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Biochar is a material rich in carbon that results from the 
pyrolysis of  any biosolid material such as wood, fruit shells, 
residues of  plants, manure, industrial and municipal waste, 
sewage sludge, farming, and fermentation residuals (Duku, 
Gu and Hagan, 2011; Wang et al., 2018a). Biochar remains 
in the soils for thousands of  years (Aslam et al., 2014), and it 
is therefore considered more resistant to decomposition than 
organic matter, acting as an important long-term carbon sink. 

The potential use of  biochar in modern agriculture draws 
inspiration from the ancient indigenous knowledge preserved 
in Amazonian Dark Earths (ADEs), a type of  highly fertile 
soil containing large quantities of  archaeological artefacts 
and charcoal, commonly with high levels of  calcium and 
phosphorus, first described in the Amazon rainforest (Clement 
et al., 2015; Myers et al., 2003; Sombroek, 1966). Since 
sustainable soil fertility management is a major constraint 

in the humid tropics, ADEs achieved a 
high degree of  public awareness as an example that 
shows that both longlasting carbon sequestration and 
soil fertility improvements are possible, which has boosted 
the interest in traditional practices translated in the form of  
biochar. In 2006, the International biochar initiative formed to 
promote the development of  sustainable biochar systems. 
Since then, the amount of  research, conferences, workshops 
and symposia on this theme has increased immensely 
worldwide. A bibliometric analysis on biochar research in 
Brazil from 2003 to 2021 has been presented in a paper by 
Arias et al. (2023).

Due to the effects of  better soil properties and long carbon 
sequestration, biochar as a soil amendment has been proposed 
as a strategy for mitigating climate change, along with 
improving soil quality and productivity. The burning of  crop 
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residues is becoming a serious issue in most countries, since it 
results in the release of  black carbon in the form of  suspended 
particulate matter that can pollute nearby urban areas. 
Hence, the conversion of  organic waste to produce biochar 
using the pyrolysis process is also one of  the viable options that 
can enhance natural rates of  carbon sequestration in the soil, 
reduce farm waste and improving soil quality. 

There are several methods of  applying biochar to the soil. 
These methods include band placement, uniform topsoil 
mixing, top dressing, and the use of  planting holes. Biochar 
can also be applied directly or through mixing it with crop 
residue, compost, manure and seed. The choice of  biochar 
application method will depend largely on the availability of  
labour and farming system (Duku, Gu and Hagan, 2011). In 
some places where crops are established, surface application 
(top dressing) of  biochar can be employed. Banding is another 
much-used technique that involves biochar addition below 
the soil’s surface to a depth of  10 to 20 cm in an established 
crop. The banding approach improves the contact between 
the biochar, soil and plant, while avoiding the creation of  dust 
(De Gryze et al., 2010).

EFFECTS ON SOIL FERTILITY
The application of  biochar has both direct and indirect 
effects on soil fertility. The direct effects include an enhanced 
nutrient availability (potassium [K], phosphorus [P], calcium 
[Ca], magnesium [Mg] and sulphur [S]), while indirect effects 
are through the improved physical, chemical, and biological 
properties of  the soil (Cheng et al., 2012; Beusch, 2021, Singh 
et al., 2022). The main reported effects on chemical and 
biological parameters are increases in soil pH (Sohi et al., 
2010; Syuhada et al., 2016; Verheijen et al., 2010; Dong et al., 
2018), cation exchange capacity (Das et al., 2021), mineral 
nitrogen (N) availability, dissolved organic carbon, and 
microbial diversity (bacterial and fungal) (Sing et al., 2022; 
Tian Hu et al., 2023). Some of  the effects on the soil’s physical 
properties are increases in water holding capacity and porosity 

(Ahmad Bhat et al., 2022; Hien et al., 2021; Major et al., 2009; 
Rattanakam et al., 2017; Sing et al., 2022). All these positive 
results have been related to the improved yield of  various 
crops in different soil types and regions (Gopal et al., 2020; Xu 
et al., 2015; Zhang et al., 2015). 

Biochar properties are affected by several technological 
parameters – mainly pyrolysis temperature and kind of  
feedstock – whose differentiation can lead to products with a 
wide range of  pH values, specific surface area, pore volume, 
cation exchange capacity (CEC), volatile matter, ash, and 
carbon content (Pituya, Thavivongse and Saowanee, 2017; 
Tomczyk, Sokolowska and Boguta, 2020). The pyrolysis 
temperature and soil pH both play an important role in 
the biochar’s ability to hold nutrients (Gronwald et al., 
2015; Ghodszad et al., 2022). Most researchers focused on 
the production of  inorganic forms of  N as NO3

- and NH4
+ 

(Aghoghovwia, Hardie and Rozanov, 2020; Fatima et al., 
2021), and phosphorus (Wang et al., 2021; Rashmi et al., 2020). 
The high negative charges and surface area lead to high 
cation adsorption, higher than any other organic matter, in 
which cations act as bridges that encourage soil aggregation. 
Consequently, when biochar is applied to clayey soils, aeration 
and water infiltration are improved (Laird, 2008; Lehmann, 
2007). 

Biochar has a good potential to neutralize soil acidity, which 
enhances the availability of  P and molybdenum (Mo) and 
decreases the availability of  iron (Fe), aluminium (Al), zinc 
(Zn), and boron (B) (Van Zwieten et al., 2007). It results in 
higher yields when applied to acidic soils, but the effect is 
not evident in alkaline soils (Van Zwieten et al., 2010). It has 
also been suggested that biochar application in P-deficient 
soil results in higher grain yields and improves the response 
to N and NP fertilizer treatments (Ding et al., 2016). While 
there are many references indicating that biochar significantly 
improves soil quality parameters when applied at higher rates 
to highly eroded, coarse-textured tropical soils, almost no 
significant effects have been detected in other soils, such as 
Mediterranean calcareous soils (Nogues et al., 2023).
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Indeed, the efficiency and viability of  biochar application 
depend both on the type of  biochar and the soils where it 
is applied. Siltecho et al. (2021) reported that Pterocarpus 
macrocarpus wood biochar showed important adsorption 
properties with a high specific surface area, CEC, and 
nutrient adsorption on unfertile sandy soils in marginal 
area in the northeast of  Thailand. Regarding the origin of  
biochar biological material, Silva et al. (2016) report different 
increases of  the grain dry matter of  common bean after 
biochar application, depending on whether using rice husk, 
sawdust, or sorghum silage (increasing order) as the source. 
Contrasting results were also obtained when looking at the 
long-time effects of  biochar application. Application of  
chemical fertilizers in combination with biochar increased 
the soil pH, organic carbon, available nutrient content, and 
improved soil biological activity (Saha et al., 2019). The co-
application of  biochar and chemical fertilizers after five years 
in China were shown to improve soil physical properties and 
increased macronutrient availability and uptake by various 
crops over five years (Gu et al., 2022). However, the beneficial 
effects of  a single application of  biochar were also shown over 
a period of  eight years in Finland, where, despite the increased 
nutrient content of  plants, no significant improvement was 
observed in crop biomass yield over the years. The enhanced 
plant available water and reduced bulk density previously 
reported during the initial years were diminished in the long 
term, likely due to the dilution of  biochar concentration in the 
topsoil (Kalu et al., 2021). 

ROLE OF BIOCHAR IN IMPROVING FERTILIZER 
USE EFFICIENCY
An improvement in the water holding capacity and the increase 
in cation and anion exchange capacities in biochar-amended 
soils are reasons both for the higher retention of  nutrients and 
decreased leaching of  applied fertilizers out of  the soil–plant 
ecosystem (Sohi et al., 2010). The effect of  applied biochar is 
also shown to alleviate abiotic stresses in saline–sodic soils and 
positively affects maize and wheat productivity (El-Sharkawy et 
al., 2022). Biochar produced from manure, greenhouse waste 
and grasses are more effective for nutrient supplementation 
than wood-based biochar, with the opposite being true in 
terms of  their carbon sequestration potential (Ippolito et al., 
2020). 

EFFECT OF BIOCHAR ON SOIL PHYSICAL 
PROPERTIES
The surface area and porosity of  the biochar enhance the 
soil’s ability to hold water (being held inside the pores and 
between biochar colloids). Therefore, irrigation frequency 
might be reduced in some cases due to the increased available 
water especially in dry and semi-dry areas. Biochar may also 
enhance water infiltration into the soil and consequently, 
the water runoff may be reduced. Therefore, biochar could 
be considered an option for water conservation and the 
prevention of  water erosion (Itsukushima et al., 2016; Abrol 
et al., 2016). 

The effect of  biochar on soil porosity is variable according 
to soil types. It increases the percentage of  large soil pores in 
clay soil while increasing micropores in sandy soil (Major et 
al., 2009). Consequently, soil aggregation is improved, which 
seems to correlate to the amount of  biochar amendment 
applied to the soil. A recent study in Italy on biochar produced 
from forest biological mass seem to confirm these findings 
(Baiamonte et al., 2021).

EFFECT OF BIOCHAR ON SOIL BIODIVERSITY
Biochar modifies biological properties as the microbial 
community structure, microbial biomass and activity, 
macrofauna activity, or nitrogen cycling enzymes. Due to its 
high specific surface area, biochar pores could act as shelters 
protecting soil microbial mass, enhancing microbial mass 
growth, especially in dry conditions (Sohi et al., 2010). The 
creation of  extra spaces for the growth of  microbes would 
provide oxygen, and hence increase their biodiversity and 
density in the soil (Reddy, 2014). 

The microbial biomass living in the inner biochar structure 
are active in the production of  polysaccharide compounds 
capable of  improving soil aggregates, and therefore, 
enhance soil condition and health (Aslam, Khalid and Aon, 
2014). However, as biochar itself  is resistant to microbial 
decomposition, in the cases when it does not affect the pore 
volume or other soil physical and chemical properties, no 
major changes in microbial communities or biomasses are to 
be expected (Soinne et al., 2020).
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ENVIRONMENTAL IMPACT OF BIOCHAR
The formation of  functional groups and adsorption sites both 
on the surfaces and inner pores of  the biochar increases the 
soil’s CEC (Liang et al., 2006). Due to this effect, biochar has 
been used for sorption of  organic and inorganic contaminants, 
since the bioavailability of  heavy metals (lead [Pb] and 
cadmium [Cd]) can be reduced by immobilizing them in soil 
using biochar as an amendment which limits their movement 
through the soil (Hartley et al., 2009). This function of  biochar 
is the result of  the negatively charged groups on its surfaces, 
which seems to increase with time due to the oxidation 
processes in the soil (Cheng, Lehmann and Engelhard, 
2009). Biochar along with phytoremediation strategies could 
provide a good combination for effectively stabilizing and 
decontaminating heavy metal-polluted sites. On the other 
hand, some researchers have warned against health risks due 
to exposure to polycyclic aromatic hydrocarbons (Wang et al., 
2018b; Zhang, Zhang and Liao, 2021).

REDUCTION OF GREENHOUSE GAS EMISSIONS 
(GHG)
Biochar application to agricultural soils has been recommended 
as a strategy to reduce increasing atmospheric carbon dioxide 
(CO2) concentrations and mitigate climate change (Lorenz 
and Lal, 2014). Several studies have reported that biochar 
application reduces the emissions of  soil greenhouse gases 
(GHGs) (Zhang et al., 2020), but the mechanisms responsible 
for the effects of  biochar on soil GHGs emissions are still 
unclear. The biochar feedstock, pyrolysis conditions, C:N 
ratio and application rates influence nitrous oxide (N2O) 
emission. However, the increase in soil methane (CH4) and 
CO2 emissions were also reported after biochar application 
(Mukherjee and Lal, 2013; Wang et al., 2012).

CONCLUSION
The efficacy of  biochar in improving soil health, crop 
productivity, land reclamation and mitigation of  climate 
change has been extensively studied over the last decade. This 
research has shown varied results, from clear improvements of  
soil health to almost no difference compared with the control, 
depending on the types of  soil, crop, type of  biochar and the 
environment. Moreover, information is still very limited from 
large scale field trials, probably because of  the high costs of  
biochar in the market. Large-scale production of  biochar 
from all kinds of  organic wastes may help in reducing the 
costs. The greatest potential may be in having very targeted 
applications to address specific environmental concerns. A 
proper regulatory mechanism is required to avoid any possible 
risks of  soil contamination due to potential contaminants 
present in biochar, and on the global GHGs emissions when 
producing it, which should be considered when using it as a 
carbon sequestration strategy. 
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Figure 1. Scanning electron microscope of  biochars from wood materials: 
(a) Peltophorum pterocarpum, (b) Eucalyptus, (c) Pinus, (d) Anacardium occidentale 
(e) Cassia siamea (Lam.)

Figure 2. Scanning electron microscope of  biochars from organic wastes: 
(a) durian peel (b) cassava rhizome (c) corn cob

a b c

d e

Source : Pinipon Pituya (Huaysai Royal Development Study Center, Petchaburi Province, 76120, Thailand), personal contact.

Source : Pinipon Pituya (Huaysai Royal Development Study Center, Petchaburi Province, 76120, Thailand), personal contact.
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