

CHARACTERIZATION OF WILD MUSA GERMPLASM

Taxonomic characters of the wild bananas known and accepted as of 1962 are given numerical values by Simmonds in his little book on evolution of bananas. Twenty-five morphological characters are used and these are given for 13 species in *Eumusa*, four species in *Rhodochlamys*, five in *Australimusa*, and four in *Callimusa*.

Figure 44. Wild species collected for fibre extraction by northeast tribal women

For domesticated cultivars, a similar notation was provided by Simmonds and Shepherd (1955). This was modified by Singh and Uma (2000). Use of this system for cultivars enables determination of ploidy and the genome dosage from each of the wild parental species, *acuminata* and *balbisiana*. Thus, cultivars are determined as AA, AAA, AAB, ABB, BB and BBB. Using this characterization method, the author has analysed 70 wild and cultivar accessions.

Although isozymes were used earlier to characterize germplasm, these have been replaced by RAPDs (Random Amplification of Polymorphic DNA) of which the author characterized 16 accessions of *Musa*

balbisiana, which included soft-seeded cultivars as well as hard-seeded wilds. They grouped into three clusters. By morphological classification they grouped into seven clusters. The average polymorphism amongst accessions was 74.6 percent. The results obtained from RAPD and morphological characterization exhibited almost 92 percent similarity. The geographic distribution of the test clones had an effect on clustering. The wild types from Assam forests grouped together (Uma, *et al.*, communicated).

Wild *acuminata* from Andaman were grouped into two clusters by the use of RAPDs. These differed from the *acuminatas* from mainland India. From Andaman there were similarities with accessions from Sumatran islands, and those from northeast states were similar to accessions from Malaysia, Myanmar, the Philippines and Thailand.

Figure 45. Handicrafts made from wild banana fibre

Overall, morphological and molecular characterization of wild *Musa* species has highlighted the localized evolution and diversification at various geographical locations in the Indian subcontinent.

POTENTIAL AND CONSTRAINTS OF USING WILD MUSA

Bananas (*Musa* spp.) have a number of pests and diseases co-evolved owing to long periods of evolution. Among the insect pests, banana rhizome weevil (*Cosmopolites sordidus*) and pseudostem borer (*Odoiporus longicollis*) and nematodes (*Radopholus similis*, *Pratylenchus coffeae*, *Meloidogyne incognita*, *Helicotylenchus multicinctus*) are causes of concern. Among the diseases, Fusarium wilt (*Fusarium oxysporum* f.sp *cubense*), Sigatoka leaf spot (*Mycosphaerella musicola*, *Musa fijiensis*) are the major constraints. Recently, a new leaf spot disease has been identified in India, *Mycosphaerella eumusa*, that causes considerable damage to many commercial clones in India. Among viral diseases, Banana Bunchy Top Virus (BBTV), Banana Streak Virus (BSV), Banana Bract Mosaic Virus (BBMV) and Cucumber Mosaic Virus (CMV) are devastating in many regions. BSV has become more important since it integrates with the host genome and limits the way of developing new varieties through conventional breeding.

Figure 46. Raw banana fibre dyed different colours

Banana is a recalcitrant crop for improvement owing to its parthenocarpy, non-seeded

nature, and male and/or female sterility. Also, the triploid nature of the best clones severely limits their use as parents. For any crop improvement programme, availability of desired gene sources in cultivated or wild forms is the prerequisite. In bananas, most of the desired resistant gene sources are harboured by the wild species, especially *Musa acuminata* subspecies and *Musa balbisiana*.

Figure 47. Primitive cultivar with breeding potential

One of the subspecies, *Musa acuminata* spp. *burmannicoides* (wild) that originated from India is the major gene source conferring resistance to Sigatoka leaf spot diseases. This is the only wild type extensively used in all breeding programmes and it is under the shadow of threat of breakdown of resistance. A vigorous search for alternate sources for Sigatoka resistance is necessary and much attention is being paid to Indian collections. *Musa acuminata* spp. *burmannica*, originating from western Ghats of Karnataka and Kerala is also a potential source exhibiting resistance to leaf spot diseases. Among primitive diploid clones, Kalmatti and Sembatti, ecotypes of cv. Matti (AA)

have proven to be the better resistance source in breeding programmes. Other primitive varieties like Hatidat, Kanaibansi, and Anaikomban have exhibited partial resistance to leaf spot incidence fertility when pollinated, enabling them to set seeds under controlled pollination and yet they remain parthenocarpic under unpollinated conditions. Sannachenkadali (AA) is another diploid *acuminata* cultivar, found in the southern tips of Tamil Nadu and Kerala, that has been an excellent source of resistant genes against Sigatoka leaf spot, Fusarium wilt and nematodes. Being a diploid red cultivar, it has good potential for improving the commercial Red Bananas (AAA) against Fusarium wilt and Sigatoka leaf spot diseases.

Figure 48. Unknown leaf spot disease on wild *Musa* spp. in their natural habitat

Wild *Musa balbisiana*, a collective group of many 'wild types' with no specific subspecies status, has proven to be an excellent source of resistance to various biotic and abiotic stresses. *Musa balbisiana* types are immune to Fusarium wilt, leaf spot diseases like Sigatoka (*Mycosphaerella musicola*, *Musa fijiensis*, *Musa eumusae*), Cordana and Septoria leaf spot, rust and bacterial diseases like head rot (*Erwinia* spp.). They are also very tolerant to pseudostem weevil (*Odoiporus longicollis*) and rhizome weevil (*Cosmopolites sordidus Germar*). Apart from having resistance to biotic stresses, *Musa balbisiana* is highly

tolerant to severe drought, cold and poor soil conditions.

Outweighing these advantages of *Musa balbisiana* is the problem of BSV which has integrated with the host B-genome. The limited number of *balbisiana* accessions maintained in most genebanks and all tested B-derived hybrids, i.e. *acuminata-balbisiana*, natural hybrids, have their genome contaminated with integrated BSV. Some of the human-induced hybrids developed in breeding programmes have expressed symptoms of BSV. This situation has forced some of the banana breeding programmes like that of CIRAD, France to temporarily halt using *Musa balbisiana* as a parent.

It is hoped that the search for more *Musa balbisiana* types in the areas of its origin and natural diversity might reveal individuals free of integrated BSV.

Figure 49. Banana Streak Virus (BSV)

Asia offers many unexplored areas where a search might reveal truly wild *balbisiana*. More systematic research on the B-genome and on accessions with B-containing genomes (AB, AAB, ABB, ABB) is needed. India, which is the major centre of origin and diversity of these natural hybrids, has much to offer the international community with its diversity in pure *balbisiana* and bispecific clones (Figures 47 to 49). Indian banana scientists are optimistic about locating and revitalizing banana breeding programmes with the inclusion of BSV-free *Musa balbisiana*.

CONCLUSIONS AND RECOMMENDATIONS

Bananas have been an important and integral part of Indian floral heritage with their great diversity and long periods of domestication. As the major centre of origin of interspecific AB hybrids, the Indian subcontinent has contributed enormously to the global wide genetic base of *Musa*.

In northeastern India, western Ghats, eastern Ghats and in Andaman and Nicobar Islands, some wild *Musa* species still exist. Some species, however, are already extinct, and they have been extirpated from most of India that was once in forest.

Apart from *Musa acuminata* and *Musa balbisiana*, the progenitors of present day bananas, a number of peripheral species, which have contributed to the total diversity are also known to occur. Though explorations and reports have revealed the occurrence of many more new species, natural hybrids and mutants, the geographical locations, unfavourable terrains, delicate political situations, insurgency problems, poor transportation facilities and wild animals, have made natural *Musa* habitats highly inaccessible. A systematic exploration, and developing good *ex situ* collections is the priority together with their conservation. The prevailing agricultural production system, Jhum cultivation, has depleted the fauna and floral treasury through incessant ecosystem destruction and subsequent genetic erosion. *Musa acuminata* spp. *burmannicoides* has been lost, but it is probable that many more valuable gene sources have been lost. The Government, Indian Council of Agricultural Research (ICAR) and other NGOs are supporting various *in situ* and *ex situ* conservation programmes. However, for a crop like banana, *ex situ* conservation in specific locations is not easy and needs more commitment.

Some *Musa* genetic resources are conserved in field gene banks at several sites in India. Most collections have serious virus problems. Conservation efforts or national parks should be established where wild *Musa* still occurs. Evaluation of the wild species for their suitability for direct uses like fibre source, food source and medicinal application, etc. and indirect uses like resistant gene sources for biotic and abiotic traits in the breeding programmes would be useful; however, exploitation for fibre, etc. should be evaluated against the potential of perpetuation of the wild species.

The indigenous knowledge of wild *Musa* is a treasure, but little information is available on this aspect. Though efforts are underway to collect and collate the information, the methodology or exact procedure for its meaningful utility is still lacking. A lot of medicinal uses were mentioned in earlier Indian medical epics and other documents, but there is a void on their protocols. Involvement of local NGOs, local doctors and tribal doctors in collating the information on indigenous technical knowledge forms the basis for the understanding of some of the courses and effects directly related to the loss of genetic diversity in *Musa* and other species, for the future management of genetic resources for achieving sustainable agriculture and assuring tribal livelihoods (Annex 3).

The tribes are aware of the ruinous effects of Jhum cultivation. Jhumming, being their way of living, needs a paradigm shift and this subject needs sensitive handling. ICAR has evolved a three-tier hill-farming package combining forestry, horticulture, tree farming, and terraced cultivation. Jhum farming needs to be refined and reduced to ensure better land management. The thrust

should be on educating the Jhum farmers on alternate methods of cultivation.

Selected *Musa* wild species have been exploited for specific purposes like roofing, medicines, fibre extraction, handcraft preparation and medicinal applications, etc. The suitability of different varieties for a wide array of uses needs to be balanced with germplasm survival and alternative methods of livelihood. Developing wild *Musa* for their direct uses is expected to add to the holistic process of bringing in ecostability. From the

breeders point of view, however, *Musa* species offer ample scope for their utilization in banana improvement programmes.

The only constraint in using *Musa balbisiana* is the integration of BSV in its genome. The search for wild types free from BSV, development of protocols to eliminate BSV at genomic level and exploiting the possibilities of using wild types carrying only dead sequences of BSV are expected to bring an improvement in *Musa* breeding strategies.

REFERENCES

Almekinders, M., Conny & Walter de Boef (eds). 2000. Encouraging Diversity: The Conservation and Development of Plant Genetic Resources. XXXIII, Intermediate, Technology Publications Ltd., London. pp.362.

Anonymous. 1996. Descriptor for Banana (*Musa* spp.) . IPGRI – INIBAP/-CIRAD. pp55.

Anonymous. 2001. Banana – Food and Wealth. (*Fact sheet*), International Network for the Improvement of Banana and Plantains (INIBAP), Montpellier, France.

Anonymous. 2003 NRCB Annual Report. pp.70. (In Press)

Bhat, K.V. & Jarret, R.L. 1995. Random Amplified Polymorphic DNA and genetic diversity in Indian *Musa* germplasm. *Genetic Resources and Crop Evolution* 42: 107-118.

Bhat, K.V., Bhat, S.R. & Chandel, K.P.S. 1992. Survey of isozyme polymorphism for clonal identification in *Musa*. II. Peroxidase, superoxide dismutase, shikimate dehydrogenase and malate dehydrogenase. *J. Hort. Sci.* 67: 737-744.

Chakravorti, A.K. 1948. A preliminary note on the occurrence of the genus *Musa* L. in India and the features in its distribution. *J. Indian Bot. Soc.* 27: 84-90.

Chandraratna, M.F. 1951. The origin of cultivated races of banana. *Indian J. Genet.* 11: 29-33.

Daniells, J., Jenny, C., Karamura, D. & Tompkepe, K. 2001. Musalogue: a Catalogue of *Musa* Germplasm. Diversity in the Genus *Musa* (E. Arnaud and S. Sharrock, comp.) INIBAP, Montpellier, France. pp.213.

Dutta, S. 1952. Some bananas of Assam. *Indian J. Hort.* 9: 26-35.

Gandhi, S.R. 1952. Banana culture in western India. *Poona Agric. Coll. Mag.* 42: 180-209.

Hasan, J. 2003. Jhum cultivation in CHT: a dying heritage. Holiday, Heritage and Habitat, National Weekend Newspaper.

Horry, J.P. 1992. Taxonomy and genetic diversity of diploid bananas. In *Proceedings of the International Symposium on Genetic Improvement of Bananas for Resistance to Diseases and Pests*, ed J. Ganry, pp.35-41.

Howell, E.C., Newbury, H.J., Swennen, R.L., Withers, L.A. & Ford-Lloyd, B.V. 1994. The use of RAPD for identifying and classifying *Musa* germplasm. *Genome*. 37: 328-332.

Jacob, K.C. 1934. South Indian banana. *Madras Agric. J.* 27: 41-57.

Jacob, K.C. 1942a. Banana of the Mysore state. *Madras Agric. J.* 30: 37-44.

Jarret, R. L. & Litz, R. 1986a. Enzyme polymorphisms in *Musa acuminata* Colla. *The Journal of Heredity*. 77: 183-188.

Jarret, R.L. & Litz, R. 1986b. Isozymes as genetic markers in Bananas and Plantains. *Euphytica*. 35 : 539-549.

Jogiraju, R. 1931. Plantain varieties in Circars. *Madras Agric. J.* 19: 478-82.

Nayar, T.G. 1952. On the occurrence of *Musa banksii* (F. muella) var.

Singamppatti. Indian J. Hort. 2: 14650.

Nayar, T.G. 1958. Genetic variability and the scope for improvement of the banana in India. *Indian J. Hort.* 15: 215-9.

Rao, P.N. 1999. Wild relatives and related species of crop plants in India. Their diversity and distribution. In *Bull. Bot. Surv. India* 25(1-4): 35-45.

Rao, P.S.N. 1996. Phytogeography of the Andaman and Nicobar Islands, India. *Malayan Nature Journal.* 50:57-79.

Simmonds, N.W. 1962. The Evolution of the Bananas. London U.K. Long man, pp.170.

Simmonds, N.W. & Shepherd, K.N. 1955. The taxonomy and origin of the cultivated banana. *J. Linn. Soc. Bot.* 55: 302-12.

Singh H. P. & Uma, S. 2000. Genetic diversity of banana in India. In *The proceedings of the Conference on Challenges for Banana Production and Utilization in 21st Century*, eds. H.P. Singh and K.L. Chadha, pp 136-156.

Singh, D.B., & Suryanarayana, M.A. 1997. In Andamans ... cultivating bananas scientifically. *Indian Horticulture* 2: 30-32.

Singh, D.B., Sreekumar, P.V., Sharma, T.V.R.S. & Bandyopadhyay, K. 1998. *Musa balbisiana* var. *andamanica* (*Musaceae*) – A new banana variety from Andaman Islands. *Malayan Nature Journal.* 52(3&4): 157160.

Singh, H.P. 2002. Scenario of banana production, utilization and trade. 2003. In *the Souvenir of Global Conference on Banana and Plantain* held from 28-31, October, 2002 at Bangalore, India.

Uma, S. & Selvarajan, R. 2001. Annual Report for the INIBAP funded project entitled "Collection, Characterization of Bananas and Plantains in northeastern India". pp.73

Uma, S., Sathiamoorthy, S., Durai, P. & Rameshkumar, A. 2002. Report on Exploration in western Ghats of India. In The Annual Report of the National Agricultural Technology Project (Plant Biodiversity). pp.35.

Uma, S., Siva, S.A., Saraswathi, M.S., Manickavasagam, M., Durai, P., Selvarajan, R. & Sathiamoorthy, S. 2003. Analysis of genetic variation and phylogenetic relationships among the Indian wild *Musa balbisiana* (BB) population using RAPD markers. (Communicated to Crop Evolution and Genetic Diversity, Kluwer publications, The Netherlands).

Uma, S., Saraswathi, M.S., Durai, P. & Sathiamoorthy, S. 2003b. Report on Exploration in North-Eastern States of India (unpublished).

Venkataramani, K.S. 1949. On the occurrence of *Musa balbisiana*. *Madras Agric. J.* 36: 552-4.

Wong, C., Kiew, R., Ohn Set, Lamb, A., Lee, S.K., Gan, L.H. & Gan, Y.Y. 2001. Sectional placement of three Bornean species of *Musa* (*Musaceae*) based on AFLP. *Gardens' Bulletin Singapore.* 53:327-341.

Wong, C., Kiew, R., Argent, G., Ohn Set, Lee, S.K. & Gan, Y.Y. 2002. Assessment of the validity of the sections of *Musa* (*Musaceae*) using AFLP. *Annals of Botany* 90:231-238.

Wong, C., Argent, G., Kiew, R., Set, O. & Gan, Y.Y. 2003. The genetic relations of *Musa* species from Mount Jaya, New Guinea, and a reappraisal of the sections of *Musa* (*Musaceae*). *Gar-den's Bulletin Singapore* 55:97-111.

ACRONYMS

AGPC – FAO	The FAO Crop and Grassland Service (AGPC)
AGPP–FAO	The FAO Plant Protection Service (AGPP)
CIRAD	Centre de coopération internationale en recherche agronomique pour le développement
FNPP	FAO/Netherlands Partnership Programme
ICAR	Indian Council of Agricultural Research
INIBAP	International Network for the Improvement of Bananas and Plantains
ITC	International Transit Centre
ITK	Indigenous Technical Knowledge
KMTR	Kalakad-Mundanthurai Tiger Reserve in Tamil Nadu
NRCB000	Trichy National Research Centre for Banana
RAPD	Random Amplification of Polymorphic DNA