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6 ERROR MODELS AND ESTIMATION 
Model specification usually includes a description of the behaviour of the mean in the 
distribution and a random effect or error. This error is the difference between the 
model expected value and the observed value, and can be classified as: 

 Structural error. The estimation procedure uses structural relations between the 
populations at different times. These relations will only be approximately correct. 
For instance, CPUE is unlikely to be precisely proportional to abundance, 
although this model makes estimation easier. 

 Measurement error. This error is not only caused by the sampling gear, (e.g. 
originating from variation in weather conditions during surveys), but also by 
patchy distributions of the population. 

 Process error. Random effects may also affect underlying dynamics models. For 
instance, random weather and oceanographic changes may increase or decrease 
natural mortality and recruitment in an unpredictable way. The difference between 
process and measurement error is that process error introduces a real change in 
the system, whereas measurement errors introduce no underlying change and 
therefore do not affect future observations. 

6.1 LIKELIHOOD 

In fitting models to data, the models describing the stock and observations cease to 
become descriptions of the process in their own right, but instead become 
descriptions of how parameters in probability models change. For example, in many 
applications a model is used to describe the  parameter in the normal distribution, 
which also happens to be the mean.  

These probability models describe how likely the observed data are, given the 
parameters. The likelihood concept simply turns this on its head. Likelihood is the 
probability that a set of parameters is correct given the data. This makes no 
substantive difference to the probability distribution, but conceptually underpins most 
criteria for fitting models to data. For example, maximum likelihood defines a set of 
parameters when the likelihood function reaches its maximum point, and a Bayesian 
estimator uses likelihood, along with prior probabilities and a cost function, to define 
a set of parameters where the expected cost is minimised. 

Although using likelihood (i.e. a full probability model) is theoretically better, least-
squares is often used in the analysis of fisheries data. This can be justified by the 
following points: 

 least-squares is maximum likelihood where the probability distribution is the 
Normal. 

 true likelihoods can rarely be specified with any certainty. Least-squares with 
some appropriate transformation is probably as good as any alternative without 
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more information on error structure. Therefore, a more complex procedure may 
not be justified. 

 maximum likelihood for many parametric likelihoods (e.g. Poisson etc.) can be 
reformulated in terms of least-squares. 

 least-squares numerical procedures are much simpler and less likely to break 
down than more general approaches, particularly where there are many 
parameters to estimate. 

The fact that least-squares are relatively easy to use, adaptable, objective and may 
often be close to the maximum likelihood solution has resulted in its wide use. 
Nevertheless, there is increasing interest in alternative approaches that are 
theoretically more appealing and for which robust numerical methods are being 
developed. However, even if other more complicated methods are used to fit models, 
in most cases least-squares can still form the starting point of the analysis, so the 
methods discussed here are always likely to be of use. 

6.2 LEAST-SQUARES ESTIMATION 

Least-squares estimation is based on the same principle as curve fitting. Given a set 
of observations, define a model and then establish the set of the parameters that 
gives the “best fit” of this model to the observed data. The “goodness of fit” is usually 
the sum of squared differences between observed and calculated dependent 
variables (i.e. squared residuals). The sum of squares (SSQ) is also sometimes 
called the Euclidean norm. The “best fit” is the set of parameters that minimises the 
squared difference between the observations and the model’s expected values.  

There is no guarantee that the “best fit” model is correct, and the model may be 
entirely inadequate for reflecting the dynamics. Analyses of a data set therefore 
should always include comparison between observations and the fitted model for 
inspection. This is often done graphically by plotting the residuals against the 
independent variables or by plotting on the same graph both the observations and 
the fitted curve. The residuals should show a random scatter and should not exhibit 
any remaining pattern. 

Maximum likelihood estimation (e.g. Lehman 1983) includes the same elements as a 
least-squares estimation, only the goodness of fit measure will often differ based on 
the explicit assumption of the form of the error model. 

The elements in least-squares estimation are:  

The model:   )(Modelyobs   (47) 

where  is the vector of parameters, and  is the difference (error) between the 
observations and value calculated from the model. In practice this means all 
uncertainty is treated as observation error whether created by measurement noise, 
model mis-specification or otherwise. The mean of the observed quantity can be 
defined as: 
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  )()(  ModelestimatedModelyE obs   (48) 

Therefore, the mean error becomes: E{} = 0. Where the expected error is not zero, 
this is often referred to as bias. 

For the goodness of fit measure, the sum-of-squares, is used:  

 2)( 
obs

obs ModelyL   (49) 

The parameters in the model are chosen so that this sum-of-squares is at its 
minimum. This goodness of fit measure is often extended to account for the 
observations having different variances. In this case, the goodness-of-fit measure 
becomes:  
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where data subset i contains all observations with the same variance i
2. 

A least-squares estimator will produce maximum likelihood estimates and confidence 
intervals if  =(0,2), that is normally distributed with mean 0 and variance 2. It will 
even produce maximum likelihood estimates if the variance is constant over the 
range of explanatory variables or the proportional change in variance is known in a 
weighted least-squares scheme. However, if the true error distribution is not 
symmetrical, the variance changes in an unknown manner, or there are process or 
structural errors (as there almost certainly always are), the estimates will not be 
maximum likelihood. 

It has been found with fisheries data that least-squares by itself provides a poor fit. 
For this reason, it is a common practice to use transformations to approximate 
alternative distributions. The transformations form part of the link model and often are 
used to represent alternative error distributions besides the normal. Elliott (1983) 
suggests the following transformations for stabilising the variance: 

 
Error distributions Observation Transformation 

Log-normal y: continuous ln (y) 

Poisson y: discrete 1/ y 

Binomial h: frequency 2 arcsin(h) 

General frequency 
distribution 

h: frequency ln( h/(1-h) ) 

Taylor expansion y: discrete y  

 



 

 37

The most commonly assumed error is the log-normal, which is dealt with by taking 
logarithms of the data and then assuming that errors are Normally distributed. The 
use of the lognormal might be theoretically justified in some instances. For example, 
consider a cohort being subject to random survival rates between egg release and 
recruitment: 







i

tiM

t eRR 0  (51) 

If the mortality is made up of a large sum of small random effects (Mi), the final total 
mortality, by the Central Limit Theorem, will be normally distributed even if the 
individual random components are not. Hence, this will result in a lognormal 
distribution. 

As well as the practical observation that models fitted to log transformed data fit the 
data better, the log-normal has several other advantages: 

 Taking logs often makes errors symmetrical around the mean. The Normal 
distribution does not discriminate against negative values, so for example, it 
allows for negative populations of fish, which are clearly impossible. In effect, this 
produces a bias towards larger observations in the analysis. The log-normal 
assumes negative values are impossible and corrects this bias. As a result, note 
that the exponent of the log-normal parameter, exp(), is not the same as the 
arithmetic mean, but lower as  is the mean of the log values. The arithmetic 
mean will depend on both the log-mean () and the variance. 

 The log-normal does not assume a constant error variance, but assumes the 
variance increases with the arithmetic mean. Again, this has generally been 
observed in fisheries data, where increasing catches and effort tends to produce 
greater variability. The log-normal corrects estimates for this effect. 

Nevertheless, the main argument for the log-normal remains pragmatic. It represents 
the observed error distribution better than would the normal, producing better 
estimates. However, you should always check which transformation if any is 
appropriate for your data by examining model residuals. The fact that a procedure is 
widely used is not a justification for its use in any particular case. 

The model for which we want to estimate the parameters, provides the mean in the 
unknown probability distribution. Hence, for example, CPUE might be modelled as: 

ln CPUE = ln q + ln P +  (52) 

where  = measurement error. 

Based on the above model we expect that the mean value, the logarithmic mean 
CPUE over many stations randomly spread out in the survey area, will be a linear 
function of the population P and that this mean value can be measured without bias. 
The estimation equation becomes: 
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where subscript i = abundance index, a = age and y = year of the observation. Most 
often there are several “tuning” data series available. A basic feature of the 
ADAPTIVE framework (Chapter 8) is to sum these individual contributions as in 
Equation 53. It is the researcher’s responsibility to build the estimation equations 
relevant for each individual stock assessment.  

6.2.1 Weights 

When there is more than one “tuning” time series available the data of the different 
series are usually not obtained with the same measurement variance. In this case, it 
is preferable to introduce a weighting of the data series, by specifying a weight 
parameter, i, for each data series i. In theory, these weights should be the inverse of 
the variance of the measurements. Estimates of the true variances are often 
available from abundance survey data, but they are more difficult to estimate for data 
from the commercial fisheries. However, it is unnecessary to obtain the absolute 
weights, only relative weighting with respect to some primary data series. 

In least-squares theory, the variances can be estimated from the sum-of-squares as: 
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   (54) 

where n is the number of observations and p is the number of parameters in the 
model (e.g. Lehmann 1983). It is not possible to estimate weights within the 
estimation procedure, only once the model is fitted. This is illustrated by a simple 
system with two “tuning” data series CPUE1 and CPUE2: 

    MINCPUECPUECPUECPUE   2mo
22

2

11 lnlnlnln
obs

dobs

obs

modobs   (55) 

This sum-of-squares clearly has a minimum for  = 0 (  0), as this eliminates the 
second contribution to the sum of squares. Therefore, weights need to be treated as 
external variables estimated through some other means. 

Extended Survivor Analysis (Darby and Flatman 1994) includes an internal weighting 
procedure, treating each age group and each data series separately. These weights 
are introduced in a double iteration inherent in the method. Details of this procedure 
are discussed in Section 8.3.  

All data types above can be integrated in the combined estimation least-squares 
expression: 
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where i are the weights applied to data series.  

6.3 FINDING THE LEAST-SQUARES SOLUTION 

Finding the least-squares solution is the common problem of finding the minimum for 
a function. 
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This problem is converted into an equivalent problem of solving a set of simultaneous 
equations. In any function a minimum occurs where the partial differentials of the 
parameters are equal to zero, so: 
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In least-squares, the function f is the 2 function (the sum-of-squares), and the 
parameters are the parameters of the model. Any numerical routine could be used to 
find a solution, and good robust routines exist. Why not just use the canned, black-
box routines available in many software packages? The simple answer is no reason 
in many cases, and as long as the researcher checks such routines have 
successfully found the minimum, they are recommended. However, in some cases 
they are not adequate, particularly when the number of parameters is very large. 
Faster, more reliable and more accurate methods may be developed for a problem 
by considering the numerical solution yourself. 

With large numbers of parameters, the N-dimensional parameter space can become 
very complex. Routines written for general functions can make no assumptions about 
those functions. They therefore tend to crawl around the parameter space very slowly 
to avoid overstepping the minimum. This may still not avoid missing the minimum 
and can take inordinate amounts of time. Routines to find the least-squares minimum 
take advantage of attributes of the 2 function, increasing the chance of success and 
the speed at which the minimum is found. 
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Canned black box routines are also widely available for finding least-squares, so why 
is the detail of methodology given here? The reason is largely the same. The 
researcher can take advantage of their knowledge of the function (i.e. the stock 
assessment model) to increase the chance of success and speed of the method. Any 
canned routine would treat the stock assessment model as a single function. 
However, a researcher will often see how the function could be broken down into 
simpler components, each amenable to simpler analysis. As will be seen, this 
approach is used in XSA, where a simple linear regression to estimate parameters of 
the model linking the population to the CPUE index, so these parameters can be 
solved by a single calculation. The parameters belonging to the more complex non-
linear model still need to be found through iteration, but the number of parameters 
has been greatly reduced. 

6.3.1 Linear Models 

On the face of it, linear models would be of little use in stock assessment as most 
realistic population models are non-linear. However, there are often linear 
components, which can be estimated separately. The advantages of dealing with 
linear parts separately is purely pragmatic. Linear parameters can be found by 
calculation rather than iterative numerical procedures, which speeds up model fitting.  

Where the model is linear, the least-squares equations are linear as well and can be 
solved directly through calculation. The solution is obtained by solving the M 
simultaneous linear equations, where M is the number of parameters or independent 
x variables. The solution of linear simultaneous equations is subject to standard 
linear algebra techniques. Assuming equal variances, we wish to find the solution to 
a set of M equations: 
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and there are M parameters and N data points. The set of differential equations can 
be found easily for a linear model: 
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So, now we have M equations in terms of the x and y data variables and the 
parameters {}, each equation equal to zero. These are rearranged suitable for a 
matrix format: 
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All the terms in Equation 59 now appear in Equation 60, but arranged as matrices. 
The solution for i is conceptually simple. We multiply both sides of Equation 60 by 
the inverted matrix appearing on the left-hand side, isolating the {} vector. 
Reintroducing the variances for completeness, the solution can be written: 
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The 2
i is the variance associated with each data point, and often is assumed equal 

among data points. This matrix equation allows the least-squares estimate to be 
obtained in one iteration.  

The advantage of linear models should now be apparent, and occurs because 
differentiation eliminates the parameter from the equation, enabling the linearity of 
the equations to be maintained. This allows an ‘easy’ solution. With non-linear 
models, the set of Equations 59 will not be linear, and therefore no simple solution 
exists. 

In the simplest case with only one parameter, Equation 61 becomes: 
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If the 2
i are constant among data points this equation becomes the sum of the 

product of the y and x variables divided by the sum of squares of the x variable. This 
result is often very useful in estimating parameters in models linking observed 
variables to underlying population dynamics variables. For example, consider the 
case where we have generated a population time series from a model, and we wish 
to relate it to a CPUE index which requires estimating a single parameter q, as: 

  tt qPCPUE  (63) 
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Assuming least-squares, constant variance and time independent errors, q can be 
calculated as:  
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This avoids the need to estimate q as part of the minimisation process. Instead q is 
calculated each cycle, and the numerical routine concentrates on solving the non-
linear parameters associated with the population model.  

A similar simple procedure can be undertaken with two parameters. In this case, we 
try to fit the logarithm of the CPUE to the log population size, assuming a non-linear 
relationship: 
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In this case, the parameter v is the slope, but we also have an intercept parameter (ln 
q). In the linear framework, constant parameters (non-covariates are often called 
factors) are estimated using dummy variables. Dummy variables take on values of 1 
or 0 depending on whether the parameter applies to any particular observation or 
not. In this case, the constant applies to all observations, so the first x variable is 
always 1: 
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Solving for 1 and 2 using the general Equation 61 gives: 
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where 
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Notice that the subscripts refer to the elements of the matrices and vectors in 
Equation 60. S11 is the element in the first row and first column of the matrix on the 
left-hand side, and Sy1 is the element in the first row of the vector on the right-hand 
side. For two parameters, the matrix inversion is very simple and it is possible to write 
out the result in a simple equation as above. This simplicity rapidly disappears with 
larger matrices. Inversion is closely related to calculating determinants, which is a 
sum involving all row-column combinations of elements. For large matrices these 
calculations are not trivial and may take a considerable amount of time, although the 
method remains faster (or at least more exact) than its non-linear cousin. 

A second problem with inverting the matrix, is it may be singular. This may occur 
through aliasing, or high correlations pushing the inversion calculations beyond the 
computer’s precision. An alternative solution to removing the offending parts of the 
model is to use matrix transformation techniques, notably Singular Value 
Decomposition (SVD). These techniques do not produce different results, merely 
skirt around singularity problems (Press et al. 1989). However, a detailed description 
falls beyond the scope of this manual. 

This technique, of estimating linear parameters separate from the iterative fit, is 
widely used, in XSA for example. The benefits should not be underestimated. 
Searches for the minimum of non-linear functions is not trivial where there are large 
numbers of parameters and any method that reduces this number should be used. 

6.3.2 Non-linear Models 

A usual approach to finding the minimum is the Newton iteration scheme: 
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{H}ij
-1 is the inverse matrix of second partial derivatives of the sum of squares with 

respect to parameter pairs, often called the Hessian matrix.  

As in the linear case, the aim is to find the point where the simultaneous partial 
derivative equations are zero. This approach to minimisation works on the principle 
that the step length moving parameters towards the zero point should be ratio of the 
differential to the slope of the differential (i.e. the second derivative) at the current 
position, which will produce a the correct step length where the model is linear. On 
each iteration, {}i

new is generated and becomes the {}i
old for the next cycle, so 

eventually {}i
new converges to {}i

old and the iterations can stop. The starting point for 
{}i is important, but reasonable estimates are often available in VPA applications 
(e.g. F=0.5 year-1). 

It is only for a few problems when the second order derivatives are actually evaluated 
analytically. Instead computer-oriented methods are based on numerical 
approximations to the first and the second order derivatives, which are based on 
calculations of the function at small departures (h), e.g. 
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defines the first derivative and  
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defines the second derivative and could therefore be used to calculate the Hessian 
matrix, {H}ij. More sophisticated methods are usually used as these calculations may 
not be accurate (see Abramowich and Stegun 1966). An actual application will very 
often use standard implementations (see Press et al. 1989), which work with all but 
the most ill-behaved functions. However, we can take particular advantage of what is 
known about the least-squares function to improve both the speed and chance of 
success in finding the minimum. 

The minimisation problem is first converted into the normal equations. Because the 
sum of squares is at a minimum point, we know that: 
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Likewise, explicit differentiation to produce the Hessian terms gives: 
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The first term in Equation 73 containing the second partial derivative is generally 
ignored in estimating the Hessian matrix for two reasons. Firstly, the second 
derivatives are often small compared to the first derivatives (they are zero in linear 
models for example), so their inclusion may not improve the efficiency of the fitting. 
Secondly, in practice the first term will sum to a small value when Model() estimates 
are close to the expected value of the yobs (i.e. the mean). Therefore, the procedure 
may be most efficient when the initial estimates are reasonably close to the best-fit 
estimates. The fitting process now becomes: 
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In some cases, the Hessian in this form may be easy to obtain analytically. For 
example, notice that where the model is linear, the Hessian matrix is the same as 
that in Equation 60. Using the true differentials should improve the efficiency of the 
fit. In other cases, Equation 74 will not help as the first derivative is just too 
complicated to derive and simple numerical methods (e.g. Equation 70) are instead 
used to generate both the Hessian matrix and vector of first derivatives.  

The scheme proposed in Press et al. (1989) is the Levenberg-Marquardt method, 
which uses either the Hessian matrix or a simple step routine where the Hessian is a 
poor approximation to the shape of the 2 function. Although this approach should be 
used in many cases, it may well still be worthwhile exploring the simultaneous partial 
differential equations and Hessian matrix. While it may not be worthwhile pursuing 
the analytical approach, some analysis may help in understanding the behaviour of 
the model and potential pitfalls in attempting to find the least-squares solution 
numerically. 

6.4 ESTIMABLE PARAMETERS 

While it is possible to formulate a least-squares function for any model it does not 
follow that all parameters can be estimated. This can be inherent in the model 
formulation or it can be because of a lack of sufficient information. 

An example of a model that cannot be fully identified is where parameters multiply or 
add together in a way that cannot be separated by the data collected, such as 
Model()=1 2 x, where only the product of the two parameters can be estimated. In 
fishery biology, an example is the population equation: 

ayFaM
ayya eNN


 1,1  (75) 

The equation contains such a problem in parameters Fay and Ma unless data can be 
brought to bear to estimate these parameters separately. It is this basic problem that 
explains the minimum data requirement for an analytical assessment. To separate 
the two, the catch in numbers by age and by year combined with observations on 
either the fishing mortality or the stock in numbers are required. Usually Ma is just 
fixed as an external parameter. 
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It is not only the model structure that makes certain parameters inestimable. The 
data structure can also have features that prevent the estimation of all parameters. 
This is the collinearity problem, indicated by high parameter correlation estimates. In 
extreme cases, parameters may be “aliased” which implies the data are inadequate 
to provide separate parameter estimates. 

A simple example where such correlation occurs is in estimating fishing power based 
on vessel characteristics. Most characteristics are dictated by vessel size. So the 
size of net, vessel speed, hold size, number of crew, sophistication of gear all relate 
back to the size of vessel. In essence, because we do not have observations on 
catch rates of large vessels with small engines or small vessels with large engines, it 
is not possible to separate the effects of engine size and vessel length. What 
appears to be a large amount of data, all the different characteristics of the fleet, boils 
down to very little real information to separate vessels. Methods such as principle 
components analysis should be used to reduce a large number of correlated 
variables into a few representative uncorrelated components for this type of analysis. 

A more worrying example for stock assessment is the possible relationship between 
stock size and catchability. Vessels aggregate in areas where catchability is highest. 
Fish aggregate to improve spawning success and minimise their natural mortality. 
There are several cases where it is suspected that as the population decreases, fish 
density on the fishing grounds remains constant, so effectively catchability is 
increasing as the population falls. 

While correlations in linear models are relatively straightforward, it is much more 
complicated in non-linear models such as those used in fish stock assessment. It is 
not clear how terminal cohort sizes might be correlated with catchability estimates for 
CPUE indices before doing a full analysis. 

Statistical experimental design ensures that such collinearity does not occur in 
experimental data. However in fisheries or oceanographic surveys, the researcher 
does not have the same degree of control over the system under investigation and 
such data, because of the oceanographic or biological links occurring in nature, often 
show some degree of correlation between the independent variables.  

6.5 ROBUST REGRESSION 

An alternative approach to least-squares is to apply “robust regression” (e.g. see 
Chen and Paloheimo 1995). The least-squares fit is based on minimising the squared 
sum of residuals and this sum can be strongly dependent on a few outliers (cf. the 
example above). Robust regression exists in different forms, but is based on either 
replacing the sum of squares of the residuals by some other measure of “goodness 
of fit”, (e.g. the median) or ignoring a certain percentage of the largest residuals in 
the fitting procedure (trimmed LSQ). Using the median, the least-squares problem is 
reformulated to finding the best curve where 50% of the observations have positive 
and 50% negative residuals. Obviously the magnitude of the residuals is of no 
importance and therefore outliers have less influence on the final result than when 
normal least-squares is applied. The approach can be formulated based on fitting a 
model as: 
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   ,....2,1,2  iModelyMedian ii   (76) 

6.6 CATCH 

In many applications catch errors are either ignored (e.g. in most ADAPT and XSA 
methods) or the errors are assumed to be log-normal (e.g. in the ICA or in the 
CAGEAN methods). The reason for ignoring these errors in the catch data is that the 
stochastic error in the catch data is often insignificant compared to the noise in the 
survey data. This is probably correct in many fish stock assessments, but only for the 
more abundant age groups. The number of old fish caught, if constituting only a few 
percent of the total catch, is unlikely to be precisely estimated. 

Methot (1990) suggested as part of his “Synthetic Model” that the error structure of 
the catch data be decomposed into two contributions: 

 Estimate of the overall catch in weight 

 Estimate of the age composition  

The first contribution can be assumed to have lognormal errors. For the second 
contribution, Methot (1990) suggests that a multinomial distribution is more 
appropriate. The estimation of the catch in numbers, C, is often obtained through a 
fisheries statistics programme that provides total landings by species and by time 
period supplemented by a biological sampling programme that takes a length sample 
(nl) and an age-length key (mla) (ALK). The estimation of the catch-at-age for the 
population model is:  
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where the dot subscript indicates summation over that subscript (Lewy and Lassen 
1997).  

However, where the observed and expected catch is included as part of the sum-of-
squares, we can use the age composition observations directly. In the simple case, 
the age distribution is a random sample of the catches with observed frequencies in 
numbers of fish, hay. The catch composition in the model is given by: 
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Therefore ay is essentially independent of the total catch. In this case, the catch 
term contribution: 
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with the multinomial likelihood becomes: 
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Fortunately, because only the age sample, but not the catches, appear with the ay 
parameters, they can be estimated independently of the catch data and population 
model by finding the maximum of the multinomial likelihood function. Combining 
length sampling with ALK gives a similar result, but the formulae are more 
complicated (Lewy and Lassen 1997).  

The variance can be found as: 
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for the simple situation when the age sample is a random sample of the catch. If it 
can be assumed that the variance contribution from the total landings can be 
neglected compared to the error due to ageing, and if the ageing error can be 
approximated by a multinomial distribution, then this can be simplified to: 
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where n is the number of fish in the sample. 

 


