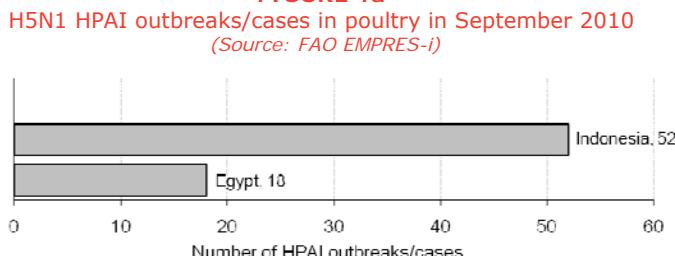
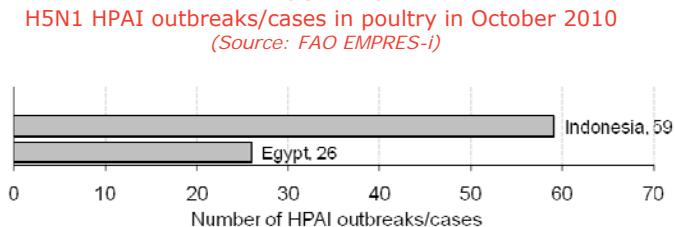


Please note that because of low H5N1 HPAI activity, this issue covers a two-month period. The next issue of the H5N1 HPAI Global Overview will be published in February 2011, covering the period November to December 2010.


Issue No. 25

prepared by EMPRES/GLEWS


WORLDWIDE SITUATION

During September and October 2010, 155 H5N1 HPAI poultry outbreaks were observed in Egypt and Indonesia. No outbreaks in wild birds were reported in either month, though virus was isolated from wild bird faecal material in Japan in October. The number of reported outbreaks/cases by country and their location are illustrated in Figures 1 and 2, respectively.

FIGURE 1a

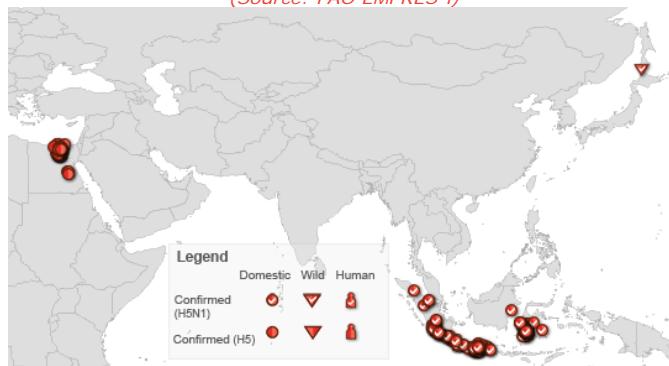


FIGURE 1b

FIGURE 2

H5N1 HPAI outbreaks/cases reported in poultry and humans in September and October 2010
(Source: FAO EMPRES-i)

NOTE: H5 cases are represented for outbreaks where N-subtype characterization is not being performed for secondary cases or if laboratory results are still pending. Countries with H5 and H5N1 occurrences only in wild birds are not considered infected countries according to OIE. The original data have been collected and aggregated at the most detailed administrative level and for the units available for each country.

Figure 3 shows the number of confirmed cases of H5N1 infections in humans reported to the World Health Organization (WHO) by country from November 2003 to October 2010. During the two month reporting period there were two confirmed cases of H5N1 in humans reported from Indonesia. All affected individuals died, resulting in a case fatality rate (CFR) of 100%. These new human cases increased the number of confirmed human cases of H5N1 reported between November 2003 and October 2010 to 507

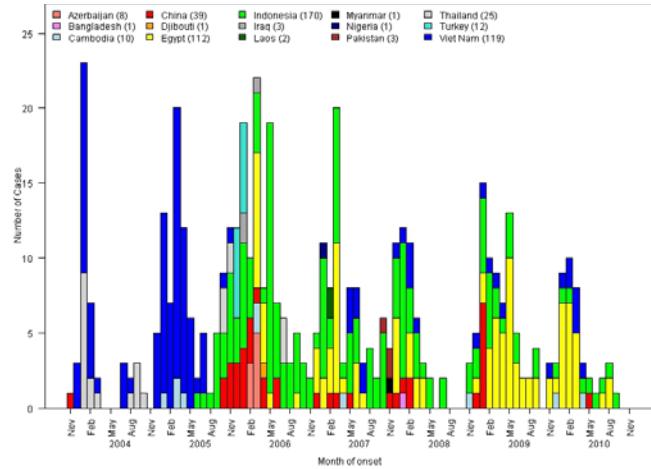
in 15 countries and a case fatality ratio (CFR) of 59% (300 out of 507). Among the countries with more than ten reported cases, Indonesia had the highest CFR of 83% (141 out of 170).

The age distribution of the reported human cases in all countries ranged from three months to 81 years of age (median: 18 years of age). Cases between zero and nine years of age were most common (29%). The highest CFR (74%) was in persons aged 10 to 29 years and the lowest (25%) in persons aged 70 years and above. Gender was equally distributed, with 52% of the cases being females. (Source: Western Pacific Regional Office of WHO, Avian Influenza Update).

TABLE 1

Cumulative number of confirmed human cases of avian influenza A/H5N1 reported to WHO between January 2008 and October 2010

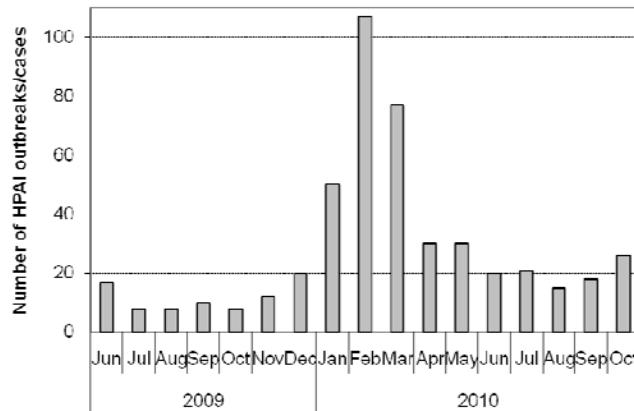
(Source: World Health Organization - WHO)


Note: in red the figures that have changed since the last Global overview

Country	2008		2009		2010	
	cases	deaths	cases	deaths	cases	deaths
Bangladesh	1	0	0	0	0	0
Cambodia	1	0	1	0	1	1
China	4	4	7	4	1	1
Egypt	8	4	39	4	22	9
Indonesia	24	20	21	19	8	7
Viet Nam	6	5	5	5	7	2
Total	44	33	73	32	39	20

Table 1 shows the cumulative number of confirmed human cases and deaths due to avian influenza H5N1 reported to WHO between January 2008 and October 2010. From 2008 to 2009, there was a 65% increase in the number of cases and a decrease in CFR from 75% to 44%. This decrease in the CFR was mainly influenced by the high number of non-fatal cases reported in Egypt. As of 18 October 2010, 39 human cases have been reported worldwide and 20 have died resulting in CFR of 51%.

FIGURE 3


Cases of H5N1 AI infections reported in humans by country and month of onset from November 2003 to October 2010
(Source: World Health Organization - WHO)

SITUATION BY CONTINENT/REGION

Africa

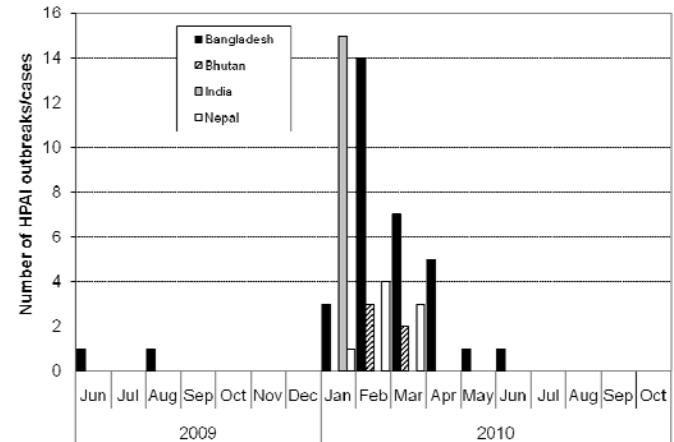
FIGURE 4
H5N1 HPAI outbreaks in poultry in Egypt between June 2009 and October 2010
(Source: FAO EMPRES-i)

Egypt reported 44 H5 HPAI outbreaks in poultry (chickens, ducks, geese and turkeys) from 12 governorates, primarily in the household sector (43 of 44 outbreaks) during September and October 2010. Affected governorates, in order of the number of reported outbreaks, include Minufiyah (11), Fayoum (10), Beni Suef (4), Qalubia (4), Dakahlia (3), Gharbia (3), Kafr Elshiekh (3), Sixth October (2), Alexandria (1), Luxor (1), Qena (1) and, Sharkia (1). Three (7%) of the outbreaks occurred in vaccinated flocks and 21 (48%) in non-vaccinated flocks, while the vaccination status of the birds in the remaining 20 outbreaks (45%) was unknown. During the reporting months, the Community Animal Health Outreach (CAHO) teams visited 326 villages in 15 governorates and detected eight (18%) of the 44 reported outbreaks. CAHO teams operate in high-risk governorates and collect samples only from suspected HPAI cases.

Results obtained from testing poultry prior to transportation found no positive samples for the two months of interest. Out of 5,872 samples tested, all were confirmed negative for HPAI. Poultry farms in Egypt are required to test birds prior to movement as part of an HPAI certification programme (HPAI infection negative status). Compliance with certification for poultry transportation is generally sub-optimal and only registered commercial poultry farms (<20% of all farms) seek such services.

Six poultry farms located in four different governorates were tested as part of the active surveillance programme and all were confirmed negative for H5 HPAI infection. Active surveillance was also carried out in 276 villages and 28 samples collected from nine governorates were positive for H5 HPAI.

One HPAI notification received from a commercial poultry farm was confirmed positive for H5 HPAI. In the household poultry sector, 15 of the 229 suspected outbreak notifications received from eight governorates were confirmed positive for H5 HPAI. A total of 34 samples were collected at road check points and all were found negative for H5 HPAI.


The current government policy is to allow commercial poultry farms to vaccinate their flocks with registered vaccines of their choice. Although there are no official data, it is assumed that vaccines are widely used in the commercial poultry sector. All AI vaccines used in Egypt (at least 21) are inactivated (mostly H5N2) and imported. For three years, until July 2009, the government provided vaccination to household/village poultry free of charge; then vaccination was suspended after an assessment indicated that the programme had limited or no impact on H5N1 HPAI incidence.

In September and October 2010, there were no human avian influenza (AI) type A H5N1 cases reported. Of the 112 human laboratory-confirmed cases of avian influenza A H5N1 reported in Egypt since the beginning of the epidemic in 2006, 36 (30%) have been fatal. While most cases in 2009 were in children under four years of age, so far in 2010, 80% of human infections have been reported in patients above that age. In terms of the CFR, the 2010 total is, so far, much higher than in 2009 (49% vs. 10%) and similar to that, in 2008 (50%). The increase in reported H5N1 HPAI outbreaks in poultry (414 outbreaks reported from January to October 2010 compared with 177 in the same period in 2009) is most likely the result of improved surveillance through the effectiveness of the CAHO programme.

The first report of an outbreak of H5N1 HPAI in Egypt was in February 2006. Despite a vigorous initial response to the disease, including the culling of over 40 million birds, Egypt is considered as an endemic country where outbreaks are regularly reported from different governorates. Circulating viruses belong to Clade 2.2.1 and cluster in two major genetic groups. All the human cases in 2010 are caused by viruses belonging to one of these two genetic groups. Viruses isolated during this period were genetically similar to those isolated in 2009. Data are not available on the antigenic properties of the recent poultry viruses in Egypt, but the human isolates characterized are antigenically similar to one another. These viruses did not react well to post-infection ferret antiserum raised against the vaccine reference viruses used in the country.

South Asia

FIGURE 5
H5N1 HPAI outbreaks/cases in poultry/wild birds in South Asia, by country, between June 2009 and October 2010
(Source: FAO EMPRES-i)

In September and October 2010, **Bangladesh** experienced no outbreaks. Phylogenetic analyses of viral samples from 2010 showed that all isolates belonged to Clade 2.2. In particular, these isolates grouped in sublineage III and clustered with sequences of viruses from Bangladesh isolated from 2007 to 2009. These results indicate that the virus is being maintained in reservoirs unnoticed within the country. The emphasis of the current policy of the government is placed on early detection and containment by culling, as well as the improvement of bio-security in various production sectors. Poultry vaccination against H5N1 HPAI is prohibited by the government.

As of 30 October 2010, a total of 358 outbreaks had been recorded in 49 out of 64 districts, including 31 outbreaks in 2010, 32 in 2009, 226 in 2008 and 69 in 2007. Out of these outbreaks, 304 were on commercial poultry farms, and only 54 in backyard poultry. Over 1.869 million birds have been culled since 2007. Poultry vaccination against H5N1 HPAI is

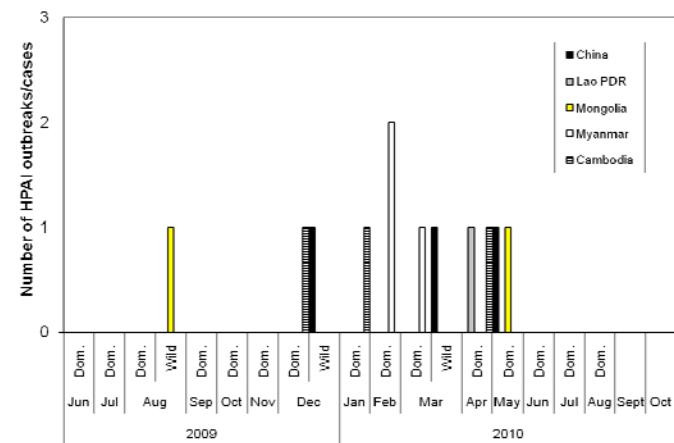
prohibited by the government. FAO is coordinating and supporting active surveillance that has been expanded to 260 upazillas (sub-districts) across the country, including the innovative use of the Short Message Service (SMS) gateway (method of sending and receiving SMS messages between mobile phones and a computer) as a reporting tool. Daily, in each upazilla, three community animal health workers employed by the active surveillance programme send SMS coded text messages to the Department of Livestock Services, regardless of the presence or absence of disease and deaths in poultry. SMS messages of suspected AI events are automatically forwarded to the livestock officer in the area who will respond by initiating an investigation. In September and October, 20,685 and 18,126 SMS messages were received, respectively, including 141 suspected HPAI events in backyard poultry and 362 suspected events on commercial poultry farms. The veterinary investigations that followed excluded 503 of these suspect cases and on 48 occasions, diagnostic specimens were collected. Of all specimens collected and reported through the SMS gateway system, none tested positive for H5N1 HPAI.

Eight of 23 migratory waterfowl trapped in Bangladesh in February 2010 as part of an FAO-facilitated satellite tracking project are still delivering data that will allow to further clarify the role of migratory birds in the spread of H5N1 HPAI. The current location of the birds can be found at <http://www.werc.usgs.gov/Project.aspx?ProjectID=159>. An article on this project was published in Science (<http://www.sciencemag.org/content/vol328/issue5978/r-samples.dtl>).

In **Bhutan**, after outbreaks reported in February and March 2010 (the first outbreaks ever reported in the country), no outbreaks have been detected in subsequent months. The disease was controlled by culling affected and in-contact poultry, burning coops, disinfection, and disposal of culled birds and poultry products by burial. Phylogenetic analysis confirmed Clade 2.2, similar to the viruses detected in India and Bangladesh. Antigenically, the viruses from Bhutan and Bangladesh reacted well to post-infection ferret antiserum raised against the vaccine reference virus A/Bar headed goose/Qinghai Lake/1A/2005.

In **India**, no new outbreaks have been reported in September and October. The last outbreaks of H5N1 HPAI occurred in backyard flocks during January 2010 in the Khargram and Burwan blocks of Murshidabad District in West Bengal. The 2010 virus isolates are similar to those found during 2008 and 2009: Clade 2.2.

Surveillance activities conducted at the High Security Animal Disease Laboratory (HSADL), Bhopal, are periodically reported at <http://www.dahd.nic.in/>, including the number of samples received and tested per state. In addition, the Ministry of Environment and Forests of the Government of India and the Department of Wildlife and Forests of Uttar Pradesh are funding the sampling of wild water birds. The 2009-2010 session started on 25 November 2009 and was implemented by the Bombay Natural History Society and the Aligarh Muslim University. Trapping and ringing started in Sheikha Jheel, Aligarh. In total, 2,258 samples (serum, oral and cloacal swabs) from 59 water bird species were collected and sent to HSADL for analysis. Results are pending.


Twelve of sixteen migratory waterfowl trapped in the states of Assam and West Bengal as part of an FAO-facilitated satellite tracking project in January 2010 are still delivering data (http://www.fao.org/avianflu/en/wildlife/sat_telemetry_india.htm). Laboratory results are still pending.

In **Nepal**, no H5N1 HPAI outbreaks have been reported since March 2010. Phylogenetic analyses of virus isolates from these last outbreaks identified H5N1 Clade 2.2 (samples taken from the Kaski District outbreaks) and H5N1 Clade 2.3.2 (from all outbreaks). Clade 2.2 had been previously isolated in 2009 in

Nepal's eastern region, but this was the first detection of Clade 2.3.2 in the South Asia region. Clade 2.3.2 viruses were most related to viruses isolated in wild birds in 2009 from the Russian Federation and Mongolia. More distant Clade 2.3.2 viruses were also isolated in wild birds in Hong Kong SAR (China) and in poultry in Viet Nam.

South East and East Asia

FIGURE 6
H5N1 HPAI outbreaks/cases in poultry/wild birds in East and South East Asia, by country (excluding Indonesia and Viet Nam), between June 2009 and October 2010
(Source: FAO EMPRES-i)

In **Cambodia**, no additional poultry or human cases have been reported since April 2010, when a 27-year old man from Prey Veng Province died of H5N1 infection. In Cambodia, follow-up investigations of human cases have alerted authorities to poultry outbreaks. All available human and animal isolates since 2004, including all those from 2010, are Clade 1 (genotype Z) and most closely related to Clade 1 viruses previously circulating in Cambodia. This is also the same clade that circulates predominantly in southern Viet Nam.

Cambodia routinely reports results obtained from surveillance activities through two hotlines (supported by FAO until February 2010) at the National Veterinary Research Institute (NaVRI). There is also ongoing duck market surveillance at eight live bird markets (LBM) in five provinces and sentinel duck flock surveillance in six provinces. Both duck surveillance efforts are conducted by NaVRI (and supported by FAO). As none of the samples previously collected from 12 markets over two years tested positive for H5N1 HPAI, the number of markets was reduced to eight and, in addition, 12 sentinel duck flocks have been introduced into the surveillance programme.

In **China**, no outbreaks were reported in poultry or wild birds during September and October. The last reported outbreak for 2010 was observed in May in wild birds in Tibet.

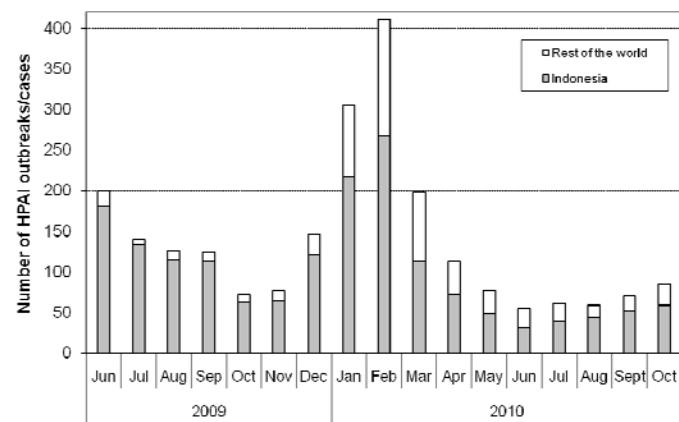
China first identified HPAI viruses of the H5N1 subtype in 1996 in geese in Guangdong Province and these viruses have continued to circulate and evolve over time. Almost 200 H5N1 HPAI outbreaks have been reported in poultry and wild birds in 29 provinces since 2004 and over 35 million poultry have been culled to control the spread of the disease.

Between 2004 and 2009 there has been a marked decrease in the number of reported outbreaks in domestic poultry. Despite this decrease in outbreak numbers, official ongoing surveillance activities conducted at national and provincial levels provide evidence that H5N1 viruses are still circulating in many provinces in domestic poultry, as well as in wild birds. Results from the national surveillance system released in November 2010 by the Ministry of Agriculture for activities conducted during January 2010, April 2010 and July 2010 show that 14 provinces (Anhui, Chongqing, Fujian,

Guangdong, Guangxi, Guizhou, Henan, Hubei, Hunan, Jiangsu, Jiangxi, Sichuan, Yunnan and Zhejiang) had H5N1 positive samples. Out of 182,362 virological samples collected and tested during those three months, 86 (4.7 per 10,000) were positive. The majority of positive samples came from ducks (52.3%) and chickens (40.4%), and to a lesser extent, geese (2.2%), pigeons (1.16%), and wild birds (1.16%). Sixty-five percent of samples were collected from chickens, 18% from ducks, 6% from geese, 3% from wild birds and the remaining 8% from pigs and other species. In a number of provinces, the proportion of positive samples was higher than expected, particularly for ducks (some over 4%). Sampling results by month confirmed circulation of H5N1 HPAI viruses in domestic poultry at live bird markets during January 2010 and April 2010 and one positive wild bird sample in July 2010. In January, 38 out of 21,892 poultry samples taken from chickens, ducks and geese in 13 provinces were positive for H5N1 HPAI viruses in 29 LBMs. In April 2010, 46 out of 21,892 samples from similar species were positive for H5N1 HPAI viruses in 31 LBMs. In July 2010, H5N1 HPAI virus was isolated from one wild bird (*Chinessis*) out of 686 wild bird samples taken at Dongting lake of Hunan Province. This is added evidence of the presence of the virus in wild birds and the constant risk of virus introduction into domestic poultry. A recent study by Kou *et al.* (2010) describes the H5N1 virus prevalence in apparently healthy wild birds surveyed between April 2004 and August 2007. Of 14,472 wild birds sampled, covering 56 species of 10 orders in 14 provinces of China tested with RT-PCR using H5 primers, 17 viral strains out of 149 positive samples were isolated. Of the six bird orders affected, Anseriformes had the highest prevalence (2.70%), while Passeriformes had the lowest (0.36%). Among the 24 positive species, mallards (*Anas platyrhynchos*) had the highest prevalence (4.37%). Of the provinces included in the sampling, Qinghai Province had the highest prevalence (3.88%), particularly in pintails (*Anas acuta*), mallards (*Anas platyrhynchos*) and tufted ducks (*Aythya fuligula*).

An intensive surveillance programme currently ongoing in Hong Kong SAR includes sampling of dead wild birds, wholesale and retail market birds found dead, as well as faecal swabs and pre-sale antibody checks from healthy birds. Results from this programme are not available.

Mass vaccination against H5N1 HPAI has been implemented since November 2005. Vaccination combined with other measures has resulted in improved disease control. Between January 2010 and July 2010, out of 2,093,323 post-vaccination samples, 1,902,142 (90.87%) were sero-positive. AI vaccines are provided free of charge by the government to both commercial poultry farms and backyard poultry breeders. China produces its own AI vaccines with ten manufacturers nationwide. Most birds receive the killed "Re-5" vaccine regardless of species. Most poultry should receive at least two doses of vaccine (primary + booster), except for meat ducks and chickens, which have a very short production cycle.


There have been no human infections of H5N1 influenza A reported in China between 1 September and 31 October 2010. The last reported human infection for 2010 occurred in June. Since the beginning of the epidemic, China has reported 39 human cases, of which 26 (67%) were fatal.

All the clades of Asian-lineage H5N1 HPAI virus found globally have been detected in China. Of particular interest is the recent expansion of Clade 2.3.2, which was originally detected from a dead Chinese pond heron in Hong Kong SAR in 2004 and has now expanded its geographic range to include Mongolia, the Russian Federation, Nepal, Romania and Bulgaria. In Hong Kong SAR, viruses from Clade 2.3.4 were also detected in wild birds and poultry in 2009. The study by Kou *et al.* (2001) also provides some information on virus clades in wild birds sampled in China between April 2004 and August 2007. Additional information can be found at

<http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0006926>.

Indonesia continues to report the majority of the H5N1 HPAI outbreaks in poultry worldwide (Figure 7), as it has for the past three years. H5N1 HPAI Clade 2.1 is confirmed to be endemic on the islands of Java, Sumatra and Sulawesi, and probably Bali, with sporadic outbreaks reported elsewhere. H5N1 HPAI prevalence by village varies widely. Only two of Indonesia's 33 provinces have never reported the occurrence of H5N1 HPAI. The high number of reports each month is partially explained by the implementation of the Participatory Disease Surveillance and Response (PDSR)* programme that targets village poultry production systems (mainly backyard) and reports evidence of virus circulation in village poultry. The programme is supported by FAO with USAID, AusAID and World Bank-implemented Avian and Human Influenza Facility Policy and Human Resources Development Fund (AHIF-PHRD) financial support and is operating in 349 of 496 (70%) districts through 31 Local Disease Control Centres (LDCCs) in 27 (82%) of 33 provinces in Java, Sumatra, Bali, Sulawesi and Kalimantan, including all known endemic areas. Larger and less densely-populated provinces report HPAI outbreaks less often than more densely populated provinces.

FIGURE 7
H5N1 HPAI outbreaks in poultry in Indonesia (compared to the rest of the world) between June 2009 and October 2010
(Source: GoI/ECTAD Indonesia and EMPRES-i)

During September 2010, PDSR officers visited 1,386 villages, of which 52 (2.8%) were infected. Of these, 47 were new infections. In October 2010, PDSR officers visited 1,738 villages, of which 59 (3.2%) were infected. Of these, 64 were new infections. During the previous 12 months, 20,298 (28.4% of 71,319) villages were visited in the 378 PDSR surveillance districts. Since May 2008, the PDSR officers have visited approximately 46.9% of villages under coverage. Approximately 7.0 % of villages visited during the previous 12 months were classified as newly infected. Cases over the past 12 months were concentrated in Sumatra and Java.

The Indonesian Government introduced vaccination in small flocks in mid-2004. Vaccines containing either an Indonesian H5N1 antigen (e.g. A/chicken/Legok/2003) or H5N2 viral antigen have been used in government programmes and there are now approximately 20 different licensed vaccines. Vaccination programmes by the central government in the backyard poultry sector were implemented until 2008, when they stopped as a result of concern over the efficacy of

* In the event that more than one bird dies suddenly in a flock, with or without clinical signs, Participatory Disease Surveillance and Response (PDSR) teams carry out an influenza type A rapid test. A mortality event consistent with clinical HPAI and a positive rapid test in affected poultry is considered a confirmed detection of HPAI in areas where HPAI has previously been confirmed by laboratory testing.

registered vaccines. In the commercial sectors, vaccination is not coordinated by government, thus vaccination practices there are based on risk as perceived by the farmer. Today, preventive vaccination is practiced in all breeder facilities and on nearly all layer farms nationwide. Single dose vaccination of broilers with inactivated vaccine is practiced sporadically during the wet season on Java. Vaccination of ducks is not widely practiced and the epidemiologic role of ducks in Indonesia remains poorly understood.

Two cases of human H5N1 HPAI infection were reported during the two month period. The first case was a 35-year-old male from West Jakarta, Jakarta Province who had developed symptoms on 16 August 2010, was hospitalized on 20 August and died on 27 August. The second case was a 40-year-old female from Kota Depok, West Java who developed symptoms on 9 September 2010, was hospitalized on 12 September and died on 17 September. Both cases reportedly had contact with dead or live birds. Of the 170 cases confirmed to date in Indonesia, 141 (83%) were fatal.

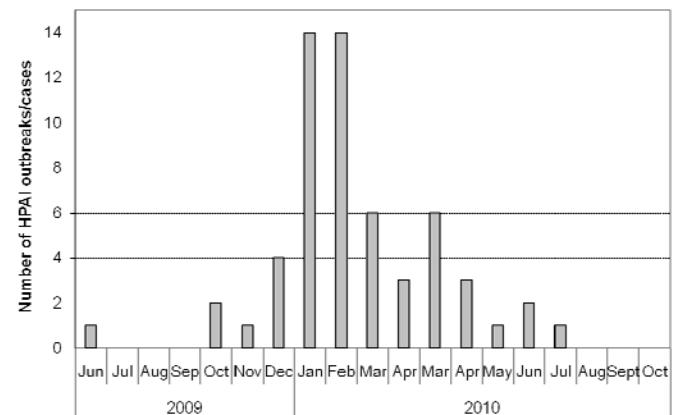
A recent project that conducted surveillance in pigs during 2005–2009 found that 52 pigs (7.4% of surveyed pigs) in four provinces were infected during 2005–2007, but no pigs were infected during 2008–2009. Phylogenetic analysis showed three different introductions into the Indonesia pig population. However, pigs showed no influenza-like symptoms, suggesting that influenza A H5N1 viruses can replicate undetected for prolonged periods, potentially serving as intermediate hosts in which the virus can adapt to mammals. More information is available in the paper by Nidom *et al.* (2010) available at <http://www.cdc.gov/eid/content/16/10/PDFs/10-0508.pdf>

Japan has reported no outbreaks in poultry during either month, but has isolated H5N1 HPAI virus from wild duck faecal material during surveillance conducted at Lake Oonuma, Wakkanai City by the Hokkaido University in October. Two out of 183 samples taken were positive for H5N1 HPAI virus. The virus belongs to subclade 2.3.2.

Lao People's Democratic Republic has reported no outbreaks since April and May 2010 in Vientiane, the capital, when the country experienced its first HPAI outbreaks since February 2009. Samples sent to the Australian Animal Health Laboratory (AAHL) in Geelong were identified as Clade 2.3.4, clustering together with viruses seen in Lao PDR previously. The viruses reacted well to post-infection ferret antiserum raised against the vaccine reference virus A/duck/Laos/3295/2006.

The 2010 active surveillance is carried out in nine highest-risk provinces in Lao PDR, based on the location of historical HPAI outbreaks. The surveillance is focused on ducks in live bird markets, high duck concentrated villages and farms. A total of 30 markets, 35 villages and 28 farms have been visited. Three samplings of active surveillance (March, June and September 2010) have been completed. A total of 3,695, 3,227 and 3,148 swab samples and 1,899, 2,064 and 1,943 serum samples were collected from the first, second and third rounds respectively. From all the three samplings, 565 (5.61%) swab samples were tested positive to AIV type A by RT-PCR, but all were negative to AIV H5. While 302 (5.11%) of sera tested positive to AIV type A by ELISA, but all were negative to the HI test. The fourth sampling in December is waiting for laboratory results to be completed.

In Mongolia, no HPAI event has been reported since the wild bird outbreak reported in May 2010, affecting whooper swans (*Cygnus cygnus*) and greylag geese (*Anser anser*) in Ganga Lake, on the south-eastern border with China. Phylogenetic analyses placed them in the 2.3.2 Clade.


Myanmar has not detected H5N1 HPAI since the March 2010 outbreak in Sagaing Division. Viral analyses of 2010 isolates showed two different clades: Clade 2.3.4 (from the first two

outbreaks of 2010), and Clade 2.3.2 (from the last outbreak in Sagaing Division). Clade 2.3.4 is the same clade as the 2007 isolates from the Yangon area, suggesting that this year's outbreaks occurred following a spill-over of virus from a reservoir in domestic duck flocks. However, Clade 2.3.2 had not been found previously in Myanmar.

Myanmar is currently compiling a national database of commercial poultry farms with population and geo-location data to support disease control programmes. Myanmar is implementing an expanded surveillance programme in 78 townships (out of a total of 334). The programme is based on surveillance by community animal health workers (CAHW), suspect outbreak investigations by veterinary staff, and longitudinal studies of 100 poultry flocks. In the longitudinal studies, sera are collected monthly from ducks and backyard chickens in contact with ducks. To date, there have been no reports of diseases which have required investigation, but the longitudinal studies show that the virus continues to circulate amongst duck flocks.

In **Thailand**, a country that has not experienced any outbreak since 2008, a recent study by Amosin *et al.* (available at <http://www.virologyj.com/content/pdf/1743-422x-7-233.pdf>) reported on the genetic characterization of the viruses isolated from the outbreaks reported in four provinces. Eight influenza A H5N1 viruses, recovered and characterised, displayed genetic drift characteristics (less than 3% genetic differences). Six out of the eight H5N1 isolates were identified as new reassorted H5N1 viruses (between subclades 1.1 and 1.2), while others belonged to an original clade. The estimated point of genetic reassortment of the viruses was traced back to 2006.

FIGURE 8
H5N1 HPAI outbreaks in poultry in Viet Nam, between June 2009 and October 2010
(Source: FAO EMPRES-i)

In **Viet Nam**, no outbreaks were reported in poultry or humans for the reporting period. The last poultry outbreak of H5N1 occurred in July 2010 in ducks in Thai Nguyen Province, in the northern part of the country. H5N1 was first identified in poultry in 2003 and in humans in 2004.

However, there is evidence that there is virus circulation without severe clinical signs, particularly in ducks. Increased stress in poultry and increased movement of poultry due to higher demand in the winter months, including the Tet festival period, possibly help in the transmission of the disease, in which these silent carriers possibly play a key role. Consistent outbreak investigations are not undertaken on infected farms and key information is often missing from the field. FAO is assisting the government to improve the outbreak investigation procedures through the development and updating of standard operating procedures (SOPs) and through Applied Veterinary Epidemiology Training (AVET).

Disease control measures include stamping out on infected farms, movement restrictions for 21 days, compensation and

vaccination. Mass vaccination with an H5N1 inactivated vaccine started in 2005 and is implemented throughout the country in two annual campaigns (March/April and October/November), but in some areas, vaccination between the seasonal campaigns is also practiced. The objective is to vaccinate 50% of the flocks in order to reduce the size of the susceptible population.

The Department of Animal Health organised in collaboration with FAO a consultative workshop on 22 October 2010 for the revision of the HPAI Poultry vaccination strategy for 2011-2012. FAO Vietnam participated and provided inputs through the work done under OSRO/RAS/801/USA (GETS) and OSRO/RAS/604/USA projects.

Post-vaccination monitoring is routinely carried out after each vaccination campaign. For the second round of 2009, a total of 32,919 samples from 1,138 flocks were collected in 28 provinces for sero-monitoring. Results showed that vaccinated poultry have a protection rate of 64% at bird level, which is significantly higher than the flock level protection (46%). Layers[†] had a higher protection rate at bird level (68%) than meat birds (60%). Chickens showed a higher protection level (68%) than ducks (63%). Serology results also show that titres are slightly higher at two months post-vaccination (compared with samples taken earlier or later) and decrease at four months post-vaccination. For the first round in 2010, field activities were initiated in June-July and no results are available yet.

Desvaux et al. (2010) reported at the "Options for the control of influenza VII" meeting on the "H5N1 avian influenza seroprevalence in North Vietnam under a mass vaccination context". Around 1,000 birds were sampled for four campaigns (mid-December 2008, end-January 2009, end-March 2010 and early June 2010), from randomly selected poultry farms or villages (for backyard poultry) in the Red River Delta Northern provinces. The global seroprevalence was 18.3%. Muscovy ducks are not usually vaccinated, so if excluded from the calculation, the percentage increases to 22.4%. Broilers, with a short cycle, presented a lower seroprevalence than breeder-layers (11.6% vs. 20.5%). These levels of protection are much lower than the coverage expected from mass vaccination and may be explained by the high turnover of the poultry population, the low duration of the immunity induced by an inactivated vaccine, and practical issues in the field implementation of the vaccination. Some non-vaccinated animals showed seroconversion, which was considered to be due to virus circulation during the study period.

Similarly, Henning, J., et al. (2010) conducted a longitudinal study from May 2007 to May 2008, monitoring, through bi-monthly testing, 80 flocks of ducks and in-contact chickens in the Mekong Delta of Viet Nam. Serum and swab samples from 5,409 birds were analyzed, showing a bird-level seroprevalence of 17.5% amongst unvaccinated ducks and 10.7% amongst unvaccinated, in-contact chickens. Flock-level seroprevalence (proportion of flock-visits with at least one unvaccinated bird which tested positive) was 42.6% for ducks and 19.0% for chickens. Only 54.3% of vaccinated ducks and 55.5% of vaccinated in-contact chickens had H5 antibodies three weeks post-vaccination. The flock-level virus prevalence (proportion of flocks with at least one bird positive for H5 virus of the vaccinated and unvaccinated birds tested) was 0.7%. Despite the widespread exposure to H5 virus and the moderate proportions of birds developing positive post-vaccination titres, flocks were not affected by HPAI outbreaks or suspected mortality events during the observation period. The higher bird-level seroprevalence in ducks indicates that

they can be an important source of H5 virus for other bird species. The paper can be downloaded at <http://www.ncbi.nlm.nih.gov/pubmed/20594603>.

Virus circulation surveillance was carried out at the same time as post-vaccination monitoring in 16 target provinces and cities. A total of 1,912 swabs were taken to monitor virus circulation in slaughterhouses and slaughter points, LBMs or households. Thirty-eight out of 449 unvaccinated flocks tested positive for H5 in ten provinces. Two of these flocks (in Quang Ninh and Quang Nam provinces) also tested positive for N1.

Surveillance for AI is a component of numerous projects: ACIAR (Australian Centre for International Agricultural Research) project started in June 2006 for three years and includes longitudinal studies to determine the prevalence of past and present infection on smallholder farms in the Mekong River Delta-South Viet Nam. This project has now been completed.

NZAID (New Zealand's International Aid & Development Agency) project will run for two years and includes longitudinal studies on nomadic ducks in the Mekong River Delta-South Viet Nam (ongoing).

CIRAD (French Agricultural Research Centre for International Development) project started in 2007 and includes epidemiological studies in the Red River Delta-North Viet Nam (ongoing).

VAHIP (Vietnam Avian and Human Influenza Control and Preparedness Project) project is being funded by the World Bank for three years and includes various surveillance activities, including market surveillance for virus circulation and outbreak investigations (ongoing).

FAO is implementing the USAID (United States Agency for International Development) funded GETS (Gathering Evidence for a Vaccination Transition Strategy) project, which started in September 2009. This project is running in five provinces. A major strategy in this project involves the implementation of age-based vaccination in ducks, while reducing the vaccination requirements in chickens and enhancing surveillance, monitoring and vaccination of mobile duck flocks.

Another USAID project is continuing in five pilot provinces (two in the Red River Delta, one in the Centre and two in the Mekong Delta). It includes a biosecurity component and a surveillance component that focuses on enhancing the reporting system, strengthening outbreak investigation and response, and developing a community-based surveillance model with local partners. These surveillance activities are increased in high risk locations and also during certain periods of the year.

Molecular surveillance has indicated the presence of four circulating virus clades in Viet Nam since 2003. These are: (1) Clade 1 (predominant in southern Viet Nam and also isolated in Cambodia); (2) Clade 2.3.4 (predominant in northern Viet Nam since 2005 and also circulating in China); (3) Clade 7 (detected in poultry seized at the Chinese border and at markets near Hanoi); and (4) Clade 2.3.2 in 2007 and 2009. Limited sequence data from 2010 indicate that Clade 2.3.2 continues to circulate in Viet Nam. Interestingly, the Clade 2.3.2 HA genes were nearly identical to A/Hubei/1/2010, which was isolated from a recent human case in China. Clade 2.3.4 viruses grouped into one of two previously identified subgroups with limited genetic variation compared to Clade 2.3.4 vaccine strains. This clade, though largely prevalent in north and central Viet Nam, has also been detected in south Viet Nam in 2010. No new Clade 7 isolates have been detected since 2008.

No human cases have been reported since April 2010, but Viet Nam remains one of the countries with the highest number of human cases - 119 - of which 59 (50%) have been fatal.

[†] HI ≥ 1/16

[‡] there is no data available for different poultry species

Middle East

In **Israel**, no outbreaks have been reported since two emus at a mini-zoo of a Kibbutz in Hadarom tested positive for H5N1 HPAI in April 2010. Additionally, sequence data recently became available in Genbank for a virus recovered from an outbreak in heavy breeder pullets in Haifa in January 2010. The closest relatives appear to be Clade 2.2 viruses from Egypt.

Europe

The last wild bird event in Europe was reported in the **Russian Federation** in June 2010, when 367 wild birds were found dead in Ubsu-Nur Lake, in Tyva Republic. Genetic analysis at the All-Russian Research Institute for Animal Health (ARRIAH) in Vladimir, determined that the isolate belonged to Clade 2.3.2 of the Asian lineage A/Guandong/1/96 and is 99% similar to the 2009-2010 H5N1 isolates from wild birds in Mongolia, Tyva and Qinghai.

Prior to this, H5N1 activity was reported at the Black Sea coast, with two outbreaks in backyard poultry in **Romania** and one positive case in a common buzzard in **Bulgaria**. Isolates from both countries grouped in 2010 Clade 2.3.2 and were 99.3% equal to each other and 99.3% similar to viruses isolated recently from poultry in Nepal. Prior to April 2010, the last H5N1 HPAI event in poultry had been detected in October 2008 on a mixed poultry farm in Germany.

Non-infected countries/territories

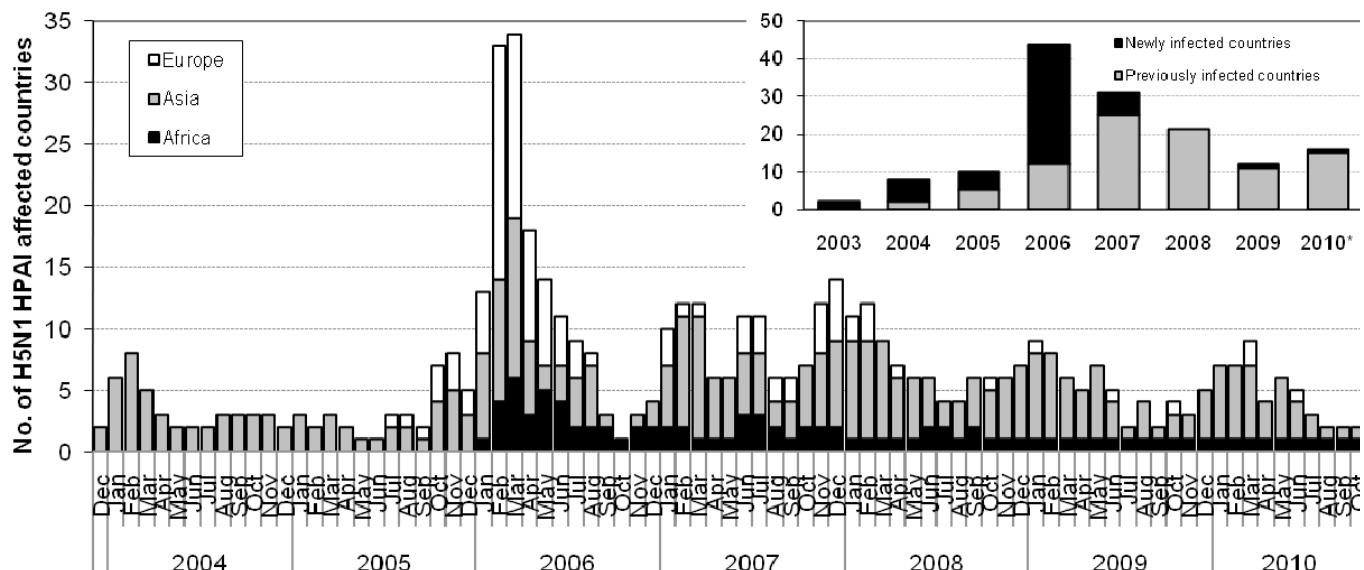
There have been no HPAI outbreaks reported in **Australia**, **New Zealand**, the **Pacific Community**, **Papua New Guinea** (outbreaks have occurred in the Indonesian province of West Papua) or **the Philippines**. To date, no outbreaks have been reported in **Timor-Leste**, but here surveillance capacity is weak. In South Asia, **Sri Lanka** and the **Maldives** have not experienced disease. Some Asian countries regularly report negative results obtained from their surveillance activities and suspected cases.

In **Nigeria**, there have been no reported cases of H5N1 HPAI since July 2008. From 2006 to date, the number of positive cases remains at 300.

Iraq, where the last H5N1 HPAI outbreak was in February 2006, has reported recent laboratory results of its surveillance activities from July and October 2010 for all governorates except Kurdistan Province, in the north of the country.

CONCLUSIONS

During the reporting period, 155 domestic poultry outbreaks were reported in two countries (Egypt and Indonesia). There were two confirmed reports of human cases in Indonesia and none in Egypt or any of the other known endemic countries. Though there were no outbreaks in wild birds reported in the two month reporting period of September and October 2010, the detection of the H5N1 HPAI virus in faecal samples of a wild bird in Japan in October was significant. This is because virus detections normally occur during winter and spring and not autumn as was the case with the current findings. This has served as an early warning to Japan that once again virus was present in wild bird populations and measures to protect poultry from wild birds should be strengthened. These findings were not accompanied by poultry outbreaks.


Despite the lack of reports of outbreaks from China, active surveillance conducted during three months in 2010 indicated that virus was still circulating within domestic poultry in that country. There was also evidence of virus in a wild bird. Though these findings did not occur during either of these reporting months, they reinforce the need for continued surveillance for the virus in this country.

September and October were predictable in terms of the decrease observed in the number of countries reporting outbreaks (Figure 9) and the number of outbreaks (Figure 10) reported globally. This period is generally associated with low virus activity and over the years the number of reports have consistently been lower than other months (for example January to March). This period is generally associated with low virus activity and over the years the number of reports have consistently been lower than other months (for example January to March).

In September and October, there were no new countries reporting outbreaks. During 2010, H5N1 HPAI has reoccurred in a number of countries where the disease had not been reported for a number of months, including Cambodia, Israel, Lao PDR, Myanmar, Nepal and Romania. In some cases, molecular evidence suggests introduction of a new

FIGURE 9

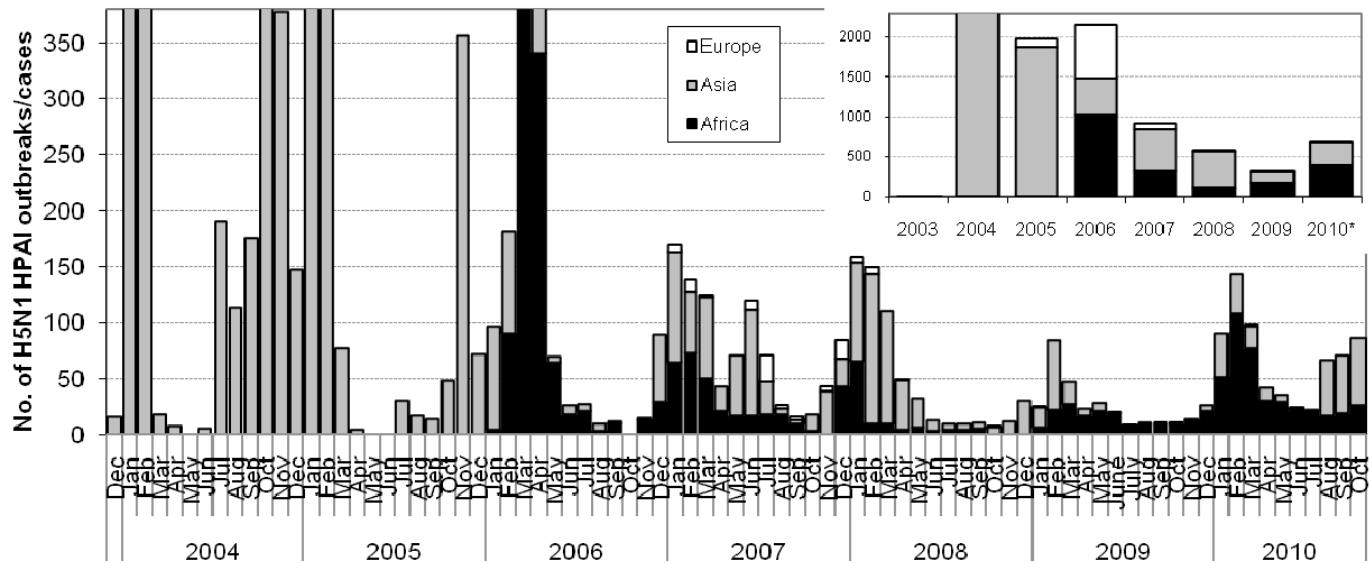

Number of countries by continent and by month and year that reported H5N1 HPAI outbreaks since December 2003
(Source: FAO EMPRES-I)

FIGURE 10

H5N1 HPAI outbreaks/cases by continent, by month, since December 2003

(Source: FAO EMPRES-i; Note 1: Indonesia data are not included, because the epidemiological unit definition for the PDSR data was modified from household level to village level in May 2008 and is not comparable); Note 2: Months with more than 380 outbreaks (Jan 04: 1 311, Feb 04: 1 175 and Oct 04: 741), and years with more than 650 outbreaks (2004: 4 189) have been truncated so that rest of the graph is not distorted)

strain of virus (e.g. Clade 2.3.2 virus to Romania, Clade 2.2.1 virus to Israel). In other instances, e.g. in southeast Asia, it remains unknown whether the new cases resulted from re-introduction of virus or from detection of outbreaks caused by virus that was circulating at low level within the country without reports of disease or positive findings from surveillance studies.

Since 2003, 63 countries/territories have experienced outbreaks of H5N1 HPAI. The last newly infected country was Bhutan in February 2010 (Figure 9 – upper right corner). Effective control measures for outbreaks in poultry have been associated with a reduced incidence of human infections in several countries. However, H5N1 HPAI continues to be present in poultry in parts of Asia and Africa (Egypt) and thus the risk of human infection remains.

DISCLAIMER

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.

The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders. Applications for such permission should be addressed by e-mail to glews@fao.org.

© FAO 2010

This overview is produced by the EMPRES/GLEWS team in FAO, which collects and analyses epidemiological data and information on animal disease outbreaks under the framework of the Global Early Warning and Response System for Major Animal Diseases including Zoonoses. EMPRES welcomes information on disease events or surveillance reports on H5N1 HPAI (and other TADs) both rumours and official information. If you want to share any such information with us please send a message to glews@fao.org. Information will be treated confidentially if requested.