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FOREWORD

Climate crisis and increasing food demand accelerate the need for agrifood systems
to transform to meet the 2030 Agenda for Sustainable Development. Numerous
approaches are being explored to reconcile the intensification of agrifood production
with mitigation measures aimed at lowering negative impacts on the environment
and ensuring sustainability. Trade-offs between environmental, socioeconomic, food
security and safety objectives are a challenge of today’s sustainable development and
resilience of agrifood systems to shocks and stresses.

In this context, environmental inhibitors are among the options that are currently
being explored and used. Environmental inhibitors are substances that are used
to reduce greenhouse gas emission from the livestock sector or to minimize the
loss of nutrients from cultivated soil which has additional benefits in improved
performance of animals and efficiency of fertilizers. While they are not new to
agricultural practices, their implementation needs to consider many aspects starting
from possible food safety concerns flanked by the limited information available in
this regard, as well as their implications for trade and economies.

Developing integrated strategies to create synergies between involved sectors
is at the basis of policies targeting smart agriculture in agrifood systems under
transformation. The Strategic Framework of the Food and Agriculture Organization
(FAO) of the United Nations, centered around better production, better nutrition, a
better environment, and a better life, supports the 2030 Agenda, where safe food for
everyone is an important priority area. Scientific advancement and innovation are key
in providing means, either in terms of knowledge or technological improvements,
to fill current gaps which impede an optimal risk assessment and implementation
of new solutions for a more sustainable production of safe food.

This report provides a food safety analysis of the main groups of environmental
inhibitors. It also offers an overview of how different regulatory frameworks
worldwide deal with environmental inhibitors, highlighting at the same time the
lack of global harmonization in defining and categorizing these substances.

We hope that the findings and conclusions of this report will offer some viable
options and recommendations to move forward in realizing the full potential of
environmental inhibitors towards resilient, sustainable and safe agrifood systems.

Corinna Hawkes
Director
Food Systems and Food Safety Division



Flooded rice fields are a particular type of cultivation
where the need for fertilizers and anaerobic
environment lead to higher CH4 emissions compared
to other crops.
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Buffalo farming contributes to global CH4 emissions
from enteric fermentation of ruminants.
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EXECUTIVE SUMMARY

Agrifood systems are under unprecedented pressure to produce more food for the
growing world population, while reducing the environmental footprint and coping
with the challenges posed by climate change. In this context, numerous practices and
technologies are being developed to increase the sustainability of agrifood systems.
One of the approaches to reduce negative impacts on the environment while at
the same time improving the production efficiency of crops and livestock, is the
application of the so called “environmental inhibitors”, in particular:

> methanogenesis inhibitors: these reduce methane emissions resulting from
enteric fermentation of ruminants and from other agricultural sources (such as
rice paddies or manure), and

> nitrogen inhibitors: these limit the loss of nitrogen from farmlands by slowing
down natural processes which lead to its leakage and volatilization.

While the use of methanogenesis inhibitors is currently mostly limited to research
purposes, several products are available on the market as nitrogen inhibitors. It is
likely that the intensification of livestock farming and use of nitrogen fertilizers in
the coming years will increase the application of nitrogen inhibitors. High fertilizer
prices may also encourage the use of nitrogen inhibitors to minimize fertilizer
demand while maintaining crop yield and quality.

This publication aims to provide an overview of substances used as environmental
inhibitors and to summarize information on potential implications on food safety
and regulations resulting from their application.

In many cases, information on potential residues of environmental inhibitors
and/or their metabolites in food commodities is not available, which does not allow
for thorough food safety risk assessments to be carried out. At the same time, the way
environmental inhibitors are being covered by regulatory frameworks worldwide
is diverse. Various legal instruments are applied to regulate these compounds at
national and regional level, in particular through regulations on feed additives, food
additives and substances used in food production, fertilizers and pesticides. Some
environmental inhibitors are covered by legislations related to other primary uses
(e.g. industrial use, human medicine) when reduction of methane emissions or the
loss of nitrogen is the secondary application. As chemical residues of environmental
inhibitors can occasionally be detected in food at low levels for which no regulatory
limits exist, Codex Alimentarius adopted international guidelines for rapid risk
analysis of such substances and agreed that Maximum Residue Limits (MRLs) for
inhibitors could be considered by the Codex Committee on Pesticide Residues
(CCPR) for crops and by the Codex Committee on Residues of Veterinary Drugs
in Foods (CCRVDF) for animals.



Ensuring food safety of environmental inhibitors requires further efforts to

close regulatory and knowledge gaps. Science-based holistic risk assessment and
internationally harmonized legislative frameworks are needed to ensure food safety
of environmental inhibitors and facilitate their global trade. Concurrently, research
and development of novel environmental inhibitors needs to proceed in concert
with risk assessments. The approval of new products and technologies, such as
genetic recombination of crops increasing the capacity of environmental inhibitors
contained within plant tissues, requires increasing efforts to evaluate the implications
on food safety. On the other hand, re-purposing old chemistry as environmental
inhibitors needs a critical examination of new toxicological studies to understand
limitations and changes in the data requirements.

New technological solutions can help in optimizing the application of environmental
inhibitors. For instance, improvements in the quantification of greenhouse gas
(GHG) released from livestock and farmlands can allow a more precise and
simple application of these substances on commercial farms. However, while the
development of more advanced detection methods for environmental inhibitors or
their metabolites in complex matrices can strengthen food safety management, an
increasing analytical sensitivity would require regulatory approaches for dealing
with higher number of detects in foods. Furthermore, technological progress in
other scientific domains, for example in omics technologies applied to understand
changes in rumen microbiome, can help investigate natural processes underlying the
efficiency of mitigation strategies on methane formation and livestock performance.

Effective implementation of environmental inhibitors needs to take into account
multiple factors related to costs, uncertainties and possible food safety risks of
their application for farmers, industries and consumers. Those factors depend on
local conditions, therefore careful evaluation on a case-by-case basis is considered
the best approach to achieve required outcomes while minimizing the negative
impact on other variables in the system. Current estimates indicate that costs of
inhibitor application may be outcompeted by savings when considering societal
benefits related to the reduction of GHG emission for human and ecosystem health.
Financial incentives are among the factors predicted to promote the adoption of
GHG mitigation strategies in practice.

As the trend shifts towards more sustainable agrifood systems, environmental
inhibitors are among the tools that can offer viable solutions towards adequate
nutrition for the growing world population while minimizing the impacts on the
environment. At the same time, it is critical to keep raising awareness of the various
interconnections that exist in agrifood systems, so that any food safety implications
are carefully considered and proactively addressed.

Xiii
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FOOD SAFETY IMPLICATIONS FROM THE USE OF ENVIRONMENTAL INHIBITORS IN AGRIFOOD SYSTEMS

The efficacy of fertilizers can be improved
by the application of nitrogen inhibitors
which reduce the loss of nitrogen from
the rootzone of cultivated plants.




CHAPTER 1

INTRODUCTION AND
BACKGROUND

The UN estimates that the global human population will reach 9.7 billion by 2050
(UN, 2022). Projections for periods ranging from 2010 to 2050 show that food
demand is forecasted to grow by up to 60 percent (Falcon, Naylor and Shankar,
2022; van Dijk er al., 2021). At the same time, intensifying food production and the
corresponding supply chains can lead to increased greenhouse gas (GHG) emissions
which has an enormous impact on climate change (see Figure 1) (Mbow et al., 2019;
Opio et al., 2013). If no action is taken, GHG emissions from agrifood systems
are expected to grow by 30-40 percent over the next three decades (Mbow et al.,
2019). International efforts are being made to address global warming and set time
checkpoints through seventeen Sustainable Development Goals (SDG)! and the
Paris Agreement,” involving the reduction of GHG emissions by 2030. Moving
towards sustainable agrifood systems is high on the agenda of the United Nations as
also demonstrated by the recent FAO Global Conference on Sustainable Livestock
Transformation.’

Against this backdrop, numerous practices and technologies are being developed to
increase sustainability of agrifood systems. Environmental inhibitors are one such
approach, as they are used to reduce negative impacts on the environment while
improving at the same time the production efficiency of crops and livestock. In this
publication, the term environmental inhibitors is used to describe anthropogenic or
naturally occurring substances (or their mixtures) that are used to reduce:

> GHG emissions, in particular methane (CHs4), from livestock, manure (see Box 1)
as well as croplands by blocking key enzymes or pathways in methanogenic
microorganisms which limits their growth and ability to produce CHs;

> loss of nitrogen from soil by delaying or blocking the activity of specific
enzymes or microorganisms responsible for nitrification, denitrification or urea
hydrolysis.

! sdgs.un.org/goals
2 unfccc.int/sites/default/files/english_paris_agreement.pdf

* fao.org/events/detail/fao-global-conference-on-sustainable-livestock-transformation/en
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FIGURE 1. MAIN SOURCES OF NON-CO2 GHG EMISSIONS FROM CROP AND LIVESTOCK SECTORS AND
ASSOCIATED LAND USE
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The extent of contribution from upstream and downstream chain beyond the farm gate, such as
manufacturing of fertilizers, industrial food processes, energy use or food loss and waste, is uncertain
due to insufficient data available.

Source: Author’s own elaboration. Adapted from FAQ. 2020. Emissions due to agriculture. Global, regional and country trends 2000-2018.
FAOSTAT Analytical Brief Series No 18. Rome https://www.fao.org/3/ch3808en/ch3808en.pdf and Mbow, C., Rosenzweig, C., Barioni, L.G.,
Benton, T.G., Herrero, M., Krishnapillai, M., Liwenga, E. et al. 2019. Food Security Supplementary Material. In: PR. Shukla et al. Climate
Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food
security, and greenhouse gas fluxes in terrestrial ecosystems.
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CHAPTER 1: INTRODUCTION AND BACKGROUND

Box 1. THE ROLE OF MANURE MANAGEMENT IN REDUCING CHs EMISSIONS
AND NUTRIENT LOSS

Greenhouse gas emissions and release of nutrients from the livestock sector can
be considerably reduced through manure management strategies (FAO, 2023).
Those may involve measures to reduce livestock urinary nitrogen (e.g. animal breeding for
improved nitrogen efficiency, dietary manipulation), treatment of manure in digesters or
composting for decreased methane (CHs) emission, or use of urease inhibitors to reduce
nitrous oxide (N20) emission (Montes et al., 2013; Rivera and Chara, 2021). These strategies
are selected depending mainly on animal species, farming systems, livestock diet and
climatic zone (Gerber et al, 2013). Various well-established treatment as well as novel
processes and technologies can be employed to reduce the concentrations of substances that
may affect plant growth when untreated manure is applied on land or to recover nutrients
that could potentially be spread to adjacent ecosystems (Che ef al., 2021; Dadrasnia et al.,
2021; Szogi, Vanotti and Ro, 2015).

Notes:

Che, X., Di, H.J., Cameron, K.C. & Dodd, R. 2022. Treating farm dairy effluent with poly-ferric sulphate dramatically reduces
phosphorus and E. coli leaching through subsurface drains—A physical drainage model study. Soil Use and Management,
38(3): 1493-1504. https://doi.org/10.1111/sum.12809

Dadrasnia, A., De Bona Mufioz, |., Yafiez, E.H., Lamkaddam, I.U., Mora, M., Ponsa, S., Ahmed, M. et a/. 2021. Sustainable nutrient
recovery from animal manure: A review of current best practice technology and the potential for freeze concentration. Journal of
Cleaner Production, 315: 128106. https://doi.org/10.1016/j.jclepro.2021.128106

FAO. 2023. Reducing methane emissions in livestock systems in Asia and the Pacific — Enhancing national climate actions
through the Global Methane Pledge. Workshop report. Bangkok, Thailand 24-26 October 2022. FAO Animal Production and
Health Reports, No. 19. Rome https://doi.org/10.4060/cc6388en

Gerber, PJ., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change
through livestock — A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the
United Nations (FAO), Rome. fao.org/3/i3437¢/i3437e.pdf

Montes, F., Meinen, R., Dell, C., Rotz, A., Hristov, A.N., Oh, J., Waghorn, G. ef a/. 2013. SPECIAL TOPICS — Mitigation of methane
and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Journal of Animal
Science, 91(11): 5070-5094. https://doi.org/10.2527/jas.2013-6584

Rivera, J.E. & Char4, J. 2021. CHa and N20 Emissions From Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in
Grazing Systems. Frontiers in Sustainable Food Systems, 5: 657936. https://doi.org/10.3389/fsufs.2021.657936

Szogi, A.A., Vanotti, M.B. & Ro, K.S. 2015. Methods for Treatment of Animal Manures to Reduce Nutrient Pollution Prior to Soil
Application. Current Pollution Reports, 1(1): 47-56. https://doi.org/10.1007/s40726-015-0005-1

SCOPE AND SEARCH STRATEGY

This publication provides an overview of substances used as environmental inhibitors
and summarizes information on possible food safety implications resulting from
their application. In addition, the report also gives a snapshot of national and
regional legislative frameworks, highlighting differences in regulating the use of
environmental inhibitors in jurisdictions worldwide.

The publications cited in this document were retrieved from open-access databases
such as PubMed and Google Scholar, as well as FAO’ repository, using keywords
such as methanogenesis/methane inhibitor(s) or (de)nitrification/nitrogen inhibitor(s)
or urease inhibitor(s) and livestock/ruminants and/or soil and/or food and/or feed
and/or milk/meat/vegetable(s)/crops and/or residue(s) and/or safety and/or toxicity.


https://doi.org/10.1111/sum.12809
https://doi.org/10.1016/j.jclepro.2021.128106
https://doi.org/10.4060/cc6388en
http://fao.org/3/i3437e/i3437e.pdf
https://doi.org/10.2527/jas.2013-6584
https://doi.org/10.3389/fsufs.2021.657936
https://doi.org/10.1007/s40726-015-0005-1
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Information and data regarding food safety of described substances were also
obtained from reports, scientific opinions and institutional websites of national
authorities, international bodies and associations. The regulatory section (section 4)
was compiled for selected countries as representative of different geographic areas
based on relevant local legislation and information provided by national authorities.

Itis outside the scope of this publication to provide an exhaustive list of environmental
inhibitors or information on their efficiency and application approaches. Similarly,
an in-depth analysis of legislations covering environmental inhibitors in various
jurisdictions is also beyond the scope of this publication.

1.1 METHANE EMISSIONS AND METHANOGENESIS INHIBITION

Methane (CHs4) is the second most abundant human-induced GHG after carbon
dioxide (CO2), (see Box 2) (FAO, 2020; USEPA, 2022a), and is formed as a
by-product of plant biomass enteric fermentation in the digestive system of
ruminants and anaerobic decomposition of the organic matter in manure or
water-saturated soils (OECD, 2019). It constitutes the biggest share of GHG
emissions from the livestock sector, followed by nitrous oxide (N20) and CO2
(Gerber et al., 2013). Microbial-derived enteric fermentative processes in ruminant
livestock are responsible for about 30 percent of the total anthropogenic CH4
emissions (FAQO, 2023a and FAO, 2023b) with cattle being the major contributor
to livestock emissions (see Figure 2) (FAO, 2023a, Gerber et al., 2013).

GHG emissions have been considered as the main challenge for sustainability in
the dairy sector (FAO, 2023b). Reduction of enteric CH4 emissions is therefore
necessary to limit the carbon footprint of ruminant production. Rice cultivation is
the second highest source of CH4 emissions from agrifood systems (see Figure 2)
(IPCC, 2014; USEPA, 2022a).

Besides the negative impact of CH4 emissions by livestock ruminants on climate
change, its release is associated with reduced feed efficacy and loss of energy leading
to decreased animal productivity of up to 12 percent (Garcia-Lozano et al., 2017).

Several publications offer a review of measures to mitigate CH4 production by livestock
(Almeida and Hegarty, 2021; Beauchemin ez al., 2020 and 2022; Cummins et al., 2022;
Hristov ez al., 2013a; Knapp et al., 2014; Kumar ez al., 2014; Llonch et al., 2017; Patra,
2011; Thompson and Rowntree, 2020). These measures include management and
breeding strategies, manipulation of rumen microbiome and fermentation, vaccines,
early life programming, nutritional approaches and feed supplementation. Numerous
reviews focused on the latter two which can be easily introduced anytime during the
animal lifespan and are part of routine husbandry practices (Black, Davison and Box,
2021; FAO, 2023a; Hadipour et al., 2021; Haque, 2018; Hegarty et al., 2021; Honan et
al.,2021; Hristov et al., 2013b and 2022; Kroliczewska, Pecka-Kietb and Bujok, 2023;
Palangi ez al., 2022; Palangi and Lackner, 2022; Sun et al., 2021; Tseten et al., 2022).
While interventions to increase feed digestibility are associated with lower enteric CH4
emissions, synthetic methanogenesis inhibitors used as feed additives remain more
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BOX 2. CH4 LIFESPAN AND WARMING POTENTIAL RELATIVE TO CO2

When released to the atmosphere, methane (CHs) immediately traps heat, at least one
hundred times as much as carbon dioxide (CO2) emissions. The warming effect diminishes
as CHa starts to break down until cycling out in approximately twelve years. In contrast, CO2
can persist in the atmosphere for thousands of years (USEPA, 2022; NASA, 2019). The gap
between the warming effects of the two GHGs diminishes progressively: the original amount
of atmospheric CHa would trap about 84-86 times as much heat as CO2 over 20 years and up
to 34 times over 100 years (UNECE, 2023).

The amount of GHGs is commonly expressed as CO2 equivalents (CO2-eq) with reference to
CO02 emissions that would cause the same time-integrated radiative forcing over a given
period (Gerber et al., 2013). It is obtained by multiplying a GHG emission by its global
warming potential (GWP) and constitutes a standard metric for comparing emissions of
different GHGs (IPCC, 2007).

Notes:

Gerber, PJ., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change
through livestock — A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the
United Nations (FAO), Rome. fao.org/3/i3437¢/i3437e.pdf

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: Mitigation of Climate Change. Contribution of
Working Group Il to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B. Metz, 0.R. Davidson,
PR. Bosch, R. Dave & L.A. Meyer, eds. Cambridge University Press, Cambridge, UK and New York, USA. ipcc.ch/site/assets/
uploads/2018/03/ar4_wg3_full_report-1.pdf

National Aeronautics and Space Administration of the United States (NASA). 2019. The atmosphere: Getting a Handle on
Carbon Dioxide. In: Global Climate Change, Vital Signs of the Planet. Pasadena, USA. [Cited 07 July 2023]. climate.nasa.gov/
news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/

United Nations Economic Commission for Europe (UNECE). 2023. Methane management — The challenge. In: Sustainable
energy. Geneva, Switzerland. [Cited 17 July 2023]. unece.org/challenge

United States Environmental Protection Agency (USEPA). 2022. Greenhouse gasses. In: Climate change indicators. Washington,
DC, USA. [Cited 19 July 2023]. epa.gov/climate-indicators/greenhouse-gases

efficient and have been included among climate-smart agricultural practices (Arndt
et al., 2021; Veneman et al., 2016; Zaman et al., 2021). However, grazing and mixed
farming systems need adequate solutions for the delivery of methanogenesis inhibitors
to achieve substantial levels of CH4 mitigation, such as slow-release bolus capsules
releasing an inhibitor continuously at a low dose rate (NZGAGRC/PGgRe, 2021).
The growing importance of methanogenesis inhibitors for the agricultural sector has
also been recognized in a FAO report launched in September 2023 (FAO, 2023a).

Methanogenesis inhibitors reduce energy loss resulting from the ruminal transformation
of feed nutrients into CHs (see Box 3), which limits its release from livestock to the
atmosphere, and favour the production of beneficial compounds, such as fatty acids (Liu
et al., 2011). Methanogenesis inhibitors may also slow down methanogenic microbial
processes and reduce CH# emission from livestock manure or water-saturated soils
like rice paddies or wetlands, where decomposition of organic matter under anaerobic
conditions leads to the release of considerable amounts of GHG.


http://fao.org/3/i3437e/i3437e.pdf
http://ipcc.ch/site/assets/uploads/2018/03/ar4_wg3_full_report-1.pdf
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http://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/
http://climate.nasa.gov/news/2915/the-atmosphere-getting-a-handle-on-carbon-dioxide/
http://unece.org/challenge
http://epa.gov/climate-indicators/greenhouse-gases
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FIGURE 2.  GLOBAL CHs EMISSIONS WITH EMPHASIS ON AGRIFOOD SYSTEMS AND LIVESTOCK
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(Cattle are the major contributor with similar distribution of CHz emissions among beef and dairy cattle,
followed by rice cultivation and other ruminants. Non-ruminant animals, such as pigs, also produce CHs
but at much lower amounts. To a minor extent, the livestock sector is responsible for emissions of other
GHGs, such as N20 and COz2.

Source: Author's own elaboration. Adapted from FAQ. 2023. Methane emissions in livestock and rice systems. Rome. https://doi.org/10.4060/
cc7607en; Gerber, PJ., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G. 2013. Tackling climate change
through livestock — A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United
Nations (FAQ), Rome. fao.org/3/i3437¢/i3437e.pdf; IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I,
Iland Il to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer
(eds.)]; IPCC, Geneva, Switzerland, 151 pp. and USEPA. 2022a. Importance of Methane. In: Global methane initiative. Washington, DC, USA.
[Cited 19 July 2023]. epa.gov/gmi/importance-methane

Methanogenesis inhibitors specifically target microorganisms responsible
for the production of CH4 by acting on enzymes which are not present in
non-methanogenic species. The most widely described compounds are analogues
of methyl-coenzyme M (Me-CoM), which is the substrate of methyl coenzyme
M reductase (MCR) enzyme. MCR is responsible for catalysing the last step in the
process of CHs production by methanogenic archaea. Methanogenesis inhibitors
competitively inhibit MCR by binding to the enzyme’s active site, which impedes
binding of the natural substrate and hampers the reaction (see Figure 3). Recently,


https://doi.org/10.4060/ cc7607en
https://doi.org/10.4060/ cc7607en
http://fao.org/3/i3437e/i3437e.pdf
http://epa.gov/gmi/importance-methane

Rice paddies emit CH4 due to large volumes of water
necessary to sustain plant growth, which blocks oxygen
from penetrating the soil. This generates optimal
conditions for growth of methanogenic bacteria.
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the Me-CoM analogue 3-nitrooxypropanol (3-NOP) has gained attention due to
its efficacy in enteric CHs4 inhibition and positive safety evaluation by the producer
and food safety authorities, supported by numerous reviews describing its properties
and use as feed additive (Jayanegara er al., 2017; Kebreab et al., 2023; Kim et al.,
2020; Yu, Beauchemin and Dong, 2021). Food safety details are provided in section
2.1.1.1. However, methanogenesis inhibitors can also target other enzymes, such
as 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMG-CoA), which
is involved in the synthesis of cell membrane components in archaea and can be
inhibited by statins (Gottlieb ez al., 2016).

Box 3. METHANOGENESIS PROCESSES AND TARGETS OF METHANOGENESIS INHIBITORS

Complex organic matter taken up with feed is reduced to less complex matter in the process
of microbial hydrolysis carried out by bacteria, fungi and protozoa (Cammack et al., 2018).
Then, microorganisms responsible for fermentation produce short-chain volatile fatty acids
(VFA) such as acetate, propionate and butyrate which are absorbed for nutrition and for the
production of meat, milk and wool (Ungerfeld, 2020).

Carbon dioxide (C02) and hydrogen (Hz) are by-products of fermentation and can be used
by hydrogenotrophic methanogens to produce methane (CHs) as the primary route of
methanogenesis. In this process, binding of enzyme Me-CoM reductase (MCR) with its natural
substrate methyl coenzyme M (Me-CoM) is crucial and can be blocked by MCR inhibitors
(Yu, Beauchemin and Dong, 2021).

As animals have a fast flow of organic matter, rumen methanogenesis is partial (Leahy
et al., 2022); in ecosystems such as rice paddies, VFA can be converted to simpler acids
while the process of acetogenesis leads to the production of acetic acid (CHsCOOH) from CO2
and Hz, which is further transformed by acetoclastic methanogens with a final release of
CHa. Accumulated gas is eliminated primarily during eructation and respiration.

In addition to MCR inhibitors, different reactions and organisms along the pathway are targets
of other inhibitors to reduce CHa emissions. Inhibitors of hydrogenotrophic and acetoclastic
methanogens modulate the respective populations limiting their activity, thereby reducing
the amount of produced CHa. At the very beginning of the digestive process, the population
of protozoa can be kept under control by bioactive compounds contained in biological
methanogenesis inhibitors, which may also inhibit hydrogenotrophic and acetoclastic
methanogens. Alternative Hz sinks reduce available hydrogen produced during microbial
activity subtracting it from methanogens, thereby reducing the amount of CHa produced.

Notes:

Cammack, K.M., Austin, K.J., Lamberson, W.R., Conant, G.C. & Cunningham, H.C. 2018. Tiny but mighty: The role of the rumen
microbes in livestock production. Journal of Animal Science. https://doi.org/10.1093/jas/skx053

Leahy, S.C., Janssen, PH., Attwood, G.T., Mackie, R.1., McAllister, TA. & Kelly, W.J. 2022. Electron flow: key to mitigating ruminant
methanogenesis. Trends in Microbiology, 30(3): 209-212. https://doi.org/10.1016/j.tim.2021.12.005

Ungerfeld, E.M. 2020. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Frontiers
in Microbiology, 11: 589. https://doi.org/10.3389/fmich.2020.00589

Yu, G., Beauchemin, K.A. & Dong, R. 2021. A Review of 3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant
Livestock. Animals, 11(12): 3540. https://doi.org/10.3390/ani11123540


https://doi.org/10.1093/jas/skx053
https://doi.org/10.1016/j.tim.2021.12.005
https://doi.org/10.3389/fmicb.2020.00589
https://doi.org/10.3390/ani11123540
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Non-specific methanogenesis inhibitors not only target microorganisms directly
involved in the production of methane but also inhibit wider microbial populations
by acting on common processes or molecules (Liu ez al., 2011). An example of this
type of inhibitors are ionophores used in animal production as antimicrobials.

These can improve feed efficiency by modulating rumen microorganisms and
fermentation pathways leading to shifts in the production of volatile fatty acids
(VFA) from acetate to propionate. This contributes to reducing CH4 emissions by
lowering the amount of substrate for methanogenic bacteria. The mode of action of
ionophores as feed additives and their impact on ruminal function has been reviewed
previously (da Silva Marques and Fernandes Cooke, 2021; FAO, 2023a; Hall, 2013).

Several substances acting as hydrogen sinks alternative to CH4 have been identified
(Newbold er al., 2005). These act by competing with CH4 for available hydrogen,
impeding the reaction with COz2 through hydrogenotrophic route (see Figure 3).

However, only few substances (e.g. nitrates) proved to efficiently trap hydrogen and
reduce methanogenesis, which may be explained by additional mechanisms involved
(Yang et al., 2016). For example, in an endogenous process in the rumen, nitrites are
produced as intermediates from nitrates following reduction by hydrogen. In turn,
nitrites may alter microbial metabolism lowering the amount of generated hydrogen
or inhibit methanogens directly (Ungerfeld, 2015; Yang et al., 2016).
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FIGURE 3. MAIN STEPS OF CHs GENERATION PATHWAY IN RUMINANTS AND POINTS OF INTERVENTION
TO REDUCE CH4 EMISSIONS
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Processes prevailing in gut ecosystems (ruminants, humans) are indicated by black arrows while
those prevailing in environmental ecosystems are shown by blue arrows.

Source: Author’s own elaboration. Adapted from Haque, M.N. 2018. Dietary manipulation: a sustainable way to mitigate methane emissions
from ruminants. Journal of Animal Science and Technology, 60(1): 15. https://doi.org/10.1186/s40781-018-0175-7; Leahy, S.C., Janssen,
PH., Attwood, G.T., Mackie, R.I., McAllister, T.A. & Kelly, W.J. 2022. Electron flow: key to mitigating ruminant methanogenesis. Trends in
Microbiology, 30(3): 209-212. https://doi.org/10.1016/.tim.2021.12.005; Liu, H., Wang, J., Wang, A. & Chen, J. 2011. Chemical inhibitors
of methanogenesis and putative applications. Applied Microbiology and Biotechnology, 89(5): 1333—1340. doi.org/10.1007/s00253-
010-3066-5; Ungerfeld, E.M. 2020. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions.
Frontiers in Microbiology, 11: 589. https://doi.org/10.3389/ fmich.2020.00589 and Yu, G., Beauchemin, K.A. & Dong, R. 2021. A Review of
3-Nitrooxypropanol for Enteric Methane Mitigation from Ruminant Livestock. Animals, 11(12): 3540. https://doi. org/10.3390/ani11123540

Biological methanogenesis inhibitors include a variety of feed additives usually based
on products containing mixtures of active substances. Some species of seaweed such
as Asparagopsis taxiformis and Asparagopsis armata, have showed high inhibitory
potential, reducing up to 98 percent of ruminal CH4 emissions (Ba&éninaite,
DzZermeikaité and Antanaitis, 2022). Seaweeds have halogenated CH4 analogues
(HMAs) which can block the production of Me-CoM necessary for the last step of
methanogenesis by reacting with vitamin B12 and impeding cobamide-dependent
methyl transfer into coenzyme M. Other seaweeds with lower concentrations of
HMAs can inhibit methanogenesis through a variety of bioactive components but
with lower efficacy compared to Asparagopsis spp. However, many of the studies on


https://doi.org/10.1186/s40781-018-0175-7
https://doi.org/10.1016/j.tim.2021.12.005
https://doi.org/10.1007/s00253-010-3066-5
https://doi.org/10.1007/s00253-010-3066-5
https://doi.org/10.3389/ fmicb.2020.00589
https://doi. org/10.3390/ani11123540
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seaweed inclusion for CH4 reduction are based on in vitro, short-term experiments
with inconsistent results, albeit mostly indicating a reduction in CH4 output
(FAO, 2023a; Lean et al., 2021).

While various plant-derived compounds including saponins, tannins, flavonoids and
essential oils have been studied for their properties to inhibit CH4 emission from
livestock (FAQO, 2023a), these have mainly been used to improve the nutritional
characteristics of feed and food.

1.2 NITROGEN LOSS AND ITS INHIBITION

Nitrogen is critical for optimal growth and development of plants, ensuring efficient
crop production. Despite being one of the most abundant elements in nature, lack
of nitrogen is the main cause of nutritional deficiency in plants (Pallardy, 2008).
Among plant nutrients, nitrogen is the one in highest demand. Over 50 percent of
fertilizers is produced as urea which has a high nitrogen concentration and lower
production costs compared to other nitrogen fertilizers (Cantarella ez al., 2018;
Cross, L. and Grueére, 2022). Urea is also naturally present in animal excreta.
When applied to soil, urea undergoes fast hydrolysis to ammonium which plants
can utilize for growth. However, ammonia and other reactive nitrogen compounds,
such as nitrates, can be formed from ammonium (see Figure 4), leading to the
loss of even half of nitrogen input following fertilization (Lassaletta et al., 2014).
Those processes depend on multiple factors including climatic conditions, soil and crop
type, agronomic practices, site position in the landscape, and nitrogen concentration
(Robertson, 1997).

The loss of nutrients resulting from their chemical properties and natural dynamics in
soil (see Figure 4) will need to be managed to restore ecosystem (Hunter et al., 2017).
This imbalance relates to both chemical and organic fertilizers which can
lead to excessive nutrient input or their deficiency in soil if used improperly
(Shaji, Chandran and Mathew, 2021). Various mitigation measures exist to manage
the loss of nitrogen from soil in relation to agricultural land use (Abalos et al., 2022;
Hassan et al., 2022; Hoekstra et al., 2020; Xia et al., 2017). Among them, nitrogen
inhibitors reduce the transformation of nitrogen compounds into less stable forms
prone to leaching or volatilization (see Box 4). This allows the available nitrogen to be
stabilized on the soil particles and provides plants with increased access to nitrogen.

The characteristics, modes of action, efficacy and strategies of employment have
been widely described in numerous reviews on nitrification (Beeckman, Motte and
Beeckman, 2018; Fan et al., 2022; Nugrahaeningtyas et al., 2022; Ray et al., 2020;
Woodward et al., 2021) and urease inhibitors (Cantarella ez al., 2018; Klimczyk,
Siczek and Schimmelpfennig, 2021; Modolo er al., 2018; Song et al., 2022; Yang et
al., 2022; Yang, Peng and Wang, 2023), many of which focus on biological solutions
(Coskun et al., 2017a and 2017b; Modolo et al., 2015; Nardi et al., 2020; Sadhukhan
et al., 2022; Saud, Wang and Fahad, 2022; Subbarao er al., 2013a, 2013b and 2015;
Wang, X. et al., 2021). By improving nitrogen use efficiency (NUE) in plants,
smaller amounts of fertilizers are required to maintain efficiency of food production.
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Consequently, leaching of fertilizers to groundwater and surface waters is reduced
resulting in beneficial effects on eutrophication (Singh and Verma, 2008). Precision
agriculture solutions to reduce leaching of nitrate and emissions of ammonia and
nitrous oxide are also under development. Solutions for grazing systems involve
robotics to simultaneously detect and treat urine patches with nitrogen inhibitors
(Bates, Quin and Bishop, 2015).

FIGURE 4. MAIN PATHWAYS OF BIOLOGICAL NITROGEN FIXATION, LOSS AND STEPS ON WHICH
NITROGEN INHIBITORS ACT
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Source: Author’s own elaboration. Adapted from Bernhard, A. 2010. The Nitrogen Cycle: Processes, Players, and Human Impact. Nature
Education Knowledge, 3(10):25. nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/;
Norton, J. & Ouyang, Y. 2019. Controls and Adaptive Management of Nitrification in Agricultural Soils. Frontiers in Microbiology, 10: 1931.
https://doi.org/10.3389/fmicb.2019.01931 and Wagner, S. C. 2011. Biological Nitrogen Fixation. Nature Education Knowledge, 3(10):15.
nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/

12


http://nature.com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/
https://doi.org/10.3389/fmicb.2019.01931
http://nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/

CHAPTER 1: INTRODUCTION AND BACKGROUND

Box 4. MAIN PROCESSES OF NITROGEN CYCLE IN THE SOIL RELEVANT FOR NITROGEN
INHIBITORS

As atmospheric nitrogen can be used only by legume plants thanks to symbiotic bacteria
living in their roots, nitrogen fixation is necessary for organisms to produce vital organic
compounds such as proteins or nucleic acids (Wagner, 2011). Through their roots, plants
assimilate nitrogen in the form of ammonium and nitrates which are dissolved in water
present in soil. Once fixed in the vegetal mass, nitrogen is distributed in the food chain to
other organisms like animals. Organic waste is then decomposed to urea by aerobic and
anaerobic bacteria and fungi residing in soil.

The overall pool of nitrogen in the form of urea can be increased using fertilizers.
In the presence of water, the process of hydrolysis mediated by urease enzyme leads
to the production of ammonium from urea and is the first point in the pathway where
nitrogen inhibitors can be applied (urease inhibitors). Ammonium can be also produced
from atmospheric nitrogen by specialized soil bacteria, and it can be stabilized onto
soil on negatively charged exchange sites. However, it can be lost through volatilization
of ammonia which is formed under alkaline conditions, and during nitrification.
Urease inhibitors reduce this loss by limiting the hydrolysis of urea, primarily by inhibiting
ammonia monooxygenase (AMO), which gives time for its incorporation into the soil via
rainfall or irrigation, and allows the formation of ammonia at lower rates compatible with
plant uptake.

Both ammonium and ammonia undergo a rapid process of nitrification to nitrites carried
out by ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA), and in
the second step to nitrates by nitrites oxidizing bacteria (NOB) (Norton and Ouyang, 2019).
Comammox (complete ammonia oxidation) bacteria belonging to the genus Nitrospira can
perform both conversion processes. Nitrates can rapidly accumulate in the soil and be lost
by runoff, leaching out to depths below the rhizosphere and farther to the environment, or via
a conversion to atmospheric nitrogen by denitrifying bacteria under anaerobic conditions
(Bernhard, 2010). This loss can be limited by applying nitrification inhibitors which
temporarily reduce the activity of Nitrosomonas (included among AOB) and Nitrobacter
bacteria (included among NOB) in soil or enzymes produced by them, such as AMO,
hydroxylamine oxidoreductase (HAO) or nitric oxide reductase (NOR). In particular, sandy
soils which are not capable of withholding nitrates as well as wet soils where ammonium
attached to the soil particles is easily washed out are the most suitable candidates for the
application of nitrification inhibitors. Additionally, by-products of denitrification, nitrous
oxide (N20) and nitric oxide (NO), contribute respectively to GHG emission and to smog.
Both phenomena can be limited by applying denitrification inhibitors which target the
activity of denitrifying bacteria.

Notes:

Bernhard, A. 2010. The Nitrogen Cycle: Processes, Players, and Human Impact. Nature Education Knowledge, 3(10):25. nature.
com/scitable/knowledge/library/the-nitrogen-cycle-processes-players-and-human-15644632/

Norton, J. & Ouyang, Y. 2019. Controls and Adaptive Management of Nitrification in Agricultural Soils. Frontiers in Microbiology,
10: 1931. https://doi.org/10.3389/fmich.2019.01931

Wagner, S. C. 2011. Biological Nitrogen Fixation. Nature Education Knowledge, 3(10):15. nature.com/scitable/knowledge/
library/biological-nitrogen-fixation-23570419/
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Environmental inhibitors can help improve the
efficacy of nitrogen use in crops, making it possible
to decrease the required amounts of fertilizers.




CHAPTER 2

FOOD SAFETY OF
ENVIRONMENTAL
INHIBITORS

While environmental inhibitors have been studied for decades, research to date
has mainly focused on evaluating their efficacy in reducing CH4 emissions and
improving the productivity of agrifood systems. Effects on target organisms
are widely described, but much less has been published on the impact that
environmental inhibitors may have on non-target organisms as well as on humans
through consumption of contaminated foods. Information on potential residues of
environmental inhibitors (and their metabolites) in food commodities is sparse and
the related food safety risks have rarely been assessed.

This chapter explores whether residues of environmental inhibitors found in animal
products, crops and vegetables might cause food safety concerns. The following
sections describe environmental inhibitors grouped according to their chemical
structure or source, providing summaries of safety- related information, where
available.

For the purpose of this publication, the term ‘synthetic inhibitors’ refers to those
inhibitory substances which are generally obtained through industrial synthesis
processes. For these inhibitors, substances have been selected as examples of various
chemical classes, thereby having potentially different modes of action and toxicity
effects. Constituents of commercial products currently on the market are included
under this term. The term ‘biological inhibitors” indicates inhibitory compounds,
their mixtures or parts derived from natural sources (e.g. plants or seaweeds).
This term aligns to denomination commonly used in scientific literature. Biological
inhibitors can be constituted by mixtures of chemically different substances,
therefore descriptions in this publication are based on their natural origin.

While food safety is the focus of this section, pertinent information could not
be identified in some cases. Although outside the scope of this work, effects on
the environment, including toxicity in wild animals, are provided as additional
information even if not directly related to dietary exposure. Likewise, hazard-
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related information described in this section should not be considered as necessarily
constituting a health risk in the absence and/or at low levels of exposure. It should
also be noted that information referring to occupational exposure is based on higher
concentrations than those occurring in food. Information on hazard according to the
Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
refers to pure substances, their diluted solutions or mixtures in bulk quantities.*

2.1 METHANOGENESIS INHIBITORS

Numerous inhibitors exist to reduce ruminal CH4 emissions acting on different
points along the methanogenesis pathway (see Figure 3). Whilst some of these
inhibitors are effective (e.g. 2,2,2-trichloroacetamide, hemiacetal of chloral and
starch, bromochloromethane, anthraquinone), they present numerous drawbacks
including transient reduction in CH4 emissions, undesirable side effects in livestock,
toxicity in animals and humans, possible adaptation of the rumen to inhibitors
over time or accumulation in meat. These drawbacks impede their application in
agricultural practices (Beauchemin er al., 2020; McGinn et al., 2019; Yang et al.,
2016). Information on selected categories of methanogenesis inhibitors regarding
safety for livestock has recently been summarized in a FAO report (FAO, 2023a).
The most important substances applied as methanogenesis inhibitors, (including
those currently considered as the most promising along with the ones formerly
studied), are listed in Table 1 according to type and mode of action.

2.1.1  SYNTHETIC METHANOGENESIS INHIBITORS

These inhibitors comprise single chemical substances or mixtures including the
active substance and other constituents of commercial products. The chemical classes
below are reported in alphabetical order within their respective types of inhibitors.

Inhibitors of MCR and other enzymes

Anthraquinone-based compounds

The group of anthraquinone-based compounds comprises natural and synthetic
compounds with multiple uses, including application in human medicine, cosmetics,
food packaging and as food colourants. Numerous studies reported toxicity of
various substances belonging to anthraquinones group primarily on liver, kidney,
or gastrointestinal tract, with DNA damage as a critical long-term effect (Health
Canada, 2018; Shukla et al., 2017). Low concentrations of anthraquinones naturally
present in a balanced diet as well as those used in food production and consumer
products are generally not considered to pose a threat to animal and human health
through oral or dermal exposure, or to endanger the environment (Dufossé, 2014;

*  Globally Harmonised System of Classification and Labelling of Chemicals (GHS). 2021. Ninth revised edition. United
Nations, New York and Geneva. ST/SG/AC.10/30/Rev.9
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Livestock feed can be supplemented with
methanogenesis inhibitors to reduce CH4 emissions.
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Fouillaud ez al., 2018; Health Canada, 2018). Anthraquinones may form reactive
metabolites and transform one into another potentially leading to an increased effect
(Fouillaud ez al., 2018 ; Wang, D. ez al., 2021).

Most of the toxicological information related to the agrifood sector is available
for 9,10-anthraquinone used as a pesticide. Toxicological risk to humans from the
non-food outdoor uses of 9,10-anthraquinone have been considered negligible
(USEPA, 1998). Residues of 9,10-anthraquinone used as bird repellent on seeds are
likely in treated food commodities such as rice. However, no concern to human
health through chronic dietary exposure based on rice consumption and drinking
water has been identified by the United States Environmental Protection Agency
(USEPA) (USEPA, 2022b). Nevertheless, potential cancer risk has been identified
from residential exposure to treated turf and from occupational exposures (USEPA,
2022c¢). Potential adverse effects to non-target animals and aquatic plants have been
identified but data are insufficient to perform risk assessment for some terrestrial
taxa (USEPA, 2022b). The use of 9,10-anthraquinone as pesticide is not authorized
in the European Union (EU) (EU, 2022a).

Considering the hazard properties of 9,10-anthraquinone, this compound has been
classified by the International Agency for Research on Cancer (IARC) as possibly
carcinogenic to humans (Group 2B) (IARC, 2013).

Chlorinated phenols

These substances can also be employed as pesticides and preservatives. A study on
kinetics of methanogenesis in the presence of chlorophenols indicated that toxicity to
microorganisms increases with hydrophobicity of compounds and is related to their
adsorption capacity to sludge (Puyol et al., 2012). Thus, pentachlorophenol (PCP)
has been considered more toxic compared to less hydrophobic 2,4-dichlorophenol
(2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP). Following the evaluation by the
Joint FAO/World Health Organization (WHO) Meeting on Pesticide Residues
(JMPR), exposure to PCP through diffuse sources including food and drinking
water had been considered to be of very low concern for the general population,
however, it may show toxicity effects to non-target species, including inhibition
of growth and development, mortality or altered biomarkers (FAO/WHO, 1987).

Guidance values established by WHO for 2,4,6-TCP as disinfection by-product in
drinking water are 2000, 200 and 20 pg/L for 10, 10-° and 10 excess lifetime cancer
risks, respectively (WHO, 2003). The lowest reported taste threshold for 2,4,6-TCP
is 2 pg/L, therefore, water free from taste has been considered unlikely to raise
risk concerns for consumers. No guideline values have been derived for 2,4-DCP
and 2-chlorophenol in drinking water due to limited toxicity data (WHO, 2003).
2,4-DCP may be formed as a photodegradation product of triclosan (Latch et al.
2005).
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Concerning hazard from chlorinated phenols, PCP is classified by the IARC
as carcinogenic to humans (Group 1) based on evidence to cause non-Hodgkin
lymphoma in humans (IARC, 2019). It is classified by the European Chemicals
Agency (ECHA) as a suspected carcinogen (ECHA, 2023) and by the USEPA
as likely to be carcinogenic to humans (USEPA, n.d.a.). Therefore, based on
occupational exposure, PCP is being phased out as a wood preservative in the USA
(USEPA, n.d.b.). PCP is also considered hepatotoxic with a reference dose for oral
exposure established at 5 pg/kg per day (USEPA, 2023). 2,4,6-TCP is classified by
the IARC as possibly carcinogenic to humans (Group 2B) (IARC, 2019) and by the
USEPA as a probable human carcinogen causing leukaemia based on limited or no
human data (Group B2) (USEPA, n.d.b.).

Halogenated CH+ analogues

This category of methanogenesis inhibitors has been reviewed previously
(Patra et al. 2017). The use of halogenated compounds is not authorized in numerous
countries due to concerns related to their involvement in ozone depletion (Montreal
Protocol, 1987). The major route of human exposure to trihalomethane have been
reported to occur through drinking water and inhalation (WHO, 2004). Chloroform
evaluated by the FAO/WHO Joint Expert Committee on Food Additives JECFA)
has been considered unsuitable for use as a food additive (FAO/WHO, 1980). The
tolerable daily intake (TDI) for chloroform has been derived at 13 pg/kg body
weight per day (corrected for weekly exposure of 6 days) based on hepatotoxic
effects in dogs, while a guidance value for exposure through drinking water
(2 L daily ingestion) has been set at 200 pg/L based on an average body weight of
60 kg (WHO, 2004). The TDI for bromoform and dibromochloromethane (DBCM)
have been established at 17.9 and 21.4 pg/kg body weight per day (corrected for
exposure over 5 days per week), respectively, with guideline values allocating
20 percent of the TDI to drinking water derived at 100 pg/L for both compounds
(WHO, 2004).

Considering possible carcinogenicity effects, guidance values established by WHO
for bromodichloromethane (BDCM) are 600, 60 and 6 pg/L for 10, 10-° and 10
excess lifetime cancer risks, respectively (WHO, 2004). It is not considered a
common food contaminant, but trace amounts can be present in dairy products
(WHO, 2004). Residues of bromochloromethane (BCM) in steer meat, fat and offal
were detected within safety limits, however, concentrations lost due to volatilization
were not calculated (Tomkins, Colegate and Hunter, 2009).

Suspected or probable/possible carcinogenicity® and suspected toxicity for
reproduction® have been indicated for some compounds of this group. Classification
by the IARC reports possible carcinogenic effects to humans (Group 2B)
for chloroform and BDCM, while bromoform and DBCM could not be classified as
to their carcinogenicity to humans due to limited evidence (IARC, 1991 and 1999).

* www.epa.gov/iris

¢ echa.europa.cu
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Chronic toxicity to aquatic organisms has been notified for bromoform, iodoform
and carbon tetrachloride. Positive results were obtained for 2,2,2-trichloroacetamide
in mammalian cytotoxicity and genotoxicity assays (Plewa et al., 2009). According
to the GHS, the following hazards have been associated with these substances:
acute toxicity when swallowed or inhaled, skin and serious eye irritations as well
as possible respiratory irritations.

Nitrooxy compounds

3-NOP has been recently commercialized as the active substance of “Bovaer® 10”.
Based on available absorption, distribution, metabolism and excretion (ADME)
data, it has been considered safe for target species, intended as ruminants for milk
production and reproduction, at maximum recommended levels in feed of 100 mg
3-NOP/kg dry matter (Almeida and Hegarty, 2021; EFSA, 2021a). Mutagenic and
genotoxic effects of 3-NOP and its metabolites have not been observed in rats
(Thiel ez al., 2019a and 2019b). Under the conditions of use as feed additive proposed
by the manufacturer, safety concern for consumers and the environment have not
been reported from 3-NOP nor its metabolites 3-nitrooxypropionic acid (NOPA),
1,3-propanediol and nitrate, the latter two naturally occurring in the rumen
(EFSA, 2021a; FAO, 2023a). Safety for other animal species could not be estimated
(EFSA, 2021a).

Other nitrooxy compounds have been studied or proposed for their ability to reduce
enteric CH4 emissions (Duval and Kindermann, 2012; Jin et al., 2017; Martinez-
Ferndndez er al., 2014). However, they need further evaluation regarding side effects
on animal health, residues in food commodities and safety for consumers (Li et al.,
2021).

Organosulfonic acids

Information on potential risks to animals and consumers from dietary sources
could not be identified. Adaptation and resistance of some rumen methanogens to
2-bromoethanesulfonate (BES) has been observed suggesting subsequent increase
in growth and persistence of BES-resistant microorganisms (Ungerfeld et al., 2004).
Understanding the mode of action of some substances, such as (4-hydroxyphenyl)
chloromethanesulfonate (C-1), needs further research (Hotta er al., 2022).

According to the GHS, hazard from many sulfonic esters may include (severe) skin
and serious eye irritation or damage, respiratory irritation upon inhalation or oral
exposure during handling. Extrapolation of this information to inform about dietary
risk must be performed with caution, as concentrations of these compounds in the
diet are several orders lower.
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Pterins

Lumazine is the representative compound belonging to pterins which have been
formerly studied for methanogenesis inhibition (Nagar-Anthal et al., 1996; Ungerfeld
et al., 2004; Ungerfeld, Rust and Burnett, 2007). Lumazine occurs naturally in plants,
insects and some marine organisms (Daniels ez al., 2019). Information concerning
consumers’ safety has not yet been collected.

Statins

While adverse effects of statins used in human medicine to control cholesterol
levels are widely described, safety information on statins as feed additives with
effects on consumers through residues in animal-derived food is sparse. No harmful
effects on health of goats fed a diet supplemented with lovastatin was observed
(Candyrine et al., 2018). Likewise, rumen microbiota was not affected. When used
as food supplements, the intake of lovastatin was considered safe at the use level of
10 mg/day, although sporadic effects on liver and musculoskeletal system occurred
at lower concentrations (EFSA, 2018a).

Alternative Hz sinks

Carboxylic acids

Some studies described the efficacy of propynoic acid and ethyl 2-butynoate in
reducing CH4 emission from the rumen (Ungerfeld, Rust and Burnett, 2003).
Toxicity information for ruminants has not been identified for propynoic acid.
However, propynoic acid is an unsaturated analogue of propionic acid which has
been assessed for safety as feed additive to all species and considered not to pose
safety concerns for consumers (EFSA, 2011). The acceptable daily intake (ADI)
established by JEFCA is “not limited” for propionic acid used as food additive at
proposed use levels (FAO/WHO, 1999). The evaluation by the European Food
Safety Authority (EFSA) considered that propionic acid does not raise safety
concerns from dietary exposure at concentrations up to 41.5 mg/kg body weight
per day, with the use as food additive being the major contributor (EFSA, 2014a).
Likewise, no concern with respect to carcinogenicity and genotoxicity was identified,
although for the latter the number of studies was limited. Toxicological information
available did not allow to allocate an ADI (EFSA, 2014a).

Hazard from derivatives of propynoic acid, according to the GHS, may include
harm or toxicity upon being swallowed. Ethyl 2-butynoate is classified as causing
skin and serious eye irritation, and a possible respiratory irritation but no relevant
information on safety regarding exposure through diet has been identified.
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Nitro compounds

Despite nutritional benefits and efficacy of nitrate in reducing CH4 emissions,
variations in response often related to the feed type and its reduction to nitrite have
caused concern. Nitrite absorbed in erythrocytes form methemoglobin in contact
with haemoglobin, making it unable to carry oxygen. In reaction with secondary
amines, nitrite can produce N-nitrosamines which are suspected to induce DNA
mutations and cancer (IARC, 2010) and have been evaluated as raising health
concerns for consumers through dietary exposure, although with many uncertainties
due to limited data availability (EFSA, 2023a). Ingested nitrate or nitrite under
conditions that result in endogenous nitrosation have been classified as probably
carcinogenic to humans (IARC, 2017). Yet, nitrite may build-up in animal tissues
following nitrate-rich diets when rates of nitrate reduction are higher than rates of
nitrite reduction (Dawson, Rasmussen and Allison, 1997).

The ADIs of 3.7 and 0-0.07 mg/kg body weight per day were established by JECFA
for nitrate and nitrite, respectively (FAO/WHO, 2002b). In a recent evaluation,
EFSA concluded that the benchmark dose lower bound (BMDL1o) of 64 and 2 mg
nitrate/kg body weight per day does not raise health concerns for ruminants and
pigs, respectively (EFSA, 2020). Nitrate and nitrite supplemented in feed may leave
residues in food commodities including meat and milk (Doreau ez al., 2018; Guyader
et al., 2016), although other sources such as natural presence, use as fertilizers on
crops or as additives in food processing have been described to largely contribute
to detected concentrations (Karwowska and Kononiuk, 2020). The use of nitrate as
feed additives is banned in some countries (Beauchemin et al., 2020).

As environmental pollutant linked to food safety, nitrate in excess can lead to
eutrophication causing perturbations to ecosystems and has been reported to be of
concern in groundwaters worldwide (Abascal et al., 2022; Singh er al., 2022). It is
associated with harmful algal blooms (HAB) which can pose threat to human and
animal health owing to the production of toxins (FAO, IOC and IAEA, 2023).

Other nitro compounds investigated as reducers of CH4 emissions (Anderson et al.,
2006 and 2010; Bozic et al., 2009; Brown et al., 2011; Gutierrez-Bafiuelos et al., 2007),
for example nitroethane, may cause irritations when inhaled or ingested, induce the
formation of methemoglobin or show toxicity at relatively low levels. However, less is
known regarding their toxicity in feed supplementation (Teng and Kim, 2021). Doses
high enough to efficiently reduce CH4 emissions may be lethal to animals as it has
been shown for nitropropanol (Zhang et al., 2018). 3-Nitropropionate is naturally
found in some fungi and plants (Parry, Nishino and Spain, 2011); its metabolization
in the gut of ruminants can lead to the formation of ionized form which has been
reported to irreversibly inactivate mitochondrial succinate dehydrogenase resulting
in neurological disorders (Francis et al., 2013). It has been associated with toxicity for
grazing animals related to ingestion of plants containing 3-nitropropionate and with
human poisoning upon ingestion of fungi (Su and Gadda, 2018).
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Sulfur compounds

An ADI “not specified” has been allocated by JECFA for sodium sulfate due to
its use in food as colour adjuvant and the absence of evidence of toxicity (FAO/
WHO, 2002a). It is also an approved food additive commonly used as a filler or
stabilizer, for example in chewing gum. Safety risk assessments of various sulfate-
based feed additives for animal health are available.” Natural exposure to sulfur
present in food has been considered higher than exposure to this compound used as

pesticide, therefore toxicological reference values have not been considered necessary
(EFSA, 2023b).

Adverse effects have been described for ruminants at high concentrations of sulfate
in feed, accounting for 0.4 percent or greater of dietary sulfur (Kandylis, 1984).
Polioencephalomalacia occurred in sheep fed with over 2 percent of sodium sulfate
in dry matter feed, while no toxicity was reported at up to 10 g per day through
continuous ruminal infusion. Concentrations of 15 g and 270 g of elemental sulfur
per day in the diet of each animal resulted lethal for sheep and cattle, respectively
(Kandylis, 1984). However, the negative effects of sulfur can be attenuated through
various dietary and management strategies (Drenowski, Pogge and Hansen, 2014;
US Grains Council, 2023). In grazing animals, possible additive effects from
environmental sulfur-based contaminants must be considered. Reductions of sulfate
to sulfide in rumens have been reported to rapidly build-up as toxic hydrogen sulfide
(H2S) gas having effects on the central nervous systems (Knight, 1985).

According to the GHS, hazard from sodium sulfate may involve serious eye
irritation and toxicity to the gastrointestinal tract.

lonophores

Polyether monocarboxylic acids

Concerns regarding adaptation of microorganisms to dietary ionophores due
to emergence of Antimicrobial Resistance (AMR) have been raised leading to
limitations in the use of these substances in animal production (Guan et al., 2006;
Hook, Wright and McBride, 2010; Wong, 2019). Ionophores have been deemed
not to pose risk of cross-resistance to other antibiotics (FDA, 2016). However,
an association with narasin and resistance to antibiotics used to treat infections in
humans has been reported (VKM, 2015). In addition to a widespread presence of
transferrable narAB gene operon conferring resistance to narasin, co-occurrence of
narAB and clinically relevant antibiotic resistance genes has recently been detected
in enterococci isolated from poultry meat (Pikkemaat ez al., 2022).

7 efsa.curopa.eu/en/search?s=sulfate

23


https://www.efsa.europa.eu/en/search?s=sulfate

_ FOOD SAFETY IMPLICATIONS FROM THE USE OF ENVIRONMENTAL INHIBITORS IN AGRIFOOD SYSTEMS

Ionophore-induced toxicity, widely reviewed previously, results from charged or
zwitterionic complexes they form with cations and causes perturbation of action
potentials of cell membranes (Novilla, 2018). The susceptibility for toxicity effects of
various animal species to ionophores may be highly variable; for example, monensin
has been reported to be extremely toxic to horses (Rumbeiha and Snider, 2014).

Residues of ionophores in food have been usually reported to be far lower than safety
levels. However, concentrations exceeding those values were occasionally reported
for eggs and chicken tissues (VMD, 2018). Maximum Residue Limits (MRLs) exist
in various jurisdictions for ionophores in tissues of livestock (Canada, 2022; Codex
Alimentarius, 2021; EU, 2009 and 2017a). At the international level, the standards
for MRLs are established by Codex Alimentarius for pesticides and veterinary
medicines. MRLs as narasin A for cattle recommended by Codex Alimentarius
are of 15 pg/kg in muscle and kidney, and 50 pg/kg in liver and fat, while the ADI
was set at a maximum of 5 pg/kg body weight per day (Codex Alimentarius, 2021).
For monensin, the ADI was set by Codex Alimentarius at 0-10 pg/kg body weight
per day (Codex Alimentarius, 2021), with MRLs for cattle, sheep and goats of 100
pg/kg for fat, 10 pg/kg for kidney, 20 pg/kg for sheep and goat liver, 100 pg/kg
for cattle liver, 10 pg/kg for muscle and 2 pg/L for milk. Cytotoxic activity of
ionophores enniatins, a class of emerging mycotoxins produced by Fusarium spp.
Fungi commonly found in temperate regions in grains and grasses, was demonstrated
in several mammalian cell lines (Prosperini et al., 2017). Although they have been
found in trace amount in milk and other commodities of animal origin (e.g. poultry)
(Kt{zovd et al., 2021; Pietruszka, Panasiuk and Jedynak, 2023), available data have
not been considered sufficient to perform food safety risk assessment for enniatins

(EESA, 2014b).

Ionophores excreted by animals remain in manure and may be spread on land
or to aquatic environments posing a threat to non-target organisms (Bak and
Bjorklund, 2014; Hansen et al., 2009; Zizek et al., 2011 and 2015; Zizek and Zidar,
2013). More recent formulations of ionophore-containing products are considered
safe for terrestrial and aquatic compartments, as well as for sediments, with low
bioaccumulation potential (EFSA, 2019a).

Exposure has been reported to cause eye but not skin irritation, potential skin
and respiratory sensitization, with increased risk by inhalation during handling
(EFSA, 2019a).

Other compounds

Cyclodextrins

Cyclodextrins used in food and food contact materials are recognized as not posing
health risks (Fenyvesi, Vikmon and Szente, 2016; Gonzalez Pereira et al., 2021;
Matencio et al., 2020; Veldzquez-Contreras et al., 2022; Zhou et al., 2022). The
ability of cyclodextrins to inhibit methanogenesis was studied in association with
other materials hosted in the hydrophobic internal cavity (Lila et al., 2004; McCrabb

24



\ o
Tl . ¥ s
L, et
ol S N/
) u./ 5 . 3

4

»
nsuo) YNao 4 - "oul suleg UesoQ anigo suleg uesdQ anige
- ~ ! )  —
W £

.“

1%}
=]
(=]
=
o
ES
=
—
<T
=
=
(o)
=
=
o
o=
>
=
L
L
(=]
>
—
L
L
<T
1%
=
o
(=]
[
N
o=
L
—
o
<
==
(&)

near Australian coasts (top), its controlled culture
(middle) and dehydrated kelp (bottom) as feed

Asparagopsis taxiformis in its natural environment
supplement for cows.




_ FOOD SAFETY IMPLICATIONS FROM THE USE OF ENVIRONMENTAL INHIBITORS IN AGRIFOOD SYSTEMS

et al., 1997; Mohammed et al., 2004a and 2004b; Rajaraman et al., 2017).

According to the Generally Recognized as Safe (GRAS) status by the United States
Food and Drug Administration (FDA), the application of cyclodextrins in food
has been considered safe (FDA, 2000 and 2016a). The maximum advisable level of
5 mg/kg body weight per day for B-cyclodextrin used as food additive has been
established by JECFA (FAO/WHO, 1995). The same value is approved by EFSA
as the ADI for B-cyclodextrin (E-459), with ADI not specified for a-cyclodextrin
and y-cyclodextrin owing to their low toxicity (EFSA, 2016a; FAO/WHO,
2000 and 2005). In the EU, a-cyclodextrin and y-cyclodextrin were approved
as novel food ingredients in 2008 and 2012, respectively (EU, 2008 and 2012).

Fatty acids

Medium-chain fatty acids (MCFA) are naturally present as part of triglycerides
in milk fat and feeds based on vegetable fats such as palm kernel and coconut oil
(de Vrese et al., 2010). Polyunsaturated fatty acids (PUFA) assessed for
methanogenesis inhibition are found in plant-based sources such as soybean oil and
sunflower, flax or canola seeds which are considered safe for human consumption
(Adeleke and Babalola, 2020; Beauchemin et al., 2009; Lills ez al., 2011).

While JECFA did not evaluate the entire group of fatty acids as food additives,
there are values available for specific sources and processing. For oxidized soybean
oil interacted with mono- and diglycerides of fatty acids approved as food
additive, the ADI was first established at up to 30 mg/kg body weight per day
(FAO/WHO, 1992) with further re-evaluation by EFSA based on the highest
estimated exposure which indicated no safety concerns for consumers despite
insufficient or missing toxicological data including genotoxicity (EFSA, 2018b).
As food additives, fatty acids have been reported not to raise concerns for toxicity
effects at doses up to 10 percent in the diet and not to be genotoxic, however, data
on developmental, reproductive and chronic toxicity are limited (EFSA, 2017a).
It has been recommended to maintain the exposure to saturated fatty acids at
1 percent on average from regular diet and food additives together (EFSA, 2017a).

Phosphonic acids

The inhibitory activity of ethephon on CH4 emissions occurs through its metabolite
ethylene. Current MRLs for ethephon established by Codex Alimentarius are of
0.01 mg/kg in animal commodities such as eggs, milk, mammalian fat and meat from
mammals other than marine mammals, while values in plant-based foods range from
0.5 to 7 mg/kg (Codex Alimentarius, 2016). Upon the last evaluation by JMPR,
the ADI and acute reference dose (ArfD) formerly established for ethephon were
confirmed at 0-0.05 body weight per day and 0.05 mg/kg body weight, respectively
(FAO/WHO, 2015), while the USEPA reference dose (RfD) for oral exposure has
been set at 5 pg/kg body weight per day (USEPA, 1988). Also, human, animal
and environmental safety of ethephon applied to plants as pesticide has recently
been reviewed by EFSA with the recommended ADI of 20 pg/kg body weight per
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day (EFSA, 2023c). The main toxicity effect is considered to be associated with
the inhibition of cholinesterase (ChE) activity, with dogs as the most sensitive
species. It has been assessed as unlikely to be genotoxic and unlikely to pose a
carcinogenicity risk to humans. Neurotoxicity due to ChE inhibition in the brain
has not been considered adverse as the inhibition of ChE in erythrocytes is the most
sensitive endpoint. Effects of the minor metabolite 2-hydroxyethane phosphonic
acid (HEPA) were considered of minor entity, however, the need for evaluation of
its aneugenic potential according to the most recent criteria has been emphasized
(EFSA, 2023c). Considering incomplete data for genotoxicity, provisional risk
assessment from residues in animal matrices, this evaluation indicated no risk for
humans. Risk from ethephon and its metabolites to the environment and non-target
organisms has been defined as low (EFSA, 2023¢). MRLs for plants and animal
commodities are available in several jurisdictions (Australian Government, n.d.).

When considering hazard according to the GHS classification, ethephon may be
harmful when swallowed and inhaled, toxic in contact with skin causing severe
burns and eye damage. It has been also reported to be toxic to aquatic organisms
with long-lasting effects.

Pyromellitic ditmide compounds

Several compounds with CH4 emission inhibitory properties have been proposed
(Rennison, Boddy and Brimble, 2022; Zhang and Yang, 2012), but toxicological
information is extremely limited. A study in mice showed no adverse effects
for (1,3,5,7-tetraoxo-5,7-dihydropyrrolo[3,4-flisoindole-2,6(1H,3 H)-diyl)
bis(methylene) dinitrate at 300 mg/kg (Rennison, Boddy and Brimble, 2022).

Unsaturated hydrocarbons

Ethylene is present in human diet as naturally produced plant hormone which
induces the ripening of fruits. It has been considered to constitute little hazard
to aquatic environments and to pose no risk to human health at moderate
concentrations (UNEP, n.d.). However, its metabolite ethylene oxide has been
reported to have mutagenic properties, to be carcinogenic at high concentration
levels by inhalation and toxic to reproduction (USEPA, 2016). In an evaluation,
IARC classified ethylene oxide as carcinogenic to humans (Group 1) and considered
ethylene as not classifiable as to its carcinogenicity to humans (Group 3) (IARC,
2008 and 2018a). The use of ethylene oxide in food is banned in many countries.

Acetylene is a highly flammable gas and may cause respiratory arrest when inhaled
but no other adverse effects have been considered to pose a threat to human health.
No ADI have been established for ethylene, ethylene oxide and acetylene by JECFA
or JMPR.
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2.1.2 BIOLOGICAL METHANOGENESIS INHIBITORS

The use of secondary plant metabolites able to inhibit ruminal methanogenesis
has been extensively reviewed showing major efficacy in vitro compared to the
application in livestock (Patra et al., 2010). Biological methanogenesis inhibitors
are usually mixtures of compounds with different percentage added to feed and, for
plant-based sources, can be used as entire plant, its parts or extracts, in their natural
or processed form, which must be taken into account when evaluating health risks.

MCR inhibitors and seaweed hioactive compounds

Asparagopsis seaweeds

Safety of Asparagopsis spp. For animals is assessed mainly in regard to bromoform,
the most abundant constituent in seaweed with the ability to inhibit methanogenesis
(Machado et al., 2016). Other halogenated compounds, such as DBCM, are far less
abundant. Food safety hazard in seaweeds and evidence of bromoform, bromide
or iodine in meat and milk of ruminants fed Asparagopsis spp. Have recently been
reviewed by FAO (FAO, 2023a; FAO 2022b).

Elevated levels of bromoform in animal products have not been detected at the
minimum effective inclusion level of Asparagopsis spp. (Glasson et al., 2022). Animal
studies of up to 147 days of duration showed either metabolization or excretion of
bromoform down to background levels from red seaweed supplementation in feed
(Glasson et al., 2022). Dehalogenation of HMAs, like bromoform and chloroform,
resulting from properties of ruminant digestive tracts in combination with the
action of methanogens has been suggested to limit the transfer of these substances
to food products derived from ruminant livestock (Glasson et al., 2022). Residues of
bromoform in meat or offal have been considered undetectable (Kinley et al., 2020;
MLA, 2023). In other studies, concentrations of bromoform have been detected in
milk from control animals and cows fed Asparagopsis at non significantly different
levels, suggesting drinking water as a possible source of contamination (Roque et
al., 2019; Stefenoni et al., 2021).

The use of bromoform-containing seaweeds in feed, similar to synthetic bromoform,
needs to be thoroughly assessed considering the evaluation of bromoform by the
USEPA as a probable human carcinogen (USEPA, 2005a). Moreover, signs of
inflammation and abnormalities in the rumen cell wall of cows fed 67-133 g dry
matter Asparagopsis taxiformis per day have been described (Muizelaar et al., 2021).

Other seaweeds

Lower concentrations of bromoform are found in brown, green and other red
seaweeds (see Table 1). Diet based on large amounts of seaweeds was linked to health
problems in livestock from coastal areas (FAO, 2023a). The toxicity of seaweeds and
possible residues of harmful substances in food commodities are variable depending
on active substances specific to each species and may be related to the presence of
heavy metals and minerals concentrated in tissues during physiological processes
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(FAO, 2023a; FAO 2022b). Other threat may come from allergens as well as from
potential bioaccumulation of biotoxins, Persistent Organic Pollutants (POPs) and
other compounds such as agrochemicals or pharmaceuticals during cultivation of
seaweeds in polluted areas (FAO, 2022a and 2022b, FSAI, 2020). Microbiological
hazard involves a range of pathogenic bacteria and viruses and has been ascribed to
contamination during post-harvest handling practices (FAO, 2022a; FSAI, 2020).
The presence of marine micro- and nanoplastics on seaweed surface constitutes
physical risk and can vehicle harmful chemical contaminants and bacterial pathogens
from the environment to seaweed (Junaid et al., 2022; FSAI, 2020). Contamination
due to some of those chemicals (iodine, arsenic, metals and biotoxins) and pathogens
(norovirus) is considered an emerging risk associated to seaweeds (EFSA, 2017b).
Ranking of chemical and microbiological hazards from seaweeds in food and feed
showed major concerns regarding the presence of arsenic, cadmium, iodine and
Salmonella, and possible moderate hazard from lead, mercury and aluminium
(FAO, 2022a). While Bacillus spp. And norovirus may constitute moderate hazard in
food, limited data have been found for this hazard in relation to feed (FAO, 2022a).

JECFA evaluated the safety of processed Euchenma seaweed and carrageenan as
food additive considering data relevant to the safety assessment for infants and
concluded that there is no concern of using carrageenan at concentrations up to
1000 mg/L in infant formula or formula for special medical purposes (FAO/WHO,
2014). EFSA recommended a temporary ADI of 75 mg/kg body weight per day
for the same seaweed and carrageenan until data addressing current uncertainties
is available and highlighted that dietary exceedance of this value is estimated as
frequent and may be of safety concern for consumers (EFSA, 2018c).

Plant bioactive compounds

Essential oils

Little information is available regarding safety of essential oils in ruminant diet, their
modes of action and effects on ruminal microbiota (Cobellis, Trabalza-Marinucci
and Yu, 2016). Given their multicomponent nature and variability of the composition
within the same plant species, which depends on factors such as changing season
and geographical source, risk assessment must be performed specifically for each
extract. JECFA evaluated compounds present in the garlic extract (diallyl sulfides
and allyl mercaptan) and concluded that there were no safety concerns at levels of
intake when used as flavouring agents (FAO/WHO, 2000). Some components of
essential oils used as feed additives, for example methyleugenol or estragole in the
laurel (Laurus nobilis) leaf oil, have been found to be genotoxic (EFSA, 2023d).
Thyme (Thymus spp.) essential oil has been considered safe for cattle health at doses
not exceeding 8 mL per day based on iz vitro and in vivo studies (Silva Castro Filho
et al., 2021).
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A range of other essential oils and their components as feed additives for all
animal species has been assessed for potential health risks.® Residues of carvacrol,
thymol, cinnamaldehyde, and diallyl disulfide supplemented at doses of 60 and
120 mg per day were not detected in milk (Hallier et al., 2013).

Flavonoids

Most studies assessing the safety of flavonoids to humans and animals have been
performed considering beneficial properties other than inhibition of nitrogen loss
or methane emissions. Quercetin may elicit mild adverse effects at low incidence in
humans (Andres et al., 2017). However, no ADI has been allocated by JECFA for
this compound used as food colours due to the lack of adequate toxicological data
(FAO/WHO, 1978). No safety concerns from myricetin and naringin evaluated
by JECFA have been indicated at levels of intake when used as flavouring agents
(FAO/WHO, 2014).

In farmed animals, the use of bitter orange extract has been considered safe
under 400 mg/kg for livestock and salmon, and up to 259 mg/kg for dairy cow
(EFSA, 2021b). EFSA also proposed specific maximum safe concentration for other
species including pig and poultry. No concerns have been identified for consumers of
animal products when the same concentrations of the extract were used in feed, nor
for the environment. Marigold (7agetes spp.) flavonoids for use in herbal medicines
did not show genotoxic effects in a battery of assays and the dose of 5000 mg/kg body
weight was not associated with abnormal clinical symptoms in laboratory animals after
14 days (Wu er al., 2022). Likewise, adverse clinical signs were not observed over
90 days upon repeated exposure of rats to flavonoid-rich liquorice (Glycyrrhiza
glabra) extract at a dose of 1000 mg/kg body weight and during 14 days post-exposure
to 5000 mg/kg body weight of the extract (Bhide et al., 2022). Liquorice extract may
present negative health effects due to the presence of glycyrrhizinic acid which may
induce elevated blood pressure. High exposure was considered in regular consumers of
liquorice confectionery or herbal tea containing liquorice at the intake levels exceeding
100 mg/day (FAO/WHO, 2005a). Glycyrrhizinic acid ammoniated used as flavouring
agent in feed at the concentration of 0.3 mg/kg complete feed for chickens for fattening
and laying hens and 1 mg/kg for the remaining animal species is considered not to
increase consumers’ exposure to this compound or to pose a risk to the environment
(EFSA, 2015). A recent review highlighted that data regarding the potential toxicity
of flavonoids to human health is still insufficient (Tang and Zhang, 2022).

Saponins

According to recent reviews, the use of saponins within recommended concentrations
is considered safe for both animal and human health, although toxicity including
gastrointestinal effects has been described for some active components extracted
from certain plant species (Sharma et al., 2023; FAO, 2023a). The toxicity and

8 www. CfSEl. curopa.cu
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safety from dietary exposure are dependent on the source and the type of saponin.
The ADI for quillaia (Quillaia saponaria) extracts was established by JECFA
at 0-1 mg/kg body weight per day (FAO/WHO, 2006 and 2014) and by EFSA at
3 mg/kg body weight per day (EFSA, 2019b). No adverse effects were observed for
quinoa (Chenopodium quinoa) saponins in male rats below 50 mg/kg body weight
and for quillaia saponins below 1200 mg/kg body weight per day with no concern
for genotoxicity (EFSA, 2019b; Zhang et al., 2022).

Toxicity to non-target species from quillaia saponins has been described for aquatic
organisms zebrafish (Danio rerio) and Daphnia magna, and to terrestrial worm
Enchytraeus albidus, with up to seven times milder effects caused by metabolites
prosapogenin and aglycone (Adomaitis and Skujiené, 2020; Jiang et al., 2018a).
Toxicity of different saponin-rich plant extracts has been highlighted as a possible
risk to water environments (Jiang et al., 2018b).

Tannins

Potential toxic effects of tannins differ according to their classification into
condensed and hydrolyzable tannins, the latter being more easily subject to
microbial hydrolysis in the gut. This may result in the production of potentially
toxic metabolites. However, risks to human health through food consumption
has not been considered of concern (FAO, 2023a). Following safety assessments
conducted on tannins as feed additives, maximum levels of use have been proposed
for different livestock species at which no health concerns are expected for animals,
consumers nor the environment (EFSA, 2014c and 2022a; Sharma et al., 2021).

The wood of chestnut tree is a rich source of tannins
which can be extracted and used as powder and granules.
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Biological methanogenesis inhibitors can be obtained
from common dietary plants such as tea (top),
garlic (middle), or fennel (bottom).
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2.2 NITROGEN INHIBITORS

Nitrogen inhibitors include compounds differing structurally and by modes of
action. They are used to delay natural processes which lead to nitrogen loss from the
soil. They act mainly at two points in the nitrogen cycle: 1) the conversion of urea
into ammonia to reduce nitrogen loss through volatilization and 2) the conversion
of ammonium to nitrates which are highly subject to leaching and denitrification
(see Figure 4). The first step is targeted by urease inhibitors that specifically
block the active site and reduce the activity of urease enzyme, a ubiquitous
enzyme produced by soil bacteria, which mediates the hydrolysis of urea. The
second step is addressed by nitrification inhibitors that slow down the activity of
bacteria responsible for one or both phases of the nitrification process. Generally,
nitrification inhibitors reduce the activity of enzymes responsible for nitrification,
such as ammonia monooxygenase (AMO), hydroxylamine oxidoreductase (HAO)
or nitric oxide reductase (NOR) (Ruser and Schulz, 2015), and eventually limit the
leaching of nitrates to the soil and emissions of N2O into the atmosphere (Byrne et
al., 2020). Therefore, nitrogen inhibitors delay these processes rather than prevent
them from occurring, allowing time for plants and microorganisms to take up the
nitrogen. Finally, denitrification inhibitors target microorganisms responsible for the
transformation of nitrates into volatile nitrogen compounds, although this process
has been less addressed among solutions to prevent nitrogen loss.

Nitrogen inhibitors may be applied as such or by using protected fertilizers which
are treated with nitrogen inhibitors. Livestock animals can ingest nitrogen inhibitors
by consuming pasture where inhibitors have been sprayed onto foliage, by directly
consuming pasture or forage previously treated with nitrogen inhibitors that entered
plant tissues from soil, and by ingesting soil particles with absorbed nitrogen
inhibitors. Some inhibitors like dicyandiamide (DCD) have been considered for
direct delivery on pasture soil in animal urine patches after being administered
in feed as their recovery in the excreta of ruminants can exceed 80 percent
(de Klein ez al., 2011; Luo et al., 2015; O’Connor et al., 2013).” Thereby, the capacity
of the soil to take up inhibitors, their translocation from roots to other tissues
and metabolization within plants determine the possible entry into the food chain

(Adhikari et al., 2019).

Limited food safety information exists regarding commodities and transformed
products containing residues of nitrification, denitrification and urease inhibitors.
A risk assessment model has been developed by Ray et al. to calculate daily exposure
to nitrogen inhibitors using the example of N-(n-butyl) thiophosphoric triamide
(NBPT) with risk factors and key steps along the food chain (Ray et al., 2020).

The most important compounds applied as nitrification, denitrification and urease
inhibitors are described below and are listed in Table 2.

° Safety concerns are detailed in section 2.2.3.
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White granules of urea fertilizer can be protected
with a nitrogen inhibitor, often with the
addition of colorants.

2.2.1  SYNTHETIC UREASE INHIBITORS

Among available urease inhibitors, three substances are registered globally and
commercialized under trademarks: NBPT, N-(n-propyl) thiophosphoric triamide
(NPPT) and mixture NBPT+NPPT (FAS, 2023), with NBPT most widely used
(Nugrahaeningtyas et al., 2022).

Organophosphorus compounds

NBPT and NPPT are the most important compounds of this group, generally
considered as safe both for animals and humans (Nugrahaeningtyas ez al., 2022).
Residues of NBPT have not been found in milk and tissues of dairy cows fed with
up to 10 mg NBPT/kg body weight (van de Ligt et al., 2019). A study employing
novel detection methods showed concentrations of NBPT and its oxidation product
N-(n-butyl)phosphoric triamide (NBPTo) in milk samples below the limit of
qualification (LOQ) of 0.002 mg/kg suggesting a very low residue risk of this
inhibitor (Nkwonta et al., 2021).

There is evidence of plants being able to take up NBPT as demonstrated for maize
roots and for vegetable tissues exposed to 100 pM concentration, which inhibited
urease activity in leaves and roots leading to necrosis following the accumulation
of urea (Cruchaga et al., 2011; Zanin et al., 2015). Phytotoxicity of NBPT had a
transitory nature and possibly occurred as indirect effect in areas where the inhibitor
was used at high rates in combination with urea fertilizer (Edmeades, 2004).
In livestock, temporary inhibition of rumen activity was observed with a subsequent
adaptation of rumen microflora to NBPT, although exposure to high doses
causing metabolic imbalance has been reported to be unlikely for grazing animals
(Byrne et al., 2020). Low concern from NBPT was shown for birds and soil
invertebrates as well as for groundwater and aquatic species (NICNAS, 2011).

37



_ FOOD SAFETY IMPLICATIONS FROM THE USE OF ENVIRONMENTAL INHIBITORS IN AGRIFOOD SYSTEMS

A five-year repeated application of NBPT coated to urea fertilizer showed no
impact on the abundance or structure of soil bacterial and fungal communities of
an intensively managed grassland (Duff ez al., 2022).

In the GHS, NBPT has been classified as causing skin irritation and serious eye
damage, possibly causing respiratory irritations and suspected of reproductive
toxicity. No significant hazard has been identified from NBPT levels of
0.038-0.064 percent present in fertilizer formulations, therefore it is expected that
residues in food commodities may reach negligible concentrations posing low risks
to consumers (NICNAS, 2011).

2.2.2 BIOLOGICAL UREASE INHIBITORS

Although a substantial number of publications exists on clinically useful plant-
based urease inhibitors, relatively few studies explored the properties of analogous
compounds of agricultural interest (Fernando and Roberts, 1976; Mohanty, Patra
and Chhonkar, 2008; Suescun et al., 2012). The identified compounds are obtained
from several parts of a plant, differ in the way of application (as extract, powder or
entire parts) and encompass various chemical classes.

Plant extracts, seed parts or wastes

The inhibitory activity of many extracts in this category are due to polyphenols with
tannin like properties, as is the case of black tea (Camellia sinensis), Roman cassie
(Vachellia caven), Monterey pine (Pinus radiata) or inknut (Terminalia chebula)
extracts. Theabrownin from black tea was not associated with abnormal effects
in mice after 28 days of exposure at a daily intake of up to 400 mg/kg but slight
nephrotoxicity was observed upon exposure to 4 g/kg per day (Ding ez al., 2022).
Consumption of up to 1 g/kg and 5 g/kg of black tea extract per day by humans
and rats, respectively, was considered safe, although slight hepatotoxicity at the
latter dose cannot be excluded (Chachiyo et al., 2020; Fujita and Yamagami, 2008;
Nor Qhairul Izzreen et al., 2020; Wang et al., 2010). Further toxicity effects and
safety doses for consumption of black tea in adults have been reviewed by Hayat
and colleagues (Hayat ez al., 2015).

Neem (Azadirachta indica)-based products, especially its non-aqueous extract,
have been reported to cause toxicity including reversible effects on reproduction
of male and female mammals elicited following sub-acute or chronic exposure as
the most important endpoint. The toxicity of neem extracts has been reviewed
previously (Boeke et al., 2004). Azadirachtin, the active compound extracted from
the neem seeds, is used as pesticide and, according to the GHS, it has been classified
as skin sensitizing substance with very toxic and long-lasting effects to aquatic
life. However, gaps in toxicological and safety data to consumers and non-target
organisms have been confirmed for azadirachtin (EFSA, 2018d) and other plant
extracts investigated as biological urease inhibitors (Li ez al., 2015).
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Further information on toxicity endpoints of substances naturally occurring in plant
extracts with possible human health concerns when present in food can be found in
EFSA’s Compendium of botanicals (EFSA, 2021c¢).

2.2.3. SYNTHETIC NITRIFICATION INHIBITORS

Numerous substances with a potential to act as nitrification inhibitors have been
identified as substrates of AMO (McCarthy, 1999). Their modes of action and
strategies for regulation of nitrification in agrifood systems have been reviewed by
Subbarao ez al. (2006). The chemical classes below are reported in alphabetical order.

Amide compounds

Concerns regarding DCD residues at detectable levels in buttermilk powder,
whole milk powder and skim milk have been raised based on evidence from New
Zealand, where DCD was applied to pastures at a rate of 10 kg/ha. Upon testing 63
samples, one raw milk sample presented quantifiable DCD level, while traces below
the reporting threshold of 0.05 mg/kg were found in one raw colostrum sample
(New Zealand, 2013). Subsequently, DCD has been withdrawn from the market
in New Zealand even though detected concentrations are considered not to pose a
risk to human health as the ADI is 1 mg/kg body weight per day, and the maximum
amount of 0.5 percent as feed additive should not be of concern (EFSA, 2009;
OECD, 2015). It was observed that the presence of DCD in cow milk remained at
an average of 1.2 percent throughout the supplementation period and decreased to
undetectable levels after 5 days when the administration ceased (Welten ez al., 2016).
The majority of DCD was predominantly excreted in urine (82 percent), probably
due to its high solubility in water and absorption in the rumen and blood. However,
the authors highlighted the need to investigate the presence of DCD residues in
other animal products, such as meat (Welten ez al., 2016). In an experiment, residues
of DCD infused to sheep were detected in fat, wool, kidney and liver but not in
muscle tissue (Ledgard ez al., 2008). In a recent study, human estimated daily intake
(EDI) of DCD from milk, based on recommended application rates, according to an
exposure prediction model, was below 1 mg/kg body weight per day, and therefore
does not pose significant risk to human health (Ray ez al., 2023). The presence of
DCD residues was linked to its residence time in plants, which in turn depends on
the plant height and low rainfall conditions (Kim ez al., 2012).

It has been shown that DCD uptake and translocation to wheat shoots occurs at
about 1 percent of the concentration (1 mL of 1mM solution) two hours after direct
injection to the rhizosphere when in competition with root zone microorganisms
(Marsden et al., 2015). Based on estimates, the highest risk for acquiring DCD by
grazing livestock comes from consumption of pasture that intercepted the inhibitor
on their surface during spray application, however, this can be prevented by a time
gap between DCD application and grazing (Marsden et al., 2015).
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The authors suggest that direct plant consumption may become a significant
risk over longer periods due to possible DCD concentrations exceeding those in
dairy products. DCD was found to affect the target organisms, i.e. ammonium
oxidizing bacteria (AOB) and ammonium oxidizing archaea (AOA), but not to cause
imbalance in the non-target soil microbial community (O’Callaghan et al., 2010).

Toxicological information on DCD is available in various reports and databases
(ECHA, n.d.a.; Matthaei et al,, n.d.). DCD is an active ingredient of pronitridine,
also indicated as G77, which did not show safety concerns based on acute toxicity
studies in animal models (NICNAS, 2020). Low environmental concentrations
are not supposed to pose risk to organisms. The toxicity profile is incomplete for
terrestrial invertebrates, drinking water and chronic exposure. Effects in plants have
been reported to be expected only at high doses (Massachussets Department of
Correction, 2019).

Pyrazole compounds

3,4-dimethylpyrazole-phosphate (DMPP) and 3,4-dimethylpyrazole-succinic acid
(DMPSA) are among the main nitrification inhibitors. Their high concentrations
resulted in residues accumulated in red clover plants mainly in leaves and roots,
respectively, with damage from DMPP at 100 mg/kg soil (Rodrigues et al., 2018).
However, no phytotoxicity from both inhibitors has been observed at levels used as
maximum amounts in agricultural practice (0.5 mg/kg soil). Residues of DMPP may
be present following its application or due to degradation of its parent compound
3,4-dimethylpyrazole (DMP). The toxicity of DMPP has previously been reviewed
by Adhikari ez al. (2019) indicating no evidence of negative effects to soil microbes,
plants and waterbodies at field application rate but with the potential to accumulate
in plant aerial parts upon application and to enter the food chain following ingestion
by grazing animals.

3-methylpyrazole is a metabolite of 1-carbamoyle-3-methylpyrazole (CMP) which
has been reported to leave residues in plants up to 0.1 ppm taken up by roots or
leaves (ECHA, 1984).

According to the GHS, hazard from pyrazole compounds may include damage to
the unborn child and toxicity for reproduction. Some compounds may be toxic
or very toxic to aquatic life with long-lasting effects. 3-methylpyrazole is under
assessment as an endocrine disrupting chemical.

Pyridine compounds

Nitrapyrin is the main nitrification inhibitors of this chemical category. According
to USEPA, there is no reasonable risk from nitrapyrin and its metabolite
6-chloropicolinic acid (6-CPA) from dietary exposure through water and food
(USEPA, 2022c¢). Likewise, residues in meat, milk, poultry and eggs are not
expected, while estimated environmental levels in groundwater and surface water
have not been reported to be of concern (USEPA, 2022¢). However, levels may be
exceeded when nitrapyrin products are not immediately incorporated in soil upon
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application, posing potential risks to aquatic organisms (NZAGRC, 2019; USEPA,
2005b). This may be due to nitrapyrin mobility owing to high volatilization from
soil, leaching and degradation to 6-CPA, therefore incorporation in 5-10 cm of
a minimum depth has been recommended (Espin and Garcia-Ferndndez, 2014).
Very low concentrations of 6-CPA have been found in run-off water and no traces
in groundwater. Low concentration of 6-CPA rather than nitrapyrin could be found
in plant tissues.

With regards to nitrapyrin, no evidence of genotoxicity, neurotoxicity and
immunotoxicity was found although further studies have been recommended for
the latter two (Espin and Garcia-Ferndndez, 2014). Effects on reproduction and
development were observed in laboratory animals and carcinogenicity effects have been
suggested based on mutagenicity as mode of action. A detailed summary on the toxicity
of nitrapyrin as well as evidence of entry into the food chain via grazing animals have
been provided previously (Adhikari et al.,, 2019; Espin and Garcia-Ferndndez, 2014).

JECFA evaluated 3-ethylpyridine and concluded that there was no safety concern
at level of intake when it is used as a flavouring agent (FAO/WHO, 2005a).
3-Ethylpyridine and other piyridine derivatives species have been considered safe for
the target animals at the proposed use of 0.3-0.5 mg/kg of complete feed for various
animals and for consumers when these compounds are used up to the highest level
in feed, but no conclusion was drawn regarding their safety in drinking water due
to lack of data (EFSA, 2016b). The same concentrations are also evaluated as safe
for aquatic and terrestrial environments (EFSA, 2016b). When used as flavouring
substances in food, pyridine derivatives have been assessed as not posing safety
concerns at levels of intake estimated through the “Maximized Survey-derived Daily
Intake” (MSDI) approach (EFSA, 2014d). According to the GHS, the following
hazards are associated with 3-ethylpyridine: skin and serious eye irritant, respiratory
irritation, and it has been described to possibly cause genetic defects and cancer.

Other heterocyclic compounds

Toxicological data regarding compounds of this category are very limited when
considering the specific use as nitrification inhibitors. However, important groups
of pesticides are based on triazole or pyrimidine and their derivatives for which risk
assessments have been performed.

For pyrimidine and pyridine compounds used as herbicides, no risk concern was
raised for products assessed by the USEPA, while non-target plants can be affected
through run-off or spray drift (USEPA, 2022d). Some of these compounds have
been reported to persist in plant tissues and cause toxicity effects to cultivated
species when applying compost into which those parts have been recycled or manure
from animals grazed on treated areas. For this reason, mitigation measures have

been introduced to avoid toxicity from pyrimidine/pyridine compound residues
(USEPA, 2022d).
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Toxicity from triazole compounds applied as pesticides includes effects on various
endpoints (Fishel, 2014) and has been reviewed in the context of water pollution
(Huang er al., 2022). The active substances of triazole pesticide are metabolized to
compounds known as triazole derivative metabolites (TDMs), residues of which have
been detected in food commodities from both conventional and organic agriculture
at levels above the LOQ of employed methods (Stroher Kolberg et al., 2016).
The ADI and AR{D for 1,2,4-triazole as a common metabolite of triazole pesticides
have been established by the JMPR at 0-0.2 body weight per day and 0.3 mg/kg body
weight, respectively (FAO/WHO, 2015). The evaluation of consumer exposure to
TDM residues in agricultural products of plant and animal origin is affected by
numerous uncertainties and requires further data, although internationally estimated
daily intake (IEDI) did not exceed the ADI for single metabolites demonstrating an
unlikely risk for the consumers (EFSA, 2018e).

The presence of phenylhydrazines in food commodities can occur naturally
(Andersson and Gry, 2004). Toxicity effects of phenylhydrazine to humans have
been extensively described, although human toxicological data were considered
insufficient to characterize all risks (UNEP/ILO/WHO, 2000). Phenylhydrazine
derivatives can potentially inhibit non-target microorganisms in soil, therefore the
development of less toxic analogues was recommended (Wu et al., 2012; Yang et
al., 2017).

Similar to inhibitors belonging to other chemical classes, pyrimidines have been
reported to cause skin and serious eye damage and may cause respiratory irritation
when inhaled. In addition, pyrrole-based compounds can be toxic or fatal when
swallowed. Etridiazole is considered a skin sensitizer and probable human
carcinogen (Group B2) (USEPA, 2020). 3-amino-1,2,4-triazole has been reported to
be toxic for reproduction, potentially teratogenic, carcinogenic and may disrupt the
production of thyroid hormones (Smith, 2011). Based on the evaluation by ECHA,
phenylhydrazine was classified as carcinogenic, skin sensitizing and suspected
mutagenic (ECHA, n.d.b.), while the USEPA assigned this compound to Group
B2 as probable carcinogen (USEPA, n.d.c.). Although the substance is considered
toxic to aquatic organisms, the environmental risk has been evaluated as low because
the substance is readily biodegradable (UNEP/ILO/WHO, 2000).

Quinone and quinoline-based compounds

Ethoxyquin has been used as pesticide and food and feed additive due to its
antioxidant properties. Tolerances for ethoxyquin residues in animal food
commodities for human consumption have been established as MRL in various
jurisdictions in the range of few mg/kg or less, while they are not tolerated in
milk. An MRL established by Codex Alimentarius is only available for pears at
3 mg/kg referring to post-harvest treatment (Codex Alimentarius, 2009). Ethoxyquin
has been evaluated by JMPR that set the ADI and ARfD at 0-0.005 body weight
per day and 0.5 mg/kg body weight, respectively, (FAO/WHO, 2005b). Currently,
ethoxyquin is scheduled for re-evaluation by JECFA (FAO/WHO, 2023).
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The feed additive ethoxyquin per se is considered safe for all animal species
and consumers at a maximum total concentration of 50 mg/kg complete feed
(EFSA, 2022b), although 150 mg/kg is allowed by FDA (FDA, 2023). However, no
safety level could be established for long-living and reproductive animals due to the
presence of p-phenetidine (EFSA, 2022b). Likewise, due to lack of data on the presence
of p-phenetidine in animal tissues and food products (EFSA, 2022b), it could not be
concluded whether ethoxyquin poses a risk to consumers. P-phenetidine is a suspected
mutagenic, carcinogenic and skin sensitizing substance, and it remains as impurity in
the additive at concentrations up to 2.5 mg/kg following the manufacturing process.
The use of ethoxyquin in feed is not authorized in the EU (EU, 2022b).

Concerns regarding possible genotoxic effects of ethoxyquin quinone imine (EQI),
one of the main metabolites of ethoxyquin, have not been sustained based on i
vivo studies that did not report genotoxic activity of EQI observed iz vitro (EFSA,
2022b). When analysing soil microbiota, EQI induced changed in the composition
of bacterial and fungal community, suppressing Sphingomonas involved in the
biodegradation of environmental contaminants and plant pathogens such as
Fusarium but favouring other beneficial genera (Papadopoulou et al., 2020).

Sulfur compounds

Thioethers used as flavouring agents have been evaluated by JECFA concluding
that there were no safety concerns at levels of intake (FAO/WHO, 2000). Sodium
thiosulfate was considered not to raise safety concerns when used as food contact
material with respect to established limits (EFSA, 2013). As established by JECFA,
the ADI for sodium thiosulfate expressed as sulfur dioxide falls in the range of
0-0.7 mg/kg body weight per day (FAO/WHO, 1999).

The effects of carbon disulfide on human health have been widely described and
include neurotoxicity upon chronic exposure and reproductive effects following
inhalation with restrictions in use in different countries (ATSDR, 2014; Canada,
2000; CDC, 2019; EPA, 2016; NICNAS, 2014; NRC, 2009). However, no ADI has
been allocated for this compound by JMPR (FAO/WHO, 1965).

Similar to carbon sulfide, thiourea is a substance suspected of being toxic to
reproduction and carcinogenic (NTP, 2021; UNEP/ILO/WHO, 2003). It has
been reported to cause long lasting effects in aquatic organisms. Thiourea and its
derivatives were found to elicit toxicity effects in the thyroid gland, which at dosages
able to inhibit thyroid function were associated with reproductive toxicity and
possible carcinogenicity (ECHA, n.d.c.; Mertschenk er al., 2013). Other substances
of this group are known to cause skin and serious eye irritation and may also cause
respiratory irritation.

Unsaturated hydrocarbons

Alkenes and alkynes occur widely in nature, for example ethylene in ripening fruits
and vegetables, 1-octyne in lemon oil, octadecene in fish liver, butadiene in coffee, to
mention just a few. Information regarding the safety of ethylene and acetylene is provided
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in section 2.1.1 on methanogenesis inhibitors. According to the GHS classification for
hazard, other alkynes such as 1-octyne can be fatal if swallowed or upon entering airways
and cause skin irritation. However, safety data related to agricultural application is limited.

2.2.4 BIOLOGICAL NITRIFICATION INHIBITORS

Root exudates remain the most studied source of biological nitrification inhibitors
(BNI). They include compounds belonging to different chemical classes identified
in a range of plant species across different climates.

Root exudates

Information regarding the toxicity and safety of root exudates for animals and
consumers is limited. They are deemed to be an environmentally friendly alternative
to synthetic nitrification inhibitors (Lu ef al., 2019) with minimum effects on
non-target microorganisms in soil (Nawarathna et al., 2021). A study investigating
effects of methyl 3-(4-hydroxyphenyl) propionate (MHPP) on nitrogen fixation
and emission reduction reported no toxic or side effects due to its application
(Ren ez al., 2019). In perilla seedlings, MHPP was found to reduce primary root
growth, but to markedly induce the formation of lateral roots modulating plant
growth and metabolite profiles (Ma ez al., 2020).

The most studied root exudate is sorgoleone which shows potentially autotoxic
properties dependent on sorghum (Sorghum spp.) variety (Coskun et al., 2017;
Tibugari et al., 2020) and displays herbicidal effects towards weeds (Dayan et al.,
2010; Hussain et al., 2021). As a highly hydrophobic substance, sorgoleone has
been described to persist long strongly sorbed to soil particles but is metabolized by
microorganisms at different rates based on several factors including its concentrations
and soil pH (Dayan et al., 2010; Uddin ez al., 2014). No adverse effects or mortality
were observed in fish acute toxicity test at the nominal concentration of 1 pg/mL
in water (Uddin et al., 2012).

JECFA evaluated isothiocyanates and concluded that there was no safety concern
at levels of intake corresponding to the use of these compounds as flavouring agents
(FAO/WHO, 2006 and 2008). Allyl isothiocyanate (AITC) used as food preservative
did not prove to be carcinogenic, genotoxic or to cause developmental toxicity in
laboratory animal models (EFSA, 2010). An ADI of 0.2 mg/kg body weight per
day was proposed considering uncertainties related to long-term and reproductive
toxicity (EFSA, 2010). No safety concerns from dietary exposure are expected based
on estimated levels of intake when AITC is used as flavouring agent (EFSA, 2008;
FAO/WHO, 2006).

Syringic acid, based on a 14-day toxicological study in rats, was considered safe
over limited time period (Mirza and Panchal, 2019). Information on food safety
of zeanone was not identified; however, other naphtoquinones showed toxicity to
isolated trout hepatocytes and insect larvae (Kim and Lee, 2016; Schmieder ez al,
2003). The toxicity of 2-hydroxy-4,7-dimethoxy-2H-1,4-benzoxazin-3(4H)-one
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are produced as root exudates by some common crops,

Substances acting as biological nitrification inhibitors
including sorghum (Sorghum bicolor).
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(HDMBOA) and its metabolites has been mainly investigated in the context
of a natural defence system of maize against insect herbivores (Glauser et al.,
2011; Zhang et al., 2019). Toxicological testing of methyl ferulate and methyl
p-coumarate showed no mutagenic effects and no skin irritating properties from
these compounds, although slight eye irritation and haemolysis was observed at
higher tested concentrations (Raza et al., 2016). There is inadequate evidence on the
carcinogenicity of shikimic acid classified by IARC under Group 3 (not classifiable
in regard to its carcinogenicity to humans) (IARC, 2018b).

In the GHS system, many substances belonging to this category are classified as
causing skin and serious eye irritations and possibly respiratory irritations.

2.2.5. SYNTHETIC DENITRIFICATION INHIBITORS

The potential of substances as denitrification inhibitors has been less explored
compared to nitrification and urease inhibitors.

Pyrimidone- and triazinone-based compounds

These compounds have been identified as small molecules able to inhibit copper
nitrite reductase (NirK), the key enzyme in the denitrification process performed
by the target organism Fusarium oxysporum, a primary denitrifier in agricultural
soils (Matsuoka et al., 2017). The study was based on i silico modelling and efficacy
tests, but no toxicity assessment has been performed to date.

2.2.6. BIOLOGICAL DENITRIFICATION INHIBITORS

Flavonoids

Procyanidins are the main class of biological denitrification inhibitors (BDI) falling
in this category. While a large body of literature exists on their beneficial properties,
more studies are needed to collect toxicological and safety data in the context of
agricultural applications (Dasiman et al., 2022). Procyanidin-rich extract from grape
(Vitis vinifera) seeds administered to rats for 90 days at 2 percent of the diet showed
no toxicity in rats assessed for acute and sub-chronic effects, and no mutagenic
potential in three different tests (Yamakoshi et al., 2002). No mutagenicity was
observed in other studies. However, the dose of 2000 mg/kg was cytotoxic to mice
after 48 hours post-exposure (Erexson, 2003). Some authors reported reduced
numbers of micronucleated cells and chromosomal damage following exposure to
procyanidine-rich extracts (Stancovic et al., 2008, Sugisawa, Inoue and Umegaki,
2004). In another study, weak mutagenicity was identified in iz vivo micronucleus
test (Lluis et al., 2011). Procyanidin B2 was classified as a weak skin sensitizer and
not mutagenic to bacteria but it caused polyploidy in mammalian cells in vitro,
although no structural aberrations were detected (Takahashi ez al., 1999). Other
information on flavonoids is provided in section 2.1 on methanogenesis inhibitors.
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Biological denitrification inhibitors can be extracted
from a wide range of natural products including fruits,
vegetables, nuts, legumes and grains.
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In the coming decades, growing food demand,

including products of animal origin,
will require measures to mitigate pressures of
the agrifood sector on the environment.
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Increasing use of fertilizers will require measures
to mitigate the loss of nitrogen from soil.
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The use of nitrogen inhibitors may have positive
implications on the agrifood trade by increasing crop
yield and quality while reducing fertilizer demand.




CHAPTER 3
TRENDS IN THE USE
OF ENVIRONMENTAL
INHIBITORS

The continuous global population growth with the corresponding intensification
of livestock farming and crop production will most likely result in the increasing
trends on the application of feed supplements and nitrogen fertilizers (Alexandratos
and Bruinsma, 2012; Bakken and Frostegard, 2017; van Beek ez al., 2010). The need
for mitigation measures to face current GHG levels and emissions from agriculture
on the rise as well as nitrogen loss from farmlands are likely to further advance
the use of environmental inhibitors. The high price of fertilizers may hinder their
use, especially in developing countries; at the same time, this may also result in the
increased application of nitrogen inhibitors as practice to minimize fertilizer demand
while maintaining crop yield and quality.

Several commercial products are available on the market as nitrogen inhibitors (see
Table 2). Their use is justified especially on sites with a high input of nitrogen linked
to elevated nitrogen loss (Montavalli, Nelson and Bardhan, 2013). However, the
expansion of their use is hampered by inconsistent effectiveness which depends on
factors such as the soil type and environmental conditions.

At present, the use of methanogenesis inhibitors is limited and mainly carried out
for research purposes. Reduction of CH4 emission may arise as a secondary effect
of feed products which, in the first place, aim to enhance livestock productivity.
Initiatives have been launched to collect evidence of introducing methanogenesis
inhibition practices across agrifood systems in view of their possible consideration
in policy development (UK, 2022). The use of 3-NOP has recently been authorized
as feed additive in a range of countries worldwide including Australia, Brazil,
Chile, Pakistan, Switzerland, Turkey and EU/EEA Member States (EU, 2022d)
while the authorization process is ongoing for other markets such as Canada
(FAO, 20232).

Additional information on trends in use of environmental inhibitors is available in
reports based on current market analysis and forecast until 2028 (Industry ARC, 2023).

53



FOOD SAFETY IMPLICATIONS FROM THE USE OF ENVIRONMENTAL INHIBITORS IN AGRIFOOD SYSTEMS

Manual application of fertilizers on a
traditional cultivation field is compatible with
the use of nitrogen inhibitors.
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CHAPTER 4

REGULATORY
FRAMEWORKS

While specific regulations on environmental inhibitors exist only in few jurisdictions,
these compounds are often included in national and regional horizontal legislations,
in particular for feed additives regulated under feed legislation, food additives and
substances used in food production regulated by food safety legislation, fertilizers
and pesticides. Some substances with environmental inhibitory properties are covered
by legislations related to other possible uses when reduction of methane emissions
or the loss of nitrogen is not the primary application (e.g. industrial use, human
medicine). At the international level, Codex Alimentarius adopted guidelines for
rapid risk analysis of chemical residues occasionally detected in food at low levels for
which no regulatory limits exist (Codex Alimentarius, 2019). CCPR and CCRVDF
both agreed that Codex MRLs for inhibitors could be considered in each committee
— CCPR for crops and CCRVDF for animals (Codex Alimentarius, 2022).

This section is not intended to provide an in-depth legal analysis of regulatory
frameworks related to environmental inhibitors but merely to summarize examples
of regulatory approaches in different countries for which relevant information
was available in the public domain and/or was provided by national authorities.
As described in the following paragraphs, regional and national authorities, through
available legal instruments, are undertaking efforts to ensure the appropriate food
safety risk evaluation of environmental inhibitors.

ARGENTINA

In Argentina, environmental inhibitors are covered by different laws, decrees
and resolutions related to agriculture and environment sectors such as the
Regulatory Frameworks for Veterinary Medicines (SENASA, 2019a), the National
Phytosanitary Registry (SENASA, 2019b) or the resolution on the efficacy and
toxicity of phytosanitary products (SENASA, 2019¢), in addition to the former
Resolution on Food for Animals (SENASA, 2015) and the resolution on MRL in
veterinary medicines and pesticides (SENASA, 2010 and 2011).
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Under the Residue Control Plan, ionophores intended as coccidiostats together
with antibiotics have been monitored in feed for several years and in 2023 more
compounds of this type are going to be included. The aim is to ensure good practices
in the use of ionophores in feed.

Recently, a document with Principles and Declarations of the livestock sector of the
Americas was released in collaboration with other Latin American countries and
USA. The document was presented at a dedicated meeting within the framework of
the Regional Seminar on Sustainable Livestock Production in the Americas organized
by the Argentine Rural Society (SRA), the Federation of Rural Associations of
Mercosur (FARM), the Pan-American Dairy Federation (FEPALE), the Council of
Dairy Exporters of United States (USDEC) and the United States Dairy Producers
Federation (NMPF). The meeting proposed to strengthen the image of the livestock
sector as part of the solution to global warming and the reduction of GHG.

AUSTRALIA

Australian food safety regulations apply to primary production inputs, including
environmental inhibitors. As no specific risk has been identified for this class of
product, their use is not currently subject to any specific regulatory provisions.

BRAZIL

Methanogenesis inhibitors are regulated as feed additives under “other zootechnical
additives”, a functional group of zootechnical additives, i.e. not falling within the
functional group of digestive additives, flora balancers or performance enhancers.
Normative Instruction N. 1/2018 (Brazil, 2018a) included this functional group
in the Normative Instruction N.13/2004 (Brazil, 2004). The technical regulation
on safety of use, labelling requirements, registration and commercialization of
feed additives is outlined in the Normative Instruction 13/2004, amended by the
Normative Instruction N. 44/2015, with the aim to ensure an adequate level of
protection of human health, animals and the environment (Brazil, 2004 and 2015).

3-NOP is currently the only product registered in Brazil with a claim of
methanogenesis inhibition. Ionophores are registered in Brazil under the category
of veterinary products, with the main function as growth promoters. Efficacy
studies for registration purposes are currently being carried out with other potential
methanogenesis inhibitors, such as additives based on tannins, natural substances
that can reduce enteric methane emissions from ruminants by changing the rumen
fermentation profile.

Nitrification and urease inhibitors are regulated in Brazil as authorized additives
for use in mineral and organic fertilizers. According to the Normative Instruction
N. 39/2018 (Brazil, 2018b), NPPT and NBPT urease inhibitors are listed for the
function of reducing nitrogen loss by volatilization, with their approved use in
urea. Likewise, DCD, DMPP and DMPSA are listed as substances that reduce the
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nitrification process in soil with approved use with urea, ammonium nitrate and
nitrogen fertilizers in general. The Normative Instruction N. 39/2018 covers all
aspects related to the classification, minimum levels, raw materials and additives
of mineral fertilizers to be used in agriculture. The percentage of additive in the
formulations is usually up to 1 percent, and values above this must be declared on
the label. These same additives are listed in the Normative Instruction N. 61/2020
for authorized use in Organic Fertilizers or Biofertilizers (Brazil, 2020).

CANADA

Methanogenesis inhibitors added to livestock feed in Canada may be classified
as either veterinary drugs under the Food and Drugs Act (Canada, 1985) or as
feeds under the Feeds Act (Canada, 1983). The determination of the classification
is dependent on the mode and location of action. For example, a product that is
systemically absorbed and alters the animals’ metabolism would be consistent with
a veterinary drug, whereas a product that acts locally to the gastrointestinal system,
could be considered a gut modifier and be registered as a feed (CFIA, 2023). The
pre-market assessment of a CH4 inhibitor as a veterinary drug or as a livestock feed
would include food safety considerations consistent with their respective regulatory
processes.

Nitrification and urease inhibitors are regulated by the Canadian Food Inspection
Agency (CFIA) as supplements under the Fertilizers Act and Fertilizers Regulations
(Canada, 2020a and 2020b), and require registration prior to import and sale in
Canada. Full safety assessment with complete risk profile of the product, its mode
of action and substantiation of environmental safety claims on the label must be
provided (Trade memorandum T-4-127, CFIA, 2020).

CHILE

In Chile, there is no specific regulation for methanogenesis inhibitors. However,
there are regulatory provisions that allow their use following authorization with
objectives other than environmental inhibition. An example is a product containing
3-NOP registered and classified as a formulation additive for animal feed. The
authorization of a substance for use in animal feed must comply with criteria of
evaluation to verify safety and nutritional adequacy for animals and for human
consumption taking into account any food product of animal origin.

Methanogenesis inhibitors are an emerging area of interest for the Ministry of
Agriculture as recently discussed during the Ministerial Conference on Low Emission
Food Systems'® and also in the context of Chile’s first Climate Mitigation Plan for
the agricultural sector, currently in the early stages of development. Chile’s national
institutes are conducting research to identify GHG mitigation alternatives for the
agricultural sector, commensurate with the nation’s economic and productive systems.

10 foodsystemsmethaneconference2023.org
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In accordance with Act No. 21349/2021 establishing regulations over composition,
labelling and trading of fertilizers and biostimulants (formerly biofertilizers),
nitrogen inhibitors are included under the definition of fertilizers (Chile, 2021).
They are classified as the sixth category of products specifically acting to modify and
improve fertility of the soil or its physical, chemical or biological features. Moreover,
Law No. 20.412 “System of Incentives for the Environmental Sustainability
of Agricultural Soils (SIRSD-S)” (Chile, 2010) supports the use of nitrification
inhibitors, with the objective of minimizing loss, improving the efficiency and
optimizing the use of fertilizers on crops or pastures, contributing to recovering
the productive potential of agricultural soils.

CHINA

Methanogenesis inhibitors are regulated as feed additives, although no specific
regulatory category has been established for them. A list of allowed feed additives
published by the Ministry of Agriculture and Rural Affairs (MARA) contains those
methanogenesis inhibitors which have been scientifically evaluated for efficacy and
safety, registered in compliance with management regulations and approved for
use and sale on the Chinese market. Among the allowed feed additives, several
substances have a functional effect of reducing CH4 emissions, such as stearic
acid, sodium nitrite, sodium sulfate, saponins and some botanic extracts or
mixtures (falling in the categories of “Binders, anticaking agents and stabilizers”,
“Preservatives, acidity regulators”, “Minerals and their chelates” or “Others”).
The lack of a specific category for methanogenesis inhibitors is explained by the
integrated management strategy introduced to reduce CH4 emission from livestock
which combines various approaches including dietary contents. Antibiotics acting as
methanogenesis inhibitors, such as the ionophore monensin, are not allowed since
they are banned for use as feed additives. Currently, the introduction of 3-NOP
onto the Chinese market is under evaluation.

Since 2010, Chinese authorities regulate nitrogen inhibitors, according to the fertilizer
registration framework under the category of “Slow effect nitrogen fertilizers”. The
list of allowed substances includes NBPT, NPPT, DCD and hydroquinone.

To date, environmental inhibitors have not been separately included in Chinese
Food Safety Standards for Maximum Levels of Contaminants in Foods (China,
2022a), Maximum Residue Limits for Pesticides in Foods (China, 2021 and 2022b)
and Maximum Residue Levels for Veterinary Drugs in Food (China, 2019 and
2022c), due to insufficient data at national level.
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EUROPEAN UNION

In the EU, methanogenesis inhibitors are regulated by Regulation (EC) 1831/2003
(EU, 2003a) on additives for use in animal nutrition, which provides information
regarding authorizations and labelling requirements as well as categories of
feed additives and premixtures. Article 6 refers to methanogenesis inhibitors as
zootechnical additives “used to affect favourably the environment”. Commission
Implementing Regulation (EU) 2022/565 (EU, 2022c¢) authorized the use of 3-NOP
as a feed additive for dairy cows and cows for reproduction on the EU market.

While ionophores used in ruminant feed generally reduce methane production in
ruminants, the use of ionophore feed additives as antibiotic growth promoters in
feed for ruminants has been prohibited in the EU since 2003 (EC 2003a).

The use and content of fertilizers with nitrification/denitrification and urease
inhibitors in the EU falls under Regulation (EU) 2019/1009 which replaced the
former Regulation (EC) 2003/2003 (EU, 2003b) in effect since 16 July 2022. Nitrogen
inhibitors are considered as fertilizing products if the intention of a manufacturer is
to add them to fertilizing products.!! Regulation (EU) 2022/1519 (EU, 2022e) sets
requirements applicable to fertilizing products containing inhibiting compounds
including information on the product label and efficiency of fertilizers. This regulation
also harmonizes the terminology relative to inhibitors, according to which “a substance
or mixture which improves the nutrient release pattern of a nutrient by delaying or
stopping the activity of specific groups of micro-organisms or enzyme” should be
called “inhibiting compound”, while the term “inhibitor” refers to the EU fertilizing
products belonging to Product Function Category 5 (PFC5). The use of urea-based
fertilizers coated with nitrification inhibitors is mentioned as best environmental
management practice in Commission Decision (EU) 2018/813 (EU, 2018).

JAPAN

Any substance added to or mixed with the feed for the purpose of preventing
deterioration of feed quality, supplementing nutritional and other active or useful
ingredients or facilitating efficient utilization of nutritional ingredients is regulated
by the Act for Safety Assurance and Quality Improvement of Feeds (April 1953
with the most recent amendment in June 2022) (Japan, 2022) and related ordinances,
rules and notices. For a substance to be used as feed additive, it shall be designated
as such by the Minister of Agriculture, Forestry and Fisheries.

Methanogenesis inhibitors are regulated as feed additives for “supplementing
nutritional and other active/useful ingredients”. Substances are categorized as
feed additives after evaluation and confirmation of their safety to livestock,
effectiveness in livestock husbandry and safety of foods of animal origin to humans.

1" "Substance, mixture, micro- organism or any other material, applied or intended to be applied on plants or their rhizosphere
or on mushrooms or their mycosphere, or intended to constitute the rhizosphere or mycosphere, either on its own or mixed
with another material, for the purpose of providing the plants or mushrooms with nutrient or improving their nutrition
efficiency”. Definition from Reguﬁ)ation 2019/1009/EU.
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Their environmental effects are not evaluated. As of April 2023, there has been no
feed additive designated for methanogenesis inhibition. 3-NOP has been evaluated
from the point of view of safety to livestock.

Any substance applied to the ground for the purpose of plant nutrition or for
changing the chemical nature of soil to facilitate plant growth, or to the plants for
the purpose of plant nutrition are categorized as fertilizers according to the Act on
the Quality Control of Fertilizers of May 1950 with the most recent amendment
in December 2019 (Japan, 2019) and related ordinances, rules and notices. In order
to manufacture a fertilizer, it shall be registered after evaluation and confirmation
of its effectiveness as fertilizer. The addition of any active ingredient shall be at the
least amount necessary. The “designated mixed fertilizer” can be manufactured after
notification but without registration. There has been no pesticide registered in Japan
that exerts functions as environmental inhibitor. No maximum levels or MRLs have
been established for these substances in Japan.

Nitrification inhibitors may inadvertently decrease the quality of fertilizers
containing them, therefore certain conditions for their use have been established in
Japan. Only registered fertilizers not containing nitrification inhibitors and those
containing one or more of the four nitrification inhibitors designated by the Minister
of Agriculture, Forestry and Fisheries (1-amidino-2-thiourea, 4-amino-N-(1,3-
thiazole-2-yl) benzenesulfonamide, N-(2,5-dichlorophenyl) succinamic acid and
DCD) can be used alone or in mixture. After mixing, the fertilizer is categorized as
“designated mixed fertilizer”.

NEW ZEALAND

Environmental inhibitors are regulated by the Order 2022 (New Zealand, 2022a) of
the Agricultural Compounds and Veterinary Medicines (ACVM) Act 1997 (New
Zealand, 2022b) as “inhibitor substances”, i.e. “active ingredients in the product
that achieves the inhibitor effect”, defining them as “agricultural compounds”
(Ministry of Primary Industries of New Zealand, 2023). These substances are
covered under the scope of the Order refers to these substances if used to mitigate
adverse effects of agricultural activities on the environment, sustainability or climate
change by direct or indirect management of plants and animals, application in
areas with plants or animals, or added to feed or water used in animal husbandry
or plant cultivation. It includes a schedule of inhibitor substances declared to
be agricultural compounds along with their esters, isomers and salts, among
which the most common methanogenesis, nitrification and urease inhibitors are
included (e.g. 3-NOP, DCD, nitrapyrin, n-propylphosphorothioic triamide).
By regulating environmental inhibitors, the Order aims to manage residues
in primary produce; risks to public health, animal welfare, biosecurity and trade
in primary produce; and food safety.
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Environmental inhibitors for sale in New Zealand containing a substance not listed
in the Order are currently not subject to ACVM. However, work is under way to
amend the ACVM to include all inhibitors, which means the Order will no longer
be required. Those substances listed in the Order will require registration before
they can be marketed, although any substances on the market at the time the Order
commenced (18 July 2023) have a two-year transitional period to obtain registration
(New Zealand, 2022¢). All agricultural products with an inhibitor claim will require
registration to manage the risks to public health, trade, animal welfare, agricultural
security, and food safety. Food Notice on MRL for agricultural compounds regulated
under the Food Act 2014 (New Zealand, 2014) does not specifically establish levels
for residues of environmental inhibitors in food commodities (New Zealand, 2022d).

The Hazardous Substances and New Organisms Act 1996 (New Zealand, 1996) is
administered by the New Zealand Environmental Protection Authority and was
established to protect the environment and human health by preventing or managing
adverse effects. It covers, among others, substances which are toxic, ecotoxic and
bioaccumulative with exposure limits established for each component or element
of a hazardous substance.

Products used as inhibitors that classify as hazardous substances under the HSNO
Act may require a HSNO Act approval as well as registration under ACVM.
Whether or not an inhibitor substance is regulated by the NZEPA, and what
framework it falls under, depends on various factors including the identity and
composition of the substance, concentration of the active ingredient, and method
of administration to an animal or into the environment.

UNITED STATES OF AMERICA

Products that are added to animal foods may be regulated as a food or a drug,
depending on whether intended effects are derived from a food attribute
(taste, aroma, nutritive value) or not. Many products claiming to affect the structure
or function of an animal’s body currently meet the legal definition of animal drugs
because they have that effect through mechanisms other than food attributes.
FDA has sought public input and is re-evaluating its current policy in light of the
emergence of products like some methanogenesis inhibitors and other novel animal
food ingredients that achieve their intended effect solely through activity within the
lumen of the digestive tract.

Federal Insecticide, Fungicide, and Rodenticide Act (USEPA, 2012) regulates the use
of nitrogen inhibitors under the term “nitrogen stabilizers” intended as substances
or mixtures applied with the purpose to prevent or delay the process of nitrification,
denitrification, urease production or ammonia volatilization through action of soil
bacteria, with some exceptions (e.g. DCD, ammonium thiosulfate).
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Risk assessments based on adequate toxicological
data are fundamental to ensure food safety when
adopting new practices within smart agriculture,
such as the application of environmental inhibitors.




CHAPTER 5

CONCLUSIONS
AND WAY FORWARD

Environmental inhibitors are just one of the approaches to mitigate CH4 emissions
and nitrogen loss in agrifood systems while progressing towards socioeconomic
well-being and adequate nutrition for the growing world population.
Many compounds have been known for decades and new solutions are being
developed with gradually increasing interest in biological inhibitors. Despite many
environmental inhibitors being considered highly efficient, their adoption in practice,
especially of methanogenesis inhibitors, can be hampered by knowledge gaps,
particularly regarding possible food safety implications. As the health of humans,
animals and plants is interconnected and dependent on the health of the ecosystem
in which they reside, approval for the use of environmental inhibitors should be
performed in accordance with a One Health'>'* approach.

SCIENCE-BASED HOLISTIC RISK ASSESSMENT AND HARMONIZED
REGULATORY FRAMEWORKS ARE IMPORTANT TO ENSURE FOOD SAFETY
OF ENVIRONMENTAL INHIBITORS AND FACILITATE THEIR GLOBAL TRADE

While legislations in some countries and regions include specific legal instruments
under which environmental inhibitors used in agriculture are authorized, many
jurisdictions allow them through regulatory frameworks which are broader in scope
and do not specifically refer to such substances. Trade implications of environmental
inhibitors have recently been addressed by Codex Alimentarius, highlighting the
importance of having internationally accepted MRLs based on scientific assessment
and an agreed definition of environmental inhibitors (Codex Alimentarius, 2022).
Harmonization of regulatory frameworks at global level would not only facilitate
trade, but also support correct management of food safety across globalized
agrifood systems.

2 www.fao.org/one-health/en
B www.who.int/groups/one-health-high-level-expert-panel
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R&D OF NOVEL ENVIRONMENTAL INHIBITORS NEEDS TO PROCEED
IN CONCERT WITH RISK ASSESSMENT

Re-purposing old chemistry to the role of environmental inhibitors should be supported
by a critical examination of new toxicological studies to understand limitations and
changes in the data requirements. Approval of new products requires substantial efforts
to evaluate their food safety implications, including modes of action, levels of possible
residues in food commodities and potential harm to consumers. Thorough environmental
fate studies have often been performed for products containing environmental inhibitors
currently on the market and for most of the assessed substances, the residues found in
food are below safety concern levels. However, food safety information is in many cases
incomplete or missing. New approaches in the development of next-generation GHG
inhibitory solutions, for example recombinant DNA technology for crops to increase
their BNI capacity (Subbarao et al., 2021), will need to be considered and evaluated.
The Genetic Technology (Precision Breeding) Act that recently passed into law in the
United Kingdom is opening up this area (UK, 2023).

The advancement of research for new products along with assessment of the
requirements for their use, as well as the related costs implications will likely
determine the selection of the best matching combinations among available mitigation
approaches (FAO, 2023a; Norton and Ouyang, 2019; Patra et al., 2017; Subbarao
et al., 2017). Challenges with field application of environmental inhibitors have
already been encountered within pasture-based systems. In those scenarios, direct
interactions of substances with the environment, the likelihood to impact multiple
off target parameters and a lower potential for controlling the overall performance
compared to stall-based systems must be considered (Dawson et al., 2011). Following
the withdrawal of DCD in New Zealand, ongoing research projects seek to develop
novel nitrification inhibitors giving lower levels of residues in food commodities as
well as novel tools and delivery methods for methanogenesis inhibitors (NZAGRC,
2023a and 2023b). Examples of near-market ready methanogenesis inhibitors have
been provided for selected strategies by Searchinger et al. (2021).

NEW TECHNOLOGIES CAN HELP IN OPTIMIZING THE APPLICATION OF
ENVIRONMENTAL INHIBITORS

Uncertainties in estimating national CH4 and N20 emissions in agrifood systems
have been addressed by refined IPCC guidelines (IPCC, 2019). As noted in a recent
FAO report, available CH4 measurement methods involve trade-offs between ease of
use, repeatability and applicability to stall-based or grazing systems (FAO, 2023a).
New and/or improved detection techniques and biomarkers for CH4 emission
from enteric fermentation, manure management systems and land will allow to
calculate the efficacy of inhibitors with more precision. These new techniques will
also simplify the application of environmental inhibitors on commercial farms for
long-term measurements (Hristov ez al., 2018; Tedeschi ez al., 2022; Thompson and
Rowntree, 2020). This process will ultimately help better address the challenges
posed by climate change, by providing additional GHG mitigation measures.
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The development of advanced detection methods for active compounds or their
metabolites in complex matrices would strengthen food safety management.
However, a higher analytical sensitivity would require new regulatory approaches
for dealing with higher number of detects in foods. Steps ahead to reduce labour
and matrix effects are ongoing as shown, for example, by the study employing a
method for detection of NBPT and its oxidation product NBPTo in milk (Nkwonta
et al., 2021).

Understanding changes in rumen ecosystems upon exposure to environmental
inhibitors is another challenge. Progress in omics technologies can help obtain
descriptive information on the complex nature and functionality of ruminal
microbiome with the aim of investigating the efficiency of mitigation strategies on
CHy4 formation and livestock performance.

THE ECONOMIC IMPLICATIONS OF USING ENVIRONMENTAL INHIBITORS
THOROUGH CONSIDERATION OF TRADE-OFFS AND OTHER FACTORS

Agrifood policies will increasingly need to respond to the expanding demand for
food as well as to transformations in agrifood systems towards smart and more
sustainable agriculture. Some cost-to-benefit ratio calculations indicate that costs
of inhibitor application may be outcompeted by savings when considering societal
advantages related to the reduction of GHG emission for human and ecosystem
health (Hu and Schmidhalter, 2021; Zhang ez al., 2020).

As economic return to the producer is a key driver for additional investments
(Hristov et al., 2013b; Subbarao et al., 2017), incentives are among factors foreseen
to promote the adoption of GHG mitigation strategies in practice (Herrero et al.,
2016). Adoption of incentives and practices for GHG abatement in the livestock
sector have to reckon with trade-offs (Herrero et al., 2016). Previous experiences in
reducing enteric CH4 emissions showed that investments for increasing awareness,
knowledge sharing, advisory service and capacity building are required to maintain
synergies with development objectives in various areas globally, so that gains in
terms of GHG reduction do not negatively affect other variables (FAO/NZAGRC,
2019; Ungerfeld, 2022). Building the trust of involved parties will be crucial to
integrate food safety consideration of new inhibitory substances in the very first
phase of their development.
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Increasing awareness among farmers, industry
and consumers will favour the adoption of smart
agriculture measures for a sustainable and
efficient agriculture.
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