for information related to the spatial and 
temporal resolutions of the various RS ET models and platforms, respectively.

In particular (Table 2), we can observe that SEBAL and METRIC remain the most used and applied at the local 
level worldwide, particularly for agricultural related domains, followed by DisALEXI, SSEBop and PT-JPL. ALEXI 
and ETMonitor can be considered more suited for covering large scale (from national to continental to global). 
ETLook and PT-JPL are expected to cover the entire range from field to continental. ETWatch is a special case 
where the most suitable scale is the basin and the region, but it can scale down also to the irrigation district 
scale.

All RS ET models presented serve agriculture water management in one way or another. Though, the formulation 
of each model carries over a certain degree of complexity, which implies specific algorithms, parameterization 
and associated risks of uncertainty. As seen in chapter 7, a more complex model is not necessarily more 
accurate. In fact, in the figures 11 and 12 of chapter 7.2.1 we have seen that SSEBop (considered one of the 
relatively simplest model presented) can perform similarly to the other more complex models, on extended 
spatio-temporal scales.

An attempt to rank the various models in terms of their relative complexity is reported in Table 6. 

Table 6: Tentative ranking of model relative complexity.

RS ET Model Degree of Complexity

ALEXI/DisALEXI High

ETLook High

ETMonitor High

ETWatch High

SEBAL Moderate

METRIC Moderate

SSEBop Low

PT-JPL Low

Source: Author’s own elaboration.

In chapter 7, we have seen how different sources of error affect the RS ET models (e.g. the cloudiness and 
contamination of the atmosphere, the variability of the underlying land surface, wind patterns, vapor pressure 
of the atmosphere, uncertainty in impacts of surface roughness, atmospheric stability, and geo-registration, 
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among others).

Furthermore, the RS input variables for ET determination are mostly instantaneous at the time of the satellite 
overpass, and therefore, additional sources of uncertainty are introduced during the time integration of ET 
over the daytime hours and in the time interpolation of daily ET values over the interval between two satellite 
overpasses.

Moreover, some computations like ‘data sharpening’, ‘data fusion’ and ‘cloud masking’ can all propagate further 
uncertainties, in addition to those introduced by the skill level and knowledge of the operators behind all the 
various calculations and data handling.

Finally, the estimation or calibration of the algorithms’ parameters at a local level remains a challenge for all 
models. METRIC, ETMonitor and ETWatch rely heavily on parameter or surface energy balance calibration 
within the area of ET determination. SEBAL, SSEBop, ETLook, PT-JPL and ALEXI/DisALEXI use mostly 
parameterizations that are based on inputs obtained only by remote sensing and ground-based data sets 
(where reliable).

This brings us to a fundamental consideration, i.e. the accurate representation of local conditions, particularly 
in complex landscapes having drastic changes in the micrometeorological variables and land surface 
properties, such as transitions from hot, dry desert to cool, wet irrigated agriculture. These stark transitions 
and heterogeneities can play an important role in the accuracy of RS ET determinations (Liu et al., 2021). Where 
the landscape is mostly uniform (e.g. flat and extensive field crops) and the meteorological conditions are 
fairly even (e.g. clear sky, moderate wind) the likelihood is higher to obtain accurate ET with any model, but 
when the terrain is significantly variable in elevation, slope, aspect, wetness, vegetation cover, etc., and the 
meteorological conditions are substantially uneven (e.g. variable humidity and temperature of the near-surface 
air, cloudy conditions, fluctuations in wind speed, etc.) the likelihood to obtain accurate ET is reduced and 
accuracy will depend on the specific model and how it incorporates and recognizes the land/atmosphere 
variability.

While all RS ET models use, directly or indirectly, Digital Elevation Models (DEMs) to characterize the land 
conditions, it is worth highlighting differences among RS ET models in their incorporation of the additional 
land/atmosphere variability. On the one end, some of the RS-ET models based on SEB (SEBAL, METRIC, 
ALEXI-DisALEXI) incorporate additional land/atmosphere variability through pixel-specific estimation of 
aerodynamic resistance, which accounts for the structural vegetation and wind characteristics, along with 
the stability conditions of the atmosphere. On the other end, the RS-ET models based on Priestley-Taylor 
(PT), Penman-Monteith (PM) or Shuttleworth-Wallace (SW), as is the case for PT-JPL, ETLook, ETWatch and 
ETMonitor, incorporate the additional land/atmosphere variability through aerodynamic resistance and surface 
resistance (largely as functions of radiation, air temperature, moisture content of the soil, and vapor pressure 
deficit of the atmosphere). Conceptually, we can say that the land/atmosphere variability characterizations are 
much more skewed towards the estimated vegetation responses to the local environmental conditions in the 
RS ET models based on PT, PM and SW, than those based on SEB. This implies different exposures to risks of 
error in determining ET. In other words, there is a trade-off in selecting one model or another, depending on how 
accurately they capture the variability in ET and behavior by the local conditions. The SSEBop model is a special 
case as it does not use either aerodynamic or surface resistance.

The best RS ET determinations show uncertainty in the range of 10-20 percent. Furthermore, it has been 
observed that, overall, the RS ET uncertainty tends to decrease going from smaller to larger spatial scales and 
from shorter to longer time scales.

Thus, the importance and applicability of utilizing high-resolution input data and of the representation of 
local conditions in heterogeneous croplands, particularly for precision agriculture management, cannot be 
understated (e.g. Wu et al., 2022). In fact, numerous efforts have been made to develop methods that merge 
multiple remote sensing data and ground-based measurements to improve the precision of spatial and temporal 
mapping of ET at regional and global scales (e.g.: Yao et al., 2017; Jiménez et al., 2018; He et al., 2020). The most 
recent approaches use the machine learning method (Shang et al. 2020) and neural networks to integrate 
satellite-derived evapotranspiration products, eddy covariance observations and ancillary information (Shang 



102

REMOTE SENSING DETERMINATION OF EVAPOTRANSPIRATION
ALGORITHMS, STRENGTHS AND WEAKNESSES, UNCERTAINTY AND BEST FIT-FOR-PURPOSE

et al. 2021). However, these methods add another layer of complexity and exposure to error and assumptions, 
and are in experimental stages (not yet operational).

The most difficult cases are represented by environments characterized by high cloudy conditions. All models 
requiring LST are mostly excluded from accurate ET estimation in regions having extensive cloudiness, and the 
major attempt to obtain ET is through those models that use microwave radar to estimate soil-surface moisture 
content (e.g. ETMonitor and ETWatch). This approach is however prone to error due to the coarse scale of the 
microwave radar (25 km pixel size) and due to the interference of the vegetation covering the soil. The hope 
is that the next generation of active microwave radar will significantly improve the determinations in cloudy 
conditions.

The considerations made for the RS ET models remain valid for the databases and portals (platforms) that 
provide ET data derived from their corresponding model (chapter 5). Also in this case, the selection of the best 
fitting platform will again depend on the purpose for which the ET data are going to be used and the assumed 
boundary and underlying conditions of the land-atmosphere system in which the ET data are being, or have 
been, derived.

The most critical aspect of the provided RS ET data remains in their associated uncertainty. In fact, none of 
the ET data provided by the platforms comes with a ± <uncertainty> (either in absolute or percentage value). 
This provision is very difficult to produce, especially for those platforms that tend to cover large areas where 
uncertainty is to vary in space and time. Furthermore, these uncertainties tend to propagate and compound as 
more computational procedures are incorporated into the model, as previously indicated (e.g. data fusion, data 
sharpening; could masking, gap-filling and time integration/interpolation). And one does not want to forget the 
previously mentioned contributions of the skills and understandings of the operator of the model to the overall 
uncertainty.

It is part of the research nature that modeling groups tend to describe and project their models in the most 
positive ways and present comparisons that show the most promising results. However, we strongly encourage 
all modeling groups to expand the scope of their work towards producing dependable estimates of uncertainties 
in RS ET products that may vary with location, vegetation type and time of year. These estimates, which are 
probably best known or estimated by the model developers and operators, will be invaluable in guiding users 
of RS ET data on expected uncertainties and biases when employed to estimate water consumption and 
regulation. This places a large burden on developers and users alike, but we recognize that estimation of error 
and bias is imperative to the acceptance and adoption of spatially and remotely derived estimates of ET into 
operational practice.

Therefore, a way to proceed forward is to always perform some sort of validation or comparison of data provided 
by a model and/or platform with some ‘references’ (trusted field measurements of ET; inter-comparison with 
higher-standard models, etc.). However, these ‘references’ have in turn their own limitations. As we have 
seen in chapter 7.1, the validation against eddy covariance measurements suffer from uncertainty due to the 
lack of energy balance closure and the pixel-to-footprint risk of mismatch, as well as improper handling and 
locating instrumentation. The validation against lysimeters suffers from uncertainty due to the possible lack 
of representation by the lysimeter of the field surrounding the lysimeter itself (soil moisture and canopy cover 
uniformity). The validation on large scale conducted with hydrological models suffers from uncertainty due to 
often incomplete identification of the boundary conditions, field-to-field variation and lack of satisfactory field 
data, etc.

In summary, there is not an easy way to select an appropriate model or approach and to put RS ET data into an 
operational system for management, monitoring or regulation. But this is the reality where progress proceeds 
incrementally, and therefore the RS ET models must continue to be explored, evaluated, scrutinized, tested, and 
refined (Fisher et al., 2017). The scrutiny and testing is additionally required for the platforms and the operational 
products made available either publically (e.g. SIMS) or commercially (e.g. IrriWatch).

We need to be aware of the challenges, tradeoffs and limitations we are facing when dealing with RS ET 
determinations. The complexity of the systems we are dealing with cannot be a justification for not becoming 
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more aware of such technologies and their challenges, tradeoffs and limitations and thereby proceeding blindly 
into the decision-making process involving the sustainable management of such a precious resource as water.

The future of RS ET determination appears to be bright, offering continuously new opportunities. It is valuable 
that a large number of competing groups of RS ET developers are offering methods and data that can be inter-
compared and contrasted. This should make it easier and more apparent in recognizing ‘truth’. It is upon the 
user to seize these opportunities wisely.
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ANNEX II

Example of semi-empirical decomposition of RS ET 
uncertainty with METRIC

The matrix in Table 7 summarizes estimated accuracy of spatial ET determinations produced by the RS model 
METRIC (used as an example) over a range of time and/or spatial scales and for two levels of METRIC expertise: 
‘handling’ and ‘review’.  Accuracy estimates are also stated for the traditional crop coefficient – reference ET 
method, for comparative purposes. Uncertainty percentages are all plus/minus and represent 95 percent of 
outcomes and two standard deviations of error from the true value.  A METRIC “expert” is considered to be a 
person who has course work or study background in evaporation and radiation physics and in the theoretical 
basis for ET calculation and who is knowledgeable and experienced in the behavior of irrigated agriculture 
and cropping systems and in the expected ranges of ET under given weather and climate conditions. The 
latter is useful during review of RS ET values, where one can expect maximum ET in an image to approach an 
upper limit that is governed by energy available from the environment (solar radiation and advected sensible 
heat energy). Judgment on whether the RS ET model is behaving properly requires a good knowledge of the 
mechanics and assumptions of the RS ET process.  

The accuracy estimates in Table A2.1 are derived from the following equation that empirically parses the final 
estimate of accuracy into three components:

 where the various terms have been described in Chapter 8.3.

Table A2.1:  Estimated error in ET produced by METRIC (plus or minus, where the values represent two 
standard deviations of error from the true value). Parameters in Eq. x1 are listed in A2.2.

Individual Field Large Number of Fields 

Category n1 Estimated error (95% CI) n1 Estimated error (95% CI)

Daily ET (for a single image date)

--irrigated agriculture 1 METRIC-expert: 10%

METRIC-nonexpert: 20%

Kc ETr: 15%

100 METRIC-expert: 5%

METRIC-nonexpert: 11%

Kc ETr: 20%

--natural systems 
(desert, forest)

1 METRIC-expert: 15%

METRIC-nonexpert: 25%

Kc ETr: 25%

100 METRIC-expert: 11%

METRIC-nonexpert: 16%

Kc ETr: 30%

Monthly ET

--irrigated agriculture 2 METRIC-expert: 17%

METRIC-nonexpert: 26%

Kc ETr: 15%

100 METRIC-expert: 13%

METRIC-nonexpert: 19%

Kc ETr: 20%
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--natural systems 
(desert, forest)

2 METRIC-expert: 22%

METRIC-nonexpert: 31%

Kc ETr: 25%

100 METRIC-expert: 19%

METRIC-nonexpert: 25%

Kc ETr: 30%

Growing Season ET

--irrigated agriculture 10 METRIC-expert: 12%

METRIC-nonexpert: 19%

Kc ETr: 20%

100 METRIC-expert: 7%

METRIC-nonexpert: 13%

Kc ETr: 10%

--natural systems 
(desert, forest)

10 METRIC-expert: 17%

METRIC-nonexpert: 24%

Kc ETr: 30%

100 METRIC-expert: 12%

METRIC-nonexpert: 18%

Kc ETr: 20%
1 n = number of clear images per month or season or number of fields processed and sampled.

Source: Author’s own elaboration.

Table A2.2: Values for ETrFrepresentation error, ETrFimage_systematic_error and ETrFimage_random_error used to produce ETrF error 
estimates in Table 1. Values for ETrF are dimensionless.

ETrFrepresentation error ETrFimage_systematic_error ETrFimage_random_error

Category For the Image 

Date

Monthly Growing 

Season

For the Image Date For the Image Date

Expert – Irrigated 
Ag.

0 0.15 0.5 0.05 0.05

NonExpert – 
Irrigated Ag.

0 0.15 0.5 0.1 0.1

Expert – Non Ag. 0 0.15 0.5 0.1 0.05

NonExpert – Non 
Ag.

0 0.15 0.5 0.15 0.1

Source: Author’s own elaboration.

The value for ETrFimage_systematic_error is estimated to be 0.05 for expert appliers of METRIC (plus or minus two 
standard deviations) and 0.10 for non-expert or less careful appliers or reviewers of the model in the case of 
applications to agricultural land uses (Irrigated Ag.). The values for expert and non-expert are estimated to be 
0.1 and 0.15, respectively, for non-agricultural (Non Ag.) land uses due to more challenging and non-uniform 
characteristics of those land uses. The value for ETrFimage_random_error is estimated to be 0.05 for expert appliers 
of METRIC and 0.10 for non-expert or less careful appliers (or reviewers) for agricultural and nonagricultural 
land uses. Systematic error is expected to increase for nonagricultural land uses because of lower vegetation 
uniformity, impacts of shadowing from tall vegetation, varying aerodynamic conditions that may vary more, in 
space, than the more uniform conditions represented by METRIC functions, and less certainty in values for soil 
heat flux estimates (Allen et al., 2007a).

The basis for the accuracy estimates in Tables x1 and x2 is derived from: experience with METRIC applications; 
reviewing work by various levels and capabilities of METRIC appliers; comparing differences in METRIC results 
among multiple users (Allen et al. 2007 and Morton et al., 2013) and comparing METRIC results with ET measured 
by precision weighing lysimeters at Kimberly (Tasumi, 2003; Trezza, 2002; Tasumi et al., 2005a,b). 
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Accuracy estimates also consider the accuracy of the ASCE standardized Penman-Monteith method (ASCE 
2005) that is used for internal calibration to METRIC and as the basis for time-integration for monthly and growing 
season ET. The accuracy estimates assume that weather data have been quality controlled and are collected 
from weather stations located in or near agricultural areas.  When weather data come from non-agricultural 
systems or non-irrigated weather stations such as airports, then some adjustment for aridity (causing high 
temperature and low vapor pressure readings) may be necessary (Allen et al., 2021).

As an example for estimation of expected error for a METRIC “expert”, one would expect the accuracy for a 
specific location (field) in an irrigation project having 10 cloud free images during the growing season to be: 
(1.0 + 0.5/10) x (1.0+0.05 + 0.05/(100.5)) – 1.0 = 1.05 x (1.05 + 0.016) – 1.0 = +/-12 percent.  If cloud cover reduced 
the number of clear satellite images over the growing season to 7 images, the expected accuracy would be 
(1.0 + 0.5/7) x (1+0.05 + 0.05/(70.5)) – 1.0 = +/-15 percent. Equation x1 is useful to gain some appreciation for 
the importance of frequent revisit time of satellite images, the impact of cloudiness and the impact of user or 
reviewer expertise.

Crop Coefficient Uncertainty. The estimated error in the crop coefficient-reference ET approach in Table A2.1 is 
15 percent for experts and 25 percent for non-experts for individual irrigated fields, based on estimated, 
common uncertainties and error in estimating crop coefficient values without the aid of ground measurements 
or satellite-based calibration for localized adjustments. The estimates include typical values for uncertainty in 
estimated reference ET by the FAO56 and ASCE Standardized Penman-Monteith equation (Allen et al., 1998; 
ASCE 2005). Smaller error in K

c ETo-based estimates has been obtained, for example, by Allen et al., (1996) and 
Allen (2000) for bean, corn, and sugar beets at Kimberly, Idaho, and by Allen (1999) and Allen et al. (2005) for 
the 200 000 ha Imperial Irrigation District in southern California, United States of America (the). Error estimates 
in Kc ETo have also been produced by Hunsaker et al., (2002) for alfalfa in Arizona and by Liu and Luo (2010) 
for winter wheat in China. Error estimates for nonagricultural land uses are larger than for agriculture due 
to increased uncertainty in estimating crop coefficients for varying ranges of vegetation density and water 
availability using published values. Estimated error increases as numbers of fields increases with the Kc ETo 
method, due to the likelihood that some fields will vary from typical conditions for vegetation density, water 
availability and agronomic practices. This compares to the reduction of error expected for METRIC applications 
as field numbers increase due to repeated sampling and due to individualized estimates, by field, by METRIC 
using land surface temperature and short-wave reflectance from each field. Er-Raki et al. (2010) discussed the 
benefits of local calibration of crop coefficients for olive trees on improving accuracy of the Kc ETo approach.

Monitoring water consumption (or evapotranspiration – ET) of agricultural and other vegetated land in space 
and time is extremely relevant for sustainable water resources management from local to global levels.

Feasible and affordable methods for ET determination over large areas, such as irrigation schemes, watershed, 
sub-national, national and basin scales, are through satellite Remote Sensing (RS).

The progress and advances in the availability of moderate resolution earth observations over recent years, 
along with the development of quite elaborated algorithms, has in fact provided an ample and diversified offer 
of RS ET models and platforms for the determination and provision of the spatial and temporal assessment of 
ET.

However, users are concerned with operational issues such as: proper spatial and temporal resolution for given 
applications; accuracy of the ET determinations provided by the various models and databases; methods to 
conduct qualitative and quantitative error analyses of RS-ET determinations; modalities to test the RS ET with 
field ET measurements; and criteria to know which ET data sources best fit one’s purpose.

In fact, being mindful of the magnitude of uncertainty of these RS ET determinations allows the user to properly 
identify and select the method most suitable for a given application, so that these uncertainties are likely within 
acceptable limits for sound quantitative analysis leading to appropriate decisions.

These concerns have been addressed through two major enterprises undertaken by the FAO Regional Initiative 
on Water Scarcity for the Near East and North Africa, specifically: (i) a plan of a webinars series,(https://dgroups.
org/fao/wateraccounting/library/sqff8vmt?o=lc) ; (ii) the present publication reporting on the major outcomes 
of the webinars series, adding further insights, and providing an enriched literature review.

The present publication is intended to be a useful reference for several water actors and professionals working 
for the sustainability of water resources management.
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Monitoring water consumption (or evapotranspiration – ET) of agricultural and other vegetated land in space 
and time is extremely relevant for sustainable water resources management from local to global levels.

Feasible and affordable methods for ET determination over large areas, such as irrigation schemes, watershed, 
sub-national, national and basin scales, are through satellite Remote Sensing (RS).

The progress and advances in the availability of moderate resolution earth observations over recent years, 
along with the development of quite elaborated algorithms, has in fact provided an ample and diversified offer 
of RS ET models and platforms for the determination and provision of the spatial and temporal assessment of 
ET.

However, users are concerned with operational issues such as: proper spatial and temporal resolution for given 
applications; accuracy of the ET determinations provided by the various models and databases; methods to 
conduct qualitative and quantitative error analyses of RS-ET determinations; modalities to test the RS ET with 
field ET measurements; and criteria to know which ET data sources best fit one’s purpose.

In fact, being mindful of the magnitude of uncertainty of these RS ET determinations allows the user to properly 
identify and select the method most suitable for a given application, so that these uncertainties are likely within 
acceptable limits for sound quantitative analysis leading to appropriate decisions.

These concerns have been addressed through two major enterprises undertaken by the FAO Water Scarcity 
Initiative (WSI) of the Near East and North Africa (NENA) Region, specifically: (i) a plan of a webinars series,(https://
dgroups.org/fao/wateraccounting/library/sqff8vmt?o=lc); (ii) the present publication reporting on the major 
outcomes of the webinars series, adding further insights, and providing an enriched literature review.

The present publication is intended to be a useful reference for several water actors and professionals working 
for the sustainability of water resources management
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