

FARMERS' KNOWLEDGE OF WILD *MUSA* IN INDIA

FARMERS' KNOWLEDGE OF WILD *MUSA* IN INDIA

Uma Subbaraya

National Research Centre for Banana
Indian Council of Agricultural Research
Thiruchippally, Tamil Nadu, India

Coordinated by

NeBambi Lutaladio and Wilfried O. Baudoin
Horticultural Crops Group
Crop and Grassland Service
FAO Plant Production and Protection Division

Reprint 2008

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed to:

Chief
Publishing Management Service
Information Division
FAO
Viale delle Terme di Caracalla, 00100 Rome, Italy
or by e-mail to:
copyright@fao.org

CONTENTS

	<u>Page</u>
ACKNOWLEDGEMENTS	vi
FOREWORD	vii
INTRODUCTION	1
SCOPE OF THE STUDY AND METHODS	3
AGRO-ECOLOGIES IN THE AREAS OF EXISTING WILD <i>MUSA</i>	5
Genetic diversity of wild bananas	9
<i>MUSA</i> AND ITS EVOLUTION	13
WILD <i>MUSA</i> SPECIES IN INDIA	15
Section Eumusa	15
Diversity of <i>Musa balbisiana</i>	16
<i>Bhimko</i>	16
<i>Elavazhai</i>	17
CONSERVATION OF <i>MUSA</i> GENETIC DIVERSITY BY ETHNIC GROUPS	19
ETHNOBOTANICAL KNOWLEDGE OF <i>MUSA</i> SPECIES	23
FARMERS' PRODUCTION PRACTICES ON THE ECOSYSTEM	25
Jhum cultivation	25
Implications of Jhum cultivation	26
Ethnic groups of northeast Indian states	28
CHARACTERIZATION OF WILD <i>MUSA</i> GERMPLASM	31
POTENTIAL AND CONSTRAINTS OF USING WILD <i>MUSA</i>	33
CONCLUSIONS AND RECOMMENDATIONS	35

	<u>Page</u>
REFERENCES	37
ACRONYMS	39

TABLES

Table 1.	Details of exploration zones	6
Table 2.	Types of questionnaires used during the surveys and exploration process	7

ANNEXES

Annex 1.	Occurrence of <i>Musa</i> species in different geographical locations in India	40
Annex 2.	Ethnobotany of bananas and plantains	42
Annex 3.	Drivers–effects framework showing a synthesis of causes and effects of biodiversity loss revealed by the case study on “Farmers’ Knowledge of Wild <i>Musa</i> in India”	46

FIGURES

Fig.	Title	
1.	Areas of India where wild <i>Musa</i> occurs	5
2.	Natural habitats of wild <i>Ensete superbum</i> in Western Ghats	8
3.	Natural habitats of wild <i>Musa</i> spp. in Andaman Islands	8
4.	Natural habitats of wild <i>Musa</i> spp. in Nicobar Islands	8
5.	<i>Musa sanguinea</i>	9
6.	<i>Musa balbisiana</i> var. Andamanica	9
7.	<i>Musa rosacea</i>	9
8.	<i>Musa balbisiana</i>	9
9.	<i>Ensete glaucum</i>	10
10.	<i>Musa itinerans</i>	10
11.	<i>Musa rosacea</i>	10
12.	Buds of several wild and semi-wild species at different stages	10
13.	Fruits and seeds of <i>Ensete glaucum</i>	11
14.	Fruits and seeds of <i>Ensete</i> spp.	11
15.	Fruits and seeds of wild <i>Musa</i> spp.	11
16.	<i>Musa nagensium</i> with elegant black pseudostem	15
17.	Natural clump of <i>Musa aurantiaca</i>	15
18.	<i>Bhimkol</i>	16

Fig. Title

19.	<i>Elavazhai</i>	17
20.	Conservation of wild <i>Musa</i> species around the family pond	19
21.	Conservation in a backyard garden	19
22.	Conservation around sacred trees of the village	20
23.	Conservation around the village school complex	20
24.	Wild <i>Musa acuminata</i> along watercourse	21
25.	<i>Musa velutina</i> hybrid conserved by the locals	21
26.	<i>Ensete glaucum</i> conserved and pampered as a garden plant	22
27.	Assam women providing ethnobotanical information on <i>Musa</i>	22
28.	Cut pseudostem of <i>Ensete glaucum</i> for sap collection	23
29.	Sap of <i>Ensete glaucum</i> collected for medicinal properties	23
30.	Yet to open flower buds of wild bananas sold in the market as vegetable	23
31.	Packed leaves of <i>Musa balbisiana</i> sold as dining plates	24
32.	Mature flower buds of wild bananas sold as vegetable	25
33.	Inner core of the pseudostem of wild bananas sold for salad	25
34.	Forest clearing – Jhum cultivation	26
35.	Forest burning – Jhum cultivation	26
36.	Forest being cleared inhabited with wild bananas in Andaman and Nicobar Islands 21	27
37.	Developmental activities like roads and bridges enable destructive human incursion	27
38.	Discussion with Naga tribes	28
39.	Akka tribe of West Kemeng	28
40.	Adi tribe of Siang	29
41.	Apathani tribe of Subansiri	29
42.	Nitshi tribe of Kemeng district	29
43.	Monpa of Tawang district	29
44.	Wild species collected for fibre extraction by northeast tribal women	31
45.	Handicrafts made from wild banana fibre	31
46.	Raw banana fibre dyed different colours	33
47.	Primitive cultivar with breeding potential	33
48.	Unknown leaf spot disease on wild <i>Musa</i> spp. in their natural habitat	34
49.	Banana Streak Virus (BSV)	34

ACKNOWLEDGEMENTS

Explorations resulting in this overview were funded by the National Research Centre for Banana (NRCB, Trichy) of the Indian Council of Agricultural Research (ICAR), India and the International Network for the Improvement of Banana and Plantain (INIBAP), Montpellier, France. Gratitude is expressed to these organizations, as well as to support from the FAO/Netherlands Partnership Programme (FNPP) on Agrobiodiversity.

Thanks are extended in particular to H.P. Singh, S. Sathiamoorthy and M.S. Saraswathi for their technical support. The assistance from P. Durai, G. Rajagopal and M. Manishavasagam is greatly acknowledged. Thanks also go to all the individuals, village groups and local communities who provided, through informal conversation, the indigenous knowledge with regard to distribution, diversity and use of wild and cultivated species of bananas.

Gratitude is expressed to Ivan Buddenhagen, Consultant and Professor Emeritus, University of California at Davis, USA for the scientific review and technical editing of this document. Thanks are also extended to Adrianna Gabrielli for the final editing and Rita Ashton for formatting and preparing the camera-ready text. The responsibility for the contents of this study rests entirely with the author. All photographs have been provided by the author.

Finally, NeBambi Lataladio, Agricultural Officer, Horticultural Crops Group of the Crop and Grassland Service (AGPC), FAO, is thanked for his efforts and dedication which made possible the release of this publication.

Eric A. Kueneman
Chief
Crop and Grassland Service
FAO Plant Production and Protection Division

FOREWORD

India is a treasure chest of biodiversity that hosts a large variety of plants and animals. It has been one of the major centres of origin and distribution for both wild and cultivated bananas (*Musa* spp.), especially for *balbisiana*-derived hybrids.

Due to the antiquity of bananas in India, their great diversity and long history of domestication, bananas are interwoven with national heritage and culture and have great socio-economic significance. The rich genetic diversity is an irreplaceable resource, providing materials for introduction, domestication and improvement programmes as well as opportunities for the search and selection of *Musa* genotypes resistant to pests and diseases.

The broad genetic pool maintained by farmers can be used for future banana crop improvement as banana is essentially a clonally propagated crop with many sterile species, which makes progress through conventional breeding slow and difficult. Due to the limited number of landraces and commercial varieties available and their asexual reproduction, bananas have a narrow genetic pool that makes them vulnerable to pests and diseases. As a result, new breeding methods and tools, including biotechnology and mutation breeding, will be helpful to develop resistant bananas for cultivation without the threat of genetic drift.

The Food and Agriculture Organization of the United Nations (FAO) is committed to preserving agricultural biodiversity as a way of helping people develop a suitable livelihood base for their own resources. The Organization has long been concerned with conservation and sustainable use issues, which have been the focus of various Regular Programme work and field-based activities. With regard to bananas, FAO is concerned about the disappearance of wild bananas and how human presence and expansion affect their biology, especially in Southeast Asia. The Organization calls for greater use of genetic diversity for strengthening breeding programmes in developing countries and for promoting awareness of the inevitable consequences of a narrow genetic base in crops and the need for a broader genetic base, especially in the case of commercial bananas.

The present case study provides an insight into the indigenous technical knowledge regarding multiple uses of wild and cultivated bananas for the benefit and advantage of the local population in India. The study provides a picture of distribution of wild and cultivated *Musa* species of interest in the country; it sets out the vital role of local knowledge in conserving biodiversity and ecosystem function in the different agro-ecological zones of India where *Musa* species occur. The study also describes in detail the involvement of the tribal and farming communities in the conservation, maintenance, perpetuation and spread of banana genetic diversity.

This report synthesizes the available information and documents existing data from micro-sample surveys on the status and trends of the indigenous knowledge, innovations and practices of local communities embodying traditional lifestyles relevant to the conservation and sustainable use of biological diversity of wild and cultivated *Musa* species in India. It summarizes the implications of farmers' production systems on the ecosystem and contributes to a better understanding of some of the causes and effects directly related to the risk of loss of banana biodiversity in India. Strategies are recommended for expanding the use of wild *Musa* in breeding programmes beyond its traditional use for food, feed, herbal medicine and handicraft, as most of the desired resistant gene sources to biotic and abiotic stresses are harboured by the wild species. The report contains valuable information on wild *Musa* and identifies various issues to be addressed.

Researchers, banana scientists and policy-makers will find the material useful, and the study will contribute to the dissemination of indigenous knowledge, technical information and consolidated research results on the practices relevant to the customary management, conservation and sustainable use of biological diversity of wild *Musa* that may be at risk of disappearing. This will support sustainable agriculture development and *Musa* improvement initiatives as well as FAO's Special Programme for Food Security (SPFS).

Mahmoud B. Solh
Director
Plant Production and Protection Division
Agriculture Department

INTRODUCTION

In India, bananas are interwoven with national heritage and culture and have great socio-economic significance. Bananas have been accepted as the symbol of prosperity and fertility and has been nurtured within the sacred precincts. It has been rightly referred to as 'Kalpatharu' (a plant of all virtues) owing to its multifaceted uses by humans.

In India, bananas are known for its antiquity from its mention in the epic, Ramayana (2020 B.C.), Kautilya's Arthashastra (300-400 B.C.) and its presence in paintings and sculptures of Ajantha and Ellora (600 B.C.) caves of Maharashtra. Growing bananas and mention of dwarf stature bananas and a banana having reddish sap have been quoted in Tamil literature dating back to 120 B.C.

Banana is the name given to a group of commodities that includes dessert bananas, cooking bananas and beer bananas. It not only represents the sweet dessert fruits, but is also a staple food of 400 million people in the underdeveloped and developing economies.

Bananas are grown in more than 120 countries over an area of 10 million ha contributing to the production of 95 million tonnes (Anon., 2001). India has been the largest producer of bananas with an annual production of 16 million tonnes from an area of 0.4 million ha and accounts for nearly 15 percent of the global production (Singh, 2002).

Due to antiquity of bananas in India, their long history of domestication and the great diversity of dessert cultivars, a large number of banana clones are believed to have originated in India. One of the earlier collections, *Musa acuminate ssp. burmanniccooides* has contributed significantly to many breeding programmes across the globe for developing varieties resistant to sigatoka leaf spot disease.

With the increased realization that some wild species are being over-exploited, the relationship between *in situ* and *ex situ* conservation benefits and costs for wild species as well as the impact of farmers' practices on the ecosystem should help guide policies as to whether species conservation should take place in nature or the nursery, or both.

Apart from the conservation issue, the indigenous knowledge of wild species of *Musa*, for instance, is a treasure, but little information is available on this aspect and the methodology or protocol for its meaningful utility is still lacking.

In this report, the author provides an overview of general occurrence and ethnobotanical knowledge of *Musa* species in different geographical locations and agro-ecological zones in India, and then describes *Musa* genetic diversity and its conservation by ethnic groups and the implications of production practices on the ecosystem. The report provides an understanding of some of the causes and effects directly related to loss of *Musa* genetic diversity and makes recommendations on steps that should be taken to expand the use of wild *Musa* in breeding programmes.

SCOPE OF THE STUDY AND METHODS

The author's employment in the National Research Centre for Banana under the Indian Council of Agricultural Research (ICAR) has enabled her to travel far and wide across the Indian subcontinent and undertake exploration programmes. These explorations stretched over a period ranging from 25 to 30 days travelling across the targeted areas and camping among the local tribes.

Focus group discussions, group interviews, interactions with local heads and local doctors among the tribes, informal conversation with women folk gave an insight into the Indigenous Technical Knowledge (ITK) with regard to the use of wild and cultivated species for their advantage. Participatory transect walks in various landscapes with men and women also added information on *Musa* usage. Details on the exploration zones are given in Table 1.

Interaction with local headpersons gave a picture of distribution of wild *Musa* species of interest, both in their locality and among

neighbourhood areas. During the interactions with village folk, much information on seasons of flowering, fruit type, usage of fruits, nature of stress under natural conditions, means of species perpetuation, human interventions in their perpetuation and spread, etc. were gathered. Emphasis was also given on gender diversity and involvement of tribal and farming folk in the conservation and maintenance of genetic diversity. Discussions with women helped in gathering information on the issues like gender involvement in genetic conservation of *Musa* species in their backyards or in the vicinity of villages or in protected areas within the forests. A general questionnaire (Table 2) was developed and used during the surveys and exploration process.

As a routine exercise during explorations, *Musa* Descriptor (Anon., 1996) was used in which information regarding passport data, crop management data, collection site environment and *in situ* plant descriptor, etc., were collected.