Agroecology Knowledge Hub

Synergies: building synergies enhances key functions across food systems, supporting production and multiple ecosystem services

Agroecology pays careful attention to the design of diversified systems that selectively combine annual and perennial crops, livestock and aquatic animals, trees, soils, water and other components on farms and agricultural landscapes to enhance synergies in the context of an increasingly changing climate.

Building synergies in food systems delivers multiple benefits. By optimizing biological synergies, agroecological practices enhance ecological functions, leading to greater resource-use efficiency and resilience. For example, globally, biological nitrogen fixation by pulses in intercropping systems or rotations generates close to USD 10 million savings in nitrogen fertilizers every year, while contributing to soil health, climate change mitigation and adaptation. Furthermore, about 15 percent of the nitrogen applied to crops comes from livestock manure, highlighting synergies resulting from crop–livestock integration. In Asia, integrated rice systems combine rice cultivation with the generation of other products such as fish, ducks and trees. By maximising synergies, integrated rice systems significantly improve yield, dietary diversity, weed control, soil structure and fertility, as well as providing biodiversity habitat and pest control.

At the landscape level, synchronization of productive activities in time and space is necessary to enhance synergies. Soil erosion control using Calliandra hedgerows is common in integrated agroecological systems in the East African Highlands. In this example, the management practice of periodic pruning reduces tree competition with crops grown between hedgerows and at the same time provides feed for animals, creating synergies between the different components. Pastoralism and extensive livestock grazing systems manage complex interactions between people, multi-species herds and variable environmental conditions, building resilience and contributing to ecosystem services such as seed dispersal, habitat preservation and soil fertility.

While agroecological approaches strive to maximise synergies, trade-offs also occur in natural and human systems. For example, the allocation of resource use or access rights often involve trade-offs. To promote synergies within the wider food system, and best manage trade-offs, agroecology emphasizes the importance of partnerships, cooperation and responsible governance, involving different actors at multiple scales.

Database

Agroecology is not a new invention. It has already been applied for decades in family farmers’ practices and has guided both policymakers and grassroots social movements in various countries around the world. However, recent global discussions on agroecology across its three different dimensions, namely scientific discipline, agricultural practice and political-​social...
Event
2021
This Special Issue of Sustainability aims at compiling original theoretical, methodological, and empirical research exploring how agroecology approaches can promote the transition towards sustainability, particularly of agri-food social-ecological systems, taking into account the complex relationships established between ecological functions and ecosystem services, human wellbeing, innovative socio-technical innovations, and governance models...
Journal article
2019
This recommendation paper presents general recommendations for food systems transformation to achieve net-zero emissions from food production by 2030 and net negative emissions from food systems by 2050. According to the document the following actions are needed to transform food systems: 1. A global shift to nature-positive production: Nature-positive food production systems protect...
Policy brief/paper
2021
This course addressed issues and articulations around local agroecological based food systems, including food resistances, which together with agroecological experiences constitute the responses against agro-industrial crops (genetically modified, monocultures, biofuels, greenhouses, etc.) and food models (large surfaces, junk food, school catering, etc.) that generate enormous inequalities and seriously affect the...
Learning
2020
The Globally Important Agricultural Heritage Systems (GIAHS) programme, launched as an initiative of the United Nations Food and Agriculture Organization (FAO) in 2002, provides international recognition to important traditional agricultural systems (including forestry and fisheries) which conserve agrobiodiversity, indigenous knowledge, culture heritage and agricultural landscapes. Today (as of August 2017), there...
Japan
Case study
2017