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FOREWORD

Climate crisis and increasing food demand accelerate the need for agrifood systems 
to transform to meet the 2030 Agenda for Sustainable Development. Numerous 
approaches are being explored to reconcile the intensification of agrifood production 
with mitigation measures aimed at lowering negative impacts on the environment 
and ensuring sustainability. Trade-offs between environmental, socioeconomic, food 
security and safety objectives are a challenge of today’s sustainable development and 
resilience of agrifood systems to shocks and stresses.

In this context, environmental inhibitors are among the options that are currently 
being explored and used. Environmental inhibitors are substances that are used 
to reduce greenhouse gas emission from the livestock sector or to minimize the 
loss of nutrients from cultivated soil which has additional benefits in improved 
performance of animals and efficiency of fertilizers. While they are not new to 
agricultural practices, their implementation needs to consider many aspects starting 
from possible food safety concerns flanked by the limited information available in 
this regard, as well as their implications for trade and economies. 

Developing integrated strategies to create synergies between involved sectors 
is at the basis of policies targeting smart agriculture in agrifood systems under 
transformation. The Strategic Framework of the Food and Agriculture Organization 
(FAO) of the United Nations, centered around better production, better nutrition, a 
better environment, and a better life, supports the 2030 Agenda, where safe food for 
everyone is an important priority area. Scientific advancement and innovation are key 
in providing means, either in terms of knowledge or technological improvements, 
to fill current gaps which impede an optimal risk assessment and implementation 
of new solutions for a more sustainable production of safe food.

This report provides a food safety analysis of the main groups of environmental 
inhibitors. It also offers an overview of how different regulatory frameworks 
worldwide deal with environmental inhibitors, highlighting at the same time the 
lack of global harmonization in defining and categorizing these substances. 

We hope that the findings and conclusions of this report will offer some viable 
options and recommendations to move forward in realizing the full potential of 
environmental inhibitors towards resilient, sustainable and safe agrifood systems.

Corinna Hawkes
Director

Food Systems and Food Safety Division 
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Buffalo farming contributes to global CH4 emissions  
from enteric fermentation of ruminants. 

Flooded rice fields are a particular type of cultivation 
where the need for fertilizers and anaerobic 
environment lead to higher CH4 emissions compared 
to other crops. 
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EXECUTIVE SUMMARY

Agrifood systems are under unprecedented pressure to produce more food for the 
growing world population, while reducing the environmental footprint and coping 
with the challenges posed by climate change. In this context, numerous practices and 
technologies are being developed to increase the sustainability of agrifood systems. 
One of the approaches to reduce negative impacts on the environment while at 
the same time improving the production efficiency of crops and livestock, is the 
application of the so called “environmental inhibitors”, in particular: 

 > methanogenesis inhibitors: these reduce methane emissions resulting from 
enteric fermentation of ruminants and from other agricultural sources (such as 
rice paddies or manure), and

 > nitrogen inhibitors: these limit the loss of nitrogen from farmlands by slowing 
down natural processes which lead to its leakage and volatilization. 

While the use of methanogenesis inhibitors is currently mostly limited to research 
purposes, several products are available on the market as nitrogen inhibitors. It is 
likely that the intensification of livestock farming and use of nitrogen fertilizers in 
the coming years will increase the application of nitrogen inhibitors. High fertilizer 
prices may also encourage the use of nitrogen inhibitors to minimize fertilizer 
demand while maintaining crop yield and quality. 

This publication aims to provide an overview of substances used as environmental 
inhibitors and to summarize information on potential implications on food safety 
and regulations resulting from their application.

In many cases, information on potential residues of environmental inhibitors  
and/or their metabolites in food commodities is not available, which does not allow 
for thorough food safety risk assessments to be carried out. At the same time, the way 
environmental inhibitors are being covered by regulatory frameworks worldwide 
is diverse. Various legal instruments are applied to regulate these compounds at 
national and regional level, in particular through regulations on feed additives, food 
additives and substances used in food production, fertilizers and pesticides. Some 
environmental inhibitors are covered by legislations related to other primary uses 
(e.g. industrial use, human medicine) when reduction of methane emissions or the 
loss of nitrogen is the secondary application. As chemical residues of environmental 
inhibitors can occasionally be detected in food at low levels for which no regulatory 
limits exist, Codex Alimentarius adopted international guidelines for rapid risk 
analysis of such substances and agreed that Maximum Residue Limits (MRLs) for 
inhibitors could be considered by the Codex Committee on Pesticide Residues 
(CCPR) for crops and by the Codex Committee on Residues of Veterinary Drugs 
in Foods (CCRVDF) for animals.
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Ensuring food safety of environmental inhibitors requires further efforts to 
close regulatory and knowledge gaps. Science-based holistic risk assessment and 
internationally harmonized legislative frameworks are needed to ensure food safety 
of environmental inhibitors and facilitate their global trade. Concurrently, research 
and development of novel environmental inhibitors needs to proceed in concert 
with risk assessments. The approval of new products and technologies, such as 
genetic recombination of crops increasing the capacity of environmental inhibitors 
contained within plant tissues, requires increasing efforts to evaluate the implications 
on food safety. On the other hand, re-purposing old chemistry as environmental 
inhibitors needs a critical examination of new toxicological studies to understand 
limitations and changes in the data requirements. 

New technological solutions can help in optimizing the application of environmental 
inhibitors. For instance, improvements in the quantification of greenhouse gas 
(GHG) released from livestock and farmlands can allow a more precise and 
simple application of these substances on commercial farms. However, while the 
development of more advanced detection methods for environmental inhibitors or 
their metabolites in complex matrices can strengthen food safety management, an 
increasing analytical sensitivity would require regulatory approaches for dealing 
with higher number of detects in foods. Furthermore, technological progress in 
other scientific domains, for example in omics technologies applied to understand 
changes in rumen microbiome, can help investigate natural processes underlying the 
efficiency of mitigation strategies on methane formation and livestock performance. 

Effective implementation of environmental inhibitors needs to take into account 
multiple factors related to costs, uncertainties and possible food safety risks of 
their application for farmers, industries and consumers. Those factors depend on 
local conditions, therefore careful evaluation on a case-by-case basis is considered 
the best approach to achieve required outcomes while minimizing the negative 
impact on other variables in the system. Current estimates indicate that costs of 
inhibitor application may be outcompeted by savings when considering societal 
benefits related to the reduction of GHG emission for human and ecosystem health. 
Financial incentives are among the factors predicted to promote the adoption of 
GHG mitigation strategies in practice. 

As the trend shifts towards more sustainable agrifood systems, environmental 
inhibitors are among the tools that can offer viable solutions towards adequate 
nutrition for the growing world population while minimizing the impacts on the 
environment. At the same time, it is critical to keep raising awareness of the various 
interconnections that exist in agrifood systems, so that any food safety implications 
are carefully considered and proactively addressed.
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The efficacy of fertilizers can be improved  
by the application of nitrogen inhibitors  
which reduce the loss of nitrogen from  

the rootzone of cultivated plants. 
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CHAPTER 1
INTRODUCTION AND  
BACKGROUND

The UN estimates that the global human population will reach 9.7 billion by 2050 
(UN, 2022). Projections for periods ranging from 2010 to 2050 show that food 
demand is forecasted to grow by up to 60 percent (Falcon, Naylor and Shankar, 
2022; van Dijk et al., 2021). At the same time, intensifying food production and the 
corresponding supply chains can lead to increased greenhouse gas (GHG) emissions 
which has an enormous impact on climate change (see Figure 1) (Mbow et al., 2019; 
Opio et al., 2013). If no action is taken, GHG emissions from agrifood systems 
are expected to grow by 30-40 percent over the next three decades (Mbow et al., 
2019). International efforts are being made to address global warming and set time 
checkpoints through seventeen Sustainable Development Goals (SDG)1 and the 
Paris Agreement,2 involving the reduction of GHG emissions by 2030. Moving 
towards sustainable agrifood systems is high on the agenda of the United Nations as 
also demonstrated by the recent FAO Global Conference on Sustainable Livestock 
Transformation.3

Against this backdrop, numerous practices and technologies are being developed to 
increase sustainability of agrifood systems. Environmental inhibitors are one such 
approach, as they are used to reduce negative impacts on the environment while 
improving at the same time the production efficiency of crops and livestock. In this 
publication, the term environmental inhibitors is used to describe anthropogenic or 
naturally occurring substances (or their mixtures) that are used to reduce:

 > GHG emissions, in particular methane (CH4), from livestock, manure (see Box 1)  
as well as croplands by blocking key enzymes or pathways in methanogenic 
microorganisms which limits their growth and ability to produce CH4; 

 > loss of nitrogen from soil by delaying or blocking the activity of specific 
enzymes or microorganisms responsible for nitrification, denitrification or urea 
hydrolysis. 

1 sdgs.un.org/goals
2 unfccc.int/sites/default/files/english_paris_agreement.pdf 
3 fao.org/events/detail/fao-global-conference-on-sustainable-livestock-transformation/en 
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The extent of contribution from upstream and downstream chain beyond the farm gate, such as 
manufacturing of fertilizers, industrial food processes, energy use or food loss and waste, is uncertain 
due to insufficient data available.

NON-CO2

GHG
EMISSIONS

CH
4 + N

2O

N2O

CH4

MANUFACTURING

FARM
GATE

DISTRIBUTIONPROCESSING RETAIL, STORAGE
AND CONSUMPTION

FOOD LOSS
AND WASTE

BURNING SAVANNA
AND GRASSLAND

DRAINED 
ORGANIC SOILS

CROP
RESIDUES

SYNTHETIC
FERTILIZER

ENTERIC
FERMENTATION

RICE
CULTIVATION

LIVESTOCK
MANURE

MANURE
MANAGEMENT

Source: Author’s own elaboration. Adapted from FAO. 2020. Emissions due to agriculture. Global, regional and country trends 2000–2018. 
FAOSTAT Analytical Brief Series No 18. Rome https://www.fao.org/3/cb3808en/cb3808en.pdf and Mbow, C., Rosenzweig, C., Barioni, L.G., 
Benton, T.G., Herrero, M., Krishnapillai, M., Liwenga, E. et al. 2019. Food Security Supplementary Material. In: P.R. Shukla et al. Climate 
Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food 
security, and greenhouse gas fluxes in terrestrial ecosystems.

FIGURE 1. MAIN SOURCES OF NON-CO2 GHG EMISSIONS FROM CROP AND LIVESTOCK SECTORS AND 
ASSOCIATED LAND USE

https://www.fao.org/3/cb3808en/cb3808en.pdf
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CHAPTER 1 :  INTRODUCT ION AND BACKGROUND

BOx 1. THE ROLE OF MANURE MANAGEMENT IN REDUCING CH4 EMISSIONS  
AND NUTRIENT LOSS

Greenhouse gas emissions and release of nutrients from the livestock sector can 
be considerably reduced through manure management strategies (FAO, 2023).  
Those may involve measures to reduce livestock urinary nitrogen (e.g. animal breeding for 
improved nitrogen efficiency, dietary manipulation), treatment of manure in digesters or 
composting for decreased methane (CH4) emission, or use of urease inhibitors to reduce 
nitrous oxide (N2O) emission (Montes et al., 2013; Rivera and Chará, 2021). These strategies 
are selected depending mainly on animal species, farming systems, livestock diet and 
climatic zone (Gerber et al., 2013). Various well-established treatment as well as novel 
processes and technologies can be employed to reduce the concentrations of substances that 
may affect plant growth when untreated manure is applied on land or to recover nutrients 
that could potentially be spread to adjacent ecosystems (Che et al., 2021; Dadrasnia et al., 
2021; Szogi, Vanotti and Ro, 2015).
 
Notes: 
Che, x., Di, H.J., Cameron, K.C. & Dodd, R. 2022. Treating farm dairy effluent with poly‐ferric sulphate dramatically reduces 
phosphorus and E. coli leaching through subsurface drains—A physical drainage model study. Soil Use and Management, 
38(3): 1493–1504. https://doi.org/10.1111/sum.12809
Dadrasnia, A., De Bona Muñoz, I., Yáñez, E.H., Lamkaddam, I.U., Mora, M., Ponsá, S., Ahmed, M. et al. 2021. Sustainable nutrient 
recovery from animal manure: A review of current best practice technology and the potential for freeze concentration. Journal of 
Cleaner Production, 315: 128106. https://doi.org/10.1016/j.jclepro.2021.128106
FAO. 2023. Reducing methane emissions in livestock systems in Asia and the Pacific – Enhancing national climate actions 
through the Global Methane Pledge. Workshop report. Bangkok, Thailand 24–26 October 2022. FAO Animal Production and 
Health Reports, No. 19. Rome https://doi.org/10.4060/cc6388en
Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change 
through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the 
United Nations (FAO), Rome. fao.org/3/i3437e/i3437e.pdf
Montes, F., Meinen, R., Dell, C., Rotz, A., Hristov, A.N., Oh, J., Waghorn, G. et al. 2013. SPECIAL TOPICS — Mitigation of methane 
and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Journal of Animal 
Science, 91(11): 5070–5094. https://doi.org/10.2527/jas.2013-6584
Rivera, J.E. & Chará, J. 2021. CH4 and N2O Emissions From Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in 
Grazing Systems. Frontiers in Sustainable Food Systems, 5: 657936. https://doi.org/10.3389/fsufs.2021.657936
Szogi, A.A., Vanotti, M.B. & Ro, K.S. 2015. Methods for Treatment of Animal Manures to Reduce Nutrient Pollution Prior to Soil 
Application. Current Pollution Reports, 1(1): 47–56. https://doi.org/10.1007/s40726-015-0005-1

SCOPE AND SEARCH STRATEGY

This publication provides an overview of substances used as environmental inhibitors 
and summarizes information on possible food safety implications resulting from 
their application. In addition, the report also gives a snapshot of national and 
regional legislative frameworks, highlighting differences in regulating the use of 
environmental inhibitors in jurisdictions worldwide.

The publications cited in this document were retrieved from open-access databases 
such as PubMed and Google Scholar, as well as FAO’ repository, using keywords 
such as methanogenesis/methane inhibitor(s) or (de)nitrification/nitrogen inhibitor(s) 
or urease inhibitor(s) and livestock/ruminants and/or soil and/or food and/or feed 
and/or milk/meat/vegetable(s)/crops and/or residue(s) and/or safety and/or toxicity. 

https://doi.org/10.1111/sum.12809
https://doi.org/10.1016/j.jclepro.2021.128106
https://doi.org/10.4060/cc6388en
http://fao.org/3/i3437e/i3437e.pdf
https://doi.org/10.2527/jas.2013-6584
https://doi.org/10.3389/fsufs.2021.657936
https://doi.org/10.1007/s40726-015-0005-1
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Information and data regarding food safety of described substances were also 
obtained from reports, scientific opinions and institutional websites of national 
authorities, international bodies and associations. The regulatory section (section 4) 
was compiled for selected countries as representative of different geographic areas 
based on relevant local legislation and information provided by national authorities.

It is outside the scope of this publication to provide an exhaustive list of environmental 
inhibitors or information on their efficiency and application approaches. Similarly, 
an in-depth analysis of legislations covering environmental inhibitors in various 
jurisdictions is also beyond the scope of this publication. 

1.1 METHANE EMISSIONS AND METHANOGENESIS INHIBITION

Methane (CH4) is the second most abundant human-induced GHG after carbon 
dioxide (CO2), (see Box 2) (FAO, 2020; USEPA, 2022a), and is formed as a  
by-product of plant biomass enteric fermentation in the digestive system of 
ruminants and anaerobic decomposition of the organic matter in manure or  
water-saturated soils (OECD, 2019). It constitutes the biggest share of GHG 
emissions from the livestock sector, followed by nitrous oxide (N2O) and CO2 
(Gerber et al., 2013). Microbial-derived enteric fermentative processes in ruminant 
livestock are responsible for about 30 percent of the total anthropogenic CH4 
emissions (FAO, 2023a and FAO, 2023b) with cattle being the major contributor 
to livestock emissions (see Figure 2) (FAO, 2023a, Gerber et al., 2013). 

GHG emissions have been considered as the main challenge for sustainability in 
the dairy sector (FAO, 2023b). Reduction of enteric CH4 emissions is therefore 
necessary to limit the carbon footprint of ruminant production. Rice cultivation is 
the second highest source of CH4 emissions from agrifood systems (see Figure 2) 
(IPCC, 2014; USEPA, 2022a).

Besides the negative impact of CH4 emissions by livestock ruminants on climate 
change, its release is associated with reduced feed efficacy and loss of energy leading 
to decreased animal productivity of up to 12 percent (García-Lozano et al., 2017).

Several publications offer a review of measures to mitigate CH4 production by livestock 
(Almeida and Hegarty, 2021; Beauchemin et al., 2020 and 2022; Cummins et al., 2022; 
Hristov et al., 2013a; Knapp et al., 2014; Kumar et al., 2014; Llonch et al., 2017; Patra, 
2011; Thompson and Rowntree, 2020). These measures include management and 
breeding strategies, manipulation of rumen microbiome and fermentation, vaccines, 
early life programming, nutritional approaches and feed supplementation. Numerous 
reviews focused on the latter two which can be easily introduced anytime during the 
animal lifespan and are part of routine husbandry practices (Black, Davison and Box, 
2021; FAO, 2023a; Hadipour et al., 2021; Haque, 2018; Hegarty et al., 2021; Honan et 
al., 2021; Hristov et al., 2013b and 2022; Króliczewska, Pecka-Kiełb and Bujok, 2023; 
Palangi et al., 2022; Palangi and Lackner, 2022; Sun et al., 2021; Tseten et al., 2022). 
While interventions to increase feed digestibility are associated with lower enteric CH4 
emissions, synthetic methanogenesis inhibitors used as feed additives remain more 
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BOx 2. CH4 LIFESPAN AND WARMING POTENTIAL RELATIVE TO CO2

When released to the atmosphere, methane (CH4) immediately traps heat, at least one 
hundred times as much as carbon dioxide (CO2) emissions. The warming effect diminishes 
as CH4 starts to break down until cycling out in approximately twelve years. In contrast, CO2 
can persist in the atmosphere for thousands of years (USEPA, 2022; NASA, 2019). The gap 
between the warming effects of the two GHGs diminishes progressively: the original amount 
of atmospheric CH4 would trap about 84-86 times as much heat as CO2 over 20 years and up 
to 34 times over 100 years (UNECE, 2023).
The amount of GHGs is commonly expressed as CO2 equivalents (CO2-eq) with reference to 
CO2 emissions that would cause the same time-integrated radiative forcing over a given 
period (Gerber et al., 2013). It is obtained by multiplying a GHG emission by its global 
warming potential (GWP) and constitutes a standard metric for comparing emissions of 
different GHGs (IPCC, 2007).
 
Notes: 
Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change 
through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the 
United Nations (FAO), Rome. fao.org/3/i3437e/i3437e.pdf
Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: Mitigation of Climate Change. Contribution of 
Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B. Metz, O.R. Davidson, 
P.R. Bosch, R. Dave & L.A. Meyer, eds. Cambridge University Press, Cambridge, UK and New York, USA. ipcc.ch/site/assets/
uploads/2018/03/ar4_wg3_full_report-1.pdf
National Aeronautics and Space Administration of the United States (NASA). 2019. The atmosphere: Getting a Handle on 
Carbon Dioxide. In: Global Climate Change, Vital Signs of the Planet. Pasadena, USA. [Cited 07 July 2023]. climate.nasa.gov/
news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/
United Nations Economic Commission for Europe (UNECE). 2023. Methane management – The challenge. In: Sustainable 
energy. Geneva, Switzerland. [Cited 17 July 2023]. unece.org/challenge 
United States Environmental Protection Agency (USEPA). 2022. Greenhouse gasses. In: Climate change indicators. Washington, 
DC, USA. [Cited 19 July 2023]. epa.gov/climate-indicators/greenhouse-gases

efficient and have been included among climate-smart agricultural practices (Arndt 
et al., 2021; Veneman et al., 2016; Zaman et al., 2021). However, grazing and mixed 
farming systems need adequate solutions for the delivery of methanogenesis inhibitors 
to achieve substantial levels of CH4 mitigation, such as slow-release bolus capsules 
releasing an inhibitor continuously at a low dose rate (NZGAGRC/PGgRc, 2021). 
The growing importance of methanogenesis inhibitors for the agricultural sector has 
also been recognized in a FAO report launched in September 2023 (FAO, 2023a).

Methanogenesis inhibitors reduce energy loss resulting from the ruminal transformation 
of feed nutrients into CH4 (see Box 3), which limits its release from livestock to the 
atmosphere, and favour the production of beneficial compounds, such as fatty acids (Liu 
et al., 2011). Methanogenesis inhibitors may also slow down methanogenic microbial 
processes and reduce CH4 emission from livestock manure or water-saturated soils 
like rice paddies or wetlands, where decomposition of organic matter under anaerobic 
conditions leads to the release of considerable amounts of GHG.
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http://fao.org/3/i3437e/i3437e.pdf
http://ipcc.ch/site/assets/uploads/2018/03/ar4_wg3_full_report-1.pdf
http://ipcc.ch/site/assets/uploads/2018/03/ar4_wg3_full_report-1.pdf
http://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/
http://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/
http://unece.org/challenge
http://epa.gov/climate-indicators/greenhouse-gases
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Cattle are the major contributor with similar distribution of CH4 emissions among beef and dairy cattle, 
followed by rice cultivation and other ruminants. Non-ruminant animals, such as pigs, also produce CH4 
but at much lower amounts. To a minor extent, the livestock sector is responsible for emissions of other 
GHGs, such as N2O and CO2.

CH4

N 2
OC

O
2

AGRIFOOD
SYSTEMS

SMALL RUMINANTS BUFFALO CATTLE DAIRY
CATTLE

BEEF
CATTLE

RICE

Crops

Ruminant
livestock

 
Source: Author’s own elaboration. Adapted from FAO. 2023. Methane emissions in livestock and rice systems. Rome. https://doi.org/10.4060/ 
cc7607en; Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change 
through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United 
Nations (FAO), Rome. fao.org/3/i3437e/i3437e.pdf; IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, 
II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer 
(eds.)]; IPCC, Geneva, Switzerland, 151 pp. and USEPA. 2022a. Importance of Methane. In: Global methane initiative. Washington, DC, USA.  
[Cited 19 July 2023]. epa.gov/gmi/importance-methane

FIGURE 2. GLOBAL CH4 EMISSIONS WITH EMPHASIS ON AGRIFOOD SYSTEMS AND LIVESTOCK

Methanogenesis inhibitors specifically target microorganisms responsible 
for the production of CH4 by acting on enzymes which are not present in  
non-methanogenic species. The most widely described compounds are analogues 
of methyl-coenzyme M (Me-CoM), which is the substrate of methyl coenzyme  
M reductase (MCR) enzyme. MCR is responsible for catalysing the last step in the 
process of CH4 production by methanogenic archaea. Methanogenesis inhibitors 
competitively inhibit MCR by binding to the enzyme’s active site, which impedes 
binding of the natural substrate and hampers the reaction (see Figure 3). Recently, 

https://doi.org/10.4060/ cc7607en
https://doi.org/10.4060/ cc7607en
http://fao.org/3/i3437e/i3437e.pdf
http://epa.gov/gmi/importance-methane
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Rice paddies emit CH4 due to large volumes of water 
necessary to sustain plant growth, which blocks oxygen 
from penetrating the soil. This generates optimal 
conditions for growth of methanogenic bacteria.
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the Me-CoM analogue 3-nitrooxypropanol (3-NOP) has gained attention due to 
its efficacy in enteric CH4 inhibition and positive safety evaluation by the producer 
and food safety authorities, supported by numerous reviews describing its properties 
and use as feed additive (Jayanegara et al., 2017; Kebreab et al., 2023; Kim et al., 
2020; Yu, Beauchemin and Dong, 2021). Food safety details are provided in section 
2.1.1.1. However, methanogenesis inhibitors can also target other enzymes, such 
as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA), which 
is involved in the synthesis of cell membrane components in archaea and can be 
inhibited by statins (Gottlieb et al., 2016).

BOx 3. METHANOGENESIS PROCESSES AND TARGETS OF METHANOGENESIS INHIBITORS

Complex organic matter taken up with feed is reduced to less complex matter in the process 
of microbial hydrolysis carried out by bacteria, fungi and protozoa (Cammack et al., 2018). 
Then, microorganisms responsible for fermentation produce short-chain volatile fatty acids 
(VFA) such as acetate, propionate and butyrate which are absorbed for nutrition and for the 
production of meat, milk and wool (Ungerfeld, 2020). 
Carbon dioxide (CO2) and hydrogen (H2) are by-products of fermentation and can be used 
by hydrogenotrophic methanogens to produce methane (CH4) as the primary route of 
methanogenesis. In this process, binding of enzyme Me-CoM reductase (MCR) with its natural 
substrate methyl coenzyme M (Me-CoM) is crucial and can be blocked by MCR inhibitors  
(Yu, Beauchemin and Dong, 2021). 
As animals have a fast flow of organic matter, rumen methanogenesis is partial (Leahy  
et al., 2022); in ecosystems such as rice paddies, VFA can be converted to simpler acids 
while the process of acetogenesis leads to the production of acetic acid (CH3COOH) from CO2 
and H2, which is further transformed by acetoclastic methanogens with a final release of 
CH4. Accumulated gas is eliminated primarily during eructation and respiration. 
In addition to MCR inhibitors, different reactions and organisms along the pathway are targets 
of other inhibitors to reduce CH4 emissions. Inhibitors of hydrogenotrophic and acetoclastic 
methanogens modulate the respective populations limiting their activity, thereby reducing 
the amount of produced CH4. At the very beginning of the digestive process, the population 
of protozoa can be kept under control by bioactive compounds contained in biological 
methanogenesis inhibitors, which may also inhibit hydrogenotrophic and acetoclastic 
methanogens. Alternative H2 sinks reduce available hydrogen produced during microbial 
activity subtracting it from methanogens, thereby reducing the amount of CH4 produced.

Notes: 
Cammack, K.M., Austin, K.J., Lamberson, W.R., Conant, G.C. & Cunningham, H.C. 2018. Tiny but mighty: The role of the rumen 
microbes in livestock production. Journal of Animal Science. https://doi.org/10.1093/jas/skx053
Leahy, S.C., Janssen, P.H., Attwood, G.T., Mackie, R.I., McAllister, T.A. & Kelly, W.J. 2022. Electron flow: key to mitigating ruminant 
methanogenesis. Trends in Microbiology, 30(3): 209–212. https://doi.org/10.1016/j.tim.2021.12.005
Ungerfeld, E.M. 2020. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Frontiers 
in Microbiology, 11: 589. https://doi.org/10.3389/fmicb.2020.00589
Yu, G., Beauchemin, K.A. & Dong, R. 2021. A Review of 3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant 
Livestock. Animals, 11(12): 3540. https://doi.org/10.3390/ani11123540

https://doi.org/10.1093/jas/skx053
https://doi.org/10.1016/j.tim.2021.12.005
https://doi.org/10.3389/fmicb.2020.00589
https://doi.org/10.3390/ani11123540
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Methanogenesis inhibitors mixed with feed are more 
efficient in stall-based systems.

Non-specific methanogenesis inhibitors not only target microorganisms directly 
involved in the production of methane but also inhibit wider microbial populations 
by acting on common processes or molecules (Liu et al., 2011). An example of this 
type of inhibitors are ionophores used in animal production as antimicrobials. 

These can improve feed efficiency by modulating rumen microorganisms and 
fermentation pathways leading to shifts in the production of volatile fatty acids 
(VFA) from acetate to propionate. This contributes to reducing CH4 emissions by 
lowering the amount of substrate for methanogenic bacteria. The mode of action of 
ionophores as feed additives and their impact on ruminal function has been reviewed 
previously (da Silva Marques and Fernandes Cooke, 2021; FAO, 2023a; Hall, 2013).

Several substances acting as hydrogen sinks alternative to CH4 have been identified 
(Newbold et al., 2005). These act by competing with CH4 for available hydrogen, 
impeding the reaction with CO2 through hydrogenotrophic route (see Figure 3). 

However, only few substances (e.g. nitrates) proved to efficiently trap hydrogen and 
reduce methanogenesis, which may be explained by additional mechanisms involved 
(Yang et al., 2016). For example, in an endogenous process in the rumen, nitrites are 
produced as intermediates from nitrates following reduction by hydrogen. In turn, 
nitrites may alter microbial metabolism lowering the amount of generated hydrogen 
or inhibit methanogens directly (Ungerfeld, 2015; Yang et al., 2016).
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Processes prevailing in gut ecosystems (ruminants, humans) are indicated by black arrows while 
those prevailing in environmental ecosystems are shown by blue arrows. 
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Source: Author’s own elaboration. Adapted from Haque, M.N. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions 
from ruminants. Journal of Animal Science and Technology, 60(1): 15. https://doi.org/10.1186/s40781-018-0175-7; Leahy, S.C., Janssen, 
P.H., Attwood, G.T., Mackie, R.I., McAllister, T.A. & Kelly, W.J. 2022. Electron flow: key to mitigating ruminant methanogenesis. Trends in 
Microbiology, 30(3): 209–212. https://doi.org/10.1016/j.tim.2021.12.005; Liu, H., Wang, J., Wang, A. & Chen, J. 2011. Chemical inhibitors 
of methanogenesis and putative applications. Applied Microbiology and Biotechnology, 89(5): 1333–1340. doi.org/10.1007/s00253-
010-3066-5; Ungerfeld, E.M. 2020. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. 
Frontiers in Microbiology, 11: 589. https://doi.org/10.3389/ fmicb.2020.00589 and Yu, G., Beauchemin, K.A. & Dong, R. 2021. A Review of 
3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant Livestock. Animals, 11(12): 3540. https://doi. org/10.3390/ani11123540

FIGURE 3. MAIN STEPS OF CH4 GENERATION PATHWAY IN RUMINANTS AND POINTS OF INTERVENTION 
TO REDUCE CH4 EMISSIONS

Biological methanogenesis inhibitors include a variety of feed additives usually based 
on products containing mixtures of active substances. Some species of seaweed such 
as Asparagopsis taxiformis and Asparagopsis armata, have showed high inhibitory 
potential, reducing up to 98 percent of ruminal CH4 emissions (Bačėninaitė, 
Džermeikaitė and Antanaitis, 2022). Seaweeds have halogenated CH4 analogues 
(HMAs) which can block the production of Me-CoM necessary for the last step of 
methanogenesis by reacting with vitamin B12 and impeding cobamide-dependent 
methyl transfer into coenzyme M. Other seaweeds with lower concentrations of 
HMAs can inhibit methanogenesis through a variety of bioactive components but 
with lower efficacy compared to Asparagopsis spp. However, many of the studies on 

https://doi.org/10.1186/s40781-018-0175-7
https://doi.org/10.1016/j.tim.2021.12.005
https://doi.org/10.1007/s00253-010-3066-5
https://doi.org/10.1007/s00253-010-3066-5
https://doi.org/10.3389/ fmicb.2020.00589
https://doi. org/10.3390/ani11123540
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seaweed inclusion for CH4 reduction are based on in vitro, short-term experiments 
with inconsistent results, albeit mostly indicating a reduction in CH4 output  
(FAO, 2023a; Lean et al., 2021). 

While various plant-derived compounds including saponins, tannins, flavonoids and 
essential oils have been studied for their properties to inhibit CH4 emission from 
livestock (FAO, 2023a), these have mainly been used to improve the nutritional 
characteristics of feed and food. 

1.2 NITROGEN LOSS AND ITS INHIBITION 

Nitrogen is critical for optimal growth and development of plants, ensuring efficient 
crop production. Despite being one of the most abundant elements in nature, lack 
of nitrogen is the main cause of nutritional deficiency in plants (Pallardy, 2008).  
Among plant nutrients, nitrogen is the one in highest demand. Over 50 percent of 
fertilizers is produced as urea which has a high nitrogen concentration and lower 
production costs compared to other nitrogen fertilizers (Cantarella et al., 2018;  
Cross, L. and Gruère, 2022). Urea is also naturally present in animal excreta.  
When applied to soil, urea undergoes fast hydrolysis to ammonium which plants 
can utilize for growth. However, ammonia and other reactive nitrogen compounds, 
such as nitrates, can be formed from ammonium (see Figure 4), leading to the 
loss of even half of nitrogen input following fertilization (Lassaletta et al., 2014).  
Those processes depend on multiple factors including climatic conditions, soil and crop 
type, agronomic practices, site position in the landscape, and nitrogen concentration 
(Robertson, 1997). 

The loss of nutrients resulting from their chemical properties and natural dynamics in 
soil (see Figure 4) will need to be managed to restore ecosystem (Hunter et al., 2017).  
This imbalance relates to both chemical and organic fertilizers which can 
lead to excessive nutrient input or their deficiency in soil if used improperly  
(Shaji, Chandran and Mathew, 2021). Various mitigation measures exist to manage 
the loss of nitrogen from soil in relation to agricultural land use (Abalos et al., 2022; 
Hassan et al., 2022; Hoekstra et al., 2020; Xia et al., 2017). Among them, nitrogen 
inhibitors reduce the transformation of nitrogen compounds into less stable forms 
prone to leaching or volatilization (see Box 4). This allows the available nitrogen to be 
stabilized on the soil particles and provides plants with increased access to nitrogen.

The characteristics, modes of action, efficacy and strategies of employment have 
been widely described in numerous reviews on nitrification (Beeckman, Motte and 
Beeckman, 2018; Fan et al., 2022; Nugrahaeningtyas et al., 2022; Ray et al., 2020; 
Woodward et al., 2021) and urease inhibitors (Cantarella et al., 2018; Klimczyk, 
Siczek and Schimmelpfennig, 2021; Modolo et al., 2018; Song et al., 2022; Yang et 
al., 2022; Yang, Peng and Wang, 2023), many of which focus on biological solutions 
(Coskun et al., 2017a and 2017b; Modolo et al., 2015; Nardi et al., 2020; Sadhukhan 
et al., 2022; Saud, Wang and Fahad, 2022; Subbarao et al., 2013a, 2013b and 2015; 
Wang, X. et al., 2021). By improving nitrogen use efficiency (NUE) in plants, 
smaller amounts of fertilizers are required to maintain efficiency of food production. 
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Consequently, leaching of fertilizers to groundwater and surface waters is reduced 
resulting in beneficial effects on eutrophication (Singh and Verma, 2008). Precision 
agriculture solutions to reduce leaching of nitrate and emissions of ammonia and 
nitrous oxide are also under development. Solutions for grazing systems involve 
robotics to simultaneously detect and treat urine patches with nitrogen inhibitors 
(Bates, Quin and Bishop, 2015).
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Source: Author’s own elaboration. Adapted from Bernhard, A. 2010. The Nitrogen Cycle: Processes, Players, and Human Impact. Nature 
Education Knowledge, 3(10):25. nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/; 
Norton, J. & Ouyang, Y. 2019. Controls and Adaptive Management of Nitrification in Agricultural Soils. Frontiers in Microbiology, 10: 1931. 
https://doi.org/10.3389/fmicb.2019.01931 and Wagner, S. C. 2011. Biological Nitrogen Fixation. Nature Education Knowledge, 3(10):15. 
nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/

FIGURE 4. MAIN PATHWAYS OF BIOLOGICAL NITROGEN FIXATION, LOSS AND STEPS ON WHICH 
NITROGEN INHIBITORS ACT

http://nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/
https://doi.org/10.3389/fmicb.2019.01931
http://nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/
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BOx 4. MAIN PROCESSES OF NITROGEN CYCLE IN THE SOIL RELEVANT FOR NITROGEN 
INHIBITORS

As atmospheric nitrogen can be used only by legume plants thanks to symbiotic bacteria 
living in their roots, nitrogen fixation is necessary for organisms to produce vital organic 
compounds such as proteins or nucleic acids (Wagner, 2011). Through their roots, plants 
assimilate nitrogen in the form of ammonium and nitrates which are dissolved in water 
present in soil. Once fixed in the vegetal mass, nitrogen is distributed in the food chain to 
other organisms like animals. Organic waste is then decomposed to urea by aerobic and 
anaerobic bacteria and fungi residing in soil. 
The overall pool of nitrogen in the form of urea can be increased using fertilizers.  
In the presence of water, the process of hydrolysis mediated by urease enzyme leads 
to the production of ammonium from urea and is the first point in the pathway where 
nitrogen inhibitors can be applied (urease inhibitors). Ammonium can be also produced 
from atmospheric nitrogen by specialized soil bacteria, and it can be stabilized onto 
soil on negatively charged exchange sites. However, it can be lost through volatilization 
of ammonia which is formed under alkaline conditions, and during nitrification.  
Urease inhibitors reduce this loss by limiting the hydrolysis of urea, primarily by inhibiting 
ammonia monooxygenase (AMO), which gives time for its incorporation into the soil via 
rainfall or irrigation, and allows the formation of ammonia at lower rates compatible with 
plant uptake. 
Both ammonium and ammonia undergo a rapid process of nitrification to nitrites carried 
out by ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA), and in 
the second step to nitrates by nitrites oxidizing bacteria (NOB) (Norton and Ouyang, 2019). 
Comammox (complete ammonia oxidation) bacteria belonging to the genus Nitrospira can 
perform both conversion processes. Nitrates can rapidly accumulate in the soil and be lost 
by runoff, leaching out to depths below the rhizosphere and farther to the environment, or via 
a conversion to atmospheric nitrogen by denitrifying bacteria under anaerobic conditions 
(Bernhard, 2010). This loss can be limited by applying nitrification inhibitors which 
temporarily reduce the activity of Nitrosomonas (included among AOB) and Nitrobacter 
bacteria (included among NOB) in soil or enzymes produced by them, such as AMO, 
hydroxylamine oxidoreductase (HAO) or nitric oxide reductase (NOR). In particular, sandy 
soils which are not capable of withholding nitrates as well as wet soils where ammonium 
attached to the soil particles is easily washed out are the most suitable candidates for the 
application of nitrification inhibitors. Additionally, by-products of denitrification, nitrous 
oxide (N2O) and nitric oxide (NO), contribute respectively to GHG emission and to smog. 
Both phenomena can be limited by applying denitrification inhibitors which target the 
activity of denitrifying bacteria.
 
Notes: 
Bernhard, A. 2010. The Nitrogen Cycle: Processes, Players, and Human Impact. Nature Education Knowledge, 3(10):25. nature.
com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/
Norton, J. & Ouyang, Y. 2019. Controls and Adaptive Management of Nitrification in Agricultural Soils. Frontiers in Microbiology, 
10: 1931. https://doi.org/10.3389/fmicb.2019.01931
Wagner, S. C. 2011. Biological Nitrogen Fixation. Nature Education Knowledge, 3(10):15. nature.com/scitable/knowledge/
library/biological-nitrogen-fixation-23570419/

http://nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/
http://nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/
https://doi.org/10.3389/fmicb.2019.01931
http://nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/
http://nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/
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Environmental inhibitors can help improve the 
efficacy of nitrogen use in crops, making it possible 
to decrease the required amounts of fertilizers.
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CHAPTER 2
FOOD SAFETY OF 
ENVIRONMENTAL 
INHIBITORS

While environmental inhibitors have been studied for decades, research to date 
has mainly focused on evaluating their efficacy in reducing CH4 emissions and 
improving the productivity of agrifood systems. Effects on target organisms 
are widely described, but much less has been published on the impact that 
environmental inhibitors may have on non-target organisms as well as on humans 
through consumption of contaminated foods. Information on potential residues of 
environmental inhibitors (and their metabolites) in food commodities is sparse and 
the related food safety risks have rarely been assessed. 

This chapter explores whether residues of environmental inhibitors found in animal 
products, crops and vegetables might cause food safety concerns. The following 
sections describe environmental inhibitors grouped according to their chemical 
structure or source, providing summaries of safety- related information, where 
available. 

For the purpose of this publication, the term ‘synthetic inhibitors’ refers to those 
inhibitory substances which are generally obtained through industrial synthesis 
processes. For these inhibitors, substances have been selected as examples of various 
chemical classes, thereby having potentially different modes of action and toxicity 
effects. Constituents of commercial products currently on the market are included 
under this term. The term ‘biological inhibitors’ indicates inhibitory compounds, 
their mixtures or parts derived from natural sources (e.g. plants or seaweeds).  
This term aligns to denomination commonly used in scientific literature. Biological 
inhibitors can be constituted by mixtures of chemically different substances, 
therefore descriptions in this publication are based on their natural origin.

While food safety is the focus of this section, pertinent information could not 
be identified in some cases. Although outside the scope of this work, effects on 
the environment, including toxicity in wild animals, are provided as additional 
information even if not directly related to dietary exposure. Likewise, hazard-
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related information described in this section should not be considered as necessarily 
constituting a health risk in the absence and/or at low levels of exposure. It should 
also be noted that information referring to occupational exposure is based on higher 
concentrations than those occurring in food. Information on hazard according to the 
Globally Harmonized System of Classification and Labelling of Chemicals (GHS) 
refers to pure substances, their diluted solutions or mixtures in bulk quantities.4

2.1 METHANOGENESIS INHIBITORS

Numerous inhibitors exist to reduce ruminal CH4 emissions acting on different 
points along the methanogenesis pathway (see Figure 3). Whilst some of these 
inhibitors are effective (e.g. 2,2,2-trichloroacetamide, hemiacetal of chloral and 
starch, bromochloromethane, anthraquinone), they present numerous drawbacks 
including transient reduction in CH4 emissions, undesirable side effects in livestock, 
toxicity in animals and humans, possible adaptation of the rumen to inhibitors 
over time or accumulation in meat. These drawbacks impede their application in 
agricultural practices (Beauchemin et al., 2020; McGinn et al., 2019; Yang et al., 
2016). Information on selected categories of methanogenesis inhibitors regarding 
safety for livestock has recently been summarized in a FAO report (FAO, 2023a). 
The most important substances applied as methanogenesis inhibitors, (including 
those currently considered as the most promising along with the ones formerly 
studied), are listed in Table 1 according to type and mode of action.

2.1.1 SYNTHETIC METHANOGENESIS INHIBITORS

These inhibitors comprise single chemical substances or mixtures including the 
active substance and other constituents of commercial products. The chemical classes 
below are reported in alphabetical order within their respective types of inhibitors.

Inhibitors of MCR and other enzymes 

Anthraquinone-based compounds

The group of anthraquinone-based compounds comprises natural and synthetic 
compounds with multiple uses, including application in human medicine, cosmetics, 
food packaging and as food colourants. Numerous studies reported toxicity of 
various substances belonging to anthraquinones group primarily on liver, kidney, 
or gastrointestinal tract, with DNA damage as a critical long-term effect (Health 
Canada, 2018; Shukla et al., 2017). Low concentrations of anthraquinones naturally 
present in a balanced diet as well as those used in food production and consumer 
products are generally not considered to pose a threat to animal and human health 
through oral or dermal exposure, or to endanger the environment (Dufossé, 2014; 

4 Globally Harmonised System of Classification and Labelling of Chemicals (GHS). 2021. Ninth revised edition. United 
Nations, New York and Geneva. ST/SG/AC.10/30/Rev.9

https://unece.org/transport/standards/transport/dangerous-goods/ghs-rev9-2021
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methanogenesis inhibitors to reduce CH4 emissions. 
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Fouillaud et al., 2018; Health Canada, 2018). Anthraquinones may form reactive 
metabolites and transform one into another potentially leading to an increased effect 
(Fouillaud et al., 2018 ; Wang, D. et al., 2021).

Most of the toxicological information related to the agrifood sector is available 
for 9,10-anthraquinone used as a pesticide. Toxicological risk to humans from the 
non-food outdoor uses of 9,10-anthraquinone have been considered negligible 
(USEPA, 1998). Residues of 9,10-anthraquinone used as bird repellent on seeds are 
likely in treated food commodities such as rice. However, no concern to human 
health through chronic dietary exposure based on rice consumption and drinking 
water has been identified by the United States Environmental Protection Agency 
(USEPA) (USEPA, 2022b). Nevertheless, potential cancer risk has been identified 
from residential exposure to treated turf and from occupational exposures  (USEPA, 
2022c). Potential adverse effects to non-target animals and aquatic plants have been 
identified but data are insufficient to perform risk assessment for some terrestrial 
taxa  (USEPA, 2022b). The use of 9,10-anthraquinone as pesticide is not authorized 
in the European Union (EU) (EU, 2022a). 

Considering the hazard properties of 9,10-anthraquinone, this compound has been 
classified by the International Agency for Research on Cancer (IARC) as possibly 
carcinogenic to humans (Group 2B) (IARC, 2013).

Chlorinated phenols

These substances can also be employed as pesticides and preservatives. A study on 
kinetics of methanogenesis in the presence of chlorophenols indicated that toxicity to 
microorganisms increases with hydrophobicity of compounds and is related to their 
adsorption capacity to sludge (Puyol et al., 2012). Thus, pentachlorophenol (PCP) 
has been considered more toxic compared to less hydrophobic 2,4-dichlorophenol 
(2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP). Following the evaluation by the 
Joint FAO/World Health Organization (WHO) Meeting on Pesticide Residues 
(JMPR), exposure to PCP through diffuse sources including food and drinking 
water had been considered to be of very low concern for the general population, 
however, it may show toxicity effects to non-target species, including inhibition 
of growth and development, mortality or altered biomarkers (FAO/WHO, 1987). 

Guidance values established by WHO for 2,4,6-TCP as disinfection by-product in 
drinking water are 2000, 200 and 20 μg/L for 10-4, 10-5 and 10-6 excess lifetime cancer 
risks, respectively (WHO, 2003). The lowest reported taste threshold for 2,4,6-TCP 
is 2 μg/L, therefore, water free from taste has been considered unlikely to raise 
risk concerns for consumers. No guideline values have been derived for 2,4-DCP 
and 2-chlorophenol in drinking water due to limited toxicity data (WHO, 2003).  
2,4-DCP may be formed as a photodegradation product of triclosan (Latch et al. 
2005).
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Concerning hazard from chlorinated phenols, PCP is classified by the IARC 
as carcinogenic to humans (Group 1) based on evidence to cause non-Hodgkin 
lymphoma in humans (IARC, 2019). It is classified by the European Chemicals 
Agency (ECHA) as a suspected carcinogen (ECHA, 2023) and by the USEPA 
as likely to be carcinogenic to humans (USEPA, n.d.a.). Therefore, based on 
occupational exposure, PCP is being phased out as a wood preservative in the USA 
(USEPA, n.d.b.). PCP is also considered hepatotoxic with a reference dose for oral 
exposure established at 5 µg/kg per day (USEPA, 2023). 2,4,6-TCP is classified by 
the IARC as possibly carcinogenic to humans (Group 2B) (IARC, 2019) and by the 
USEPA as a probable human carcinogen causing leukaemia based on limited or no 
human data (Group B2) (USEPA, n.d.b.).

Halogenated CH4 analogues

This category of methanogenesis inhibitors has been reviewed previously  
(Patra et al. 2017). The use of halogenated compounds is not authorized in numerous 
countries due to concerns related to their involvement in ozone depletion (Montreal 
Protocol, 1987). The major route of human exposure to trihalomethane have been 
reported to occur through drinking water and inhalation (WHO, 2004). Chloroform 
evaluated by the FAO/WHO Joint Expert Committee on Food Additives (JECFA) 
has been considered unsuitable for use as a food additive (FAO/WHO, 1980). The 
tolerable daily intake (TDI) for chloroform has been derived at 13 μg/kg body 
weight per day (corrected for weekly exposure of 6 days) based on hepatotoxic 
effects in dogs, while a guidance value for exposure through drinking water  
(2 L daily ingestion) has been set at 200 μg/L based on an average body weight of  
60 kg (WHO, 2004). The TDI for bromoform and dibromochloromethane (DBCM) 
have been established at 17.9 and 21.4 μg/kg body weight per day (corrected for 
exposure over 5 days per week), respectively, with guideline values allocating  
20 percent of the TDI to drinking water derived at 100 μg/L for both compounds 
(WHO, 2004). 

Considering possible carcinogenicity effects, guidance values established by WHO 
for bromodichloromethane (BDCM) are 600, 60 and 6 μg/L for 10-4, 10-5 and 10-6 
excess lifetime cancer risks, respectively (WHO, 2004). It is not considered a 
common food contaminant, but trace amounts can be present in dairy products 
(WHO, 2004). Residues of bromochloromethane (BCM) in steer meat, fat and offal 
were detected within safety limits, however, concentrations lost due to volatilization 
were not calculated (Tomkins, Colegate and Hunter, 2009). 

Suspected or probable/possible carcinogenicity5 and suspected toxicity for 
reproduction6 have been indicated for some compounds of this group. Classification 
by the IARC reports possible carcinogenic effects to humans (Group 2B)  
for chloroform and BDCM, while bromoform and DBCM could not be classified as 
to their carcinogenicity to humans due to limited evidence (IARC, 1991 and 1999).

5 www.epa.gov/iris
6 echa.europa.eu 

http://www.epa.gov/iris
https://echa.europa.eu/
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Chronic toxicity to aquatic organisms has been notified for bromoform, iodoform 
and carbon tetrachloride. Positive results were obtained for 2,2,2-trichloroacetamide 
in mammalian cytotoxicity and genotoxicity assays (Plewa et al., 2009). According 
to the GHS, the following hazards have been associated with these substances: 
acute toxicity when swallowed or inhaled, skin and serious eye irritations as well 
as possible respiratory irritations.

Nitrooxy compounds

3-NOP has been recently commercialized as the active substance of “Bovaer® 10”. 
Based on available absorption, distribution, metabolism and excretion (ADME) 
data, it has been considered safe for target species, intended as ruminants for milk 
production and reproduction, at maximum recommended levels in feed of 100 mg 
3-NOP/kg dry matter (Almeida and Hegarty, 2021; EFSA, 2021a). Mutagenic and 
genotoxic effects of 3-NOP and its metabolites have not been observed in rats  
(Thiel et al., 2019a and 2019b). Under the conditions of use as feed additive proposed 
by the manufacturer, safety concern for consumers and the environment have not 
been reported from 3-NOP nor its metabolites 3-nitrooxypropionic acid (NOPA), 
1,3-propanediol and nitrate, the latter two naturally occurring in the rumen  
(EFSA, 2021a; FAO, 2023a). Safety for other animal species could not be estimated 
(EFSA, 2021a). 

Other nitrooxy compounds have been studied or proposed for their ability to reduce 
enteric CH4 emissions (Duval and Kindermann, 2012; Jin et al., 2017; Martínez-
Fernández et al., 2014). However, they need further evaluation regarding side effects 
on animal health, residues in food commodities and safety for consumers (Li et al., 
2021).

Organosulfonic acids

Information on potential risks to animals and consumers from dietary sources 
could not be identified. Adaptation and resistance of some rumen methanogens to 
2-bromoethanesulfonate (BES) has been observed suggesting subsequent increase 
in growth and persistence of BES-resistant microorganisms (Ungerfeld et al., 2004). 
Understanding the mode of action of some substances, such as (4-hydroxyphenyl) 
chloromethanesulfonate (C-1), needs further research (Hotta et al., 2022). 

According to the GHS, hazard from many sulfonic esters may include (severe) skin 
and serious eye irritation or damage, respiratory irritation upon inhalation or oral 
exposure during handling. Extrapolation of this information to inform about dietary 
risk must be performed with caution, as concentrations of these compounds in the 
diet are several orders lower.
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Pterins

Lumazine is the representative compound belonging to pterins which have been 
formerly studied for methanogenesis inhibition (Nagar-Anthal et al., 1996; Ungerfeld 
et al., 2004; Ungerfeld, Rust and Burnett, 2007). Lumazine occurs naturally in plants, 
insects and some marine organisms (Daniels et al., 2019). Information concerning 
consumers’ safety has not yet been collected.

Statins

While adverse effects of statins used in human medicine to control cholesterol 
levels are widely described, safety information on statins as feed additives with 
effects on consumers through residues in animal-derived food is sparse. No harmful 
effects on health of goats fed a diet supplemented with lovastatin was observed 
(Candyrine et al., 2018). Likewise, rumen microbiota was not affected. When used 
as food supplements, the intake of lovastatin was considered safe at the use level of  
10 mg/day, although sporadic effects on liver and musculoskeletal system occurred 
at lower concentrations (EFSA, 2018a).

Alternative H2 sinks

Carboxylic acids

Some studies described the efficacy of propynoic acid and ethyl 2-butynoate in 
reducing CH4 emission from the rumen (Ungerfeld, Rust and Burnett, 2003). 
Toxicity information for ruminants has not been identified for propynoic acid. 
However, propynoic acid is an unsaturated analogue of propionic acid which has 
been assessed for safety as feed additive to all species and considered not to pose 
safety concerns for consumers (EFSA, 2011). The acceptable daily intake (ADI) 
established by JEFCA is “not limited” for propionic acid used as food additive at 
proposed use levels (FAO/WHO, 1999). The evaluation by the European Food 
Safety Authority (EFSA) considered that propionic acid does not raise safety 
concerns from dietary exposure at concentrations up to 41.5 mg/kg body weight 
per day, with the use as food additive being the major contributor (EFSA, 2014a). 
Likewise, no concern with respect to carcinogenicity and genotoxicity was identified, 
although for the latter the number of studies was limited. Toxicological information 
available did not allow to allocate an ADI (EFSA, 2014a). 

Hazard from derivatives of propynoic acid, according to the GHS, may include 
harm or toxicity upon being swallowed. Ethyl 2-butynoate is classified as causing 
skin and serious eye irritation, and a possible respiratory irritation but no relevant 
information on safety regarding exposure through diet has been identified. 
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Nitro compounds

Despite nutritional benefits and efficacy of nitrate in reducing CH4 emissions, 
variations in response often related to the feed type and its reduction to nitrite have 
caused concern. Nitrite absorbed in erythrocytes form methemoglobin in contact 
with haemoglobin, making it unable to carry oxygen. In reaction with secondary 
amines, nitrite can produce N-nitrosamines which are suspected to induce DNA 
mutations and cancer (IARC, 2010) and have been evaluated as raising health 
concerns for consumers through dietary exposure, although with many uncertainties 
due to limited data availability (EFSA, 2023a). Ingested nitrate or nitrite under 
conditions that result in endogenous nitrosation have been classified as probably 
carcinogenic to humans (IARC, 2017). Yet, nitrite may build-up in animal tissues 
following nitrate-rich diets when rates of nitrate reduction are higher than rates of 
nitrite reduction (Dawson, Rasmussen and Allison, 1997).

The ADIs of 3.7 and 0-0.07 mg/kg body weight per day were established by JECFA 
for nitrate and nitrite, respectively (FAO/WHO, 2002b). In a recent evaluation, 
EFSA concluded that the benchmark dose lower bound (BMDL10) of 64 and 2 mg 
nitrate/kg body weight per day does not raise health concerns for ruminants and 
pigs, respectively (EFSA, 2020). Nitrate and nitrite supplemented in feed may leave 
residues in food commodities including meat and milk (Doreau et al., 2018; Guyader 
et al., 2016), although other sources such as natural presence, use as fertilizers on 
crops or as additives in food processing have been described to largely contribute 
to detected concentrations (Karwowska and Kononiuk, 2020). The use of nitrate as 
feed additives is banned in some countries (Beauchemin et al., 2020).

As environmental pollutant linked to food safety, nitrate in excess can lead to 
eutrophication causing perturbations to ecosystems and has been reported to be of 
concern in groundwaters worldwide (Abascal et al., 2022; Singh et al., 2022). It is 
associated with harmful algal blooms (HAB) which can pose threat to human and 
animal health owing to the production of toxins (FAO, IOC and IAEA, 2023). 

Other nitro compounds investigated as reducers of CH4 emissions (Anderson et al., 
2006 and 2010; Božic et al., 2009; Brown et al., 2011; Gutierrez-Bañuelos et al., 2007), 
for example nitroethane, may cause irritations when inhaled or ingested, induce the 
formation of methemoglobin or show toxicity at relatively low levels. However, less is 
known regarding their toxicity in feed supplementation (Teng and Kim, 2021). Doses 
high enough to efficiently reduce CH4 emissions may be lethal to animals as it has 
been shown for nitropropanol (Zhang et al., 2018). 3-Nitropropionate is naturally 
found in some fungi and plants (Parry, Nishino and Spain, 2011); its metabolization 
in the gut of ruminants can lead to the formation of ionized form which has been 
reported to irreversibly inactivate mitochondrial succinate dehydrogenase resulting 
in neurological disorders (Francis et al., 2013). It has been associated with toxicity for 
grazing animals related to ingestion of plants containing 3-nitropropionate and with 
human poisoning upon ingestion of fungi (Su and Gadda, 2018).
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Sulfur compounds

An ADI “not specified” has been allocated by JECFA for sodium sulfate due to 
its use in food as colour adjuvant and the absence of evidence of toxicity (FAO/
WHO, 2002a). It is also an approved food additive commonly used as a filler or 
stabilizer, for example in chewing gum. Safety risk assessments of various sulfate-
based feed additives for animal health are available.7 Natural exposure to sulfur 
present in food has been considered higher than exposure to this compound used as 
pesticide, therefore toxicological reference values have not been considered necessary  
(EFSA, 2023b).

Adverse effects have been described for ruminants at high concentrations of sulfate 
in feed, accounting for 0.4 percent or greater of dietary sulfur (Kandylis, 1984). 
Polioencephalomalacia occurred in sheep fed with over 2 percent of sodium sulfate 
in dry matter feed, while no toxicity was reported at up to 10 g per day through 
continuous ruminal infusion. Concentrations of 15 g and 270 g of elemental sulfur 
per day in the diet of each animal resulted lethal for sheep and cattle, respectively 
(Kandylis, 1984). However, the negative effects of sulfur can be attenuated through 
various dietary and management strategies (Drenowski, Pogge and Hansen, 2014; 
US Grains Council, 2023). In grazing animals, possible additive effects from 
environmental sulfur-based contaminants must be considered. Reductions of sulfate 
to sulfide in rumens have been reported to rapidly build-up as toxic hydrogen sulfide 
(H2S) gas having effects on the central nervous systems (Knight, 1985). 

According to the GHS, hazard from sodium sulfate may involve serious eye 
irritation and toxicity to the gastrointestinal tract.

Ionophores

Polyether monocarboxylic acids 

Concerns regarding adaptation of microorganisms to dietary ionophores due 
to emergence of Antimicrobial Resistance (AMR) have been raised leading to 
limitations in the use of these substances in animal production (Guan et al., 2006; 
Hook, Wright and McBride, 2010; Wong, 2019). Ionophores have been deemed 
not to pose risk of cross-resistance to other antibiotics (FDA, 2016). However, 
an association with narasin and resistance to antibiotics used to treat infections in 
humans has been reported (VKM, 2015). In addition to a widespread presence of 
transferrable narAB gene operon conferring resistance to narasin, co-occurrence of 
narAB and clinically relevant antibiotic resistance genes has recently been detected 
in enterococci isolated from poultry meat (Pikkemaat et al., 2022).

7 efsa.europa.eu/en/search?s=sulfate

https://www.efsa.europa.eu/en/search?s=sulfate
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Ionophore-induced toxicity, widely reviewed previously, results from charged or 
zwitterionic complexes they form with cations and causes perturbation of action 
potentials of cell membranes (Novilla, 2018). The susceptibility for toxicity effects of 
various animal species to ionophores may be highly variable; for example, monensin 
has been reported to be extremely toxic to horses (Rumbeiha and Snider, 2014).

Residues of ionophores in food have been usually reported to be far lower than safety 
levels. However, concentrations exceeding those values were occasionally reported 
for eggs and chicken tissues (VMD, 2018). Maximum Residue Limits (MRLs) exist 
in various jurisdictions for ionophores in tissues of livestock (Canada, 2022; Codex 
Alimentarius, 2021; EU, 2009 and 2017a). At the international level, the standards 
for MRLs are established by Codex Alimentarius for pesticides and veterinary 
medicines. MRLs as narasin A for cattle recommended by Codex Alimentarius 
are of 15 μg/kg in muscle and kidney, and 50 μg/kg in liver and fat, while the ADI 
was set at a maximum of 5 μg/kg body weight per day (Codex Alimentarius, 2021). 
For monensin, the ADI was set by Codex Alimentarius at 0-10 μg/kg body weight 
per day (Codex Alimentarius, 2021), with MRLs for cattle, sheep and goats of 100 
μg/kg for fat, 10 μg/kg for kidney, 20 μg/kg for sheep and goat liver, 100 μg/kg  
for cattle liver, 10 μg/kg for muscle and 2 μg/L for milk. Cytotoxic activity of 
ionophores enniatins, a class of emerging mycotoxins produced by Fusarium spp. 
Fungi commonly found in temperate regions in grains and grasses, was demonstrated 
in several mammalian cell lines (Prosperini et al., 2017). Although they have been 
found in trace amount in milk and other commodities of animal origin (e.g. poultry) 
(Křížová et al., 2021; Pietruszka, Panasiuk and Jedynak, 2023), available data have 
not been considered sufficient to perform food safety risk assessment for enniatins 
(EFSA, 2014b).

Ionophores excreted by animals remain in manure and may be spread on land 
or to aquatic environments posing a threat to non-target organisms (Bak and 
Björklund, 2014; Hansen et al., 2009; Žižek et al., 2011 and 2015; Žižek and Zidar, 
2013). More recent formulations of ionophore-containing products are considered 
safe for terrestrial and aquatic compartments, as well as for sediments, with low 
bioaccumulation potential (EFSA, 2019a). 

Exposure has been reported to cause eye but not skin irritation, potential skin 
and respiratory sensitization, with increased risk by inhalation during handling  
(EFSA, 2019a).

Other compounds

Cyclodextrins

Cyclodextrins used in food and food contact materials are recognized as not posing 
health risks (Fenyvesi, Vikmon and Szente, 2016; Gonzalez Pereira et al., 2021; 
Matencio et al., 2020; Velázquez-Contreras et al., 2022; Zhou et al., 2022). The 
ability of cyclodextrins to inhibit methanogenesis was studied in association with 
other materials hosted in the hydrophobic internal cavity (Lila et al., 2004; McCrabb Asparagopsis taxiformis in its natural environment 

near Australian coasts (top), its controlled culture 
(middle) and dehydrated kelp (bottom) as feed 
supplement for cows.
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Asparagopsis taxiformis in its natural environment 
near Australian coasts (top), its controlled culture 
(middle) and dehydrated kelp (bottom) as feed 
supplement for cows.
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et al., 1997; Mohammed et al., 2004a and 2004b; Rajaraman et al., 2017). 

According to the Generally Recognized as Safe (GRAS) status by the United States 
Food and Drug Administration (FDA), the application of cyclodextrins in food 
has been considered safe (FDA, 2000 and 2016a). The maximum advisable level of 
5 mg/kg body weight per day for β-cyclodextrin used as food additive has been 
established by JECFA (FAO/WHO, 1995). The same value is approved by EFSA 
as the ADI for β-cyclodextrin (E-459), with ADI not specified for α-cyclodextrin 
and γ-cyclodextrin owing to their low toxicity (EFSA, 2016a; FAO/WHO,  
2000 and 2005). In the EU, α-cyclodextrin and γ-cyclodextrin were approved 
as novel food ingredients in 2008 and 2012, respectively (EU, 2008 and 2012).

Fatty acids

Medium-chain fatty acids (MCFA) are naturally present as part of triglycerides 
in milk fat and feeds based on vegetable fats such as palm kernel and coconut oil  
(de Vrese et al., 2010). Polyunsaturated fatty acids (PUFA) assessed for 
methanogenesis inhibition are found in plant-based sources such as soybean oil and 
sunflower, flax or canola seeds which are considered safe for human consumption 
(Adeleke and Babalola, 2020; Beauchemin et al., 2009; Lills et al., 2011).

While JECFA did not evaluate the entire group of fatty acids as food additives, 
there are values available for specific sources and processing. For oxidized soybean 
oil interacted with mono‐ and diglycerides of fatty acids approved as food 
additive, the ADI was first established at up to 30 mg/kg body weight per day  
(FAO/WHO, 1992) with further re-evaluation by EFSA based on the highest 
estimated exposure which indicated no safety concerns for consumers despite 
insufficient or missing toxicological data including genotoxicity (EFSA, 2018b). 
As food additives, fatty acids have been reported not to raise concerns for toxicity 
effects at doses up to 10 percent in the diet and not to be genotoxic, however, data 
on developmental, reproductive and chronic toxicity are limited (EFSA, 2017a).  
It has been recommended to maintain the exposure to saturated fatty acids at  
1 percent on average from regular diet and food additives together (EFSA, 2017a).

Phosphonic acids

The inhibitory activity of ethephon on CH4 emissions occurs through its metabolite 
ethylene. Current MRLs for ethephon established by Codex Alimentarius are of 
0.01 mg/kg in animal commodities such as eggs, milk, mammalian fat and meat from 
mammals other than marine mammals, while values in plant-based foods range from 
0.5 to 7 mg/kg (Codex Alimentarius, 2016). Upon the last evaluation by JMPR, 
the ADI and acute reference dose (ArfD) formerly established for ethephon were 
confirmed at 0-0.05 body weight per day and 0.05 mg/kg body weight, respectively 
(FAO/WHO, 2015), while the USEPA reference dose (RfD) for oral exposure has 
been set at 5 µg/kg body weight per day (USEPA, 1988). Also, human, animal 
and environmental safety of ethephon applied to plants as pesticide has recently 
been reviewed by EFSA with the recommended ADI of 20 µg/kg body weight per 



27

CHAPTER 2 :  FOOD SAFETY  OF  ENV IRONMENTAL  INH IB ITORS

day (EFSA, 2023c). The main toxicity effect is considered to be associated with 
the inhibition of cholinesterase (ChE) activity, with dogs as the most sensitive 
species. It has been assessed as unlikely to be genotoxic and unlikely to pose a 
carcinogenicity risk to humans. Neurotoxicity due to ChE inhibition in the brain 
has not been considered adverse as the inhibition of ChE in erythrocytes is the most 
sensitive endpoint. Effects of the minor metabolite 2-hydroxyethane phosphonic 
acid (HEPA) were considered of minor entity, however, the need for evaluation of 
its aneugenic potential according to the most recent criteria has been emphasized 
(EFSA, 2023c). Considering incomplete data for genotoxicity, provisional risk 
assessment from residues in animal matrices, this evaluation indicated no risk for 
humans. Risk from ethephon and its metabolites to the environment and non-target 
organisms has been defined as low (EFSA, 2023c). MRLs for plants and animal 
commodities are available in several jurisdictions (Australian Government, n.d.).

When considering hazard according to the GHS classification, ethephon may be 
harmful when swallowed and inhaled, toxic in contact with skin causing severe 
burns and eye damage. It has been also reported to be toxic to aquatic organisms 
with long-lasting effects.

Pyromellitic diimide compounds

Several compounds with CH4 emission inhibitory properties have been proposed 
(Rennison, Boddy and Brimble, 2022; Zhang and Yang, 2012), but toxicological 
information is extremely limited. A study in mice showed no adverse effects 
for (1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-f]isoindole-2,6(1H,3H)-diyl)
bis(methylene) dinitrate at 300 mg/kg (Rennison, Boddy and Brimble, 2022).

Unsaturated hydrocarbons

Ethylene is present in human diet as naturally produced plant hormone which 
induces the ripening of fruits. It has been considered to constitute little hazard 
to aquatic environments and to pose no risk to human health at moderate 
concentrations (UNEP, n.d.). However, its metabolite ethylene oxide has been 
reported to have mutagenic properties, to be carcinogenic at high concentration 
levels by inhalation and toxic to reproduction (USEPA, 2016). In an evaluation, 
IARC classified ethylene oxide as carcinogenic to humans (Group 1) and considered 
ethylene as not classifiable as to its carcinogenicity to humans (Group 3) (IARC, 
2008 and 2018a). The use of ethylene oxide in food is banned in many countries. 

Acetylene is a highly flammable gas and may cause respiratory arrest when inhaled 
but no other adverse effects have been considered to pose a threat to human health. 
No ADI have been established for ethylene, ethylene oxide and acetylene by JECFA 
or JMPR.
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2.1.2 BIOLOGICAL METHANOGENESIS INHIBITORS

The use of secondary plant metabolites able to inhibit ruminal methanogenesis 
has been extensively reviewed showing major efficacy in vitro compared to the 
application in livestock (Patra et al., 2010). Biological methanogenesis inhibitors 
are usually mixtures of compounds with different percentage added to feed and, for 
plant-based sources, can be used as entire plant, its parts or extracts, in their natural 
or processed form, which must be taken into account when evaluating health risks.

MCR inhibitors and seaweed bioactive compounds

Asparagopsis seaweeds

Safety of Asparagopsis spp. For animals is assessed mainly in regard to bromoform, 
the most abundant constituent in seaweed with the ability to inhibit methanogenesis 
(Machado et al., 2016). Other halogenated compounds, such as DBCM, are far less 
abundant. Food safety hazard in seaweeds and evidence of bromoform, bromide 
or iodine in meat and milk of ruminants fed Asparagopsis spp. Have recently been 
reviewed by FAO (FAO, 2023a; FAO 2022b). 

Elevated levels of bromoform in animal products have not been detected at the 
minimum effective inclusion level of Asparagopsis spp. (Glasson et al., 2022). Animal 
studies of up to 147 days of duration showed either metabolization or excretion of 
bromoform down to background levels from red seaweed supplementation in feed 
(Glasson et al., 2022). Dehalogenation of HMAs, like bromoform and chloroform, 
resulting from properties of ruminant digestive tracts in combination with the 
action of methanogens has been suggested to limit the transfer of these substances 
to food products derived from ruminant livestock (Glasson et al., 2022). Residues of 
bromoform in meat or offal have been considered undetectable (Kinley et al., 2020; 
MLA, 2023). In other studies, concentrations of bromoform have been detected in 
milk from control animals and cows fed Asparagopsis at non significantly different 
levels, suggesting drinking water as a possible source of contamination (Roque et 
al., 2019; Stefenoni et al., 2021).

The use of bromoform-containing seaweeds in feed, similar to synthetic bromoform, 
needs to be thoroughly assessed considering the evaluation of bromoform by the 
USEPA as a probable human carcinogen (USEPA, 2005a). Moreover, signs of 
inflammation and abnormalities in the rumen cell wall of cows fed 67-133 g dry 
matter Asparagopsis taxiformis per day have been described (Muizelaar et al., 2021).

Other seaweeds

Lower concentrations of bromoform are found in brown, green and other red 
seaweeds (see Table 1). Diet based on large amounts of seaweeds was linked to health 
problems in livestock from coastal areas (FAO, 2023a). The toxicity of seaweeds and 
possible residues of harmful substances in food commodities are variable depending 
on active substances specific to each species and may be related to the presence of 
heavy metals and minerals concentrated in tissues during physiological processes 
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(FAO, 2023a; FAO 2022b). Other threat may come from allergens as well as from 
potential bioaccumulation of biotoxins, Persistent Organic Pollutants (POPs) and 
other compounds such as agrochemicals or pharmaceuticals during cultivation of 
seaweeds in polluted areas (FAO, 2022a and 2022b, FSAI, 2020). Microbiological 
hazard involves a range of pathogenic bacteria and viruses and has been ascribed to 
contamination during post-harvest handling practices (FAO, 2022a; FSAI, 2020). 
The presence of marine micro- and nanoplastics on seaweed surface constitutes 
physical risk and can vehicle harmful chemical contaminants and bacterial pathogens 
from the environment to seaweed (Junaid et al., 2022; FSAI, 2020). Contamination 
due to some of those chemicals (iodine, arsenic, metals and biotoxins) and pathogens 
(norovirus) is considered an emerging risk associated to seaweeds (EFSA, 2017b). 
Ranking of chemical and microbiological hazards from seaweeds in food and feed 
showed major concerns regarding the presence of arsenic, cadmium, iodine and 
Salmonella, and possible moderate hazard from lead, mercury and aluminium  
(FAO, 2022a). While Bacillus spp. And norovirus may constitute moderate hazard in 
food, limited data have been found for this hazard in relation to feed (FAO, 2022a). 

JECFA evaluated the safety of processed Eucheuma seaweed and carrageenan as 
food additive considering data relevant to the safety assessment for infants and 
concluded that there is no concern of using carrageenan at concentrations up to  
1000 mg/L in infant formula or formula for special medical purposes (FAO/WHO, 
2014). EFSA recommended a temporary ADI of 75 mg/kg body weight per day 
for the same seaweed and carrageenan until data addressing current uncertainties 
is available and highlighted that dietary exceedance of this value is estimated as 
frequent and may be of safety concern for consumers (EFSA, 2018c).

Plant bioactive compounds

Essential oils

Little information is available regarding safety of essential oils in ruminant diet, their 
modes of action and effects on ruminal microbiota (Cobellis, Trabalza-Marinucci 
and Yu, 2016). Given their multicomponent nature and variability of the composition 
within the same plant species, which depends on factors such as changing season 
and geographical source, risk assessment must be performed specifically for each 
extract. JECFA evaluated compounds present in the garlic extract (diallyl sulfides 
and allyl mercaptan) and concluded that there were no safety concerns at levels of 
intake when used as flavouring agents (FAO/WHO, 2000). Some components of 
essential oils used as feed additives, for example methyleugenol or estragole in the 
laurel (Laurus nobilis) leaf oil, have been found to be genotoxic (EFSA, 2023d). 
Thyme (Thymus spp.) essential oil has been considered safe for cattle health at doses 
not exceeding 8 mL per day based on in vitro and in vivo studies (Silva Castro Filho 
et al., 2021). 
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A range of other essential oils and their components as feed additives for all 
animal species has been assessed for potential health risks.8 Residues of carvacrol, 
thymol, cinnamaldehyde, and diallyl disulfide supplemented at doses of 60 and  
120 mg per day were not detected in milk (Hallier et al., 2013).

Flavonoids

Most studies assessing the safety of flavonoids to humans and animals have been 
performed considering beneficial properties other than inhibition of nitrogen loss 
or methane emissions. Quercetin may elicit mild adverse effects at low incidence in 
humans (Andres et al., 2017). However, no ADI has been allocated by JECFA for 
this compound used as food colours due to the lack of adequate toxicological data 
(FAO/WHO, 1978). No safety concerns from myricetin and naringin evaluated 
by JECFA have been indicated at levels of intake when used as flavouring agents 
(FAO/WHO, 2014).

In farmed animals, the use of bitter orange extract has been considered safe 
under 400 mg/kg for livestock and salmon, and up to 259 mg/kg for dairy cow  
(EFSA, 2021b). EFSA also proposed specific maximum safe concentration for other 
species including pig and poultry. No concerns have been identified for consumers of 
animal products when the same concentrations of the extract were used in feed, nor 
for the environment. Marigold (Tagetes spp.) flavonoids for use in herbal medicines 
did not show genotoxic effects in a battery of assays and the dose of 5000 mg/kg body 
weight was not associated with abnormal clinical symptoms in laboratory animals after  
14 days (Wu et al., 2022). Likewise, adverse clinical signs were not observed over  
90 days upon repeated exposure of rats to flavonoid-rich liquorice (Glycyrrhiza 
glabra) extract at a dose of 1000 mg/kg body weight and during 14 days post-exposure 
to 5000 mg/kg body weight of the extract (Bhide et al., 2022). Liquorice extract may 
present negative health effects due to the presence of glycyrrhizinic acid which may 
induce elevated blood pressure. High exposure was considered in regular consumers of 
liquorice confectionery or herbal tea containing liquorice at the intake levels exceeding 
100 mg/day (FAO/WHO, 2005a). Glycyrrhizinic acid ammoniated used as flavouring 
agent in feed at the concentration of 0.3 mg/kg complete feed for chickens for fattening 
and laying hens and 1 mg/kg for the remaining animal species is considered not to 
increase consumers’ exposure to this compound or to pose a risk to the environment 
(EFSA, 2015). A recent review highlighted that data regarding the potential toxicity 
of flavonoids to human health is still insufficient (Tang and Zhang, 2022).

Saponins

According to recent reviews, the use of saponins within recommended concentrations 
is considered safe for both animal and human health, although toxicity including 
gastrointestinal effects has been described for some active components extracted 
from certain plant species (Sharma et al., 2023; FAO, 2023a). The toxicity and 

8 www.efsa.europa.eu

http://www.efsa.europa.eu/
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safety from dietary exposure are dependent on the source and the type of saponin.  
The ADI for quillaia (Quillaia saponaria) extracts was established by JECFA  
at 0-1 mg/kg body weight per day (FAO/WHO, 2006 and 2014) and by EFSA at  
3 mg/kg body weight per day (EFSA, 2019b). No adverse effects were observed for 
quinoa (Chenopodium quinoa) saponins in male rats below 50 mg/kg body weight 
and for quillaia saponins below 1200 mg/kg body weight per day with no concern 
for genotoxicity (EFSA, 2019b; Zhang et al., 2022). 

Toxicity to non-target species from quillaia saponins has been described for aquatic 
organisms zebrafish (Danio rerio) and Daphnia magna, and to terrestrial worm 
Enchytraeus albidus, with up to seven times milder effects caused by metabolites 
prosapogenin and aglycone (Adomaitis and Skujienė, 2020; Jiang et al., 2018a). 
Toxicity of different saponin-rich plant extracts has been highlighted as a possible 
risk to water environments (Jiang et al., 2018b).

Tannins

Potential toxic effects of tannins differ according to their classification into 
condensed and hydrolyzable tannins, the latter being more easily subject to 
microbial hydrolysis in the gut. This may result in the production of potentially 
toxic metabolites. However, risks to human health through food consumption 
has not been considered of concern (FAO, 2023a). Following safety assessments 
conducted on tannins as feed additives, maximum levels of use have been proposed 
for different livestock species at which no health concerns are expected for animals, 
consumers nor the environment (EFSA, 2014c and 2022a; Sharma et al., 2021).  
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The wood of chestnut tree is a rich source of tannins 
which can be extracted and used as powder and granules.



32

FOOD SAFETY  IMPL ICAT IONS FROM THE  USE  OF  ENV IRONMENTAL  INH IB ITORS IN  AGRIFOOD SYSTEMS

TA
BL

E 
1 

EX
AM

PL
ES

 O
F 

M
ET

HA
NO

GE
NE

SI
S 

IN
HI

BI
TO

RS
 F

OR
 R

ED
UC

IN
G 

CH
4 E

M
IS

SI
ON

S 
FR

OM
 L

IV
ES

TO
CK

 R
UM

EN
, C

UL
TI

VA
TE

D 
SO

IL
 A

ND
 M

AN
UR

E 
FO

R 
BI

OL
OG

IC
AL

 IN
HI

BI
TO

RS
, M

AI
N 

AC
TI

VE
 S

UB
ST

AN
CE

S 
(O

R 
TH

EI
R 

CA
TE

GO
RI

ES
) A

RE
 IN

DI
CA

TE
D 

AC
CO

RD
IN

G 
TO

 T
HE

 M
OS

T 
IM

PO
RT

AN
T 

PL
AN

T 
SP

EC
IE

S.
 U

NC
ER

TA
IN

 TA
RG

ET
S 

AN
D 

M
OD

ES
 O

F 
AC

TI
ON

 A
RE

 
IN

DI
CA

TE
D 

IN
 G

RE
EN

SO
UR

CE
TY

PE
 O

F 
IN

HI
BI

TO
R

CH
EM

IC
AL

 C
LA

SS
  

AN
D 

OT
HE

R 
FU

NC
TI

ON
S

SU
BS

TA
NC

E 
OR

 S
PE

CI
ES

a
CA

S 
NU

M
BE

R
TA

RG
ET

 M
IC

RO
OR

GA
NI

SM
, 

M
OL

EC
UL

E 
OR

 P
RO

CE
SS

M
OD

E 
OF

 A
CT

IO
N

SY
NT

HE
TI

C
Ch

em
ic

al
 s

yn
th

es
is

 
or

 fe
rm

en
ta

tio
n

In
hi

bi
to

rs
 o

f 
M

CR
 a

nd
 o

th
er

 
en

zy
m

es
 in

 th
e 

m
et

ha
no

ge
ne

si
s 

pa
th

wa
y

An
th

ra
qu

in
on

e-
ba

se
d 

co
m

po
un

ds
 (b

ird
 

re
pe

lle
nt

, d
ye

in
g 

ag
en

t, 
in

du
st

ria
l 

ap
pl

ic
at

io
ns

, h
um

an
 m

ed
ic

in
e)

9,
10

-A
nt

hr
aq

ui
no

ne
 

1-
Am

in
o 

an
th

ra
qu

in
on

e
2-

Ch
lo

ro
 a

nt
hr

aq
ui

no
ne

2-
Ch

lo
ro

 a
nt

hr
aq

ui
no

ne
-3

-c
ar

bo
xy

lic
 

ac
id

84
-6

5-
1

82
-4

5-
1

82
-4

4-
0

84
-3

2-
2

M
et

ha
no

ge
ns

Di
sr

up
tio

n 
of

 e
le

ct
ro

n 
tra

ns
fe

r, 
in

hi
bi

tio
n 

of
 A

TP
 g

en
er

at
io

n

Ch
lo

rin
at

ed
 p

he
no

ls
 (p

es
tic

id
es

, 
pr

es
er

va
tiv

es
)

2,
4-

Di
ch

lo
ro

ph
en

ol
2,

4,
6-

Tr
ic

hl
or

op
he

no
l 

Pe
nt

ac
hl

or
op

he
no

l

12
0-

83
-2

88
-0

6-
2

87
-8

6-
5

En
zy

m
es

 in
 th

e 
m

et
ha

no
ge

ne
si

s 
pa

th
wa

y, 
ac

et
oc

la
st

ic
 m

et
ha

no
ge

ns
No

n-
co

m
pe

tit
iv

e 
in

hi
bi

tio
n,

 s
ui

ci
de

/ 
irr

ev
er

si
bl

e 
in

hi
bi

tio
n

Ha
lo

ge
na

te
d 

m
et

ha
ne

 a
na

lo
gu

es
 (H

M
As

)
Br

om
oc

hl
or

om
et

ha
ne

 (B
CM

) 
Ch

lo
ro

fo
rm

Br
om

of
or

m
 

Io
do

fo
rm

 
Ca

rb
on

 te
tra

ch
lo

rid
e 

Br
om

od
ic

ho
ro

m
et

ha
ne

 
2,

2,
2-

Tr
ic

hl
or

oa
ce

ta
m

id
e 

M
et

hy
l fl

uo
rid

e 
He

m
ia

ce
ta

l o
f c

hl
or

al
 a

nd
 s

ta
rc

h

74
-9

7-
5

67
-6

6-
3

75
-2

5-
2

75
-4

7-
8

56
-2

3-
5

75
-2

7-
4

59
4-

65
-0

59
3-

53
-3

M
CR

 a
nd

 c
or

rin
oi

d 
en

zy
m

es
, 

ho
m

oa
ce

to
ge

ni
c 

ba
ct

er
ia

Co
m

pe
tit

iv
e 

in
hi

bi
tio

n

Ni
tro

ox
y c

om
po

un
ds

3-
Ni

tro
ox

yp
ro

pa
no

l (
3-

NO
P)

10
05

02
-6

6-
7

M
CR

Co
m

pe
tit

iv
e 

in
hi

bi
tio

n

Et
hy

l-3
-n

itr
oo

xy
 p

ro
pi

on
at

e
2-

(h
yd

ro
xy

m
et

hy
l)-

2-
(n

itr
oo

xy
m

et
hy

l)-
1,

3-
pr

op
an

ed
io

l
N-

[2
-(

ni
tro

ox
y)

et
hy

l]-
3-

Py
rid

in
ec

ar
bo

xa
m

id
e 

Be
nz

yl 
ni

tra
te

10
05

50
-0

0-
3

30
32

-5
5-

1
65

14
1-

46
-0

93
5-

05
-7

M
CR

, M
TR

In
hi

bi
tio

n

Or
ga

no
su

lfo
ni

c 
ac

id
s 

2-
Br

om
oe

th
an

es
ul

fo
na

te
 (B

ES
) 

3-
Br

om
op

ro
pa

ne
su

lfo
na

te
 (B

PS
)

2-
Ch

lo
ro

et
ha

ne
su

lfo
na

te
 (C

ES
)

2-
M

er
ca

pt
oe

th
an

es
ul

fo
na

te
 (M

ES
)

(4
-H

yd
ro

xy
ph

en
yl)

 
ch

lo
ro

m
et

ha
ne

su
lfo

na
te

 (C
-1

)

42
63

-5
2-

9
55

78
8-

44
-8

15
48

4-
44

-3
19

76
7-

45
-4

11
72

24
-6

9-
8

M
CR

Co
m

pe
tit

iv
e 

in
hi

bi
tio

n

Pt
er

in
s

Lu
m

az
in

e
48

7-
21

-8
De

az
afl

av
in

 (F
42

0)
Co

m
pe

tit
iv

e 
in

hi
bi

tio
n

St
at

in
s*

 (c
ho

le
st

er
ol

 c
on

tro
l d

ru
gs

)
Lo

va
st

at
in

M
ev

as
ta

tin
75

33
0-

75
-5

73
57

3-
88

-3
HC

R,
 s

id
e 

ef
fe

ct
 o

n 
is

pr
en

oi
ds

 in
 

m
et

ha
no

ge
ni

c 
ar

ch
ae

a
In

hi
bi

tio
n 

of
 is

op
re

no
id

 s
yn

th
es

is
 a

nd
 

ce
ll 

m
em

br
an

e 
fo

rm
at

io
n



33

CHAPTER 2 :  FOOD SAFETY  OF  ENV IRONMENTAL  INH IB ITORS

TA
BL

E 
1 

EX
AM

PL
ES

 O
F 

M
ET

HA
NO

GE
NE

SI
S 

IN
HI

BI
TO

RS
 F

OR
 R

ED
UC

IN
G 

CH
4 E

M
IS

SI
ON

S 
FR

OM
 L

IV
ES

TO
CK

 R
UM

EN
, C

UL
TI

VA
TE

D 
SO

IL
 A

ND
 M

AN
UR

E 
FO

R 
BI

OL
OG

IC
AL

 IN
HI

BI
TO

RS
, M

AI
N 

AC
TI

VE
 S

UB
ST

AN
CE

S 
(O

R 
TH

EI
R 

CA
TE

GO
RI

ES
) A

RE
 IN

DI
CA

TE
D 

AC
CO

RD
IN

G 
TO

 T
HE

 M
OS

T 
IM

PO
RT

AN
T 

PL
AN

T 
SP

EC
IE

S.
 U

NC
ER

TA
IN

 TA
RG

ET
S 

AN
D 

M
OD

ES
 O

F 
AC

TI
ON

 A
RE

 
IN

DI
CA

TE
D 

IN
 G

RE
EN

  (
co

nt
in

ue
d)

SO
UR

CE
TY

PE
 O

F 
IN

HI
BI

TO
R

CH
EM

IC
AL

 C
LA

SS
  

AN
D 

OT
HE

R 
FU

NC
TI

ON
S

SU
BS

TA
NC

E 
OR

 S
PE

CI
ES

a
CA

S 
NU

M
BE

R
TA

RG
ET

 M
IC

RO
OR

GA
NI

SM
, 

M
OL

EC
UL

E 
OR

 P
RO

CE
SS

M
OD

E 
OF

 A
CT

IO
N

SY
NT

HE
TI

C
Ch

em
ic

al
 s

yn
th

es
is

 
or

 fe
rm

en
ta

tio
n

Al
te

rn
at

iv
e 

 
H2

 s
in

ks
Ca

rb
ox

yli
c 

ac
id

s
Pr

op
yn

oi
c 

ac
id

Et
hy

l 2
-b

ut
yn

oa
te

47
1-

25
-0

43
41

-7
6-

8
Hy

dr
og

en
, m

et
ha

no
ge

ns
In

co
rp

or
at

io
n 

of
 h

yd
ro

ge
n 

or
 fo

rm
at

io
n 

of
 c

om
po

un
ds

 in
co

rp
or

at
in

g 
hy

dr
og

en
 

(e
.g

. m
al

at
e,

 a
cr

yla
te

, c
ro

to
na

te
)

Ni
tro

co
m

po
un

ds
 (f

oo
d 

ad
di

tiv
es

, 
in

du
st

ria
l a

pp
lic

at
io

ns
)

Ni
tra

te
Ni

tri
te

Ni
tro

et
ha

ne
2-

Ni
tro

et
ha

no
l

2-
Ni

tro
pr

op
an

ol
3-

Ni
tro

pr
op

io
na

te

14
79

7-
55

-8
10

92
52

8-
35

-2
79

-2
4-

3
62

5-
48

-9
29

02
-9

6-
7

50
4-

88
-1

Hy
dr

og
en

, p
os

si
bl

e 
si

de
 e

ffe
ct

 o
n 

m
et

ha
no

ge
ns

Re
du

ct
io

n 
to

 o
th

er
 m

ol
ec

ul
es

, p
os

si
bl

e 
in

hi
bi

tio
n 

of
 m

et
ha

no
ge

ns

Su
lfu

r c
om

po
un

ds
Su

lfa
te

14
80

8-
79

-8
Hy

dr
og

en
Re

du
ct

io
n 

to
 h

yd
ro

ge
n 

su
lfi

de

Io
no

ph
or

es
Po

lye
th

er
 m

on
oc

ar
bo

xil
ic

 a
ci

ds
 

(a
nt

ic
oc

ci
di

al
s,

 a
nt

ib
io

tic
s)

M
on

en
si

n 
Na

ra
si

n
Sa

lin
om

yc
in

17
09

0-
79

-8
55

13
4-

13
-9

53
00

3-
10

-4

M
on

ov
al

en
t c

at
io

ns
Re

ve
rs

ib
le

 fo
rm

at
io

n 
of

 c
om

pl
ex

es
 

wi
th

 c
at

io
ns

 a
nd

 tr
an

sp
or

t a
cr

os
s 

ce
ll 

lip
id

 m
em

br
an

es
 le

ad
in

g 
to

 c
ha

ng
es

 
in

 tr
an

sm
em

br
an

e 
io

n 
gr

ad
ie

nt
 a

nd
 

el
ec

tri
ca

l p
ot

en
tia

l

Ot
he

r c
om

po
un

ds
Cy

cl
od

ex
tri

ns
 (f

oo
d 

ad
di

tiv
es

, p
ro

ce
ss

in
g 

an
d 

pa
ck

ag
in

g,
 p

ha
rm

ac
eu

tic
al

 a
nd

 
en

vi
ro

nm
en

ta
l a

pp
lic

at
io

ns
)

β-
Cy

cl
od

ex
tri

n 
wi

th
 g

ue
st

 m
at

er
ia

ls
: 

Di
al

lyl
 m

al
ea

te
Io

do
pr

op
an

e
Br

om
oc

hl
or

om
et

ha
ne

Ca
pr

yli
c 

ac
id

Ho
rs

er
ad

is
h 

oi
l

75
85

-3
9-

9
99

9-
21

-3
26

91
4-

02
-3

74
-9

7-
5

12
4-

07
-2

De
pe

nd
in

g 
on

 g
ue

st
 m

at
er

ia
ls

De
pe

nd
in

g 
on

 g
ue

st
 m

at
er

ia
ls

M
ed

iu
m

-c
ha

in
 fa

tty
 a

ci
ds

 (M
CF

A)
 a

nd
 

po
lyu

ns
at

ur
at

ed
 fa

tty
 a

ci
ds

 (P
UF

A)
*

Ca
pr

ic
Ca

pr
yli

c
He

xa
de

ca
tri

en
oi

c
La

ur
ic

M
yr

is
tic

Ol
ei

c
Pa

lm
iti

c

33
4-

48
-5

12
4-

07
-2

75
61

-6
4-

0
14

3-
07

-7
54

4-
63

-8
11

2-
80

-1
57

-1
0-

3

Ce
ll 

m
em

br
an

e,
 m

et
ha

no
ge

ns
Re

du
ct

io
n 

of
 s

el
ec

tiv
e 

pe
rm

ea
bi

lit
y o

f 
ce

ll 
m

em
br

an
es

Ph
os

ph
on

ic
 a

ci
ds

 (p
la

nt
 g

ro
wt

h 
re

gu
la

to
rs

)
Et

he
ph

on
 (2

-c
hl

or
oe

th
ylp

ho
sp

ho
ni

c 
ac

id
)

16
67

2-
87

-0
M

et
ha

no
ge

ns
Re

ve
rs

ib
le

 in
hi

bi
tio

n

Py
ro

m
el

lit
ic

 d
iim

id
e 

co
m

po
un

ds
Py

ro
m

el
lit

ic
 d

iim
id

e 
an

d 
de

riv
at

iv
es

25
50

-7
3-

4
M

et
ha

no
ge

ns
Un

ce
rta

in

Un
sa

tu
ra

te
d 

hy
dr

oc
ar

bo
ns

 (p
la

nt
 

gr
ow

th
 re

gu
la

to
rs

, f
oo

d 
an

d 
in

du
st

ria
l 

ap
pl

ic
at

io
ns

)

Et
hy

le
ne

Ac
et

yle
ne

74
-8

5-
1

74
-8

6-
2

M
et

ha
no

ge
ns

Re
ve

rs
ib

le
 in

hi
bi

tio
n



34

FOOD SAFETY  IMPL ICAT IONS FROM THE  USE  OF  ENV IRONMENTAL  INH IB ITORS IN  AGRIFOOD SYSTEMS

TA
BL

E 
1 

EX
AM

PL
ES

 O
F 

M
ET

HA
NO

GE
NE

SI
S 

IN
HI

BI
TO

RS
 F

OR
 R

ED
UC

IN
G 

CH
4 E

M
IS

SI
ON

S 
FR

OM
 L

IV
ES

TO
CK

 R
UM

EN
, C

UL
TI

VA
TE

D 
SO

IL
 A

ND
 M

AN
UR

E 
FO

R 
BI

OL
OG

IC
AL

 IN
HI

BI
TO

RS
, M

AI
N 

AC
TI

VE
 S

UB
ST

AN
CE

S 
(O

R 
TH

EI
R 

CA
TE

GO
RI

ES
) A

RE
 IN

DI
CA

TE
D 

AC
CO

RD
IN

G 
TO

 T
HE

 M
OS

T 
IM

PO
RT

AN
T 

PL
AN

T 
SP

EC
IE

S.
 U

NC
ER

TA
IN

 TA
RG

ET
S 

AN
D 

M
OD

ES
 O

F 
AC

TI
ON

 A
RE

 
IN

DI
CA

TE
D 

IN
 G

RE
EN

  (
co

nt
in

ue
d)

SO
UR

CE
TY

PE
 O

F 
IN

HI
BI

TO
R

CH
EM

IC
AL

 C
LA

SS
  

AN
D 

OT
HE

R 
FU

NC
TI

ON
S

SU
BS

TA
NC

E 
OR

 S
PE

CI
ES

a
CA

S 
NU

M
BE

R
TA

RG
ET

 M
IC

RO
OR

GA
NI

SM
, 

M
OL

EC
UL

E 
OR

 P
RO

CE
SS

M
OD

E 
OF

 A
CT

IO
N

BI
OL

OG
IC

AL
As

pa
ra

go
ps

is 
se

aw
ee

ds
 

M
CR

 in
hi

bi
to

rs
Or

ga
no

br
om

in
e 

co
m

po
un

ds
, H

M
As

As
pa

ra
go

ps
is 

sp
p.

 –
 b

ro
m

of
or

m
*

75
-2

5-
2

M
CR

, c
oe

nz
ym

e 
M

 m
et

hy
ltr

an
sf

er
as

e
Co

m
pe

tit
iv

e 
in

hi
bi

tio
n

Ot
he

r s
ea

we
ed

s 
(b

ro
wn

, g
re

en
 a

nd
 

re
d)

M
CR

 in
hi

bi
to

rs
, 

se
aw

ee
d 

bi
oa

ct
iv

e 
co

m
po

un
ds

Va
rio

us
Cl

ad
op

ho
ra

 p
at

en
tir

am
ea

, C
ys

to
se

ira
 

tri
no

di
s, 

Di
ct

yo
ta

 b
ar

ta
yre

sii
, G

ig
ar

tin
a 

sp
p.

, L
am

in
ar

ia
 d

ig
ita

ta
, M

ac
ro

cy
st

is 
py

rif
er

a,
 P

ad
in

a 
au

st
ra

lis
, P

te
ro

cla
di

a 
ca

pi
lla

ce
a,

 R
ho

dy
m

en
ia

 ca
lif

or
ni

ca
, 

Ul
va

 sp
p.

 –
 lo

w 
co

nc
en

tra
tio

ns
 

of
 b

ro
m

of
or

m
*,

 p
ol

ys
ac

ch
ar

id
es

, 
pr

ot
ei

ns
, p

ep
tid

es
, b

ac
te

rio
ci

ns
, l

ip
id

s,
 

ph
lo

ro
ta

nn
in

s,
 s

ap
on

in
s,

 a
lk

al
oi

ds

Ar
ch

ae
a,

 p
ro

to
zo

a
Va

rio
us

 b
as

ed
 o

n 
ac

tiv
e 

co
m

po
un

ds
, 

su
pp

re
ss

io
n 

of
 a

rc
ha

ea
 a

nd
 p

ro
to

zo
a

Hi
gh

er
 p

la
nt

s
Pl

an
t b

io
ac

tiv
e 

co
m

po
un

ds
Es

se
nt

ia
l o

ils
*

Ga
rli

c 
(A

lli
um

 sa
tiv

um
) –

 a
lli

ci
n,

 d
ia

lly
l 

su
lfi

de
s 

an
d 

al
lyl

 m
er

ca
pt

an
)

An
is

 (P
im

pi
ne

lla
 a

ni
su

m
), 

Ca
ps

icu
m

 
sp

p.
, c

or
ia

nd
er

 (C
or

ia
nd

ru
m

 sa
tiv

um
), 

th
ym

e 
(T

hy
m

us
 s

pp
.),

 o
re

ga
no

 
(O

rig
an

um
 vu

lg
ar

e)
, m

in
t (

Me
nt

ha
 

sp
p.

), 
or

an
ge

 (C
itr

us
 ×

 si
ne

ns
is)

, 
eu

ca
lyp

tu
s 

(E
uc

al
yp

tu
s s

pp
.),

 A
us

tra
lia

n 
sa

nd
al

wo
od

 (S
an

ta
lu

m
 sp

ica
tu

m
) –

 
te

rp
en

oi
ds

, a
lip

ha
tic

 h
yd

ro
ca

rb
on

s,
 

ac
id

s,
 a

lc
oh

ol
s,

 a
ld

eh
yd

es
, a

cy
cl

ic
 

es
te

rs
, l

ac
to

ne
s

53
9-

86
-6

, 8
70

-2
3-

5
HC

R,
 m

et
ha

no
ge

ns
, f

er
m

en
ta

tio
n 

m
ic

ro
or

ga
ni

sm
s.

 P
ro

ce
ss

es
 a

ss
oc

ia
te

d 
wi

th
 b

ac
te

ria
l c

el
l m

em
br

an
e

Ch
an

ge
s 

in
 e

le
ct

ro
n 

tra
ns

po
rt,

 io
n 

gr
ad

ie
nt

s,
 p

ro
te

in
 tr

an
sl

oc
at

io
n,

 
ph

os
ph

or
yla

tio
n,

 e
nz

ym
e-

de
pe

nd
en

t 
re

ac
tio

ns

Fl
av

on
oi

ds
Ca

te
ch

in
Fl

av
on

e
Ka

em
pf

er
ol

M
yr

ic
et

in
Na

rin
gi

n
Ne

oh
es

pe
rid

in
Po

nc
iri

n
Qu

er
ce

tin
Ru

tin

15
4-

23
-4

52
5-

82
-6

52
0-

18
-3

52
9-

44
-2

10
23

6-
47

-2
13

24
1-

33
-3

14
94

1-
08

-3
11

7-
39

-5
15

3-
18

-4

M
et

ha
no

ge
ns

, h
yd

ro
ge

n,
 c

el
l m

em
br

an
es

Di
re

ct
 in

hi
bi

tio
n 

of
 m

ic
ro

or
ga

ni
sm

s,
 

ac
tio

n 
as

 H
2 s

in
ks

 v
ia

 re
du

ct
iv

e 
di

hy
dr

ox
yla

tio
n 

an
d 

cl
ea

va
ge

 o
f r

in
g 

st
ru

ct
ur

es
, l

os
s 

of
 m

em
br

an
e 

in
te

gr
ity

, 
in

hi
bi

tio
n 

of
 re

sp
ira

to
ry

 e
nz

ym
es

 

Sa
po

ni
ns

M
oj

av
e 

yu
cc

a 
(Y

uc
ca

 sc
hi

di
ge

ra
), 

so
ap

 b
ar

k 
tre

e 
(Q

ui
lla

ja
 sa

po
na

ria
), 

al
fa

lfa
 (M

ed
ica

go
 sa

tiv
a)

, I
nd

ia
n 

so
ap

be
rry

 (S
ap

in
du

s m
uk

or
os

si 
Ga

er
tn

.),
 

riv
er

he
m

p 
(S

es
ba

ni
a 

sp
p.

), 
bl

ac
k 

te
a 

(C
am

ell
ia

 si
ne

ns
is)

Pr
ot

oz
oa

, m
et

ha
no

ge
ns

, m
ic

ro
bi

al
 

fe
rm

en
ta

tio
n,

 h
yd

ro
ge

n
In

hi
bi

tio
n 

of
 m

ic
ro

or
ga

ni
sm

s,
 p

ro
m

ot
io

n 
of

 p
ro

pi
on

at
e 

pr
od

uc
tio

n,
 in

co
rp

or
at

io
n 

of
 h

yd
ro

ge
n 

or
 fo

rm
at

io
n 

of
 c

om
po

un
ds

 
in

co
rp

or
at

in
g 

hy
dr

og
en

Ta
nn

in
s*

Bl
ac

k 
wa

ttl
e 

(A
ca

cia
 m

ea
rn

sii
), 

se
ric

ea
 

le
sp

ed
ez

a 
(L

es
pe

de
za

 cu
ne

at
a)

, j
ur

em
a 

pr
et

a 
(M

im
os

a 
te

nu
ifl

or
a)

, q
ue

br
ac

ho
, 

sw
ee

t c
he

st
nu

t (
Ca

st
an

ea
 sa

tiv
a)

, 
M

ou
nt

 Ta
bo

r o
ak

 (Q
ue

rc
us

 it
ha

bu
re

ns
is 

su
bs

p.
 M

ac
ro

lep
is)

, c
om

m
on

 g
ra

pe
 v

in
e 

(V
iti

s v
in

ife
ra

)

M
et

ha
no

ge
ns

, p
ro

to
zo

a,
 h

yd
ro

ge
n 

an
d 

its
 p

ro
du

ct
io

n
In

hi
bi

tio
n 

of
 m

ic
ro

or
ga

ni
sm

s,
 a

ct
io

n 
as

 
al

te
rn

at
iv

e 
hy

dr
og

en
 s

in
ks

*A
ct

iv
e 

su
bs

ta
nc

es
 fr

om
 e

ith
er

 s
yn

th
et

ic
 o

r b
io

lo
gi

ca
l s

ou
rc

es
. 

a  A
 n

on
-e

xh
au

st
iv

e 
lis

t i
s 

pr
ov

id
ed

; o
th

er
 s

ub
st

an
ce

s 
or

 s
pe

ci
es

 fa
ll 

in
 re

sp
ec

tiv
e 

ch
em

ic
al

 c
la

ss
es

. M
CR

: m
et

hy
l-c

oe
nz

ym
e 

M
 re

du
ct

as
e.

 H
CR

: 3
-h

yd
ro

xy
-3

-m
et

hy
l-g

lu
ta

ry
l-c

oe
nz

ym
e 

A 
re

du
ct

as
e.

 M
TR

: c
oe

nz
ym

e 
M

 m
et

hy
ltr

an
sf

er
as

e.



35

CHAPTER 2 :  FOOD SAFETY  OF  ENV IRONMENTAL  INH IB ITORS

©
 FA

O
/C

ris
tia

no
 M

in
ic

hi
el

lo
©

 FA
O

/R
ic

ca
rd

o 
D

e 
Lu

ca
©

 FA
O

/P
ie

r P
ao

lo
 C

ito
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2.2 NITROGEN INHIBITORS

Nitrogen inhibitors include compounds differing structurally and by modes of 
action. They are used to delay natural processes which lead to nitrogen loss from the 
soil. They act mainly at two points in the nitrogen cycle: 1) the conversion of urea 
into ammonia to reduce nitrogen loss through volatilization and 2) the conversion 
of ammonium to nitrates which are highly subject to leaching and denitrification  
(see Figure 4). The first step is targeted by urease inhibitors that specifically 
block the active site and reduce the activity of urease enzyme, a ubiquitous 
enzyme produced by soil bacteria, which mediates the hydrolysis of urea. The 
second step is addressed by nitrification inhibitors that slow down the activity of 
bacteria responsible for one or both phases of the nitrification process. Generally, 
nitrification inhibitors reduce the activity of enzymes responsible for nitrification, 
such as ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO) 
or nitric oxide reductase (NOR) (Ruser and Schulz, 2015), and eventually limit the 
leaching of nitrates to the soil and emissions of N2O into the atmosphere (Byrne et 
al., 2020). Therefore, nitrogen inhibitors delay these processes rather than prevent 
them from occurring, allowing time for plants and microorganisms to take up the 
nitrogen. Finally, denitrification inhibitors target microorganisms responsible for the 
transformation of nitrates into volatile nitrogen compounds, although this process 
has been less addressed among solutions to prevent nitrogen loss.

Nitrogen inhibitors may be applied as such or by using protected fertilizers which 
are treated with nitrogen inhibitors. Livestock animals can ingest nitrogen inhibitors 
by consuming pasture where inhibitors have been sprayed onto foliage, by directly 
consuming pasture or forage previously treated with nitrogen inhibitors that entered 
plant tissues from soil, and by ingesting soil particles with absorbed nitrogen 
inhibitors. Some inhibitors like dicyandiamide (DCD) have been considered for 
direct delivery on pasture soil in animal urine patches after being administered 
in feed as their recovery in the excreta of ruminants can exceed 80 percent  
(de Klein et al., 2011; Luo et al., 2015; O’Connor et al., 2013).9 Thereby, the capacity 
of the soil to take up inhibitors, their translocation from roots to other tissues 
and metabolization within plants determine the possible entry into the food chain 
(Adhikari et al., 2019). 

Limited food safety information exists regarding commodities and transformed 
products containing residues of nitrification, denitrification and urease inhibitors.  
A risk assessment model has been developed by Ray et al. to calculate daily exposure 
to nitrogen inhibitors using the example of N-(n-butyl) thiophosphoric triamide 
(NBPT) with risk factors and key steps along the food chain (Ray et al., 2020). 

The most important compounds applied as nitrification, denitrification and urease 
inhibitors are described below and are listed in Table 2. 

9 Safety concerns are detailed in section 2.2.3.
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2.2.1 SYNTHETIC UREASE INHIBITORS

Among available urease inhibitors, three substances are registered globally and 
commercialized under trademarks: NBPT, N-(n-propyl) thiophosphoric triamide 
(NPPT) and mixture NBPT+NPPT (FAS, 2023), with NBPT most widely used 
(Nugrahaeningtyas et al., 2022).

Organophosphorus compounds 
NBPT and NPPT are the most important compounds of this group, generally 
considered as safe both for animals and humans (Nugrahaeningtyas et al., 2022). 
Residues of NBPT have not been found in milk and tissues of dairy cows fed with 
up to 10 mg NBPT/kg body weight (van de Ligt et al., 2019). A study employing 
novel detection methods showed concentrations of NBPT and its oxidation product  
N-(n-butyl)phosphoric triamide (NBPTo) in milk samples below the limit of 
qualification (LOQ) of 0.002 mg/kg suggesting a very low residue risk of this 
inhibitor (Nkwonta et al., 2021).

There is evidence of plants being able to take up NBPT as demonstrated for maize 
roots and for vegetable tissues exposed to 100 μM concentration, which inhibited 
urease activity in leaves and roots leading to necrosis following the accumulation 
of urea (Cruchaga et al., 2011; Zanin et al., 2015). Phytotoxicity of NBPT had a 
transitory nature and possibly occurred as indirect effect in areas where the inhibitor 
was used at high rates in combination with urea fertilizer (Edmeades, 2004).  
In livestock, temporary inhibition of rumen activity was observed with a subsequent 
adaptation of rumen microflora to NBPT, although exposure to high doses 
causing metabolic imbalance has been reported to be unlikely for grazing animals  
(Byrne et al., 2020). Low concern from NBPT was shown for birds and soil 
invertebrates as well as for groundwater and aquatic species (NICNAS, 2011). 
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White granules of urea fertilizer can be protected 
with a nitrogen inhibitor, often with the  

addition of colorants.
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A five-year repeated application of NBPT coated to urea fertilizer showed no 
impact on the abundance or structure of soil bacterial and fungal communities of 
an intensively managed grassland (Duff et al., 2022).

In the GHS, NBPT has been classified as causing skin irritation and serious eye 
damage, possibly causing respiratory irritations and suspected of reproductive 
toxicity. No significant hazard has been identified from NBPT levels of  
0.038-0.064 percent present in fertilizer formulations, therefore it is expected that 
residues in food commodities may reach negligible concentrations posing low risks 
to consumers (NICNAS, 2011).

2.2.2 BIOLOGICAL UREASE INHIBITORS

Although a substantial number of publications exists on clinically useful plant-
based urease inhibitors, relatively few studies explored the properties of analogous 
compounds of agricultural interest (Fernando and Roberts, 1976; Mohanty, Patra 
and Chhonkar, 2008; Suescun et al., 2012). The identified compounds are obtained 
from several parts of a plant, differ in the way of application (as extract, powder or 
entire parts) and encompass various chemical classes.

Plant extracts, seed parts or wastes
The inhibitory activity of many extracts in this category are due to polyphenols with 
tannin like properties, as is the case of black tea (Camellia sinensis), Roman cassie 
(Vachellia caven), Monterey pine (Pinus radiata) or inknut (Terminalia chebula) 
extracts. Theabrownin from black tea was not associated with abnormal effects 
in mice after 28 days of exposure at a daily intake of up to 400 mg/kg but slight 
nephrotoxicity was observed upon exposure to 4 g/kg per day (Ding et al., 2022). 
Consumption of up to 1 g/kg and 5 g/kg of black tea extract per day by humans 
and rats, respectively, was considered safe, although slight hepatotoxicity at the 
latter dose cannot be excluded (Chachiyo et al., 2020; Fujita and Yamagami, 2008; 
Nor Qhairul Izzreen et al., 2020; Wang et al., 2010). Further toxicity effects and 
safety doses for consumption of black tea in adults have been reviewed by Hayat 
and colleagues (Hayat et al., 2015).

Neem (Azadirachta indica)-based products, especially its non-aqueous extract, 
have been reported to cause toxicity including reversible effects on reproduction 
of male and female mammals elicited following sub-acute or chronic exposure as 
the most important endpoint. The toxicity of neem extracts has been reviewed 
previously (Boeke et al., 2004). Azadirachtin, the active compound extracted from 
the neem seeds, is used as pesticide and, according to the GHS, it has been classified 
as skin sensitizing substance with very toxic and long-lasting effects to aquatic 
life. However, gaps in toxicological and safety data to consumers and non-target 
organisms have been confirmed for azadirachtin (EFSA, 2018d) and other plant 
extracts investigated as biological urease inhibitors (Li et al., 2015). 
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Further information on toxicity endpoints of substances naturally occurring in plant 
extracts with possible human health concerns when present in food can be found in 
EFSA’s Compendium of botanicals (EFSA, 2021c).

2.2.3. SYNTHETIC NITRIFICATION INHIBITORS

Numerous substances with a potential to act as nitrification inhibitors have been 
identified as substrates of AMO (McCarthy, 1999). Their modes of action and 
strategies for regulation of nitrification in agrifood systems have been reviewed by 
Subbarao et al. (2006). The chemical classes below are reported in alphabetical order.

Amide compounds
Concerns regarding DCD residues at detectable levels in buttermilk powder, 
whole milk powder and skim milk have been raised based on evidence from New 
Zealand, where DCD was applied to pastures at a rate of 10 kg/ha. Upon testing 63 
samples, one raw milk sample presented quantifiable DCD level, while traces below 
the reporting threshold of 0.05 mg/kg were found in one raw colostrum sample  
(New Zealand, 2013). Subsequently, DCD has been withdrawn from the market 
in New Zealand even though detected concentrations are considered not to pose a 
risk to human health as the ADI is 1 mg/kg body weight per day, and the maximum 
amount of 0.5 percent as feed additive should not be of concern (EFSA, 2009; 
OECD, 2015). It was observed that the presence of DCD in cow milk remained at 
an average of 1.2 percent throughout the supplementation period and decreased to 
undetectable levels after 5 days when the administration ceased (Welten et al., 2016). 
The majority of DCD was predominantly excreted in urine (82 percent), probably 
due to its high solubility in water and absorption in the rumen and blood. However, 
the authors highlighted the need to investigate the presence of DCD residues in 
other animal products, such as meat (Welten et al., 2016). In an experiment, residues 
of DCD infused to sheep were detected in fat, wool, kidney and liver but not in 
muscle tissue (Ledgard et al., 2008). In a recent study, human estimated daily intake 
(EDI) of DCD from milk, based on recommended application rates, according to an 
exposure prediction model, was below 1 mg/kg body weight per day, and therefore 
does not pose significant risk to human health (Ray et al., 2023). The presence of 
DCD residues was linked to its residence time in plants, which in turn depends on 
the plant height and low rainfall conditions (Kim et al., 2012).

It has been shown that DCD uptake and translocation to wheat shoots occurs at 
about 1 percent of the concentration (1 mL of 1mM solution) two hours after direct 
injection to the rhizosphere when in competition with root zone microorganisms 
(Marsden et al., 2015). Based on estimates, the highest risk for acquiring DCD by 
grazing livestock comes from consumption of pasture that intercepted the inhibitor 
on their surface during spray application, however, this can be prevented by a time 
gap between DCD application and grazing (Marsden et al., 2015). 
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The authors suggest that direct plant consumption may become a significant 
risk over longer periods due to possible DCD concentrations exceeding those in 
dairy products. DCD was found to affect the target organisms, i.e. ammonium 
oxidizing bacteria (AOB) and ammonium oxidizing archaea (AOA), but not to cause 
imbalance in the non-target soil microbial community (O’Callaghan et al., 2010). 

Toxicological information on DCD is available in various reports and databases 
(ECHA, n.d.a.; Matthaei et al., n.d.). DCD is an active ingredient of pronitridine, 
also indicated as G77, which did not show safety concerns based on acute toxicity 
studies in animal models (NICNAS, 2020). Low environmental concentrations 
are not supposed to pose risk to organisms. The toxicity profile is incomplete for 
terrestrial invertebrates, drinking water and chronic exposure. Effects in plants have 
been reported to be expected only at high doses (Massachussets Department of 
Correction, 2019).

Pyrazole compounds
3,4-dimethylpyrazole-phosphate (DMPP) and 3,4-dimethylpyrazole-succinic acid 
(DMPSA) are among the main nitrification inhibitors. Their high concentrations 
resulted in residues accumulated in red clover plants mainly in leaves and roots, 
respectively, with damage from DMPP at 100 mg/kg soil (Rodrigues et al., 2018). 
However, no phytotoxicity from both inhibitors has been observed at levels used as 
maximum amounts in agricultural practice (0.5 mg/kg soil). Residues of DMPP may 
be present following its application or due to degradation of its parent compound 
3,4-dimethylpyrazole (DMP). The toxicity of DMPP has previously been reviewed 
by Adhikari et al. (2019) indicating no evidence of negative effects to soil microbes, 
plants and waterbodies at field application rate but with the potential to accumulate 
in plant aerial parts upon application and to enter the food chain following ingestion 
by grazing animals. 

3-methylpyrazole is a metabolite of 1-carbamoyle-3-methylpyrazole (CMP) which 
has been reported to leave residues in plants up to 0.1 ppm taken up by roots or 
leaves (ECHA, 1984).

According to the GHS, hazard from pyrazole compounds may include damage to 
the unborn child and toxicity for reproduction. Some compounds may be toxic 
or very toxic to aquatic life with long-lasting effects. 3-methylpyrazole is under 
assessment as an endocrine disrupting chemical.

Pyridine compounds
Nitrapyrin is the main nitrification inhibitors of this chemical category. According 
to USEPA, there is no reasonable risk from nitrapyrin and its metabolite 
6-chloropicolinic acid (6-CPA) from dietary exposure through water and food 
(USEPA, 2022c). Likewise, residues in meat, milk, poultry and eggs are not 
expected, while estimated environmental levels in groundwater and surface water 
have not been reported to be of concern (USEPA, 2022c). However, levels may be 
exceeded when nitrapyrin products are not immediately incorporated in soil upon 
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application, posing potential risks to aquatic organisms (NZAGRC, 2019; USEPA, 
2005b). This may be due to nitrapyrin mobility owing to high volatilization from 
soil, leaching and degradation to 6-CPA, therefore incorporation in 5-10 cm of 
a minimum depth has been recommended (Espín and García-Fernández, 2014).  
Very low concentrations of 6-CPA have been found in run-off water and no traces 
in groundwater. Low concentration of 6-CPA rather than nitrapyrin could be found 
in plant tissues. 

With regards to nitrapyrin, no evidence of genotoxicity, neurotoxicity and 
immunotoxicity was found although further studies have been recommended for 
the latter two (Espín and García-Fernández, 2014). Effects on reproduction and 
development were observed in laboratory animals and carcinogenicity effects have been 
suggested based on mutagenicity as mode of action. A detailed summary on the toxicity 
of nitrapyrin as well as evidence of entry into the food chain via grazing animals have 
been provided previously (Adhikari et al., 2019; Espín and García-Fernández, 2014). 

JECFA evaluated 3-ethylpyridine and concluded that there was no safety concern 
at level of intake when it is used as a flavouring agent (FAO/WHO, 2005a). 
3-Ethylpyridine and other piyridine derivatives species have been considered safe for 
the target animals at the proposed use of 0.3-0.5 mg/kg of complete feed for various 
animals and for consumers when these compounds are used up to the highest level 
in feed, but no conclusion was drawn regarding their safety in drinking water due 
to lack of data (EFSA, 2016b). The same concentrations are also evaluated as safe 
for aquatic and terrestrial environments (EFSA, 2016b). When used as flavouring 
substances in food, pyridine derivatives have been assessed as not posing safety 
concerns at levels of intake estimated through the “Maximized Survey-derived Daily 
Intake” (MSDI) approach (EFSA, 2014d). According to the GHS, the following 
hazards are associated with 3-ethylpyridine: skin and serious eye irritant, respiratory 
irritation, and it has been described to possibly cause genetic defects and cancer. 

Other heterocyclic compounds
Toxicological data regarding compounds of this category are very limited when 
considering the specific use as nitrification inhibitors. However, important groups 
of pesticides are based on triazole or pyrimidine and their derivatives for which risk 
assessments have been performed.

For pyrimidine and pyridine compounds used as herbicides, no risk concern was 
raised for products assessed by the USEPA, while non-target plants can be affected 
through run-off or spray drift (USEPA, 2022d). Some of these compounds have 
been reported to persist in plant tissues and cause toxicity effects to cultivated 
species when applying compost into which those parts have been recycled or manure 
from animals grazed on treated areas. For this reason, mitigation measures have 
been introduced to avoid toxicity from pyrimidine/pyridine compound residues 
(USEPA, 2022d). 
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Toxicity from triazole compounds applied as pesticides includes effects on various 
endpoints (Fishel, 2014) and has been reviewed in the context of water pollution 
(Huang et al., 2022). The active substances of triazole pesticide are metabolized to 
compounds known as triazole derivative metabolites (TDMs), residues of which have 
been detected in food commodities from both conventional and organic agriculture 
at levels above the LOQ of employed methods (Ströher Kolberg et al., 2016).  
The ADI and ARfD for 1,2,4-triazole as a common metabolite of triazole pesticides 
have been established by the JMPR at 0-0.2 body weight per day and 0.3 mg/kg body 
weight, respectively (FAO/WHO, 2015). The evaluation of consumer exposure to 
TDM residues in agricultural products of plant and animal origin is affected by 
numerous uncertainties and requires further data, although internationally estimated 
daily intake (IEDI) did not exceed the ADI for single metabolites demonstrating an 
unlikely risk for the consumers (EFSA, 2018e).

The presence of phenylhydrazines in food commodities can occur naturally 
(Andersson and Gry, 2004). Toxicity effects of phenylhydrazine to humans have 
been extensively described, although human toxicological data were considered 
insufficient to characterize all risks (UNEP/ILO/WHO, 2000). Phenylhydrazine 
derivatives can potentially inhibit non-target microorganisms in soil, therefore the 
development of less toxic analogues was recommended (Wu et al., 2012; Yang et 
al., 2017). 

Similar to inhibitors belonging to other chemical classes, pyrimidines have been 
reported to cause skin and serious eye damage and may cause respiratory irritation 
when inhaled. In addition, pyrrole-based compounds can be toxic or fatal when 
swallowed. Etridiazole is considered a skin sensitizer and probable human 
carcinogen (Group B2) (USEPA, 2020). 3-amino-1,2,4-triazole has been reported to 
be toxic for reproduction, potentially teratogenic, carcinogenic and may disrupt the 
production of thyroid hormones (Smith, 2011). Based on the evaluation by ECHA, 
phenylhydrazine was classified as carcinogenic, skin sensitizing and suspected 
mutagenic (ECHA, n.d.b.), while the USEPA assigned this compound to Group 
B2 as probable carcinogen (USEPA, n.d.c.). Although the substance is considered 
toxic to aquatic organisms, the environmental risk has been evaluated as low because 
the substance is readily biodegradable (UNEP/ILO/WHO, 2000). 

Quinone and quinoline-based compounds
Ethoxyquin has been used as pesticide and food and feed additive due to its 
antioxidant properties. Tolerances for ethoxyquin residues in animal food 
commodities for human consumption have been established as MRL in various 
jurisdictions in the range of few mg/kg or less, while they are not tolerated in 
milk. An MRL established by Codex Alimentarius is only available for pears at  
3 mg/kg referring to post-harvest treatment (Codex Alimentarius, 2009). Ethoxyquin 
has been evaluated by JMPR that set the ADI and ARfD at 0-0.005 body weight 
per day and 0.5 mg/kg body weight, respectively, (FAO/WHO, 2005b). Currently, 
ethoxyquin is scheduled for re-evaluation by JECFA (FAO/WHO, 2023). 
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The feed additive ethoxyquin per se is considered safe for all animal species 
and consumers at a maximum total concentration of 50 mg/kg complete feed  
(EFSA, 2022b), although 150 mg/kg is allowed by FDA (FDA, 2023). However, no 
safety level could be established for long-living and reproductive animals due to the 
presence of p-phenetidine (EFSA, 2022b). Likewise, due to lack of data on the presence 
of p-phenetidine in animal tissues and food products (EFSA, 2022b), it could not be 
concluded whether ethoxyquin poses a risk to consumers. P-phenetidine is a suspected 
mutagenic, carcinogenic and skin sensitizing substance, and it remains as impurity in 
the additive at concentrations up to 2.5 mg/kg following the manufacturing process. 
The use of ethoxyquin in feed is not authorized in the EU (EU, 2022b).

Concerns regarding possible genotoxic effects of ethoxyquin quinone imine (EQI), 
one of the main metabolites of ethoxyquin, have not been sustained based on in 
vivo studies that did not report genotoxic activity of EQI observed in vitro (EFSA, 
2022b). When analysing soil microbiota, EQI induced changed in the composition 
of bacterial and fungal community, suppressing Sphingomonas involved in the 
biodegradation of environmental contaminants and plant pathogens such as 
Fusarium but favouring other beneficial genera (Papadopoulou et al., 2020).

Sulfur compounds
Thioethers used as flavouring agents have been evaluated by JECFA concluding 
that there were no safety concerns at levels of intake (FAO/WHO, 2000). Sodium 
thiosulfate was considered not to raise safety concerns when used as food contact 
material with respect to established limits (EFSA, 2013). As established by JECFA, 
the ADI for sodium thiosulfate expressed as sulfur dioxide falls in the range of  
0-0.7 mg/kg body weight per day (FAO/WHO, 1999). 

The effects of carbon disulfide on human health have been widely described and 
include neurotoxicity upon chronic exposure and reproductive effects following 
inhalation with restrictions in use in different countries (ATSDR, 2014; Canada, 
2000; CDC, 2019; EPA, 2016; NICNAS, 2014; NRC, 2009). However, no ADI has 
been allocated for this compound by JMPR (FAO/WHO, 1965). 

Similar to carbon sulfide, thiourea is a substance suspected of being toxic to 
reproduction and carcinogenic (NTP, 2021; UNEP/ILO/WHO, 2003). It has 
been reported to cause long lasting effects in aquatic organisms. Thiourea and its 
derivatives were found to elicit toxicity effects in the thyroid gland, which at dosages 
able to inhibit thyroid function were associated with reproductive toxicity and 
possible carcinogenicity (ECHA, n.d.c.; Mertschenk et al., 2013). Other substances 
of this group are known to cause skin and serious eye irritation and may also cause 
respiratory irritation. 

Unsaturated hydrocarbons
Alkenes and alkynes occur widely in nature, for example ethylene in ripening fruits 
and vegetables, 1-octyne in lemon oil, octadecene in fish liver, butadiene in coffee, to 
mention just a few. Information regarding the safety of ethylene and acetylene is provided 
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in section 2.1.1 on methanogenesis inhibitors. According to the GHS classification for 
hazard, other alkynes such as 1-octyne can be fatal if swallowed or upon entering airways 
and cause skin irritation. However, safety data related to agricultural application is limited.

2.2.4 BIOLOGICAL NITRIFICATION INHIBITORS

Root exudates remain the most studied source of biological nitrification inhibitors 
(BNI). They include compounds belonging to different chemical classes identified 
in a range of plant species across different climates.

Root exudates
Information regarding the toxicity and safety of root exudates for animals and 
consumers is limited. They are deemed to be an environmentally friendly alternative 
to synthetic nitrification inhibitors (Lu et al., 2019) with minimum effects on  
non-target microorganisms in soil (Nawarathna et al., 2021). A study investigating 
effects of methyl 3-(4-hydroxyphenyl) propionate (MHPP) on nitrogen fixation 
and emission reduction reported no toxic or side effects due to its application  
(Ren et al., 2019). In perilla seedlings, MHPP was found to reduce primary root 
growth, but to markedly induce the formation of lateral roots modulating plant 
growth and metabolite profiles (Ma et al., 2020). 

The most studied root exudate is sorgoleone which shows potentially autotoxic 
properties dependent on sorghum (Sorghum spp.) variety (Coskun et al., 2017; 
Tibugari et al., 2020) and displays herbicidal effects towards weeds (Dayan et al., 
2010; Hussain et al., 2021). As a highly hydrophobic substance, sorgoleone has 
been described to persist long strongly sorbed to soil particles but is metabolized by 
microorganisms at different rates based on several factors including its concentrations 
and soil pH (Dayan et al., 2010; Uddin et al., 2014). No adverse effects or mortality 
were observed in fish acute toxicity test at the nominal concentration of 1 µg/mL 
in water (Uddin et al., 2012). 

JECFA evaluated isothiocyanates and concluded that there was no safety concern 
at levels of intake corresponding to the use of these compounds as flavouring agents 
(FAO/WHO, 2006 and 2008). Allyl isothiocyanate (AITC) used as food preservative 
did not prove to be carcinogenic, genotoxic or to cause developmental toxicity in 
laboratory animal models (EFSA, 2010). An ADI of 0.2 mg/kg body weight per 
day was proposed considering uncertainties related to long-term and reproductive 
toxicity (EFSA, 2010). No safety concerns from dietary exposure are expected based 
on estimated levels of intake when AITC is used as flavouring agent (EFSA, 2008; 
FAO/WHO, 2006). 

Syringic acid, based on a 14-day toxicological study in rats, was considered safe 
over limited time period (Mirza and Panchal, 2019). Information on food safety 
of zeanone was not identified; however, other naphtoquinones showed toxicity to 
isolated trout hepatocytes and insect larvae (Kim and Lee, 2016; Schmieder et al., 
2003). The toxicity of 2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one 
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Substances acting as biological nitrification inhibitors 
are produced as root exudates by some common crops, 
including sorghum (Sorghum bicolor).
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(HDMBOA) and its metabolites has been mainly investigated in the context 
of a natural defence system of maize against insect herbivores (Glauser et al., 
2011; Zhang et al., 2019). Toxicological testing of methyl ferulate and methyl 
p-coumarate showed no mutagenic effects and no skin irritating properties from 
these compounds, although slight eye irritation and haemolysis was observed at 
higher tested concentrations (Raza et al., 2016). There is inadequate evidence on the 
carcinogenicity of shikimic acid classified by IARC under Group 3 (not classifiable 
in regard to its carcinogenicity to humans) (IARC, 2018b).

In the GHS system, many substances belonging to this category are classified as 
causing skin and serious eye irritations and possibly respiratory irritations.

2.2.5. SYNTHETIC DENITRIFICATION INHIBITORS

The potential of substances as denitrification inhibitors has been less explored 
compared to nitrification and urease inhibitors. 

Pyrimidone- and triazinone-based compounds
These compounds have been identified as small molecules able to inhibit copper 
nitrite reductase (NirK), the key enzyme in the denitrification process performed 
by the target organism Fusarium oxysporum, a primary denitrifier in agricultural 
soils (Matsuoka et al., 2017). The study was based on in silico modelling and efficacy 
tests, but no toxicity assessment has been performed to date.

2.2.6. BIOLOGICAL DENITRIFICATION INHIBITORS

Flavonoids
Procyanidins are the main class of biological denitrification inhibitors (BDI) falling 
in this category. While a large body of literature exists on their beneficial properties, 
more studies are needed to collect toxicological and safety data in the context of 
agricultural applications (Dasiman et al., 2022). Procyanidin-rich extract from grape 
(Vitis vinifera) seeds administered to rats for 90 days at 2 percent of the diet showed 
no toxicity in rats assessed for acute and sub-chronic effects, and no mutagenic 
potential in three different tests (Yamakoshi et al., 2002). No mutagenicity was 
observed in other studies. However, the dose of 2000 mg/kg was cytotoxic to mice 
after 48 hours post-exposure (Erexson, 2003). Some authors reported reduced 
numbers of micronucleated cells and chromosomal damage following exposure to 
procyanidine-rich extracts (Stancovic et al., 2008, Sugisawa, Inoue and Umegaki, 
2004). In another study, weak mutagenicity was identified in in vivo micronucleus 
test (Lluís et al., 2011). Procyanidin B2 was classified as a weak skin sensitizer and 
not mutagenic to bacteria but it caused polyploidy in mammalian cells in vitro, 
although no structural aberrations were detected (Takahashi et al., 1999). Other 
information on flavonoids is provided in section 2.1 on methanogenesis inhibitors. 
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Biological denitrification inhibitors can be extracted 
from a wide range of natural products including fruits, 
vegetables, nuts, legumes and grains.
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In the coming decades, growing food demand, 
including products of animal origin,  

will require measures to mitigate pressures of 
the agrifood sector on the environment. 
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Increasing use of fertilizers will require measures 
to mitigate the loss of nitrogen from soil.
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The use of nitrogen inhibitors may have positive 
implications on the agrifood trade by increasing crop 
yield and quality while reducing fertilizer demand.
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CHAPTER 3
TRENDS IN THE USE 
OF ENVIRONMENTAL 
INHIBITORS

The continuous global population growth with the corresponding intensification 
of livestock farming and crop production will most likely result in the increasing 
trends on the application of feed supplements and nitrogen fertilizers (Alexandratos 
and Bruinsma, 2012; Bakken and Frostegård, 2017; van Beek et al., 2010). The need 
for mitigation measures to face current GHG levels and emissions from agriculture 
on the rise as well as nitrogen loss from farmlands are likely to further advance 
the use of environmental inhibitors. The high price of fertilizers may hinder their 
use, especially in developing countries; at the same time, this may also result in the 
increased application of nitrogen inhibitors as practice to minimize fertilizer demand 
while maintaining crop yield and quality.

Several commercial products are available on the market as nitrogen inhibitors (see 
Table 2). Their use is justified especially on sites with a high input of nitrogen linked 
to elevated nitrogen loss (Montavalli, Nelson and Bardhan, 2013). However, the 
expansion of their use is hampered by inconsistent effectiveness which depends on 
factors such as the soil type and environmental conditions. 

At present, the use of methanogenesis inhibitors is limited and mainly carried out 
for research purposes. Reduction of CH4 emission may arise as a secondary effect 
of feed products which, in the first place, aim to enhance livestock productivity. 
Initiatives have been launched to collect evidence of introducing methanogenesis 
inhibition practices across agrifood systems in view of their possible consideration 
in policy development (UK, 2022). The use of 3-NOP has recently been authorized 
as feed additive in a range of countries worldwide including Australia, Brazil, 
Chile, Pakistan, Switzerland, Turkey and EU/EEA Member States (EU, 2022d) 
while the authorization process is ongoing for other markets such as Canada 
(FAO, 2023a). 

Additional information on trends in use of environmental inhibitors is available in 
reports based on current market analysis and forecast until 2028 (Industry ARC, 2023).
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Application of fertilizers with nitrogen inhibitors.

Manual application of fertilizers on a  
traditional cultivation field is compatible with  
the use of nitrogen inhibitors. 
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CHAPTER 4
REGULATORY 
FRAMEWORKS

While specific regulations on environmental inhibitors exist only in few jurisdictions, 
these compounds are often included in national and regional horizontal legislations, 
in particular for feed additives regulated under feed legislation, food additives and 
substances used in food production regulated by food safety legislation, fertilizers 
and pesticides. Some substances with environmental inhibitory properties are covered 
by legislations related to other possible uses when reduction of methane emissions 
or the loss of nitrogen is not the primary application (e.g. industrial use, human 
medicine). At the international level, Codex Alimentarius adopted guidelines for 
rapid risk analysis of chemical residues occasionally detected in food at low levels for 
which no regulatory limits exist (Codex Alimentarius, 2019). CCPR and CCRVDF 
both agreed that Codex MRLs for inhibitors could be considered in each committee 
– CCPR for crops and CCRVDF for animals (Codex Alimentarius, 2022).

This section is not intended to provide an in-depth legal analysis of regulatory 
frameworks related to environmental inhibitors but merely to summarize examples 
of regulatory approaches in different countries for which relevant information 
was available in the public domain and/or was provided by national authorities.  
As described in the following paragraphs, regional and national authorities, through 
available legal instruments, are undertaking efforts to ensure the appropriate food 
safety risk evaluation of environmental inhibitors. 

ARGENTINA

In Argentina, environmental inhibitors are covered by different laws, decrees 
and resolutions related to agriculture and environment sectors such as the 
Regulatory Frameworks for Veterinary Medicines (SENASA, 2019a), the National 
Phytosanitary Registry (SENASA, 2019b) or the resolution on the efficacy and 
toxicity of phytosanitary products (SENASA, 2019c), in addition to the former 
Resolution on Food for Animals (SENASA, 2015) and the resolution on MRL in 
veterinary medicines and pesticides (SENASA, 2010 and 2011).
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Under the Residue Control Plan, ionophores intended as coccidiostats together 
with antibiotics have been monitored in feed for several years and in 2023 more 
compounds of this type are going to be included. The aim is to ensure good practices 
in the use of ionophores in feed. 

Recently, a document with Principles and Declarations of the livestock sector of the 
Americas was released in collaboration with other Latin American countries and 
USA. The document was presented at a dedicated meeting within the framework of 
the Regional Seminar on Sustainable Livestock Production in the Americas organized 
by the Argentine Rural Society (SRA), the Federation of Rural Associations of 
Mercosur (FARM), the Pan-American Dairy Federation (FEPALE), the Council of 
Dairy Exporters of United States (USDEC) and the United States Dairy Producers 
Federation (NMPF). The meeting proposed to strengthen the image of the livestock 
sector as part of the solution to global warming and the reduction of GHG. 

AUSTRALIA

Australian food safety regulations apply to primary production inputs, including 
environmental inhibitors. As no specific risk has been identified for this class of 
product, their use is not currently subject to any specific regulatory provisions.

BRAZIL

Methanogenesis inhibitors are regulated as feed additives under “other zootechnical 
additives”, a functional group of zootechnical additives, i.e. not falling within the 
functional group of digestive additives, flora balancers or performance enhancers. 
Normative Instruction N. 1/2018 (Brazil, 2018a) included this functional group 
in the Normative Instruction N.13/2004 (Brazil, 2004). The technical regulation 
on safety of use, labelling requirements, registration and commercialization of 
feed additives is outlined in the Normative Instruction 13/2004, amended by the 
Normative Instruction N. 44/2015, with the aim to ensure an adequate level of 
protection of human health, animals and the environment (Brazil, 2004 and 2015). 

3-NOP is currently the only product registered in Brazil with a claim of 
methanogenesis inhibition. Ionophores are registered in Brazil under the category 
of veterinary products, with the main function as growth promoters. Efficacy 
studies for registration purposes are currently being carried out with other potential 
methanogenesis inhibitors, such as additives based on tannins, natural substances 
that can reduce enteric methane emissions from ruminants by changing the rumen 
fermentation profile.

Nitrification and urease inhibitors are regulated in Brazil as authorized additives 
for use in mineral and organic fertilizers. According to the Normative Instruction 
N. 39/2018 (Brazil, 2018b), NPPT and NBPT urease inhibitors are listed for the 
function of reducing nitrogen loss by volatilization, with their approved use in 
urea. Likewise, DCD, DMPP and DMPSA are listed as substances that reduce the 
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nitrification process in soil with approved use with urea, ammonium nitrate and 
nitrogen fertilizers in general. The Normative Instruction N. 39/2018 covers all 
aspects related to the classification, minimum levels, raw materials and additives 
of mineral fertilizers to be used in agriculture. The percentage of additive in the 
formulations is usually up to 1 percent, and values above this must be declared on 
the label. These same additives are listed in the Normative Instruction N. 61/2020 
for authorized use in Organic Fertilizers or Biofertilizers (Brazil, 2020).

CANADA

Methanogenesis inhibitors added to livestock feed in Canada may be classified 
as either veterinary drugs under the Food and Drugs Act (Canada, 1985) or as 
feeds under the Feeds Act (Canada, 1983). The determination of the classification 
is dependent on the mode and location of action. For example, a product that is 
systemically absorbed and alters the animals’ metabolism would be consistent with 
a veterinary drug, whereas a product that acts locally to the gastrointestinal system, 
could be considered a gut modifier and be registered as a feed (CFIA, 2023). The 
pre-market assessment of a CH4 inhibitor as a veterinary drug or as a livestock feed 
would include food safety considerations consistent with their respective regulatory 
processes.

Nitrification and urease inhibitors are regulated by the Canadian Food Inspection 
Agency (CFIA) as supplements under the Fertilizers Act and Fertilizers Regulations 
(Canada, 2020a and 2020b), and require registration prior to import and sale in 
Canada. Full safety assessment with complete risk profile of the product, its mode 
of action and substantiation of environmental safety claims on the label must be 
provided (Trade memorandum T-4-127, CFIA, 2020).

CHILE

In Chile, there is no specific regulation for methanogenesis inhibitors. However, 
there are regulatory provisions that allow their use following authorization with 
objectives other than environmental inhibition. An example is a product containing 
3-NOP registered and classified as a formulation additive for animal feed. The 
authorization of a substance for use in animal feed must comply with criteria of 
evaluation to verify safety and nutritional adequacy for animals and for human 
consumption taking into account any food product of animal origin.

Methanogenesis inhibitors are an emerging area of interest for the Ministry of 
Agriculture as recently discussed during the Ministerial Conference on Low Emission 
Food Systems10 and also in the context of Chile’s first Climate Mitigation Plan for 
the agricultural sector, currently in the early stages of development. Chile’s national 
institutes are conducting research to identify GHG mitigation alternatives for the 
agricultural sector, commensurate with the nation’s economic and productive systems.

10 foodsystemsmethaneconference2023.org

https://foodsystemsmethaneconference2023.org/
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In accordance with Act No. 21349/2021 establishing regulations over composition, 
labelling and trading of fertilizers and biostimulants (formerly biofertilizers), 
nitrogen inhibitors are included under the definition of fertilizers (Chile, 2021). 
They are classified as the sixth category of products specifically acting to modify and 
improve fertility of the soil or its physical, chemical or biological features. Moreover, 
Law No. 20.412 “System of Incentives for the Environmental Sustainability 
of Agricultural Soils (SIRSD-S)” (Chile, 2010) supports the use of nitrification 
inhibitors, with the objective of minimizing loss, improving the efficiency and 
optimizing the use of fertilizers on crops or pastures, contributing to recovering 
the productive potential of agricultural soils.

CHINA

Methanogenesis inhibitors are regulated as feed additives, although no specific 
regulatory category has been established for them. A list of allowed feed additives 
published by the Ministry of Agriculture and Rural Affairs (MARA) contains those 
methanogenesis inhibitors which have been scientifically evaluated for efficacy and 
safety, registered in compliance with management regulations and approved for 
use and sale on the Chinese market. Among the allowed feed additives, several 
substances have a functional effect of reducing CH4 emissions, such as stearic 
acid, sodium nitrite, sodium sulfate, saponins and some botanic extracts or 
mixtures (falling in the categories of “Binders, anticaking agents and stabilizers”, 
“Preservatives, acidity regulators”, “Minerals and their chelates” or “Others”). 
The lack of a specific category for methanogenesis inhibitors is explained by the 
integrated management strategy introduced to reduce CH4 emission from livestock 
which combines various approaches including dietary contents. Antibiotics acting as 
methanogenesis inhibitors, such as the ionophore monensin, are not allowed since 
they are banned for use as feed additives. Currently, the introduction of 3-NOP 
onto the Chinese market is under evaluation.

Since 2010, Chinese authorities regulate nitrogen inhibitors, according to the fertilizer 
registration framework under the category of “Slow effect nitrogen fertilizers”. The 
list of allowed substances includes NBPT, NPPT, DCD and hydroquinone.

To date, environmental inhibitors have not been separately included in Chinese 
Food Safety Standards for Maximum Levels of Contaminants in Foods (China, 
2022a), Maximum Residue Limits for Pesticides in Foods (China, 2021 and 2022b) 
and Maximum Residue Levels for Veterinary Drugs in Food (China, 2019 and 
2022c), due to insufficient data at national level.
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EUROPEAN UNION

In the EU, methanogenesis inhibitors are regulated by Regulation (EC) 1831/2003 
(EU, 2003a) on additives for use in animal nutrition, which provides information 
regarding authorizations and labelling requirements as well as categories of 
feed additives and premixtures. Article 6 refers to methanogenesis inhibitors as 
zootechnical additives “used to affect favourably the environment”. Commission 
Implementing Regulation (EU) 2022/565 (EU, 2022c) authorized the use of 3-NOP 
as a feed additive for dairy cows and cows for reproduction on the EU market.

While ionophores used in ruminant feed generally reduce methane production in 
ruminants, the use of ionophore feed additives as antibiotic growth promoters in 
feed for ruminants has been prohibited in the EU since 2003 (EC 2003a). 

The use and content of fertilizers with nitrification/denitrification and urease 
inhibitors in the EU falls under Regulation (EU) 2019/1009 which replaced the 
former Regulation (EC) 2003/2003 (EU, 2003b) in effect since 16 July 2022. Nitrogen 
inhibitors are considered as fertilizing products if the intention of a manufacturer is 
to add them to fertilizing products.11 Regulation (EU) 2022/1519 (EU, 2022e) sets 
requirements applicable to fertilizing products containing inhibiting compounds 
including information on the product label and efficiency of fertilizers. This regulation 
also harmonizes the terminology relative to inhibitors, according to which “a substance 
or mixture which improves the nutrient release pattern of a nutrient by delaying or 
stopping the activity of specific groups of micro-organisms or enzyme” should be 
called “inhibiting compound”, while the term “inhibitor” refers to the EU fertilizing 
products belonging to Product Function Category 5 (PFC5). The use of urea-based 
fertilizers coated with nitrification inhibitors is mentioned as best environmental 
management practice in Commission Decision (EU) 2018/813 (EU, 2018).

JAPAN

Any substance added to or mixed with the feed for the purpose of preventing 
deterioration of feed quality, supplementing nutritional and other active or useful 
ingredients or facilitating efficient utilization of nutritional ingredients is regulated 
by the Act for Safety Assurance and Quality Improvement of Feeds (April 1953 
with the most recent amendment in June 2022) (Japan, 2022) and related ordinances, 
rules and notices. For a substance to be used as feed additive, it shall be designated 
as such by the Minister of Agriculture, Forestry and Fisheries. 

Methanogenesis inhibitors are regulated as feed additives for “supplementing 
nutritional and other active/useful ingredients”. Substances are categorized as 
feed additives after evaluation and confirmation of their safety to livestock, 
effectiveness in livestock husbandry and safety of foods of animal origin to humans.  

11 "Substance, mixture, micro- organism or any other material, applied or intended to be applied on plants or their rhizosphere 
or on mushrooms or their mycosphere, or intended to constitute the rhizosphere or mycosphere, either on its own or mixed 
with another material, for the purpose of providing the plants or mushrooms with nutrient or improving their nutrition 
efficiency”. Definition from Regulation 2019/1009/EU.
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Their environmental effects are not evaluated. As of April 2023, there has been no 
feed additive designated for methanogenesis inhibition. 3-NOP has been evaluated 
from the point of view of safety to livestock. 

Any substance applied to the ground for the purpose of plant nutrition or for 
changing the chemical nature of soil to facilitate plant growth, or to the plants for 
the purpose of plant nutrition are categorized as fertilizers according to the Act on 
the Quality Control of Fertilizers of May 1950 with the most recent amendment 
in December 2019 (Japan, 2019) and related ordinances, rules and notices. In order 
to manufacture a fertilizer, it shall be registered after evaluation and confirmation 
of its effectiveness as fertilizer. The addition of any active ingredient shall be at the 
least amount necessary. The “designated mixed fertilizer” can be manufactured after 
notification but without registration. There has been no pesticide registered in Japan 
that exerts functions as environmental inhibitor. No maximum levels or MRLs have 
been established for these substances in Japan.

Nitrification inhibitors may inadvertently decrease the quality of fertilizers 
containing them, therefore certain conditions for their use have been established in 
Japan. Only registered fertilizers not containing nitrification inhibitors and those 
containing one or more of the four nitrification inhibitors designated by the Minister 
of Agriculture, Forestry and Fisheries (1-amidino-2-thiourea, 4-amino-N-(1,3-
thiazole-2-yl) benzenesulfonamide, N-(2,5-dichlorophenyl) succinamic acid and 
DCD) can be used alone or in mixture. After mixing, the fertilizer is categorized as 
“designated mixed fertilizer”. 

NEW ZEALAND

Environmental inhibitors are regulated by the Order 2022 (New Zealand, 2022a) of 
the Agricultural Compounds and Veterinary Medicines (ACVM) Act 1997 (New 
Zealand, 2022b) as “inhibitor substances”, i.e. “active ingredients in the product 
that achieves the inhibitor effect”, defining them as “agricultural compounds” 
(Ministry of Primary Industries of New Zealand, 2023). These substances are 
covered under the scope of the Order refers to these substances if used to mitigate 
adverse effects of agricultural activities on the environment, sustainability or climate 
change by direct or indirect management of plants and animals, application in 
areas with plants or animals, or added to feed or water used in animal husbandry 
or plant cultivation. It includes a schedule of inhibitor substances declared to 
be agricultural compounds along with their esters, isomers and salts, among 
which the most common methanogenesis, nitrification and urease inhibitors are 
included (e.g. 3-NOP, DCD, nitrapyrin, n-propylphosphorothioic triamide). 
By regulating environmental inhibitors, the Order aims to manage residues  
in primary produce; risks to public health, animal welfare, biosecurity and trade  
in primary produce; and food safety. 
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Environmental inhibitors for sale in New Zealand containing a substance not listed 
in the Order are currently not subject to ACVM. However, work is under way to 
amend the ACVM to include all inhibitors, which means the Order will no longer 
be required. Those substances listed in the Order will require registration before 
they can be marketed, although any substances on the market at the time the Order 
commenced (18 July 2023) have a two-year transitional period to obtain registration 
(New Zealand, 2022c). All agricultural products with an inhibitor claim will require 
registration to manage the risks to public health, trade, animal welfare, agricultural 
security, and food safety. Food Notice on MRL for agricultural compounds regulated 
under the Food Act 2014 (New Zealand, 2014) does not specifically establish levels 
for residues of environmental inhibitors in food commodities (New Zealand, 2022d).

The Hazardous Substances and New Organisms Act 1996 (New Zealand, 1996) is 
administered by the New Zealand Environmental Protection Authority and was 
established to protect the environment and human health by preventing or managing 
adverse effects. It covers, among others, substances which are toxic, ecotoxic and 
bioaccumulative with exposure limits established for each component or element 
of a hazardous substance.

Products used as inhibitors that classify as hazardous substances under the HSNO 
Act may require a HSNO Act approval as well as registration under ACVM. 
Whether or not an inhibitor substance is regulated by the NZEPA, and what 
framework it falls under, depends on various factors including the identity and 
composition of the substance, concentration of the active ingredient, and method 
of administration to an animal or into the environment.

UNITED STATES OF AMERICA 

Products that are added to animal foods may be regulated as a food or a drug, 
depending on whether intended effects are derived from a food attribute  
(taste, aroma, nutritive value) or not. Many products claiming to affect the structure 
or function of an animal’s body currently meet the legal definition of animal drugs 
because they have that effect through mechanisms other than food attributes. 
FDA has sought public input and is re-evaluating its current policy in light of the 
emergence of products like some methanogenesis inhibitors and other novel animal 
food ingredients that achieve their intended effect solely through activity within the 
lumen of the digestive tract.

Federal Insecticide, Fungicide, and Rodenticide Act (USEPA, 2012) regulates the use 
of nitrogen inhibitors under the term “nitrogen stabilizers” intended as substances 
or mixtures applied with the purpose to prevent or delay the process of nitrification, 
denitrification, urease production or ammonia volatilization through action of soil 
bacteria, with some exceptions (e.g. DCD, ammonium thiosulfate). 



62

FOOD SAFETY  IMPL ICAT IONS FROM THE  USE  OF  ENV IRONMENTAL  INH IB ITORS IN  AGRIFOOD SYSTEMS

©
 FA

O
/M

oh
am

m
ad

 R
ak

ib
ul

 H
as

an
 

Risk assessments based on adequate toxicological 
data are fundamental to ensure food safety when 
adopting new practices within smart agriculture, 
such as the application of environmental inhibitors. 
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CONCLUSIONS  
AND WAY FORWARD

Environmental inhibitors are just one of the approaches to mitigate CH4 emissions 
and nitrogen loss in agrifood systems while progressing towards socioeconomic  
well-being and adequate nutrition for the growing world population.  
Many compounds have been known for decades and new solutions are being 
developed with gradually increasing interest in biological inhibitors. Despite many 
environmental inhibitors being considered highly efficient, their adoption in practice, 
especially of methanogenesis inhibitors, can be hampered by knowledge gaps, 
particularly regarding possible food safety implications. As the health of humans, 
animals and plants is interconnected and dependent on the health of the ecosystem 
in which they reside, approval for the use of environmental inhibitors should be 
performed in accordance with a One Health12,13 approach. 

SCIENCE-BASED HOLISTIC RISK ASSESSMENT AND HARMONIZED 
REGULATORY FRAMEWORKS ARE IMPORTANT TO ENSURE FOOD SAFETY  
OF ENVIRONMENTAL INHIBITORS AND FACILITATE THEIR GLOBAL TRADE

While legislations in some countries and regions include specific legal instruments 
under which environmental inhibitors used in agriculture are authorized, many 
jurisdictions allow them through regulatory frameworks which are broader in scope 
and do not specifically refer to such substances. Trade implications of environmental 
inhibitors have recently been addressed by Codex Alimentarius, highlighting the 
importance of having internationally accepted MRLs based on scientific assessment 
and an agreed definition of environmental inhibitors (Codex Alimentarius, 2022). 
Harmonization of regulatory frameworks at global level would not only facilitate 
trade, but also support correct management of food safety across globalized  
agrifood systems.

12 www.fao.org/one-health/en
13 www.who.int/groups/one-health-high-level-expert-panel

http://www.fao.org/one-health/en
http://www.who.int/groups/one-health-high-level-expert-panel
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R&D OF NOVEL ENVIRONMENTAL INHIBITORS NEEDS TO PROCEED  
IN CONCERT WITH RISK ASSESSMENT 

Re-purposing old chemistry to the role of environmental inhibitors should be supported 
by a critical examination of new toxicological studies to understand limitations and 
changes in the data requirements. Approval of new products requires substantial efforts 
to evaluate their food safety implications, including modes of action, levels of possible 
residues in food commodities and potential harm to consumers. Thorough environmental 
fate studies have often been performed for products containing environmental inhibitors 
currently on the market and for most of the assessed substances, the residues found in 
food are below safety concern levels. However, food safety information is in many cases 
incomplete or missing. New approaches in the development of next-generation GHG 
inhibitory solutions, for example recombinant DNA technology for crops to increase 
their BNI capacity (Subbarao et al., 2021), will need to be considered and evaluated. 
The Genetic Technology (Precision Breeding) Act that recently passed into law in the 
United Kingdom is opening up this area (UK, 2023).

The advancement of research for new products along with assessment of the 
requirements for their use, as well as the related costs implications will likely 
determine the selection of the best matching combinations among available mitigation 
approaches (FAO, 2023a; Norton and Ouyang, 2019; Patra et al., 2017; Subbarao 
et al., 2017). Challenges with field application of environmental inhibitors have 
already been encountered within pasture-based systems. In those scenarios, direct 
interactions of substances with the environment, the likelihood to impact multiple 
off target parameters and a lower potential for controlling the overall performance 
compared to stall-based systems must be considered (Dawson et al., 2011). Following 
the withdrawal of DCD in New Zealand, ongoing research projects seek to develop 
novel nitrification inhibitors giving lower levels of residues in food commodities as 
well as novel tools and delivery methods for methanogenesis inhibitors (NZAGRC, 
2023a and 2023b). Examples of near-market ready methanogenesis inhibitors have 
been provided for selected strategies by Searchinger et al. (2021). 

NEW TECHNOLOGIES CAN HELP IN OPTIMIZING THE APPLICATION OF 
ENVIRONMENTAL INHIBITORS 

Uncertainties in estimating national CH4 and N2O emissions in agrifood systems 
have been addressed by refined IPCC guidelines (IPCC, 2019). As noted in a recent 
FAO report, available CH4 measurement methods involve trade-offs between ease of 
use, repeatability and applicability to stall-based or grazing systems (FAO, 2023a). 
New and/or improved detection techniques and biomarkers for CH4 emission 
from enteric fermentation, manure management systems and land will allow to 
calculate the efficacy of inhibitors with more precision. These new techniques will 
also simplify the application of environmental inhibitors on commercial farms for 
long-term measurements (Hristov et al., 2018; Tedeschi et al., 2022; Thompson and 
Rowntree, 2020). This process will ultimately help better address the challenges 
posed by climate change, by providing additional GHG mitigation measures.
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The development of advanced detection methods for active compounds or their 
metabolites in complex matrices would strengthen food safety management. 
However, a higher analytical sensitivity would require new regulatory approaches 
for dealing with higher number of detects in foods. Steps ahead to reduce labour 
and matrix effects are ongoing as shown, for example, by the study employing a 
method for detection of NBPT and its oxidation product NBPTo in milk (Nkwonta 
et al., 2021). 

Understanding changes in rumen ecosystems upon exposure to environmental 
inhibitors is another challenge. Progress in omics technologies can help obtain 
descriptive information on the complex nature and functionality of ruminal 
microbiome with the aim of investigating the efficiency of mitigation strategies on 
CH4 formation and livestock performance. 

THE ECONOMIC IMPLICATIONS OF USING ENVIRONMENTAL INHIBITORS 
THOROUGH CONSIDERATION OF TRADE-OFFS AND OTHER FACTORS 

Agrifood policies will increasingly need to respond to the expanding demand for 
food as well as to transformations in agrifood systems towards smart and more 
sustainable agriculture. Some cost-to-benefit ratio calculations indicate that costs 
of inhibitor application may be outcompeted by savings when considering societal 
advantages related to the reduction of GHG emission for human and ecosystem 
health (Hu and Schmidhalter, 2021; Zhang et al., 2020). 

As economic return to the producer is a key driver for additional investments 
(Hristov et al., 2013b; Subbarao et al., 2017), incentives are among factors foreseen 
to promote the adoption of GHG mitigation strategies in practice (Herrero et al., 
2016). Adoption of incentives and practices for GHG abatement in the livestock 
sector have to reckon with trade-offs (Herrero et al., 2016). Previous experiences in 
reducing enteric CH4 emissions showed that investments for increasing awareness, 
knowledge sharing, advisory service and capacity building are required to maintain 
synergies with development objectives in various areas globally, so that gains in 
terms of GHG reduction do not negatively affect other variables (FAO/NZAGRC, 
2019; Ungerfeld, 2022). Building the trust of involved parties will be crucial to 
integrate food safety consideration of new inhibitory substances in the very first 
phase of their development.
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Increasing awareness among farmers, industry 
and consumers will favour the adoption of smart 
agriculture measures for a sustainable and  
efficient agriculture.
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The challenge of feeding a growing world population while responding to the climate crisis, requires development 

of practices and technologies to increase sustainability of agrifood systems and reduce harmful effects on the 

environment. Among those approaches, environmental inhibitors are used to improve the production efficiency 

of crops and livestock while reducing emissions of greenhouse gases such as methane or limiting the loss of 

nitrogen from cultivated fields and pastures. 

An inadvertent presence of environmental inhibitors in food commodities can raise health concerns as well 

as trade disruption if standards are not established. Challenges related to food safety risk assessment and 

management of these substances include the lack of internationally harmonized maximum residue limits (MRLs), 

agreed definition for environmental inhibitors and insufficient safety information for some compounds.  

This publication provides an overview of various synthetic and biological environmental inhibitors along 

with an analysis of possible food safety implications from their use. Regulatory frameworks relevant for 

environmental inhibitors in selected countries are presented as examples of current approaches being taken 

at national or regional level. Finally, food safety-related knowledge gaps are discussed together with some 

perspectives on how to move forward. 


