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FOREWORD

There is probably little argument among forest managers that the ability to estimate
the volume of trees and stands and to predict what the forest will produce, on different
sites, in response to particular types of silvicultural treatment, is central to all
rational planning processes connected with forestry. There is, however, a considerable
diversity of opinions over what constitutes "yield", and how it may be estimated and

projected into the future.

This manual is an attempt to codify current practices in the field of tree and stand
volume estimation and forest yield prediction in a way that is practicable and useful to
the person who is chanced with the responsibility of producing volume estimations and
yield forecasts, but perhaps has not had the benefit of extensive experience in this field.

It must be aopreciated, however, that this is a field of human endeavour that is
currently in a state of rapid evolution, especially with regard to forests growing in
tropical environments. Consequently, all that is said in this manual must be regarded as
provisional and subject to future refinement for particular situations that can arise, or
new techniques that can be developed, whilst other techniques may exist which are not
referred to in this text and which may be superior for particular purposes.

Thus it is not a manual in the true sense; it is rather a set of guidelines for the
choice of procedure combined with more precise instructions concerning calculation tech-
nique for some specified cases.

The manual is done with special reference to the tropics and applies to natural as
well as man made forests. Because of the great difficulties in assessing growth and
yield of natural mixed and uneven aged forests, the methods given to construct growth
models, however, mainly apply to even aged forests, For mixed forests no specific
instructions are Eiven but rather some examples of possible ways of dealing with the
problem.

The manual consists of two volumes. The first volume describes techniques of
measuring trees and the assessment of volume of trees and stands, and the second volume
deals with growth and yield prediction. Descriptions of statistical and mathematical
techniques, selected statistical tables, blank copies of calculation and data recording
forms and an annotated bibliography are included in a series of appendices.

Volume I of the manual has been written by Francis Cailliez, Centre Technique
Forestier Tropical (CTFT), NogentsurMarne, France, and Volume II by Denis Alder,
Commonwealth Forestry Institute (cm, Oxford, Great Britain, who also compiled the
appendices. The work of the two authors has been coordinated by Juran Fries, Swedish
University of kTicultural Sciences, Uppsala, Sweden. The work was formulated and guided
by JeanPaul Lanly and Karn Deo Singh of the Forest Resources Division of FAO. Jean

Clement (CTFT) was associated at the initial stage of the study.

The first draft of the manual was presented at the meeting of the TUFRO Subject
Group S4,01 (Mensuration, Growth and Yield) held in Oxford in September 1979, and was

discussed for one full day in detail. Among the participants there were tropical forest
mensurationists especially invited by FAD to make a thorough and critical review of the
contents of the manual. In addition, the manual was also sent to a number of specialists
for comments. Based on these remarks, a revised version of the manual was prepared by
the authors concerned.

This manual, being the first of its kind in the field of tropical forestry, has con-
siderable scope for further improvements and additions. Particularly in the case of mixed
uneven aged stands further complementary studies are immediately needed. All suggestions

in this respect will be very much appreciated.

M.A. Flores Rodas
Assistant DirectorGeneral

Forestry Department
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1. INTRODUCTION

THE PROBLEM OF GROWTH AND YIELD PREDICTION

1.1 REASONn FOR PREDICTING GROWTH AND YIELD

In order to understand the reasons for the diversity of methods that are being used

for growth and yield prediction, it is useful to examine in more detail why growth and yield

prediction is necessary.

1.1.1 Production Planning

Effective forest management involves the use of treatment regimes for control of the

growing stock in such a way that the increase in the economic and/or social value of the

growing stock is more rapid than the interest accumulating on the cost of treatment.

At the same time, all harvesting operations will deplete the future growing stock to

a greater or lesser degree. Too heavy a rate of harvesting will ultimately liquidate the

forest resource; too low a rate may both deprive a community of immediate resources and

reduce potential growth in the forest for the future.

Clearly, rational decisions about treatment and harvesting intensity and timing can

only be made if the response of the forest to these operations can be quantified. Growth

and yield studies are the means to this end.

1.1.2 Silvicultural Research and Planning

Although the primary objective of growth and yield studies is probably the quantifi-

cation of forest production in response to treatment and harvesting, there is a strong two

way relationship between growth and yield studies and more qualitative forms of silvicultural

research. It is a two-way relationship because:

The silviculture of a species may determine the type of model that can be used

to predict its growth; and may permit a logical basis for grouping species in

complex forests. Important silvicultural features of a species will suggest

features and relationships that must be included in a quantitative model if it

is to be effective.

A quantitative model can be used, if it contains suitable relationships, to test

silvicultural hypotheses and to suggest experimental designa and treatments that

are likely to provide useful results.

1.1.3 Ecolo cal Research and Environmental Man ement

Quantitative models for growth and yield prediction may interact with the needs of

ecological research and environmental planning in several ways. For example:

A forest model may indicate the amount of light reaching the forest floor at

different stages of the growth cycle.

A forest model may readily by adapted to show the biomass and rate of production

of the tree crop.
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The duration of the growth cycle during which the forest crop is available to

large herbivores is important information for wildlife management.

On the whole, ecological modelling uses rather different techniques from those used

in growth and yield studies in forestry. This is because the latter has, of necessity, to
focus upon a very precise prediction of the geometric properties of the crop; whilst in

ecology, it is possible to deal with populations and levels of an ecosystem as a whole.

Furthermore, ecological models tend to concentra-te on describing or explaining the main

qualitative features of an ecosystem; a high level of precision is rarely either possible
or necessary. On the other hand, forest models must be reasonably precise if they are to

justify their existence and fulfil their aim.

The techniques of ecological modelling do provide a number of useful points of contact
with forest modelling:

In mixed forest, species composition can be modelled by ecological population

dynamics techniques.

Where mortality, defect, or loss of growth is attributable to specific diseases

or pests of known etiology, then this may be quantified as population dynamics

model in which habitat information is derived from a forest growth model and

tree growth is influenced by pest population levels.

In the future, these points of contact are likely to enlarge. In particular, the

increasing interest in nonwood products from forests and the intractable problems of complex
mixed species and age forests may be best accommodated by using modified forms of ecological

energy flow/nutrient cycle models.

1.2 THE METHODOLOGY OF GROWTH AND YIELD PREDICTION

The methodology of growth and yield prediction may be thought of as containing four

main phases, which are discussed in the following paragraphs.

1.2.1 The Estimation of Growth and Yield

The estimation of growth or yield involves two kinds of problem. One is the problem

of definition of What constitutes yield. This may be the timber volume of the crop, or it

may be the timber volume of a particular group of species, or it may be some nontimber

product, such as bark, foliage, resins, etc.. The most common emphasis in tropical countries

is on predicting the volume and assortment of all wood products, including timber, pulpwood,

poles and fuelwood. Because the species composition affects the utility of the product,

yield cannot be considered apart from species composition in mixed stands.

The measurement of yield and of growth is relatively easy once appropriate definitions

have been made. The main difficulties are practical ones associated with access to the

forest, demarcation and measurement of plots and the maintenance of permanent plots over

long periods of time. These problems are dealt with in Sections 2 and 3.
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1.2.2 The Construction of aTdathematical Model and its Fjtting to Growth and Yield Data

Once data is available, a mathematical model can be constructed and fitted to this

data. A mathematical model consista of sets of equations or graphs showing the quantitative

relationships between the variables.

The process of fitting the model may be statistical, using for example linear regres-

sion, or it may be subjective, by drawing lines through data plotted on grapbs. Such hand:

drawn curves can be subsequently expressed as equations if required. Appendix A of this

manual gives a number of methods of curve fitting.

The types of curves drawn or equations fitted may be based upon some natural law of

growth, or it may be empirical. In the latter case, the function or equation is chosen

solely for its ability to represent a particular shape.

At the present time, there is no genuine function for tree growth based upon a natural

law, although there are some, such as the ChapmanRichards function (described in Section 5)
which are partially representative of growth processes.

1.2.3 Testing of the Model for Validity

Once a model has been constructed and fitted to data, it must be tested to determine

its validity and precision. Tbis is best done with a second set of data which was not used

to fit any of the functions in the model. The model is used to predict the behaviour of the

stands which produced the test data and the results are compared with the actual Observations.

It is often necessary to repeat this process of validation a number of times, with adjustments

or corrections to the model as a result of apparent anomolies showing up at each stage.

There are a number of reasons why models can perform badly when validated:

The original data set may represent a different pattern of growth behaviour to

the test set.

Inappropriate methods of fitting the equations may have been used in model

construct ion.

Some of the functions may be extrapolated during the test with the validation

data into a region Where they are inaccurate.

If the model involves a system of equations, it may become unstable when treated

as a whole, even though each function separately may fit the data adequately.

There may be various kinds of human error during transcription or application

of the various equations or graphs.

These points are spelt out at some length in order to emphasise the importance of

thoroughly testing any model before applying it to planning or rese,arch. Section 6 deals

with model validation in detail.
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1.2.4 The Application of the Model to the Required EhdUse

Etsentiallyt the growth and yield model may be applied in one of three ways:

As a simple table or graph or set of tables or graphs. These can be used by

forest planners directly or can be fed in in tabular form to a computer for

updating a set of inventory data.

As a programme for a computer or calculator which can produce a table or graph

of growth and yield for a particular set of treatments. This is appropriate

when the model has sufficient inherent flexibility so that it is not possible

to define all possible predictions in ane set of tables.

As a computer programme which forms a sub-,model within a larger computer prog..

ramme for forest planning and which will usually incorporate a data base of

inventory information and various economic or technical constraints on harvesting

and treatment operations.
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2. DESIGN OF YIELD PREDICTION STUDIES

2.1 SPECIAL FEATURES OF REGRMSION PARAMETER ESTIMATION

Sampling or experimental designs for growth and yield studies should be conditioned
by the type of model to be fitted to the data obtained. This is usually some sort of
regression model.

The following points should be borne in mind:

(0 When the model to be fitted is known to be linear in form, then sampling or

experimental treatments should be concentrated at the two extreme ends of the

line. For a surface relating three variables, the four extreme corners should
be sampled.

More usually, the precise shape of the function to be fitted is unknown and

likely to be somewhat curved. In this case, a good practice is to break the

range of the predictor variable into 5 eaual sections and sample each section

at the same intensity (subject to (iii) below).

Sampling intensity in any part of the range should be proportional to the

variance of the samples around the model. This is particularly relevant when

predicting volume, as discussed in Part I of this manual.

(kv) Random or systematic sampling by area which is most appropriate for forest

inventory, is inefficient as a basis for constructing growth and yield models,

as it involves too high a sampling intensity in the central part of the range

of response and -Loo low an intensity at the extremes of response.

(v) In experimental designs for growth and yield prediction, extreme treatments

should always be incorporated, especially with respect to stand density. This

will add greatly to the accuracy of the model which can be fitted_ to the resul-

tant data.

2.2 SAMPLING DESIGN FOR MODEL CONSTRUCTION

Sampling is an alternative to experimentation in situations where the variables

entering the model cannot be controlled by the research worker. In gromth and yield studies,

this proviso applies principally to site variation. Forest type can be controlled by selec-

tion of the experimental area, or by establishment of the desired type of forest; stand

density can be controlled by silvicultural and harvesting operations.

Experiments are generally more efficient and hence less expensive.for a given accuracy

and precision of prediction than sampling. However, both types of data are necessary if site

variation is to be effectively included in the model.

The real effects of harvesting operations are also very difficult to simulate experi-

mentally and must usually be determined by a sampling programme, carried out shortly after

harvesting.
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2°2'1 2.21=ni=112tE

Temporary plots are primarily used for estimation of relationships which are not

time dependent. However, this distinction is blurred by the possibility of determining

time-dependent relationships from annual ring information in situations where these are

present.

2.2.1.1 Forest inventory

Forest inventory designs are primarily determined to give an accurate estimate of

forest growing stock in relation to land area. However, much of the information gathered

may be useful in growth and yield studies.

The general subject of forest inventory design and analysis is covered in the FAO

Manual of Forest Inventory.

It is generally inefficient to require the measurement of parameters on all forest

inventory plots that are only required for growth and yield prediction. It is better to

select a subset of plots for more detailed measurement.

2.2.1.2 Growth estimation from annual rings

Where clear annual rings are present, then studies on temporary plots can be used in

place of permanent sample plots. In general, the use of annual rings for increment estima-

tion is more difficult end more expensive than the use of permanent sample plots. On the

other hand, results are Obtained much more quickly.

2.2.1.3 smallag for allcmetric relati,onships

An allometric relationship is one between one measurement on a tree and another. For

example, the relationship between crown diameter and bole diameter, or betusen total height

and bole length. Allometric relationships may be important in some models. The necessary

data is often not available in a suitable form from a forest inventory, so it bocones

desirable to carry out a sampling programme to determine the relationship.

The basic sampling unit is usually the single tree, although for convenience plots

may be laid out and all trees on the plot measured. The number of samples will depend upon

the relationship being studied. A good general procedure is to analyse the data as sampling

is being carried out and to terminate sampling once the required degree of accuracy has been

Obtained.

A tree volume tariff is a particular example of an allometric relationship.

2. 2.1 4Sa_a_2_n t oefinimet ers of harvesting_afrations

M.ost yield prediction models accept as inputs the formal specifications for inter-

mediate or cyclic harvesting operations. It is possible to assume that the operation will

be carried out as specified, or it is possible to carry out a sampling programme to examine

the relationship between the theoretical specifications and the actual results.
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Additionally, most models will require information about the harvesting treatment

that are not covered by the specifications. For example, it is usually necessary to know

the diameter distribution of removed stems or the relationship between the number of stems

removed and the basal area removed.

Sampling carried out shortly after harvesting will provide information an these

matters. Alternatively, concealed semipermanent plots can be set up which are measured

before and after the harvesting operation to give an accurate determination of trees

removed.

A general feature of these studies is the need to use larger sized plots than other

types of study. Typical figures would be:

Uniform forest 0.1 0.5 ha

Mixed tropical forest 5 10 ha

This is because real harvesting operations tend to have very heterogeneous effects associated

with extraction tracks and loading areas.

2.201.5 Regeneration survey2

In mixed tropical forests or any other type of mixed age forest, or uniform forests

being regenerated by direct seeding, estimates of regeneration may be an important part of

a yield prediction model.

Plots for regeneration surveys need to be small. They may be subplots within conven-

tional forest inventory plots or they may be based an a spearate sampling scheme carried out

3-5 years after logging. Typically, the plots are subdivided into quadrats; on each quadrat,

the presence or absence of species is recorded. Actual counts of trees above a certain

diameter or height may also be made, but do not usually add greatly to the usefulness of the

information. Typical plot sizes are 0.01 ha (10 x 10 m) or 0.04 ha (20 x 20 m), subdivided

in each case into 1 m2 or 4 m2 quadrats.

2.2.2 Permanent Sample Plots

Most foresters would consider the data obtained from permanent sample plots (PSPs)

Lo be the most important contributor to a growth and yield model. Although this remains

true for many situations, experiments must be considered as a necessary adjunct to introduce

extremes of treatment that are not found in the forest; whilst measurements on annual rings

provide an alternative to PSP measurements.

2.2.2.1 Number of PSPs required

It is not possible to define the number of PSPs required from purely statistical

criteria. The precision of a model fitted to PSP data will depend upon the location of plots,

and the duration of remeasurement as well as an the covariances of the various predictor

variables and coefficients in the fitted model,

Experience suggests however that approximately 100 plots covering the range of site

variation and stand history may be sufficient in a given forest type or plantation species,

unless there is evidence for distinctively different growth patterns on part of the geographic

range.
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2.2.2.2 Location of PSPs

Permanent sample plots should be placed with equal frequency in:

- poor sites
average sites

good sites

low density stands

- stands of average density

high density stands

and

yaang or recently logged stands

mid-rotation or midway through felling cycle

at rotation age or at the end of the felling cycle.

This will probably result in an area distribution for plots which is quite uneven,

and appear to be proportionately deficient in the average stands. However, this is the most

efficient method of sampling to estimate regression parameters, as discussedin section 2.1.

The type of stratification implied above may not be possible, due to a lack of know-

ledge of forest growing conditions, in which case plots may be laid down systematically or

using a geographical stratification to give equal area coverage. In this case, many more

plots will be required than if the more effective type of stratification described above is

used.

2.2.2.3 Size of PSPs

In general, the size of permanent sample plots is governed by forest type and the

heterogeneity of stocking and species distribution.

In mixed tropical forest, a size of 1 ha is usually appropriate. This may conveniently

be divided into 100 10 x 10 m quadrats.

In uniform forest, sizes around 0.05 ha are commonly used.

These figures may be varied a great deal for different circumstances. For experi-

ments, larger sized plots are more normal. The table below gives some details.

PERMANEVT PLOT SIZES

Forest type Mixed Uniform

Sample plots 1-2 ha 0.04-0.08 ha

Experiments (excluding surrounds) 1-5 ha 0.08-0.12 ha

Studies of real* harvesting operations 5-10 ha 0.1 - 0.5 ha

* As opposed to simulated operations, which come under the category of experiments.

These figures should not be treated too rigidly.
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low density stands 

stands of average density 
high density stands 

young or recently logged stands 
mid-rotation or midway through felling cycle 
at rotation age or at the end of the felling cycle. 

This will probably result in an area distribution for plots which is quite uneven, 
and appear to be proportionately deficient in the average stands. However, this is the most 
efficient method of sampling to estimate regression parameters, as discussed in section 2.1. 

The type of stratification implied above may not be possible, due to a lack of know­
ledge of forest growing conditions, in which case plots may be laid down systematically or 
using a geographical stratification to give equal area coverage. In this case, many more 
plots will be required than if the more effective type of stratification described above is 
used. 

2.2.2.3 Size of PSPs 

In general, the size of pennanent sample plots is governed by forest type and the 
heterogeneity of stocking and species distribution. 

In mixed tropical forest, a size of 1 ha is usually appropriate. This may conveniently 
be divided into 100 10 x 10 m quadrats. 

In unifonn forest, sizes around 0.05 ha are commonly used. 

These figures may be varied a great deal for different circumstances. For experi­
ments, larger sized plots are more nonnal. The table below gives some details. 

PERMANENT PLOT SIZES 

Forest type 

Sarnple plots 

Experiments (excluding surrounds) 

Studies of real* harvesting operations 

Mixed 

1-2 ha 

1-5 ha 

5-10 ha 

Unifonn 

0.04-0.08 ha 

0.01>-0.12 ha 

0.1 - 0.5 ha 

* As opposed to simulated operations, which corne under the category of experiments . 

These figures should not be treated too rigidly. 



2.2.2.4 Shape of PSPs

Generally speaking, PSPs may be either rectangular or circular. In inventory, other

shapes are used, e.g. crosses and clusters of circular plots, which have specific advantages

for area sampling but are not particularly useful for PSFS.

Circular plots are faster to lay out than rectangular plots for sizes below 0.1 ha

in open stands, or 0.05 ha in dense stands. Their use is also recommended in plantations

as effective area is nct related to the arrangement of planting rows.

Rectangular plots are more appropriate for plot sizes greater than 0.1 ha.

The ratio of length to breadth for rectangular plots can be altered as required. On

steep topography, a high ratio, up to 5 to 1, is better, with the length running up and down

the slopes. On level ground, a square plot has a smaller perimeter and will therefore be

easier to demarcate and measure.

2.2.2.5 Frequency and timing of remeasurements

The frequency with which PSPs should be remeasured depends upon the growth rate of

the trees. It is also useful to remeasure a new plot after a shorter than normal interval

in order to benefit as rapidly as possible from the growth data the plot provides.

It should be noted that in general, the longer the interval between remeasurements,

the more accurately the tree increments can be determined.

In an organization responsible for a large number of PSPs1 it is a good idea to

alternate remeasurements so that perhaps only one third of the plots are measured in any

one year.

Remeasurement intervals can be given approximately as follows:

Forest type Measurement interval (yrs)

Young plantations in

tropics 1

Older plantations or

ether uniform forest

in tropics 2-4

Mixed tropical forest 3-5

Temperate uniform

forest 3-5

The timing of remeasurements should obviously take into account seasonal effects.

If there is a definite growing season, measurement should be carried out after the growing

season is finished, as timing is less criticial. In any case, a given plot should always

be measured in the same month When annual measurements are made, to allow exact one year

comparisons and increment estimation. With longer remeasurement intervals and less seasonal

climates, timing becomes less critical.
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In some cases, timing of measurements may be restricted by access considerations or

seasonal availability of labour.

2.2.2.6 Eamang with partial replacement

Strictly speaking, sampling with partial replacement is an inventory design where

semi-permanent plots are used to supplement information from temporary plots. However, the

sane general concept can be applied to permanent sample plots.

The more times a PSP is measured, the less information it provides compared with the

previous measurement, unless it is growing into an age-site-stand density stratum that has

not been well sampled.

For uniform age forests, two basic sampling strategies arise with PSPs:

Plots are established through all age classes. In this case, sampling is more

efficient if a proportion of plots is replaced after the third or fourth

remeasurements.

Plots are established in young plantations anly (because no older age classes

exist). In this case, a proportion of the plots, say 30%, must be retained

throughout the rotation. The remaining 70% are replaced after 3 or 4

measurements.

In mixed forest, an analogous situation exists, except that instead of age, ane is

concerned with the number of years since the last harvesting aperation.

2.3 EXPERIMENTAL DESINE

EXperiments are the most efficient and useful source of data for constructing models

of growth and yield. However, the usefulness of many experiments that have been laid down

in forestry research is limited by a failure to clearly envisage the mathematical model that

the experiment is designed to test or parameterize.

Growth and yield studies are net primarily concerned with determining significant

differences between treatments, but with constructing response surfaces. It is also a common

error to assume that long term forestry experiments can provide useful solutions to problems

that have their origins in current and highly fluid economic conditions. It almost always

happens that by the time the experiment starts to provide useful data, economic conditions

have changed so that the results are irrelevant.

The solution to this problem is always to set up the experiments with the intention

of defining general principles, via a mathematical model, rather than to select the 'best'

of a set of treatments.

Similarly, the parameters to be measured should never be defined in economic terms,

but always in ecological or silvicultural terms.

Short term experiments that are defined in terms of economic parameters are necessary

for the costing of silvicultural treatments and determination of utilizable yields in rela-

tion to specific harvesting methods, but these matters are outside the scope of this present

manual.
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The principal experimental designs that are relevant to growth and yield research

can be subdivided into randomized or systematic designs. The former can be subject to con-

ventional analysis of variance, whilst the latter are usually satisfactory when regression

is the principal method of analysis and may be more economical than randomized designs to

set out an the ground. Randomized designs can however also be analysed by regression and

are therefore probably to be preferred in all cases except plantation spacing experiments.

2.3.1 Randomized Designs

A principal feature of randomized designs is the allocation of treatments to the

plots within an experiment by some random process, usually a table of random numbers.

Another feature of randomized designs is the principle of replication. Any treatment
must be applied at least twice, on two different plots.

These two features are the common characteristics of a wide diversity of experimental

designs, including fully randomized experiments, lattices, latin squares, incomplete blocks,

split plots, etc.. Standard textbooks, such as Snedecor (see bibliography) cover the analysis

and appropriate usage of such designs. Dawkins, in his well known book of Statforms, gives

calculation pro formes for many such designs.

In growth and yield studies, probably only two randomized designs are widely appro-

priate. These are the randomized block and the factorial experiment.

2.3.1.1 Randomized block experiments

The structure of a typical complete randomized block experiment is illustrated below.

It1

b1

t2

t4

t3

b2 t4 t3 tlIt21

b3 It2it4Itl t3

The treatments, of which there may be any number (provided there are at least two),

are designated by t1, t2, etc.. These are grouped into blocks, labelled b1, 1)2, etc.. There

may be any number of blocks. Each block contains ane replicate of each treatment.

The blocks are laid out so that the variations in site or forest condition are small

within the blocks, compared to the variation between blocks.

The plots within a block do not necessarily have to be physically adjacent, as shown

above, but usually the plots are relatively close compared with the distance between blocks.

The treatments are assignelto each plot withina block using a table of random numbers.

ßn incomplete randomized block arises When ane or more treatments are not replicated

in one or more blocks. This may be a deliberate feature of design, especially Where there

are large numbers of treatments, or it may be the result of loss of ane or more plots through

accidents. The analysis of variance of an incomplete randomized block experiment is somewhat

more complex than for a complete one, but as far as regression studies are concerned, it does

not make a great deal of difference.
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In growth and yield experimentation, randomized block experiments are suitable for

situations where the treatments do not form a clearly defined dimensional continuum. For

example, if the treatments comprise initial spacing for a plantation crop, then this can be

varied continuously and factorial or clinal design is more appropriate. But if the treat-

ments are specifications for rainforest harvesting framed in terms of species groups and

different cutting limits for different groups, then there is no clear continuum between

treatments and a factorial or clinal design cannot be used. A randomized block design is

therefore most appropriate.

2.3.1.2 Factorial experiments

Factorial experiments are intended for situations where the treatment consists of

two or more interacting factors. For example, in a plantation thinning experiment, one

might designate the age of thinning and the intensity of thinning as two separate factors.

Each level of a factor is combined with each level of every other factor. Thus if

there are 3 levels of one factor and two levels of a second factor, there will be a total

of six treatments.

All the treatments should be replicated at least twice. It is efficient to group

the replicates into blocks, as this allows the variation betweenblocks to be accounted for.

Qualitative treatments such as for example pruning or no pruning, can be included in

a factorial experiment as a treatment with two levels - present or absent.

Factorial experiments are well suited to studies in uniform forest involving timing

and intensity of thinning, initial spacing, pruning and the use of fertilizers and weed

control. They are more difficult to apply meaningfully in mixed forest because of the

complex nature of the treatment definition and effects.

2.3.2 Systematic Designs

Systematic designs are those in which treatment locations are not randomized, but

are laid out in some systematic pattern to economize an the size and cost of the experiment.

Systematic experiments cannot be analysed by analysis of variance, but they are very

efficient as a means of providing data for regression parameter estimation.

The main application of systematic designs is towards spacing experiments in uniform

forest. In any situation where there is the slightest doubt as to the likely outcome of the

experiment, e.g. fertilizer experiments, a randomized design should be used.

For spacing experiments, two basic design approaches are possible.

2.3.2.1 Single tree experiments

In the single tree systematic spacing design, the spacing varies between each tree in

a continuous fashion. One well-known example is the Nelder fan, in which trees are planted

along radii going out from a central point, with the distance between trees along radii

increasing a the same rate as the distance between radii. The general appearance is

illustrated below.
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Nelder fans are a little difficult to plan and execute on the graund and some equally

effective rectangular designs are possible. The diagram below indicates one in which spacing

between trees is increased by half a metre for each treet, in both the vertical and horizontal

direction. This plan has the advantage of testing all combinations of square and rectangular

spacing and replicating each single combination twice. By using a smaller increment than -1-

metre, a larger experiment is Obtainedt which is less likely to be affected by the loss of

single trees.

.11 --1-- - QI e

:
e e:

o
I i o o

i o I I i
o

o I

e --e lee e .0
o o

o o I

I
o o I I o

I o I I; > -e --; "O'''
o

o o

i
o

o o

o

I I
I I

I I
I I

..-.41,-...-;--.....0;..._ __ I!

Single tree spacing experiments provide very useful data on the response of diameter

and crown diameter to spacing for uniform foresta, but the data is not easily compatible

with that from conventional plots unless a single tree modelling strategy has been adopted.

Single tree experiments are also very sensitive to the loss of trees, which upset their

arrangement and design.

2.3.2.2 Curial plots

Clinal plots are those in which the treatments are arranged so that successive levels

are adjacent. The main advantage of clinal plots is the possibility of eliminating the plot

surround except on the autside of the experiment. This is illustrated by the diagram below.
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Single tree spacing experiments provide very useful data on the response of dimmeter 
and crown diameter to spacing for uniform forests, but the data is not eaSily compatible 
with that from conventional plots unless a single tree modelling strategy has been adopted. 
Single tree experiments are also very sensitive to the loss of trees, which upset their 
arrangement and design. 

2.3.2.2 Clinal plots 

Clinal plots are those in which the treatments are arranged so that successive levels 
are adjacent. The main advantage of clinal plots is the possibility of eliminating the plot 
surround except on the outside of the experiment. This is illustrat ed by the diagram below. 
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For spacing experiments, it is usually desirable to have from 5 to 8 treatments. The

closest spacing should be either 2 x 2 m or 2-i x 2 m, depending on whether a narrow crowned

species (e.g. Eucalypt or Pine) or wide crowned species (e.g. Gmelina arborea) is involved.

The widest spacing should be 7 x 7 m or 8 x 8 m. It is very important to always incorporate

these two extremes, as discussed in section 2.1.

Data from clinal plots can be combined with other plot data without difficulty. The

plots themselves are less sensitive to the loss of individual trees than single tree

experiments.

2.4 EXAMPLES OF GROWTH AND YIELD EXPERIMENTS

There are literally an infinite variety of ways in which experiments may be designed

and executed to provide data for growth and yield prediction. The main purpose of this

section is to present synthesized examples of the most common types of experiment, with

some discussion of their usefulness and the special problems of execution and analysis.

There is here a wide divergence in technique between methods for uniform forests of a single

age and mixed forests.

2.4.1 Uniform Forests

Growth and yield studies in uniform forest have tended to concentrate on the effects

of stand density, fertilization and pruning. Fertilizer and pruning experiments will not

be considered directly in this manual as they are rarely relevant to the direct problem ef

yield prediction. Stand density is of primary importance, as it is the major variable which

the forester is able to control during the rotation of a uniform forest. There are four

basic ways in which the interaction between stand density and growth may be studied

experimentally.

2.4.1.1 Spacing experiments

Spacing experiments may be laid out either as single tree experiments or as clinal

plots. The latter is probably a more useful type of experiment. Between 5 and 8 different

spacings may be used. It is better to thin the plots to their final spacing in the second
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or third year of growth than to plant directly at the final spacing; the latter approach is
too sensitive to poor survival following planting. When the thinning to the final spacing

is carried out, it should be a nonselective thinning to achieve the desired spacing, not a
low or crown thinning.

A spacing experiment should be continued over the whole of a normal rotation of the

crop. Once established, it should not be thinned.

It is very easy to analyse spacing experiment data to provide a flexible growth model

for the species in question. The details are discussed in section 5 of this manual.

2.4.1.2 Constant basal area thinning experiments

In a constant basal area thinning experiment, plots are laid out systematically or

randomly and allowed to grow until each plot reaches its designated basal area. It is then

thinned every one or two years to maintain the basal area at the designated level for each

plot.

Careful records must be kept of the number of trees removed and the basal area removed

if this type of experiment is to be very useful.

Analyuis is more difficult than for a spacing experiment and involves the fitting of

a model predicting basal area increment as a function of basal area and other variables, for

example age and stocking.

As a strategy for constructing a dynamic thinning experiment, this approach has the

advantage of simplicity of design, although the execution may not be so easy, as careful and

continuous record keeping is required if the results are to be fully useful.

2.4.1.3 Thinning experiments using graded thinning treatments

In this type of experiment, a number of thinnings are defined (typically 4), which

differ from each other in terms of both timing and intensity of thinning and possibly in

terms of initial spacing also. These treatments can be roughly classified from light

thinning to heavy thinning.

This type of experiment is very similar to a constant basal area thinning experiment

in terms of analysis and record keeping. Records must be kept of the numbers and basal area

of stems removed at each thinning. Analysis can be by several methods, the best of which is

the fitting of a predictive model of diameter or basal area increment as a function of basal

area, stem numbers, age, etc.

The principal advantage over a constant basal area experiment is that the thinningu

used are treatments which might be used in reality, allowing costing of thinnings, thinning

damage, windthrow risk and effects on wood quality to be assessed on the experiment. Addi-

tionally, thinning need not be performed so frequently as an the constant basal area experi-

ment, simplifying administration.

- 15 -

or third year of growth than to plant directly at the final spacing; the latter approach is 
too sensitive to poor survival following planting. When the thinning to the final spacing 
is carried out, it should be a non-selective thinning to achieve the desired spacing, not a 
low or crown thinning. 

A spacing experiment should be continued over the whole of a normal rotation of the 
crop. Once established, it should not be thinned. 

It is very easy to analyse spacing experiment data to provide a flexible growth model 
for the species in question. The details are discussed in section 5 of this manual. 

2.4.1.2 Constant basal area thinning experiments 

In a constant basal area thinning experiment, plots are laid out systematically or 
randanly and allowed to grow until each plot reaches its designated basal area. It is then 
thinned every one or two years to maintain the basal area at the designated level for each 
plot. 

Careful records must be kept of the number of trees removed and the basal area removed 
if this type of experiment is to be very useful. 

Analysis is more difficult than for a spacing experiment and involves the fitting of 
a model predicting basal area increment as a function of basal area and other variables, for 
example age and stocking. 

As a strategy for CQlstructing a dynami c thinning experiment, this approach has the 
advantage of simplicity of design, although the execution may not be so easy, BS careful and 
continuous record keeping is required if the results are to be fully useful. 

2.4.1.3 Thinning experiments using graded thinning treatments 

In this type of experiment, a number of thinnings are defined (typically 4), whic h 
differ from each other in tenns of both timing and int ensi ty of thinning and possibly in 
terms of initial spacing also. These treatments can be roughly classified from light 
thinning to heavy thinning. 

This type of experiment is very similar to a constant basal area thinning experiment 
in tenns of analysis and record keeping. Records must be kept of the numbers and basal area 
of stems removed at each thinning. Analysis can be by several methods, the best of which is 
the fitting of a predictive model of diameter or basal area increment as a function of basal 
area, stem numbers, age, etc. 

The principal advantage over a constant basal area experiment is that the thinnings 
used are treatments which might be used in reality, allowing costing of thinnings, thinning 
damage, windthrow risk and effects on wood quality to be assessed on the experiment. Addi­
tionally, thinning need not be performed so frequently as on the constant basal area experi­
ment, simplifying administration. 
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2.4.1.4 Factorial experiments with different components of thinning treatment

A thinning treatment in a uniform forest can be broken down into a number of compo-

nents, viz:

initial spacing

age of first thinning

proportion of stocking removed at each thinning

time to elapse between each thinning.

Other variations are possible, as for example the basal area at first thinning and

at subsequent thinnings, or the use of height instead of age.

When the experiment is designed in this way, it can be set out as a factorial experi-

ment by assigning a number of levels to each thinning component.

The result will be a large experiment, with a considerable number of treatment plots,

but in the analysis it is possible to separate the different effects of thinning age,

thinning intensity, etc.. Obviously the large number of treatments means that very careful

administration is required, whilst the factorial nature of the experiment may be easily

upset by accidental occurrences such as fire or disease outbreak.

2.4.2 Mixed Forests

The main function of experiments in mixed forest is to provide a controlled degree of

disturbance of the forest so that ultimately a model may be fitted relating the increment of

trees to the various parameters of the stand following treatment.

A common problem with experiments laid down in mixed forest is that the treatments

are specified in terms which are irrelevant to the main parameters of the stand that control

growth. This is discussed at length and with numerous examples by Synott (see bibliography).

However, a typical case would involve the definition of four treatments as for example:

1 - Log all merchantable species down to 30 cm

2 - As for 1, but poison or ring-bark all non-merchantable species down to 30 cm

3 - As for 2, but killing non-merchantable stems down to 10 cm

4 - As for 39 but removing merchantable species down to 20 am.

The effect of treatments defined in this way upon the stand will depend entirely upon

the condition of the stand prior to logging, its size class and species class distribution.

It is possible for the most severe treatment (e.g. 4 above) to have the least effect.

Other problems have arisen by selecting only a subset of trees for increment measure-

ment, on the basis of merchantability criteria which have an unfortunate tendency to change

during the intervals between plot measurements. The method of measuring increment has often

been unable to cope with the development of buttresses.

At the moment, growth and yield research in mixed tropical forests is developing

rapidly. The following recommendations are made therefore simply to help avoid the mistakes

of the past and not in order to impose a strait-jacket of unnecessary regimentation on

current work.
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2.4.2.1 Randomized block design

It is suggested that a randomized design, with replication, should always be adopted

in mixed forest experiments. The replicates should be blocked with site and species distri-

bution patterns, as well as past logging history, as uniform as possible within blocks. This

implies a careful preliminary survey of the experimental area

2.4.2.2 Treatment definition

Treatments shauld be defined in terms of total basal area to be left after logging

and/or poisoning or girdling, of trees above a minimum size of 10 cm.

Other definitions of treatment are possible, but should always be made in terms of

the remaining stand and not the material to be removed and should be independent of economic

criteria.

The treatments adopted should always include two extremes, ane being an undisturbed

stand and the other being an extremely severe treatment, perhaps removing all material over

10 cm diameter.

2.4.2.3 Measurements and 0..2-1.2[1221En

Large plots are required for experiments involving felling treatments. Typically a

200 x 200 m plot (4 ha) with a 100 m surround is necessary. On the main plot, all large

trees (say over 30 cm) should be mapped. Subdivision of the plot into 20 x 20 m quadrats

is desirable and allows local competitive effects to be included into models of growth,

regeneration and mortality.

Detailed counts of seedlings can be made on a systematic subsample of quadrats.

The methods of increment measurement are discussed in section 3.
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3. PROCEDURES FOR DATA COLLECTION AND PRIMARY ANALYSIS

3.1 SAMPLE PLOT DEMARCATION

3.1.1 Location

Permanent sample plots, in particular, need to be accurately located on forest maps

and their precise Position in the forest determined through the use of survey tape and

compass. In addition to recording positions on maps, it is helpful to place stone or con-

crete markers on nearby forest roads showing the bearing and distance to the plot from the

marker.

Temporary plots also need to be located on working maps, but the degree of precision

required is not usually so great.

Design principles relating to plot location are discussed in section 2.2.

3.1.2 PSP Identification on the Ground

PSPs must be permanently marked on the ground. Circular plots should be marked at

the plot centre with a post of durable wood, concrete or metal bearing the plot identifi-

cation number. This central point should also be indicated by digging intersecting trenches

50 cm deep and approximately 2.5 metres long, with the point of intersection being the plot

centre. This provides a permanent mark on the ground in the event of the plot centre post

being lost or stolen.

Rectangular plots should similarly be marked at the four corners with posts, one of

which carries the plot identification number. Trenches should be dug to intersect at the

corner post positions.

The plot identity should also be prominently painted on a tree near to the centre or

a corner post bearing the plot identity.

Rectangular plots subdivided into quadrats may also have smaller posts placed at the

quadrat intersections. These should be of a different size to the corner posts to avoid

confusion. Alternatively, quadrats may be resurveyed at each measurement.

3.1.3 Determination ilf_Edgf_Trees

Most trees will be either clearly within the plot or clearly outside it. Some will

intersect with the plot edge. These should be included if the estimated centre of the tree

is inside the line demarcating the plot and excluded otherwise.

The edge of a circular plot is determined by using a line or rope stretched from the

centre post. Care should be taken that the line does not have significant elasticity (many

light nylon lines are very elastic) or become wrapped around the centre post whilst working

round the plot.

The following table shows radii (i.e. distance from plot centre post to edge) for

common plot areas of circular plots.
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With small rectangular plots, the edge may be determined by taking a line of sight

between two corner posts. With larger plots with intervening vegetation, it will be neces-

sary to insert extra edge markers along a bearing between the corner posts. Small vege±aticn
may be judiciously removed along the plat edge, provided one is not destroying regeneration

that forms part of the forest growing stock.

3.1.4 Marking Trees

Trees on permanent plots should if at all possible be permanently identified. There

are two ways of doing this:

By painting the identity number on the tree

By using embossed aluminium tags nailed to the tree.

If the tree number is painted on then the measurement point for diameter should also

be marked by painting a ring around the tree. If an aluminium tag is used it should be

nailed to the tree a fixed distance above the diameter measurement point, usually 50 cm

above, so that the latter can be exactly relocated. The reference point for diameter

measurement is of course normally at 1.3 m initiallyy except for buttressed rainforest

trees, but may change as ground level alters over time.

An aluminium tag should also be nailed to the stump of the tree, close to ground level.

This helps to identify cut stumps and gives added security against loss of tags.

Paint markings should not be used as the sole means of identification with species

that shed their bark (e.g. many Eucalyptus species). Markings should be renewed at each

remeasurement where they are becoming worn or have been lost.

3.1.5 Mapping Trees on the Plot

If possible, trees on a plot should be mapped at the initial assessment. For circular

plots, record the distance and bearing of each tree from the plot centre. For rectangular

plots, subdivide the plot into quadrats, each of which is not more than 10 m by 10 m and

then measure the distance of the tree from the two quadrat boundaries. Record these dis-

tances as the coordinates of the tree within the quadrat.

Mapping trees is helpful both in resolving the frequent confusion over tree identities

that occurs and in the analysis of growth phenomena an the plot.

3.1.6 Identity Numbers for Ingrowth

In natural forests, ingrowth present at each assessment will need to be given an

identification number, a quadrat number and coordinates on the plot map. Great care is

necessary to ensure that the identity number given is not one previously assigned on that

plot, including trees that have died or been removed at an earlier stage. Otherwise great

confusion results when the data is processed.

Plot area (ha) Radius (m)

0.04 11.28
0.05 12.62

0.08 15.96

0.10 17.84

Plat area (ha) 

0.04 
0.05 
0.08 
0.10 
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3.2 SAMPLE PLOT MEASUREMENT FORMS AND PRIMARY ANALYSIS

3.2.1 Uniform Forests

Sample plots in even-aged, monospecific forests (normally plantations) require

measurement of:

Diameter over bark at 1.3 m using a girth tape calibrated inTrom units, on each

tree.

Tree heights on a systematic sample of 8 trees, together with heights of dominant

trees not included in the sample.

Dominant height is defined as the mean height of the 100 thickest stems per ha. Thu2
the number of trees required for dominant height estimation is the plot area times 100. For
example, on a plot of 0.04 ha, 4 trees are required. Trees wdth broken or significantly

damaged tops are not used in height sampling.

Additional characters can be noted on each tree. Disease problems, dying trees, wind

or insect damage and trees marked for thinning can be recorded. Such additional notes should

be coded in a rigidly standardized way and entered an the plot record form. The following

coding suggestions may be adopted:

Code Description

no entry Tree healthy, undamaged, unmarked for thinning, single non-defective

stem.

A Animal damage.

Tree broken by wind.

Disease problem.

Double or multiple leader or stems.

Tree marked for thinning (but still standing).

S Tree dying from suppression.

Tree has been felled (may be measured on the ground).

Tree leaning or fallen from wind damage.

X Tree dead.

Following the letters, numeric codes can be placed indicating the degree of severity

of the problem. The following scale is suggested:

1 Da.mage/disease present but very light.

2 More severe damage - is likely to significantly reduce growth or

impede utilization.

3 Very severe damage/disease. Likely to kill tree or make it

unutilizable.
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Other codes can be introduced for specific problems. The important point is that for

such a system to be of any use, it must be rigidly adhered to without alteration or omission

over many years.

Form 3.1 is shown as a recording form for this type of plot. It is specifically

designed to facilitate automatic data processing. Field entries should be made in soft

pencil with arubber being used to remove errors.

The primary variables calculated on a plat are:

Stocking per ha (N). Divide the total number of live trees on the plot by plot

area. From the example entered in form 3.1:

N = 9 / 0.04 = 225 stems/ha.

Diameter of the mean basal area tree (D g) Sum the diameters squared and divide

by the number of trees on the clot. Take the square root of the result. For

the example:

2-,d2 = 16237

D = ,/F6237 / 9)
= 42.5 cm.

Stand dominant height Ho. This is the mean height of the specified number of

dominant trees on the plot. For the example,

Ho = (32.1 + 29.6 + 30.8 + 33.1)/4
= 31.4 mo

Stand mean height H. This is the mean of the systematic sample of height trees

or as in the example an form 3.1, the mean of all heights. In the example,

H = 31.7m.

Stand volume V. This is usually calculated from an individual tree volume tariff

entered by diameter and height. There are two methods;

(0 Calculate the volume of the tree of diameter D and height H and then multiply

by stocking N to give volume in m3/ha.

(ii) Calcula-te individual tree volumes v from diameter d and height h. Sum these

volumes and divide by plot area to give volume per ha.

In this second case, if h is not known for all trees, either estimate it

from a height/diameter regression (c.f. section 3) or use H instead.

Both methods introduce an error into volume estimation. The first ane has an error

that may result from the distribution of diameters and the second one from the estimation

of heights. The second method is generally preferable for accuracy, especially if volume

is being estimated to a merchantable top diameter limit.
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Table 3.1

SYMBOLS FOR PRIMARY STAND VARIABLES

Symbol Description

A Stand age from planting

Dg Diameter of the tree of mean

basal area

24

Several different volumes may be calculated, using different volume equations. For

example:

Vob
Over bark total volume (i.e. to the tip of the tree).

b
Under bark total volume.

V7 Volume to 7 cm top diameter limit.

V15 Volume to 15 cm top diameter limit.

The va.rious symbols and units used for primary stand variables are listed in Table

Units

years

CM

Stand basal area m2/ha

Stand mean height

Ho Stand dominant height9 defined

as the mean height of the 100

largest diameter stems/ha

N Stocking number of live trees/ha trees/ha

V Stand volume. Type of volume is m3/ha

denoted by a subscript e.g.
Vub underbark volume

V7 over bark volume to 7 cm

Measurements made immediately after thinning may be indicated by a prime (').

E.g. N' stocking after thinnning. Removals in thinningn should be denoted by

a subscript e. E.g. Ge would be basal area removed in thinning.

3.2.2 Mixed Forest

Primary analynis in mixed forest aims mainly to construct a stand table giving stem

numbern grouped by size classes for each species or species group.

Once the stand table has been constructed9 then various alternative measures of growing

stock can be derived from it using different criteria. For example9 ane may wish to derive

total basal area of trees in a given combination of species groups over a certain size; on

another occasion ane may repeat the summary using different species groups or size limits.

==_
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Several different volumes may be calculated, using different volume equations. For 
example: 

Vob Over bark total volume (i.e. to the tip of the tree). 

Vub Under bane total volume. 

V7 Volume to 7 em top diameter limit. 

V15 Volume to 15 cm top diameter limit. 

The various symbols and units used for primary stand variables are listed in Table 

Symbol 

A 

G 

H 

Ho 

N 

V 

Table 3.1 

SYMBOl.'l FOR PRDlARY STAND VARIABLES 

Description 

Stand age from planting 

Diameter of the tree of mean 
basal area 

Stand basal area 

Stand mean height 

Stand dominant height, defined 
as the mean height of the 100 
largest diameter stEl!ls/ha 

Stocking - number of live trees/ha 
i 
* Stand volume. Type of v:.olume is 

denoted by a subscript tog. 

Vub underbark volume 
V7 - over bane volume to 7 cm 

years 

cm 

m 

m 

trees/ha 

Measurements made immediately after thinning may be indicated by a prime (,). 
E.g. N' stocking after thinnning. Removals in thinnings should be denoted by 
a Bubscript e. E.g. Ge would be basal area removed. in thinning. 

3.2.2 Mixed Forest 

Primary analysis in mixed forest aims mainly to construct a stand table giving stem 
numbers grouped by size classes for each species or species group. 

Once the stand table has been constructed, then various alternative measures of growing 
stock can be derived from it using different criteria. For example, one may wish to derive 
total basal area of trees in a given combination of species groups over a certain size; on 
another occasion one may repeat the sununary using different species groups or size limits. 



25

A stand table can of course be constructed directly as the plot is being measured,

by recording only counts by size and species classes. This procedure is not reconmended

with any type of inventory except the most preliminary resource assessments. Individual

tree dimensions and species should always be recorded, even though the intention may be to

subsequently summarize the data. This is particularly important on permanent plots, since

it allows individual tree increment estimates.

Measurement forms for plots in mixed forest may vary considerably, depending on the

characteristics being recorded. The following types of situation are commonly found:

Mixed tropical montane forest (A few light demanding species of mixed age).

Form 3.1 may be used with the first 'code' column being reserved for species

as a two digit or two letter code. A systematic sample of heights should

always be meausred, to allow a height/diameter curve to be constructed.

Tropical rainforest (Large numbers of mixed species, climbers, epiphytes,

buttresses).

Large plots, over 1 ha, are normally used, subdivided into 10 x 10 m subplots

or quadrats. Heights are not normally measurable, but trees may be classified

by crown shape and crown position. Two reference diameters should be measured

on stems forming buttresses. There are normally several hundred distinct

species likely to occur on a plot.

Subhumid woodlands (E.g. Miombo forest in eastern Africa).

Here tree form and length of merchantable bole are important characteristics.

Height is easily measurable because of the openness of the forest, but only to

the nearest metre because of diffuse crown shape. There are likely to be over

100 possible species present.

Aridzone woodland

Trees are likely to be multistemmed with height and species being the only

characters of importance. Height should be measured to the nearest decimetre.

Figure 3.1 shows alternative record formats for tree measurements for these four

cases, together with the record format from Form 3.1 for plantations for comparison. A

'record' is assumed to be the amount of data that can be entered on one 80column punched

card, which represents the commonest medium for data input to a computer.

3.2.3 Initial Assessment of Permanent Plots

When a permanent plot is assessed for the first time9 the following additional

information is required:

The exact area of the plot, as a plane projection i.e. corrected for slope.

Basic site information including latitude, longitude, aspect, altitude, slope,

slope position, forest history and past land use.

Meteorological information from the nearest weather station giving monthly

precipitation and mean minimum and maximum temperatures.
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A stand table can of course be constructed directly as the plot is being measured, 
by recording only counts by size and species classes. This procedure is not recommended 
with any type of inventory except the most preliminary resource assessments. Individual 
tree dimensions and species should always be recorded, even though the intention may be to 
subsequently summarize the data. This is particularly important on permanent plots, since 
it allows individual tree increment estimates. 

Measurement forms for plots in mixed forest may vary conSiderably, depending on the 
characteristics being recorded. The following types of situation are commonly found: 

(a) Mixed tropical montane forest (A few light demanding species of mixed age). 

Form 3.1 may be used with the first 'code' column being reserved for species 
as a two digit or two letter code. A systematic sample of heights should 
always be meausred, to allow a height/diameter curve to be constructed. 

(b) Tropical rainforest (Large numbers of mixed species, climbers, epiphytes, 
buttresses ) . 

Large plots, over 1 ha, are normally used, subdivided into 10 x 10 m subplots 
or quadrats. Heights are not normally measurable, but trees may be classified 
by crown shape and crown position. Two reference diameters should be measured 
on stems forming buttresses. There are normally several hundred distinct 
species likely to occur on a plot. 

(c) Sub-humid woodlands (E.g. Mianbo forest in eastern Africa). 

Here tree form and length of merchantable bole are important characteristics. 
Height is easily measurable because of the openness of the forest, but only to 
the nearest metre because of diffuse crown shape. There are likely to be over 
100 possible species present. 

(d) Arid-zone woodland 

Trees are likely to be multi-stemmed with height and species being the only 
characters of importance. Height should be measured to the nearest decimetre. 

Figure 3.1 shows alternative record formats for tree measurements for these four 
cases, together with the record format from Form 3.1 for plantations for comparison. A 
'record' is assumed to be the amount of data that can be entered on one 8O-column punched 
card, which represents the canmonest medium for data input to a computer. 

3.2.3 Initial Assessment of Permanent Plots 

When a permanent plot is assessed for the first time, the following additional 
information is required: 

(1) The exact area of the plot, as a plane projection i.e. corrected for slope. 

(2) Basic site information including latitude, longitude, aspect, altitude, slope, 
slope position, forest history and past land use. 

(3) Meteorological information fran the nearest weather station giving monthly 
precipitation and mean minimum and maximum temperatures. 
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The positions of all the trees on the plots. For circular plots, these should

be recorded as a bearing and distance from the plot centre. For rectangular

plots, these should be given as X and Y coordinates in decimetres from the most

south,west corner of the plot.

Soil profile information including:

colour

- texture

pH

analysis for N, P, Kt Ca, Mg

depth

bulk density

for each discernible soil horizon. The soil pits or auger holes should be

replicated on each plot. Two samples should be sufficient except on very large

and variable plots. Analytical techniques may vary somewhat according to methods

already in use in a particular country and special conditions encountered, and

should be determined in collaboration with soil scientists. However, once a

system for soil analysis has been settled upon, it should be modified only for

very strong reasons and, at the time of modification, a series of samples (20

or 30) should be analysed by both the old and new methods to determine a

regression relation to allow results from the old methods to be compared with

the new ones.

3.3 STEM ANALYSIS PROCEDURE

Stem analysis refers to the reconstruction of the growth history of a tree by:

Felling the tree;

Cutting discs at intervals of around 2 m along the stem:

Careful counting and measurement of growth rings on the discs.

A great deal of information about stand dynamics can be gained from stem analysis,

but in this manual the main concern is that of reconstructing the dominant height growth

history of a stand.

The procedure is only possible in seasonal climates and with species producing clearly

defined rings.

For height growth reconstruction, only the height of measurement and ring count need

be recorded. With species and climates producing very unambiguous rings this can be done

in the field with little difficulty.

Where rings are not so clear, discs must be cut, clearly marked in the field as to

their point of origin on the tree and their orientation (i.e. which way up the disc was an

the tree), and returned to the laboratory for assessment by one of two methods:

Planing and polishing the disc, followed by counting of rings along two axes

using a microscope an a vernier rack and pinion mounting.

Cutting of two samples along a cross, with subsequent analysisbyX-ray densitometry.
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(4) The positions of all the trees on the plots. For circular plots, these should 
be recorded as a bearing and distance from the plot centre. For rectangular 
plots, these should be given as X and Y coordinates in decimetres from the most 
south-west corner of the plot. 

(5) Soil profile information including: 

colour 
texture 
pH 
analysis for N, P, K, Ca, Mg 
depth 
bulk density 

for each discernible Boil horizon. The soil pits or auger holes should be 
replicated on each plot. Two samples should be sufficient except on very large 
and variable plots. Analytical techniques may vary somewhat according to methods 
already in use in a particular country and special conditions encountered, and 
should be determined in collaboration with soil scientists. -However, once a 
system for soil analysis has been settled upon, it should be modified only for 
very strong reasons and, at the time of modification, a series of samples (20 
or 30) should be analysed by both the old and new methods to determine a 
regression relation to allow results from the old methods to be compared with 
the new ones , 

3.3 STEM ANALYSIS PROCEDURE 

Stem analysis refers to the reconstruction of the growth history of a tree by: 

(a) Felling the tree; 

(b) Cutting discs at intervals of around 2 m along the stem; 

(c) Careful counting and measurement of growth rings on the discs. 

A great deal of information about stand dynamics can be gsined from stem analysis , 
but in this manual the main concern is that of reconstructing the dominant height growth 
history of a stand. 

The procedure is only possible in seasonal climates and with species producing clearly 
defined rings. 

For height growth reconstruction, only the height of measurement and ring count need 
be recorded. With species and climates producing very unambiguous ringe this can be done 
in the field with little difficulty. 

Where rings are not so clear, discs must be cut, clearly marked in the field as to 
their point of origin on the tree and their orientati on (i. e. which way up the disc was on 
the tree), and returned to the laboratory for assessment by one of two methods: 

(1) Planing and polishing the disc, followed by counting of ringe along two axes 
using a microscope on a vernier rack and pinion mounting. 

(2) Cutting of two samples along a cross, with subsequent analysis by X-ray densitometry. 
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In either of cases (1) or (2)9 false rings or very faint rings should be checked

against climatic records. With X-ray densitometry which produces a numerical estimate of

ring width and density, direct correlation with climatic variables is possible.

The age at which the tree reached a given height is gtven by the number of rings at

the base of the tree minus the number of rings at the given height. From this, height can

be plotted directly on age for the tree.

If the sample tree is a well-formed dominant, then this height-age curve may be

regarded as essentially the same as a height-age curve derived from a permanent sample plot,

and may be analysed in the same way.

3.4 SPECIAL METHODS OF TREE INCREMENT ESTIMATION

3.4.1 Simple Measurements

On permanent plots, tree increment is estimated by taking the difference between

successive diameter measurements, divided by the measurement interval. For this to be an

accurate procedure:

Individual trees must be clearly and uniquely identified on the plot.

The point of measurement an the tree must be precisely relocatable. Two alter-

native methods are possible:

paint a ring at the point of breast height measurement. This may be

excessively conspicuous under some circumstances;

insert a nail a precise distance above the point of measurement (50 cm

is suggested) and relocate the point of meaaurement with reference to

the nail. This nail may also bear the tree identification tag.

3.4.2 Remeasurement on Buttressed Trees

When trees are developing buttresses, it is customary to measure diameter at a refe-

rence point about 1 metre above the buttresses. Since buttresses will extend between

remeasurements it is Obviously necessary to move the reference diameter from time to time.

This procedure makes any increment determination from successive remeasurements

impossible.

Two approaches may be adopted to counter this problem.

First Use two reference diameters at each remeasurement. Then, if it is necessary

to move the lower reference diameter, it replaces the upper one and a new reference diameter

is formed above the original top reference diameter. In this way, direct increment estima-

tion is always possible.

It is recommended that the two diameters should be 1.5 m apart, with the lower one

1 metre above the top of the buttresses.
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In either of cases (1) or (2), false rings or very faint rings should be checked 
against climatic records. With X-ray densitometry, which produces a numerical estimate of 
ring width and density, direct correlation with climatic variables is possible. 

The age at which the tree reached a given height is given by the number of rings at 
the base of the tree minus the number of rings at the given height. From thiS, height can 
be plotted directly on age for the tree. 

If the sample tree is a well-fonned dominant, then this height-age curve may be 
regarded as essentially the same as a height-age curve derived from a pennanent sample plot, 
and may be analysed in the same way. 

3.4 SPEX)IAL MEl'HOm OF TREE INCR»IUlT ESTIMATION 

3.4.1 Simple Measurements 

·On pennanent plots, tree increment is estimated by taking the difference between 
successive diameter measurements, divided by the measurement interval. For this to be an 
accurat e procedure: 

(1) Individual trees must be clearly and uniquely identified on the plot. 

(2) The point of measurement on the tree must be precisely relocatable. Two alter­
native methods are possible: 

(i) paint a ring at the point of breast height measurement. This may be 
excessively conspicuous under some circumstances; 

(ii) insert a nail a precise distance above the point of measurement (50 em 
is suggested) and relocate the point of measurement with reference to 
the nail. This nail may also bear the tree identification tag. 

3.4.2 Remeasurement on Buttressed Trees 

When trees are developing buttresses, it is customary to measure diameter at a refe­
rence point about 1 metre above the buttresses. Since buttresses will extend between 
remeasurements, it is obviously necessary to move the reference diameter from time to time. 

This procedure makes any increment determination from successive remeasurements 
impossible. 

Two approaches may be adopted to counter this problem. 

!l!:21 Use two reference diameters at each remeasurement. Then, if it is necessary 
to move the lower reference diameter, it replaces the upper one and a new reference diameter 
is fonned above the original top reference diameter. In this way, direct increment estima,­
tion is always possible. 

It is recamnended that the two diameters should be 1.5 m apart, with the lower one 
metre above the top of the buttresses. 
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The process is illustrated in the diagram below,

first measurement second measurement third measurement
1 ti I

I I

increment = (d1 on 2nd meas. increment = (d1 on 3rd meas. .

d2 on 1st meas.) / time interval d2 on 2nd meas.) / time interval

Note that these reference diameters should be marked with paint or nails. It is

essential to climb the trees with ladders and measure diameters with girth tapes. Optical

instruments such as the Relaskop are not sufficiently accurate for increment estimation.

Second The other approach is to use girth bands, as described below, and make

increment estimates over short periods (1-2 years) before buttresses can significantly

influence the reference diameter.

3.4.3 Girth Bands

Girth bands may be constructed locally suite cheaply and are particularly useful

for intensive research in, for example, thinning experiments. Without a vernier scale,

they are accurate to .± mm, which is quite adequate for increment estimation over 1 year

periods on tropical species. With the addition of a vernier scale, the accuracy increases

to ± 0.05 mm diameter. At this level, they can indicate physiological responses and

seasonal growth fluctuations. (Conventional girth measurements by contrast cannot give

increment more accurately than ± on diameter even on quite small trees and are much

worse on very large trees.)

The basic requirements for construction are as follows:

(1) Basic materials required are a roll of 1 cm wide stainless steel hand, a large

length of 1/3 cm coil spring, scales templates for the main and vernier scales,

mattblack ceramic paint, a shaped hole punch for the spring fixings and a gas

or electric oven.

(2) Suitable lengths of hand are wrapped around empty tins and painted an one side

with the black.paint. The tin, with the band, is baked to cure the paint.
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The process is illustrated in the diagram below. 

-d~--------~----- ~ 

firs t measurement second measurement third measurement 
L-__________ ~----------~, I~-----------r----------~ 

increment 0::= (d1 on 2nd meas. -
d2 on 1st meas.) / time interval 

increment = (d1 on 3rd meas. - . 
d2 on 2nd meas.) / time interval 

Note that these reference diameters should be marked with paint or nails. 
essential to cli,!,b the trees with ladders and measure diameters with girth tapes. 

It is 
Optical 

instruments such as the Relaskop are not sufficiently accurate for increment estimation. 

Second The other approach is to use girth bands, as described below, and make 
increment estimates over short periods (1-2 years) before buttresses can significantly 
influence the reference diameter. 

3.4.3 Girth Bands 

Girth bands may· be constructed locally quite cheaply and are particularly useful 
for intensive research in, for example, thinning experiments. Without a vernier scale, 
they are accurate to ± t mm, which is quite adequate for increment estimation over 1 year 
periods on tropical species. With the add~tion of a vernier scale, the accuracy increases 
to ± 0.05 mm diameter. At this level, they can indicate physiological r esponses and 
seasonal growth fluctuations. (Conventional girth measurements by contrast cannot give 
increment more accurately than .± t an diameter even on quite small trees and are much 
worse on very large trees., 

The basic requirements for construction are as follows: 

(1) Basic materials required are a roll of 1 cm wide stainless steel band, a large 
~ength of 1/3 em coil spring, scales templates for the main and vernier scales, 
matt-black ceramic paint, a shaped hole punch for the spring fixings and a gas 
or electric oven. 

(2) Suitable lengths of band are wrapped around empty tins and painted on one side 
with the black ·paint. The tin, with the band, is baked to cure the paint. 
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A zero mark is scratched in the paint at one end with a metal point. If a

vernier scale is to be added, it is included at this point, with the position

of the graduations being defined by the vernier template.

The approximate girth of the tree must be known before adding the 'long' scale,

aboUt 10 cm actual length (equivalent to c. 3 cm of diameter), so that the band

can be cut to the correct length and the scale put on at the correct point. The

scale is scratched onto the band using the appropriate scale template.

Slots for the retaining spring are punched in the band, one outside the zero

mark (& vernier scale), the other inside the long scale. The spring is fitted

through one end, the band placed around the tree, taking care to remove loose

bark and avoid sag at the back of the tree, and then the free end of the spring

is slotted in. The spring should be cut to a length that gives a good positive

tension to the band.

Increment is measured as the scale movement between the initial and final reading.

The scales are normally inTram units, giving direct reading of diameter. If the starting

point of the long scale is placed an exact number of centimetres from the zero mark, the

hand also gives an absolute reading of diameter. If the long scale starts at an arbitrary

point, then absolute diameter (as opposed to increment) should be measured with a separate

girth tape just above or below the hand.

Templates for cutting the bands can be purchased from forestry instrument suppliers,

or manufactured locally in any well equipped workshop.

Various kinds of sophisticated girth bands, some equipped for telemetry, can be

purchased directly. Because of their expense, these should only be used for the most inten-

sive kinds of research and under close supervision of the experimental area against animal

or human damage.

3.4.4 Growth Ring Measurements

Where growth rings are present, they can be used to estima-te increment. The most

reliable method is by the use of stem sections on complete felled trees, taken at d.b.h.

The width of the last three or four annual rings should be measured on two diameters

at right angles on the section. These diameters should be along the major and minor axes

if the section is elliptical. This gives the periodic underbark increment. It is necessary

to construct a regression relating underbark diameter measured directly, with overbark

diameter measured with a girth tape to convert the increments underbark onto a common scale

with normal d.b.h. measurements.

Increment can also be estimated from samples bored from the tree. This is subject

to numerous errors, especially in species with soft timber. The resultant core may be

stretched or spirally compressed. It may not be accurately radial.

Because the difficulties in counting growth rings in tropical areas often require

resort to calibrated microscopes or X-ray densitometre, complete sections should be regarded

as essential. The use of increment borers is not usually a possible option.
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mark (& vernier scale), the other inside the long scale. The spring is fitted 
through one end, the band placed around the tree, taking care to remove loose 
bark and avoid sag at the back of the tree, and then the free end of the spring 
is slotted in. The spring should be cut to a length that gives a good positive 
tension to the band. 
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The scales are nonnally in"em units, givilfg direct reading of diameter. If the starting 
point of the long soal e is placed an exact number of centimetres from the zero mark, the 
band also gives an absolute reading of diameter. If the long scale starts at an arbitrary 
point, then absolute diameter (as opposed to increment) should be measured with a separate 
girth tape just above or below the band. 

Templates for cutting the bands can be purchased from forestry instrument suppliers, 
or manufactured locally in any well equipped workshop. 

Various kinds of sophisticated girth bands, some equipped for telemetry, can b e 
purchased directly. Because of their expense, these should only be used for the most inten­
sive kinds of research and under close supervision of the experimental area against animal 
or human damage. 

3.4.4 Growth Ring If, easurements 

Where growth rings are present, they can be used to estimate increment. 
reliable method is by the use of stem sections on complete felled trees, taken 

The mos t 
at d.b. h. 

The width of the last three or four annual rings should be measured on two diameters 
at right angles on the section. These diameters should be along the major and minor 8JCes 
if the section is elliptical. This gives the periodic underbark increment. It is necessary 
to construct a regression relating underbark diameter measured directly, with overbark 
diameter measured with a girth tape to convert the increments underbark onto a common scale 
wi th normal d. b.h. measurements. 

Increment can also be estimated fran samples bored from the tree • . This is subj ect 
to numerOUs errors, especially in species with soft timber. The resultant core may be 
stretched or spirally canpressed. It may not be accurately radial. 

Because the difficulties in counting growth rings in tropical areas often require 
resort to calibrated microscopes or X-ray densitometre, complete sections should be regarded 
as essentia.l. The use of increment borers is not usually a possible option. 
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305 INDIRECT TREE DOMINANT HEIGHT ESTIMATION

Because tree height estimation is a relatively slow procedure, it is not usually

desirable to measure more than 8-10 trees on a plot. If the heights of all trees on the
plot are required, then a heightdiameter curve of the form

h = bo 4- bid b2d2

can be constructed. Some special points should be noted:

(1) The calculation method for this regression is given in Appendix 2.2, together

with an example.

(2) With more than one plot in a single stand, the sample trees should be pooled

to fit the height/diameter regression.

(3) Samples between stands of varying density or age should never be pooled for

determination of the regression unless comparison of separate regressions

(Appendix A 2.8) shows there is no significant difference.

(4) The fitted regression should not be used to predict heights unless three condi-

tions are satisfied:

(0 The regression F value is significant at the 95% leVel.

The b1 coefficient is positive.

The
b2

coefficient is negative.

(5) Once the regression has been calculated and tested to see if it is uable, mean

height H can be estimated as the height predicted when Dg is substituted for d

in the regression.

(6) Similarly, dominant height Ho is predicted When the mean diameter of the domi-

nants (i.e. 100 largest diameter trees per ha), symbolised by Do, is entered in

the regression for d.

Referring back to point (4), it should be noted that when these conditions are not

satisfied, it is safer to assume that the individual tree heights h used for volume estima-

tion are equal to the stand mean height H. This situation arises in many tropical species

because the variation in tree heights is unrelated to diameter differences and the instru-

mental error involved in measurement is greater than the effects of diameter on height.

Significant regressions and welldeveloped relationships between tree diameter and height

are more likely to occur with more shadetolerant species and at higher stockings per ha.

In mixed age stands, the regression will always be significant and can always be

used for individual tree height determination. However, care should still be taken not to

pool regressions for different stands without adeauate statistical tests for the homogeneity

of the data.
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3.5 INDIrux:T 'rREE DOMINANT HEIGHT ESTIMATION 

Because tree height estimation is a relatively slow procedure, it is not usually 
desirable to measure more than 8-10 trees on a plot. If the heights of all trees on the 
plot are required, then a height-diameter curve of the form 

can be constructed. Some special points should be noted: 

(1) The calculation method for this regression is given in Appendix 2.2, together 
with an exampl e. 

(2) With more than one plot in e. single stand, the sample trees should be pooled 
to fit the height/diameter regression. 

(3) Samples between stands of varying denSity or age should never be pooled for 
detennination of the regression unless canparison of separate regressions 
(Appendix A 2.8) shows there is no significant difference. 

(4) The fitted regression should not be used to predict heights unless three condi­
tions are satisfied: 

(i) The regression F value is significant at the 95% leVel. 

(ii) The b
1 

coefficient is positive. 

(iii) The b
2 

coefficient is negative. 

Once the regression has been 
height H can be estimated as 
in the regressiono 

calculated and tested to see if it is uable, mean 
the height predicted when Dg is substituted for d 

(6) Similarly, dominant height Ho is predicted when the mean diameter of the domi­
nants (i.e. 100 largest diameter trees per ha), symbolised by Do. is entered in 
the regression for d. 

Referring back to point (4) , it should be noted that when these conditions are not 
satisfied, it is safer to assume that the individual tree heights h used for volume estima­
tion are equal to the stand mean height H. This situation arises in many tropical species 
because the variation in tree heights is unrelated to diameter differences and the instru­
mental error involved in measurement is greater than the effects of diameter on height. 
Significant regressions and well-developed relationships between tree diameter and height 
are more likely to occur with more shade-tolerant species and at higher stockings per ha. 

In mixed age stands, the regression will always be significant and can always be 
used for individual tree height determination. However, care should still be taken not to 
pool regressions for different stands without adequate statistical tests for the homogeneity 
of the data. 
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If the heightdiameter regression is fitted to an age series of plantations (i.e. a

series of stands of different ages) it will also be significant. It should be noted however

that this is a different kind of model to the one fitted within a uniform age stand and will

nct reliable predict individual tree heights within one uniform stand (althoughit will predict

mean height H as a function of mean diameter Dg provided that stand density is constant).

Within a singleage stand, the regression reflects dominance differences. Between age

classes, it reflects a timedependent growth relationship.
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If the height-diameter regression is fitted to an age series of plantations (i. e. a 
series of stands of different ages) it will also be significant. It should be noted however 
that this is a different kind of model to the one fitted within a unifonn age stand and will 
not reliable predict individual tree heights within one unifonn stand (although it will predict 
mean height H as a function of mean diameter Dg provided that stand density is constant). 
Within a single-age stand, the regression reflects dominance differences . Between age 
classes, it reflects a time-dependent growth relationship. 
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4. DATA STORAGE SYSTEMS

4.1 ADVAVTAGES OF CONFUTER-BASED DATA STORAGE SYSTEMS

A computer-based data storage system will store all permanent sample plot, experi-

mental plot and temporary plot data an magnetic tapes or discs. This data can be accessed

quickly for summarization and analysis. It can be subjected to automatic error checking

procedures to Din-point doubtful measurements. It can be updated or corrected relatively

easily.

ComDuter information storage (CIS) still requires maintenance ofa conventional filing

system on each permanent plot or experiment, in which original field sheets and any queries,

notes, diagrams and procedural orders are kept.

Un-tu l recently, the capital cost of a computer system and the lack of skilled person-
nel inhibited the use of CIS. With the advent of the microcomputer, costs have fallen

drastically and are now of the same order as those for a motor vehicle. Microcomputers
usually operate in BASIC, which is a language designed for easy learning. Anybody with a
suitably facile brain can teach themselves BASIC, given access to a microcomputer. In

addition, some forestry institutions offer specialized training in data processing for

graduate or technical staff.1/

Lack of CIS is a significant inhibiting factor in the development and validation of

yield models and effective yield planning and control. With manual extraction of data from

files, only the simplest kinds of model can be constructed, whilst validation by residual

analysis is nct possible because of the stupendous amount of work involved. Nor is it pos-

sible to examine alternative modelling strategies on the same data or to update the model

functions as new data is collected.

Furthermore, the productivity of skilled staff using manual procedures is extremely

low. Collection of adequate quantities of data tends to be inhibited, because manual pro-

cedures are simply unable to cope with it.

It is strongly recommended that all forestry organizations should either:

Have access to a large computer facility, with an absolute maximum job turn-

around of one day. This job turnaround should be considered from the time the

results are returned and should take into consideration periods of the month

when the main computer may be totally unavailable (due to priority allocation

of computer time to other users), transportation difficulties to or from the

computer, etc..

Or

Purchase a microcomputer system with:

- 32-64k bytes of memory

- Twin drive diskette or hard disc system

- A printer

1/ E.g. The Commonwealth Forestry Institute at Oxford, U.K.
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It is strongly recommended that all forestry organizations should either: 

(a) Have access to a large computer facility, with an absolute maximum job turn­
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results are returned and should take into consideration periods of the month 
when the main computer may be totally unavailable (due to priority allocation 
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A teletype that can be interfaced to the computer, with paper tape reader/

punch, for use in on or off-line data preparation

A BASIC or FORTRAN compiler.

This type of system would cost around $10 000 in Europe or North America at

current prices (mid-1979).

Option (b) gives the forestry organization an in-house, dedicated computer that is

likely to provide greater productivity and more rapid personnel training than option (a).

4.2 DATA VALIDATION

Errors arise in magnetically-stored data from the following sources:

Field measurement errors

Data entry or keypunching errors

Programme errors.

The third type of error must be assumed to be eliminated by thorough testing of any

computer programmes used to store9 correct, update, print or select data. The testing of

programmes is the responsibility of the programmer? Who is as directly responsible fOr the

errors of his programmes as is the field worker Who fails to make correct meaeurements.

Data entry or keypunching errors are largely eliminated by the process of verifica-

tion, which should always be used with any large mass of data. Verification involves

entering every item of data twice, by two different operators or in two separate runs. The

two data sets are then checked against each other, automatically, and any inconsistencies

reported to the operator, who can supply an appropriate correction. The actual details of

the verification process will depend on the data entry system used. Most data preparation

organizations will offer verification as a normal service and this should always be expli-

citly stipulated When submitting data for keypunching.

Field measurement errors cannot be wholly eliminated, but they can be reduced:

By attention to the training and morale of field workers and by provision of

suitable instruments for their use.

By running data checking programmes an the magnetically stored data. The data

checking is based an examination for logical inconsistences such as very large

or very small measurements, negative increments in diameter or height, missing

tree numbers or tree numbers which have reappeared since a previous harvesting,

changes in species identification and so an.

Any such logical inconsistency is reported by the data checking programmes and must

be examined to determine the likely source of the error. A correction must then be supplied,

using a data editing programme, to amend the magnetically-stored data.

The en-tire process is an angoing one, as indicated diagrammatically below.
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A teletype that can be interfaced to the computer, with paper tape reader/ 
punch, for use in on or off-line data preparation 
A BASIC or FORTRAN compiler. 

This type of system would cost around S10 000 in Europe or North America at 
current prices (mid-1979). 

Option (b) gives the forestry organization an in-house, dedicated computer that is 
likely to provide greater productivity and more rapid personnel training than option (a). 

4.2 DATA VAlIDATION 

Errors arise in magnetically-stored data from the following sources: 

(1) Field measurement errOrs 

(2) Data entry or keypunching errors 

(3) Programme errors. 

The third type of error must be assumed to be eliminated by thorough testing of any 
computer programmes used to store, correct, update, print or select data. The testing of 
programmes is the responsibility of the programmer, who is as directly responsible fbr the 
errors of his programmes as is the field worker who fails to make correct measurements. 

Data entry or keypunching errors are largely eliminated by the process of verifics.­
!iE!:!, which should always be used with any large mass of data. Verification involves 
entering every item of data twice, by two different operators or in two separate runs. The 
two data sets are then checked against each other, automatically, and any inconsistencies 
reported to the operator, who can supply an appropriate correction. The actual details of 
the verification process will depend on the data entr,y system used. Most data preparation 
organizations will offer verification as a normal service and this should always be expli­
citly stipulated when submitting data for keypunching. 

Field measurement errors cannot be wholly eliminat ed, but they can be reduced: 

(a) By attention to the training and morale of field workers and by provision of 
suitable instruments for their use. 

(b) By running ~ checking programnes on the magnetically stored data. The data 
checking is based on examination for logical inconsistences such as very large 
or very small measurements, negative increments in diameter or height, missing 
tree numbers or tree numbers which have reappeared. since a previous harvesting, 
changes in species identification and so on. 

Any such logical inconsistency is reported by the data checking programmes and must 
be examined to determine the likely source of the error. A correction must then be supplied, 
using a ~ editing programme, to amend the magnetically-stored data. 

The entire process is an ongoing one, as indicated diagrammatically below. 
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Verification

Any errors ?

supply

corrections

No

Collect data in

the field

Return to field

Keypunching to determine true

value

Data storage on

magnetic media

Is correction

possible in the office
Programme checks

Any logical errors ? ----Yes

No 1

Data ready for

analysis

4.3 CONTRACTS FOR THE PREPARATION OF COMPUTER PROGRATIMES

Contracts for computer programme preparation should contain clauses covering the
following conditions:

(i) Full provision by the contractor of source listinos (in BASIC9 FORTRAN or other
language used) of any programmes written.

(ii) Full documentation of all programmes9 including:

A dictionary of meanings for identifiers or variables used in the programme.

Flow diagrams indicating the sequence of operation of any programmes or

subprogrammes written by the contractor and the sequence and nature of

data transfers from external media and magnetic storage.

aplicit definition of the record structure and usage of all magnetic files

and all input and output media.

Explanation of theory behind the programme method, together with references

to texts or other background material.

(iii) Liability by the contractor for any progrmmne errors or for any failure of the

programmes to operate as specified when used in accordance with the documentation.

(iv) Instruction by the contractor of some member of the forestry organization staff

in the use of the programmes9 up to the point where the programmes can be demon-

strated to operate to the satisfacticn of the forest management without any

supervision by the contractor.

CoIl ect data in 
the field 
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4.3 CONl'RACTS FOR THE PREPARATION OF COMPUTER PROGRAMI>I:El3 

Contracts for computer programme preparation should contain clauses covering the 
following conditions: 

(i) Full provision by the contractor of soullCe listings (in BASIC, FORTRAN or other 
language used) of any programmes written. 

(ii) Full documentation of all programmes, including: 

(a) A dictionary of meanings for identifiers or variables used in the programme. 

(b) Flow diagrams indicating the sequence of operation of any programmes or 
subprogrammes written by the contractor and the sequence and nature of 
data transfers from external media and magnetic storage. 

(c) Explicit definition of the record structure and usage of all magnetic files 
and all input and output media. 

(d) Explanation of theory behind the programme method, together with references 
to texts or other backgro.md material . 

(iii) Liability by the contractor for any programme errors or for any failure of the 
programmes to operate as specified when used in accordance with the documentation. 

(iv) Instruction by the contractor of some member of the forestry organization staff 
in the use of the programmes, up to the point where the programmes can be demon­
strated to operate to the satisfaction of the forest management without any 
supervision by the contractor. 



- 36 -

(v) Copyright over all supplied documentation, programmes and reports to be vested

in the forestry organization.

It may be possible to reduce the cost of a contract to some degree by relaxing points

(iii) and (v), but the other points should always be insisted an if the programmes written

are to be of any continuing use to the organization.

4.4 STORAGE SYSTEMS FOR PLOT DATA

4.4.1 Introduction

It is not the intention to provide detailed descriptions of programmes for storing

and summarizing permanent plot, experimental plot or temporary plot data. These will proba-

bly need to vary a good deal according to the computing facilities available. Only the file

structures for input and output and the types of functions the programmes can perform, will

be described here.

4.4.2 File Structures

A file, in computing terminology, consists of some body of machine-readable informa,

tion on magnetic media (tape or disc) or on punched cards or paper tape. Input files provide

data for a particular programme and may themselves be output files from another programme.

File structure defines, in the present context, the organization of the different

types of information that must be grouped together to represent a single plot.

For permanent plots, the basic information an a single plot may be defined asfollows:

n'th plot measurement

--Ehd-of-plot record

For temporary plots, the record structure is much simpler, being only:

Plot 1 assessment

Plot 2 11

Plot 3 11

Plot n assessment

- Plot initial assessment

1st plot measurement

2nd " lt
Repeated an the

tape/disc for
3rd "

0

each plot 0

0

0

0

0
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(v) copyright over all supplied documentation, programmes and reports to be vested 
in the forestry organization. 

It may be possible to reduce the cost of a contract to sane degree by relaxing pointe 
(iii) and (v), but the other points should a lways be insisted on if the programmes written 
are to be of any continuing use to the organization. 

4.4 STORAGE SYSTEMS FOR PlOT DATA 

4.4.1 Introduction 

It is not the intention to provide detailed descriptions of programmes for etoring 
and summarizing pennanent plot, experimental plot or temporary plot data. These will proba­
bly need to vary a good deal according to the canputing facilities available. Only the file 
structures for input and output and the types of functions the programmes can perfonn, will 
be described here. 

4.4.2 File Structures 

A file, in canputing tenninology, consists of sane body of machin~readable infonna-.. 
tion on magnetic media (tape or disc) or on punched cards or paper tape. Input fil es provide 
data for a particular programme and may themselves be output files from another programme. 

File structure defines, in the present context, the organization of the different 
types of infonnation that must be grouped together to represent a single plot. 

For pennanent plots, the basic infonnation on a single plot may be defined as follows: 

Repeat ed on the 
tape/disc for 
each plot 

Plot initial assessment 

1 st plot 
2nd n 

3rd .. 

measurement .. 

• 
• • • • 

.. 

n'th plot measurement 

End-of-plot record 

For temporary plots, the record structure is much simpler, being only: 

Plot 1 assessment 

Plot 2 

Plot 3 

.. 

.. 
• • • 
• • • 

Plot n assessment 
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These record structures relate to the permanent data base, -which may be an either

magnetic tape or disc. Por input of data for permanent plots, two types of different input

may be possible:

Initial assessments

Remeasurement data.

In case (i), a new plot would be created in the database, but the programme would

need to check that plot identification did not conflict with an existing plot.

In case (ii), an existing plot would have to be present (otherwise an error would be

reported), with the new measurement being at the appropriate point.

Experimental plots could normally be treated in the same way as permanent plots.

However, related treatment plots would be placed adjacent to each other on the tape, for

example as

Treatment 1

Block 1 -

- Treatment n

- Treatment 1

Block 2 -

-Treatment n

Treatment 1

Block m

Treatment n

To retrieve all the data for the experiment from the tape, n x m plots would be read

from the starting position on the tape (or disc) or the first plot in the experiment,

4.4.3 Error Checking and Editing Functions

The following error checks are required for permanent plot information:

That the plot exists on tape (if a new plot is not being added to the system)

or does not yet exist (if a new plot is being added).

That the remeasurement dates are in a consistent and ascending sequence.

That trees which have been thinned (i.e. disappeared in past measurements) do

not reappear on later measurements.

That trees do not change species (on mixed forest plots only) or plots do not

change species (on plantation plots).
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( 3 ) That trees which have been thinned (i . e . disappeared in past measurements) do 
not reappear on later measurements. 

(4 ) That trees do not change species (on mixed forest plots only ) or plots do not 
change species (on plantation plots). 
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That diameter increments are positive and not excesSively large.

Checking of the size ranges of parameters such as height, diameter, species

code, etc. for excessively large or small values or unrecognised codes.

On temporary plots, only the checks in the 6th category are possible.

Data should be added to the database even though it contains errors; an editing
programme may then be used to manipulate and amend the magnetically-stored data. With any

significant amount of data, this is usually much more convenient than attempting to correct

the original punched cards.

4.4.4 Plot Summaries

The plot summary programme may incorporate the error checking procedures (or they

may be in a separate programme). Its main function will be to produce summarized informa-

tion relevant to the particular forest type in question, for use in further analyses. For
plantations, the summaries may include plot mean and dominant height, mean basal area

diameter, basal area, stocking and volume. For mixed forest, the summaries will normally

also include stand tables of selected characteristics by species and size classes.

The summary programme should be able to produce its output both in a printed form,

with titling text to make it comprehensible and in machine readable form, without text, for

direct input to data analysis programmes. The machine readable output may be put onto

magnetic tape or disc or punched an paper tape or cards, as appropriate. If the output is

onto magnetic tape, this should normally be done in 'formatted' or character-encoded form,

rather than in machine binary code.

For mixed forests in particular, but also for plantations, it is useful to have a

facility so that only selected parts of the output are printed or placed on tape.

4.4.5 Other Utilities

Two other programmes will probably be needed with a sample plot data base:

A sorting programme, able to reorder the sequence of plots on tape so that they

are grouped by forest, district, species, compartment, etc.. Normally,plots will

be entered onto the data base in an arbitrary order,. Whereas the summaries will

probably be preferred with some logical sequence.

Archival and character-encoding programme, to transfer the main data base on disc

or tape into a form suitable for archival (see below) or transfer to another

computer site. This will involve character-encoding or formatting, the entire

data base and writing it anto a magnetic tape.

4.4.6 Data Base Security

A large data base stored on disc or magnetic tape can readily be destroyed by acci-

dents, programme or computer failures. It is essential therefore that after each addition

of a significant amount of information, the entire data base is copied onto a spare tape or

disc to give a complete second copy. These spare copies can be rotated, so that at any one

time there is an up te date working version, an up to date archived version and two or three

previous archived versions of the data base.
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(5) That diameter increments are positive and not excessively large. 

(6) Checking of the size ranges of parameters such as height, diameter, species 
code, etc. for excessively large or small values or unrecognised codes. 

On temporary plots, only the checks in the 6th category are possible. 

Data should be added to the database even though it contains errors; an editing 
programme may then be used to manipulate and amend the magnetically-stored data. With any 
significant amount of data, this is usually much more convenient than attempting to correct 
the original punched cards. 

4.4.4 Plot Summaries 

The plot summary programme may incorporate the error checking procedures (or they 
may be in a separate programme) . Its main function will be to produce summarized informa.­
tion relevant to the particular forest type in question, for use in fu~her analyses . For 
plantations, the summaries may include plot mean and dominant height, mean basal area 
diameter, basal area, stocking and volume. For mixed forest, the summaries will normally 
also include stand tables of selected characteristics by species and size classes. 

The summary programme should be able to produce its output both in a printed fom, 
>lith titling text to make it comprehensible and in machine readable form, without text, for 
direct input to data analysis programmes. The machine readable output may be put onto 
magnetic tape or disc or punched on paper tape or cards, as appropriate. If the output is 
onto magnetic tape, this should normally be done in 1 formatted' or character-encoded form, 
rather than in machine binary code. 

For mixed forests in particular, but also for plantations, it is useful to have a 
facility so that only selected parts of the output are printed or placed on t ape. 

4.4.5 other Utilities 

Two other programmes will probably be needed with a sample plot data base: 

A sorting programme, able to reorder the sequence of plots on tape so that they 
are grouped by forest, district, species, comnartment, etc.. Norma1ly, plots wi1l 
be entered onto the data base in an arbitrary order,. whereas the summaries will 
probably be preferred with some logical sequence. 

Archival and characte~encoding programme , to transfer the main data base on disc 
or tape into a form suitable for archival (Bee below) or transfer to another 
computer site. This will involve characte~encoding or formatting, the entire 
data base and writing it onto a magnetiC tape. 

4.4.6 Data Base Security 

A large data base stored on disc or magnetic tape can readily be destroyed by acci­
dents, programme or computer failures. It is essential therefore that after each addition 
of a significant amOUJlt of information, the entire data base is copied onto a spare tape or 
disc to give a complete seccnd copy. These spare copies can be rotated, so that at anyone 
time there is an up to date working vereion, an up- to date archived version and two or three 
previous archived versions of the data base. 
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4.5 DATA TRANSFER BETWEEN COVPUTER SYSTEMS

The necessity frequently arises for transferring data between computer systems,

either for cooperative research or to permit research workers from one organization to study

elsewhere using their own data.

Large amounts of data are best transferred an industry-standard magnetic computer

tapes. These may be 9-track or 7-track tapes. The following information should be ascer-

tained when the tape is written:

The number of tracks (7 or 9)

The density (usually 800 or 1 600 bits per inch)

The parity (even or odd)

- The inter-block gap in mm (or failing this the exact mark and manufacturer of

the tape drive mechanism).

Tapes for transfer between computers should always be character-encoded or formatted

and should preferably use fixed-length records of moderate size, probably less than 120

characters per record, to facilitate reading the tape. The type of character-encoding used

(EICDIC, ASCII, BCD, etc.) should be determined if possible but is not critical, as trans-

literation from one to the other is quite simple. A listing of the first and last few

hundred lines of the tape should be sent with it to help check that when the tape is read?

no records or parts of records have been lost.

Header labels and tapemarks are generally a nuisance when reading strange tapes, so

it is better to write the tape as a single file, without a tape label at the start. The

end of information is normally indicated by a double tape mark.

Information concerning the mode of the tape (tracks, density, parity, character code),

the contents and the address of origin should be attached to the tape with a sticky label.

Tapes can normally be sent easily through the post. However, high frequency metal

detectors may erase some or all the information an a tape. The parcel should therefore be

clearly marked and easily opened for visual inspection.

- 39 -
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5. ANALYSIS OF GROWTH AND YIDLD DATA FOR UNIFORM FOREST

Uniform forests are those in which the main crop trees are of a known, uniform age.

They are usually composed of a single species or a few ecologically similar species.

Uniform forests are, by definition, managed under a clear felling system, with or without

intermediate thinnings. Regeneration may be by planting, artificial or natural seeding or

from coppice.

In this type of situation, the main parameters of growth and yield prediction are

well understood. There is a wide variety of possible models available. The main limiting

factor on the effectiveness of a model is usually the availability of data for the forests

in question covering a wide range of sites, ages and stand densities.

The growth and yield of a forest can be modelled at three basic levels. These are
the whole stand, the size class and the individual tree. For uniform forests, stand models

are usually adequate for most purposes. Stand models are also very much simpler to both

construct and use. Consequently, this is the modelling strategy dealt with most fully; the

other two approaches are discussed briefly in section 5.7.

Even within this single level of stand modelling, there is a wide variety of choice

in the particular set of functions to be incorporated in the model. Some alternatives are
nresented in the different sections which follow, together with an attempt to define situa-

tions in which a particular method is most appropriate. Other alternatives have been omitted

simpi. because of the need to keep this manual reasonably concise.

On the Whole, techniques are incorporated which are characterized by simplicity,

accuracy and flexibility.

Within a particular aspect of stand modelling, such as for example the production of

sets of basal area/height/stand density curves, an attempt has been made to include both

graphical methods and statistical methods of differing degrees of complexity.

5.1 SITE CLASSIFICATION

The relatively high accuracy possible with growth and yield models for uniform stands

results partly from the precision with which it is possible to classify site. This is

itself a result of the fact that age is normally known from management records and height

of the dominant trees can usually be measured by hypsometers or similar instruments.

5.1.1 Use of Dominant Height as an Indicator of Site

The height of a uniform stand, at a given age, is a good indicator of the potential

productivity of that type of forest on that particular site. Hence the construction of

height/age curves corresponding to different site classes is the first step in growth and

yield model construction.

However, the mean height of a stand is usually sensitive not only to age and site

class, but also to stand density. Consequently, dominant height is normally used in defining

the height of a stand. Dominant height is almost entirely insensitive to stand density

differences.
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Within a particular aspect of stand modelling, such as for example the production of 
sets of basal area/height/stand density curves, an attempt has been made to include both 
graphical methods and statistical methods of differing degrees of complexity. 

5.1 SITE CLASSIFICATION 

The relatively high accuracy possible with growth and yield models for uniform stands 
results partly from the precision with which it is possible to classify site. This is 
itself a result of the fact that age is normally known from management records and height 
of the dominant trees can usually be measured by hypsameters or similar instruments. 

5.1.1 Use of Dominant Height as an Indicator of Site 

The height of a uniform stand, at a given age, is a good indicator of the potential 
p r oduct ivity of that type of forest on that particular site. Hence the construction of 
height/age curves corresponding to different site classes is the first st·ep in growth and 
yield model construction. 

However, the mean height of a stand is usually sensitive not only to age and site 
class, but also to stand density. Consequently, dominant height is normally used in defining 
the height of a stand. Dominant height is almost entirely insensitive to stand density 
differences. 
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Dominant height can be defined in various ways, but the definition with the widest

currency is that the dominant height of a stand is the mean height of the 100 thickest

stems per hectare. Dominant height is also sometimes termed'top height'.

Under some circumstances encountered in uniform forests in the tropics, &eminent

height ceases to be a good indicator of site class. This occurs with young stands of very

fast growing crops and also with certain species which are notoriously variable in their
height growth, such as Pinus caribaea. This situation can be detected by ranking permanent

plot data by height within each age class. If the rank position of plots an successive
occasions is poorly correlated, then any site class curves constructed must be considered
of doubtful value.

The problem arises simply because of the great variability of height growth, relative

to the effect of site, on these types of stands. It could be partly overcome by a redefini-

tion of dominant height to require a larger sample of height trees per plot, e.g. equivalent

to 200 or 400 stems/ha. An alternative idea is to correlate final productivity with envi-

ronmental variables and use a site classificaticn based purely on slope, altitude, soil type

or other factors which appear to be significant.

5.1.2 Construction of Site Index Curves

The height-age-site index relationship is basic to uniform forest growth psedietioh.

The relationship is usually referred to simply as the site indelc curves for a species in a

given environment.

Construction of site index curves may be by graphical methods or by regression

analysis.

5.1.2.1 Gra.hical methods of construction

Graphical methods of construction proceed as follows:

Plot all available height-age data for stands of the speW.es in question.

Dominant height should be used, not mean height, as it is much more indepuldent

of variations in stand density. Both temporary and permanent plots may be in-

cluded on the graph. With permanent plots, the points from successive remeasure-

ments should be joined with straight lines. This stage is illustrated in figure

5.1, which shows data from Pinus patula stands in Uganda.

Next draw curves by hand through the data. These should attempt to follow the

trends of:

(0 The plots on the lower edge of the mass of data;

The median tendency through the data;

The upper edge of the data.

In each case the curves should follow as parallel as possible to the tendencies

of permanent sample plots on that part of the graph. The drawing of these three

curves is shown in figure 5.2.
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Daninant height can be defined in various ways, but the definition with the widest 
currency is that the dominant height of a stand is the mean height of the 100 thickest 
s t ems per hectare. Daninant height is also sometimes termed'top height'. 

Under some circumstances encountered in uniform forests in the tropics, dominant 
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When all of the data is from temporary plots,the same methodcan be applied, but
there is a possibility of considerable error due to the fact that the plots at

different ages may not be equally representative of different sites.

Two additional curves can now be interpolated between the upper and central

curves and lower and central curves. The system can then be traced onto a

separate piece of paper, giving the result shown in figure 5.3.

The curve system can be described as an equation using the methods described in
Appendix A.1. The curves themselves are usually numbered sequentially and

referred to as site class curves (or sometimes yield class, production class,

etc.). Thus in figure 5.3 the site classes are numbered from I (most productive)
to V (least productive).

The simplicity of this technique of constructing site index curves by graphical
methods is ddvious. It has three significant disadvantages:

The curves produced depend tc a great extent upon the judgement of the person

doing the work, especially if the data is sparse or largely from temporary plots.

Different people will produce different sets of curves, which may be more or less
accurate and unbiased in representing the real trend.

When there is a large amount of data and it is already stored in a form acceptable

to a computer (e.g. on 80 column Hollerith cards or on magnetic tape), then this

is a very slow method compared to statistical techniques which can be carried out
by computer.

When stage 4 above, of describing the curve system as an eauation is required

(as when the curves are to be used within an inventory or growth projection

programme), then the work involved in this step alone may be as great as the
entire task of fitting the curves directly by one of the statistical techniques.

5.1.2.2. Mathematical methods of fittin site index curves

Tathematical techniques of fitting site index curvas have considerable advantages

over graphical methods when a computer is available and the amount of data is large. However,

it should not be assumed that the results of these techniques are necessarilz more accurate
than handdrawn curves; this will depend very much an the correctness of the height growth

model chosen and the validity of the statistical assumptions used in the fitting of the
parameters of the model. Mathematical techniques can be classified into four groups in the
following way:

minimum

maximum

method

nested multiple

regression regression

without with a priori

site index site index

temporary plot permanent plat -

data data
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Of these four methods, nested regression is statistically the most appropriate and

is also amenable to manual calculation. Consequently we shall examine this technique in

most detail, discussing the other methods somewhat more briefly.

All four methods can be related to a single model of height growth, which is the

Schumacher equation 1/:

Ho = Hmax.exp(b/Ak)

where Ho is dominant height, Hm is a parameter to be fitted and represents the maximum

height the species could reach, exp( ) is the mathematical notation to indicate that the

expression in the bracket is a power of the constant e = 2.71828 (i.e. exp(2) means e2)

b and k are parameters to be fitted and A is the age of the stand.

The shapes given by this equation are illustrated in figure 5.4. By taking logarithms

to the base e (1n) of both sides of equation (1), one gets:

in H0 = ln Hm + b/Ak -(2)

If we let a = in Hmax7 then a and b can be fitted by linear regression, provided k is known.

Appropriate values of k for most species lie between 0.2 and 2 and can be estimated by

techniques described later in this section or by nonlinear estimation as described in

Appendix A.4. For many specieS, an assumed value of k = 1 will give a satisfactory fit.

The b parameter in equation (2) should always be negative; if it is not, check calculations

for errors. The a parameter will normally be between 2 and 7; again, check for errors if

there is large divergence from this.

For proportional curves fit equation (2) to the set of temporary sample plot data as

a whole by linear regression, with the dependent variable Y as in Ho and the Predictor

variable X as 1/Ak. If k is not known, follow the suggestions in Appendix A.4 to determine

it.

This gives the average height growth trend, assuming that in each age class, all

sites have an equal likelihood of being represented. If it is known that, for example,

older age classes fall an poorer sites and younger ones an the best sites, then do not use

this method. Either construct hand,drawn curves or, if PSP data is available, use nested

regression.

Once the mean height growth curve has been fitted, curves of the same shape can be

drawn to pass through different site index values. If the site index S is defined as the

dominant height of the stand at an index age Ai, then the a parameter for the curve to pass

through this site index, ai is given by:

ai = ln S (3)
where b and k are from the average curve.

1/ Schumacher, F.X., 1939 A new growth curve and its application to timber yield studies.

J. Forestry 37:819-820.
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Of these four methods, nested regression is statistically the most appropriate and 
is also amenable to manual calculation. Consequently we shall examine this technique in 
most detail, discussing the other methods somewhat more briefly. 

All four methods can be related to a single model of height growth, Which is the 
Schmnacher equation 1/: 

where Ho is dominant height, ~ax is a parameter to be fitted and represents the maximum 
height the species could reach, exp( ) is the mathematical notation to indicate that the 
expression in the bracket is a power of the constant e = 2.71828 (i.e. exp(2) means e2 ), 
b and k are parameters to be fitted and A is the age of the stand. 

The shapes given by this equation are illuetrated in figure 5.4. By taking logarithms 
to the base e (In) of both sides of equation (1) , one gets: 

If "e let a = In ~ax, then a and b can be fitted by linear regression, provided k is known. 
Appropriate values of k for m9st species lie between 0.2 and 2 and can be estimated by 
techniques described later in this section or by nonlinear estimation as described in 
Appendix A.4. For many specie~, an assumed value of k ~ 1 will give a satisfactory fit. 
The h parameter in equation (2) should always be negative; if it is not, check calculations 
for errors. The a parameter will normally be between 2 and 7; again, check for errors if 
there is large divergence from this. 

For proportional curves fit equation (2) to the set of temporary sample plot data as 
a whole by linear regression, with the dependent variable Y as In Ho and the predictor 
varia'n le X as l/Ak. If k is not known, follow the suggestions in Appendix A.4 to determine 
it. 

This gives the average height growth trend, assuming that in each age class, all 
sites have an equal likelihood of being represented. If it is known that, for example, 
older age c1asses fall on poorer sites and younger ones on the best sites, then do not use 
this method. Either construct hand-drawn curves or, if PSP data is available, use nested 
regression. 

Once the mean height growth curve has been fitted, curves of the same shape can be 
drawn to pass through different site index values. If the site index S is defined as the 
dominant height of the stand at an index age At, then the a parameter for the curve to pass 
through this site index, a; is given by: 

a; = In S - b/~ -(3) 

where b and k are from the average curve. 

11 Schumacher, F.X., 1939 A new growth curve and its application to timber yield studies. 
J. Forestry 37:819-820. 
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Figure 5.4 
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The minimum-maximum method is more flexible in the type of curve shapes that result

than the Proportional curve method, but it requires multiple observations in each age class

(at least ), and hence cannot be used with limited amounts of data. The process proceeds
as follows:

In each age class, calculate the mean Ho for all plots and the minimum and

maximum values of Ho.

Fit three separate regressions of the type shown in equation (2) to the maximum,

minimum and mean sets of observations. The nonlinear k parameter can be assumed
as a constant for all three sets or it can be fitted independently.

As a final step, the separate coefficients for each of the three lines can, if

desired, be harmonized to give a single equation, using the methods given in

Appendix A.1.

A more complex variation on this method is justified with large amounts of data in

each age class, as might be obtained from a forest inventory. The height Observations in
each class are sorted into order, from maximum to minimum and each point is assigned a site

class S from:

s = (i *)/

where i is the plot's position after sorting and n is the number of plots in the age class.

Once the Plots have been assigned a site class, then the analysis can proceed using multiple

regression as in the last method described below.

It should be thoroughly appreciated that the above methods for use with temporary

sample plot data should be regarded as producing results that are anly of provisional

usefulness, as they depend critically upon the assumption that all sites have an equal like-

lihood of being represented in each age class.

This is rarely the case in reality and hence the curves produced will be in some

degree defective. The only solution is to obtain recurrent height-age data from permanent

plots or stem analysis trees, which can be analysed by ane of the following methods.

Nested regression methods are of two types. There is first of all the use of condi-

tional (or zero-one) variables in multiple regression, as described in the example in

Appendix 2.10. Tbis method has not, to the author's knowledge, been used in site index

curve construction, probably because with any realistic number of plots, the number of

variables involved in the regression would be enormous; but the approach is by no means

infeasible, given a specially adapted programme to genera-te and handle the many zero-one

variables. The second method, first described by Bailey & Clutter 1/ involves the use of

the common slope and common intercept estimators from covariance analysis. This method is

well suited to site index curve construction and is sufficiently simple to make manual

calculation of the parameters possible.

1/ Bailey, Rol,. and Clutter, J.L., 1974 Base-Age Invariant Polymorphic Site Curves.

Forest Science 20:155-59
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The muumum-maximum method is more flexible in the type of curve shapes that result 
than the proportional curve method, · but it requires multiple observations in each age class 
(at least 3), and hence cannot be used with limited amounts of data. The process proceeds 
as follows: 

(1) In each age class, calculate the mean Ho for all plots and the minimum and 
maximum values of Ho. 

(2) Fit three separate regressions of the type shown in equation (2) to the maximum, 
minimum and mean sets of observations. The nonlinear k parameter can be assumed 
as a constant for all three sets or it can be fitted independently. 

(3) As a final step, the separate coefficients for each of the three lines can, if 
desired, be harmonized to give a single equation, using the methods given in 
App endix A. 1 • 

A more canplex variation on this method is justified with large amounts of data in 
each age class, as might be obtained fran a forest inventory. The height observations in 
each class are sorted into order, from maximum to minimum and each point is assigned a site 
class S from: 

S (i - t ) / n 

where i is the plot's position after sorting and n is the number of plots in the age class . 
Once the plots have been assigned a site class, then the analysis can proceed using multiple 
regression as in the last method described below. 

It should b e thoroughly appreciated that the above methods for use with temporary 
sample plot dat a should be regarded as producing results that are only of provisional 
usefulness, as they depend critically upon the assumption that all sites have an equal like­
lihood of being represented in each age class. 

This i s rarely the case in reality and hence the curves produced "Till be in some 
degree defective. The only solution is to obtain recurrent height-age data fran permanent 
plots or stem analysis trees, which can be analysed by one of the following methods. 

Nested regression methods are of two types. There is first of all the use of condi­
tional (or zero-one) variables in multiple regression, as described in the example in 
Appendix 2.1 0. This method has not, to the author's knowledge, been used in site index 
curve c onstruction, probably because with any realistic number of plots, the number of 
variables involved in the regression would be enonnouB; but the approach is by no means 
infeasible, given a specially adapted programme to generate and handle the many zero-one 
variables. The second method, first described by Bailey & Clutter 11 involves the use of 
the common slope and CQ'nffion intercept estimators fran covariance analysis. This method is 
well suited to site index curve construction and is sufficiently simple to make manual 
calculation of the parameters possible. 

11 Bailey, R.L. and Clutter, J.L., 1974 Base-Age Invariant Polymorphic Site Ourves. 
Forest Science 20:155-59 



The common slope regression model is depicted in figure 5.5(a) and is given by the

equation:

Y.= al.+b X (4)

where al is different for each plot, but b (the slope) is the same for all plots. The common

intercept model is shown in figure 4.5(b) and is represented by the equation:

Y = a + . Xbi (5)

where the intercept a is the same for all plots, but the slopes bi differ. In terms of the

Schumacher equation, either model can be used, with Y as in Ho and X as 1/,eJc. The common

slope model corresponds in shape to sets of proportional curves, but there is an important

distinction between this approach and that for temporary plots, in that the distribution of

sites in the different age classes has no effect an this method.

Figure 5.5

REGRESSIONS WITH commoN SLOPES OR COMON INTERCEPTS

(a) Common slope regressions for four plots
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(b) Common intercept regressions for three plots
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The c omm on s lope regression model is depicted in figure 5.5(a) and is given by the 
equat i on: 

y = ~+bX -(4) 

where a i is different for each plot, but b (the slope) is the same for all plots. The common 
intercept model is shown in figure 4.5(b) and is represented by the equation: 

Y = a + bi X -(5) 

where the i ntercept a is the same for all plots, but the slopes bi differ. In terms of the 
Schumach er equation, either model can be used, with Y as ln Ho and X as l/Ak• The common 
s lope mod el corresponds in shape to sets of proportional curves, but there is an important 
distinction b etween this approach and that for temporary plots, in that the distribution of 
sites in the different age classes has no effect on this method. 

Figure 5.5 

RIDRESSIOm WI'll! COMMON SLOPES OR CO!!J>!ON INTERCEPTS 

(a) Canrnon slope regressions for four plots 
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x 

(b) Canmon intercept regressions for three plots 
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The statistical estimators for the common slope and common intercept models are as

follows:

The comnon slope b
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.fli ni ni
I(E

=
X. ..Y..-E X,..E Y.3../n.)12 12 . 12 . 2

milli 2 ni--ikEkx.$)/ni)Xi

ni m ni n4 ni
E z Y. I (I x.j.f.x. .r. ./E X. .')

The common intercept a = _(7)
M n 714I((z1x. )v,..6x .2)

j j iJ

As these formulae appear rather complex (although in concept they are quite simple)

some calculation pm formes are provided with a worked example. These are form 5.1, parts

1 and 2. Part 1 carries out the withinplot summations, corresponding to the for the j

subscript from 1 to ni in the above formulae, whilst part 2 of the form carries out the

betweenplot summations, corresponding to 2 for i from 1 to m in the formulae.

The example uses the data shown in figure 5.6, from 6 permanent sample plots in

Cupressus lusitanica stands in Kenya. A k parameter value of 1 is assumed for illustration

purposes. The heightage data are transcribed into the first two columns of part 1 of form

5.1. Two sheets of this form are necessary for the six plots. The transformed X and Y

values are entered in columns 3 and 4. X2 is entered in column 5 and X times Y in column 6.

Calculations should be carried out to at least four significant digits. The totals for
each plot (withinplot totals) for columns 3 to 6 are entered in the appropriate line. The

number of points in each plot is also entered. One then turns to part 2 of form 5.1 to

continue the calculations. For each plot, the various withinplot totals (EX, ZY, 2X2 and

EXY) and the number of points n are combined according to the formulae shown at the top of

the columns of part 2. These figures are then totalled betweenplots to give the items
marked (1) to (6) at the bottom. Finally the common slope and common intercept coefficients

are calculated as shown in the last two lines.

The final reault in this numerical example is that the common slope coefficient is

9.222, whilst the common intercept coefficient is 3.583. If either of these models is

plotted as a set of site index curves, they will be found to bend over much more sharply

than is indicated by the data in figure 5.6. This arises because the assumed value of k

is much too large for this set of data.

Bailey & Clutter, in the paper referred to earlier, show how it is possible to
calculate the nonlinear k coefficient directly using a regression model containing this

coefficient in linear form, provided that remeasurement data (from PSPs or stem analysis)

is available so that height increment can be estimated. The method is as follows:

- (6 )
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The statistical estimators for the conunon slope and conunon intercept models are as 
follows: 

The conunon slope b = 

The conunon intercept a ~ 

• ni Dot ni 2 
- I (l: Xij.I Xl.' : '!Ii ./I X . . ) 

i j j J J j 1J 

-(6) 

As these formulae appear rather complex (although in concept they are quite simple) 
sane calculation pro fomas are provided with a worked example. These are fom 5. 1 , parts 
1 and 2. Part 1 carries out the within-plot summations, corresponding to the E for the j 
subscript from 1 to ni in the above fomulae, whilst part 2 of the fom carries out the 
between-plot summations, corresponding to:E for i fran 1 to m in the fonnulae. 

The example uses the data shown in figure 5.6, fran 6 permanent sample plots in 
Cupressus lusi tanica stands in Kenya. A k parameter value of 1 is assumed for illustration 
purposes. The height-age data are transcribed into the first two columns of part 1 of form 
5.1. Two sheets of this fom are necessa!';Y for the six plots . The transfomed X and Y 
values are entered in columns 3 and 4 . X2 is entered in column 5 and X times Y in column 6. 
Calculations should be carried out to at least four significant digits. The totals for 
each plot (within-plot totals) for columns 3 to 6 are entered in the appropriate line. The 
number of points in each plot is also entered. One then turns to part 2 of fom 5. 1 to 
continue the calculations. For each plot, the various within-plot totals (EX, ~Y, ~X2 and 

EXY) and the number of points n are canbined according to the fomulae shown at the top of 
the columns of part 2. These figures are then totalled between-plots to give the items 
marked (1) to (6) at the bottan. Finally the common slope and canmon intercept coefficients 
are calculated as shown in the last two lines. 

The final result in this numerical example is that the conunon slope coefficient is 
-9.222, whilst the common intercept coefficient is 3.583. If either of these models is 
plotted as a set of "ite index curves, they will be found to bend over much more sharply 
than is indicated by the data in figure 5 .6. This arises because the assumed value of k 
is much too large for this set of data. 

Bailey & Clutter, in the paper referred to earlier, show how it is possible to 
calculate the nonlinear k coefficient directly using a regression model containing this 
coefficient in linear fom, provided that remeasurement data (fran PSPs or stem analysis) 
is available so that height increment can be estimated. The method is as follows: 
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Calculate a set of transformed Y values for the 2nd, 1rd, etc. Observations

within a plot, from the formula:

. in f rii-Hii-11 Al )

L A A I

-

There is no Y value corresponding to the first height Observation.

Calculate a corresponding set of transformed X values from the formula:

X.. ln(2/(Aij+A1i_1))
2.3

Fit a common slope estimator using form 5.1 or equation (6) using these trans-

formed X and Y values. Note that if form 5.1 is used, anly the first two

columns and totals (1) and (2) are required on part 2.

Subtract 1 from the common slope estimator obtained. The result is the estimate

of k required.

When using manual calculation, form 5,2 can be used to carry out the transformations

in steps 1 and 2 above. It has been completed for the first plot in the example data to

illustrate the usage.

The formulae for the common slope and common intercept estimators, together with the

transformation technique for estimating the k parameter, can easily be programmed for small

computers or programmable calculators. Any programmable calculator with at least 15 data

registers and 200 programme steps should be adequate.

When k parameter is fitted in this way to the data in figure 5.6, the following

values are obtained:

k = 0.25

b = 6.638 (common slope model)

a = 6.111 (camnon intercept model)

Let UES examine the construction of a set of site indexcurves from these results,

using the common intercept modela

We have:

in Ho = 6.311 + bi/A°°25 -(8)

The parameter bi depends upon si-te index S . For a selected site index, at index

age A.:

in S = 6.311 4- bi/Ai

=( n S 6.311).Ai0.25
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1. Calculate a set of transfonned Y values for the 2nd, 3rd, etc. observations 
wi thin a plot, from the formula: 

There is no Y value correspcnding to the first height observation. 

2. Calculate a corresponding set of transfonned X values from the fonrrula: 

3. Fit a common slope estimator using fonn 5.1 or equation (6) using these trans­
fonned X and Y values. Note that if form 5.1 is used, only the first two 
columns and totals (1) and (2) are required on part 2. 

4. Subtract 1 from the common slope estimator obtained. The result is the estimate 
of k required. 

When using manual calculation, form 5.2 can be used to carry out the transformations 
in steps 1 and 2 above. It has been completed for the first plot in the example data to 
illustrate the usage. 

The formulae for the common slope and common intercept estimators, together with the 
transformation technique for estimating the k parameter, can easily be programmed for small 
computers or programmable calculators. Any programmable calculator with at least 15 data 
registers and 200 programme steps should be adequate. 

When k parameter is fitted in this > ... y to the data in figure 5.6, the following 
values are obtained: 

k ~ 0.25 
b -6.638 
a = 6.311 

(common slope model) 
(common intercept model) 

Let us examine the construction of a set of site index curves from these results, 
using the camnon intercept model. 

We have: 

In H = 6.311 + b.!AO. 25 
o ~ 

-(8) 

The parameter b i depends upon site index S. For a selected site index, at index 
age Ai: 

~. b. 
~ 

( ) 
0.25 

n S - 6.311 .~ 



If we wish to plot curves for site indices 26 index169 189 209 229 249 using an

Then from equation (8)9 substituting the bi for each site index curve, values of Ho

can be calculated for selected values of A. The curves that result from the above parameter

values are shown in figure 5.79 on the same scale as is used for the data in figure 5.6.

If ane wishes to calculate the site index of a stand, given its age and dominant

height, then use the formula:

in S = a + (ln Ho a).(A/A0k -(9)

For example, for the parameter values for a and k given above, auppose we have a

stand of 14.5 m at 11.5 years. Then the estimated si-te index is given by:

in S = 6.311 + (in 14.5 6.311).(11.5/20)0.25

= 3.144

:. S = 23.2

Hence we can say that the site index of this stand is 23 m.

When the common slope model is used, instead of the common intercept model, then the

basic equation is:

ln Ho . ai + b/Ak

wtth ,a. being dependent on si-te index as:

/ kai = In S

with site index for a selected heightage observation being given by:

- 52 -

/ / lc%
n S = ln

Ho
+ bk1/Ak 1/A ) -(12)

age

of 20 years, we have:

16 7.483
18 7.234
20 7.011
22 6.809
24 6.625
26 6.456
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If we wish to plot curves for site indioes 16, 18, 20, 22, 24, 26 using an index ege 
of 20 years, we have: 

S bi 

16 -7.483 

18 -7.234 

20 -7.011 

22 -6.809 

24 -6.625 

26 -6.456 

Then from equation (8), substituting the b i for each site index curve, values of Ho 
can be calculated for selected values of A. The curves that result from the above parameter 
values are shown in figure 5.7, on the sarne scale as is used for the data in figure 5.6. 

If one wishes to calculate the site index of a stand, given its ege and dominant 
height, then use the formula: 

For example, for the parameter values for a and k given above, suppose we have a 
stand of 14.5 m at 11.5 years. Then the estimated Bite index is given by: 

In S = 6.311 + (In 14.5 - 6.311).(11.5/20)°.25 

• •• s 23.2 

Hence we can say that the sit e index of this stand is 23 m. 

When the common slope model is used, instead of the common intercept model, then the 
basic equation is: 

In H = a. + b/Ak 
o 1 

with a. being dependent on site index as: 
1 

with site index for a selected height-age observation being given by: 

n S 

-(10) 

-(11 ) 
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o rm r m n . Ose and common s nterce _t re ession models

Part 1 Plot data smmarization. Use as many part 1 sheets
as necessary for all plots.

Data transformations used X =

Y =

/ Aqc
LocrE /./E/ger

- -...=44-SISIMI-V--=,..-L2,-._.-._.1 =i3.112111,---M- V L Pe' lot 5
Raw data Transformed data

H X Y x2 ifY

. #.; 9.6 0.144013 2.26'2 o.c.2.22-8
_ _

a. 33 7(c5
7. 11.0 o. (3 I 6 2.3111 0. of-1S 1 Q.! I5
104 /4--g 0.094-3 2.694-6 o-OORTO 0.2542
/1.6 / .2 0.08'624 2.12.13 0.00 -14-1 O. 2.3 Li- (..

12.6, /4-3 0.01937 2.19 t 2. 0.00630
1-7..6 0.01Lp:,7 2.E.62.2 0.005'4-9 (:).z.racp

11.1..4 (s.3 ô.06/ 2.4,4r 0. 00142- 0.2-019 3

Totals '7_.......
0.6% 4.3 is. 63513 0,011s3 L173

ePlot 36.

Raw data Transformed dato.
X Y X2 XY

2.0119 o.0222-3 0.312..2..
2..I702
.2-37%

0.o in t.t.
0.01108

0. 2-7 89
02. 0S

2..525-7 0.00830 o. 2.3'83
I2. 14..3 OO7P37 2.6603 0.00 630 0.2- I s 1

13.Ç 1Ç.Z 7 2.12- S 0.00549
/4.4 /6.5 0.069(4-tt. 2.S0314- 0.00 u-g2- 0. 1? ?41 1

Tcrbals n 7 0.639 (.4- I7- S-52.3 o.o-i 2., I 1.6.,g-72..

----------------- .

Plot 36
Raw data Transformed data

A (.4 V'4,4 V X2 XY

6.7 gl 0- 14-9S A. IS (51 o.022.21 0.32 63
a. ill 6 .2..4-0 Gc) 0.0 (11I o' 61

/0.4> /4. 6 0.014-34. 2. 6i3 1 o a.000 o . 7-5 2_,
/I. (D /6,5 0. o Et62.1 g..3033 0-00-74a 0-2-1+11
r2-G (8. 1 0-0793'7 2.g95-7 0.00610 0.2.2-73
/ 3- 5. 2.0 .0 o .0 --74.oi 2.77 s 7 o.00.54.9 0-2.2- 17
1 4 ' 4 ZI ° 0-0 6?4-4. 3.0L.5 0.00 4.8 2- 0.2.11 4--

Totals n '1 0. 6814.. /9:0/3 0.07253 1.6'007
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Form 5".1 Commgn s]ove and common intercept regression mOdels 

Part 1 Plot data summarization. Use as many part 1 sheets 
as necessary for all plots. 

Data transformations used: X = / / A .... 
--~~~--------------

Y = Loc;-E II~";HT 

Plot :3 
Raw data Transformed data 

A H X Y X2 XY 
G.~ 'l.b 0.14'\ 3. 2 . 2.,'i o.o:u.Lli' o. ~!. "1e.. 

7. ' 1/.0 O.llll. 2."3'1'1 0.0"31 o· ~ I '"~ 
10. , /t,.. 'i! O.oq~~4- .2.{"~6 0 ·00f/10 o·.2S ~2.. 

1/.' ':>.2- 0.08'2.1 2.72.13 o . 00 71j.! o. 2.llj.~ 
/2..b Ib.3 0.01'131 2·1'112- 0.00630 o. :l.ll.1 .5 

13.5 11.5 o.o/lj.Ol 2..Sb:2.2. o . oo~4-~ 0·2.12.0 

14.'+ (7.3 0·06'1 4- 4- 2.<to l:'t o · 004&2- O.UlI~ 
Totals n7 o. {,! 4-3 13. (;358 0 .012.S3 1.-,,73 

Plot 3{;" 

Raw data Transformed dat a. 
.q H X Y X2 XY 
6.7 8. f /) . 14'13, :z.o'll'l 0.0222.8 0·0.12.2-

'l.S 10.7 0.111/0 2·3102- 0.01384 0.!!..18'! 

9.5 10. 'if 0.IO~3 2..31'15 0.01108 0 . .2.!O.o5 

10.b 12·5 0 .0'143 .. :t.525r 0.008'10 0·2.3S3-

12.' 14-.3 0.01'137 .2.6b03 0.00'30 a.2-II( 

13.5 15.2- 0 .07 401 2.72..13 0 · 00'>'+9 0·2.0 I b 
11f·4- 1,.5 0 .06'14-"- 2.80 3 If. 0 .0 0 ... 82- o. 1~~1 

Totals n 1 0.68'1 lj. Il. S"S".2!. 0.0'2', /. b8"1.2.. 

~lot 3' 
Raw data rransformed data 

A 1-1 X Y X2 XY 
6·7 \?'l o. I 4-'1 !. .t.ISbl 0 . 0.2.2.2.11 o. "32- 63 
7.1" ".1 O.I"!>,b ~.If.O 1,,'1 o·on?1 0·1./'1 

/0.' 14-. (:, O.0"l4-31J. ~.''aIO 0.008~O o. "2.S.t.~ 

fl· " 1~.5 o· 0 ,&(,;2../ Z .lJ033 0.0074-3 0·2..411 
1 :1,,( .. ,g. I 0·07'13.7 2..8'1 $"'1 0.00""10 0.2:1-'18 

/U; 20.0 0.0,401 .2 ·'1'Hl o .00$"i-'1 0·2.2.. 19 
/4.4- :z.1 . 0 0.0 l.'1q.u. 3·0 lJ.lJ.$ 0.00 1J.82.. 0.2./ f 4-

Totals 11 1 o. '84-3- 11.0135 0.07).53 /.'1007 



Form 5.1
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ommon -lo e and common intercept rearession models

Part I Plot data summarization. Use as muy part 1 sheets
as necessary for all plots.

Data transformations used: X . I /Ave

Y = Lopr HFV/7"-

...,....."...CMTO.Verasc,...V.GX32917.1.19.Y.I12,-725,11,217.23ares,P2f.....17.1=--,417SM2-,.......137-SMriot 2... 6

Raw data Transfo-rrned data
A H X v

9

/4.7 2_1.1 0.0 5922 3.o 4.-9 3 o.co 359 O. /g2.4:,

!L4 2.2.4- o .0 S.68.2. S. /al ( 0.0032.7e O.( 6-1

2o.6 2.5./ o.0485. s.2_2-"Si.9 0.002..v; 0. t5,.:(,14-
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CQmmon slope and common intercept regression models 

Plot data summarization. Use as many part 1 sheets 
as necessary for all plots. 

Data transformations used: X = , / Aft" ----------------------Y = L09. He/flfl 
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Form 5.1 ammon slone and common interce t re Te sion modell
Part 2 Totals between plots and coefficient calculation
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Form 5.1 Common slone and common j.ntercept regresE!j.on models 

Part 2 Totals between plots and coefficient calculation 
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Figure 5.6

Data from 6 permanent sample plots in Cupressus

lusitanica stands in Kenya. Used in text example

for fitting site index curves by nested regression
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Figure 5.6 

Data from 6 pennanent sample plots in Cupressus 
lusi tanica stands in Kenya. Used in text example 
for fitting site index curves by nested regression 
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Form ;-.2 Transformations to age and height data from PSP's to fit k
parameter in Schumacher equation by common slope estimator
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Form £.2 Transformations to age and height data from PSP's to fit k 
parameter in Schumacher equation by CORmon slope estimator 
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Figure 5.7

Site index curves produced for the data in

figure 5.6 by Bailey & Clutter's nested regres-

sion method using the Schumacher equation
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Figure 5.7 

Site index curves produced for the data in 
figure 5.6 by Bailey & Clutter's nested regres­
sion method using the Schumacher equation 
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Multiple regression methods of fitting site index curves can be used as an alterna-

tive to nested regression When the site index or site class of the plot can be determined

prior to fitting the model. There are perhaps five ways in which this a priori site class

or site index determinaticn can be made:

For a long series of plot measurements which have passed through the index age,

site index can be taken directly as the dominant height at the index age.

Por series of measurements which do nct pass through the index age, an equation

such as the Schumacher equation can be fitted independently to each plct and

used to predict the dominant height at the index age, which is then taken as

the site index for the plot.

For temporary plot data, site class can be assigned on the basis described

above under the maximumminimum method of fitting site curves. This method

should not be used with PSP data as it is wasteful of the information inherent

in such data.

An existing set of site curves can be used to assign site class to the plots.

Alternatively, handdrawn curves can be nade specially for a particular analysis,

-Lo classify plots. This technique is useful when existing curves are almost

satisfactory, but of not quite the correct curvature or aae wishes to approxi-

mate handdrawn curves by an equation.

An environmental variable such as altitude, rainfall, etc, can be used as the

site indicator variable. This approach is rarely successful due to the poor

correlation usually found between a single environmental variable and height

growth.

Once the method of assigning site class to the plots has been determined, one has a

set of data in which three variables are known for each observation:

Dominant height
Ho

Age A

Site class or index S

Multiple regression can then be used to fit a model which relates Ho to A and S

using various different transformations. Two types of model have been used:

Constrained models, for use with site index curves, where height is expressed

regression fitted

is ane without an intercept. An example would be the model:

(Ho s) = bi (A Ai) + b2(A Ai.)2

This kind of model is forced to give a dominant height Ho equal to site index

S When the age is equal to the index age Ai.

Unconstrained models, with an intercept term. When used with site index,

rather than site class, the curves must be conditioned after fitting to ensure

that the dominant height corresponds to the site index at the index age.
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or site index detemination can be made: 

(1) For a long series of plot measurements which have passed through the index age, 
site index can ne taken directly as the dominant height at the index age. 

(2) For series of measurements which do not pass through the index age, an equation 
such as the Schumacher equation can be fitted independently to each plot and 
used to predict the dominant height at the index age, which is then taken as 
the site index for the plot. 

(3) For temporary plot data, site class can be assigned on the basis described 
above under the maximum-minimum method of fitting 8i te curves. This method 
should not be used with PSP data as it is wasteful of the information inherent 
in such dat a. 

(4) An existing set of site curves can be used to assign site class to the plots. 
Alternatively, hand- drawn curves can be made specially for a particular analysis, 
to classify plots. This technique is useful when existing curves are almost 
satisfactory, but of not quite the correct curvature or one wishes to approxi­
mate hand-drawn curves by an equation. 
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Multiple regression can then be used to fit a model which relates Ho to A and S 
using various different transformations. Two types of model have been used: 

(1) Constrained models, for use with site index curves, where height is expressed 
relative to site index and age relative to index age A .• The regression fitted 

1 
is one without an intercept. An example would be the model: 

This kind of model is forced to give a dominant height Ho equal to site index 
S When the age is equal to the index age A;. 

(2) Unconstrained models, with an intercept term. When used with site index, 
rather than site class, the curves must be conditioned after fitting to ensure 
that the dominant height corresponds to t;,e site index at the index age. 
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Some examples of the types of unconstrained models that can be fitted are:

Ho
= b A + b1A + b2S + b3A° + b4A20

log Ho = 130 + bl/A + b2S + b3S/A -(l4)

Equation (13) is based on the quadratic equation. See figure A.2.1(e) in Appendix A
for the shapes that a single curve may take. Obviously for si-te index curve% only one case

of the several possible shapes is desired. Equation (14) is based on the Schumacher equa-
tion, or figure A.2.1(c).

An infinite variety of other models is possible. In all cases, it is essential to

plot the curves after fitting and to overlay them on a graph of the data to ensure thaeT the

trends ve accurately followed. No reliance can be placed on the statistical parameters
(e.g. R 9 residual standard deviation) associated with multiple regression in determing the
suitability of the curves.

When site index is used, as opposed to site class, then it will be found that if the

curves are plotted, the predicted dominant height Ho at the index age Al is generally not

equal to the site index S. This is because there is no constraint in the fitting process

to bring about this coincidence. Curves for selected real site index values S* are graphed

by calculating the statistical site index S required in the model to give a line passing
through S* at A..

Thus from model (13) we have:

3*
b0 + b1Ai + b2S + h3-i.

+
b4Ai

2 -(15)

,

S = (S* b bA bA
b2 + b3Ai)0 11 4,

or fram model (14) we have:

log S* = b +b /A + b S + b.S/A.
0 1 i 2

S = (log S* 1)0
b,Ai )/(b2 + b3 /Ai

)

(13 )

(15 )

(16)

The necessity for conditioning site index curves and the mysterious and confusing

distinction between statistical site index S and real site index S* has led many workers to

use models of the constrained type described above. Unfortunately, it is often the case

that many standard multiple regression programmes do not have a facility for fitting equa-

tions without an intercept term, so that this qption is not available to the research worker.

With si-be class curves, the problem does not arise, since there is no requirement

for the curves to pass therough a particular point.

Multiple regressicn techniques have the advantage of great flexibility in the typeof

model adopted They have the disadvantages of requiring a p.tiori estimationof site index, of

being inefficient statisticallyin not making useof the nested na-bureofRSP data. and of being

based on the invalid assumption that the site variable is known to a high degree of precision.
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Site Assessment Models Based on Ehvironmental Factors

Si-te index or site class curves are Obviously only useful as a tool for predicting

production potential when applied to existing stands. A large class of forest management

decisions require some assesmnent of potential production of a given species before it has

been established or at least very early in the life of young stands.

This is only possible in two types of situation:

Very generalized predictions as to maximum productivity in a given region by

comparison with optimal productivity of similar forests growing under similar

environmental conditions eiseWhere in he world.

More detailed prediction of site class with reference to a particular set of

height/age curves for a given species by construction of a functional relation-

ship for forests already established in the region in questions between site

class and enviramnental factors such as soil nutrientss depth and textures

altitudes aspect and rainfall.

The first approach is particularly relevant for mixed natural forests. As far as

man-made uniform forests are concerneds it corresponds more to the phase of species and

provenonce selection than to that of detailed yield prediction with which this manual is

concerned.

5.1.3.1 Functional models for site class rediotion

Si-te class prediction models are constructed in the following stages:

Construction of site index or site class curves from permanent sample plots in

existing forest,

Collection of enviramnental data frcm permanent and/ or temporary plots. Each

plot is also assigned a site class on the basis of dominant height and age from

the site index curves. The environmental data collected should correspond to

the suggestions given in section 3.2.3.

The various environmGntal variables are trensformed and selected as described

in the following sections to produce a predictive model in the form:

S = b0 + b10e1 + b2.e2 + ....... + bn.en

where bOs bli etc0 are coefficients fitted by multiple regression and el to en

are relevant transformations of environmental variables.

Confidence limits for predictions can be defined from the methods given for

multiple regression in Appendix A. In generals it is also desirable to test

the function by comparison of actual and predicted site classes for an inde-

pendent set of data to that used to fit the function. This independent data

should preferably be from a different region from the main data to test the

regional stability of the prediction function.
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Site Assessment Models Based on Ehvironmental Factors 

Site index or site class curves are obviously only useful as a tool for predicting 
production potential when applied to existing stands. A large class of forest managanent 
decisions require sorne assessment of potential production of a given species before it has 
been established or at least very early in 'the life of yeung stands. 

This is only possible in two types of situation: 

Very generalized predictions as to maximum productivity in a given region by 
comparison with optimal productivity of similar forests growing under similar 
environmerrtal conditions eIsel-mere in the worldo 

More detailed prediction of si'te class with reference to a particular set of 
height/age curves for a given species by construction of a functional relation­
ship for forests already established in the region in question, between site 
class and environmental factors such as soil nutrients, depth and texture, 
altitude, aspect and rainfall. 

The first approach is particularly rel""""t for mixed natural forests. As far as 
man-made unifonn forests are concemedp it corresponds more to the phase of species and 
provencnce selection than to that of detailed yield prediction with which this manual is 
concerned. 

5.1.3.1 Functional modele for site claaa prediction 

Site class prediction models are constructed in the following stages: 

(1) Construction of site index or site class curves from permanent sample plots in 
existing forest" 

(2) Collection of environmental data from pennanent and/ or temporary plots. Each 
plot is also assigned a site class on the basis of dominant height and age from 
the site index curves, The environmental data collected should correspond to 
the suggestions glven in section 3.2.3. 

(3) The varicus environmental variables are tranefonned and selected as described 
in the foll~ding section, to produce a predictive model in the fonn: 

S bO + b1.e1 + b2.e2 + 0.,09 •• • + bn.en 

where bO, b1, etc. are coefficients fitted by multiple regression and e1 to en 
are relevant traneformationt3 of environmental variables . 

(4) Confidence limits for predic'tions can be defined from the methods given for 
multiple regression in Appendix A. In general, it is also desirable to test 
the function by comparison of actual and predicted site classes for an indE>­
pendent set of data to that used to fit "he function. This independent data 
should preferably be fran a different region from the main data to test t.he 
regional stability of the prediction :function. 
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5.1.3.2 Construction and selection of environmental variables

The total number of environmental variables measured may be quite large, possibly as

many as 100 per plot, whilst a usable model should contain the smallest possible number of

most easily measurable variables.

Reduction in the total number of variables can be achieved in several ways:

By synthesis of some items of information. For example, climatic data may be

synthesized to give the length of the wet sPason or growing season with tempera-

tures over 6° C, or average temperatures during the wet season or more complex

techniques based an evapotranspiration formulae.

Statistical selection of the most significant variables. Principal components

analysis can be used for this, but it is perhaps simpler to use stepwise multiple

regression analysis.

Graphical analysis of variables considered likely to be most important as limiting

factors in growth, selecting anly those with definite and obvious relationships

with site class.

The actual measured variables should if possible be transformed in order to give

values that are likely to be correlated with growth. The most obvious example is aspect,

which may be measured in degrees from 0 to 360, where values around zero and 360 both corres-

pond to northerly directions. Taking the sine of the angle divided by 2 gives an aspect

code between zero for northerly directions and one for southerly slopes.

5.1.3.3 PrOblems in the a lication of site assessment functionsI
To be effective, a site assessment model should be described in terms of predictor

variables that are easily measurable. They should also have a relatively high correlation

coefficient, preferably over 0.8 with 20 or more points. Otherwise the relationship may be

statistically significant, but of no practical use for prediction purposes because of low

precision. The predictive equation should also have as few predictor variabls as possible,

preferably not more than three or four.

The predictor variables should be quantities which are readily determinable using

conventionally available equipment.

An example is shown in figure 5.8 of a predictive model which fulfils these criteria.

It is based an a single variable, which is the number of days in the growing season exceeding

6°0. Site index is expressed in terms of mean annual volume increment per annum at its

maximum.

The fewer predictor variables are involved in a model, the more likely it is to be

usable over a wide region. With many predictor variables, the model becomes very sensitive

to the relationships between them, especially if some of the predictor variables are

highly correlated. Consequently, regional shifts in the balance between predictor varia-

bles can easily invalidate a complex model.
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5.1.3.2 Construction and selection of environmental variables 

The total number of environmental variables measured may be quite large, possibly a s 
many as 100 per plot, whilst a usable model should contain the smallest possible number of 
most easily measurable variables. 

Reduction in the total number of variables can be achieved in several ways: 

By syntheSiS of some items of information. For example, climatic data may be 
synthesized to give the length of the wet s ~ason or growing saason with tempera.­

o 
tures over 6 C, or average temperatures during the wet Besson or more canplex 
techniques based on evapotranspiration formulae. 

Statistical selection of the most significant variables. Principal components 
analysis can be used for this, but it is perhaps simpler to use stepwise multiple 
r~eBBian analysis. 

Graphical analysis of variables considered likely to be most important as limiting 
fact ore in growth, selecting only those with definite an~ obvious relationships 
with site class. 

The actual measured variables should if possible be transformed in order to give 
values that are likely to be correlated with growth. The most obvious example is aspect , 
which may be measured in degrees from 0 to 360, where values around zero and 360 both corres­
pond to northerly directions. Taking the sine of the angle divided by 2 gives an aspect 
code between zero for northerly directions and one for southerly slopes. 

5.1.3.3 Problems in the application of site assessment functions 

To be effective, a site assessment model should be described in terms of predictor 
variables that are easily measurable. They should also have a relatively high corre1atirnl 
coefficient, preferably over 0.8 with 20 or more points. otherwise the relationship may be 
statistically significant, but of no practical use for prediction purposes because of low 
precision. The predictive equation should also have as few predictor variab1s as possible, 
preferably not more than three or four. 

The predictor variables should be quantities which are readily determinable using 
conventionally available equipment. 

An example is shown in figure 5.8 of a predictive model which fulfils these criteria. 
It is based on a single variable, which is the number of days in the growing season exceeding 
6°C. Site index is expressed in terms of mean annual volume increment per annum at its 
maximum. 

The fewer predictor variables are involved in a model, the more likely it is to be 
usable over a wide region. With many predictor variables, the model becomes very sensitive 
to the relationships between them, especially if ' some of the predictor variables are 
highly correlated. Consequently, regirn>a1 shifts in the balance between predictor varia-
bles can easily invalidate a complex model. 
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Si-te assessment model for Scotch Pine (E. sylvestris)

forests in Sweden. Average productivity of regions is

plotted against mean number of days exceeding 6°C per

year. (Reproduced from Fries, J., 1978 "The assessment

of growth and yield and the factors influencing it"

Special paper to 8th World Forestry Congress, Djakarta)
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5.2 STATIC MnaTIODS OF PREDICTING YIELD

Sta-tic yield prediction methods are those in which yield is predicted directly as a

function of age, si-te class and the history of stand density. The methods are static in the

sense that the resultant yield functions do not permit any variation in the history of stand

treatment, except into broad classes of alternative thinning treatments that are already
present in the data.

The components of yield that are of major interest to the forest manager are volume
and mean diameter. To determine the volume of stands requires a knowledge of stem numbers
and height, as well as mean diameter. Stem numbers are usually the basis for defining

thinning treatment, whilst height is the most common means of site classification.

In this section, static methods of predicting mean diameter will be considered.
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Figure 5.8 

Site assessment model for Scotch Pine (P. sylvestris) 
forests in Sweden. Average productivity of regions is 
plotted against mean number of days exceeding 6~ per 
year. (Reproduced from Fries, J., 1978 "The assessment 
of growth and yield and the factors influencing it" 
Special paper to 8th World Forestry Congress, Djakarta) 

m'/ha 
8 " 

1/ 
/ 

LYI " 
6 

/7 " 

2 
V I", 

/' 

V" 

/ 

100 120 140 160 180 200 
daY' ~+6·C 

5.2 STATI C MEI'HODS OF PREDIC TING YIELD 

Static yield prediction methods are those in which yield is predicted directly as a 
function of age, site class and the history of stand density. The methods are statie in the 
sense that the resultant yield functions do not penni t any variation in the history of stand 
treatment, except intc broad classes of alternative thinning treatments that are already 
present in the data. 

The components of yield that are of major interest to the forest manager are volume 
and mean diameter. To determine the volume of stands requires a knowledge of stem numbers 
and height, as well as mean diameter. Stem numbers are usually the basis for defining 
thinning treatment, whilst height is the most common means of site classification. 

In this section, static methods of predicting mean diameter will be considered. 
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Figure 5.2

Sha .e of the relationshi between mean diameter

and dominant_height

(a) With temporary plot data, a scatter diagram is 6btained. The true

shape of the diameter/height relationship is difficult to define.
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(b) With thinning experiment data, the shape of the relationship and

its dependence on stand density is very clear. A represents the

lightest thinning and D the heaviest.
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Figure 5.9 

Shape of the relationship between mean diameter 
and dominant height 

(a) With temporary plot data, a scatter diagram is obtained. The true 
shape of the diameter/height relationship is difficult to define. 
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5.2.1 Gra bical Methods based on the Diameter/Height FUnction

When data from a mass of temporary plots is graphed with mean diameter on the verti-

cal axis and dominant height an the horizontal axis, a diagram is obtained similar to figure

5.9a. If the data is from a thinning experiment, something like figure 5.9b is obtained.
Treatment A represents the lightest thinning, i, e. the heaviest stockingond Treatment D is

the heaviest thinning, with the lowest stockings.

It can be seen that the curve is concave with respect to the horizontal axis. With
temporary plot data or with permanent plots, a series of handdrawn curves can be constructed

in a manner exactly analogous to that described in section 5.1.2.1 for site index curves,

except that here the curves demarcate differences in stand history rather than si-te class.

With temporary plot data2 the shape of the curve may be defined basically from the

upper and lower envelopes of the scatter diagram, but obviously the curve shape can be easily

misconstrued as a result of a few exceptional or anomalous points and remains largely a

matter for subjective judgement. With permanent plot data on the other hand, the main curve

trends are readily visible from the slope of the lines joining remeasurements on the same

plot.

Height is used on the horizontal axis as a sitedependent indicator of age. Graphs
can be plotted using age instead, but in this case a separate set of curves is needed for

each site class.

Once a set of curves has been drawn, the stocking history represented by each density

class must be determined. This is discussed in liection 5.2.3.

Handdrawn curves can be expressed as equations by using one of the various approxi-

mation methods described in Appendix A.

5.2.2 Direct Statistical Estimation of Mean Diameter Prediction FUnctions

Functions can be fitted directly to mean diameter data by methods analogous to those

used for fitting site index curves. The predictor variables may be dominant height and stand
treatment history (designated by T)2 or may include age and site index as separate variables

instead of as the combined variable dominant haight. The methods that may be used to fit the

functions include:

(i) With temporary plot data:

Sort data by diameter within height classes and assign an order number

after sorting. Adjust order numbers within each height class onto a common

scale by the transformation:

T = iin

where i is the order number within a heied class and n is the number of

points within the class. T is an index of treatment history. A multiple

regression of one of the types discussed below can then be fitted using T

as an independent predictor variable.

Fit amean trend line by simple regression of mean diametercm dominant height

and then construct proportional or parallel (anamorrhic) sets of curves.
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5. 2• 1 Graphical Methods based on the DiametertHeight Function 

When data fran a mass of temporary plots is graphed with mean diameter on the verti­
cal axis and daninant height on the horizontal axis, a diagram is obtained similar to figure 
5.9a. If the data is from a thinning experiment, something like figure 5.9b is obtained. 
Treatment A represents the lightest thinning, i. e. the heaviest stocking, and Treatment D is 
the heaviest thinning, with the lowest stockings. 

It can be seen that the curve is concave with respect to the horizontal axis. With 
temporary plot data or "ith permanent plots, a series of hand-drawn curves can be constructed 
in a manner exactly analogous to that described in section 5.1.2.1 for Bite index curves, 
except that here the curves demarcate differences i.n stand history rather than site class. 

With temporary plot data, the shape of the curve may be defined basically from the 
upper and lower envelopes of the scatter diagram, but obviously the curve shape can be easily 
misconstrued as a result of a few exceptional or anomolous points and remains largely a 
matter for subjective judgement. With permanent plot data on the other hand, the main curve 
trends are readily visible from the slope of the lines joining remeasurements on the same 
plot. 

Height is used on the horizontal axis as a site-dependent indicator of age. Graphs 
can be plotted using age instead, but in this case a separate set of curves is needed for 
each site class. 

Once a set of curves has been drawn, the stocking history represented by each denSity 
class must be detennined. This is discussed. in section 5.2.3. 

Hand-drawn curves can be expressed as equations by using one of the various approxi­
mation methods described in Appendix A. 

5. 2• 2 Direct Statistical Estimation of ~!ean Diameter Prediction Functions 

Functions can be fitted directly to mean diameter data by methods analogous to those 
used for fitting site index curves. The predictor variables may be dominant height and stand 
treatment history (designated by T), or may include age and site index as separate variables 
instead of as the combined variable dominant height. The methods that may be used to fit the 
functions include: 

(i) With temporary plot data: 

Sort data by diameter within height classes 
after sorting. Adjust order numbers tlithin 
scale by the transformation: 

T = i/ n 

and assign an order number 
each height class onto a canmon 

where i is the order number within a height class and n is the number of 
points wi thin the class. T is an index of treatment history. A multiple 
regression of one of the types discussed below can then be fitted using T 
as an independent prediotor variable. 

Fit a mean trend line by simple regression of mean diameter on daninant height 
and then construct proportional or parallel (anamorphic) sets of curves. 
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(ii) With permanent plot data:

Simple nested regression, as described in section 5.1.2.2 for site index

curves. This depends on being able to find a transformation for the data

that will result in a figure like figure 5.5a or 5.5b for a common slope or

common intercept model. The Schumacher equation may be suitable or a simpler

transformation of the type:

Dg . a + b.Hok

Where k is a power between O and 1.

Multivariate nested regression, either using the conditional variable tech-

nique described in Appendix A2.9 or using more advanced multistage regression

techniques.

Cbnventional multiple regression, after assigning a treatment history value

T to each plot. This may be done in various ways, including a variation on

the sorting method described above for temporary plots in which average

values of T calculated for each measurement are taken for plots managed

according to a consistent thinning schedule.

With thinning experiments, T values may be assigned for each treatment simply

as 1, 2, 3 etc. if the treatments can be clearly ordered according to their

degree of intensity.

A very common approach to fitting multiple regression models to permanent

plots is to use spacing relative to hsight or even simply stocking, as

indices of treatment history. This method can appear to work quite well,

but introduces special conceptual difficulties which are discussed below in

section 5.2.3.

The actual mathematical function that is used for the basis of the fitting method

is not very importante provided it is capable of assuming the correct shape. This will be

a curve that is gently concave with respect to the horizontal axis, i.e. bending downwards

away from the straight line, as shown in figure 5.9b. Suitable models are:

Dg b0 + b1.111.b + b2.T + b3.Ho.T + b4.11402

Dg = b0 + b1.1iok + b2.T + b30Hok.T

The second model can be fitted using trial values of k between 0 and 1 with linear

regression methods, selecting a value that gives a maximum coefficient of correlation or it

can be fitted directly by nonlinear regression.

Whatever function is used to fit the data, the results should be examined graphically,

overlaid an the data, for anomolous behaviour.

502.3 Defining TreatmentI to in Tenme of Stocking and Age

The claases of treatment history may be defined graphically or by a numerical method,

as discussed in sections 5.2.1 or 5.2.2 respectively. Once this has been done, then the

actual stockings involved may be determined by a process of tabulation. If the function or

graph relates mean diameter to dominant height, then for each treatment class, construct a
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(11) IIi th pennanent plot data: 

Simple nested regression, as described in section 5.1.2.2 for site index 
curves. This depends on being able to find a transfonnation for the data 
that will result in a figure like figure 5.5a or 5.5b for a canmon slope or 
canmon intercept model. The Schumacher equation may be sui table or a Simpler 
transfonnation of the type: 

k 
Dg a a + b.Ho 

where k is a power between 0 and 1. 

Multivariate nested regression, either using the conditional variable tech­
nique described in Appendix A2.9 or using more advanced multistage regression 
techniques. 

Conventional multiple regression, after assigning a treatment history value 
T to each plot. This may be done in various ways, including a variation on 
the sorting method described above for tElDporary plots in which average 
values of T calculated for each measurenent are taken for plots managed 
according to a ccmsistent thinning schedule. 

With thinning experiments, T values may be assigned for each treatment simply 
as 1, 2, 3 etc. if the treatments can be clearly ordered according to their 
degree of intensity. 

A very canmon approach to fitting multiple regression models to pennanent 
plots is to use spacing relative to height or even simply stOCking, as 
indices of treatment history. This method can appear to work quite well, 
but introduces epecial ccmceptual difficulties which are discussed below in 
section 5.2.3. 

The actual mathematical function that is used for the basis of the fitting method 
is not very important, provided it is capable of assuming the correct shape. This will be 
a curve that is gently concave with respeot to the horizontal ~s, i.e. bending downwards 
away from the straight line, as shown in figure 5. 91>. Suitable models are: 

2 Dg a bO + bl.Ho + b2.T + b3.Ho.T + b4.Ho 

k k 
Dg - bO + bl.Ho + b2.T + b3.Ho .T 

The second model can be fitted using trial values of k between 0 and 1 with linear 
regression methode, selecting a value that gives a maximum coefficient of correlation or it 
can be fitted directly by nonlinear regression. 

Whatever function is used to fit the data, the results should be examined graphically, 
overlaid on the data, for anomolous behaviour. 

5.2.3 Defining Treatment History in Tenns of Stocking and Age 

The classes of treatment history may be defined graphically or by a numerical method, 
as discussed in sections 5.2.1 or 5.2.2 respectively. Once this has been done, then the 
actual stockings involved may be determined by a process of tabulation. If the function or 
graph relates mean diameter to dominant height, then for each treatment class, construot a 
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table of height classes and determine the average stocking per ha in each class. The height

classes can subsequently be converted into classes of age and si-te index by reference to the

relevant site index curves.

When the mean diameter function has been fitted using stocking or relative spacing
as an index of treatment historys then it is not necessary to determine the stocking corres-

ponding to a particular treatment hietory. Howeverg the coefficients determined for auch a

function are dependent upon the particular relationship between age and stocking observed in

the data. Failurs to realise this can mean that the function may be used for age/stocking

ccmbinations not represented in the dates giving more or less erroneous results.

502.4 Static neld Functions Predictin, Basal Area or Volume-------------

As well as constructing static yield functiane to predict mean diametergit is ncesie

ble to use identical techniques to predict basal area or volume per hectare. The actual

shapes of the functions willbesunewhat different and will be as shownin figures 5010a or b.

In general9 use of mean diameter involves certain advantages in terms of overall

model simplicity. If basal area or volume are predicted9 then it is usually necessary to

have some function which will allow mean diameter to be determined subsequently.

Alsos with basal area or volume per hectare9 a large component of the response to

different stand densities is siMply the multiplicative effect of different stockings. With

the mean diameter functiong this influence is removed: so that resultant relationehips focus

upon the real effects of competition.

5.2.5 Limitations of Static Yield Models

Static yield models have three significant disadvantages:

It is difficult to combine together data from stands with radically different

or variable treatment histories and obtain a consistent and effectivy yield

function.

Once the model has been constructed9 it cannot be used to predict yields for

alternative treatments apart from those represented by the treatment histories

incorporated in the model.

Determination of thinning yields is difficult9 unless accurate records of the

diameters of removed stems are kept. Very often with PSPa or even with experi-

ments such data are unavailable.

On the other hands static models are undeniably easier to construct and 11236 than

dynamic models andgin appropriate situations9 at least as accurate.

5.3 DYNAKIC METHODS OF PREDICTING GROWTH AND YIELD

A dynamic model is one which models Tates of change within a system. As far as

forest yield studies are concerned9 this means thmt the basic prediction is of increment in

diameter9 basal area or volume.
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table of height classes and determine the ave~e stocking per ha in each class. The height 
classes can subsequently be converted into classes of age and site index by reference to the 
relevant site index curves. 

When the mean diameter :function has been fitted using stocking or relative spacing 
as an index of treatment history, then it is not nscessary to detennine the stocking corres­
ponding to a particular treatment history. However, the ooefficients detennined for such a 
function are dependent upon the parti cul ar relationship between age and stocking observed in 
the data. Failure to realise this can mean that the function may be used for age/stocking 
combinations not represented in the data, giving more or less erroneous results. 

5.2.4 Static Yield Functions Predicting Basal Area or Volume 

As well as constructing static yield functions to predict mean diameter, it is possi­
ble to use identical techniques to predict basal area or volume per heotare. The aotual 
shapes of the functions will be somewbat different and will be as shown in figures 5.10a or b. 

In general, use of mean diameter involves certain advantages in tenns of OITerall 
model Simplicity. If basal area or volume are predicted, then it is usually necessa.ry to 
have some function which will allow mean diameter to be detennined subsequently. 

Also, with basal area or volume per hectare, a large component of the response to 
different stand densities is simply the multiplicative effect of different stockings. With 
the mean diameter :function, this influence is remOlTed p so that resultant relationships focus 
upon the real effects of competition. 

Limitations of Static <ield Models 

Static yield models have three significant disadvantages, 

(i) It is difficult to combine together data from stands with radically different 
or variable treatment histories and obtain a consistent and effective yield 
:function. 

(ii) Once the model has been constructed, it cannot be used to predict yields for 
alternative treatments apart from those represented by the treatment histories 
incorporated in the model. 

(iii) Detennination of thinning yields is difficult, unless accurate records of the 
diameters of remOlTed stems are kept. Very often with PSPS or even with experi­
ments such data. are unavailable. 

On the other hand, static models are undeniably easier to construct and use than 
dynamic models and, in appropriate situations, at least as accurate. 

5.3 DYNAMIC MEI'IIODS OF PREDICTING GROlfl'll AND YIELD 

A dynamic model is one which models rates of change within a system. As far as 
forest yield studies are concerned, this means t hat the basic prediction is of increment in 
diameter, basal area or volume. 
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Sha e of the volume and basal area functions

over dominant height

Volume per hectare an daninant height. Note that the solid line

represents a limit not exceeded at very high stand densities. If

logarithmic scales are used an both axest the relation appears
as a straiglot line.
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Figure 5.10 

Shape of the volume and basal area functi ons 
over daninant heie;ht 

(a) Volume per hectare on daninant height. Note that the solid line 
represents a limit nat exceeded at very high stand densities. If 
logarithmic scales are used on both axes, the relation appears 
as a straight line. 
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(b) Basal area per hectare on dominant height. The solid line is a 
limit not exceeded at very high stand densities. 
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5.3.1.1 Basal area increment as a function of dominant hei t

Stand basal area increment for most plantation species, when plotted over daninant

height, shows the following type of trend:

maximum increment
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Dynamic models have the advantage of being more realistically representative of ths

true cause and effect dependence between stand density and stand yield than are static yield

models. They are free from the limitation that the data should represent a consistent series

of stand histories and consequently can be used as the basis for analysing and synthesising

data from very diverse types of experiments and permanent sample plots.

Growth models are based around functions that predict increment (of mean diameter,

basal area or volume) over short time intervals, as a function of stand density, expressed

in terms of basal area and/or age and stand age and site class. The latter two variables

may be combined as dominant height as was done for the static yield models.

To produce yield predictions, the growth function must either be integrated mathe-

matically or iteratively summed over a succession of years. This latter process is usually

achieved by writing a small computer programme, which becomes by definition a computer

simulation model of forest growth.

In the sections following, these techniques are discussed in more detail., with parti-

cular reference to functions of stand basal area increment. The techniaues are not greatly

affected by the use of mean diameter or volume as alternative parameters, but basal area

increment is perhaps the simplest to model.

5.3.1 The Basal Area Increment Function

Ha Hb Hc
Ho

where I is current annual basal area increment per ha, Ho is dominant height and N1

etc, arg different levels of constant stocking, with N4 greater than N3, which is greater

than N2' and so on. The curve has three regions which can be distinguished for the purposes

of practical data analysis:
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Dynamic models have the advantage of being more realistically representative of the 
true cause and effect dependence between stand density and stand yield than are static yield 
models. They are free from the limitation that the data should represent a consistent series 
of stand histories and consequently can be used as the basis for !Illalysing and synthesiSing 
data from very diverse types of experiments and ps:nnanent sample plots. 

Growth models are based around functions that predict incl'ement (of mean diameter, 
basal area or volume) over short time intervals, as a function of stand density, expressed 
in tenns of basal area and/or age and stand age and site class. The latter two variables 
may be combined as dominant height as was done for the static yield models. 

To produce yield predictions, the growth function must either be integrated mathe..· 
matically or iteratively summed over a succession of years . This latter process is usually 
achieved by writing a small computer programme, which becomes by definition a computer 
simulation model of forest growth. 

In the sections following, these techniques are discussed in more detail, with parti­
cular reference to functions of etand basal area increment. The techniques are not greatly 
affected by the use of mean diameter or volume as alternlltive parameters, but basal area 
increment is perhaps the simplest to model. 

5.3. 1 The Basal Area Increment Functi on 

5.3.1.1 Basal area increment as a function of dominant height 

Stand basal area increment for most plantation species, when plotted over daninant 
height, eho'1B the follOwing type of trend. 

maximum increment 

" 

" N1 

where I is current annual basal area increment per ha, Ho is dominant height and N1, N2, 
etc. ar~ different levele of constant stocking, with N4 greater than N

3
, which is greater 

than N2, and so on. The curve has three regions which can be distingttlshed for the purposes 
of practical data analysis: 
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The range Ha te Hb, shows increment rising sharply to a maximum and then falling

again. There are strong differences between stocking classes. This part of

the curve is difficult to fit with simple regression models. With some species,

it occurs at too early an age to be represented in sample plot data.

The range Hb to E., shows a strong decline in basal area increment with time

(increasing Ho) and marked differences between stocking classes. This part of

the curve can easily be modelled by eeveral of the regression functions of the

type shown in figure A.2.1 in Appendix A. The following model includes the

effect of stocking:

In 1g b0 + b1 H b2 N Ho-k

The coefficient k can be given assumed values (1, 2 etc.) or fitted by nonlinear

regression. Natural logarithms (base e) are used to transform I as this sim-

plifies the use of an integral form of this model (see section 5f3.3).

Beyond the differences between stocking classes becomes negligible and the

basal area increment will be almoet constant. This part of the curve is beyond

the culmination of mean annual volume increment in most epecies9 but will be

relevant to yield prediction in long rotation sawlog stands. Model (1) above

produces a satisfactory type of response in this region.

It is difficult, as has been noted, to find a well behaved linear function that fits

the entire range of this curve without bias over any portion of it. Because the point Hi°

usually occurs early in the life of the stand, it is better to fit a function such as (1)

above only to data beyond the maximum Igi and to predict standing basal area G at Hb from

a yield function in terms of stocking. For example:

Go eel:31N+ ble -(2)

where Go is the initial basal area, at a. defined dominant height 14109 and depends only an

the stocking at that point in time, regardless of previous stand history.

5.3.1.2 Other methods of redictin basal area increment

Baaal area increment can be predicted as a function of aga or of standing bezel area.

When age is need, different sets of increment curves are required for each si-te index class.

With standing basal areas eatisfaetory models cannot be Obtained for stands with very varia-

ble histories. Consequently, the prediction of basal area increment from daninant height

and stocking, as described above, is recommended.

5.3.1.3 L.ctinHreman_valisofincrementdata.

Increment data is alwaye vary variable. This in the combined effect of:

1, Year to year variation in increment due to climatic fluctuations.

2. Instrumental error. Simple measurement systems such as diameter tapes may have

tha same order of error as the increment being measured,
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1. The range Ha to '\ shows increment rising sharply to a maximum and then falling 
again. There are strong differences between stocking classes. This part of 
the curve is difficult to fit with simple regression models. With sane species, 
it occurs at too early an age to be represented in sample plot data. 

2. The range 1ft, to He shows a strong decline in basal area increment with time 
(incraasing He) and marked differences between st ocking classes. This part of 
the curve can easily be modelled by seversl of the regression fmlCtions of the 
type shown in figure A. 2. 1 in Appendix A. The following model includes the 
effect of stocking: 

The coefficient k can be given assumed values (1. 2 etc.) or fitted by nonlinear 
regression. Naturel logarithms (base e) are used to transfona I as this sim­
plifies the use of an integral fom of this model (see section 5~3.3). 

3. Beyond He. the differences between stocking classes becanes negligible and the 
basal area increment will be almost constant. This part of the curve is beyond 
the culmination of mean annual volume incrsnent in most species, but will be 
relevant to yield prediction in long rotation sawlog stands. Model (1) above 
produces a satisfactory type of response in this region. 

It is difficult, as has been noted, to find a well behaved linear function that fits 
the entire range of this curve without bias over" any portion of it. Because the point Ht, 
usually occurs early in the life of the stand, it is better to fit a function such as (1) 
above only to data beyond the maximum Igt and to predict standing basal area G at Hb from 
a yield function in tel'l1ls of stocking. For example: 

-(2) 

where Go is the initial basal area, at a defined dominant height Hj" and depends only on 
the stocking at that point in time, regardless of previous stand history. 

5.3.1.2 other methods of predicting basal area increment 

Basal area. incrAnent can be predicted as a function of age or of standing basal area. 
When age is used, different sets of increment curves are required for each site index class. 
With standing basal area, satisfactory models cannot be obtained for stands with very varia­
ble histories. Consequently, the prediction of basal area incrsnent fran daninant height 
and stOCking, as described above, is recanmended. 

5.3.1.3 Practical problsns in analysis of increment data 

Increment data is always very variable. This is the combined effect of: 

1. Year to year variation in incrEment due to climatic fluctuations . 

2. Instrumental error. Simple measurEment systems such as diameter ta.pes may have 
the same order of error as the incrEment being meamll'ed. 
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A consequence of this is that large amounts of data are required to obtain satis-

factory estimates of the regression coefficients. Furthermore9 because the effects of

different stand densities show out only weakly through the general variation9 extrene

differences in stand density must be present in the data if a density-depeadent model is

to be constructed.

The best increment fnnctions may maly have coefficients of determination of between

0.7 and 0.8. To test the suitability of a particular model under these circumstancee9 it
must be used in its integral form (or as part of a simulation model) to predict final yields.

Small biases in the increment function which do not show up graphically or by direct residual

analysis can produce large errors in yield prediction because error in the increment functicn

5.3.2 Constructin a Growth Model with sualag22±12mLa121_jantILLE2a2-1222
.1n2ihatia

It is possible to develop growth models based on spacing experiments of the type
described in section 29 using simplified graphical techniques? which can give accurate pre-

dictions for the grouth of stands subject to a variety of different thinning treatments.

The basis of this method is March's hypothesis:

"The increment of thinned stands is equivalent to that of unthinned stands of the

same stocking (measured in stems per unit area) and density (neanured in basal area

or volume per unit area)? but of younger age (i .e. the age at whieh they had the

same basal area or volume per unit area)". 1/

This hypothesis has been vulidated mith several sub-tropical species and appears to

give accurate and nnbiased estimates of growth follomdng thinning9 provided that the growth

is measured over not less than 3 years. The method proceede as follows:

First graph the spacing experiment reaults using smoothed means for each

stocking level? using baaal area aver age (figure 5.11).

Define the thinning treatment to be used in terms of both the basal area at

-which thinning takes place and the basal area and stocking to be removed.

Suppose for example we have a treatment schedule as follows:

Plant at 1 300 trees/bao

1/ Marsh? E.K. and Burgers? T.F. 1973. The Reeponse of Even-aged Pine Stands to Thinning.

Forestry in S. Africa? 14: 103-111.

Thin,' no. Thin at Basal Area
after N after

Thinxthg

1 28 22 900

2 35 28 500

3 35 30 300

CF 35 clearfell
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A consequence of this is that large amounts of data are required to obtain satis­
factory estimates of the regression coefficients. Furthexmore, because the effects of 
different stand densities show. out only weakly through the general variation, erlreme 
differences in stand density must be present in the data if a density-dependent model is 
to be constructed. 

The best incrment functions may only have coefficients of detexminstion of between 
0.7 and 0.8. To test the suitability of s particular model under these circumstances, it 
must be used in ito integral foxm (or as part of a simulation model) to predict final yields. 
Small biases in the increment function which do nct show up graphically or by direct residual 
analysis can produce large errors in yield prediction because error in the increment function 
is always cumulative. 

Constructing a Growth Model with Spacing Experiment Det... 14arsh's Response 
I\ypotheais 

It is possible to develop growth models based on spacing experiments of the type 
described in section 2, using simplified graphical techniques, which can give accurate pre­
dictions for the growth of stands subject to a variety of differen"t thinning treatments. 
The basis of this method is Marsh's hypothesis: 

"The increnent of thinned etands is equivalent to that of unthinned stands of the 
same stocking (measured in aterns per unit area) and denSity (measured in basal area 
0:1' volume per unit area) , but of younger age (i. e. the age at which they had the 
sarne basal area or volume per unit area)". 11 

This hypothesis has been validated with several sub-tropical species and appears to 
give accurate and \U1biaeed estimates of growth following thinning, provided that the grCl>ri:h 
is measured over not less than 3 years. The method proceede as follows: 

(1) First graph the spacing elq)eriment results using smoothed means for each 
stocking level, using basal aroo over age (figure 5.11). 

(2) Define the thinning treatment to be used iii terms of both the basal area at 
which thinning takes plaoe and the basal area and stocking to be renoved. 

Suppose for example we have a treatment schedule 0.8 foll"",,: 

Plant at 1 300 trees/ha. 

Thin.' noo 
G after N after 

Thin at Basal Area 
Thinning Thinning 

1 28 22 900 

2 35 28 500 

3 35 30 300 

CF 35 clsarf'ell 

The ReBll_ onse of Even-aged Pine Stands to Thinning. 11 . Marsh, E.K. and :Burgers, T.F. 1973. 
Forestry in S. Africa, 141 103-111. 
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Figure 5.11 

Analysis of spacing ""Periment 
using Marsh's h.ypothesis 
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(3) Draw the treatment schedule on the graph (broken lines on figure 5.11) and from
Marsh's hypothesis determine the time interval between thinningp.

Thin now Interval Real Amat Time of Thinuas

1 0-8 8 8

2 8.5-13.5 5 13

3 14.5-18.5 4 17

GP 20-23 3 20

( 4 ) Reconstruct the basal area/age relationship using the correct age axis for the

thinned stand. It is then possible to construct the various other yield stati-

stics for the stand in relation to age.

A variation an this method allows a single diagram to be used for construcing yield

curves for different site classes. This involves ueing dominant heightv instead of agep as
the x-axis of the graph. Heigirt is then used as a site-d endent transformatipn of a41(2 with
the age intervals being determined via the site index curves. This method can also be use3.

where the , pacing experiment data do not adequately cover a range of sitesp to provide hypo-

thetical yield tables for such sites. Note however that the stibstitution of dominant height

for separate site-age combinations may not always give a sufficiently accurate representation

of site-dependent responses.

Increment functions Obtained from permanent samp/e plots of uncontrolled spacing or

from tree increment cores can be used to construct curves for stand banal area of unthinned

stands at different stockingsv which may then be analysed graphically as above. This is
convenient when the users of a particular growth model do not have aceess to computing

equipment.

5.3.3 Conversion of Growth Models to Yield Modelz by Intefnmtion

5.3.3.1 Introduction

The mathematical integration of a banal area increment function for a given series
of thinning operations results in abasal area yield functionfor that thinning series. Mathe-

matical integration has advantages over simulation as a way of using a growth model in that

no special computing equipment is needed. On the other hand t many deceptively simple growth

models (e.g. equation (1) section 5.3.1.1) may be very difficult to integrate.

This method assumes an elementary knowledge of differential and integral calculus

an the part of the res earch worker.

5.3.3.2 Basic theory

If we have an increment function of the type shown below2
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(3) Draw the treatment schedule on the graph (broken lines on figure 5.11) and from 
Marsh's hypothesis detennine the time interval between thinnings. 

Thin nO ... Apparent Age Interval Real !£e at Time of ~in"g 

1 0-8 8 8 

2 8.5-13.5 5 13 

3 14.5-18.5 4 17 

CF 20-23 3 20 

(4) Reconstruct the basal a:rea/age rela:tionship using the correct age axis for the 
thinned stand. It is then possible to construct the various other yield stati­
stics for ·the stand in relation to age. 

A variation on this method allows a single diagram ·to be used for construcing yield 
curves for different site cla:sses. This involves using dominant height, instead of age, as 
the x-axis of the graph. Height is then used a:s a sit&-dependent tranBfonna~ioll of ~ .nth 
the age intervals being detennined via the site index ClU"res. ~'hl.s method can also be used 
where the "Pacing experiment data do not adilquately caver a range of S1. tes, to provide hype­
thetical yield tables for such sites. Not e however that the substitution of dominant height 
for separate site-a.ge cOOlbinations may not always give a sufficiently aocurate representati.on 
of sit&-dependent responses. 

Increment fUnctions obtained from pennanent sample plots of uncontrolled spacing or 
frOOl tree increment cores can be used to construct ourves for etand ba:sa.l area of unthinned 
stands at different stockings, "hich may then be a.ns.lysed graphically as abave. This is 
convenient when the users of a particular growth model do not have access t.o cOOlputillg 
equipment. 

Conversion of Gromh Models to Yield r~odels by Integration 

5.3.3.1 Introduction 

The mathematical integration of a basal area increment fUnction for a given series 
of thinning operations results in a basal area yield fUnction for that thinning series. Math~ 
matical integration has advnntages over simulation as a way of using a growth model il1 that 
no special computing equipment is needed. On the other hand, many deceptively Simple gl'owth 
models (e.g. equation (1), section 5.3.1.1) may be very difficult to l.ntegrate. 

This method assumes an elementary knowledge of differential and integral oalculus 
on the part of the research worker. 

5.3.3.2 Basic theory 

If we have an increment function of the type sho"" beloWI 
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where q is any growth rate (basal area, diameter or volume growth) and t is the time axis,

then the growth rate equation is represented very generally by:

q f(t)

1 qedt

)

Whilst the area under this increment curve is the total accumulated yield.. Thus the accu-

mulated yield up to time t, is given by:

(2)

Where Q0 is the accumulated yield at the start of the period, to.

For an unthinned stands, the basal area/age curve represente the integral function

equivalent to equation (2) ab ove with Q = 0 and t = 0e libnce any function fitted to data

from unthinned stands provides an alreagy integrat2d form of growth model. Consequently,

if any data from a spacing exp_eriment is fitted with a yield function dependent an stand
density, then that yield ftinction can be used to accurately predict the growth of thinned
stands. This is a generalization of Marsh's hypothesis to any type of growth function

using any variables.1/

5.3.3.3 Alicatio_pyrE 1 eld niosto ditya.r.ten thinning_keatments

If an integral yield model has been fitted to data from unthinned stands which

predicts basal area from dominant height and stocking, thus:

G = f(B. N)

Maialma504,1131.alca-14M.M.VAImmo

.1/ Marsh's hypothesic as discussed earlier is equivalent to integration of a function of
the form:

= f(G N)
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q 

where q is any growth rate (basal area, diameter or vollJlJle growth) and t is the time axis, 
then the growth ''ate equation is represented very generally by: 

whilst the area under this increnEllt curve is the total aCCUlllUlated yield. Thus the accu­
mulated yield up to time t, is given by: 

Q tt Qo + '1 q.dt 

where Qo is ·the accumulated yield at the start of the period, to. 

For an unthinned stand, the basal area/age curve represents the integral function 
equivalent to equation (2) above with Q - 0 and taO. &nee any function fitted to data 
fran un·thinned stands provides an alrea8.y integrat~ fo,," of growth model. Consequently, 
if any data from a spacing experiment is fitted Idth a yield function dependent on stand 
density, then that yield function can be used to accurately predict the growth of thinned 
s·tands. This is a generalization of Marsh's h;ypothesis to any type of growth function 
using any variables. 1 / 

5.3.3.3 Application of an intesml yield model to different thinning treatments 

If an integral yield model has been fitted to data fran unthinned stands which 
predicts basal area from daninant height and stocking, thus: 

G = f(H , N) 
o 

1/ )larsh' B h;ypothesis as discussed earlier is equivalent to integration of a function of 
the form: 
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then for this particular thinning the standing crop basal area after thinning will be:

75 -

Then if the stand is thinned at a dominant height Ht to a stocking Ntt the yield

up to the time of thinning will be:

is(Ht5 No) ( 2 )

where No is the initial stocking (after early mortality is accounted for). If the thinning
ratio (c.f. section 5.4) is:

--------

Tr/Gt

Whilst the yield at an interval t i after the thinning will be:

G. = Gt f ( .) - f(ili 9 Nt ) (4)

5.3.3.4 2...b21214a1P °f use ot_miattEal.21.211-_Et2A21

Figure 5012 shows data from a spacing experiment in Lin.u. stands at Kwirag

Tanzaniag designated EXperiment 345. In all there were 8 treatmentsg laid out systematicallyv

with 2 replicates for each treatment 'using rectangular plots of 0.08 ha. Figure 5.12 shows

only the data from 4 plots at stockings of 173g 3471 694 and 1 388 etems/ha. A model to

predict standing basal area was fitted to the Whole set of data (192 Observations) by
weighted multiple linear regressiont using the model:

In G =
bo 1,1

H*
b2E b3EH*

( 5 )

Where H* 1/(Ho - 1.3)

and E 100/,(-7

The model was weighted by G to avoid the excessive bial towards lower values that

often results when a logarithmic trsnsformation is used. An R of 0.95 was obtained with

coefficient values:

bo 4.0865

b1
1.5991

b2 0.647838

b3

The model is shown on figure 5.12 overlaid on data from 4 treatments.

( 3 )
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Then if the stand is thinned at a daninant height H to a stocking N , the yield 
up to the' time of thinning will be: t t 

where N is the initisl stocking (after early mortality is accounted for). If the thinning 
ratio (g.f. section 5.4) is: 

• .. 
Tr m :. % 
G' 

then for this pai'ticular thinning the standing orop basal area after thinning will be: 

G' ~ 
t 

whilst the yield at an interval t + i after the thinning will be: 

5.3.3.4 Example of use of an intepy.l :yield model 

Figure 5.12 shows data fran a spacing experiment in Pinus patula stands at Kwira, 
Tanzania, designated Experiment 345. In all there were 8 treatments, laid out systematically, 
with 2 replicates for each treatment using rectangular plots of 0.08 ho. Figure 5.12 shows 
only the data fran 4 plots at stocld.ngs of 173, 347, 694 and 1 388 etEms/ho. A model to 
predict standing basal area ""s fitted to the whole set of data (192 observations) by 
weighted multiple linear regression, USing the model: 

InG a b +b H*+bE+bEH* 
o 1 2 3 

where H* m l/(H - 1.3) 
o 

and E - 100/ IN 
The model was weighted by G to avoid the excessive bi~ to~ lower values thot 

often results when a logarithmic transformation is used. An R of 0.95 was obtained with 
coefficient values: 

b 4.0865 
0 

b1 1.5991 
b2 0.047e38 

b
3 -4.3063 

The model is shown on figure 5.12 overlaid on data fran 4 treatments. 



Figure 5.12 Spacing experiment 345 at Kwirat Tanzania,

in Pilaus patula stands
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It was desired to construct a yield table for stands planted at 1 100 stems/ha,

thinned once at 9 years using systematic thinning to 700 stems/ha and clear felled at

16 years.

For average sites, 9 years corresponded to a dominant height of 17 my and the

rotation age of 16 years to 24 m. The basal area at 9 years, prior to thinning, can be

calculated directly from equation (5):
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Figure 5.12 spacing uperiment 345 at ~., Tanzania, 
in Pinus patula stamls 
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It was desired to construct a yield table for stands planted at 1 100 stems/ha, 
thinned once at 9 years using systematic thinning to 700 stems/ha and clear felled at 
16 years. 

For average sites, 9 years o01'1'eeponded to a daninant height of 17 m, and the 
rotation age of 16 years to 24 m. The basal area at 9 years, prior to thinning, can be 
calculated directly fran equation (5): 
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H* = 1/(17 - 1.3)

= 0.0637

E 100//7170

= 3.02

ln
G9

- 4.0865 4. 1,5991 x 0.0637 0.047838 x 3.02 4.3063 x 3.02 x 0.0637

= 3.5043

G
9

= e3.5043 = 33.26 m2 /ha

Since the thinning from 1 100 to 700 stems/ha waa to be eystematice the proportion

of basal area removed would be the same as the proportion of stocking removed. From equa-
tion (3) abovee with Tr = 1.0 by definition:

Gi 222Zi_1229
1/33.26

21.17 m2/ha

Therefore the basal area extracted in thinning was:

33.26 - 21.17
e

= 12.1 m2/ha

tThe yield at clearfelling is obtained from equation (4)e Where f(H .2 N) corres-
ponds to equation (5) entered uith H = 24 m 700 stems/hal giving :t+19and N =

f(Ht+ie = 35.98

and f(Ht9 lit) is eqaation (5) entered using H = 17 m:

f(Ht9 = 26.97

so that basal area yield at clearfelling is given by:

= 21.17 + (35.98 - 26.97)
CF

30.18 m2/ha

5.3.3.5 aWtbalm.JELLIalxmletkj:Ajan2j1:22.to increment data

When no suitable spacing experiment data is available for direct fitting of the

integrated form of a yield modele then a growth model can be fitted to increment data from

permanent plots or stem analyses Which can easequently be integrated to give a yield model.
Mutterl/ proposed a gromth model of the type:

1/ Cluttery JO,. 1963. Compatible growth and yield models for Labially Pine, Forest

Sci. 9 (3): 354-371

H* - 1/(17 - 1.3) 

- 0.0637 

E ~ 100/ j1'"'1"OO 
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D 4.0865 + 1.5991 x 0.0637 + 0.047838 x 3.02 - 4.3063 x 3.02 x 0.0637 

- 3.5043 

:. 0
9 

= e3.5043 • 33~26 m2/he 

Since the thinning fran 1 100 to 700 stems/he wae to be systematic, the proportion 
of basal area removed would be the same as the proportion of stocldng removed. Fran equa,­
tion (3) above, with T - 1.0 by definitionl 

r 

at 
9 

- 700/1 100 

1/33.26 
2 

- 21.17 m /he 

Therefore the basal area extracted in thinning wae I 

G 
e 

- 33.26 - 21.17 
2 

- 12.1 m /ha 

The yield at clee.rfelling is obtained from equation (4), where f(H
t 

i' Nt) corres­
ponds to equation (5) entered with H - 24 m, and N - 700 stems/ha, giving: + 

f(Ht +
i

, Nt) ~ 35.98 

and f(H
t

, Nt) is equation (5) entered using H - 17 m: 

f(H
t

, Nt) = 26.97 

so that basal area yield at clearfelling is given byl 

a 21.17 + (35.98 - 26.97) 

_ 30.18 m2/he 

5.3.3.5 Fitting canpatible growth and yield models to increment data 

When no suitable spacing e:q>eriment data is available for direct fitting of the 
integrated form of a yield model, then a growth model can be fitted to increment data from 
permanent plots or stem analyses which can subsequently be integrated to give a yield model. 
Clutter!! proposed a growth model of the typel . 

11 Clutter, J .L. 1963. . Ccrnpatible growth and yield models for Loblolly Pine. Forest 
Sci. 9 (3): 354-371 



The height/áge/site index function:

Ho
-

fi(AS)

The basal area increment function, in terms of

height

or age and

and site index

I = f OH . N)
2 o'

or I f OH . G)
2 o'

or I =
f2(A'Nr,S)g

or I = f2(A1 G1 S)
g
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c.f. Clutter's model,

section 4.1.1.5 for an example

or other combinations of AIGOV,H0 on the right hand side.

basal area

and / or

stocking/ha

'g
= G(a + bS - inG)A-1 (6)

Where I is basal area increment/ha/year, S is site index and a and b are coefficients which

can be gstimated by linear regression by fitting the function:

(A + ln G) = a + bS
1E

(7)

where the expression on the left hand side is the dependent Y variable and site index S is

the predictor variable. This model integrates to give the yield equation:

lnG = a+bS- Ao (a +bS- In
Go)

(8)

A

where Gt is the yield at the end of the period and G is the yield at the start of the

period. No thinnings may occur duing the predictionointerval, but the basal area after

thinning becomes Go for predicting the basal area immediately prior to the next thinning.

5.3.4 Use of Growth Models b Simulation

5.3.4.1 aguirements for a simulation model

Simulation modelling is a much easier method of using a growth model than mathematical

integration in the majority of cases, but it does normally require access to a small computer.

To use a growth model by simulation, the following points munt be defined from permanent

sample plots or experimental data:

I • a(a + bS - lJl a)A-
1 

g 

- 78-

(6) 

where I is basal area increment/ba/year, S is site index and a and b 
can be fstimated by linear regression by fitting the function. 

are coefficients which 

(A I + In a) • a + bS 
-1!. 
a 

where the expression on the left hand side is the dependent Y variable and site index S is 
the predictor variable. This model integrates to give the yield equation. , 

(a + b S - In a ) 
o 

(8) 

where at is the yield at the end of the period end a 0 is the yield at the start of the 
period. No thinnings may occur duing the prediction interval, but the basal area after 
thinning becomes a for predicting the basal area immediately prior to the next thinning. 

o 

5.3.4 Use of arowth Models by Simulation 

5.3.4.1 Requirements for a simulation model 

Simulation modelling is a much easier method of using a growth model than mathematical 
integration in the majority of cases, but it does normally require access to a small computer. 
To use a growth model by simulation, the following points must be defined from permanent 
sample plots or experimental data. 

(1) The height/age/site index function. 

H • f (A,S) 
o 1 

(2) The basal area increment function, in terms of 

height 
or age 

and site index 

I E f 2 (Ho' N) g 

or I • f 2 (Ho' a) g 

or I E f
2

(A,N,S) 
g 

or I • f
2

(A, a, s) 
g 

and 
basal area 

and / or 
stocldng/ba 

c.f. Clutter's model, 
section 4.1.1.5 for an example 

or other combinations of A,a, N,S,H on the right hand side. 
o 



- 79 -

The relationship between stocking removed and basal area removed for each

thinning type:

N'iN =
f3(GVG)

The volume function from height and basal area:

V = f4(HooG)

The initial basal area of the stand at a certain reference age or height at

Which the simulation commencesv as a function of the planted stocking:

Go
= f5(N)

These functions need not be continuoua mathematical relationships. Each function

may be a set of equations, one of which is selected by a conditional process; or it may be

a set of tabulated values, as will be seen in the example below.

5.3.4.2 Method of construction of a simulation model

Simulation modele are constructed by coding the functional relationships and the

logical interconnections between them, as statemients in a computer language, usually FORTRAN9
BASIC, or ALGOL. This 'source language' model is then 'compiled' by the computer into its

own internal machine code and run in the computer. An it runs, it will require data

defining:

The site index and initial spacing of the stand

The timing and intensity of thinnings.

The programme will then generate output, in the form of a stand table or grapht as

designed by the computer programmer. The simulation can be divided into two logically

distinct phases:

The initializatian phase, where the initial values of stand basal area, height

and stocking are defined and table headinge are printed out.

The dynamic phase in which the growth of the stand over A is computed and added

to existing growing stock; any required harvesting operations are carried out;

and the age of the stand is incremented by B and the process repeated. During

the dynamic phase, summaries of growing stock are printed out. The dynamic

phase is terminated When the stand is clearfelled or a previously set time

limit is reached. (A is a period of time (usually one to five years) and B is

the length of the period.)

5.3.4:3 &ample of a simple simulation model

In this example, we construct a simple simulation model in BASIC for even-aged Pinus

patula stands. The functions in the model are as follows:
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(3) The relationsl!ip between stocking ranoved and basal area ranoved for each 
thinning type: 

(4) The volume functiQ1 fran height and basal area: 

v • f
4

(Ho'O) 

(5) The initial basal area of the stand at B certain reference age or height at 
lIhich the simulation camnences, as a functiQl of the planted etocking: 

G E f
5

(N) 
o 0 

These functions need not be continuous mathanatical relationships. Each function 
may be a set of equations, one of 1ibich is selected by a conditional process; or it may be 
a set of tabulated values, as will be seen in the BDIIIple below. 

5.3.4.2 Method of construction of a simulation model 

Simulation models are constructed by coding the functional relationships and the 
logical interconnections between them, as statanents in a computer language, usually roR'l'RAN, 
BASIC, or ALGOL. This' source language' model is then' compiled' by the computer into its 
ow internal machine code and run in the computer. As it runs , it will require data 
defining: 

1. The site index and in! tial spacing of the stand 
2. The timing and intensity of thinnings. 

The programme will then generate output, in the fom of a stand table or graph, as 
designed by the canputer programmer. The simulation can be divided into two logically 
distinct phases: 

(1) The initialization phase, >ohere the initial valu!'s of stand basal area, height 
and stocking are defined and table headings are printed out. 

(2) The d.ynamic phase in lIhioh the growth of the stand over A is computed and added 
to existing growing stock; any required harvesting operations are carried out, 
and the age of the stand is incranented by B and the process repeated. During 
the dynamic phase, sunmaries of growing stock are printed out. The dynamic 
phase is terminated >ohen the stand is clearfelled or a previously set time 
limit is reached. (A is a peri'od" of time (usually one to five years) and B is 
the length of the period.) 

5.3.4.3 &!!mple of a simple simulation model 

In this example, we construct a simple simulation model in BASIC for """,,-aged f!l:!2! 
patula stands. The functions in the model are as follows: 



where b9 b
for Po Ic3atula

bo 3.6068

b
1

b2

1)3

whilst c
c2

are defined as:

cl
= bo + b1115

C2 - b2 + 1)3/15

The index age for site index is 15 years.

(2) The basal area increment function is derived frcm fteriment 3451 Kwiral
Tanzania, by tabulating mean basal area increment by classes of stocking and

dominant height, giving the repult shown in Table 5.1. This table is used

directly in the programme without further analysis.

(3) The thinning ratios are defined by the following simple assumptions:

Systematic thinning:
Tr

= 1.0

Selective low thinning: First thinning
Tr

= 0.7

Later thinnings Tr = 0.9

(4) The volume function is the Pinun patula stand volume equation for Kenya:

V = N(-0.0072 + 0.0000887 Dg2 0.00002077 H D
4. 0.000032765 Deli)

This gives total volume. The merchantable volume to 20 cm diameter top is

calculated by:

VM
= Vt(0.97352 - 21.9737 axp (-0415407 Dg))

(5) Initialization of basal area is done by -Lining a stand basal area of zero at

age 3 years.

80 -

(1) The height-age function is taken from Alder 1/ and is:

in H = bo + bi/A + ((In S - 0042) (b2 + b3/A)

b are obtained from regression analysis from PSP data and

ch3have the values:

1/ Alder, D. 1977. A Growth and Management Model for Coniferous Plantations in East

Africa, Do Phil. thesis, Oxford University.

= -17.513

= 0.008057

= 0.3308
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(1) The height-age function is taken from Alder 11 and is: 

where b 0' b
i
, b

2
, b

3 
are obtained from regression analysis fran PSI' data and 

for P. patu a wDich have the values: 

b = 3.6068 
o 

b
1 

~ -17.513 

b 2 m 0.008057 

b
3 

~ 0.3308 

whilst c
1

, c
2 

are defined as: 

= b + b /15 
o 1 

c2 B b2 + b/15 

The index age for site index is 15 years. 

(2) The basal area incrElllent function is derived fran Experiment 345, Kldra, 
Tanzania, by tabulating mean basal area incrElllent by classes of stocking and 
dominant height, giving the result sho"" in Table 5.1. This table is used 
directly in the programme ld thout further analysis. 

(3) The thinning ratios are defined by the folloldng simple assumptions: 

(a) Systematic thinning: 

(b) Selective low thinning: 

T - 1.0 
r 

First thinning T ~ 0.7 
r 

Later thinninge TEO. 9 
r 

(4) The volume function is the Pinus patula stand volume equation for Kenya: 
2 

V
t 

B N(-O.0072 + 0.0000~887 Dg +.0.00002077 H D 
+ 0.000032765 Dg:a) g 

This gives tctal volume. The merchantable volume to 20 em diameter top is 
calculated by: 

Vm = V
t

(0.97352 - 21.9737 exp (-0.15407 Dg» 

(5) Initialization of basal area is done by using a stand basal area of zero at 
age 3 years. 

11 Alder, D. 1977. A Growth and Management Model for Coniferous Plantations in ];hat 
Africa. D. Phil. thesis, Oxford University. 
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L1212_541

VALUES OF BASAL AREA IATREMLIVI TABULATED BY STOCKIAU AAM HEIGHT
FOR EXPKRIMENT 345, KWIRA1 TAA2ANIA

Spacing class, m.

Values within the table are basal area increment per ha per annum.
E.g. at a2spacing of 4.5m and a dominant heigbt of 12 mt increment
is 4.55 mihahro

The programme listing is given below:

5 SELECT PRINT 005(6)4)
10 REM EXAMPLE OF STAND GROWTH SIMULATION MODEL
20 REM INITIALIZATION PHASE
30 PRINT "SIMULATION MODEL FOR PINUS PATULA PLANTATIONS"
40 PRINT "GIVE INITIAL STOCKING AND SITE INDEX, PLEASE"
50 INPUT N,S
60 REM READ TABULATED INCREMENT VALUES
70 DIM T(7,11)
80 MAT READ T
90 DATA 3.89,6.59,7.22,7.33,5.90,4.59,2.82,2.24,2.09,2.01,1.86
100 DATA 2.87,3.69,4.49,6.10,5.39,4.59,3.30,2.22,2.03,1.57,1.93
110 DATA 0,0,0,3.83,4.55,4.41,4.35,3.34,2.40,1.99,1.59
120 DATA 0,0,0,0,3.56,3.2.93,2.50,1.73,1.32,0
130 DATA 0,0,0,0,3.17,2.84,2.34,2.00,1.42,1.28,0
140 DATA 0,0,0,0,0,1.91,2.18,2.11,1.72,1.37,0
150 DATA 0,0,0,0,0,0,1.51,1.54,1.43,1.27,0
152 REM READ SITE INDEX CURVE COEFFICIENTS
153 READ BO,B1,B2,133
1511 DATA 3.6068,-17.513,0.008057,0.3308

2-3 3-4 4-5 5-6 6-7 7-8 8-9
Dominánt

m.

3-5 3.89 2.87
5-7 6.59 3.69
7-9 7.22 4.49
9-11 7.33 6.10 3.83
11-13 5.90 5.39 4.55 3.56 3.17
13-15 4.59 4.59 4.41 3.50 2.84 1.91
15-17 2.82 3.30 4.35 2.93 2.34 2.18 1,51
17-19 2.24 2.22 3.34 2.50 2.00 2.11 1.54
19-21 2.09 2.03 2.40 1.73 1.42 1.72 1.43
21-23 2.01 1.57 1.99 1.32 1.28 1.37 1.27
23-25 1.86 1.93 1.59
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Table 5.1 

VAUlES IlF :BASAL AREA INCmMENT TABULATED BY SroCKIKl AND HEIGHT 
FOR EKPERDIENl' 345, KWIRA, TANZANIA 

Spacing class, m. 

2-3 3-4 4-5 5-6 6-7 7-8 8-9 
Dominant 
Height, m. 

3-5 3.89 2.87 
5-7 6.59 3.69 
7-9 7.22 4.49 
9-11 7033 6.10 3.83 
11-13 5.90 5039 4.55 3.56 3.17 
13-15 4.59 4.59 4.41 3.50 2.84 1.91 
15-17 2.82 3.30 4.35 2.93 2.34 2. 18 2.51 
17-19 2.24 2.22 3.34 2.50 2.00 2.11 1.54 · 
19-21 2.09 2. 03 2.40 1.73 1.42 1.72 1.43 
21-23 2.01 1 .57 1.99 1.32 1.28 1.37 1. 27 

23-25 1.86 1.93 1.59 

Values wi thin the table are basal area incranent per ha per annum. 
E.g. at a2spacing oi' 4.5 m and a daninent height of 12 m, incremE<lt 
is 4.55 m fha/yr. 

The programme listing is given below: 

5 SELECT PRINT 005(6~) 
10 REM EXAMPLE OF STAND GROWTH SIMULATION MODEL 
20 REM INITIALIZATION PHASE 
30 PRINT "SIMULATION MODEL FOR PINUS PATULA PLANTATIONS" 
40 PRINT "GIVE INITIAL STOCKING AND SITE INDEX, PLEASE" 
50 INPUT N,S 
60 REM READ TABULATED INCREMENT VALUES 
70 DIM T(7,11) 
80 MAT READ T 
90 DATA 3.89,6.59,7.22,7.33,5.90,4.59,2.82,2.2~,2.09,2.01,1.86 
100 DATA 2.87,3 . 69,4.49,6.10,5.39,4.59,3.30,2.22,2.03,1.57,1.93 
110 DATA 0,0,0,3.83,4.55,4.41,4.35,3.34,2.40,1.99,1.59 . 
120 DATA 0,0,0,0,3.56, 3. ~: c, 2.93,2.50,1.73,1.32,0 
130 DATA 0,0,0,0,3.17,2.84,2.34,2.00,1.42,1.28,0 
140 DATA 0,0,0,0,0,1.91,2.18,2.11,1.72,1.37,0 
150 DATA 0,0,0,0,0,0,1.51,1.54,1.43,1.27,0 
152 REM READ SITE INDEX CURVE COEFFICIENTS 
153 READ BO,B1,B2,B3 
154 DATA 3.6068,-17.513,0.008057,0.3308 
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155 LET C1=B0+B1/15
156 LET C2=B2+B3/15
160 REM SET STAND BASAL AREA TO ZERO,AGE TO 3
170 LET G=0
180 LET A=5
190 REM READ DETAILS OF STAND TREATMENT
200 PRINT "HOW LONG IS THE ROTATION, PLEASE"
210 INPUT R
220 DIM A1(10),N1(10),T$(10)
230 PRINT "HOW MANY THINNINGS, PLEASE"
240 INPUT M
250 IF M = 0 THEN 300
260 FOR I=1 TO M
270 PRINT "GIVE AGE,STEMS/HA LEFT, AND TYPE(S/L) FOR THINNING ";I
280 INPUT A1(I),N1(I),T$(1)
290 NEXT I
300 LET M=1
305 SELECT PRINT 215(120)
310 REM PRINT TABLE HEADINGS
320 PRINT
330 PRINT TAB(20);"GROWING STOCK";TAB(80);"THINNINGS"
340 PRINT
350 PRINTUSING 360
360 % AGE HDOM STEMS/HA DIAM(G) BA/HA VOL/HA VOL/HA(20CM)

VOL/HA VOL/HA(20CM)
370 REM DYNAMIC PHASE OF SIMULATION
380 REM CALCULATE DOMINANT HEIGHT
390 LET H=EXP(B0+B1/A+((LOG(S)-C1)/C2)*(B2+B3/A))
400 REM SELECT HEIGHT AND STOCKING CLASS FOR GROWTH INCRMENT
410 LET H1=(H-1)/2
411 IF H1(12 THEN 420
412 LET H1=11
420 LET E1=SQR(1/N)*100-1
430 IF T(E1,H1)=0 THEN 920
440 REM ADD INCREMENT TO CURRENT BASAL AREA
450 LET G=G+T(E1,H1)
460 REM TEST IF THINNING REQUIRED IN CURRENT YEAR
470 IF A=A1(M) THEN 670
480 REM CALCULATE MEAN BA DIAMETER, & VOLUMES
490 LET D =SQR(G/(N*0.00007854))
500 LET V=N*(-0.0072+0.00002887*D!2+0.00002077*H*D+0.00003276*D!2*H)
510 LET V1=V*(0.97352-21.9737*EXP(-0.15407*D))
515 IF V1 ) 0 THEN 520
516 LET V1 = 0

520 REM PRINT GROWING STOCK DETAILS
530 PRINTUSING 540,A,H,N,D,G,V,V1;
540 % ### ##.# ##### ####.# ###.# ####.# ####.#
550 REM PRINT THINNING DETAILS IF A THINNING WAS PERFORMED
560 IF T2=0 THEN 600
570 PRINT TAB(64);
580 PRINTUSING 590,N2,D1,G1,V2,V3;
590 % #### ###.# ###.# ####.# ####.#
600 REM INCREASE AGE BY 1 YEAR, & REPEAT DYNAMIC PHASE
605 PRINT
610 LET A = A+1
620 LET T2=0
630 IF A(= R THEN 370
640 PRINT
650 PRINT TAB(20);"END OF SIMULATION"
660 STOP

155 LET Cl=BO.B1/15 
156 LET C2=B2.B3/15 
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160 REM SET STAND BASAL AREA TO ZERO,AGE TO 3 
170 LET G=O 
180 LET A=5 
190 REM READ DETAILS OF STAND TREATMENT 
200 PRINT "HOW LONG IS THE ROTATION, PLEASE" 
210 INPUT R 
220 DIM Al(10),N1(10),T$(10) 
230 PRINT "HOW MANY THINNINGS, PLEASE" 
240 INPUT M 
250 IF M = 0 THEN 300 
260 FOR 1=1 TO M 
270 PRINT "GIVE AGE,STEMS/HA LEFT, AND TYPE(S/L) FOR THINNING ";1 
280 INPUT Al(I),Nl(I),T$(I) 
290 NEXT I 
300 LET M=1 
305 SELECT PRINT 215(120) 
310 REM PRINT TABLE HEADINGS 
320 PRINT 
330 PRINT TAB(20);"GROWING STOCK";TAB(80);"THINNINGS" 
340 PRINT 
350 PRINTUSING 360 
360 % AGE HDOM STEMS/HA DIAM(G) BA/HA VOL/HA VOL/HA(20CM) 

VOL/HA VOL/HA(20CM) 
370 REM DYNAMIC PHASE OF SIMULATION 
380 REM CALCULATE DOMINANT HEIGHT 
390 LET H=EXP(BO+B1/A.«LOG(S)-C1)/C2)"(B2.B3/A)) 
400 REM SELECT HEIGHT AND STOCKING CLASS FOR GROWTH INCRMENT 
410 LET Hl=(H-l)/2 
411 IF H1(12 THEN 420 
412 LET H1=11 
420 LET E1=SQR(1/N)"100-1 
430 IF T(E1,H1)=0 THEN 920 
440 REM ADD INCREMENT TO CURRENT BASAL AREA 
450 LET G=G+T(El,Hl) 
460 REM TEST IF THINNING REQUIRED IN CURRENT YEAR 
470 IF A=Al(M) THEN 670 
480 REM CALCULATE MEAN BA DIAMETER, & VOLUMES 
490 LET D =SQR(G/(N*0.00007854)) 
500 LET V=N*(-0.0072.0 . 00002887*D!2.0.00002077*H*D.0.00003276*D!2*H) 
510 LET Vl=V*(0 . 97352-21 . 9737*EXP(-0 . 15407*D)) 
515 IF V1 ) 0 THEN 520 
516 LET V1 = 0 
520 REM PRINT GROWING STOCK DETAILS 
530 PRINTUSING 540,A,H,N,D,G,V,V1; 
540 % uon no.n UUU## Huun.' HI,.n ',#U.# I'HH.n 
550 REM PRINT THINNING DETAILS IF A THINNING WAS PERFORMED 
560 IF T2=0 THEN 600 
570 PRINT TAB(64); 
580 PRINTUSING 590,N2,D1,G1,V2,V3; 
590 % #UUD ##0.# #eu .n #nno.# #Rnl .n 
600 REM INCREASE AGE BY 1 YEAR, & REPEAT DYNAMIC PHASE 
605 PRINT 
610 LET A = A+1 
620 LET T2=0 
630 IF A(= R THEN 370 
640 PRINT 
650 PRINT TAB(20); "END OF SIMULATION" 
660 STOP 
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670 REM SECTION TO SIMULATE LOW OR SYSTEMATIC THINNING
680 REM DETERMINE THINNING RATIO FROM THINNING TYPE
690 IF T$(M)="L" THEN 720
700 LET T3=1
710 COTO 760
720 IF M)1 THEN 750
730 LET T3=0.7
740 COTO 760
750 LET T3=0.9
760 REM CALCULATE STOCKING REMOVED N2 & BA REMOVED Cl
770 LET N2=N-N1(M)
780 LET G2=N1(M)/N/(T3/G)
790 LET G1=G-G2
800 REM ADJUST STOCKING & BA OF RESIDUAL STAND
810 LET G=G2
820 LET N=N1(M)
830 REM COMPUTE MEAN DIAMETER AND VOLUMES OF THINNINGS
8h0 LET D1=S0R(G1/(N2*0.00007854))
850 LET V2=N2*(-0.00724-0.00002887*D1!2s.0.00002077*H*D1!24-0.00003276*D1!2*H)
860 LET V3=V2*(0.97352-21.9737*EXP(-0.15407*D1!2))
861 IF V3 ) 0 THEN 870
862 LET V3 = 0
870 REM INCREMENT THINNING NUMBER AND RETURN TO MAIN PART OF
880 REN SIMULATION
890 LET M=M+1
900 LET T2=1
910 COTO 480

920 REM SECTION TO ABANDON PROGRAM WHEN SIMULATIONS GOES
930 REM OUTSIDE LIMITS OF AVAILABLE GROWTH DATA
940 PRINT TAB(20);"SIMULATION EXCEEDS RANGE OF GROWTH FUNCTION"
950 PRINT TAB(20);"RUN ABANDONED"
960 END

The output produced by one run is shown in figure 5.13. Table 5.2
lists the definitions of each of the variables used in the programme.

This simulation programme is intended to be an example of the flexi-
bility of the technique and is not intended to suggest that the

specific functions used are in any sense the best or most preferable

methods.
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670 RE~ SECTION TO SIMULATE LOW OR SYSTEMATIC THINNING 
680 REM DETERflINE THINNING RATIO FROM THINNING TYPE 
690 IF T$(M)="L" THEN 720 
700 LET T3= 1 
710 GO TO 760 
720 IF M)l THEN 750 
730 LET T3=0.7 
740 GOTO 760 
750 LET T3=0.9 
760 REM CALCULATE STOCKING REMOVED N2 & BA REMOVED G1 
770 LET N2=N-Nl (M) 
780 LET G2=N1(M)/N/(T3/G) 
790 LET G 1 =G-G2 
800 REM ADJUST STOCKING & BA OF RESIDUAL STAND 
810 LET G=G2 
820 LET N=N1(M) 
830 REM COMPUTE MEAN DIAMETER AND VOLUMES OF THINNINGS 
840 LET Dl=SQR(Gl/(N2*0.00007854)) 
850 LET V2=N2*(-0.0072+0.00002887*D1!2+0.00002077*H*Dl!2+0.00003276"D1!2"H) 
850 LET V3=V2*(0.97352-21.9737*EXP(-0.15407*Dl!2)) 
861 IF V3 ) 0 THEN 870 
862 LET V3 = C 
870 REM INCREMENT THINNING NUMBER AND RETURN TO MAIN PART OF 
880 REM SIMULATION 
890 LET M=M+l 
900 LET T2=1 
910 GOTO 480 
920 REM SECTION TO ABANDON PROGRAM WHEN SIMULATIONS GOES 
930 REM OUTSIDE LIMITS OF AVAILABLE GROWTH DATA 
940 PRINT TAB(20); "SIMULATION EXCEEDS RANGE OF GROII'TH Fm!CTION" 
950 PRINT TAB( 20); "RUN ABANDONED" 
960 END 

The output produced by one run is shown in figure 5.13. Table 5.2 
lists the definitions of each of the variables used in the programme. 
This Aimulatioa programme is intended to be an example of the flexi­
bility of the technique and is not intended to suggest that the 
specific functions used are in any sense the best or most preferable 
methode. 



END OF SIMULATION

Pigure 5.13

Cuter rizit ro_p_ou and growth

simulation model

SIMULATION MODEL FOR PINUS PATULA PLANTATIONS
GIVE INITIAL STOCKING AND SITE INDEX, PLEASE
1700 23

HOW LONG IS THE ROTATION, PLEASE
16

HOW MANY THINNINGS, PLEASE
1

GIVE AGE,STEMS/HA LEFT, AND TYPE(S/L) FOR THINNING 1

8 700 S

co

AGE
5

6

7

8

9

10

11

12

13

14

15

16

HDOM
6.1

8.5
10.8

12.9
14.8

16.5
18.1

19.5

20.7

21.9
22.9
23.9

GROWING STOCK

STEMS/HA DIAM(G) BA/HA

1700 7.0 6.5

1700 10.1 13.8

1700 12.5 21.1

700 14.2 11.1

700 16.9 15.7
700 18.6 19.0

700 19.6 21.2

700 20.5 23.2
700 21.4 25.3

700 22.1 26.8
700 22.7 28.4

700 23.5 30.3

VOL/HA
8.6
45.3
96.0

61.8

101.6
137.7
168.4
198.7
230.1

257.8
285.9
317.9

VOL/HA(20CM)
0.0
0.0
0.0
0.0
0.0
0.0
0.0
10.0

38.5
63.1
89.4
122.6

STEMS/HA

1000

THINNINGS

DIAM(G) BA/HA

14.2 15.9

VOL/HA

138.8

VOL/HA(20CM)

0.0

Figure 5.13 

Canputer printout produced by stand growth 
simulation model 

SIMULATION MODEL FOR PINUS PATULA PLANTATIONS 
GIVE INITIAL STOCKING AND SITE INDEX, PLEASE 

1700 23 
HOW LONG IS THE ROTATION, PLEASE 

16 
HOW MANY THINNINGS, PLEASE 

1 
GIVE AGE,STEMS/HA LEFT, AND TYPE(S/L) FOR THINNING 

8 700 S 

GROWING STOCK THINNINGS 

AGE HDOM STEMS/HA DIAM(G) BA/HA VOL/HA VOL/HA(20CM) STEMS/HA DIAM(G) BA/HA 
5 6.1 1700 7.0 6 .5 8.6 0.0 
6 8.5 1700 10. 1 13.8 45.3 0.0 
7 10.8 1700 12.5 2' .1 96.0 0.0 
8 12.9 700 14.2 1 1 . 1 61.8 0.0 1000 14 .2 15 .9 
9 14.8 700 16.9 15.7 101 .6 0.0 

10 16.5 700 18.6 19.0 137.7 0.0 
1 1 18.1 700 19.6 21.2 168 . 4 0.0 
12 19.5 700 20.5 23.2 198.7 10.0 
13 20.7 700 21.4 25.3 230.1 38.5 
14 21.9 700 22.1 26.8 257.8 63.1 
15 22.9 700 22.7 28.4 285.9 89.4 
16 23.9 700 23.5 30.3 317.9 122.6 

END OF SIMULATION 

CX> .... 
I 

VOL/HA VOLIHA (20CM) 

138.8 0.0 



Variable

A

Al

BO

Bl

B2

B3

Cl

C2

DI

El

G1

G2

H1

N

N1

N2

S
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DEFINITIONOF VARIABLES USED IN STAND GROWTH
SIMULATION PROGRAKME

Size Descrintion of use

Stand agev years

10 List of ages for thinnings

Coefficients for height growth function,

representing boy bl b29 b3
in text

1

Coefficients for height growth functionv

representing 019 c2 in text

Mean basal area diameter of growing stock

Mean basal area diameter of trees removed in thinning

The stand density class9 going from i for spacings of
2-3 m to 7 for spacings of 8 m or more

The basal are/ha of the growing stock
The basal are/ha of trees removed in thinnings

The basal area of growing stock immediately after

thinning

The dominant height of the stand

The dominant height classt guing from 1 for heights
3-5 Inv to 11 for heights over 23 m

A counter for thinning number during the T-eaaing in of

thinning details

Initially9 the number of thinnings. During the dynamic

phase, represente the next thinning number due

The stocking/ha of the stand

10 The list of residual stockings to be left after each
thinning

The number of trees per ha removed in a thinning

The rotation age for the stand, in years

The site index of the stand, in m dominant height at age
15

7911 The table of diameter increments corresponding to the
spacing class (1st dimension) and height class (2nd dimen-

sion). Values as per table 5.1 in text.

Variable 

A 

Al 

BO 

Bl 

B2 

B3 

Cl 

C2 

D 

Dl 

E1 

G 

Gl 

G2 

H 

Hl 

I 

M 

N 

Nl 

1(2 

R 

S 

T 

10 

10 
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Table 5.2 

DEFINITION OF VARIABLES USED IN STAND GROll'J1I 
SIMULATION PROGRAMME 

] 

Des cripti on of us e 

Stand age, years 

List of ages for thinnings 

Coefficients for height growth fUnction, 
representing b 0' b

l
, b 2, b

3 
in text 

Coefficients for height growth fUnction, 
representing c

l
' c2 in text 

Mean basal area diameter of growing stock 

Mean basal area diameter of trees remO'/ed in thinning 

The stand density class, going from 1 for spacin",'" of 
2-3 m to 7 for epacings of 8 m or more 

The basal area/ he. of the growing st ock 

The basal area/he. of trees renoved in thinnings 

The basal area of growing stock immediately after 
thinning 

The dominant height of the stand 

The dominant height class, going from 1 for heights 
3-5 m, to 11 for heights over 23 m 

A counter for thinning number during the l'eruling in of 
thinning details 

Initially, the number of thinninga. During the dynamic 
phase, represents the next thinning number due 

The stockindhe. of the stand 

The liet of residual stockings to be left after each 
thinning 

The number of trees per he. removed in a thinning 

The rotation age for the stand, in years 

The site index of the stand, in m dominant height at age 
15 

The table of diameter increnents corresponding to the 
spacing class (1st dimension) and height class (2nd dimen­
sion). Values as per table 5.1 in text. 



Thinning ratio
Nó, of stems left/Vb. stems before thinning

Basal area left/Basal area before thinning

With a little algebra, the thinning ratio can be seen as being equivalent also to:

(Mean BA diameter before thinning)2

(Mean BA diameter after thinning)2

Typical values for the thinning ratio for different types of thinning are:

Thinning ratio
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Variable Size Description of use

T2 Set to 1 if the stand has been thinned in the current

year of simulated time, otherwise set to O. Controls
the format of printing.

T3 Gives the thinning ratio Tr as defined in the text for
each type of thinning. Set to 1 for systematic thinning,
0.7 for 1st low thinning, 0.9 for other low thinnings.

T$ 10 A list of thinning types, for each thinning. "S"

represents systematic thinning and "L" thinning from
below.

V The total volume over bark per ha of the growing stock.

vi The volume o.b./ha to a top diameter limit of 20 cm, for
the growing stock.

V2 Total volume/6 of thinnings.

113 Volume/ha to 20 cm limit of thinnings.

5.4 THINNING

The economic component of growth in uniform stands managed for timber will be partly

removed in commerical thinnings. In addition, non-commercial thinnings may be carried out

to reduce stand density and give a corresponding greater stand mean diameter in subsequent

thinnings and the final crop.

Obviously, the modelling of thinning is central to any exercise in yield prediction.

A thinning operation is very largely characterized by the number of stems per ha and the

basal area per ha removed. In single tree models, it is necessary to describe the distri-

bution of removed trees; but this is not necessary for stand models, which are the main

subject of this section.

5.4.1 The Thinning Ratio

A useful way of characterizing thinnings is in -terna of the thinning ratio:

Thinning type Value of thinning...rags.

Early low thinnings 0.6-0.8

Later low thinnings 0.8-1.0

Non-selective thinning 1.0

Crown thinning 1.1-1.3

\ 
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Variable Description of use 

T2 

T3 

T$ 

V 

V1 

V2 

V3 

10 

Set to 1 if the stand has been thinned in the current 
year of simulated time, otherwise set to O. Controls 
the fo:nnat of printing. 

Gives the thimling ratio Tl' as defined in the text for 
each type of thinning. Set to 1 for systElnatic thinning, 
0.7 for 1 st low thinning, 0.9 for other low thinnings. 

A list of thinning types, for each thinning. "5" 
represents systElnaUc thinning and "L" thinning fran 
below. 

The total volume over bark per he of the growing stock. 

The volume o.b./he to a top diameter limit of 20 an, for 
t he growing st ock. 

Total volume/ha of thinnings. 

Volume/he to 20 em limit of thinnings. 

5.4 'mINNIID 

The eCCOlanic canponent of growth in unifonn stands managed for timber will be partly 
removed in canmerical thinnings. In addition, non-canmercial thinnings may be carried out 
to reduce stand density and give a corresponding greater stand mean diameter in subsequent 
thinnings and the final crop. 

Obviously, the modelling of thinning is central to any exercise in yield prediction. 
A thinning operation is very largely characterized by the number of stems per he and the 
basal area per he removed. In single tree models, it is necessary to describe the distri­
bution of removed trees; but this is not necessary for stand models, which are the main 
subject of this section. 

The Thinning Ratio 

A useful way of characterizing thinnings is in terms of the thinning ratio' 

No. of stems left No. stEInS before thinnin 
Thinning ratio a Basal area left asal b f thi· area e ore nnl.ng 

liith a little algebra, the thinning ratio can be seen as being equivalent also to: 

Thinning ratio = 
Mean BA diameter before thinnin )2 
(~Iean BA diameter after thinning 2 

Typical values for the thinning ratio for different types of thinning are: 

Thinning t:ype 

Early low thinnings 
later low thinnings 
Non-selective thinning 
Crown thinning 

Value of thinning ratio 

0.6-0.8 
0.8-1.0 

1.0 
1.1-1.3 
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The thinning ratio can be determined empirically using temporary plots an which

thinningp are carred out by contractors or Which are marked for thinning without actually

felling the trees. The first technique gives a more realistic assessment, but may not be

appropriate for experimental types of thinning which one simply wishes to evaluate on a

dynamic model.

Estimates of thinning ratios dbtained from permanent sample plots may not be relia-

ble, as PSPs are normally clearly marked in the forest and hence are unlikely to receive

typical treatment.

5. 4. 2 Est in St ati c od els

In order to estimate the thinning yield for a particular static yield function,

then the actual thinning intensity, defined in terms of stocking removed or basal area

removed, and the thinning ratio, as defined above, munt be known. It is also necessary to

know whether the yield function is based an measurements made immediately before thinning,

immediately after thinning or, as is most normal, an uncontrolled mixture of meaaurements

before, after and between thinnings.

Assuming that the yield function predicts mean basal area diameter and it is based

on an uncontrolled mixture of data, then the diameter predicted at the time of thinning may

be assumed to be a mean of before and after thinning diameters, viz:

DP (Db Da)/2 (1)

where Dp is diameter predicted from the static yield function and Db and Da are the before

and after thinning diameters at that point in time, which have to be determined.

The thinning ratio also relates the unknown diameters Da and Db giving two simul-

taneous equations:

/
Tr = Db2/Da2

These two equations. can be solved to give Da and Db:

Da 2Dp/(11m/i7)

Db 2Dp - Da

Knowing the before and after thinning mean basal area diameters, then it is possible

to work out the basal area removed knowing the stocking removed or the stocking removed

knowing the basal area removed.

In the case where thinning intensity is specified in terne of atocking, then the

mean basal area diameter of the trees removed in thinninge is given by:Dt(5)DaifTr.Nb -

L vb Na. f

or Dt(6)
Na

(2)

(4)
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The thinning ratio can be detemined enpirically using tenporary plots on which 
thinnings are ca.rred out by contractors or which are marked for thinning without actually 
felling the trees. The first technique gives a more realistic assessment, but may not be 
appropriate for experiJnental types of thinning \lhich one simply wishes to evaluate on a 
dynamic model. 

Estimates of thinning ratios obtained from pennanent sample plots may not be relia­
ble, as PSPs are nonnelly clearly marked in the forest and hence are unlikely to receive 
typical treatment. 

5.4.2 Estimating Thinning Yielda in Static Models 

In order to estimate the thinning yield for a particular static yield function, 
then the actual thinning intensity, defined in tems of stocking renoved or basal area 
removed, and the thinning ratio, as defined above, must be known. It is also necessary to 
know whether the yield function is based on measurements made immediately before thinning, 
immediately after thinning or, as is moat nonnel, an uncontrolled mixture of measurements 
before, after and between thinnings. 

Assuming that the yield function predicts mean basal area diameter and H is based 
on an uncontrolled mixture of datao then the diameter predioted at the time of thinning may 
be assumed to be a mean of before and after thinning diameters, viz: 

Dp E (Db + De.)/2 

where Dp is diameter predicted from the static yield function and Db and Da are the before 
and after thinning diameters at that point in time, which have to be detemined. 

The thinning ratio also relates the unknown diameters De and Db, giving two simul­
taneous equations: 

(2 ) 

These two equations can be solved to give De and Db: 

Db = 2Dp - De 

Knowing the before and after thinning mean basal area diameters, then it is possible 
to work out the basal area renoved knowing the stocking removed or the stocking removed 
knowing the basal area removed. 

In the case where thinning intensity is specified in tems of -stocking, then the 
mean basal area diameter of the trees removed in thinnings is given by: 

Dt = ~r~Nb_-NaNa} (5 ) 

Dt (6) 
or 

nJ{Nb ~ ~~Tr} 
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Note that equations (5) ami (6) are independent of the assumption (1) that predicted
diameters are averages of values immediately before and after thinning.' Thus either equation(5) or (6) can be used to determine mean diameter of thinnings if the functions are defined
in terms of predictions of after thinning diameters or before thinning diameters respectively.

All the algebra leading to the above formulae is based an the simple relation:

G = N. k. Dg2

where G is basal area, is stocking, k is the constant 0.00007854 for diameters in centi-
metres, basal area in m /ha and stocking in numbers/ha, and Dg is the mean basal area
diameter. Once the mean diameter of thinnings is known, then total and merchantable volumes
can be readily oalculated from a suitable volume equation

5.4.3 Estimating Thinning Yields in Dynamic Modele

As with static yield models, both the thinning intensity and the thinning ratio

must be known. From these two statistics, the basal area removed for a given stocking or

alternatively the stocking removed for a given basal area can be readily determined and

both parameters of the growing stock adjusted for the thinning, with thinning removals being

calculated directly. Eamples have already been discussed in sections 5.3.3 and 5.3.4..

An essential feature of thinning in dynamic models ie that the subsequent growth is

influenced by the intensity of thinning, as stand density will be modified following treat-

ment. In a static model this does not happen and, hence, the danger of obtaining incorrect

results with static modela by applying thinning treatments that do not correspond to the

fitted functions.

5.5 MORTALITY

Mortality can often be regarded as negligible in many types intensively managed-

uniform forest, once a particular crop has become established. In other cases, however,

there is a marked reduction of stem numbers over the passage of time which must in some way

be accounted for by the growth and yield model. There are several types of mortality which

must be considered.

5.5.1 Establishment Mortality

Establishment mortality defines the percentage of viable seedlings which fail to

survive the firgt year. In the case of plantations, it is Obviously quite easy to define

in the field, but in the case of stands established by artificial or natural seeding, it is

probably better to consider the absolute number of seedlings that become established, rather

than to consider a ratio defining percentage eurvival or percentage stocking.

Survival can also be defined in terms of percentage of the area that is fully stocked,

as discussed in section 6.

The factors that most strongly influence survival and must be considered in any

model constructed to predict it are:

The method and intensity of site preparation.

The weather at the time of establishment and for the months following.
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Note that equations (5) and (6) are independent of the aseumption (1) that predicted 
diameters are averages of values immediately before and after thinning •. Thus either equation 
(5) or (6) can be used to detennine mean diameter of thinnings if the functions are defined 
in tenns of predictions of after thinning diameters or before thinning diameters respectively. 

All the algebra leading to the above fonnulae is based on the simple relation' 

G -
2 

N.k.Dg 

where G is basal area, ~ is stocking, k is the constant 0.00007854 for diameters in centi­
metres, basal area in m /ha and stocking in numbers/ha, and Dg is the mean basal area 
diameter. Once the mean diameter of thinnings is known, then total and merchantable volumes 
can be readily calculated fran a sui table volume equation. 

Fstimati¥ Thinning Yielda in D;yn..,ic Modele 

As with static yield models , both the thinning intenSity and the thinning ratio 
must be known. From these two statistics, the basal area removed for a given stocking or 
alternatively the stocking removed for a given basal area can be readily detennined and 
both parameters of the growing stock adjusted for the thinning, with thinning removale being 
calculated directly. Examples have already been discussed in sections 5.3.3 and 5.3.4. 

An essential feature of thinning in dynamic models is that the subsequent growth i s 
influenced by the intensity of thinning, as stand density wil1 be modified fol1owing treat­
ment. In a static model this does not happen and, hence, the danger of obtaining incorrect 
results with static models by applying thinning treatmerlts that do not correspond to the 
fitted functions. 

5.5 MORTALITY 

Mortality can often be regarded as negligible in many types intensively managed­
unifonn forest, once a particular crop has become established. In other cases, however, 
there is a marked reduction of stem numbers over the passage of time which must in some way 
be accounted for by the growth and yield model. There are several types of mortality which 
must be considered. 

EStablishment Mortality 

Establishment mortality defines the percentage of viable seedlings which fail to 
survive the first year. In the case of plantations, it is Obviously quite easy to define 
in the field, but in the case of stande established by artificial or natural seeding, it is 
probably better to consider the absolute number of seedlings that become established, rather 
than to consider a ratio defining percentage survival or p.ercentage stocking. 

Survival can also be defined in tenns of percentage of the area that is fUl1y stocked, 
as discussed in section 6. 

The factors that most strongly influence survival and must be considered in any 
model constructed to predict it are' 

- The method and intensity of site preparation. 
The weather at the time of 811t&bHsba ... t and for the montha following. 
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The aspect of the site.

The degree of exposure of the site.

The nature of the top 10 am of the soil, in particular, and of the soil generally.

For plantations, the following muzt also be considered:

The age of the seedlings.

Procedures for handling the seeldings from nursery to the forest.

The season of the planting in relation to dormancy.

For seeding by artificial or natural methods, one must consider:

PesticiaPlcoatings or treatments to reduce seed predation.
Seed pro-treatment to stimulate or improve germination.

Obviously, determination of all these parameters and their inclusion in a useful

quantitative moel is virtually impossible. It in better to construct simple and robust

models that can easily be related to practices followed in a particular area or point of
time.

The model will usually be in the form of a multiple regression between survival

(relative or absolute) and two or three of the above parameters, coded in appronriate ways

5.5.2Derl.:1z7.1)2pendent Mc.)rtality;

Density-dependent mortality may be a direct result of suppression, but more usually

is indirect, in that the less vigorous trees, with crowns lower in the canopy, become sus-

ceptible to disease or animal damage to a much greater degree than more vigorous trees.

This type of mortality can usually be omitted from models of stands planted at wide

spacings and grown on short rotations or subject to adequate thinning. However, many growth

and yield predictions relate to unthinned stands or to stands in Which thinning has been

delayed and hence some effort must be made to include this type of mortality.

A useful model is the Reinéke line, in which stocking is platted against dominant

height, using logarithmic scales on both axes. This gives a diagram of the type shown in

figure 5.15. The Reineke line defines the maximum stocking that can be sustained at any
given dominant height.

If stands are normally well thinned, it may be difficult to obtain the necessary

data to construct this line. There are advantages in establishing in a given plantation a

series of about 10 plots of forest established at 1 x 1 or 2 x 2 m an widely different sites
to provide this data. This obviously does not apply in cases Where there are extensive

unthinned stands.

In static yield models, density-dependent mortality is implicit in the mean diameter/

dominant height functions and need not be explicitly defined.

In dynamic growth models, the reluption in stocking caused by mortality will be

effected by a simulated low thinning, with a thinning ratio aramnd 0069 whenever the
stocking/height relationship moves to a point to the right of the Rein-eke line.
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The aspect of the sit e. 
The degree of exposure of the site. 
The nature of the top 10 em of the soil, in particular, and of the soil generally. 

For plantations, the following must also be considered: 

- The age of the seedlings. 
- Procedures for handling the seeldings from nursery to the forest. 

The season of the planting in relation to dormancy. 

For seeding by ar-tificial or natural methods , one Olust consider: 

Pesticidal coatings or treatments to reduce seed predation. 
Seed pr~treatment to stimulate or improve gennination. 

Obviously, detennl.nation of all these parRlllaters and their inclusion in a useful 
quantitative model is virtually impoesible. It is better to construct Simple and robust 
models that can easily be related to practices followed in a particular area or poini of 
time. 

The model will usually be i n the fonn of a multiple regression beiween survival 
(relative or absolute) and t",o or three of the above parameters, coded in appropI'"-'.at e -yo.. 
5.5.2 Density-Dependent Mortality 

Density-dependent mortality may be a direct result of suppression , but Inore UJ.!ually 
is indirect, in that the less vigorous trees, with crows lower i n the canopy, become sus­
ceptible to disease or animal demage to a much greater degree than more vigorous trees . 

This type of mortality can usually be anitted from models of stands planted at wide 
spacings and grown on short rotations or subject to adequate thinning. However, many growth 
and yield predictions relate to unthinned stands or to stands in which thinning has been 
delayed and hence seme effort must be made to include this type of mortality. 

A useful model is the Reineke line, i n 1Ihich stocking is plotted against domInant 
height, USing logarithmic scales on bcr',h axes. This gives a diagram of the type shown in 
figure 5.15. The Reineke line defines the maximum stocking that can be sustained at any 
given dominant height. 

If stands are normally well thinned, it may be difficult to obtain the necessary 
data to construct this line. There are advantages in establishing in a given plantation a 
series of about 10 plots of forest established at 1 x 1 or 2 x 2 m on widely different sites 
to provide this data. This obviously does not apply in cases where there are extensive 
unthinned stands. 

In static yield models, density-dependent mortality is implicit in the mean diameter/ 
dominant height functions and need not be explicitly defined. 

In dynamic growth models, the reduction in stocking caused by mortality will be 
affected by a simulated low thinning, with a thinning ratio around 0.6, whenever the 
stocking ft.eight relationship moves to a point to the right of the Reineke line. 



Stocking/ha.
(log scale
initial
density

90

Figure 5.15

Relationshi between stocking arid dominant height over time

in an unthinned heavil stocked uniform fprest

Reineke lino

onset of den.sity.-dependent
mortality

Dominant height
(log scale)

Note that although the Reineke line will be very well defined for a single stand,
its position and slope may be dependent on site. The lowest part of the line may
also tend to bend downwards, giving a slight curve.

5.5.3 Disease and Pest Mortality

As mentioned in section 5.5.29 some aspects of disease and peat related mortality

can be implicitly included in a simple density-dependent model. However, there are many

cases where the disease or pest incidence is epidemic in nature and tends to occur as out-

breaks following particular patterns of weather and moving outwards from epicentros of
infection. Techniques for modelling such problems are somewhat beyond the scope of this
manual. Such models are often stochastic, in that only the probability of an outbreak can
be predicted.

The probability of an outbrealc may be a function of weather pattern, condition of

the forest growing stock or of distance from another outbreak area. From a managerial point

of view, the probability of an outbreak can be used to assess the erpected value of the crop

at some future point in time and hence the opportunity cost of pre-emptive felling or of

taking or failing to take control measures.

The arrow indicates the
direction of progression
over time
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Figure 5.15 

Relationship betwesn stocking and dominant height aver time 
in an unthinned. heavily stocked unifonn forest 

stocking/ha, 
(log scale 

initial. 
density 

line 

onset of density-dependent 
mortality 

The arrow indicates the 
direction of progression 
over time 

Dominant height 
(log Bcale) 

Note that although the Reineke line will be very well defined for a single stand, 
its position and slope may be dependent on site. The lowest part of the line may 
also tend to bend downwards, giving a slight curve. 

5.5.3 Disease and Pest Mortality 

As mentioned in section 5.5.2, some aspects of disease and pest related mortality 
can be implicitly included in a simple density-dependent model. However, there are many 
cases where the disease or pest incidence is epidemiC in nature and tends to occur as out­
breaks following particular patterns of weather and moving outwards from epicentres of 
infection. Techniques for modelling such problems are somewhat beyond the scope of this 
manual. Such models are often stochastic, in that only the probability of an outbraek can 
be predicted. 

The probability of an outbraek may be a function of weather pattern, condition of 
the forest growing stock or of distance fran another outbreak area. From a managerial point 
of view, the probability of an outbraek can be used to assess the expected value of the crop 
at some future point in time and hence the opportunity cost of pre-emptive felling or of 
taking or failing to take control measures. 
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5.5.4 Nindthrow and Fire Dama-'e

As with pest and disease problemsv both windthrow and fire damage effects have

density-dependent and density,-independent effectsv with the latter tending to be catastrophic

in nature, i.e. destroyingthe whole stand. Again, the catastrophic component can only be pre-

dicted asa probability of occurrences, dependentcm climatic and site factors,as well as the

condition of the growing stock. With fire, additional factorsv such as the time since the

last controlled burning and the use of low pruningv may be important variables in determining

the probability of catastrophic damage.

The successful prediction of the probability of a catastrophic event is extremely

difficult where such events are rare. Where firev wind damage or certain pests or diseases

are normal, such models maybe constructed; but it is still likely to require a careful

process of data gathering and evaluation over about 20 years before anything useful may

emerge. It should also be noted that the parameters for such models must be continually

revisedv as they are likely to be very sensitive to climatic fluctuations.

5.6 STAND VOLUME PREDICTION

In the foregoing parts of section 59 various methods of predicting dominant heightv

basal area, stocking and mean basal area diameter have been discussed. The final stage in

a yield prediction system for a single stand is to use these variables tO predict total and

merchantable volume.

Part I of this manual has dealt exhaustively with the techniques of measuring and

modelling the volume of individual trees. This section otilv concerns iteelf with a resum6
of methods particularly appropriate to models of stand volume from the parameters normally

calculated in a yield model.

5.6.1 SancIVolquatjons Based on Dominant Heht tuqc1 33asal Area

Total stand volume, either to the tip or to some small diameter limit such as 10 cm,

can be accurately predicted by an equation using basal area and dominant height. Typical

equations are:

V - b0 + bl.G.H

V/G = b0 + b1.H

log V = b0 + blolog G b2.1og H

V/G b0 + bl.H + b20H2

(linear)

(linear weighted by G)

(logarithmic)

(quadraticv weigtted by G)

A wide variety of other models is possible. As has been discussed in Part Iv some

form of weighting is normally desirable for fitting volume equations, as the residual error

tends to be approximately proportional to the volume. Equations (2) (3) and (4) all achieve

this. Model (2) is very simple to fit graphically.

The quantity V/G is widely known as form height and has the dimension metres.

The degree of fit obtained when stand total volume is regressed with basal area and

dominant heigtt with models such as the above is usually very high9 often with correlation

coefficients exceeding 0.99.
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5.5.4 Mlndthrow and Fire Damage 

As with pest and disease problens, both windthrow and fire damage effects have 
density-dependent and density-independent effects, with the latter tending to be catastrophic 
in nature, i.e. destroying the "hole stand. Again, the catastrophic canponent can only be pre­
dicted as a probability of occurrence, dependent CIt climatic and site factors, as well as the 
condition of' the growing stock. With fire, additional factors, such as the time since the 
last controlled burning and the use of low pruning, may be important variables in determining 

the probability of catastrophic damage. 

The successful predicti on of the prcbabili ty of a catastrophic ev.."t is extremely 
difficult where such events are rarea Whe?e fire, wind damage or certain peets or diseases 
are normal, such models may be constructed; but it is still likely to require a careful 
process of date. gathering and evaluation over about 20 years before anything useful may 
emerge. It should also be noted that the parameters for such models must be continually 
revised, as they are likely to be very sensitive to climatic fluctuations. 

5.6 STAND VOWME PREDICTION' 

In the foregoing parts of section 5, varioua methods of predicting danina."t height, 
basal area, stocking and mean basal area diameter have been discussed. The final stage in 
a yield prediction systen for a single stand is to use these variable. to predict to'tal and 
merchantable volume. 

Part I of this manual has dealt exhaustively with the techniqu.ea 0::: measuring and 
modelling the volume of individual trees. This section C!'Ily concerns iicelf with a resurn~ 

of methods particularly appropriate to models of stand volume fran the parameters normally 
calculated in a yield model. 

5.6.1 Stand Volume Equations Based on Dominant Height and Basal Area 

Tctal stand volume, either to the tip or to some small diameter limit such e.s 10 ern. 
can be accurately predic'ted by an equation using basal area and dominant height. Typical 
equat ions are: 

(1) V ~ bO -> b1.G.H (linear) 

(2 ) via ~ bO + b1.H (linear, weighted by G) 

(3 ) log V ~ bO + b1.10g G + b2.1og H (logarithmic) 

(4) V/G 
2 

(quadratic, weighted by G) ~ bO + b1.H + b2. H 

A wide variety of ether models is possible. A£ has been discussed in Part I. sane 
form of weighting is normally desirable for fitting voluma equations, as the residual error 
tends to be approximately proportional to the vollllle. Jiquations (2), (3) and (4) all achieve 
this, Model (2) is very simple to fit graphically. 

The quantity V/G is widely known as fo:rm height and has the dimension metres. 

The degree of fit obtained when stand tetal volume is regressed with basal area and 
dominant height with models such as the above is usually very high, often with correlation 
coefficients exceeding 0.99. 
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5.6.2 Usin Tree Volume e ations to Predict Stand Volume

It is a fairly commonplace practice to use a tree volume equation to predict stand

volume by entering the equation with mean basal area diameter and Lorey's mean height. The

latter is the mean of a systematic sample of tree heights weighted by tree banal area.

Alternatively, arithmetic mean height or dominant height are used.

This method gives a biased result in most cases because the equation coefficients

have not been influenced by the changing diameter distribution and form of trees with stand

parameters.

In many cases the bias, which is normally towards underestimation of stand volume,

is small enough to be regarded as negligible. The method will tend towards serious under-

estimation of volume however if the equation is predicting volume to a cut-off diameter and

the mean diameter is close to this limit.

5.6.3 Eatimation of Volume to a Tgp Diameter Limit

It is often the case in uniform forests that volume yields are required to be esti-

mated for two or three top diameter limits. This may be done as follows:

Fit a stand volume equation as described above(s. 5.6.1.), either overbark or

underbark, as required.

For each sample plot, calculate the ratio of volume to the selected top diameter

limit to total volume.

A graph of these ratios against stand mean diameter will produce a diagram of

the type shown below.

E = V /1T
m ror

This shape can be fitted by the function:

R = 1 - a.exp(b.Dg)

which can be transformed into:

log(1 - R) = a* b.Dg

and fitted by linear regression. Not that a is exp(a*).

o
Tail diameter

(3 )

(4)
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latter is the mean of a systematic sample of tree heights weighted by tree basal area. 
Alternatively, aritbnetic mean height or dominant height are used. 

This method gives a biased result in most cases because the equation coefficients 
have not been influenced by the changing diameter distribution and form of trees with stand 
parameters. 

In many cases the bias, which is normally towards underestimation of stand volume, 
is small enough to be regarded as negligible. The method will tend towards serious undel'­
estimation of volume however if the equation is predicting volume to a cut-off diameter and 
the mean diameter is close to this limit. 

EBtirnation of Volume to a Top Diameter Limit 

It is often the case in uniform forests that volume yields are required to be esti­
mated for two or three top diameter limits. This may be done as follows: 

(1) Fit a stand volume equation as described abOlTe (s. 5.6.1 . ), either overbark or 
underbark, as required. 

(2) For each sample plot, calculate the ratio of volume to the selected top diameter 
limit to total volume. 

(3) A graph of these ratios against stand mean diameter will produce a diagram of 
the type shown below • 

• - V Iv m ror 

1.0 ------------------

o 

. " , , 

" 
, " 

• 

, " 

ToP diameter 

" 

(4) This shape can be fitted by the function: 

R c 1 _ a.exp(b.Dg) 

which can be transformed into: 

log(l - R) c a* + b.Dg 

and fitted by linear regression. Not that a is exp(a*). 
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With several merchantable ratios, an attempt can be made to harmonize the coeffi-

cients so that they are themselves functions of the top diameter limit. Alternatively, one

could attempt to construct a multivariable extension of the above model incorporating mer-

chantalle diameter.

When fitting the modele it is important that data points with zero ratios are

excluded. When the function is actually used, if a negative ratio is predicted, the mer-

chantable volume should be taken as zero.

5.6.4 Volumes of ThinningE

Various methods of calculating thinning volumes can be adopted. The stand volume

equation may be entered using the basal area of thinnings. Alternativelye a tree volume

table may be entered with thinning mean diameter and estimated mean height (perhaps from a

height/diameter regression). The most unbiased method is to construct a stand volume

equation using only thinnings, i. e. a regression of thinned volume an thinned basal area

and stand dominant height. This regression can be tested to see if it differs significantly

from the general stand volume equation ands, if note the latter maybe used.

Because thinning volumes are often not measured it may not be possible to constract

such a model. It is suggested that in such cases, thinned volume is calculated as the dif-

ference between stand volume immediately before and after thinning. This techniques may be

applied to both total and merchantable volumes.

5.7 ADVANCED TECHNIQPIS OF GROWTH AND YIELD PREDICTION

There are two types of model Which can be applied to uniform stands which have not

been referred to directly in the foregoing sections, in spite of the fact that they are in

use in a number of forestry organizations These are size class models and tree position

models.

5.7.1 Size Class Models

In a size class model of a uniform stand, the growing stock at any point in time is

described by a frequency distribution of tree sizes. The increment on each size class is

calculated separately, usually as a function of sitee age and stand density and the relaticn

between the size class diameter and the mean or dominant diameter.

Thinnings and mortality must be described in terms of frequency distributions alsov

with the growing stock distribution being modified for each thinning or mortality event.

The advantage of this type of model for uniform stands is that it gives more detailed

information about the size assortment of yield, especially if a stem taper function is also

used for volume calculation. The disadvantage is that the analysis of the growth data is

more complex than for whole stand models and requires consideration of additional parameters

for diameter distributions; whilst the use of the model necessitates access to an electronic

computer.

Models of this type are not necessarily more accurate in nredicting whole stand

parameters such as basal area or mean diameter; but they do provide more detailed informa-

tion about the stand.
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5.7.2 Tree Position Models

Tree position models are those in which the actual spatial relationship between all

the trees in a simulated plot are represented by the model. Inter-tree competition is

dependent an the relative sizes and positions of neighbouring trees. This information is

used to provide a competitive index for each tree Which is used to reduce the actual growth

of the tree, relative to that which it would have if it were growing free of any competition.

The latter is dependent an the age and site.

Tree position models require a formidable number of calculations and stretch the

resources of even quite large computers. As a technique for modelling the growth of uni-

form stands, they are unnecessarily complex, since they do not provide significantly more

useful information about stand growth than a size class model? Whilst requiring probably

two orders of magnitude more calculations. The principle advantages of tree position models

are in relation to physiological research and to growth and yield prediction in mixed stands.

For readers interested in pursuing the literature an these more advanced types of

model, the bibliography published by the Commonwealth Agricultural Bureau entitled "Compu

terized Methods in Forest Planning and Forecasting" is recannemied. Details are in

Appendix D.
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6. ANALYSIS OF GROWTH AM YIELD DATA FOR MIXED FOREST

Mixed forest, in the context of this manual, implies any forest in which the indi-

vidual stands that compose the basic mensurational unit contain a mixture of age classes.

TYPically mixed forest will contain also a variety of apecies, Which may be ecologically

quite similar or composed of several ecological groups, with each group tending to be

dominant in a particular stratum of the canopy or an particular microsites or in different

successional phases following gap formation or harvesting operations.

The distinction between mixed and uniform foreste is not absolute. There are cases

in which a mixed stand consists essentially of anly two age classes very small understorey

regeneration and a dominant overstorey and where harvesting is essentially a clear felling

operation. In these cases, the techniques of unifoim stand yield prediction may be largely

applicable. Similarly, stands of uniform age, but of mixed species, may need to be analysed

using methods appropriate for mixed stands, in order to allow for different proportions of

species mixtures within a single model.

Mixed forests generally involve much more severe mensurational and sampling problems

than uniform forests. .The value per unit area of a mixed forest will normally be lower than

that for a uniform forest at maturity ande hence, once cannot easily justify an equivalent

sampling intensity. At the same time, the dispersion of valuable species and the variability

of the forest, implies that the aampling intensity required to obtain the same predictive

power as for a uniform stand model must be much greater.

The mensurational problems imposed by poor access, dense understorey, buttresses

and the near impossibility of tree total height measurement in many cases, means that

measurement costs are much higher for a given level of precision. This tends to further

reduce the amount of sampling that can be undertaken within a fixed cost budget.

Consequently, most attempts at yield prediction in mixed forest have been based upon

relatively small quantities of data; the resultant models not unnaturally have much lower

precision than would be considered adequate in uniform forest management. There are some

exceptions to this, as for example the yield prediction work in the Philippines reported by
Revilla 1/, which cites results from Dipterocarp forest involving over 240 permanent sample

plots.

Because of the variety of apecies composition, floristic structure, ecological

situations and silvicultural practices that are possible in mixed forest, there are an even

greater diversity of modelling strategies available than for uniform stands. Many of the

published methods are essentially untested except on the basis of very small numbers of plots.

The techniques selected for discussion in this section are perhaps the most robust methods

and fall into three groups:

Yield functions applicable to simpler types of mixed forest.

Transition matrix models.

Distanceindependent tree models based on difference equations.

1/ Revilla, A.R. 1 979 Yield prediction in cutover Dipterocarp stands in the Philippines.
Paper to Seminar on Management of Dipterocarp Forests, Metro Manila. 20 pp.
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It is probable that in the long term, a fourth group of models, the tree position

models, will be the most effective basio for yield prediction in mixed stands. However,
such models require more powerful computers than are normally available today and considerable

investment into research into appropriate sampling techniques before they become a viable

nroposition.

In this chapter, we do not attempt to give any specific instructions concerning the

onstruction of growth models and yield forecasting for mixed forests but rather some examples

of possible waye of dealing with these problems. Ektensive work is however going on in the
field of modelling for mixed forests and it is hoped that viable methods will shortly be

developed.

", SITE CLASSIFICATION

Because mixed forests normally comprise many species, the concept of site index must

ne related either to a species within an individual tree model or to a species association

in a yield model. There are many specific techniques for determining eite index that have
een proposed. They are all equivalent however in their origins. Site indicators are either2

Mensurational parameters in various combinations. (E.g. dominant height and age
in the conventional uniform stand site index curve).

Frivironmental factors, such as altitude, soil ype, rainfall, etc.; or indirect
environmental indicators such as indicator species or goegraphic groupings.

The first class of site indicator repreaents in fact the observed residual from a
'articular model, in which site is not included. Thun if one devises a model, such as for

example, a transition matrix model, for a mizmi stand, and applies it to a number of plots,

one will find a. different residual error foz each plot. That error can be coded on a scale
such as 1, 2, 3, 4, 5 etc., with a median vejue representing a zero error mid one then has

a mensurational site class ay-ten applicable to those plots.

To use such a site class system in ieactice, the errore (i.e site indices) must be.

ietermined at one point in time and than usil as a compensating input to the model for a

prediction at a second point in time. This is precisely what is done with a conventional

set of site index curves for a plantation. From a known height-age input, site class is

determined, which is then fed into the modE. at a second point in time in order to obtain a

much more accurate prediction of aubsequent height than would be possible from the mean

height-age curve.

Once a set of site class values hae been assigned by determining residuals from a

Rite-independent model, then the residualsiean be correlated with owironmental factors,

to determine which are most effective in aeplaining the residual variation of the model.

Indicator species are included by uning ajzero-one variable for each species: zero for

absence from the plot and cine for present.on the plot. Other qualitative factors, such as

soil type, can be coded in the sane way. 'Appendix A discusses the use of zero-one variables

in multiple regression.
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The use of mensurational variables as site indicators is less easy with a mixed

stand than with uniform stands and can only effectively be done with a static yield model.

However, environmental factors can be used as site indicators with any type of model; with

mixed forests, environmental site indicators will thus be more important than with uniform

stands. In mixed foresta, environmental parameters are a necessary part of an effective

model, whereas with uniform stands using height as a basis for site determination, environ-

mental parameters are as optional extra.

It should be appreciated from the above discussion that the convenitonal terms site

index, site class, etc0 are to some degree misnaners. What one is really dealing with are

self-calibrating models, using an error estimate at one point in time to reduce the predic-

tion error for a later estimate. There is nothing inherently one-dimensional about the

effect of the environment on a forest growth model. In addition, some part of the error
that self-calibration can effectively compensate for may be unrelated to the environment

and may be due to historical factors (past stand treatment), stand density, if this is not

adequately incorporated in the modeltend genetic effects (provenance or epecies variation).

These points can be summarised symbolically es follows:

Y1
= f(X I)

19

for I such that Y -Y*
1 1

Use I =
g(BE2)

impute,

Y2
= f(X° I)

2

to determine predicted

yield

5.32:bols

Coefficients in the regression between site index and environmental

parameters.

E Set of environmental parameters on a series of plots, used to fit regression.

E2
Environmental parameters on plot at time T2

f() Any mathematical model used as the growth model.

Fit regression

between I and E

G(BoBi)

111- -1-
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B Coefficients in the regression between site index and environmental 
parameters. 

E
j 

Set of environmental parameters on a series of plots, used to fit regression. 

E2 Ehvironmental parameters on plot at time T2 

rO Any mathematical medel used as the growth medel. 
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Any mathematical function (linear or nonlinear) used as the site index-

environment regression.

Estimated site index value for a plot.

Ij
Set of site index values an the same plots as E. were determined.

x1) Independent variables used in the growth or yield model at times 1 and 2.
1)

X2)

Y ) Yield estimated from the model at times 1 and 2.
1\

Y2)

Y* Actual yield on plot on which X1 were determined.
1

6.2 STATIC YIELD FUNCTIONS FOR MIXEM FOREST

6.2.1 General Principles

Static yield functions have been discussed in section 5 with reference to uniform
forest. The principal feature of a static function is that time is included in the model

as a total elapsed time from some reference point. In a uniform forest, the reference point

is usually the date of planting or establishment and time is the age of the forest. In a

mixed forest model, the time base may be the last harvesting qperation or the last forest

inventory or it may be some other point.

The model must take the general form:

Y
f(x1,x2?0000Xn,t)

where Y is the measure of yield of interest. This may be timber volume of merchantable

species, basal area, fuelwood tonnage/ha or non-timber yield such as fruit, seed or bark

production.

The variables x. are any variables which fulfil two criteria:

They are useful in predicting Y. That is, they add significantly in a statis-

tical sense to the goodness of fit of the funtion f() to the yield.

They can be determined without requiring remeasurement of the forest at time t.

They may be inventory statistics at the base time t0 or they may be regional

site indices derived from soil, topographic or climgtic data. They may be

qualitative variables denoting the particular type of harvesting treatment the

forest has received.

The time elapsed from the time base is t. This must be present if the function is
to he useful as a planning tool.

The form of the function will vary tremendously depending upon the yield being pre-

dicted, the data involved and, to some extent, the sophistication of the analytical tools
available.

6.2 

6.2.' 
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gO Any mathematical function (linear or nonlinear) used as the site index­
environment r~ession. 

I ERtimated site index value for a plot. 

I
j 

Set of site index values on the same plots as E
j 

were determined. 

X) Independent variables used in the growth or yield model at times , and 2. , ) 
X

2
) 

Y, ) Yield estimated from the model at times' and 2. 
) 

Y
2

) 

Y~ Actual yield on plot on tdlich X, were determined. 

STATIC YIELD FUNCTIONS FOR MIXED FOREST 

General PrinCiples 

Static yield functions have been discussed in section 5 with reference to uniform 
forest. 'l'he principal feature of a static function is that time is included in the model 
as a total elapsed time from some reference point. In a uniform forest, the reference point 
is usually the date of planting or establislrnent and time is the age of the forest. In a 
mixed forest model, the time base may be the last harvesting operation or the last forest 
inventory or it may be some other pOint. 

The model must take the gSReral form: 

where Y is the measure of yield of interest. This may be timber volume of merchantable 
species, basal area, fuelwood tonnage/ha, or non-timber yield such as fruit, seed or bark 
producti on. 

The variables x, are any variables which fulfil two criteria: 
~ 

(,) They are useful in predicting Y. That is, they add Significantly in a statis­
tical sense to the goodness of fit of the funtion fO to the yield. 

(2) They can be determined without requiring rsmeasurement of the forest at time t. 
They may be inventory statistics at the base time t , or they may be regional 
site indices derived from soil, topographic or clim~tic data. They may be 
qualitative variables denoting the particular type of harvesting treatment the 
forest has received. 

The time elapsed from the time base is t. This must be present if the function is 
to be useful as a planning tool. 

The form of the function will vary tremendously depending upon the yield being pre­
dicted, the data involved and, to some extent, the sophistication of the analytical tools 
available. 
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6.2.2 Data Analysis Procedures

The data may be from temporary or permanent plots or from experiments. The simplest
type of data analysis that one is likely to undertake will be multiple linear regression,

coupled with graphical analysis of data and of residuals. An electronic computer is there-
fore essential, although it could be quite a small one.

The data from the plots must be summarized prior to determining the yield equation.

The summary will derive the following types of information for each plot!, an each occasion

of measurement.

Plot identity; for experiments this will include block number, treatment

number and replicate number.

Yields; there may be only one type of yield to consider (e.g. total merchan-

table volume) but more usually yield will be expressed by species groups and

in size/quality classes, so there may be eight or more types of yield.

Possible predictor variables. These include:

Basal area/ha by species groups at time to.

Stocking % by species groups at time to.

Logging intensity at time to.

Silvicultura]. class.

Forest type code.

Environmental indicators (soil type, altitude, rainfall, etc.).

Once the plot summaries have been derived, they are maintained in computer acces-

sible form for the various subsequent analyses.

For analysis purposes, various procedures such as principal components analysis,

stepwise regression, combinatorial regression can be used to give the automatic selection

of the predictor variables which 'best' predict the yields. However, a priori selection of

predictor variables in a relatively simple equation is generally preferable, combined with

a careful graphical analysis of residuals and preferably some canmonsense relationship

between the form of the function and the reality of the biological situation predicted.

6.2.3 Methods of Selecting a Yield Equation

Section 5 has considered the various forms of equation that can be used to model

asymptotic growth processes. In Appendix A, figure A.2.1. shows a variety of basic functions

which can represent other shapes besides the asymptotic. In developing a curve or function

to model yield development in natural forest, it is best first to graph the data, plotting

yield against time from the time base (Whether a felling or inventory). The data should be

classified by basal area of the stands at the base time; separate graphs may be drawn for

different sites or forests of different species composition.
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6.2.2 Data Analysis Procedures 

The data may be from temporary or permanent plots or from experiments. The simplest 
type of data analysis that one is likely to undertake will be multiple linear regression, 
coupled with graphical analysis of data and of residuals. An electronic computer is there­
fore essential, although it could be quite a small one. 

The data from the plots must be summarized prior to determining the yield equation. 
The summary will derive the following types of information for each plot, on each occasion 
of measurement. 

(1) Plot identity; for experiments this will include block number, treatment 
number and replicate number. 

(2) Yieldsl there may be only one type of yield to consider (e.g. total merchan­
table volume) but more usually yield will be expressed by species groups and 
in size/quality classes, so there may be eight or more types of yield. 

(3) Possible predictor variables. These include: 

- Basal s:rea/hA by species groups at time t • 
o 

- St ocking % by sp eci es groups at time t • 
o 

- Logging int ensi ty at time t • 
o 

- Silvicultural class. 

- Forest type code. 

Environmental indicators (soil type, altitude, rainfall, etc.). 

Once the plot summaries have been derived, they s:re maintained in computer acces­
sible form for the various subsequent analyses. 

For analysis purposes, various procedures such as principal components analysis, 
stepwise regression, combinatorial regression can be used to give the automatic selection 
of the predictor variables which' best' predict the yields. However,! priori selection of 
predictor vs:riables in a relatively simple equation is generally preferable, combined with 
a cs:reful graphical analysis of residuals and preferably some commonsense relationship 
between the form of the function and the reality of the biological situation predicted. 

6.2.3 Methods of Selecting a Yield Equation 

Section 5 has considered the various forms of equation that can be used to model 
asymptotic growth processes. In Appendix A, figure A.2.1. shows a variety of basic functions 
which can represent other shapes besides the asymptotic. In developing a curve or function 
to model yield development in natural forest, it is best first to graph the data, plotting 
yield against time from the time base (whether a felling or inventory). The data should be 
classified by basal s:rea of the stands at the base time; separate graphe may be drawn for 
different sites or forests of different species composition. 
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On the basis of such graphs, a suitable equation can be selected from the various

forms described elsewhere in this manual. The data maybe fitted directly, using multiple

regression or nested regression; or a hand-drawn line may be sketched through the data and

subsequently approximated by an equation if required.

In many instances where anly light selection felling is carried out and the forest

is a complex mixture of many species and ecological types, there may be no direct relation-

ship discernible over time between yield, basal area and si-te class. In such cases, predic-

tion of growth with a simple yield model is not an effective strategy.

6.2.4 Problems with Static Yield Models in Mixed Forest

Because static yield models are relatively straightforward to construct and use, it

might seem that they offer something of a panacea for the problems of yield prediction in

mixed forests. Unfortunately, this is far from the case. The problems are essentially of

the same kind as those discussed in section 5.2.5 regarding yield models for uniform forests,

but are rather more severe in degree.

There are two basic kinds of problem:

A particular model of yield has implicit in it a historical sequence of events

corresponding to those occurring in the data set used to construct the model.

The model cannot be applied reliably to data which has experienced a different

history.

There is a problem of compatibility. Suppose for example ane predicts three

types of volume; VM for merchantable species; Vp for partially merchantable

species; and Vu for unused species. The total of these three should logically

represent the total volume of the forest. However, if ane compares (Vm+Vp+Vu)

with total volume, either from actual data or from a fourth function fitted

directly to total volume, one will find a considerable bias.

Neither of these problems is insurmountable in principle. With adequate quantities

of data from permanent plots and long term experiments, historical factors representing

different sequences of treatment can be incorporated as additional qualitative variables.

Compatibility problems may be overcome by fitting constrained regressions which are forced

to satisfy particular requirements.

Static yield models above all suffer fram the basic limitation that they cannot

utilize data from varied historical sources (e.g. different types of experiments, permanent

sample plots and short term tree increment plots); nor can they be adapted to predict yield

for historical regimes (i.e. sequences of treatment) other than those implicit in the data

used to construct them.

6.2.5 Conclusions regarding Sta-tic Yield Models in Mixed Forest

Static yield models are relatively simple to construct, given adequate data.

In many types of mixed forest, cLear relationships between time, treatment

intensity and si-te are not cibservie. In such cases, static models cannot be

used.
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On the basis of such graphs, a suitable equation can be selected fran the various 
forms described elsewhere in this manusl. The data may be fitted directly, using multiple 
regression or nested regression; or a hand-drawn line may be sketched through the data and 
subsequently approximated by an equation if required. 

In many instances where only light selection felling is carried out and the forest 
is a canplex mixture of many species and ecological types, there may be no direct relation­
ship discernible Oller time between yield, basal area and site class. In such cases, predic­
tion of growth with a simple yield model is not an effective strategy. 

Problems with Static Yield Models in Mixed Forest 

Because static yield models are relatively straightforward to construct and use, it 
might seem that they offer sc:mething of a panacea for the problems of yield prediction in 
mixed forests. Unfortunately, this is far fran the case. The problems are essentially of 
the same kind as those discussed in section 5.2.5 regarding yield models for uniform forests, 
but are rather more severe in degree. 

There are two basic kinds of problem: 

(1) A particular model of yield has implicit in it a historical sequence of events 
corresponding to those occurring in the data set used to construct the model. 
The model cannot be applied reliably to data which has experienced a different 
history. 

(2) There is a problem of compatibility. Suppose for example one predicts three 
types of volume; Vm for merchantable species; Vp for partially merchantable 
species; and Vu for unused epeciee. The total of these three should logically 
represent the total volume of the forest. However, if one cc:mpares (Vm+Vp+Vu) 
with total volume, either from actual data or fran a fourth function fitted 
directly to total volume, one will find a considerable bias. 

Neither of these problems is insurmountable in principle. With adequate quantities 
of data fran permanent plots and long term experiments, historical factors representing 
different sequences of treatment can be incorporated as additional qualitative variables. 
Compatibility problems may be overcane by fitting constrained regressions which are forced 
to satisfy particular requirements. 

Static yield models above all suffer from the basic limitation that they cannot 
utilize data fran varied historical sources (e.g. different types of experiments, permanent 
sample plots and short term tree increment plots); nor can they be adapted to predict yield 
for historical regimes (i.e. sequences of treatment) other than those implicit in the data 
used to construct than. 

6.2.5 Conclusions regarding Static Yield Models in Mixed Forest 

Static yield models are relativelv simple to construct, given adequate data. 

In many types of mixed forest , c" ear relationships between time, treatment 
intensity and site are not obBel"'V1'\.~le. In such cases, static models cannot be 
used. 
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Care must be taken with a static model to recognize that it is tied to predefined

historical treatment sequences implicit in the data used to construct it.

When predicting several types of yield, either constrained regressions should be

fitted or it must be accepted that the different predictions cannot be regarded

as additive to an unbiased total.

6.3 TRANSITION MATR17 MODFLS

Transition matrix models provide a method for making short term predictions of forest

growing stock an the basis of large quantities of poor quality data from recurrent measure-

ments. They can be developed from, for example, continuous forest inventory data based on

permanent plots or temporary plots near the same locations, in which trees have been measured

only by diameter and species class. The method can be used with data that contains signifi-

cant numbers of erroneous measurements. Short term predictions, in this context, implies

periods up "co forty or fifty years or one cutting qycle.

The method is objective, but not necessarily very accurate. Its principal advantage

is that the data base can be analysed automatically and may be strictly conventional inven-

tory data. Its princpal disadvantage is that it is not usually possible to construct

adequately refined transition matrices unless large quantities of data are auailable.

6.3.1 Definition of a Transition 1-Tatrix Wod.el

A transition matrix model requires that a system be represented by a row of variables

which may be called a state vector. One can imagine this as, for example:

Xm = (xm1, xm2,.....xmn)

where each xmi represents the number of trees in the i th diameter class. The first sub-

script (m) denotes the time period. The x's do not need to represent size classes. They

could, for example, be total biomass in different trophic levels of an ecosystem; or

development stages in an animal population. But in growth models for mixed forests, the

state vector elements will normally be size classes.

The transition matrix itself, denoted by Tv consists of an n x n table of elements,

like this:

T = t12 t13 .

t21 t22 t2n

O n 0 O0 Ou o o e0000
0 0 0 0 0 O 0 0 0 0 O 0 0 0

tn1 tn2 ........tnn

Each element tij represents the proportion of element xmi that becomes xm+11j over

the interval m to m+1. The total value of xm+10 will be the sum of all the tij times the

xmi. That is:

xm+1j (1)
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Care must be taken with a static model to recognize that it is tied to predefined 
historical treatment sequences implicit in the data used to construct it. 

lfuen predicting several types of yield, either constrained regressions should be 
fitted or it mus't be accepted that the different predictions cannot be regarded 
as additive to an IlIibiased total. 

6.3 TRAlllITION MATRIX MODELS 

'l'ransition matrix models provide a method for making short term predictions of forest 
growing st ock on the basis of large quantities of poor quality data from recurrent measure­
ments. They can be developed from, for example, continuous forest inventory data based on 
permanent plots or temporary plots near the same locations, in .mich trees have been measured 
only by diameter and species class. The method CEll'! be used with data that contains signifi­
cant numbers of erroneous measurements. Short tem predictions, in this context, implies 
periods up to forty or fifty years or OIle cutting cYcle. 

The method is objective. but not necessarily very accurate. Its principal advantage 
is that the data base can be analysed automatically and may be strictly conventional inven­
tory data. Its princpal disadvantage is that it is not usually possible to construct 
ade«uately refined transition matrices unless large quantities of data are ~lable. 

Definition of a Transition Matrix Kodel 

A transition matrix model requires that. a system be represented by a row of variables 
.mtch may be called a state vector... One can imagine this as, for example, 

Xm ~ (:xrn1, Dn2, ••••• :xmn) 

where each "",i represents the number of trees in the i th diameter class. The first sub­
script (m) denotes the time period. The x' s do not need to represent size classes. They 
could, for example, be total biomass in different trophic levels of an ecosyst ... ; or 
development stages in an animal population. But in growth models for mixed forests, the 
state vector elements will nomally be size classes. 

The transition matrix itself, denoted by T, consists of an n x n table of elements, 
like this, 

T = t11 t12 t13 • • • • • t1n 
t21 t22 • • • t2n 

• . • • • • • • • • • 
• . • • • • • • • • • • • • 
tn1 tn2 • • • • • • • tnn 

fuch element tij represents the proportion of element xmi that hecanes "",+l,j over 
the interval m to m+1. The total value of xm+1,j will be the sum of al1 the tij times the 
xmi. That is, 



Diameter

at start

of

period

The transition matrix probabilities are given within the table° Note that the zero

values of the lower diagonal are indicative of the fact that trees do not move into smaller
size classes. The addition of the transition probabilities to 1.0 along the rows is neces-

sary if all the states of the system are truly defined by the state vector.

Now assume that the diameter class distribution at the start of the period is:

diameter <20 20-40 40-60 6o-8o 80+

frequency 1037 219 88 22 treesilla

Construct a table as shown below9 with the class total in the right hand column and

the other figures obtained by multiplying the total by the corresponding transition proba-

bility.
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By repeating equation (1) for each value of j from 1 to n9 one calculates an entire

new set of values for XM+1 from Xm0

The following example may clarify matters.

The table below assumes a state vector (X) of diameter classes9 as indicated:

Diameter class at end of period

Diameter

at start

of

period

add the columns vertically to get the new frequency distribution for the stand.

This example ignores ingrowth9 mortality and harvesting. These are considerad in the

following sections°

6.3.2 methods of Constructin Transition Matrices

The methods for constructing transition matrices may be differentiated according to

whether single tree, permanent plot remeasurements are available or whether ane is dealing

only with diameter class measurements.

4.20 20-40 40-60 60-80 80+ Total

0.6 0.39 0.01 o 0 1.0<20
20-40 0 0.68 0.30 0.02 0 1.0

40-60 0 0 0.75 0.21 0.04 1.0

60-80 0 0 0 0.9 0.1 100
80+ 0 0 C 0 1.0 100

Then:

<20

Diameter class at end of period

20-40 40-60 60-80 80+ Total
-----

<20 623 404 10 1037

20-40 149 66 4 219

40-60 66 19 3 88

60-80 20 2 22

80+ 7 7

Total 623 553 142 43 12

I

1
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By repeating equation (1) for each value of j fl'Olll 1 to n, one calculates an entire 
new set of values for Xm+1 from Xm. 

The following example may clarify matters. 

The table below assumes a state vector (X) of diameter classes, as indicated : 

Diam et er class at end of period 

(20 20-40 4~60 6~80 80+ Total 

Diameter < 20 0.6 0.39 0. 01 0 0 1. 0 
at start 2~40 0 0.68 0.30 0.02 0 1.0 

of 4~60 0 0 0.75 0.21 0.04 1.0 
period 6~80 0 0 0 0. 9 0.1 1.0 

80+ 0 0 0 0 1.0 1.0 

The transition matrix probabilities are given within the table. Note that the zero 
values of the lower diagonal are indicative of the fact that trees do not mwe into smaller 
size classes. The addition of the transition probabilities to 1.0 along the rows is neces­
sary if all the states of the system are truly defined by the state vector. 

Now assume that the diameter class distribution at the start of the period is: 

diamet er < 20 2~40 4~60 6~80 

frequency 1037 219 88 22 7 trees/ha 

Construct a table as shown below, with tha class total in the right hand column and 
the other figures obtained by multiplying the total by the corresponding transition prob~ 
bility. Then: 

Diameter class at end of period 

(20 2~40 4~60 ~80 80+ Total 

Diameter <20 623 404 10 1037 
at start 2~40 149 66 4 219 
of 4~60 66 19 3 88 

period 6~80 20 2 22 
80+ 7 7 

Total 623 553 142 43 12 

add the columns vertically to get the new frequency distribution for the stand. 

This example ignores ingrowth, mortality and harvesting. These are considered in the 
following sections. 

6.3.2 Methods of Constructing Transition Matrices 

The methods for constructing transition matrices may be differentiated according to 
whether single tree, pennanent plot remeasurements are available or whether one is dealing 
only with diameter class measurements. 
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603.2,1 angiLimuak
Second measurement

IABCD. e M H Total

First

measurement A

The framework of the transition matrix is shown above. The letters A,B,C,D,

denote successive diameter classes. M denotes mortality and H harvested stems. I denotes

ingrowth.

The transition matrix is constructed as follows:

Define the initial class and final class, over 1 time period, of a tree. Tally

that tree in the appropriate row/column intersection and in the total column an

the right. The latter is based an the initial class value. Ingrowth trees are

defined as those which appear in a class at the second measurement, but were not

present in any class at the first measurement. Mmiality trees are those which
are dead at the second measurement; and harvested trees those which have been
removed.

Once all the trees in the entire data set have been tallied, divide the tran-

sition tallies by the total in the right hand column to give a propurlion,

rounded to two decimal places.

Check that the transitions along each row add to 1.0. If there is a small

discrepancy (± 0.01 or 0.02), it will be a rounding error; adjust some figures

at random until they total 1.0. If there is a large discrepancy, there has

been an arithmetic error in that row.

If one of the totals columns is zero, that class must be amalgamated with an adjacent

size class, as there are no data defining transitions relating to it.

6.3.2.2 Size class data

The diagram below illustrates a transition matrix as it must be constructed if only

size class data is available. It must be assumed that

- Al]. ingrowth occurs into the lowest size class°
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6.3. 2.1 Single tree data 

Second measurement 

I A B C D • • • • M H Total 
First I 

measurement A 

B 

C 

D 

• 
• 

• 
M 

H 

The framework of the transition matrix is shown above. The letters A,B,C,D, ••• 
denote successive diameter classes. M denotes mortality and H harvested stems. I denotes 
ingrowth. 

The transition matrix is constructed as follows: 

(1) Define the initial class and final class, over 1 Ume period, of a. tree. Tally 
that tree in the appropriate row/column intersection and in the total column on 
the right. The latter is based on the initial class value. Ingrowth trees are 
defined as those which appear in a class at the second msasurement, but were not 
present in any class at the first measurement. Mortality trees are those which 
are dead at the second measurement; and harvested trees those t.hlch have been 
rQ1\oved. 

(2) Once all the trees in the entire data set have been tallied, divide the tran­
sition tallies by the total in the right hand column to give a proportion, 
rounded to two decimal places. 

(3) Check that the transitions along each I'<>wadd to 1.0. If there is a small 
discrepancy (:1: 0.01 or 0.02), it will be a rounding error; adjust sane figures 
at randan until they total 1. O. If there is a large discrepancy, there has 
been an ari tbnetic error in that row. 

If one of the totals colUl)ms is zero, that class must be amalgamated with an adjacent 
size class, as there are no data defining transitions relating to it. 

6.3.2.2 Size class data 

The diagram below illustrates a transition matrix as it must be constructed if only 
size class data is available. It must be assumed that I 

- All ingrowth occurs into the lowest size class. 



Outgrowth from one class can anly occur into the next higher class.

The number of stems harvested in each class is known from an indppendent source

or deduced from the treatment prescription.

The shaded blocks in the table are not used; they are zeros within the main tran-
sition matrix.

3

Diameter classes in the stand at the first measurement are entered in column A.

Diameter classes at the second mePsurement go in raw B. Harvested stems are entered in
column H. The diagonals Po and Pr are calculated from the following formulae:

Po m B A + Po* + H (2 )

Pr m A Po (3 )

In equation (2), A is the row total and B the column total for a particular Po: Po*

is the value of Po in the next row down. Po* is zero by definition for the largest size
class. H is the harvested stems for that row. Po is calculated recursively9 starting at

the bottom right corner with Po* m 0, and then working up to the left.

After the values of Po and Pr have been calculated in stems/ha, they are converted

to proportions by dividing by the corresponding row total A.

The statistics Po and Pr represent real processes as follows:

In the ingrowth raw9 19 Pin is the proportion of seedlingp which does not enter

the lowest chame-ter class. Po is the proportion which does and is accounted as
ingrowth.

In the other rows, representing successive size classes, Pr is the proportion
of stems in that class which remain there during any one time period.
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Outgrowth fran One class can only occur int 0 tbe next high.,.. class. 

The number of sterns harvested in each class is known from an independent source 
or dE>iuced from the treatment prescription. 

The shaded blocks in the table are not usedl they are zeros within the main tran­
si tion matri:x. 

I H A 

I "'~~(~ ? 

~ '" 
, 

~ Po, 
~ (~ ~p. r, .'" ~ ~ ~, '" H ~ ~ % ~ ~ fA 1 

B ~ I/'/" ~ 

Diameter classes in the stand at the first measuremmt are entered in column A. 
Diameter classes at the secend measurement go in row B. Harvested stems are entered in 
column H. The diagonals Po and Pr are calculated from the following fonnulae: 

Po ~ B - A + Po* + H 

Pr a A - Po 

In equation (2), A is the row total and B the colur.m total for a particular Po; Po* 
is the value of Po in the next row down. Po* is zero by def"inition for the largest size 
class. H is the harvested stems for that row. Po is calculated recursively, stlU"ting at 
the bottom right corner .lith Po* a 0, and then working up to the left. 

After the values of Po and Pr have been calculated in stems/ha, they are converted 
to proportions by dividing by the correeponding row total A. 

The statistics Po and Pr represent real processes as follows: 

(1) In the ingrowth row, I, Pr is the proportion of seedlings which does not enter 
the lowest diameter class. Po is the proportion which does and is accounted as 
ingrolorth. 

(2) In the other rows, representing successive size classes, Pr is the proportion 
of sterns in that class which rsnain thsre during any one time period. 



Two basic refinements must be added to a transition matrix model for mixed forest

before it becomes a workable tool:

Species must be grouped and separa-te matrices constructed for each group. The
number of groups should not be too large, otherwise one may have too little

data for many transitions.

Data should he grouped into basal area classes for different forests, to allow

a different transition matrix to be used for different stand densities.

6.3.4 Disadvantages of Transition Yodels

Transition matrix models have seve4al disadvantages.

It is difficult and tedious to represent dynamic interactions. For example, the

interaction between stand density and growth rate. It can only be done by having

a separate transition matrtx for each level of the controlling variable. This

may be tolerable with only ane significant interaction, but with tumor more, the

number of matrices required is the product of the number of levels of each inter-

action.

The precision of a transition model is limited by the need to work with broadly

defined classes; otherwise too many undefined transitions occur or the matrices

become too largn for easy computation.

Transition models are inefficient in terms of the number of parameters required

to define a growth process. A 9 x 9 matrix (81 parameters) might only correspond

to a single tree parameter growth equation.

Because of their inefficiency and lack of dynamic interaction, transition matrix

models offer little scope for improved understanding of forest growth processes.
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(3) Po is the proportion of stems growing out of ane class and into the next higher
class during any time period.

The figure shows the value of A corresponding to the ingrowth row as a ?. Any arbi-
trarily large figure may be used as this row representa the total number of seedlings
forming the potential ingrowth pool. However, if regeneration surveys are conducted, then
this figure may be estimated absolutely or modified in proportion to a percentage stocking.

Note also that the transition H/H is shown as 1.0 because 100% of the stems harvested
in period A (the earlier period) will remain harvested at period BL

Nortality can be added to the matrix in a way exactly similar to harvesting. Like
harvesting, it must be measured, which means that the number of dead trees in each size class
must be assessed at period B. It is also added to equation (2) in the same may as R.

6.3.3 Refinements to transition models
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(3) Po is the proportion of steme growing out of one class and into the next higher 
class during any time period. 

The figure shows the value of A corresponding to the ingrowth row as a? Any arbi-
trarily large figure may be used, as this row rspresents the total number of seedlings 
forming the potential ingromh pool. However, if regeneration surveys are conducted, then 
this figure may be estimated absolutely or modified in proportion to a percentage stocking. 

Note also that the transition H/H is shown as 1.0 because 100% of the stens harvested 
in period A (the earlier period) will remain harvested at period B~ 

Mortality can be added to the matrix in a way exactly similar to harvesting. Like 
harvestin~, it must be moosured, which means that the number of dead trees in each size class 
must be assessed at period B. It is also added to equation (2) in the same ~ as H. 

6.3.3 Refinements to t~dnsition models 

Two basic refinements must be added to a transition matrix model for mixed forest 
beforp, it becomes a ~orkable tool: 

(a) Species must be grouped and separate matrices ConstIUcted for each group. The 
number of groups should not be too largs, otherwise one may have too little 
data for many transitions. 

(b) Data should be grouped into basal area classes for different forests, to allow 
a different transition matrix to be used for different stand densities. 

6.3.4 DieadVlUltages of 'Prs...,sition Models 

Transition matrix models have several disadvantages. 

It is difficult fllld tedious to represent dynamic interactions. For example, the 
interaction between stand density and growth rate. It can only be done by having 
a separate t.ransition mat:t<!Lx for each level of the controlling variable. This 
may be tolerable with only one significant interaction, but with two or more, the 
number of matrices required is the product of the number of levels of each inter­
action. 

The precision of a transition model is limited by the need to work with broadly 
defined classes; otherwise too many undefined transitions OCC1lI" or the matrices 
become too large for easy computation. 

Transition models are inefficient in terms of the number of parameters required 
to define a growth process. A 9 x 9 matrix (81 parameters) might only correspond 
to a single tree parameter growth equation. 

- Because of their inefficiency and lack of dynamic interaction, transition matrix 
models ofhr little Bcope for improved understanding of forest growth processes. 
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6.4 IMTANCE-INDEPMIDENT TREE MODELS HASID ON DIFFERENCE atuvrian

6.4.1 Definition

A tree model is one in which each tree in a stand is individually represented by a

set of variables, describing, for example, tree species, tree diameter, height and crown

condition. In a distance-dependent model, the tree position in the stand is also represented,

typically as x-y coordinates. In a distance-independent model, tree position is not repre-

sented. Distance-independent models are generally much more economical in terms of computer

resources than tree position models; but give a less realistic and detailed representation

of inter-tree competitive processes. In this manual, only the distance-independent model is

considered, as experience has suggested that for gross projections in yield, there is no

specific advantage in going for the more complex and computationally demanding tree position

model.

6.4.2 .4,k11.ometric _and Rynanlic Variables

As has been said each tree in the stand is represented by a set of variables. In

the simplest case, a tree will be represented by only one variable, its diameter. Usually,

species will also be identified and perhaps height or crown class. Other tree variables,

such as crown diameter, volume or biomass, may be derived by allometric relationships with

tree diameter and height.

Dynamic variables are those Which are predicted from the state of the tree at a

previous time period. Allanetric variables are those Which represent eta-tic relationships

between different dimensions of the tree at the same point in time.

6.4.3 Representation'of Con etition

The individual tree dynamic variables, such as diameter, will be predicted from an

equation incorporating tree diameter at the last time period and also some measure of stand

density. Stand density may be represented in a number of ways, as an absolute measure such

as number of trees over a certain size limit or the basal area of trees in the stand or as

a relative measure such as basal area divided by the maximum basal area possible on that

site; or it could be measured in some novel way by considering, for example; total leaf

biomass on a given area.

However stand density is measured, it will retain the property that it is in some

sense the commation of the individual tree variables in the stand. Thus basal area is the

sum of the individual tree sectional areas.

Stand density obviously varies from place to place in a stand. If the model repre-

sents a large plot, of say 1 or 10 ha, then the averall stand density will not necessarily

reflect very accurately important variations such as the occurrence of gaps. This difficulty

can be avoided by dividing the simulated plot into quadrats, of say 10 x 10 m and calcu-

lating the stand density as it affects any one quadrat as the average density of that quadrat

and its eight neighbouring quadrats. For edge quadrats, the neighbours can include the

quadrats on the opposite side of the pia in order to avoid edge effects.
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DlSTMICE-INDEPENDENl' TREE )I0DEU3 MSED ON DIFFEREN'CE mD'ATIONS 

Definition 

A tree model is one in which each tree in a stand is individually represented by a 
set of variables, describing, for example, tree species, tree diameter, height and crown 
condition. In a distance-dependent model, the tree position in the stand is also represented, 
typically as x-y coordinates. In a distance-independent model, tree position is not repre­
se.'lted. Dist,."ce-independen"~ models are generally much more econanica1 in terms of canputer 
resources than tree position models; but give a less realistic and detailed representation 
of inter--tI'ee canpetitive processes. In this manual, only the distance-independent model is 
considered, as e~erience has suggested that for gross projections in yield, there is no 
epecific adVlUltage in going for the more canplllX and canputationally d<!l1anding tree position 
",odo1. 

Al1anetric and D,ynamic Variables 

As has been said, each tree in the stand is represented by a set of variables. In 
the simplest csse, a tree will be represented by only one variable, its diameter. Usually, 
species will also be identified and perhaps height or crown class. other tree variables, 
such as crown diameter, volume or bianass, may be derived by allanetric relationships with 
tree diameter and height. 

Dynamic variables are those weh are predicted fran the state of the tree at a 
previous time period. Allanetrie variables are those weh represent static relationships 
between differen"~ dimensions of the tree at the same point in time. 

Representa.tion" of Canpetition 

The individual tree dynamic variables, such as diameter, will be predicted fran an 
equation incorporating tree diameter at the last time period and also some measure of stand 
density. Stand density may be represented in a number of ways, as an absolute meaSUI'e such 
as number of trees over a certain size limit or the basal area of trees in the stand or as 
a relative measure such as basal area divided by the ma.:rimum basal area possible on that 
site; or it could be measured in sane novel way by considering, for example, total leaf 
biOOIass on a given area. 

HO>lsvar stand dE!1lBity is measured, it will retain the property that it is in some 
sense "the SUl!mIation of the individual tree variables in the stand. TIma basal area is the 
sum of the individ.ual tree sectional areas. 

Stand density obviously varies fran place to place in a stand. If the model repre­
sents a large plot, of say 1 or 10 ha, then the overall stand density will not necessarily 
reflect very accurately important variations such as the occurrence of geps~ This difficn1ty 
can be avoided by dividing the simulated plot into quadrats, of say 10 x 10 m, and calcu­
lating the stand density as it affects anyone quadrat as the average density of that quadrat 
and its eight neighbouri"g quadrats. For edge quadrats, the neighbours can include the 
quadrats on the opposite side of the plot in order to avoid edge effects. 
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6.4.4 Data Requirements and Approaches to Analysis

Data must be available from permanent or temporary sample or experimental plots in

order to define all the dynamic and allometric relationships in a model. Any variables

included in the model must have been actually measured on sample trees. If competition is

to be defined in terms of quadrat stand densities, as discussed above (section 6.4.3), then

the sample plots or experiments must also have been measured so that trees could be placed

in quadrats, and a quadrat by quadrat competition index calculated.

With mixed species forests, it may well be that rare species will not be represented

by many points. In these cases it is better to group the rarer species together and provide

them with a common set of growth and allometric functions.

Unlike a transition matrix model, the process of fitting the variaus equations in the

model to the field data requires considerable skill. The various problems are discussed

elsewhere in this manual, notably in section 5 and Appendix A, but the research worker has

to consider:

the problem of selecting a Punction which produces the appropriate shape

fitting the data using a suitable and adequate statistical and/Or graphical

technique, together with an examination of residuals for bias

what will happen if in applying the model, an extrapolation will be demanded

from a particular function and if the result it gives under such circumstances
is reasonable, if not necessarily accurate.

6.4.5 Basic Model Structure

The averall model structure is very simile.: to that for dynamic stand models, dis-
cussed in section 5.3.4, and is illustrated in the diagram below. There is first of all an
initialization phase, where the state of the stand at the start of the simulation is given
This could be derived from actual inventory data or it could be generated randomly or from
a set of functions.

Initialize tree variation

Compute growth for a given period of time,
e.g. 1 year, tree by tree

Increment time

period by 1
Remove harvested trees, compute yieldL Remove dead trees

Generate new ingrowth trees

Print summary of plot statistics

¡-

for this period

Compute competition indices for each

r-----------------quadrat
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6.4.4 Data Requirements and Approaches to Anal:ysis 

Data must be available fran pennanent or temporary sample or experimental plots in 
order to define all the dynamic and allanetric relatiCllships in a model. Any variables 
included in the model must have been actually measured on sample trees. If competition is 
to be defined in tenns of quadrat stand denSities, as discussed above (seotion 6.4.3), then 
the sample plots or experiments must also have been measured so that trees cwld be placed 
in quadrats, and a quadrat by quadrat competition index calculated. 

With mixed species forests, it may well be that rare species will not be represented 
by many points. In these cases it is better to group the rarer species together and provide 
them with a common set of growth and allometric functions. 

Unlike a transition matrix model, the process of fitting the various equations in the 
model to the field data requires ca,siderable skill. The various problems are discussed 
elsewhere in this manual, notably in sectiCll 5 and Appendix A, but the research worker has 
to consider: 

the problem of •• 1eoUng a t'\moUon whioh prod"" .. the appropriate shape 

fitting the data using a suitable and adequate statistical and/or graphical 
technique , together with an examination of residuals for bias 

what will happen if in applying the model, an extrapolation will be demanded 
from a particular function and if the r esult it gives under such ciroumstanoes 
is reasonable, if not neoessarily acourate. 

6. 4.5 Basic Model Structure 

The overall model structure is very similar to that for dynamic stand models dis­
cussed in section 5. 3.4, and is illustrated in the dia,;mm below. There is first or' all an 
initialization phase, where the state of the stand at the start of the simulation is given. 
This could be derived from actual inventory data or it could be generated randomly or from 
a set of functions. 

Initialize tree variation 

t 
r ________ Compute competition indices for each 

Increment time 
period by 1 

quadrat! . 

Compute growth for a given period of time, 
e.g. 1 year, tree by tree 

1 
Remove harvested trees, compute yield 

t 
Remove dead trees 

1 . 
Oenerat e new ingrowth trees 

1 
~ ______________ Print summary of plot statistics 

for this period 
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Then the mcdel enters a cyclic or iterative phases Where each cyole represents ane
unit of the basic growth periods typically 1 or 5 years. In each iterations a series of
calculations are repeated following the main stages indicated. Generallys the order in
which these stages are carried out is not important; so that one coulds for examples remove
dead or harvested trees before' rather than afters calculating growth an the residual stand.

6.4.6 Ingrowth., Mortalit and Harvestiqg

From the point of view of tree model conetructions ingrowths mortality and harvesting
have in common the following:

they invo/ve the creation or romar.al of trees from the list of traen in the model

- they are inherently random processes and cannot easily be treated as simple

functional relationships

adequate descriptive data is often lacking an these parameters,

Ingrowth and mortality are often both partially density dependent; so that the

number of ingrowth trees or the number of trees aying may both be functions of stand density.

Once this number has been determined' the actual selection of individuals may involve a

variety of ad hoc rules. With ingrowths one typically creates trees of random sizes and

species with limits determined perhaps by a probability distribution based on &A% ar per-

haps on an arbitrary maximum size that appears reasonable. With mortality, the likelihood

of any individual tree dying may be a function of its size wad species.

Stochastic or probabilistic processes of this kind can be modelled very easily in a

computer simulation by using a uniform random number generator that produces randomly distri-

buted numbers between zero and one. Such functions are often standard library functions in

FORTRAN programming and are part of the standard language in BASIC.

Suppose for example that a function indicates that a particular tree in the model

has a 0.7 probability of dying in the current year. A random number between 0 and 1 is

generated; if it is less than 0.7s then the tree is presumed to have died and a mortality

routine is entered which records the details of the tree for the plot summary and removes

it from the table of trees alive in the model. If the random number is greater than 0.79

then the tree survives and grows until the next period.

Harvesting processes are similar to mortality in that they involve the removal of

trees, but usually in accordance with definite rules relating to the species and size.

6, 4 7 Regrág_____arcliTree Models

Individual tree models are highly flexibles but reauire considerable skill in both

computer programming and in data analysis an the part of the research worker. They also

require the use of a large computer. There is no single stereotyped method of constructing

such models. The interested reader should study references such as those given in the CAB

(1977) Bibliography listed in Appendix B.

Individual tree models are not a panacea. Like all other forecasting methods they

require an extensive data base of remeasurements an carefully maintained and assessed

permanent sample and experimental plots. Also, like other methods discussed earlier, their

sophistication is no guarantee of their accuracy.
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Then the model enters a cyclic or iterative phase. where each cycle represents one 
unit of the basic growth period, typically 1 or 5 years. In each iteration, a series of 
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has a 0.7 probability of dying in the current year. A l'IIlldan number between 0 and 1 is 
generated; if it is.!!!!! than 0.7, then the tree is presumed to have died and a mortality 
routine is entered which records the details of the tree for the plot summary and removes 
it fran the table of trees alive in the model. If the randan number is greater than 0.7. 
then the tree survives and grows until the next period. 

Harvesting processes are similar to mortality in that they involve the rmloval of 
trees, but usually in accordance with definite rules relating to the species and size. 

Conclusions Regarding Tree Models 

Individual tree models are highly flerlble, but require considerable skill in both 
canputer programming and in data analysis on the part of the research work?r. They also 
require the use of a large computer. There is no single stereotyped method of constructing 
such models . The interested reader should study references such as those given in the CAll 
(1977) Bibliography listed in Appendix B. 

Individual tree models are not a panacea. Like all other forecasting methods they 
require an erlensive data base of remeasurements on carefully maintained and assessed 
pennanent sample and experimental plots. Also, like other methods discussed earlier, their 
sophistication is no guarantee of their accuracy. 



Validation will show weaknes7es in model behaviour which will lead ta improved model

structure or to the necessity of collecting more field data. EXperiments on models, even

those which are quite invalid may lead to alternative concepts of experimental design and

data capture.

7.2 VALIDATION DATA

In order to validate a model, its behavioUr must be compared with observations frcm

real situations whose history and treatment are precisely known. This data. can be called

validation data and may be obtained from experiments, permanent sample plots or temporary
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7. VALIDATION OF GPOWTH AND YIELD MODELS

7.1 TETE ROLE OF VALIDATION

Validation is, literally, the process of determining whether or not a model truly

represents reality. However, the following points must be borne in mind:

Model predictions approach reality as a set of successive approximations as more

and more effort is put into data collection and model construction.

At some point, the effort involved in obtaining more data or producing a more

statistically sound model becomes more expensive than the marginal improvement

in model predictions warrant.

Forest models do not have a uniform degree of error over their Whole range of

predictive behaviour, but will be more ar less accurate over different ranges of

predictor variables.

The process of validation may be as time consuming and expensive Pa that of model

construction. Special experiments may need to be constructed to test the model; data pro-

cessing systems may need to be set up to allow models to be validated by comparison with

large numbers of plots; considerable statistical analysis may be required to estima-te the

covariances of residual errors.

This input of effort into the validation process is in no sense wasted. Science

differs from philosophy and. religion in being subject always to the criterion of empirical

validation of theories and models. A model which is no validated is simply speculation and

guesswork.

Furthermore, the nature of model constructicn implies that it must interact with

validation as a cyclic process.

Data collection

A

Model Validation

construction
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7. VALIDATION OF GJ10WTH AND YIELD MODELS 

7.1 THE ROLE OF VALIDATION 

Validation is, literally, the process of detennining whether or not a model truly 
represents reality. However, the following points must be borne in mind: 

Model predictions approach reality as a set of successive approxir.1ations as more 
and more effort is put into data collection and model construction. 

At sane point, the effort involved in obtaining more data or producing a more 
statistically sound model becanes more ""Pensive than the marginal improvEment 
in model predictions warrant. 

Forest models do not have a unifonn degree of error over their whole range of 
predictive behaviour, but will be more or less accurate over different ranges of 
predictor variabl~~. 

The process of validation may be as time consuming and exp""sive as that of model 
construction. Special experiments may need to be conetructed to test the model; data pr<>­
cessing systems may need to be set up to allow models to be validated by canparison with 
large numbers of plots; considerable statistical analysis may be required to estimate the 
covariances of resimlal errors. 

This input of effort into the validation process is in no Bense wasted. Science 
differs fran philosophy and religion in being subject always to the crl.terion of Empirical 
validation of theories and models. A model which is no~ validated is simply speculation and 
guesswork. 

Furthennore, the nature of model construction implies that it mUet interact with 
validation as a cyclic procesa. 

Data collection 

Model 
construction 

Validation 

Validation will show weaknesses in model behavi""r >obich will lead to improvAd model 
structure or to the necessity of collecting more field data. Experiments oil models, even 
those 'Hhich are quite invalid may lead to alternative concepts of experimental deflign and 
data capture. 

7.2 VALIDATION DATA 

In order to validate a model, its behavioUr must be compared with obsel"'rations from 
real situations whose history and treatment are precisely known. This data can be called 
validation data and may be obtained from ""Pariments, pennanent sample plots or temporary 
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sample plots. Two distinct situations uslinlly exist with respect to validation data:

The data used tO validate the model is the same as that used to construct the

various functions forming part of the model. We can call this self validation.

The data used to validate the model has not been used to estimate any of the

function parameters in the model. This situation may be called InimmisL
validation.

There is nothing extraordinary about the concept of self validation. It is the

normal procedure for regression analysis, for example, where all statistical estimators are

based on the errors between model predictionsandthe observed values used to fit the model.

Self validation can however, be dangerously misleading. Regression analysis provides

a good example: if the assumptions of the statistical model used (uniform error variance,

normally distributed uncorrelated errors, predictor variables known without error) are incor-

rect then the statistical estimators and parameter values obtained will al-so be incorrect.

Self validation is particularly dangerous with small numbers of observations and

with very complex models. With simple models (perhaps only one or two functions) and with

large amounts of comparison data it can be quite acceptable.

Independent validation is a much more satisfactory procedure from every point of

view. It gives an absolute reflection of how effective a model is as a predictive tool,

The main difficulty with independent validation is that a considerable body of data may

need to be ignored When constructing the model. Probably the best procedure, and one widely

adatad by the systems modelling community, is that of halving the data set by a random or

systematic process and using half the data for model construction and half for validation.

Unfortunately, there is a certain grey area between self validation and indspendent

validation. It is possible to construct a model using one type of information from a set of

plot or experimental data and validate it using another, independent statistic from the same

plots. Such partially independent validation may be regarded as less satisfactory than

fully independent validation, but more indicative of a model's true validity than self

validation.

7.3 RMIDUAL ERROR

Validation of models is usually based upon an analysis of residual errors. These

are defined as:

Residual error ..-- Observed value predicted value

This is exactly analogous to the residual error used in regression analysis. It is

suggested that the reader refer to the notes in Appendix A.2.6; identical techniques can be

applied to error analysis from models.

If the residual error is to give a true indication of a model's performance, it must

be assumed that the model can be set up in such a way that the independent variables giving

rise to the observed value are identical to those for the predicted value. If this is not

the case, then the error of the model will tend to be exaggerated.
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sample plots. Two distinct situations usually exist with reepect to validation data: 
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For example, a dynamic stand model requires information about the planting density

and timing and intensity of thinnings if it is to make an accurate prediction. Such a
model requires long term permanent sample plots or thinning experiment data for accurate

validation.

A growth and yield model mill generally predict several statistics, for example mean

diameter, dominant height, total volume and merchantable volume. Residual errors generally
increase (relative to the statistic predicted) from height to diameter, to total volume to

merchantable volume. Consequently, it is usually sufficient to carry out validation studies

on total volume or merchantable volume; unless there is a special need to know the precision
of diameter and height estimates, these need not be the subject of separate validation

studies.

Residual errors can be summarized in several ways:

- Graphically, as plots of residual errors against predicted values or predictor

variables. The comments in Appendix A.2.6 apply in this case.

- As a coefficient of determination, analogous to R2 in regression studies. This

is calculated as:

-
sura_2LETIams of resilual errors

1
, .

Sum of squares of dbserved values

- As a residual standard deviation, calculated as:

Sum of s ares of residual errors

No, of validation samples - No, of predictor variables

- As a percentage residual standard deviation (equivalent to a coefficient of

variation) calculated as:

Residual standard deviation

Mean predicted value

In quoting or using these statistics, the reader should appreciate that they are

approximations which cannot necessarily be related to specific confidence intervals or levels

of significance.

7.4 GRAPHICAL COMPARISONS

Analysis of residual errors is a somewhat abstract technique. An alternative approach
to model validation is that in which a gisaph is plotted of the statistic of interest against

some predictor variable for both real stands and the yield model. For example, ane could

plot the development of volume against time for actual stands and for a model.

This type of approach gives a more concrete appreciation of the strengths and weak-

nesses of a model, than residual analysis. Hbwever, it cannot effectively be usedto summarize

the behaviour of a model involving many predictor variables: nor can it easily be used to

represent results with large amounts of validation data.
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the behaviour of a model involving many predictor variables: nor can it easily be used to 
represent results with large amounts of validation data. 
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It is suggested that both types of validation are usually necessary. Residual

analysis can be used with large sets of data and to summarize results into a small number

of statistics9 over the whole range of predictor variable values. Graphical comparisons are

effective for presenting the key aspects of model behaviour for publication or communication.

7.5 DEFINING THE LIMITS OF MODEL UTILITY

The residual errors from a model will generally tend to increase as ane moves towards

more extreme values of predictor variables. This is likely to be especially true if one's

validation data covers a broader range of sites, ages and growing conditions than the data

used to construct the model.

However, there will be limits to the validation data, as there will have been to the
data used in model construction. It is important, as part of the validation process, that

one examines how the model behaves outside these limits and estimates, for each type of pre-

dictor variables, a range of values outside which the model predictions become Obviously

inaccurate and unusable.

This is important because many applications of growth and yield models may be in

situations where absurd values are not immediately apparent. For example, as part of an

economic forest sector model or as a component in a programme for calculating cutting plans.

The limiting range of values within which a model may be reasonably precise (to
quoted specifications) should therefore be explicitly defined during the validation process.

- 112 -

It is suggested that both types of validation are usually necessary. Residual 
analysis can be used with large sets of data and to summarize results into a small number 
of statistics, over the whole range of predictor variable values. Graphical comparisons are 
effective for presenting the key aspects of model behaviour for publication or canrnunication. 

7.5 DEFINING THE LIMITS OF MODEL UTILITY 

The residual errors from a model will generally tend to increase as one moves toWBl'ds 
more extreme values of predictor variables. This is likely to be especially true if one's 
validation data covers a broader range of Sites, ages and growing conditions than the data 
used t o construct the model. 

However, there will be limits to the validation data, as there will have been to the 
data used in model construction. It is important, as part of the validation process, that 
one examines how the model behaves outside these limits and estimates, for each type of pr~ 
dictor variables , a range of values outside which the model predictions become obviously 
inaccurate and unusableo 

This is important because many applications of growth and yield models may be in 
situations where absurd values are not immediately apparent. For example , as part of an 
economic forest sector model or as a component in a programme for calculating cutting plana . 

The limiting range of values within which a model may be reasonably precise (to 
quoted specifications) should therefore be explicitly defined during the validation process . 



- 113

8. THE APPLICATION OF THE MODEL TO THE REQUIRYD Em USE

8.1 I NTRODUCTION

Essentially, the growth and yield model may be applied in one of three ways:

As a simple table or graph or set of tables or graphs. These can be used by

forest planners directly or can be fed in tabular form to a computer for updating

a set of inventory data.

As a programme for a computer or calculator which can produce a table or graph

of growth and yield for a particular set of treatments. This is appropriate

when the model has sufficient inherent flexibility so that it is not possible

to define all possible predictions in one set of tables.

As a computer programme which forms a sub.,model within a larger computer pro-

gramme for forest planning and which will usually incorporate a data base of

inventory information and various economic or technical constraints on harves-

ting and treatment operations.

Alternatives i and ii have been sufficiently dealt with in 5.3.4. Remains to comment

on alternative iii where the model is used in connection with inventory data in forest

planning.

A necessary prerequisite in this case is that the variables included in the model

as parameters (predictor variables) also are included in the inventory data.

8.2 ETTN-AGED STANDS

In the case when the forest consists of even-aged stands the following three functions

might be included in the model:

Ho = f (Sp, S, A)

Ig = f (Sp, S, A, G) or Ig = f (Sp, Ho, N)

Hf = f (Sp, Ho, N) or Hf = f (Sp, Ho, /i G)

Where Sp denotes species, S site quality class, Ho dominant height, A age, N number of trees

per hectare, G basal area per hectare, Ig basal area increment per hectare and year and Hf

form height, defined by the function V = G.Hf Where V is volume per hectare. In this case,

the variables Sp, A, Ho, N and G have to be known for the inventory data while site class,

S, may be calculated by means of the first function.

We may assume that the model is calculated by means of observations on growth and

yield plots. We may further assume that the inventory-data, to Which the model will be

applied, is derived from observations on sample plots. If the plot size is the same in both

cases the model may directly be applicable to the inventory data. If, however, there is a

difference in size in that the inventory plots for example are smaller than the growth and

yield plots, the model may give biased results. There are two reasons for this. One is

that the site class will be somewhat underestimated on small plots (0.01-0.02 hectares)
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compared to larger plots (0.05-0.1 hectares). Tbis bias is however, usually only a few
percent. The other reason for bias is that the effect of competition from trees outside the
plot will increase with decreasing plot size. This in turn means that a growth function
containing competition or density variables like N or 0 is correct only for plots of the
size for which it was calculated. The size of this bias depends on the difference in size

between the growth plots and the inventory plots, the type of growth function in the motel

and finally on the variation within the inventoried stands. Nothing can therefore be said
in general about the size of this error.

Provided that the growth plots and the inventory plots are of more or less equal

size, the application of the model to the inventory data should be done by forecasting the

development for every single inrentory plot. At the end of the forecasting peried, the
plots may be sorted into strata according to species site class and age and the sums and
means for each stratum calculated.

If, however, there is a great difference in plot size in that the growth plots are

much bigger than the inventory plots it might be advisable firstly to sort the inventory

data according to species, si-te class and age and then to apply the motel to these strata

instead of to each separate inventory plot.

8.3 MIXED STANDS

In the case of a forest consisting of mixed (uneven aged) stands the following

functions might be included in the forecasting model:

Ir = f (S, F9 G(1), 0(2), G(n), N(1), N(2) N(n) 1,(2)

1,(n))

y = f (Sy F9 G(1), G(2)9 00. 0(n)9 N(1)9 N(2), N(n))

where Tv is growth in merchantable volume per hectare and year, S is site class defined by

environmental indicators (soil type, altitude, rainfall, etc.), F is forest type, 0(1), 0(2),

O(n) is basal area after logging by species group per hectare, N(1), N(2) ... N(n) is

the number of trees after logging per species group and hectarev L(1), L(2) ... L(n) is

logging intensity per species group and finally V is merchantable volume after logging per

hectare.

To enable forecasting the same variables (predictor variables) have to be recorded

in the inventory as those included in the model. The discussion an plot size in relation

to forecasting foreven-aged stands applies in principle also to mixed stands. It must be

admitted, however, that very little so far has been done in the field of growth models for

tropical mixed foreste and that this field still is in a stage of research. It is thus not

possible to give any precise instructions an how to make forecasts concerning the development

of tropical, mixed forests after logging. For temperate, mixed forests, models have been

developed by which reliable forecasts may be done (see e.g. Monserud 1980). It might be

worthwhile trying these models also for tropical mixed forests, but this has so far not been

done.

Monserud, A, Ek, A, 19801 Comparison of two stand growth models for northern hardwoods -

Wright H9 (editor) 1980. Planning, performance and evaluation of growth and yield

studies. Meeting of IUFRO 54.01. Commonwealth Forestry Institute, Oxford, Great

Britain, pp.8.
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Monserud, A, Ek, A, 1980, Canparison of two stand growth models for northern hardwoode -
Wright H, (editor) 1980. Planning, performance and evaluation of growth and yield 
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1. EQUATIONS AD GRAPHS

This section concerns methods of ez.plessing graphical relationships as equations.

1.1 The StraiOat Line

The simplest type of grail' is the straight line:

This can be represented as an equation by:

y = a + b.x

a is the value of y at the point Where the line crosses the y axis (i.e. at x.0), b is the
slope of the line, and can be conveniently worknd out from a graph as follows:

(i) Takn any convenient interval Lix (say for example, 10 imite of x), and draw a

line AB of that length parallel to the x axis (see diagram above).

Measure the length Ay of the line parallel to the y axis from B to the graph

line. If BC is measured upwards, Ay is positive. If C is below B then Ay

is negative.

(iii) The slope b is given by ay/4x. Note that,6y and Cix are measured in the

units of the y and x axes, and not in actual distance on the paper in

centimetres etc.

An alternative algebraic method of calon]Rting the a and b coefficients for a

straight line is as follows:

Takn any two convenient points on the line, designated by (x1

(x2, y2),as shown on the diagram below.

) and
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y2

x1

Calm/IPA() the slope b as:

b
(72-7.1)/( xrx1

(iii) Calculate the interoept as:

a y

1.2 °transformations for Curve Fitti

Many relationships between variables in forest yield prediotion are in the form of

curves When represented graPhioally. The modeloor particular equation that represents the

OUSVE4 must be known if an exact representation of the curve is to be worked out In

practice, the correot model is not usually known and only an approximation is possible.

Perhaps the most easily fitted and used approximating equations are those whioh

involve transformations of the x or Y units, but leave the general equation in linear form.

Common transforystions are:

logarithm to the base 10log10
x

loge or in it 11 tt e (2.71828....)

1/X reoiprocal

square root
x2 square

The transformations can be applied te both the X and y variables to give various

combinations andresultant curves.
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Y2 -----1-------------
I 
I 
I 
I 

(ii) Caloulate the slope b as: 

(iii) Caloulate the intaroept as: 
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Data that is obviously not linear in form can be plotted using various transforma-

tions until a linear shape is obtained. The work is reduced if one has some idea in advance
of the transformations likely to be successful. In the main part of this manual examples

for particular types of data are suggested.

1.3 Examele of Approximation of a Curve.Akg_ltauformation ta.ajam121121422

Figure A01.1(a) shows a curve representing a relationship between tree volume (v)
and diameter (D). We assume that the curve has been drawn by hand and it is desired to
express it as an equation.

Points at convenient intervals on the x-axis are tabulated from the graph:

Points from Original

The first transformation tried ie shown in figure A.1.1(b), where D2 is plotted

against V. The points from the original curve almost follow a straight linee but there is
still a slight curvature apparent.

Another transformation is shown in figure A.1.1 (c ). Here we have taksn logarithms
to base 10 of both axes. The transformed values are listed for the 6 selected points in
the table above. It can be seen that this traneformation gives an almost perfect fit,

except for the smalleet point whioh is slightly above the linee From the figure we can
calculate the slope and intercept for this line. Taking the two points (1.301,-0.699) and

(1.740, 0.279) shown by the double oiroles on the figure and as D at 20 and 55 cm in the

table above, we have:

b = (0.279 - (-0.699))/(10740 - 10301)

e
0.978/0.439

u 2.228

a = -0.699 -2.228 x 1.301

'c -3.597

So our equation approximating the curve in figure A,1 01(a) is:

logioV = -30597 + 2.228
log10p

FUnction

V

_ansformations
way. coass.ncuutt..M.....arcl

D2 log D log V

10 0.05 100 10000 -1.301

20 0.20 400 1.301 -0.699

30 0.45 900 1.477 -0.347

40 0.85 1 600 1.602 -0.071
50 1.50 2 500 1.699 0.176

55 1.90 3 025 1.740 0.279
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Data that is obviously not linear in form oan be plotted using various transfo~ 
tiona until a linear shape is obtained. The work is reduoed if one has some idea in advanoe 
of the transformations likely to be sucoessful. In the main part of this manual examples 
for partioular types of data are suggested. 

1.3 Example of Approximation of a Curve Using Transformation to a Straight Line 

Figure A.1.1(a) shows a ourve representing a relationship between tree volume (V) 
and diameter (D). We "",sume that the ourve has bee" drawn by hand and it is desired to 
express it as en equation. 

Points at convenient intervals on the >:-axis are tabulated from the graph. 

Points from Original 
Function 

D V 

10 0.05 
20 0.20 
30 0.45 
40 0.85 
50 1.50 
55 '.90 

D2 

100 
400 
900 

1 600 
2500 
3 025 

Transformations 

log D log V 

1.000 -1.301 
1.301 -0.699 
1.477 -0.347 
1. 602 -0.071 
1.699 0.176 
1.740 0.279 

The first transformation tried is shown in figure A.1.1 (b), where D2 is plotted 
against V. The points from the original ourve almost follow a straight line, but there is 
still 8. slight ourvature apparent. 

Another transformation is shown in figure A.1.1 (0 ). Here we have taken logarithms 
to base 10 of both axes. The transformed values are lishd for the 6 seleoted points in 
the table above. It oan be seen that this transformation gives an almost perfeot fit, 
axoept for the amallest point whioh is slightly above the line. From the figure we oan 
oaloulata! the slope and interoept for this line. Taking the two points (1.301,-0.699) and 
(1 .740 , 0.~79 ) shown by the double oiroles on the figure and as D at 20 and 55 om in the 
table above, we have. 

b D (0.279 - (-0.699»/(1.740 - 1.301) 

0.978/0.439 

~ 2.228 

a D -0.699 -2.228 x 1.301 

So our equation approxima-ting the ourve in figure A.1.1 (a) is: 
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-0,5

-1,0

-1,5
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Figure A.1.1

10 20 30 4.0 50 60

log D

Transformation of a hand-drawn curve to give a straight line approximation.

Original free-hand curve with selected points for calculation of transformed values.

x-axis transformed by taking square of selected points. (o) x and y axes tranaformed

by taking logarithms to base 10 of the selected points.
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Figure A. 1 .1 
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(b) 2 V 
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~ ____ ~ ____ ~ ____ ~D2 • 
1000 2000 300~ 

(c) 
0,5 log V 

0,0 
1,1 

-0,5 -. 

-1.0 

-1,5 

Transformation of a hand...u-awn ourve to give a straight line approrlmatioll. 
(a) Original free-he.nd ourve with seleoted points for oaloulation of transformed. values. 
(b) x-axis transformed by taking square of seleoted points. (0) x and y axes trauformed 
by taking logarithms to base 10 of the seleoted points. 
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1.4 E9),,non_lia,18 fbr Curve Approximation

Equations involving only two ooeffioients are convenient for the approximation of

functions because they can be drawn as straight lines with suitable transformations. How-
ever, some shapes of curve cannot be treated in this way. In this case the teohnique of

fitting a quadratic or cubic polynomial to the function may yield good results.

A polynomial is an equation of the form:

2
y

b0 + blx b2x + b3x3 bnx

where n is the order and the bi are ooefficients. The higher the order the greater the

flexibility of the funotion. On the other hand y high order polynomials are difficult to

fit by manual techniques.

For quadratic (2nd order) and cubic (3rd order) polynomials, manual calculation of

the ooefficients is possible in about 30 minutes with the help of a 4-function (+9 -9 X9 4.-)
calculator. A form is provided to assist the user (form AA) which shows in this case the

fitting of a cubic equation to the line in figure A.1.2. Fbur points are taken from the

function to be fitted and entered in table (1) of the form. The points need not be in any

order, but it is desirable that:

One point each should represent the two extremes of the function.(In this

case, X1 and X3.)

x4 should not be an extreme point if the quadratic equation coefficients are

to be calculated.

The other points should be more or less evenly spaced.

(iv) When ally the quadratic equation is to be calculated,three points are

sufficient.

Form A.1 explains the neoessary caloulations.

QuaBratic and cubic curves provide a useful means of approximating hand-drawn curves

by an equation. When using them the following details should be noted:

wAlayE check the calculations and the suitability of these curves by drawing

the function on top of the original curve. It is usually preferable to start

by fitting the quadratic equation. Then, if this is not sufficiently accurate,

compute the cubic equation coefficients.

Never use a polynomial equation to extrapolate beyond the two extreme points

used in fitting it. If extrapolation is necessary, extend the hand-drawn

curve first and then fit a new equation with a new extreme point.
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1.4 Pol:ynomials 1br Curve Approximation 

Equations involving only two coeffioients are oonvenient for the approximation of 
funotions because they can be drawn as straight lines with suitable transformations. Ho_ 
ever, some shapes of ourve cannot be treated in this way. In this oase the teohaique of 
fitting a quadratic or oubio polynomial to the funotion may yield good results. 

A polynomisl is an equation of the form: 

2 3 +bxn y ~ b
O 

+ b
1
x + b

2
x + b

3
x + •••• n 

where n is the 2!:!!!!: and the bi are ooeffioients. The higher the order the greater the 

flexibility of the funotion. On the other hand, high order polynomials are diffioult to 
fit by manual techniques. 

For quadratio (2nd order) and oubic (3rd order) polynomials, manual caloulation of 
the ooeffioients is possible in about 30 minutes with the help of a 4-funotion (+, -, x, t) 
caloulator. A form is provided to assist the user (form .1..1) which shows in this case the 
fitting of a cubic equation to the line in figure A.l.2. Four points are taken from the 
function to be fitted and entered in table (1) of the form. The points need not be in any 
order, but it is desirable that: 

(i) One point each should represent the two extremes of the funotion. (In this 
case, Xl and X

3
.) 

(ii) 

(iii) 

(iv) 

X4 should ~ be an extreme point !! the quadratic equation coeffioients are 
to be caloulated. 

The other points should be more or less evenly spaced. 

lIhen only the quadratio equation is to be caloulated, three points are 
sufficient. 

Form A.l explains the neoessary oaloulations. 

Quadratic and oubio ourves provide a useful means of approximating hand-drawn ourves 
by an equation. lIhen using them the following details should be noted: 

(i) Always cheok the calculations and the suitability of these curves by drawing 
the funotion on top of the original ourve. It is usually preferable to start 
by fitting the quadratio equation. Then, if this is not suffioiently accurate, 
compute the oubic equation ooeffioients. 

(ii) !!m!: use a polynomial equation to extrapolate be;yond the two extreme points 
used in fitting it. If ext~polation is neoessary, extend the hand-drawn 
curve first and then fit a new equation with a new extreme point. 
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Figure A01.2

Hand-drawn curve approximation by a cubic polynomial. see form A.1 for calculations)
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Figure A.1. 2 

Hand-<irawn curve appronllBtion by a cubic polynomial. (see fcrm A.1 for oalcula.tions) 
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y3 ___________________________ --
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IX!. :X3 

5 10 15 20 ~25 
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Or
bo + b1X

b2.X2 + b .X3
3

IC= bo + b1.X b2.X2
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Form A.1 Coefficientt_112E an app tinguedraticor cubic curve

alt2-li_xe: To calculate the coeffioients bi in either of the equations:

(cubic, curve)

(quadratic curve)

Items marked .0 are not required for the quadratic curve calculations.

(i) Tabulate 3 or 4 data points for the function and compute squares and cubes.

From table (1) calculate differences as sbown:

u.i i4,1 i 1+1 i
v . fx2 ...x2Nitx. _a N
i i.0-1 ill 1+1 ii

wi '' (X3i+1-X3i)/(Xi+1-Xi)

i 3 4
16.0 21.0

<>
19.4

20

400

8000

<>
15

11111111111111

3375
I

<>
125

<>
1000

)(
1 i+1

6.8 5 75

<>

875

2 5 10 300 7000

-1.6 -175 -4625

From table (2) construct the terms shown in the table below according to the
following definitions:
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FOrm A.1 Coef fioients for an approximating quadratic or oubio ourve 

Objective: To celoula.te the coeffioients bi in either of the equations: 

y. b + b .X + b
2
·x2 

+ b3'~ 
' 0 1 

(oubio curve) 

or 
y. b + b .X .. b .x? 

o 1 2 
(quadratic curve) 

Items marked <> are not required for the quadratic curve oalculations. 

(1) Tabulate 3 or 4 data points for the funotion and oompute Bquares and cubes. 

I 1 2 3 4 
Yj 9.2 16.0 

<> 
21.0 19.4 

X <> 
5 10 20 15 

I 

X~ 
<> 

25 100 400 225 

X? <> <> <> <> 
125 1000 8000 3375 

(2) From table (1) calculate differenoes .... sholm: 

I 't, -~ Xi+,- Xi X~+, -X~ X3 _X3 
i+' i 

<> 
1 6.8 5 75 875 

2 5 10 
<> 

300 7000 
<> <> <> <> 

3 -1.6 -5 -175 --4625 

(3) From table (2) construot the terms shown in the table below aocording to the 

I U· I 

1 1.36 

2 0.5 

3 <> <> 
0.32 

Vi 
<> 

15 

30 
<> 

<> 
35 

W. 
I 

175 

700 

925 

following definitioBS' 

u i G (Y1+'-Yi)/(Xi +1-Xi ) 

vi • (X~+,-~)/(Xi+1-Xi) 

Wi - (\+1-\)/(Xi +1-Xi ) 

/ ... 



(5) Calculate the eoeffioients according to the following forroulae:

Coefficient Cubic ean, quadratic azaz

b2
p1 30q1

-0.1320

b1 u1 -b2v -b3ow1

2.9677
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Form A.1 (continued...)

bo Y1 -b1 .X1 -b2.X2-b3
.X3

1 1

-2.5995

(ui+1 -u )/(vi+1 -v )

(w )/(v -v )
i+1 i i+1

None

P1

u1-b2..v1

Y -b
1 1 1 2 1

i Vi+--V p-

1 15 -13.05733 35

5 .c1.0.036 45

(4) From table (3) calculate the terms in the following table from these defini-

tions:

b3 (p2-131)/(q2-011)

0.002133
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Fbrm A.1 (oontinued ••• ) 

(4) From table (3) oaloulat8 the terms in the following table from these defini- · 

I Vi+1-Vj Pt 

1 15 ..0.05133 

2 <> <> 
5 -0.036 

qj 
<> 

35 

<> 
45 

tiODDI 

Pi· (ui+1-ui)/(vi+1-vi) 

qi - (w1+1-;,)/(v1+1-i) 

(5) Caloulate the coeffioients according to the following fomulae. 

Coeffioient Cubio m. Qaadra,tio ecm. 

None 

- 0.002133 

b
2 P1-b3•Q

1 P
1 

- -0.1)20 -
b

1 u1-b2·vt -b
3

·"1 u
1
-b

2
,v

1 

• 2.961 ' -
b Y1-b1·X1-b2·~-b3·~ Y1-b1'X1-b2'~ 0 

x -2.5995 

* * * .. .. .. * * * 
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1.5 Gra s Involvin Three Variables

All the graphs considered in the above paragraphs relate a y variable with an x

variable. Many relationships involve a third variable Which we may oall a z variable.

The graph may appear something like this:

Here, each level of z (z z2, forms a distinct relationship between x
i

and y. Such cases are common with site iodex ourves Where height (y) depende on age (x)

for different levels of site index (z) or volume or basal area curves depending on height

(x) and stand density (z).

Such syntemn of ourves having been drawn by hand through data may need to be

expressed as equations for caloulation or tabulation purposes, for 11238 in a computer

programme, or simply for convenience of communication and analysis.

The system of curves can be expressed either:

as a series of separate equationm with a different relationship between x

and y for eaoh level of z; or

as a single equation in which z enters as a distinot variable.

The first method can lead to the seoond by the prooess called harmonization. Seta

of equationn of the first type have two disadvantagess

There is no method of determining a value of y given a z value intermediate

between the levels chosen.

A large number of coefficients are required to describe the curve system.

Equations of the second type are therefore to be preferred; they are more concise

and can be used to calculate y for any given valuse of x and z (within the range of the

curve system).

The example below shows how a system of harmonized curves can be constructed. The

general principio involves graPhing the coefficient values against the z variable levels

and for each coefficient, deriving a new expression to predict the coefficient value given
a particular z.

- '''5 -

, .5 Graphs Invo Iv! ng Three Variables 

All the graphs considered in the above paragraphs relate a y variable with an x 
variable. l(any relationships involve a third variable .mioh we may call a z variable. 
The graph may appear something like this: 

y 

+-______________________ x 

Here, eaoh level of 0 (0'1' "2' z3. eto.) forms a distinot relationship be~ .... en x 

and y. Such oases are common with sito index ourvss .mere height (y) depends on age (x) 
for different levels of site index (z), or volume or basal area. ourves depending on height 
(x) and stand density (z) . 

Such systems of ourves having been drawn by hand through data may need to be 
expressed as equations for caloulation or tabulation purposes, for use in a computer 
programme, or simply for convenienoe of communication and analysis. 

The system of ourves oan be expressed either: 

(i) as a series of separate equations with a different relationship between x 
and y for each level of "; .2!: 

(ii) as a single equation in .mioh " enters as a distinot variable. 

The first method oan lead to the seoond by the prooess called harmonization. Sets 
of equations of the first type have two disadvantages I 

(i) There is no method of determining a value of y given a • value intermediate 
between the levels ohosen. 

(ii) A large number of coeffioients are required to desoribe the ourve system. 

Equations of the second type are therefore to be preferred; they are IOOre conoise 
and oan be used to oaloulate y for any given values of x and z (within the range of the 
ourve system). 

The example bolow shows how a system of ha.rIOOnized ourves oan bo constructed. The 
general prinoiple involves graphing the ooeffioient values against the • variable levels 
and for each ooeffioient, deriving a new expression to prediot the ooeffioient value given 
a partioular z. 
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. 6 Exam le: Fitting an equationto ámstem of curves by harmonization

Figure A.1.3 shows a system of height (H) over diameter (D) curves for individual

trees in four different age classes (A). The curves were originally drawn by hand through

data.

The first stage is to fit a separate equation to each line. It is decided to use a

qlmaratic function as the approximating equation.

Figure A.1.3

Handdrawn curves of height on diameter for different age classes, to be

as. .ximated b harmonized uadratio e uations see exam le in text .

30

25

20

15

10

10

12 16 20
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1.6 Example: Fitting en equation to a system of ourves by harmonization 

Figure A.1.3 shows a system of height (H) over diameter (D) ourves for individual 
trees in four different age olasses (A). The ourves were originally drawn by hand through 
data. 

The first etage is to fit a separate equation to each line. It is deoided to use a 
quadratiC function as the approximating equation. 

Figure A.1. 3 

Hand-drawn ourves of height on diameter for different age classes, to be 
approximated by harmonized quadratio equations (see exBlDple in text). 
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The calculations, which are not shown, involve selecting 3 points from each line and

calculating the coefficients according to the method of form A.1. The selected points are

shown on each curve in the figure by e a The table below gives the coefficient values for

each age class:

Coefficients
Age

b0 b1Class------- 2

In order to reduce the system of four quadratics equations to a single system, the

coefficients bi must be made to depend on age. The form of this dependence can best be

seen by graphing the coefficients against age class (figure A0104)0

From that figure it can be seen that the relation between 1)0 and age follows a

gentle curve, whilst bi versus age is a steeper, more asymmetric curve b2 versus age

appears almost exactly linear. The equations were calculated (again using form A.1) for

these three curves as follows:

b - -0.0187 4.1.153 A -3.100 A2

,-5 3
b = 1.225 -0.0508 A -',-0.00400 A2 -6.67 x 1U

b2 = -0.0188 -0.000627 A ( 3 )

The general equation for the linea in figure Aala4 is the crivdratio equation, as
selected earlier, with the form:

H.b0 4-1)D4b D2
1 2

-(4)

The coefficient valves in equation (4) can now be derived for any age between the

limits 5 and 20 using equations (1) to (3).

This is a fairly complex example of harmonization intended to illustrate the full

soope of the principles involved. In practice some simplifioation is often acceptable.

Por example, in the above case a quite close approximation to the original hand-drawn
function can be obtained if average values of b/ and b2 are used and only bo depends

upon age as a linear function:

b =
a0

4- a A
0 1

the overall equation, substituting for lac) will be:

H ao alA biD b2D2

5 2.2 1.0625 -0.0219
10 .6 1.0500 -0.0250
15 9.8 1.1375 -0.0281
20 12.5 1.2750 -0.0313
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The oalculations, whioh are not shown, involve seleoting 3 points from each line and 
caloulating the ooeffioients according to the method of form A.1. The selected points are 
shown on each curve in the figure by '. The tabl" below gives the ooeffioient values for 
each age olass: 

Age 
Class 

5 
10 
15 
20 

b
O 

2.2 
6,6 
9.8 

12.5 

Coefficients 
b

1 
b

2 

1.0625 -0.0219 
1.0500 -0.0250 
1.1375 -0.0281 
1.2750 -0.0313 

In order to reduce the system of four quadratio equations to a single system, the 
ooefficients bi must be made to depend on age. The form of this dependenoe can best be 
seen by graphing the ooeffioients against age olass (figure A.1.4). 

From that figure it oan be seen that the relation between bO end age follows .. 
gentle curve, whilst bl versus age is a steeper , more asymmetric curve; b2 versus age 
appears almost exactly linear. T'ne equations were caloulated (again using form A.1) for 
these three curves as follows: 

2 
b

O 
= -0.0187 +1.153 A -3.100 A 

b, ~ 1.225 -0.0508 A +0.00400 ,f,.2 -6.67 x 10-5 A3 

-(1) 

The general equation for the lines in figure A.1.4 is the quadratic equation, as 
selected earlier, with the form: 

The ooeffioient values in equation (4) oan now be darived for any age between the 
limits 5 end 20 using equations ( 1) to (3). 

This is a fairly complex example of harmonization intended to illustrate the full 
scope of the prinoiples imTolved. In praotioe some simplifiostion is often acoeptable. 
For example, in the above osse a quite olose approxima.tion to the original hsnd-drawn 
funotion oan be obtained if average values of b, end b2 are used end only be depeni13 
upon age as a linear funotion: 

b
O 

~ a
O 

+ a, A 

the overall equation, substituting for bO will be: 

H s a
O 

+ a,A + b, D + b
2

D2 
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Coefficient values plotted againnt age 01a28 A for the
quadratic equationn fitted to the lines offlgure A.1.1

(a)
b014
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5 10 15 20

8

6

4

457.-

A2

(b)

5

bl

10 15 20

1.250

1.200

1.150
Olt

1.100

-1.050 N A

b2

5 10 15, 20

(c) -0.020

-0.022

-0.024

-0.026

et,

-0.028

-0.030

A-0.032
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Coefficient values plotted against age olass A for the 
quadratio equations fitted to the lines of figure A.1.3 
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This model is not a perfeot fit (as is the one worked out above) but the error over

the range of the hand-drawn function is within + m of predicted height which may well be
acceptable if the original data was well scattered and consequently the hand-drawn lines

subject to some uncertainty.

As with polynomials, harmonized functione should nev_21,...1_3ee.Lar....e_p_asztracaationA
If extrapolation is necessary, draw the extended curve set by bend to cover the range of
intended use and recalculate all the coefficients of the approximating function.

2. CURVE FITTING BY LINEAR LEAST SQUARES ANALYSIS

2.1 Siplç ession

Linear regression analysis is dealt with in many text books in great detail and with

numerous examples (c.f. Snedecor, Draper &Smith and Seber in the bibliograPhy). It is

proposed here only to give the barest outline of the fundamental ideas, basic calculations

and most essential statistical parameters.

Linear least squares narmlysis is a slightly more precise name for linear regression

analysis. It refers to a technique for fitting predictive equations to raw data (i.e.

unsmoothed observations) based on the prinoiple of minimizing the squares of the deviations

from a straight line through the points. When the assumptions, whiCh are listed below, are

fully satisfied the parameters (coefficients) for the fitted equation will be those which

are most likely to be correct in a statistical sense, When the assumptions are not satis-

fied, then the method will still give parameter estimates, but they will no longer be the
best ones obtainable; better parameter estimates could be obtained by deriving from first

principles correct "maximumlikelihoodequations" for the partice1pe class of problem

involved. This latter subject is outeide the scope of thie appendix.

The definition of the simplest type of regression problem can be shown with the help

of figure A.2.1. It involves a relationship between two variables, x and y. The x variable

is assumed to be the one that is to be used to predict the y variable. The statistical

model is:

y a + b.x + e -CO

where the ei are the random deviations of each point from a line. In figure A.2.1 the
solid line represents the part

y a + bex

usually called the regression equation, a and b are the coefficients of this equation whose
estimation from the data is the primary purpose of the analysis. The ei are called 'residuals,
and represent the vertical distances between the points and the line.
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This model is not a perfeot fit (as is the one worked out above) but the error over 
the range of the hand~awn funotion is within .:!; t m of predioted height whioh may well be 
acoeptable if the original data was well scattered and consequently the hand~wn lines 
subject to some uncertainty. 

As with polynomials, harmonized functions should never be used for extrapolation' 
If extra.polation is necessary, draw the extended curve set by hand to cover the range of 
intended use and recalculate all the coefficients of the approximating function. 

2. CURVE FITTING BY LINEAR LEAST SQUAHEl'! ANALYSIS 

2 . 1 Simple Linear Regression 

Linear regression analysis is dealt with in many text books in great detail and with 
numerous e=mples (c.f. Snedecor, Draper & Smith and Seber in the bibliography) . It is 
proposed here only to give the barest outline of the fundamental ideas f basio caloulations 
and most essential statistical parameters. 

Linear least squares analysis is a. slightly more precise name for linear regression 
analysis. It refers to a teohnique for fitting predictive equations to raw data (i. e. 
unamoothed observations) based on the prinoiple of minimizing the squares of the deviations 
from a straight line through the points. When the assumptions, which are listed below, are 
fully satisfied the parameters (ooefficients) for the fitted equation will be those which 
are most likely to be correct in a statistioal sense. I-/hen the assumptions are !!21 satis­
fied, then the method will still give parameter estimates , but they will no longer be the 
nest ones obtainable; better parameter estimates oould be obtained by deriving from first 
prinoiples correot "ma.zimum likelihood equations" for the pa.-ticular class of problem 
involved. This latter subject is outside the soope of this appendix. 

The definition of the simplest type of regression problem oan be shown with the help 
of figure A.2.1. It involves a relationship between two variables, x and y. The x variable 
is assumed to be the one that is to be used to prediot the y variable. The statistioal 
model is: 

- (1) 

where the ei are the random deviations of aaoh point from a line. In figure A.2. 1 the 
solid line represents the part 

usually called the regression equation. a and b are the ooeffioients of this equation whose 
estimation from the data is the primary purpose of the analysis. 'lb.e ei are called 'residuals' 
and represent the vertical distanoes between the points and the line. 
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Form A,2 Calculation of statistics for simple linear regression using Statform 11

from Dawkins? 1968 (reproduced uith pgrmission). The data is that shown

AllirAy:e A.2.1.

Statform 11 Commonwealth Forestry Institute, Oxford 1968

LINEAR REGRESSION and CORRELATION

Line

i

2

Nature of the observations: Hsife-t--,-t L ....e .541.1, - ct:4mil:or olweinctr-on-s
con i pct: it taimai Tr&E 1 .

Dependent or 4.ft-hand variable, y:

3

4

s

independent or right-hand variable, x: 1,--xxlej-42,r, c".

6 Sums of squares and prOduCES. pairs of observations

7 (Ey)2 6 0S. 1 e, E y x Ex = 6, ( 99 2_ (Ex)2 =: C3 5 04- y x

Iv' = 71 1 5? Eyx 1113.4 rX2 = 53 I 4- I t g
9 (Ey)2/n = 672-1-F EyEx/n ,-_-- 6 V F V (Ex)2/11 = 70 5 L

2- 2- n
io SSy =-- i'i'q- SPyx =- / 5 1 SSx = /01?

t (0 2-- I

Linear J.-Coefficient; Sl'yx/SSx = 0- gt 2- 4 --, bi i

1 2 regression Constant; y--bil. .--= 2 431/11 a, 2:i 3 s
13 Regression SS = bx SPyx = 5 3 9 .9 6

+ 3 7._
14 Total SS is the SSy. Total d.f. =- ni = 8'

2_ to 2S
1 3 Residual SS and d.f. obtained by subtraction.

r 6 ANOVAR Variance Table 14- 2-

17 Source SS d.f. MS ratio F

Regression 7-'
18 g38. Y 1 ES 7 .o 9---: Is

19 Residual 1 5 5- 0 7 fze. I

20 Total 9-
21 Coefficient of determination, r2,

22 Regression SS/Total SS = g 3 1 i cri Li- --- 0 / 44= r2

23 Coefficient of linear correlation, r,

24 r = IT-. 6:7-, 1 7 with sign as for b

25 Residual standard deviation = VResid. = 4- -1 I -=-- SD. rcsid.MS

26 Coefficient of residual variation% -=- toox SI)resid./F .------- i.i...i.X = CV% Ey Ex
27 Standard error for random samples = SD resid./ %/77 --= ¿$7 7 SE. resid. 2-+ k) 2--S--
28

29

Student's t for nz d.f. and Pos is 2. 16
Sampling error °,;) = Iootx SE. resid.h7 = (" (P 434 = E, 2?. i 2- g

30 Standard error of the coefficient b is = 0 .f 4- -3 $ = SE()N/Resid. MS/SSx
31 Its t-ratio is b/SEb, or N/variance ratio, = / S 4 t-ratio

32 Confidence limits for estimation of y from observations °Ex; if ni observations are taken of x, having
33 a mean of x', there are ni possible estimates of y. Confidence limits for their mean y (=Eylni) arc:2
34 ±tx SD. V-1 + I 4(x'x.)y' residX
35 ni n SSx
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Form A.2 Calculation of statistics for simple linear regression using Stat form 11 

from Dawkins, 1968 (reproduced with permission). The data. is that shown 
infi A21 .-rore • • • 

C--
LINEAR REGRESSION and CORRELATION 

LiHe 

N'tlIfC of the observations: H'1I::-r'"·.£.J:;':,- · ~ ~~~. - ~~~~.'" I 
. O~ t.". I: ~I- . 

1 D,,:pl:ndclH or left-hand variable, y: 

3 {+fl..< y/-.t., t\t. 

4 IndqlL'lldcllt or righe-hand variable. x: ~~, 00<. 
; 

In 6 SUlllS of s'l u;'Jrcs :md products. ... '3 . ....... pairs of observations 

7 (Ey)' - (,0'>/ " Ey x Ex = bl'l'l2.. (Ex)' = f.3 <;O,+- y x 
- -

H Iy'! = ....... 71 .. L ... 'g .... Eyx . . :JI:?"L Ex2 _ . ... ~J~'+ II 8-
9 (~'y)'/n -- 672..4- EyEx/n = bUg (Ex)'/n = 70~b 2..2- 11 

10 SSy - 'i9~ SPyx - '1'£1 SSx - 10-1'1 
I (" 2-1 

II Lincar J Cocfiiciellt; SPyx/S5x - l::),git2-.J .'t ... ~ b 2..L 2., 
11 rl'grcss lon I COllStant; y-bx = .... . 6 .. , .... , . ~1 .. 1 If - a 2..'1 3S 
13 Rt..'grcssioll 5S - bx Sl'yx = ............... \l>!l .. '1G . :',\- 32.. 
q Total SS is the SSy. Total d.f. = 11-1 = •• H ••• K .. .............. ... 

2.10 2..~ 
I; Rt.'sidual 5S and d,f. obrained by subtraction. 

Lt:> 
ANOVAR Variance Table 4-2-, 6 

17 Sourcc SS d.L MS ratio F 4-Lt Lrr::-
I H Regression .gl8,jI~ I B?"],,," 31'1 :z. ,,-:->. > .. 

Residual L?'?.:'? ... 7 :U . . I4- @ '=0, I 
19 

10 Total qq'l- 8 

21 Coefficient of dc[crmillJ.tion, r2, 

12 Regressioll SS/T otal SS - lr}~ I9<f.'+~ .~,tltlf = r' 

23 CocRicicllt of lin car correlation, r, 

14 r - ff= ~.: .. '1.1 ... ,! .... with sign as for b 

2S Residual standard deviation -- VResid. MS - .. /t.:.] .L . - SO. mid. 

26 Coefficient of residual variation '}~ = IOOX SI) resid ./y = 1,'11%= CV% Iy Ix 

27 Standard error for random samples = SO mid.1 Vii = /,>7 - SE. mid. 2..+'- '2-Q. 

18 Student's t (or 11-2 d.f. and P.OS is ....... ~., ... ~.b ... y x 

29 Sampling error % - !ootX SE. resid)y - qJ,C?o~ = E~ ~, 27.1 2jl 

30 Stalldard error of the coefficient b is -IRcsid. MS/SSx = 1::>.,.('+ . .3 ... $ ...... - SEb 

3 ! Its t-r<ltio is b/SEb, or ,""variance ratio, - ... 6 .. ,.1..5. .. 4. ...... - t-racio 

32 Confidence limits for estimation of y from observations of x; if m observations arc taken of x, having 

33 a mean of x'. chere are III possible estimates of y. Confidence limits for their mean y' (= Ey!m) arc: 

l4 y' ±tX SO. residx j.!, + .!. -t{x' -X/ 
35 /II n SSx 

Stntj(lrm 11 COllmlOlllllt'olth Forestry Instilllte. Oxford 1968 
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azure A.2.I A simple linear regression model fitted to data

10 20 30 40 50

Regression line y = a + b.x

Confidence interval at 95% level

Point formed by mean x and y values in data
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Figure A.2.1 A simple linear regression model fitted to data 
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The assumptions made in simple linear regression are that:

The model is truly linear, as represented by equation (1) above, and not

curved in any sense.

The residuals are normally distributed with a constant variance over the

range of x values under consideration.

The residuals are indepenaent of each other; they are not oorrelated or

grouped in any way.

The values of the sample points on the x axis can be determined exactly.

The calculation of the various statistics required for linear regression analysis are

shown in form A.29 which reproduces Statform 11 from Dawkins (see bibliography for details)

with the working of the data shown in figure A.201. The most important statistics are the

coefficients (lines 11 and 12), the variance ratio (line 18), the coefficient of determina-

tion r2 (line 22), the residual standard deviation (line 25) and the confidence limits for

predictions (lines 32-35).

The r2 values and the residual standard deviation are useful for the comparison of

regressions. The higher the r2 the more precise the relation. When r2 is one the residuals

are zero and the data fall exactly on the line. Similarly, the closer the residual standard

deviation approaches to zero, the more precisely the regression predicts the y values. The

confidence intervals of the regression line show the limits within which the true mean of a

selected number of y values should lie.

It will be noted that the regression line will always pass through the point formed

by the mean of the x and y values. The confidenoe bands are also curved in form and become

rapidly wider as one moves outside the range of the data contributing to the regression.

The x variable in a regression analysis is aalled the independent or predictor

variable; it provides the basis on which the predictions will be made. The y variable

is called the dependent or response variable; it is assumed to be controlled in some

degree by the level of the predictor variables.

2.2 Regression with Two Predictor Variables

Regression with two predictor variables assumes the model

Y =
b0 b1X b2Z

where the X and Z are known predictor variables and Y is the dependent variable; the bi

are the coefficients to be determined. The assumptions and general principles are the sane

as for simple linear regression. The coefficients and statistics for this model can be

calculated by hand although the method is rather more involved than for simple linear

regression. It is a useful model for fitting a variety of curves, as will become apparent

in section 2.3.
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The assumptions made in simple linear regression are that: 

(i) The model is truly linear, as represented by equation (1) above, and not 
curved in any sense. 

(ii) The residuals are normally distributed with a constant variance over the 
range of x values under oonsideration. 

(iii) The residuals are independent of each other; they are not correlsted or 
grouped in any way. 

(iv) The values of the sample points on the x axis can be determined exaotly. 

The caloulation of the various statistios required for linear regression analysis are 
shown in form A.2, whioh reproduces Statform 11 from Da.wkins (see bibliography for details) 
with the working of the data shown in figure A.2.1. The most important statistios are the 
coefficients (lines 11 and 12), the variance ratio (lille 18), the coefficient of determina,­
tion r2 (line 22), the residual standard deviation (line 25) and the confidence limits for 
predictions (lines 32-35). 

The r2 values and the residual standard deviation are useful for the comparison of 
regressions. The higher the r2 the more precise the relation. When r2 is one, the residuals 
are zero and the data fall exactly on the line. Similarly, the closer the residual standard 
deviation approaches to zero, the more precisely the regression predicts the y values. The 
oonfidence intervals of the regression line show the limits wi thin which the true mean of a 
selected number of y values should lie. 

It will be noted that the regression line will always pass through the point formed 
by the mean of the x and y values. The confidenoe bands are also curved in form and become 
rapidly wider as one moves outside the range of the data oontributing to the regression. 

The x variable in a regression analysis is called the independent or predictor 
variable; it provides the basis on ..n.ich the prediotions will be made. The y variable 
is called the dependent or response variable; it is assumed to be oontro lled in some 
degree by the level of the prediotor variables. 

2.2 Regression with Two Predictor Variables 

Regression with two prediotor variables assumes the model 

where the X and Z are known prediotor variables and Y is the dependent variable; the bi 
are the coeffioients to be determined. The assIDDptions and general prinoiples are the same 
as for simple linear regression. The ooeffioients and statistics for this model oan be 
calculated by hand although the method is rather mere involved than for simple linear 
regression. It is a useful model for fitting a variety of curves, as will beoome apparent 
in section 2.3. 
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Form A.3 shows how the calculations proceed. The example uses the data from figure
A.2.1 and form A.2 for the height-diameter relationship of 9 sample trees, but this time with
the addition of an extra variable (diameter)2, so that the equation being fitted becomes:

H =
b0 + blD + b2D2

all to 6 significant digits. It is important When oarrying out the calculations to work

to 6 or more significant digits and not to round small numbers (such as g1, g2, g3 in the

emample) to a few decimal places; otherwise considerable loss of accuracy may result.

The lower variance ratio and t-values for the ooeffioients obtained with this

regression as compared mdth the earlier linear one (figure A.201, form A.2) refleots the

fact that the addition of the extra variable increases the uncertainty of the parameter

estimates with respeot to the population from which this sample of points was drawn. In

this case neither of the t-values is significant for the two variable coefficients b1 and

b2, ed°this indicates that the model would be juet as efficient for priction purposes if
one or other variable were omitted.

2.3 Data Transformations and Curve Fitting

Various types of curvilinear functions may be fitted using linear regression tech-

niques by making appropriate transformations of the dependent and predictor variables. It

is desirable when making transformations of data to proceed through the following stages:

Plot the untraneformed data on normal graph paper and examine it to Bee whether
any curvature in the trend line is apparent.

If a curvature is apparent, select an appropriate transformation for the

dependent and/or predictor variables and calculate transformed values for

eaoh data point.

Plot the transformed values on normal graph paper and examine the points to

see whether the trend is now linear. If it is, fit a regression using the

transformed data values.

The selection of a suitable transformation can be aided by the diagrams in figure
A.2.1, which illustrate some commonly used curve shapes. Ftnctions (a) to (d) can be

fitted by simple regression. Functions (e) and (f) require two predictor variables;

consequently the traneformed values cannot be examined graPhically as in (iii) above.

After working through the form the coefficient values calculated are:

b0= 8.31177

b1 = 0.371583

b2= 0.00953469
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Form A.3 shows how the caloulations proceed. The example uses the data from figure 
A,2.1 and form A.2 for the height-diameter relationship of 9 sample trees, but this time with 
the addition of an extra variable (diameter)2, so that the equation being fitted becomes: 

After working through the form the coefficient values oalculated are: 

b
O 

= 8.31177 

b = 0.371583 
1 

b2 = 0.00953469 

all to 6 significant digits. It is important when carrying out the calculations to work 
to 6 or more signifioant digits and not to round. small numbers (such as gl' g2' g3 in the 
example) to a few decimal plaoes; otherwise considerable loss of acouracy may result. 

The lower variance ratio and t-values for the ooeffioients obtained with this 
regression as compared with the earlier linear one (figure A. 2.1, form A.2) refleots the 
fact that the additio;' of the extra variable inoreases the unoertainty of the parameter 
estimates with respeot to the population £'rom which this sample of points was drawn. In 
this case neither of the t-values is significant for the two variable coefficients b1 and 
b2; this indicates that the model would be just as effioient for prediotion purposes if 
one or other variable were ommitted. 

2.3 Data Transformations and Curve Fitting 

Various types of ourvilinear funotions may be fitted using linear regression tech­
niques by making appropriate transformations of the dependent and predictor variables. It 
is desirable when making transformations of data to prooeed through the following stages: 

(i) Plot the untransformed data on normal graph paper and examine it to see whether 
any curvature in the trend line is apparent. 

(ii) If a curvature is apparent, select an appropriate transformation for the 
dependent and/or prediotor variables and calculate transformed values for 
each data point. 

Plot the transformed values on normal graph paper and examine the points to 
see whether the trend is now linear. If it is, fit a regression using the 
transformed data values. 

!!he selection of a suitable transformation oa.n be aided by the diagrams in figure 
A.2.1, which illustrate some oommonly used ourve shapes. Functions (a) to (d) oa.n be 
fitted by simple regression. Functions (8) and (f) require two prediotor variables; 
consequently the transformed values oannot be examined graphically as in (iii) above. 



Description of problem: 1-1-u?ki, - amid- ee- cd.carakfra,v,
A.2.1

( 2) Totaas and -products

Y ' 7 -ng Ey (9
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Form A.3 Coefficients and statistics of a regression mith two
predictor variables

EXY 783,
zx

Corrected products

Ey = LY -(BY) /n ci`1 +.000
zxy = zXY-EC.I.Y/n. = 000
Ezy ZZY-EZ.EY./n 5'2. 3 21

Ex2 = EX2-(EX)2/n = ,(78 .000
Exz = EXZ-EX. EZ/n. = 511i . o 0
Ez2 = IZ2-"122-61 =

zzY 2.741

zZ ?13

i:kz

LELI__g2fi

32.3 3S0/ SS. C.,

(8) Residual sum of squares ---
Ea= Ey =

(9) Residual degrees of freedom

Idf= = lc,

1

(1) Regression data
.._

Y X Z

¡I g 42 It..

2.2. 11 24 9

i 6 2-1 44.1

2 /. 2-1 841

29 3 5 t 2_2-5

32.. so?...q.3 Li

2- b
z5 (.2.-S

/4-2- urS Lois-

Li-4 to) Iqt 0-0

- -

( 5) Determinant & Gauss multipliers
f---T7T---7D = zx o IZ -- Exzi = /.5. 4,743 9,020.?

g1= Zz2/D = o . o zo 2.4. 4. --/

g2= -Exz/D = -0.000360 rt1
g3= Zx D

= 6 13a2 ::/t)-')

(6) Regression coefficients

bi= g1.Exy-t-g20Zzy = 0.3.7t5S3

b2= g20 Exy+g30zzy = C. cao 95 3q-Cci
bo= T-b1Z-b2.Z = g 3 ,,,,1 7 7

( 7) Regression sum of s uares
-772zy = b10Exy+b2.Ezy = 8,52_, 4...
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Fbrm A.3 Coefficients and statistios of a regression with two 
predictor variables (part 1) 

Description of problem: "/~tJJr-,p.·(),,,,~e.- ClII.~f(;;QA e,..~\;' 
~ A '2- I (,..4.-,,;..r... "' - 1- ~ • -

(1) Regression data ( 4) Corrected products 

Y X Z IyC. = xyc._(LY)c./n = 'i~ oj-.OOO 

1/ '-If. IXY = IXY-IX.XY/n = "/51. 000 g 

H 11 LJ~ 
Izy = IZY-IZ,IY/n = >2. 3 H . (,. 6--, 
Ix2 = XX2_( IX) 2/n = (o7B·ooO 

'" 1.1 C+'l-I 
IXZ-IX. IZ/n = ;l1/b.o oo l:Xz = 

22- 2-1 8<+1 
Iz2 - l:Z2_UZ)2jn - 32.1S.>o/.,S'b 

1.1 H 11. ... S 

3'1- 3:1- 10 l..'/- (5) Determinant & Gauss multipliers 

D = IXc.. l:zc._( l:xz) c. = 15'1."1. ',02.0. 'f 
Jj, z.~ bH 

l:Z2/D gl= = o. 0;/,0 2.4- 4-1 
Ij.}.... If-S 1.01. <; g2= -l:xz/D = -0. 0 003(,07'\1 

'l-lI- 'fO II. era g3= l:X2/D = '.138~ -" ~ 10 

( 6) Regression coefficients 

~= gl,l:xy+g2' l:zy = o·.nl S83 

b2= g2,l:xy+g3,l:zy = o. co ~5 34-''1 
bO'" 'l-bl ,I-b2·Z' = If. 311 7 7 

( 7) Regression sum of s'Luares 
l:~2 '" bl , Ixy+ b 2, Izy = 852..14-

(8 ) Residual SUDl of squares 
Id~", r.y~-IY~ = /4-1. toft, 

(9 ) Residual degrees of freedom 

( 2) Tota1.s and products df_ n-3 = 10 

Iy2 111'6 IY ~4-" IXY 19~., I'4Y 274-", 

n '1 IX :z..~2- IZ '11:3 + 

(3) ~!eans 
IX2 '11 1'1> 4- IXZ ~~~.,&~ 

Y = XY/n = 27. :a l::,I2 /" i'89.j 3,< B t , 

X IX/n '" LS = 
Z' '" IZ/n '" 90 3.i 

! 



135

Yultiple correlation coefficient R and R

R2 = (9. 3575

,R rR2 0.12-60

Analysis of variance

11

(14) Standard error and t-value of coefficients

Coefficient

¡Standard error
5b s.igi= 0,0tS oig3= 0.012 (12-

t= b/ab 0 -31 0 .--1%-6

Form A.3 (...Part 2)

10) Correlations between variables

ryx
r
Yz

r
xz

= Exy/l(ix2.zy2)
I-.= ZyzAlk Zz2 .Ey2
rt= Zxz/y k Ix2 Ez2%

=

=

(9.1(87
0.92-24
0.9-16g

sum of
squares d. f.

mean
square

variance
ratio

Regression 2
852.34. 2

18. 0

Residual IÇ12 (4.1Gb df en 2-4.(01 = s2

Total zy2 991}..Cro n-1 S

Residual st dard deviation

. 2 = (4 3 6

Confidence intervals for predictions

For a series of m estimates of Y at a given level of X and Z,

the standard error of the mean prediction is given by:

y = S.V.(1/111 +1/n + g1.x2 + 2.g2.x.z + g3.z2)

where x = Y) and z (Z - 7). For a large sample, l/m

will be zero; for a single point it will be unity.
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Form A.3 ( ••• Part 2) 

(10) Correlations between variables 

ryx = r.x:y I {( r.x7 • ry7) = O·"H87 
ryz = r.yz/{( rz2. r.y2) = O.'p .. 2\f-

rxz = r.xz/{(r.x2.r.z2) = o. 'llb& 

1(11) Multiple correlation coefficient R and R~ 
R2 = r9''Iry= <!).sns 
R - IR2 - O.<p .. /:,O 

( 12) Analysis of variance 
sum of mean variance 
SQua.res d. f. square ratio 

Re,q:ression r.S'2 8!)2 . 1~ 2 4-2.~.ll 13.o~ 

Residual r.d2 /1j.1.!.b df b :n.(.,1 = s2 

Total r y 2 "I'Ilf. . 0"0 n-l g 

(13) Residual st .dard deviation 

s = {s2 = 4·86 

(14) Standard error and t-value of coefficients 
. 

Coefficient bl b 2 

Standard error sb s.{fh= O·"'1IS s.{g3= 0.0 1:1 (,2-

It = blsb o .{?,'" O,,~b 

(15) Confidence intervals for predictions 
For a series of m estimates of Y· at a given level of X and Z, 
the standard errcr of the mean prediction is given by: 

where x = (X - X) and z = (Z - Z). For a large swnple, 11m 

will be zero; for a single point it will be unity. 



(a) log y + b log x

( c) log y = a + b/x
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Figure A.2.1 Curve shapes resulting from different functions

that can be_fitted by linear regression.

(c 10a or ea depending on whether logarithns

to base 10 or base e are used.)

(b) y = a + b log x
Y

a-

o

1

( d.) log y = a + b.x

b<0

( a) 

y 

e 
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Pigure A.2.1 Curve shapes resulUng fro .. different funotions 
that can be fitted b;y linear regression. 

log y = a + 

(c = lOa or e& depending on whether logarithms 
to base 10 or base e are used.) 

b log x (b) y = a + b log x 
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(e) log y = a + b/x ( d) log y = a + b.x 
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azure A.2.1 continued. e)

e) 3T= a+ bx+ b2x2
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log y = a + bilog x + b2x

b1<0' b2>0
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Figure A.2.1 (oontinued •••• ) 

(f) log y ; a + ~log x + b 2x 
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The effeot of data transformations upon the basic assumptions of linear regression

involves three important points:

Regressions in which the same dependent variable has been subject to different

transformations cannot be compared directly for goodness of fit using the

correlation coefficient R (or R2).

The distribution of the residuals will be influenced by any transformation of

the dependent variable.

The regression may be biased by a transformation of the dependent variable.

For comparison of regressions for goodness of fit when severa],vtransformations of

the dependent variable are involved, the Furnival Index must be used-7. This is calculated

as:

FI = s. ( n f ( Y) -1) 1/n

or more simply:

FI . s. antilog (( Elog f'(y)-1)/n)

Here s is the residual standard deviation from the fitted regression; n is the number

of data points; and f'(y)-1 is the reciprocal of the derivative of the transformation

applied to the y variable with respect to y.

In the above y is the original data variable, w is any weight to be used in fitting

the y to normalise residuals (see later section on weighted regression for more details),

k is any constant that is used to transform y by raising it to a constant power. E.g. if

y2 were the dependent variable, kwouad be 2. Note that When no transformation is applied

the Furnival Index is identical with the residual standard deviation.

1/ See Furnival, G.14. 1961 An index for comparing equations used in constructing volume

tables. Forest Science 7(4)337-341.

Since the non,mathematical reader will not be familiar with derivatives, appropriate

forms for the commonest transformations are given below:

-1
Transformation

None 1

logioy 2.3026 y

logey
Y

Y/w

1/y "1.2

yk 11(kYk-4)
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The effeot of data transformations upon the basio assumptions of linear regression 
involves three important points: 

(i) Regressions in whioh the same dependent variable has been subject to different 
transformations cannot be compared direotly for goodness of fit using the 
correlation coefficient R (or R2). 

(ii) 'ilie distribution of the residuals will be influenoed by any transformation of 
the dependent variable. 

(iii) The regression may be biased by a transformation of the dependent variable. 

For comparison of regressions for goodness of fit when severalytransformations of 
the dependent variable are involved, the Furnival Index must be used • This is calculated 
as: 

FI= s. (nf' (y) -1) 1/n 

or more simply: 

Here s is the residual standard deviation from the fitted regression; n is the number 
of data points; and f'(y)-1 is the reoiprooal of the derivative of the transformation 
applied to the yvariable with respect to y. 

Since the non-mathematical reader will not be familiar with derivatives, appropriate 
forms for the oommonest transformations are given below: 

Transformation f'(yr
1 

None 1 

log1OY 2.3026 y 

log y 
e 

y 

y/w w 

1/y -I-
:I- 1/(qk-1 ) 

In the above y is the original data variable, w is any weight to be used in fitting 
the y to normalise residuals (see later seotion on weighted regression for more details), 
k is any constant that is used to transform y by raising it to a constant power. E.g. if 
.; were the dependent variable, k would be 2. Note that when no transformation is applied 
the Furnival Index is identical with the residual standard deviation. 

11 See Furnival, GoM., 1961 An index for canparing equations used in constructing volume 
tables. Forest Science 7(4)337-341. 
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Given a set of regressions for Which FUrnival Indices have been computed, all

involving the same basic dependent variable, the equation Which fits best will be that with

the smallest index.

The effect of transformations upon the residuals' distribution and upon the bias of

the regression will be considered in detail in the section upon residual analysis and

weighting. Fbr simple usage of the transformation principle in association with manual

calculation, the correction factor for bias resulting from a logarithmic transformation of

the dependent variable should be mentioned.

This correction factor for bias, due to MeyerY, assumes that the model being calcu,.

lated has the form:

loga f(x) + ei

wheretheerrors.el are normally distributed and homogeneous with a standard deviation s,
which is the residual standard deviation calculated in the regression analysis. The model

that is to be actually applied is however:

(f(x))
y= a

where a is either 10 or e depending on whether common or natural logarithms are to be used.

If the assumptions about error distribution are correct, then a systematic error will occur

which can be compensated for by using a correction factor C so that the above formula

becomes:

(f(x))
y= C.a

The correction factors for common and natural logs are:

Common (base 10) logs:

C = 10.1.1513
s2

Natural (base e) logs:

C = es2/2

where s is the residual standard deviation obtained from the original regression with log

y.

The validity of the correction factor is dependent upon assumptions about error

distribution which need not be correct. Hence, it is not possible to state in any fixed

or dogmatic fashion that this correction Should or should not be used in a pprticular case;

preferably the distribution of the residuals should be examined graphically as described in

the section on residual analysis before arriving at any decision.

In practice, when the degree of fit obtained is high (i.e. R2 over about 0.9) then

the various arguments about alternative fitting methods, error distributions, etc., are

essentially academic; the fitted function may be safely manipulated and transformed as

it it were a deterministic algebraic function.

Y See Meyer, H.A., 1944. A correction for systematic error occurring in the application
of the logarithmic volume equation. Pennsylvania State University Fbrest Research Paper 7.
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Given a set of regressions for which Furnival Indices have been computed, all 
involving the same basio dependent va.ria.ble, the equation which fits best will be that with 
the smallest index. 

The effect of transformations upon the residua.ls' distribution and upon the bias of 
the regression will be considered in deta.il in the section upon residua.l a.na.lysis and 
weighting. For simple usage of the tra.nsforma.tion principle in association with ma.nua.l 
caloula.tion, the correotion factor for bias resulting from a logarithmic transformation of 
the dependent va.riable should be mentioned. 

This correction faotor for bias, due to Meyer], assumes that the model being calcu­
lated has the form: 

log Y = f(x) + e. 
a ~ 

where the errors ei are normally distributed a.nd homogeneous with a standard deviation s, 
which is the residua.l standard deviation calcula.ted in the regression analysis. The model 
that is to be actua.lly applied is however: 

y = a 
(r(x) ) 

whepe a is either 10 or e depending on whether common or natural logarithms are to be used. 
If the assumptions about error distribution are correct, than a systematic error will occur 
which ca.n be compensated for by using a correction factor C so that the above formula. 
becomes: 

y = C.a (f(x)) 

The correction factors for common a.nd natural logs are: 

(i) Common (base 10) logs: 

C ~ 10.1.1513 s2 

(ii) Natural (base e) logs: 

C = e
s2

/ 2 

where s is the residua.l standard deviation obtained from the original regression with log 
y. 

The validity of the correction factor is dependent upon assumptions about error 
distribution which need not be correct. Henoe, it is not possible to state in any fixed 
or dogmatic fashion that this correotion should or should not be used in a particula.r oase; 
preferably the distribution of the residu:;.ls should be examined graphically as described in 
the section on residual analysis before arriving at a.ny deoision. 

In practice, when the degree of fit obtained is high (i.e. R2 over about 0.9) then 
the va.rious arguments about alternative fitting methods, error distributions, etc., are 
essentially academio; the fitted function may be safely manipula.ted and transformed as 
it it were a deterministic algebraio funotion. 

JV See Meysr, H.A., 1944. A oorreotion for systematio error ooourring in the application 
of the logarithmio volume equation. Pennsylvania. State University Forest Researoh Paper 7. 
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2.4

Simple linear regression and regression with two predictor variables represent models,

respectively, of the type:

Y a a + b.X -(1)

Y a a + b1 .X + b2.Z -(2)

where a, by b1 and b2 are the coefficients to be estimated and X, Z and Y are variables.

Both of these are examples of the general multivariate linear regression model which has

the form:

Y. b0 + b1.X1 + b2.X2 + b3.X3 + + b .X
m m

-(3)

where the bi are the coefficients to be estimated by regression and the Xi are different

predictor variables. This can be written in short form as:

Y = b + ¡ b..X.
0

-(4)

The various predictor variables can be of the following different sorts:

Each Xi may be a separate independent variable. For example, in a particular

application X1 may be height and X2 diameter. The independent variables may

be more or less correlated among themselves, provided the correlation is not

perfect (i.e. R = 1). In the latter case one of the variables involved must

be omitted.

Some variables may be combinations and/or transformations of other variables.

For amample, X3 might be log(X2) and X4 might be X1.X2. However, additive

combinations (e.g. X3 = X1 + X2 or X/ X2) are not permitted; they result

in perfect correlation among variiples.

Some variables may be conditional variables having values of only zero or one.

For example, in a particular regression, X/ might be zero for data from one

seed source and one for data from a different source. This is discussed

further in the section on comparison of regressions and covariance analysis.

In most applications in forest yield prediction only a few basic independent variables

are involved, often only 2 or 3, but with perhaps 2 or 3 other variables constructed as

transformations in order to provide particular curve shapes. Fbr example, the site index

model:

log H = b0 + b1/Á + b2.5 + b3.SA

involves three basic variables: height (II), age (A) and site index (S). These are trans-

formed and combined to give the regression model:

Y= b0 + b1.X1 + b2.X2 +
b3.X3

where Y is log(H), X1 is 1/A, X2 is S and X3 is S/A.
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2.4 Multiple Regression Analysis 

Simple linear regression and regression with two prediotor variables represent models, 
respectively, of the type: 

Y = a + b.X -(1) 

-(2) 

where a, b, b1 and b2 are the coeffioients to be estimated and X, Z and Y are variables. 
Both of these are examples of the general multivariate linear regression model which has 
the form: 

where the bi are the coeffioients to be estimated by regression and the Xi are different 
predictor variables. This can be written in short form as: 

m 
Y = b

O 
+ t b .• X. 

1 1 

The various predictor variables Oan be of the following different sorts: 

(i) Each Xi may be a separate independent variable. Fbr example, in a particular 
applioation X1 may be height and X2 diameter. The independent variables may 
be more or less correlated among themselves, provided the correlation is not 
perfect (i.e. R = 1). In the latter oase one of the variables involved must 
be ommitted. 

(ii) Some variables may be combinations and/or transformations of other variables. 
Fbr example, X3 might be log(X2) and X4 might be X1.~. However, additive 
combinations (e.g. X3 = X1 + X2 or X, - ~) are not permitted; they result 
in perfect correlation among vari\~les. 

(iii) Some variables may be conditional variables having values of only zero or one. 
Fbr example, in a partioular regression, X1 might be zero for data from one 
seed souroe and one for data from a different source. This is discussed 
further in the section on comparison of regressions and covarianoe analysis. 

In most applications in forest yield prediotion only a few basio independent variables 
are involved, often only 2 or 3, but with perhaps 2 or 3 other variables constructed as 
transformations in order to provide partioular ourve shapes. Fbr example, the site index 
model: 

log H· b
O 

+ b,lA + b
2
.S + b

3
.S/A 

involves three basic variables: height (H), age (A) and site index (S). Theee are trans­
formed and oombined to give the regression model: 

Y = b
O 

+ b
1

·X
1 

+ b
2

.X
2 

+ b
3

.X
3 

where Y is log(H), X
1 

is 1/A, X2 is S and ~ is S/A. 
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2.5 Calculations for Estimating the Parameters of a Multiple Regression Model

As in the previous cases of regression with one and two predictor variables, in mul

multiple regression one is primvily concerned to calculate the coefficient values, the

coefficient of determination (R )t the residual standard deviation, the variance ratio of
the residuals to the regression mean square, the standard errors of the coefficients and

the statistics necessary for constructing confidence intervals for predicted values.

These parameters are usually estimated using a computer programme. Manual calcula-

tions are very tedious and it is very easy for errors to slip in. However, the manual

calculation procedures are given here both for the benefit of those who wish to use them

as they stand and as an algorithm that will provide the basis for a computer programme if

it is necessary to write one from scratch.

It is best to consider the calculations as following a number of stages:

Stage 1 Define the model to be fitted and tabulate the transformed variable values.

The general model is:

Y. = b
0

+ Eb. .X + e.
i3 3

where Yj are the dependent variable observations (j = 1 to n); Xij are the predictor variable

observations with m variables per observation (i = 1 to m) and n observations. The bi are

the coefficients to be estimated, the ej are the residuals between the observed Ys and the

Ya which will be estimated from the linear model.

In the calculation example we wish to fit the model:

Y =
b0

+
b1.X1

+ b2X2
+ b3.x3

Where n is 10 (number of observations) and m is 3 (nutber of predictor variables).

given the data:

X1 X2 x3

1 4 9 4
3 3 9 9
7 3 6 6

9 5 8 3

14 4 7 1

18 6 4 5
19 5 3 7

21 7 1 9
24 6 3 4
26 7 2 5
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2.5 Calculations for liBtimating the Parameters of a Multiple Regression Model 

As in the previous cases of regression with one and two predictor variables, in mul 
multiple regression one is prim~rily concerned to calculate the coefficient values, the 
coefficient of detemination (R ), the residual standard deviation, the variance ratio of 
the residuals to the regression mean square, the standard errors of the coefficients and 
the statistics necessary for constructing confidence intervals for predicted values. 

'fuese parameters are usually estimated using a oomputer programme. Manual oalcula,­
tions are very tedious and it is very easy for errors to slip in. However, the manual 
calculation procedures are given here both for the benefit of those who wish to use them 
as they stand and as an algorithm that will provide the basis for a computer programme if 
it is necessary to write one from soratch. 

It is best to consider the calculations as following a number of stages: 

Stage 1 Define the model to be fitted and tabulate the transformed variable values. 

'fue general model is : 

m 
Yj~ bO+fbi'\j + e. 

J 

where Yj are the dependent variable obeervations (j ~ 1 to n); Xij are the predictor variable 
observations with m variables per observation (i ~ 1 to m) and n obeervations. 'fue b i are 
the coefficients to be estimated, the ej are the residuals between the observed Y8 and the 
Ys which will be estimated from the linear model. 

In the calculation example we wish to fit the model: 

Y ~ b + 
0 

b
1

,X
1 

+ b
2

,X
2 

+ b
3

' X
3 

given the data: 

Y Xl X
2 X3 

1 4 9 4 
3 3 9 9 
7 3 6 6 
9 5 8 3 

14 4 7 1 
18 6 4 5 
19 5 3 7 
21 7 1 9 
24 6 3 4 
26 7 2 5 

where n is 10 (number of observations) and m is 3 (nUlllber of prediotor variables). 
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Stage 2 Form the totals and crossproducts of the data defined algebraically as:

Totals

T. = EX. for i = 1 to m
1 13

Ty = EYi

Crossproducts

PX = EX .X for i and k= 1 to m
ik .13 kj

PY. = EY .X for i= to m
1 j ij

For the example we have the following totals and products:

The total sum of squares of the Ys must also be calculated:

EY2 = 2 714

aye 3 Correct the sums of products for the means. From the values PX PY. and
ik

Y2 the following corrected values are formed:

(gikr. PXik Ti.Tk/n

QY = PY. T .T /n.T/

EY2
El2 T;Al.

1 2 .2
Tk 142 50 52 53

PXik
3

1

2

3

270 227

350

267

256

339

1 2 3

PYk
811 522 752
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Stage 2 Fbrm the totals and cross-products of the data defined algebraically as: 

(i) Totals 

n 
T = [X.. for i = 1 to m 

1 j l.J 

T = [Y 
Y j 

(ii) Cross-products 

n 

PX
ik

= [\joXkj for i and k= 1 to m 

J 

PY. 
l. 

n 

= H.oX . . 
j J l.J 

for i = 1 to m 

Fbr the example we have the following totals and products: 

k y 1 2 

142 50 52 

P\k k 1 2 
i 
1 270 227 
2 350 

3 

k 1 2 3 

811 522 752 

The total sum of squares of the Ys must also be calculated: 

r.l = 2 714 

3 
53 

3 

267 
256 
339 

Stage 3 Correct the sums of products for the meanso 

y2 the following corrected values are formed: 

From the values PX.
k

, FY. and 
l. l. 

QXik = PXik - TioT,jn 

QY1 = PYi - TioT/n 

rl = ty2 _ Tin 



ZY2 = 697.6

stage 4 Solve for the coefficient values and at the same time invert the cross-

product matrix using Jordan elimination.

QX and QY are arranged in a table (which we will call C) in the following way:

2

3

QYk

143

The calculated values for the example are:

1 2 3

101 216.4 0.6

1 2 3

2

0 k 0 4> 0

Q X
1k

At the same time, the values QX91,
31 32'32

etc. are filled in as having the

same values as QX12,
139

etc. Fbr te example we have therefore:

Cij
1 2 3 4

1 20 33 2 101

2 33 79.6 19.6 216.4
3 2 19.6 58.1 0.6

Having drawn up the table or matrix C we are now ready to proceed with the steps of

the Jordan elimination process.

20 33 2

79.6 19.6
58.1

1 2 3

2

QY

o

o
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The calculated values for the example are: 

QX
ik 

i~k~ ______ ~1 ________ ~2 ________ ~3_ 

2 r.y = 697.6 

1 

2 

3 

20 

k 1 

101 

-33 
79.6 

2 

-216.4 
3 

-0.6 

Stage 4 Solve for the coefficient values and at the same time invert the cross­
product matrix using Jordan elimination. 

QX and QY are arranged in a table (which we will call C) in the following way: 

1 2 3 • • • k • . • m 1 
2 2 
• QX • 
• ik QY 

i • 
i 

• • 
• • 
• • 
m m 

At the same time, the values QX l' QX
31 

QX32 , etc. are filled in as having the 
same values as QX12' QXn' eto. For t~e example we have therefore: 

C .. 
i

j 1 2 3 4 
~J 

1 20 -33 2 101 

2 -33 79.6 -19.6 -216.4 

3 2 -19.6 58.1 -0.6 

Having drawn up the table or matrix C we are now ready to proceed with the steps of 
the Jordan elimination process. 



Jordan eliminat ion

k'th column
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Perform m reductions of the table. On the klth reduction replace each element cij

of the table by a new value cii* according to the following sequence:

let c * = 1/0 (0 is called the 'pivot.)
kk kk kk

let each element of the k'th column, excluding the pivot, be replaced by:

C. -*" _c. .0 *
ik kk

let all the elements 0. but excluding the k'th row or the k'th column, be
---

replaced by:
ij

c..*..c + c *.o
ij ik kj

let the elements of the k'th row, excluding the pivot, be replaced by:

* = c .0 *
kj kj kk

After the last reduction then the elements
c11

to c comprise the 'inverse matrix'
mm

of the regression problem. These elemento, as we shall see, are important in calculating

the variances and covariances of the coefficients and hence the confidence limits of the

regression estimates. The elements in the m+rth column are the regression coefficients

b1 to bm. For the numerical emamole the three reductions are shown below:

REDUCTION 1

k'th row

C.
C.cik cij

ckj
o
kk ckj

0..
ij cik cij

0.05000000 -1.65000000 0.10000000 5.05000000

1.65000000 25.15000000 -16.30000000 -49.75000000

-0.10000000 -16.30000000 57.90000000 -10.70000000

of the 
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Jordan elimination 

k'th oolumn 

o .. c
ik 

c 
l.J ij 

ckj c
kk c

kj k'th row 

c .. c
ik c .. 

l.J l.J 

Perform m reduotione of the table. On the k'th reduction replace each element Cij 
table by a new value cit according to the following sequence: 

(ii) let each element of the k'th column, excluding the pivot, be replaced by: 

(iii) let all the elements c .. , ~ excluding the k'th row or the k'th column, be 
replaced by: l.J 

c *' == c + C *.0 
ij ij ik kj 

(iv) let the elements of the k'th row, excluding the pivot, be replaced by: 

After the last reduction then the elements c
ll 

to c mm oomprise the 'inverse matrix' 

of the regression problem. These elements, as we shall see, are important in calculating 
the variances and covariances of the ooeffioients and henoe the oonfidenoe limits of the 
regression estimates. The elements in the m+l'th column are the regression coefficients 
bl to bm. For the numerical example the three reduotione are shown below: 

REDUCTION 

0.05000000 

1.65000000 

-0. 10000000 

-1.65000000 0.10000000 5.05000000 

25.15000000 -16.30000000 -~9.75000000 

-16.30000000 57.90000000 -10.70000000 



b1 = 0.9066

b2
=-2.566

b3
0.9072

rounding to 4 significant figures. The intercept 1)0 is calculated from:

130 = (T - ib.T)/n
Y i
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. Thus, for the nurlericaT example we have;
The coefficients b to b have now been calculated and are stored in

o1,1114,1
to

Although Jordan elimination sounds fairly complex when explained in full, and is

certainly very tedious to carry out manually, it can be programmed very easily for a com-

puter. Below is a section of oode in BASIC which inverts and solves the regression problem

in the matrix C. The variable letters used oorrespond exactly to the explanation above.

Code in BASIC for Jordan Eliminations

100 FOR IC= 1 TO M

110 LET C(KK) = 1/C(K,K)

120 FOR I= 1 to M

130 IF I = K THEN 190

140 LET C(I,K) = -C(I,K)*C(K,K)

150 FOR J 1 TO Mil

160 IF J=K THEN 180
170 LET C(I,J)=C(I,J)+C(I,K)*C(K,J)
180 NEXT J

190 NEXT I

200 FOR J= 1 to Mil
210 IF J=IC THEN 230

220 LET C(C,J) = C(K,J)*C(KK)

230 NEXT J
240 NEXT K

REDUCTION 2

0.15825049 0.06560636 -0.96938369 1.78608349

0.06560636 0.03976143 -0.64811133 -1.97813121

0.96938369 0.64811133 47.33578528 -42.94353876

REDUCTION 3

0.17810238 0.07887895 0.02047887 0.90664807

0.07887895 0.04863523 0.01369178 -2.56610485

0.02047887 0.01369178 0.02112566 -0.90721086

REDUCTION 2 

0.15825049 

0.06560636 

0.96938369 

REDUCTION 3 

0.17810238 

0.07887895 

0.02047887 

0.06560636 

0.03976143 

0.64811133 

0.07887895 

0.04863523 

0.01369178 
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-0 .9693836J 1.78608349 

-0.64811133 -1.97813121 

47 . 33578528 -42.94353876 

0.02047881 

0.01369178 

0.02112566 

0.90664807 

-2.56610485 

-0.90721086 

Although Jordan elimination sounds fairly complex when explained in full, and is 
certainly very tedious to carry out manually, it can be progrlU!llled very easily for a com­
puter. Below is a section of oode in BASIC which inverts and solves the regression problem 
in the matrix C. The variable letters used correspond ex'$ctly to the explanation above. 

Code in BASIC for Jordan Eliminations 

100 FOR K= 1 TOM 
110 LET C(K,K) = l/C(K,K) 

120 FOR I = 1 to M 

130 IF I ~ K THEN 190 
140 LET C(I,K) = -C(I,K)*C(K,K) 
150 FOR J = 1 TO M+l 
160 IF J=K THEN 180 
170 LET C(I,J).c(I,J)+ C(I,K)*C(K,J) 
180 NEXT J 
190 NEXT I 
200 FOR J = 1 to M+l 
210 IF J= K THEN 230 
220 LET C(K,J) = C(K,J)*C(K,K) 
230 NEXT J 
240 NEXT K 

The coefficients b to b have now been oaloulated and are stored in 0 1 m+l to 
c 1. Thus, for the n~ericaf example we have: ' m,m+ 

b
1 

= 0.9066 

b =-2.566 
2 

b =-0.9072 
3 

rounding to 4 significant figures. The intercept bO is calculated from: 
m 

bO = (Ty - Ibi .Ti)/n 
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For the numerical exaxnple we have:

b0 = (142 - (50 x 0.9066 + 52 x (-2.566) 53 x (-0.9072)00
= 27.82 (to 4 sig. figures)

The elements
c11

to c of the final table after the last Jordan reduction we will
Mm

refer to as the inverse matrix c.

Stage 5 Caloulate total, regression and residual sum of squares and hence coefficient
of determination (R2)9 variance ratio (F) and residual standard deviation.

The total sum of squares (TSS) is gy2, as calculated at stage 3.

The regression sum of squares (RSS) is given by:
rn

RSS = !b. .QY.
D. 3.

The residual sum of squares (DSS) is obtained as the difference between these two:

DSS = TSS - RSS

The degrees of freedom for the total sum of squares is n-1. For the regression it
is m. For the residuals it is n-m-1.

The mean square of the regression (RMS) is:

RNS = RSS/m

The mean square of the residuals (DMS) is:

DNB = DSS/(n-m-1)

The variance ratio is:

RTC/DMS with n-m,1 and m degrees of freedom.

This F value can be used to test the statistical significance of the regression.

Fbr the numerical example we have therefore:

TSS = 697.6 (see Ey2 in stage 3)

RSS 0.9066 x 101 + (-2.566) x (-216.4) .4 (-0.9072) x (-0.6)
. 647.4

DSS = 697.6 -647.4 DNS = 50.2/(10-3-/)
= 50.2 = 8.367

RMS = 647.4/3 F = 215.8/8.367

= 215.8 = 25.79 with 6 and 3 d.f.
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For the nlDllerical example we have: 

bO = (142 - (50 x 0.9066 + 52 x (-2.566) + 53 x (-0.9072))/10 

= 27.82 (to 4 sig. figures) 

The elements 0 1 to c of the final table after the last Jordan reduction we will 
. 1 IJIIlI 

refer to as the 1nverse matr4X c. 

Stage 5 Caloulate total, regression and residual SIDIl of squares and hence coefficient 
of determination (R2), variance ratio (F) and residual standard deviation. 

The total sum of squares (TSS) is ri, as calculated at stage 3. 

The regression sum of squares (RSS) is given by: 
m 

RSS = lb .• QY. 
1 1 

The residual sum of squares (DSS) is obtained as the difference between these two: 

DSS = TSS - RSS 

The degrees of freedom for the total sum of squares is n-1. For the regression it 
is m. For the residuals it is n~1. 

The mean square of the regression (mIS) is: 

mIS = RSS/m 

The mean square of the residuals (DMS) is: 

DMS = reS/(n-m-1) 

The variance ratio is: 

F = mIS/moE with n-m-1 and m degrees of freedom. 

This F value can be used to test the statistical signifioance of the regression. 

For the numerioal example we have therefore: 

TSS = 697.6 (see'i.i in stage 3) 

RSS = 0.9066 x 101 + (-2.566) x (-216.4) + (-0.9072) x (-0.6) 

= 647.4 

res = 697.6 -647.4 

= 50.2 

RMS = 647.4/3 

215.8 

E 8.367 

F = 215.8/8.367 

= 25.79 with 6 and 3 d.f. 
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The F values from tables with these d.f. and for P=0.1% is 23.70. Hence we may say

that there is less than 1 chance in 1 000 of the relation between the dependent and predictor

variables being due purely to chance factors outside the regression model.

The coefficient of determination R2 is given by:

R2 = RSS/TSS

r2
The multiple correlation coefficient R =A/R

For the example we have:

2
R 647.4/697.6

= 0.9280

R = 0.9633

The residual standard deviation s is the square root of the residual mean square:

s

which for the example is:

s = 2.893

Stage 6 Calculate standard errors and tstatistics for the regression coefficients.

The standard errors of the coefficients b1 to bm are given by:

s(b) =

Thetvaluesoftheb.are given by:

t(bi) bi/s(bi)

These tvalues can be tested for significance with nm-1 d.f. For the numerical

example we have:

" indicates signifioance at the 1% level (t=3.71 with 6 d.f.). Coefficients b1 and b3 are

not significant. This does not mean that both can be removed from the regression. One or

the other (preferably the least significant, here b1) could be removed and the results recal-

culated by the procedure explained later. The tvalues of the remaining coefficients would

be found to have increased and both would orobably be significant in the new regression.

Coefficient
Standard

Error
Significance

b1
0.9066 1.221 0.742

b2
2.566 0.6380 40022 -M-31-

b3
0.9072 0.4205 2.157
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The F values from tables with these d.f. and for P-oO.1% is 23.70. Hence we may say 
that there is less than 1 chanoe in 1 000 of the relation between the dependent and prediotor 
variables being due purely to chanoe factors outside the regression model. 

The coefficient of determination R2 is given by: 

The multiple oorrelation coefficient R = .,fR2. 

For the example we have: 

R2 = 647.4/691. 6 

= 0.9280 

R = 0.9633 

The residual standard deviation s is the square root of the residual mean square: 

s = .,fmlS 

which for the example is: 

s = 2.893 

Stage 6 Calculate standard errors and t-statistics for the regression coeffioients. 

The standard errors of the coefficients b
1 

to b
m 

aro given by: 

s(b.) = s • ..,fc .. 
1 11 

The t-values of the \ are given by: 

t(b.) = b./S(b.) 
1 1 1 

These t-valUBs oan be tested for significance with n-m-1 d.f. For the numerical 
example we have: 

Coefficient 
Standard 

Error 
t Signifioance 

b
1 

0.9066 1.221 0.742 

b2 -2.566 0.6380 -4.022 ** 
b

3 
-0.9072 0.4205 -2.157 

** indicates signifioanoe at the 1% level (t-3.71 with 6 d.f.). Coeffioients b1 and b3 are 
not signifioant. This does !!2! mean that ~ can be removed from the regression. One or 
the other (preferably the least significant, here b1) could be removed and the results recal­
culated by the procedure explained later. The t-valUBB of the remaining coefficients would 
be found to have inoreased and both would probably be significant in the new regression. 



Then calculate the sum yc. .x.x.
ij

3(3 x 0.1781 + (-1.2) x 0.07888 + 0.7 x 0.02048)
+ (-1.2) x ( 3 x 0.07888 + (4.2) x 0.04864 + 0.7 x 0.01369)
+ 0.7(3 x 0.02048 + (-1.2) x 0.01369 + 0.7 x 0.02113)

= 1.178

Then S- 2.893-/ (1 + 1/10 1.178)

= 4.366

Thus, the standard error for a single estimate of Y from this model at X1 = 8,

X2
= 4 X3 = 6 is + 4.366.

This formula will also give the standard error of the intercept 1)0, if required,

using 1/k= 0 and xi =

This completes the main calculations for multiple regression. Two other types of

calculation are commonly performed. These are the computation of the correlation matrix

between variables and the shortcut calculation for removal of variables from a regression.

The correlation matrix This is a table showing the correlation between any pair

of variables. It is constructed by arranging a matrix V as follows:
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Stage 7 Standard errors of predictions from the model are derived from the formula:

mm
s= s,/-(1/k + 1/n + E E c x)

i j

,

where xi= - Xi), Xi is a given value of predictor variable i, X is the mean value for

the regression model data and k is the number of repeated estimates of Y to be made. S. is

the standard error of the mean estimate of Y. For a single prediction, k = 1; for the

population standard error, 1/k= 0.

For the example, suppose we wish to calculate the standard error for a single estimate

of Y at X1= 8, X2= 4 and X3 = 6.

First calculate the xi:

x =
1

8 - 5.0 . 3

X2 = 4 - 5.2 = -1.2
x . 6 - 5.3 = 0.7

3
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Stage 7 Standard errors of predictions from the model are derived from the formula: 

mm 
S = s fi.l/k + l/n + r 'i c .. x.x.) 

y . . 1J 1 J 
1 J 

where xi - (X;. - Xi), Xi is a given value of predictor variable i, X is the mean value for 
the regression model data and k is the number of repeated estimates of Y to be made. Sy is 
the standard error of the mean estimate of Y. For a single prediction, k = 1; for the 
population standard error, l/k c O. 

For the example, suppose we wish to caloulate the standard error for a single estimate 
of Y at Xl C 8, X2 = 4 and X3 C 6. 

X = 
2 

First calculate the ~: 

x = 
1 

8 - 5.0 = 3 

x2 = 4- 5.2,= -1.2 

x = 
3 

6 - 5.3 C 0.7 

Then caloulate the stmt ~ I: c .. x.x. 
1J 1 J 

3(3 x 0.1781 + (-1.2) x 0.07888 + 0.7 x 0.02048) 

+ (-1.2) x ( 3 x 0.07888 + (-1.2) x 0.04864 + 0.7 x 0.01369) 

+ 0.7(3 x 0.02048 + (-1.2) x 0.01369 + 0.7 x 0.02113) 

= 1.178 

ThenS = 2.893-/(1 + 1/10+ 1.178) 
y 

Thus, the standard error for a single estimate of Y from this model at Xl C 8, 
4, X3 = 6 is Z 4.366. 

This formula will also give the standard error of the interoept bO' if required, 
using l/k = 0 and Xi = Xi' 

This completes the main calculations for multiple regression. Two other types of 
calculation are commonly performed. These are the computation of the correlation matrix 
between variables and the shortcut calculation for removal of variables from a regression. 

The correlation matrix This is a table showing the oorrelation between any pair 
of variables. It is constructed by arranging a matrix V as follows: 



1

2

3

2
Y

QY QX
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and then noting that the correlation between variable i and variable j is:

r = Vi/ .V )

11 jj

This can be done at any time after stage 3 in the regression calculation.

Since the matrix V is symmetrical about the diagonal V11 to Vmm, it is not necessary

to calculate the lower half, as, for example, r23 =
r32,

and so on.

Removing a variable_from the_regression When a variable is found to be nonsignifi-

cant it may be desirable to recalculate the regression statistics with that variable omitted.

To do this the values of the inverse matrix c and thvJ coefficients are adjusted

according to the following formula where u denotes the subscript of the unwanted variable:

b* = b i.bu/ci
u uu

C. * = C C oC u/C
lj UU

For the numerical example suppose we wish to omit the effect of variable X1. The

original inverse matrix and coefficients were (to 6 significant figures):

1 2 3

1 0.178102 0.0788790 0.0204789 0.906648
2 0.0788790 0.0486352 0.0136918 -2.56610
3 0.0204789 0.0136918 0.0211257 -0.907211

Eliminating variable 1 we have:

b* = -2.56610 - 0.0788790 x 0.906648 / 0.178102
2

. -2.96764
b3*= -0.907211 - 0.0204789 x 0.906648 / 0.178102

= -1.01146

1 2 3 4 ......m+ 1
QY
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1 2 3 4 • • • • • • m + 1 

1 

2 

3 

• 
• 
• 
• 
• 

m+ 1 

2 
QY y 

QY Qlt 

and then noting that the oorrelation between variable i and variable j is: 

This can be done at any time after stage 3 in the regression calculation. 

Since the matrix V is symmetrical about the diagonal V 11 
to calculate the lower half, as, for example, r23 ~ r

32
, and so 

to Vmm , it is not necessary 
on. 

Removing a variable from the regression When a variable is found to be non-signifi­
cant it may be desirable to recalculate the regression statistios with that variable omitted. 

'lb do this the values of the inverse matrix c and th" coefficients are adjusted 
according to the following fonnula where u denotes the subscript of the unwanted variable: 

b*= b -c .b,lo i i iu uu 

c, .* ... c .. - C .• 0.,10 
1J 1J 1U J uu 

For the numerioal example suppose we wish to omit the effect of variable Xl. The 
original inverse matrix and coefficients were (to 6 signifioant figures): 

1 
2 

3 

1 

0.178102 
0.0788790 
0.0204789 

2 

0.0788790 
0.0486352 
0.0136918 

Eliminating variable 1 we have: 

3 

0.0204789 
0.0136918 
0.0211257 

b 

0.906648 
-2.56610 
-0.907211 

b * = -2.56610 - 0.0788790 x 0.906648 / 0.178102 
2 ~ -2.96764 

b3* = -0.907211 - 0.0204789 x 0.906648 / 0.178102 

= -1.01146 
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The revised inverse matrix is:

2 3

2 0.0137007 0.00462197

3 0.00462197 000187710

The various other statistics from stage 5 on can then be recalculated for the new

regression. A second, third, etc. variable may be successively eliminated in this way.

This completes the summary of multiple regression calculations. This work is usually

performed by computer but can be done by hand for small problems. Great care should be taken

not to lose significant digits by rounding to a fixed number of decimal places during the

matrix inversion process.

2.6 Residual Analysis

Residual analysis is a tool that should be associated with the intelligent use of

multiple regression. Its purpose is threefold:

To determine whether the residuals from the regression conform to the

assumptions of the mciel, i.e. are uncorrelated, normally distributed

and of uniform variance.

Po assess 'lack of fit' in the model from systematic trends in the residuals.

Po examine visually the shape of relationships between residuals and possible

predictor variables not yet introduced into the regression model.

Residual analysis (like most other aspects of regression calculations!) is very

tedious to perform by hand. It should however be part of every good computer programme

for multiple regression analysis.

The residual e is defined as the difference between the actual value of the dependent

variable Y and the value predicted from the regression model Y. That is:

e
Yi

Y.

When the ei are plotted against the Yi then several possible kinds of graphs may be

obtained:

e.
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The revised inverse matrix is: 

2 

3 

2 

0.0131001 
0.00462197 

3 

0.00462197 
0.0181110 

The various other statistios from stage 5 on can then be recalculated for the new 
regression. A second, third, etc. variable may be sucoessively eliminated in this way. 

This completes the summary of multiple regression calculations. Thie work is usually 
performed by computer but can be done by hand for small problems. Great oare should be taken 
not to lose signifioant digits by rounding to a fixed number of decimal places during the 
matrix inversion prooess. 

2. 6 Residual Analysis 

Residual analysis is a tool that should be associated with the intelligent use of 
multiple regression. Its purpose is threefold: 

(i) Tb determine whether the residuals from the regression oonform to the 
assumptions of the model, i.e. are uncorrelated, normally distributed 
and of lmiform variance. 

(ii) Tb assess 'lack of fit' in the model from systematic trends in the residuals. 

Tb examine visually the shape of relationships between residuals and possible 
prediotor variables not yet introduced into the regression model. 

Residual analysis (like most other aspects of regression calculationsl) is very 
tedious to perform by hand. It should however be part of every good computer programme 
for multiple regression analysis. 

The residual e is defined as the difference between the actual value of the dependent 
variable Y and the va~ue predicted from the regression model Y. That is: 

e = Y, Y. 
i ... ~ 

When the ei are plotted against the Yi then several possible kinds of graphs may be 
obtained: 

( i) 

o 
•• • ... .. .. .. . . . . -------------------• ••• 

• • • 

. . • 
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Ihisistheidealsituationwiththevariationinthee.uniform with respect to Y.
The model appears to have no undesirable characteristics.

. . .
. .

. .

o
. . . " a. Z.

.

This indicates systematic behaviour of the e. with respect to Y and shows lack of

fit. In other words, there is a better model than the current one, using the same basic

predictor variables but with different or additional transformations that could be fitted

and would remove the systematic trend in the ei.

(

" -. .

0 k.
... 7

,. .
.

Here the variances of the ei are not uniform with respect to Y. In this case, better

estimates of the coeffioients can be obtained either by using a transformation of the Y

variable or through the use of weighted regression (see next section 2.7).

When the ei are plotted against X variables not yet included in the model then one

may have either a random scatter or some systematic pattern similar to (ii) above. In the

latter case the X variable could be included in the regression. The shape of the general

trend in the pattern may not be linear, but following one of the trends shown in figure

A.2.1. In this case the appropriate transformation of the X variable can be used.

For example, suppose we have the model:

Y
b0 + b1X1 + b2X2

where the residuals plotted against an additional variable
X3

give the following pattern:
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~ 

This is the ideal situation with the variation in the ei uniform with respect to Y. 
The model appears to have no undesirable oharacteristics. 

( ii) 

o 

... 
' . ... ' .. .. . 

" .' .' .. .. : . " . . ' . . ' 
---- ~~'.:.- ~---- ~ '~'.:. -- - --· . '. . '. '., . 

· '.' · . . . . " 
:'.":':- . . . ' .. ... . . 

This indicates systematic behaviour of the e. with respect to Y and shows lack of 
fit. In other words, there is a better model than the current one, using the same basio 
prediotor variables but with different or additional transformations that could be fitted 
and would remove the systematic trand in the ei' 

( iii) 

. : 

o - - - - -< .... .;.; •. .:. .• ~~:.;:~ ~ ."'" •. -:-.: __ 

'0 • • -.:. • 

... 

. 
y 

Here the variances of the ei are not uniform with respect to Y. In this case, better 
estimates of the coeffioients can be obtained either by using a transformation of the Y 
variable or through the use of weighted regression (see next section 2.7). 

When the ei are plotted against X variables not yet inoluded in the model then one 
may have either a random scatter or some systematic pattern similar to (U) above. In the 
latter case the X variable could be included in the regreesion. The shape of the general 
trend in the pattern may not be linear, but following one of the trends shown in figure 
A. 2 .1. In this case the appropriate transformation of the X variable can be used. 

For example, suppose we have the model: 

where the residuals plotted against an additional variable X3 give the following pattern: 



The dotted line ( ) appears to follow a slight curve which could be allmded for

by adding X3 and X2 to the regression (c.f. figure A.201(e)) to give the model:
3

b0 + b1X1 + b2X2 + b3X3 + b4

After fitting this second model the trend of the residuals from the new model against

X3 would appear similar to the first residual pattern shown in (i) above.

2.7 Weighted Regression

Weighted regression is used when the residuals do not have uniform variance with

respect to the Y values. This situation commonly arises when complex transformations of

the Y variable are used to obtain particular curve shapes. In yield prediction it is also

commonly found with volume data where the variance tends to be proportional to the volume.

Associated with each observation is a particular weight wi. The value of this can

be determined empirically or it may be derived from some theoretical reasoning. For the

best fit the weights wi should be proportional to 1/si where si is the residual standard

deviation at Yi.

Empirical weights can be calculated as follows:

Fit the unweighted regression model using the procedures described in the

preceding section.

Calculate the squared residuals:

2 2
e2 (y(Y )

Then either:(i)2,Tabulate mean values of w. ( = 1/e.) for classes of Y.;

or

2
(ii) Fitaregressionrelatinge.to

Yi
(possibly a simple regression:

e2 = a + b.Y

will be adequate for most cases). Use this regression to predict a
, 2

weightw.(.1/gi) for each Y..

e.

o
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The dotted line (- - -) appears to follow a slight curve which could be allowed for 
by adding ~ and X~ to the regression (c.f. figure A.2.1(e)) to give the model: 

Y= bO + b1X1 + bl2 + bl
3 

+ b4~ 

After fitting this second model the trend of the residuals from the new model against 
X3 would appear similar to the first residual pattern shown in (i) above. 

2.7 Weighted Regression 

Weighted regression is used when the residuals do not have uniform variance with 
respect to the Y values. This situation oommonly arises when complex transformations of 
the Y variable are used to obtain particular curve shapes. In yield prediction it is also 
commonly found with volume data where the variance tends to be proportional to the volume. 

Associated with each observation is a particular weight Wi' The value of this can 
be determined empirically or it may be derived from some theoretical reasoning. Fbr the 
best fit the weights Wi should be proportional to 1/s? where s. is the residual standard l. l. 
deviation at Yi • 

Empirical weights can be calculated as follows: 

(1) Fit the unweighted regression model using the prooedures described in the 
preceding seotion. 

(2) Calculate the squared residuals: 

2 2 
e
i 

= (Y
i 

- \) 

(3) Then either: 

(n) 

2 
Tabulate mean values of "l.' (= 1/e.) for classes of Y ; 

l. i 

Fit a regression relating 
2 

e = a + b.Y 

2 
e

i 
to Y

i 
(possibly a simple regression: 

will be adequate for most cases). Use this regression to predict a 

weight w. (=1/11l.?) for each y .• l. l. 
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In the case of theoretical weights then one uses whatever formulation is involved

tocalculatethew.for each Y.

For weighted linear regression with one predictor variable, the calculations are as

follows:

(1) Compute weighted totals, sises of squares and products:

A= lw. B = Zw,oX.
J. 1 1

2
D = Ew..y. E = Zw..y.

1 1 1 1

Calculate weighted means and corrected products and squnres:

x = B/A y= D/A

SSx = C B2/A SP . F BONA
xy

All other calculations then proceed as from line 11 of form A.2 (Statforn 11

of Dawkins, 1968).

For multiple weighted regression the game general principles apply. Most advanced

regression programmes have a facility for weighting.

Weighted regression should not be used unless there is utrong a priori theoretical

justification for its use; or alternatively, a clear indicated trend in the squared residuals

when plotted against Y that may provide the basis for empirical weighting.

FOr well defined functions with high R2 weighting is unlikely to result in much

oractical improvement in the degree of fit. It is a technique that may be regarded as a

refinement to analysis to be used once preliminary analyses of a set of data have been

completed.

2.8 Comparison of ession Lines

It is frequently necessary to try and decide wiether or not two or more regression

lines are so similar that they can effectively be replaced by a single line. This case may

arise, for example, when it is desired to pool data from different species with similar

growth habits or from different forests, regions, site types or provenances.

The regressions to be compared may be simple regressions with a single predictor

variable or multivariate regressions. Two basic techniques exist for the comparison:

(i) Covariap2Itánálm12. This is perhaps more suited to manual computation

and simple regression, although it can equally well be extended to the

multivariate case.

Si- ificance tests on conditional variables. This is quite suitable for

complex models and interactions, but leads to Large multivariate problems.

It is a useful method of alapting standard computer multiple regression

packages to regression comparison problems.

F= iw..x..y.
1 1 1
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In the case of theoretical weights then one uses whatever formulation is involved 
to calculate the wi for each Y

i
• 

For weighted linear regression with one predictor variable, the caloulations are as 
follows: 

(1) Compute weighted totals, sums of squares and products: 

A= Iw. B = ~w . • x. C = 2 
1.w .• x. 

~ ~ ~ ~ ~ 

2 n= I,.,. . • y. E = ~w .• y. F=iw .• x .• y. 
~ ~ ~ ~ ~ ~ ~ 

(2) Calculate weighted means and corrected products and squares: 

x = B/A 

2 
SS = C - B /A 

x 

y = n/A 

SP = F - B.n/A 
xy 

(3) All other calculations then prooeed as from line 11 of form A.2 (Statform 11 
of Dawkins, 1968). 

For multiple weighted regression the same general principles apply. Most advanced 
regression programmes have a facility for weighting. 

Weighted regression should not be used unless there is strong ! priori theoretical 
justification for its_use, or alternatively, a clear indioated trend in the squared residuals 
when plotted against Y that may provide the basis for empirical weighting. 

For well defined functions with high R2, weighting is unlikely to result in much 
practical improvement in the degree of fit. It is a teohnique that may be regarded as a 
refinement to analysis to be used onoe preliminary analyses of a set of data have been 
completed. 

2.8 Comparison of Regression Lines 

It is frequently necessary to try and decide wiether or not two or more regression 
lines are so similar that they can effectively be replaced by a single line. This case may 
arise, for example, when it is desired to pool data from different speCies with similar 
growth habits or from different forests, regions , site types or provenances. 

The regressions to be compared may be simple regressions with a single predictor 
variable or multivariate regressions. Two basio teohniques exist for the comparison: 

Covariance analysis. 
and simple regression, 
multivariate case. 

This is perhaps more suited to manual computation 
although it can equally well be extended to the 

(ii) Significance tests on conditional variables. This is quite suitable for 
complex models and interactions, but leads to large multivariate problems. 
It is a useful method of adapting standard computer multiple regression 
packages to regression comparison problems. 



Covarianoe analysis is a large subject. Hereo only the techniques neoessary for oom-

paring the slopes and intercepts between simple regressions are considered. The aalculations

are explained in relation to an example representing hypothetical data for the volumeheight

line from two geographically distinct plantations (called I and II)1 using 10 plots on each.

The data is illustrated in figure A.2.2 and set out in table A.2.1. The problem is to

determine whether it is reasonable to combine the data to fit a common regression line based

on all 20 plots. The model to be fitted is the logarithmic volume line with the form:

log V = a + b. log H )

This is the linear form of the model with the parameters a and b being estimated by

simple regression. By taking antilogs to both sides the equation becomes:

V = A.H (2)

where A = 10a In this form points from the fitted line can be calculated for plotting on

normal graph paper.

Figure A.2.2 Hypothetical volumeheight data used for comparison

(an
lines

Volume (m3/ha)
250
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Covarianoe anal:ysis is a large subjeot. Here, only the techniques neoessary for 00 .... 

paring the slopes and intercepts between simple regressions are considered. The calculations 
are explained in relation to an example representing hypothetical data for the volum...-Jleight 
line from two geographically distinct plantations (called I and II). using 10 plots on each. 
The data is illustrated in figure A.2.2 and set out in table A.2.1. The problem is to 
determine whether it is reasonable to combine the data to fit a oOlllll1On regression line based 
on all 20 plots. The model to be fitted is the logarithmio volume line with the form: 

log V = a + b. log H 

This is the linear form of the model with the parameters a and b being estimated by 
Dimple regression. By taking antilogs to both sides the equation becomes: 

V = A.Hb -(2) 

where A = 10a • In this form points from the fitted line can be calculated for plotting on 
normal graph paper. 

Figure A.2.2 Hypothetical volume-height data used for comparison 
of regression lines example. section 2.9. 
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Table A.2.1. Original and transformed data from two

plantations used in the regression

comparison example.

10=.
Plot No. Volume

m3/ha
Height

m.
log. V

y
log. H

Plantation I

1 30.0 12.9 1.4771 1.1106
2 23.3 11.6 1.3674 1.0645
3 212.6 24.9 2.3276 1.3962
4 15.1 10.8 1.1790 1.0334
5 50.4 15.8 1.7024 1.1987
6 189.4 25.8 2.2774 1.4116
7 68.7 18.2 1.8370 1.2601
8 221.2 25.4 2.3448 1.4048
9 123.9 22.1 2.0931 1.3444

10 60.8 16.7 1.7839 1.2227

Plantation II

11 70.6 15.4 1.8488 1.1875
12 131.3 18.5 2.1183 1.2672
13 201.7 24.6 2.3047 1.3909
14 156.6 22.9 2.1948 1.3598
15 136.2 20.8 2.1342 1.3181
16 87.0 16.7 1.9395 1.2227
17 95.0 16.5 1.9777 1.2175
18 108.4 17.7 2.0350 1.2480
19 93.6 18.0 1.9713 1.2553
20 57.7 15.3 1.7612 1.1847
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Table A.2.1. Original and transformed data from two 
plantations used in the regression 
oomparison example. 

Plot No. V~lume Height log. V 
m/ha. m. y 

Plantation I 

1 30.0 12.9 1.4771 
2 23.3 11.6 1.3674 
3 212.6 24.9 2.3276 
4 15.1 10.8 1.1790 
5 50.4 15.8 1.7024 
6 189.4 25.8 2.2774 
7 68.7 18.2 1.8370 
8 221.2 25.4 2.3448 
9 123.9 22.1 2.0931 

10 60.8 16.7 1.7839 

Plantation II 

11 70.6 15.4 1.8488 
12 131.3 18.5 2.1183 
13 201.7 24.6 2.3047 
14 156.6 22.9 2.1948 
15 136.2 20.8 2.1342 
16 87.0 16.7 1.9395 
17 95.0 16.5 1.9777 
18 108.4 17.7 2.0350 
19 93.6 18.0 1.9713 
20 57.7 15.3 1.7612 

log. H 
x 

1.1106 
1.0645 
1.3962 
1.0334 
1.1987 
1.4116 
1.2601 
1.4048 
1.3444 
1.2227 

1.1 875 
1.2672 
1.3909 
1.3598 
1.3181 
1.2227 
1.2175 
1.2480 
1.2553 
1.1847 
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n 10

SSy= yy2-(yy)2/n 1.56198
2 / .2/

SSx = Ex --Ex) /n 0.18435
SPxy= sxyl-rx.yy/n 0.53398

coefficients:

b = SPxy/SSx 2.89657

a = (y-b.lx)/n -1.76640

regression sums of squares:

RSS = b.SPxy 1.54671

The sums, suns of squAres and products of the data (table A.2.1) are calculated both
for the separate sets of data and for the two sets combined as follows:

Statistic Source of Data

I II Combined (C)

IY 18.38954 20.28547 38.67501
2

SY 35.37950 41.39075 76.77025
Ix 12.44696 12.65166 25.09862

2sx 15.67703 16.05102 31.72805

YxY 23.43337 25.76286 49.18623
10 20

0.24072 1.98243

0.04457 0.23101

0.09837 0.65176

2.20716 2.82135

-0.76388 -1.60685

0.21712 1.83884

From these basic calculations the analysis of variance can be performed. The

following additional quantities are calcInated:

(i) Sums of squares between b coefficients:

SSb = SESS - (ISPxy)2/ISSx

For the example this is:

SSb = (1.54671 + 0.21712) - (0.53398 + 0.09837)2/
(0.18435 + 0.04457)

= 0.01708

ii) The sums of squares between a coefficient:

SSa 1SSy zESS

= (1.56198 + 0.24072) - (1.54671 + 0.21712)
.,_ 0.03887

(iii) The residual sum of squares:

DSS = SSyc - (SSa + SSb + RSSc)

where the 0 subscript denotes quantities froMthe combined regressioh

statistics on the table above.
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The sums, sums of squares and products of the data (table A.2.1) are calculated both 
for the separate sets of data and for the two sets combined as follows: 

Statistio Source of Data 

I II Combined (C) 

IY 18.38954 20.28547 38.67501 
2 

35.37950 41.39075 76.77025 !Y 
IX 12.44696 12.65166 25.09862 

Ix2 15.67703 16.05102 31.72805 

:EXY 23.43337 25.76286 49.18623 

n 10 10 20 

SSy ~ 
2 2 

IY -(iY) /n 1.56198 0.24072 1.98243 

SSx = 2 2/ I:X -(£x) n 0.18435 0.04457 0.23101 

SPxy= Ixy-rx.:Ey/n 0.53398 0.09837 0.65176 

coefficients: 

b = SPxy/SSx 2.89657 2.20716 2.82135 

a = (!y-b.:Ex)/n -1.76640 -0.76388 -1.60685 

regression sums of squares: 

RSS = b.SPxy 1.54671 0.21712 1.83884 

From these basio oalculations the analysis of variance can be performed. The 
following additional quantities are calculated: 

(i) Sums of squares between b coefficients: 

SSb = ! RSS _ (!Spxy)2 /ISSx 

For the example this is: 

SSb = (1.54671 + 0.21712) - (0.53398 + 0.09837)2/ 
(0.18435 + 0.04457) 

0.01708 

(ii) The sums of squares between a coefficient: 

SSa = ~SSY - !RSS 

= (1.56198 + 0.24072) - (1.54671 + 0.21712) 

= 0.03887 

(iii) The residual sum of squares: 

res = SSYc - (SSa + SSb + RSSC) 

where the G subscript -denotes quantities from- the -combined -regression 
statistics on the table above. 



SSb )

SSa )

RSS
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The analysis of variance table for the comparison of regressions may be set out as

follows:

The asterisks denote the significance level of the different variance ratios,

determined by looking up F values in statistical tables with 1 and 16 d.f. at the 5% (*),
1% (**) and 0.1% (***) probability levels. In the above the regression is very highly

significant (i.e. not due to chance). The difference between slopes in the two separate

regressions is not significant, i.e. is most likely due to chance sampling effects in the

two sets of data. On the other hand, the intercepts do differ significantly at the 5%

level, suggesting that the regressions are in fact distinot although they have the same

slope. Consequently, we may conclude for the example that the data from the two planta-

tions cannot be pooled to give a combined regression for prediction purposes without a

consequent loss of accuracy.

This comparison method can be extended to any number of simple regressions by noting

that in the above calculations, Wherever separate quantities for the two regressions are

added together,then any number of quantities may be added. Dawkins (see bibliography)

presents a calculation 2E2 forma for comparing up to 4 regressions.

Sum of Mean Variance

Source of Variation Squares d.f. Square Ratio

Combined regression

RSS 1.83884 1 1.83884 335.7xxx

Between slopes SSb 0.01708 1 0.01708 3.1

Between intercepts

SSa 0.03887 1 0.03887 7.1*
Residuals DSS 0.08764 16 0.005478
Total SSyc 1.98243 19
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Fbr the example, the deviation sum of squares is:

DSS = 1.98243 (0.03887 + 0.01708 + 1.83884)

= 0.08764

(iv) The degrees of freedom for the above quantities are as follows where nT and

nII
are the number of points in the separate regressions, r is the numter of

regressions being compared and n is the total number of points:

statistic d.f.

SSyc n 1

DSS
ni nII

2r
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For the example, the deviation sum of squares is: 

DSS = 1.98243 - (0.03887 + 0.01708 + 1.83884) 

0.08764 

(iv) The degrees of freedom for the above quantities are as follows where n and 
nIl are the number of points in the separate regressions, r is the numter of 

regressions being compared and nC is the total number of points: 

statistic i!.!:. 
SSyc nC - 1 

res nr+nn- 2r 

SSb ) 1 r-
SSa ) 

RSS
C 

1 

The analysis of varia.nc e table for the comparison 0 f regressions may be set out as 
follows: 

Sum of Mean Variance 
Source of Variation Squares .!hL. Square Ratio 

Combined regression 
RSS

c 
1.83884 1 1.83884 335.7*** 

Between slopes SSb 0.0'708 1 0.01708 3.1 

Between intercepts 
SSa 0.03887 1 0.03887 7.1* 

Residuals DSS 0.08764 16 0.005478 

Total SSyc 1.98243 19 

The asteriskB denote the signifioance level of the different variance ratios, 
determined by looking up F values in statistical tables with 1 and 16 d.f. at the 5% (*), 
1% (**) and 0.1% (***) probability levels. In the above the regression is very highly 
significant (i.e. not due to ohanoe). The differenoe between slopes in the two separate 
regressions is not signifioant, i.e. is most likely due to ohance sampling effects in the 
two sets of data. On the other hand, the intercepts do differ significantly at the 5% 
level, suggesting that the regressions are in fact distinot although they have the same 
slope. Consequently, we may oonclude for the example that the data from the two plant .... 
tions cannot be pooled to give a combined regression for prediotion purpo~es without a 
consequent loss of acouraoy. 

This oomparison method oan be extended to any number of simple regressions by noting 
that in the above caloulations, wherever separate quantities for the two regressions are 
added together, then any number of quantities may be added. Dawkins (see bibliography) 
presents a calculation ~ ~ for cOmparing up to 4 regressions. 
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The use of conditional variables for comparison of regression lines. Conditional

variables are those which can only take values of zero or one, depending on whether a parti-

cular observation is to enter into some part of a regression model or not. They can be used

for the comparison of regression lines and for fitting sets of nested data (see section 2.10).

Consider the case described in the example above, oomparing volume height lines for

two simple regressions from plantations I and II. Fbr each plantation we have a model:

log V = a + b.log H

We can form a single model for both sets of data if we introduce an extra variable Z

which is zero for data from forest I and one for data from forest II. This oombined model

is:

log V =
a1

(1 +
a20Z)

+ b1(1 + b2.Z)log H

For observations with Z = 0 (forest I) then this amounts to:

log V=
al

+ bl log H

But when Z= 1 (forest II) the coefficients are:

log V= (al + a2) + (b1 + b2)log H

To fit equation (3) by line4;r regression the brackets are removed giving:

log V =
al

+ a1a2Z + b1 log H + b1b2Z.log H

which is equivalent to the regression equation:

Y =
c0 + c1X1 + c2X2 + c3X3

Using a multiple regression programme to fit the coefficients, the values obtained

The t values for the ooefficients with 16 d.f. indioate a similar but not identical

result to the covariance analysis. The ol coefficient, corresponding to the term Z in

equation (6), indicates a highly significant additional term for the intercept for the

second set of data. The 03 coefficient, corresponding to Z.log HI is also significant at

the 5% level, indicating that the slope of the two sets of data differs. In the covariance

analysis it will be remembered, the slopes did not differ significantly although the inter-

cepts did. This difference in the results of the two methods is due to the difference in

the statistical models and, the hypotheses being tested. The covariance analysis asks the

question:

"Do either or both of the regressions differ significantly from a pooled regression?"

were:

e0 1.76640 12.3

el
1.00179 3.1

02
2.89657 25.2

c3 0.68884 2.7
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The use of conditional variables for comparison of regression lines. Conditional 
variables are those which can only take values of zero or one, depending on whether a parti­
oular observation is to enter into some pert of a regression model or not. They oan be used 
for the oomparison of regression lines and for fitting sets of nested data (see seotion 2.10). 

Consider the case desoribed in the eXample above, comparing volume height lines for 
two simple regressions from plantations I and II. For eaoh plantation we have a model: 

log V = a + b.log H 

We can form a single model for both sets of data if we introduce an extra variable Z 
which is zero for data from forest I and one for data from forest II. This combined model 
is: 

log V = a
1 

(1 + a
2

.Z) + b
1 

(1 + b
2

.Z)log H 

For observations with Z = 0 (forest I) then this amoWltS to: 

log V = a
1 

+ b
1 

log H 

But when Z = 1 (forest II) the coefficients are: 

log V = (a
1 

+ a
2

) + (b
1 

+ b
2

)log H -(5) 

To fit equation (3) by linear regression the brackets are removed giving: 

-(6) 

which is equivalent to the regression equation: 

Using a multiple regression programme to fit the coefficients, the values obtained 
were: 

1 
-1.76640 -12.3 

1.00179 3.1 

2.89657 25.2 

-0.68884 -2.7 

The t values for the coeffioients with 16 d.f. indioate a similar but not identical 
result to the oovarianoe analysis. The 01 coefficient, corresponding to the term Z in 
equation (6), indioates a highly significant additional term for the intercept for the 
second set of data. The 03 coeffioient, corresponding to Z.log H, is also significant at 
the 5% level, indicating that the slope of the two sets of data differs. In the covarianoe 
analysis it will be remembered, the slopes did .!!.2! differ significantly although the inter­
cepts did. This difference in the results of the two methods is due to the differenoe in 
the statistical models and. the hypotheses being tested. The covariance analysis asks the 

question: 

"Do either or both of the regressions differ signifioantly from a pooled regression'?" 
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whereas, this technique asks:

"Does the second regression intercept (01) or slope (03) differ from that of the

first regression?'

It will be appreciated that the second type of test will be more sensitive to

differences than the first, but on the otherhand, it is not so directly relevant if one

wishes to know whether one can safely pool regressions.

The coefficient values for the two separate lines can be worked out from the above

In fact, the figures appear to differ in the third decimal place from those calculated

earlier, but this is an effect of rounding error, as in the computer programme all calcula-

tions9 including the log, transformations were carried out to 15 significant figures, whereas

with the manual calculation used in the covariance analysis, only 5 to 8 significant figures

were used.

The use of conditional variables can become quite oomplei and is also quite flexible.

For example, given any dependent variable Y and any predictor variable X with a conditional

variable Z9 we can have a model with a common slope and only a different intercept for the

two sets of data:

Y
c0

+ c1Z + o X
2

With three sets of data, two conditional variables are needed. They are:

Z1
0 for data from set 19 1 for sets 2 and 3.

Z2
0 " " 1 and 29 1 for set 3.

And the model to test for different slopes and intercepts is:

Y= co + ciZi + c2Z2 + 03X + c4Z1X +o5Z2X

FUrther information on the ways conditional variables may be used is given in the

next section.

coefficients and will be found to be identical to the coefficients for the separate lines
fitted in the covariance analysis. They are:

Forest I:

Intercept
0 1.76640

Slope
02 2.89657

Forest II

Intercept
00+01

0.76461

Slope
0203 2.20773
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whereas, this teohnique askB: 

"Does the seoond regression interoept (01) or slope (c3) differ from that of the 
first regression 1'1 

It will be appreoiated that the second type of test will be more sensitive to 
differences than the first, but on the other hand, it is not so directly relevant if one 
wishes to know whether one can safely pool regressions. 

The coefficient values for the two separate lines can be worked out from the above 
coefficients and will be found to be identical to the coefficients for the separate lines 
fittEd in the oovariance analysis. They are: 

Forest I: 

Intercept Co -1.76640 

Slope c
2 2.89657 

Forest II 

Intercept °0+c1 
-0.76461 

Slope c
2
+o

3 
2.20773 

In fact, the figures appear to differ in the third decimal place from those calculated 
earlier, but this is an effect of rounding error, as in the computer programme all calcula.­
tions, including the log. transformations were carried out to 15 significant figures, whereas 
with the manual calculation used in the covariance analysis, only 5 to 8 significant figures 
were used. 

The use of conditional variables can beoome quite oomplex and is also quite flexible. 
For example, given any dependent variable Y and any predictor variable X with a conditional 
variable Z, we can have a model with a common slope and only a different interoept for the 
two sets 0 f data: 

1'lith three sets of data, two conditional variables are needed. They are: 

Z1 0 for data from set 1, 1 for sets 2 and 3. 

" " " 1 and 2, 1 for set 3. 

And the model to test for different slopes and interoepts is: 

Further information on the ways conditional variables may be used is given in the 
next section. 



2

_160 _

2.9 Nest231112grassign_UsinEC9nditionäl Variables

Conditional variables whose value may be either zero or one have already been alluded

to in the previous section. Apart from their use for comparing regressions they can be used

to fit regression models to nested data.

Nested data arises When the measurements are grouped into sampling units or plots

where the withinplot regression may be different from the betweenplot regression. The

commonest situation in forest yield studies is with permanent sample plot measurements

where one has data grouped by plots. A typical problem will illustrate the point:

Example Figure A.2.3 shows hypothetical heidhtage data from 5 permanent

sample plots each of which has been remeasured 3 or 4 times. The

objective is to estimate the mean slope of the heightage relation-

ship, using a qiialiratic model of the form:

H=b0 +b1A+ b2A

where
b1

and
b2

are assumed to be the sane for all plots but b0
0

may differ (expressing a site effect).

If a regression analysis is made of the data in figure A.2.3 using equation (1) as

the model and treating each observation as separate and independent, then the coefficient

values obtained are:

b0
7.807

b1

0.6939

b2
0.008652

, .

with a coefficient of determination (R2 ) of 0.53 and an F value of 4.94. The significance

level of the regression is 0.2%.

It can be seen from figure A.2.3 that this regression,drawn as a broken line,

obviously underestimates the mean slope of the plots.

To fit the nested model then 4 artificial variables are introduced Which can be

called
P2

to
P5.

These have the following values:

P2
1 for data from plot 2, zero for all other data

P3
1

P41 " II

4

P5 1 "

11 il II 30 11 11 11

It

11
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2.9 Nested Regression Using Conditional Variables 

Conditional variables whose value nay be either zero or one have already been a lluded 
to in the previous section. Apart from their use for comparing regressions they oan be used 
to fit regression models to nested data. 

Nested data arises when the measurements are grouped into sampling units or plots 
where the within-plot regression nay be different from the between-plot regressi on . The 
commonest situation in forest yield studies is with permanent sample plot measurements 
where one has data grouped by plots. A typical problem will illustrate the point: 

Example Figure A.2.3 shows hypothetical height-age data from 5 permanent 
sample plots each of which has been remeasured 3 or 4 times. The 
objective is to estimate the mean slope of the height-age relation­
ship, using a quadratic model of the form: 

H = b
O 

+ b
1

A + bl
2 

where b
1 

and b
2 

are assumed to be the Rame for all plots but b
O 

nay differ (expressing a site effect). 

If a regression analysis is made of the data in figure A.2.3 using equation (1) as 
the model and treating each observation as separate and independent, then the coefficient 
values obtained are: 

bO 7.807 

b
1 

0.6939 

b
2 

-0.008652 

2 
with a coeffioient of determina~on (R ) of 0.53 and an F value of 4.94. The significance 
level of the regression is 0.2%. 

It can be seen from figure A.2.3 that this regression,drawn as a broken line, 
obviously underestimates the mean slope of the plots. 

To fit the 

called p 2 to P 5' 

nested model then 4 artificial variables are introduced which can be 
These have the following values: 

P
2 

1 for data from plot 2, zero for all other data 

P
3 

1 " " " " 3, " " " " " 

P - 1 " " " " 4, " " " " " 
4 

P
5 

- 1 " " " " 5, " " " " " 
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Figure A.2.3 Hypothetical height-age data to exemplify

effect of fitting nested regression

Stand Height (m.)

The model fitted is:

H=a +aP +aP +aP +aP +bA+ bA2
1 22 33 44 55 1 2

wheretheaiand b .are the regression coefficients. This is the quadratic model as ini
equation (1), but with a different intercept for every plot. The intercept values equivalent

to b0 in equation (1) are:

Plot Intercept

1
a1

2 al + a-2

3 al + a3

4 al a4
5 al + a5

10

11111--40

15

1

Observations on 1 PSP

Ungrouped data regression

Nested regression for the
mean site

20 25
Age

25

20

15

10
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Figure A.2.3 Hypothetical height-age data to exemplify 
effect of fitting nested regression 

Stand Height (m.) 

25 

20 

15 

10 

5 

1 

5 

• • Observa tions on 1 PSP 

Ungrouped data regression 

Nested regression for the 
mean site 

o 5 10 15 20 25 Age 

The model fitted is: 

2 
H=a +aP +aP +aP +aP +bA+bA 

1 22 33 44 55 1 2 

where the a~ and bi are the regression coefficients. This is the quadratiC model 
equation (1 ), but with a different interoept for every plot. The intercept values 
to bO in equation (1) are: 

E!2.! Intercept 

1 a1 
2 a1 + a2 

3 a1 + a3 

4 a1 + a4 

5 a1 + a5 

-(2) 

as in 
equivalent 



Y =a1 +bX+b2PX+b3P3X1 2

In the above the ai and bi are intercept and slope coefficients to be fivted by

regression; the X and Y are normal variables and the Pi are variables Which are 1 for

plot j and zero for other plots.

These ideas can be extended to multivariate models, although the number of coeffi-

cients becomes fairly large. Nested regressions of this type can be calculated by hand,

as although the number of variables may be large, the 0-1 nature of most of the variables

means that many short-cuts are possible in the calculations. If this is done, then the

Jordan elimination techniaue for inverting the corrected cross-product matrix, given in

section 2.5, is not the fastest or easiest method; Seber (1977 - see bibliography) gives

details of more efficient methods for those acquainted with matrix algebra. However, for

computer programmes the relative inefficiency of conventional caloulation techniques is

unimportant since the processing times involved are in any case very short.
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When fitted to the data from figure A.2.3 the coefficient values obtained were:

1:11 0.9192

b2 -0.01157

with a coefficient of determination of 0.98 and an F value of 70.88 with 6 and 9 degrees of

freedom. This is significant at less than 0.0001%. The slope of this line, given by 11 and

b2, is drawn on figure A.2.3 for the mean intercept values of the plots as a heavy solid

line. It can be seen that this gives a much better representation of the mean slope of the

plots than the regression fitted to ungrouped data.

This technique can be extended to give different intercepts and different slopes for

each plot or a common intercept and different slopes. The latter case is most likely to be

useful with models that result in asymptotic graphs such as the Schumacher equation (see

main text). For a single X and Y variable and with 3 plots, for example, we have:

Common slope, different intercepts:

Y = al + a2P2 + a3P3 + biX

Different slope and intercepts:

Y =a +aP +aP +bX+bPX+bPX
1 22 33 1 22 33

Different slo e common interce t:

al
-70:11339'2a2 15

a3 -1.755

a4 -3.427

a5 -6.833
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When fitted to the data from figure A.2.3 the coefficient values obtained were: 

a
1 7.432 

a2 -0.3915 

a3 -1.755 

a4 -3.427 

a5 -6.833 

b1 0.9192 

b2 -0.01157 

with a coefficient of determination of 0.98 and an F value of 70.88 with 6 and 9 degrees of 
freedom. This is significant at less than 0.0001%. The slope of this line, given by b1 and 
b2' is drawn on figure A.2.3 for the mean intercept values of the plate as a heavy solid 
line. It can be seen that this gives a much better repre6entation of the mean slope of the 
plots than the regression fitted to ungrouped data. 

This technique can be extended to give different intercepts and different slopes for 
each plot or a common intercept and different slopes. The latter case is most likely to be 
useful with models that result in asymptotic graphs such as the Schumacher equation (see 
main text). For a single X and Y variable and with 3 plots, for example, we have: 

Common slope. different intercepts: 

Different slope and intercepts: 

Different slope, common intercept: 

In the above the ai and bi are intercept and slope coefficients to be fi,ted by 
regression; the X and Y are normal variables and the P j are variables which are 1 for 
plot j and zero for other plots. 

These ideas can be extended to multivariate models, although the number of coeffi­
cients becomes fairly large. Nested regressions of this type can be caloulated by hand, 
as although the number of variables may be large, the 0-1 nature of most of the variables 
means that many short-cuts are possible in the calculations. If this is done, then the 
Jordan elimination technique for inverting the corrected cross-product matrix, given in 
seotion 2.5, is not the fastest or easiest method; Seber (1977 - see bibliography) gives 
details of more effioient methods for those acquainted with matrix algebra. However, for 
computer programmes the relative ineffioienoy of oonventional caloulation techniques is 
unimportant since the processing times involved are in any case very short. 



- 163 -

3. SOLUTION OF EQUATIONS

3.1 Solution of the Quadratic Equation

The quadratic equation is widely used as a regression model for data exhibiting a

slight curvature in the X-Y trend. Having fitted an equation to predict Y, it may some-

times be necessary to solve for X given a known value for Y. To do thispone uses the
standard formula for the roots of a quadratic equation. If the regression model is:

Y = b0 + blX + b2X2

then rewrite it as:

aX2 + bX + c = 0

where a= b2, b= b and c = b0-Y, and obtain X from:

X= -b Vb2 - 4ac

2a

There are normally 2 solutions, depending on whether a + or a - sign is taken before

the square root sign. It will usually be obvious that only one of the two solutions calcu,

lated in a particular case is possible. For example, one might derive diameters of +20

and -15 as solutions to a problem; only the positive diameter has any meaning.

When b2 is less than 4ac, the quantity under the square root sign is negative and

there is no real solution to the equation. For most foreetry applications this is likely

to imply an error in the coefficient values or a Y value that is too large or too small.

Suppose, for example, that one has a height-age function that reaches a maximum at 42 m

height. If one tries to solve it to see at what age the stand will reach 50 m, then this

condition will arise; there is no solution.

3.2 Graphical Solution of Equations

There are quite a number of complex models that cannot readily be manipulated by

algebra and which must be solved either by a graphical or a numerical method. The graphical

method of solution is self-evident and can best be illustrated by an example. It consists

simply of plotting the value of Y for an equation of the type:

Y = f(X)

for selected values of X; joining the points by a smooth curve and then estimating the

value of X for the desired Y at which a solution is required.

Suppose, for example, that one has fitted the equation:

log MAI = -0.8892 - 0.03055 A + 2.097 log A

relating mean annual volume increment to age for a plantation and it is necessary to solve

it to determine the age when MAI first reaches 15 mYha/yr. For a graphical solution use
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3. SOLUTION OF EQUATIONS 

3.1 Solution of the Quadratic Equation 

The quadratio equation is widely used as a regression model for data exhibiting a 
slight curvature in the X-Y trend. Having fitted an equation to predict Y, it may some­
times be necessary to solve for X given a known value for Y. To do this,one uses the 
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is less than 4ac, the quantity under the square root sign is negative and 
there is no real solution to the equation. For most forestry applications this is likely 
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Suppose, for example, that one has a height-age function that reaches a maximum at 42 m 
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condition will arise; there ie no solution. 

3.2 Graphical Solution of Equations 

There are quite a number of complex models that cannot readily be manipulated by 
algebra and which must be solved either by a graphioal or a numerical method. The graphical 
method of solution is self-evident and can best be illustrated by an example. It consists 
simply of plotting the value of Y for an equation of the type: 

Y = f(X) 

for selected values of X; J01n1ng the points by a smooth ourve and then estimating the 
value of X for the desired Y at which a solution is req~red. 

Suppes e, for exampla, that one has fitted the equation: 

log MAl = -0.8892 - 0.03055 A + 2.097 log A 

relating mean annual volume increment to age for a plantation and it is necessary to solve 
it to determine the age when MAl first reaches 15 m3/ha/yr. For a graphical solution use 



These are then plotted, as shown by the +s in the graph below, and connected by a

smooth curve. It is then possible to read off the x valus corresponding to the known y

valus which in this case is, for an MAI of 25 m3/ha/yr, an age of 17.2 years.

MI (m3/ha/yr)
20

10

5 Age (yrs)
10 20 3015
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the equation to calcula-te MAI for a series of ages which it is hoped will bracket the

desired answer. Below are tabulated a series of MA's calculated for ages 10 to 30:

25

The main disadvantages of graphical solution methods are:

The accuracy is restricted to perhaps ± of the range of the x scale.

The method is slow and essentially manual. It cannot be used within a

computer programme or be programmed into a calculator.

Lge MAI

10 7.99
15 13.15
20 16.91
25 18.99
30 19.58
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the equation to caloulate MAl for a series of ages which it is hoped will bracket the 
desired answer. Below are tabulated a series of MAls calculated for ages 10 to 30: 

~ 

10 
15 
20 
25 
30 

~ 

7.99 
13.15 
16.91 
18.99 
19.58 

These are then plotted, as shown by the +s in the graph below, and connected by a 
smooth curve. It is then possible to read off the x value oorresponding to the known y 
value which in this case is, for an MAl of 25 m3/ha/yr, an age of 17.2 years. 

MAl (m3/ha/yr) 

20 

15 

10 

5 
10 15 20 25 30 

The main disadvantages of graphical solution metl-.ods are: 

Age (yrs) 

(i) The acouraoy is restricted to perhaps:!; t% of the range of the x scale. 

(ii) The method is slow and essentially manual. It cannot be used within a 
oomputer programme or be programmed into a oaloulator. 
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3.3 Numerical Solution of Equations

There are a number of numerical solution methods for equations, but one of the

simplest and most reliable is the socalled 'Bisection Method'. This proceeds through

the following stages:

(i) Define the function to be solved as:

Y = f(x)

where y is a known value, but x is the unknown to be determined by the method.

There is a range of values within which x must be known to lie, from xa to xb,

such that:

f(xa) is less than f(xb);

f(xa) y has the opposite si gn to f(xb) y.

(ii) Calculate a trial valuexl - from:

x.=¡--(x + x )
a. a

(iii) Calculate the value yi for xi:

y. = f(x.)

(ir) If: y. is greater than y, let xb = x.;

yi is less than y, let xa = xi;

yi is exactly equal to y, then the solution is xi;

this case is unlikely to occur in practice.

(v) Go back and repeat steps (ii) to (iv) n times, where n is determined by

the accuracy to which one wishes to approximate the correct solution. Given

initial values of xa and xb then the accuracy of the solution will be:

accuracy = 2n(xax,b)

After the n iterations have been completed, then xi is the desired solution to the

accuracy stipulated above. In practice, since the iterations are carried out at high speed

by computer or programmable calculator, it is usually sufficient to use a fixed value of n,

say 15 or 20 for a range of different problems. We have for example:

No. of Iterations Accuracy as % of Range

5 3%

8 0.3%
10 0.1%
15 0.003%
20 0.0001%

30 10-7%

3.3 Numerical Solution of Equations 

There are a number of numerical solution methods for equations, but one of the 
simplest and most reliable is the so-called 'Biseotion Method'. This proceeds through 
the following stages: 

(i) Define the funotion to be solved as: 

y ~ f(x) 

where y is a known value, but x is the tmknown to be determined by the method. 
There is a range of values within which x must be known to lie, from Xa to xb' 
suoh that: 

(1) f(x a) 1s less than f(~); 

(2) f(Xa) - Y has the opposite sign to f(Xb) - y. 

(ii) Calculate a trial value Xi from: 

(iii) 

(iv) 

X. = t(x + x ) 
1 a b 

Calculate the value Yi for Xi: 

If: Yi is 

Yi is 

greater than y, let ~ ~ xi; 

less than y, let xa = xi; 

exactly equal to y, then the solution i6 XiI 

this case is unlikely to occur in practice. 

Yi is 

(v) Go back and repeat steps (ii) to (iv) n times, where n is determined by 
the accuracy to which one wishes to approximate the oorrect solut.ion. Given 
initial values of Xa and xb then the aocuracy of the solution will be: 

After the n iterations have been oompleted, then Xi is the desired solution to the 
aocuraoy stipulated above. In practice, since the iterations are carried out at high speed 
by computer or programmable caloulator, it is ususlly liufficient to use a fixed value of n, 
say 15 or 20 for a range of different problems. We have for example: 

No. of Iterations 

5 
8 

10 
15 
20 
30 

Accuracy as % of Range 

3% 
0.3% 
0.1% 
0.003% 
0.0001% 
10-7% 



The main disadvantages of the bisection method is that compared to some numerical

solution methods (notably Newton's method), the convergence with each iteration is quite

slow; the method also fails when there are two (or any other even number) solutions within

the initial range given, and of course, one Ast be able to stipulate a range for the solu

tion. For most forestry work these disadvantages seldom become important. If they do

appear to be critical, then the worker should refer to some textbook on numerical methods,

sunh as, for example, Stark (1970) for more detailed guidance.

4. FITTING NONLINEAR MODELS

A nonlinear model is any model which cannot be transformed into a form Whose

parameters can be estimated directly by linear least squares analysis, as described in

section 2.

FOr example, the equation:

Y = a.X

can be transformed by taking logarithms of both sides to give the linear model:

log Y= log A 4. b log X
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Fbr most forestry problems 15 iterations are sufficient to give a realistic degree

of accuracy.

As an example of the bisection method, suppose that we have, as in the previous

section, an equation relating age (A) and mean annual increment (MAI) of the form:

log MAI = -0.8892 - 0.03055 A + 2.097 log A

which we wish to solve to determine the age at whidh MAI reaches 15 m3/ha/yr. Taking xa as

1 year, xb as 30 years and y as 15 years, then applying stages (ii) to (iv) enumerated above,

the solution goes as follows:

xa
X. Yi

1 1.000 30.000 15.500 13.595
2 15.500 30.000 22.750 18.254
3 15.500 22.750 19.125 16.370
4 15.500 19.125 17.312 15.091
5 15.500 17.312 16.406 14.370
6 16.406 17.312 16.859 14.737
7 16.859 17.312 17.085 14.916
8 17.085 17.312 17.199 15.004
9 17.085 17.199 17.142 14.960

10 17.142 17.199 17.170 14.982
11 17.170 17.199 17.185 14.993
12 17.185 17.199 17.192 14.999
13 17.192 17.199 17.195 15.001
14 17.192 17.195 17.193 15.000
15 17.192 17.193 17.193 14.999
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The main disadvantages of the biseotion method is that compe.red to some numerioal 
solution methods (notably Newton's method), the oonvergenoe with each iteration is quite 
slow; the method also fails when there are two (or any other even number) solutions within 
the initial range given, and of course, one .t be able to stipulate a range for the solu­
tion. Fbr most forestry work these disadvantages seldom become important. If they do 
appear to be oritioal, then the worker should refer to some textbook on numerical methods, 
such as, for example, Stark (1970) for more detailed guidanoe. 

4. FI'l'l'ING NONLINEAR MODElS 

A nonlinear model is any model whioh cannot be transformed into a form whose 
parameters can be estimated direotly by linear least squares analysis, as desoribed in 
seotion 2. 

Fbr example, the equation: 

b 
y ~ a.X 

can be transformed by taking logarithms of both sides to give the linear model: 

log Y c log A + b log X 
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so that log A and b can be directly estimated by linear regression. On the other hand:

Y= a + b.Xc

where a, b and c are coefficients to be determined, cannot be directly transformed into such

a linear form and hence it is said to be a nonlinear model or equation.

In this manual it is only possible to deal with fitting methods for a limited range

of nonlinear functions in common use in growth and yield studies characterised by the

following features:

There is only one predictor (X) and one dependent (Y) variable;

There are three parameters to be estimated (which we will call a, b and k)

by the fitting process;

Provided that parameter k is assumed to be a known value, a and b can be

estimatedlusing appropriate transformations,by simple linear regression.

The types of equations which fall within these restrictions include the following

widely used forms:

Y= a + b.Xk

Y= a.exp(b.Xk)

Y = a(1 exp(k.X))b

There are a number of other models besides these that also can be fitted, but these

are less commonly used in forestry work and hence are not listed here.

The main problem is the estimation of the parameter k. Fbr a known value of k we

can derive linear forms for the three equations as follows:

Y= a + b.(Xk)

where Xk is the predictor variable.

loge
Y= loge a + b.(Xk)

where again the predictor variable is Xk and the dependent variable is
logeY.

loge
Y = log a + b.loge(1 exp(k.X))

e

where the predictor variable is loge(1 exp(k.X)) and the dependent

variable is logeY.

These three linearized forms can all be fitted using simple linear regression except

for the k parameter. The value of k which gives the best fit can be estimated graphically.

The essential principal of the graphical approach is to calculate the residual sum
of sqvAres for the linear forms, using the conventional methods described in section 2.1,
for a series of trial values of k. These residual sums of squares are plotted graphically
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against the trial values of k and a smooth curve is drawn through the points. The value of

k at which a minimum sum of squares is observed to occur provides the best estimate of k;

the regression is recalculated using this value of k to give the corresponding best estimates

of the a and b parameters.

For example9 suppose we have the data relating plot age and height shown on figure

A.4.1 to which we wish to fit the model (3):

Y a(1 exp(-k.X))b

where plot height is Y and age is X. We use the linear form:

log Y = log a + b.log(1 exp(-k.X))

and estimate log a as the intercept and b as the slope in a simple linear regression of

log Y on log(1-exp(-k.X)). In this regression we are mainly concerned at this stage with

the residuals or deviations, sum of squares, symboli3ed as DSS. This can be obtained as

shown on Form A.2 in section 2.1. With the data from figure A.4.1 and using the trial

values of k shown below we obtain the deviation sums of squares:

The best fit (minimum DSS) appears to be near a k value of 0.15. Taking some addi-

Plotting these values graphically (figure A.4.2) we can see that the minimum appears

to be close to k= 0.18. When the coefficient values are calculated for this value of k,

we find:

logea - 3.290 ( .6 . a= 26.83) b = 5.199

and hence our resultant equation is:

H = 26.83(1-exp(-0.18.A))5°199

which is plotted on figure A.4.1 as a broken line.

tional trial values we have:

DSS

0.11 0.0916

0.13 0.0543
0.17 0.0187

0.19 0.0187

0.21 0.0287

0.23 0.0474

Deviation Sums of Squares

0.05 0.2802

0.15 0.0302

0.25 0.0732

0.35 0.2657

0.45 0.4885
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against the trial values of k and a smooth ourve is drawn through the points. The value of 
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where plot height is Y and age is X. We use the linear form: 

log Y = log a + b.10g(1 exp(-k. X» 

and estimate log a as the interoept and b as the slope in a simple linear regression of 
log Y on 10g(1-exp(-k.X» . In this regression we are mainly conoerned at this stage with 
the residuals or deviations, sum of squares, symboli3ed as DSS. This oan be obtained as 
shown on Fbrm A.2 in seotion 2.1. With the data from figure A.4.1 and using the trial 
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.!s Deviation Sums of Squares 
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0.45 0.4885 

The best fit (minimtun DSS) appears to be near a k value of 0.15. Taking some addi­
tional trial values we have: 

1s 
0.11 
0.13 
0.17 
0.19 
0.21 
0.23 

~ 

0 . 0916 
0.0543 
0.0187 
0.0187 
0.0287 
0.0474 

Plotting these values graphically (figure A.4.2) we can see that the minimtun appears 
to be olose to k = 0.18. When the coefficient values are oa10ulated for this value of k, 
we find: 

( .'. a = 26.83) b = 5.199 

and henoe our resultant equation is : 

H = 26.83(1_exp(-O.18.A»5.
1

99 

whioh is plotted on figure A.4.1 as a broken line. 
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Figure A.4.1 Hypothetical height-age data for a plot, 
together with a model (broken line) fitted 
by the nonlinear regression method 
desoribed in the text 
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Figure A.4.2 Graphical determination of k parameter

value which minimizes residual sums of

sauares in a nonlinear regression

Interpolated k value
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Figure A.4.2 
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Graphical determination of k parameter 
value which minimizes residual sums of 
squares in a nonlinear regression 

Interpolated k value 
at the minimum residual 
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This approach can be easily extended in two ways, although a detailed discussion

lies outside the scope of this manual.

Any model in which only one of the parameters to be fitted is nonlinear

can be fitted in an analogous manner to that described above. For example,

we could have:

Y. b0+b1X1k +bX +bXkk
2 2 3 1 2

and fit the bi using multiple linear regression with a series of trial

values of k; plot the resultant residual sums of squares for each trial;

estimate the resultant k at the minimum; and then fit the bi using that

value of k.

The search for the value of k which minimizes the residual sum of squares

can be automated so that all the parameters including the nonlinear para-

meter can be calculated by a computer programme. This is quite easy to

do with a single nonlinear parameter with the resultant programmes being

compact enough even for some programmable calculators. Suitable minimiza-

tion methods are suggested in Sadler (1975).

The above methods are designed for the worker who does not have access to a large or

medium sized computer. Given good computing facilities, the best and most flexible approach

to nonlinear curve fitting is by one of the modifications of the so-called Gauss-Newton

procedure, as discussed in such standard textbooks as Draper & Smith (1966). These methods

are quite difficult to understand, although the ultimate result, namely a set of fitted

coefficients, may be easy enough to use. Consequsntly, most workers will need access to

a computer programme that can be adapted to their machine. There are a number of such

programmes available, including for example, SNIFTA (Small Nonlinear Fitting Algorithm)

which is written in ANSI 66 FORTRAN and is available from:

Biometrics Section

Unit of Tropical Silvidulture

Commonwealth Fbrestry Institute

South Parks Road, Oxford 0X1 3RB

United Kingdom.
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Table 1 Natural logarithms (base e) for values 1 to 100

X ln X X ln X X ln X

1 0.00000 36 3.58351 71 4.26267
2 0.69314 37 3.61091 72 4.27666
3 1.09861 38 3.63758 73 4.29045
4 1.38629 39 3.66356 74 4.30406

5 1.60943 40 3.68887 75 4.31748
6 1.79175 41 3.71357 76 4.33073
7 1.94591 42 3.73766 77 4.34380
8 2.07944 43 3.76120 78 4.35670
9 2.19722 44 3.78418 79 4.36944

10 2.30258 45 3.80666 80 4.38202
11 2.39789 46 3.82864 81 4.39444
12 2.48490 47 3.85014 82 4.40671
13 2.56494 48 3.87120 83 4.41884
14 2.63905 49 3.89182 84 4.43081

15 2.70805 50 3.91202 85 4.44265
16 2.77258 51 3.93182 86 4.45434
17 2.83321 52 3.95124 87 4.46590
18 2.89037 53 3.97029 88 4.47733
19 2.94443 54 3.98898 89 4.48863

20 2.99573 55 4.00733 90 4.49980
21 3.04452 56 4.02535 91 4.51085
22 3.09104 57 4.04305 92 4.52178

23 3.13549 58 4.06044 93 4.53259
24 3.17805 59 4.07753 94 4.54329

25 3.21887 60 4.09434 95 4.55387
26 3.25809 61 4.11087 96 4.56434
27 3.29583 62 4.12713 97 4.57471
28 3.33220 63 4.14313 98 4.58496
29 3.36729 64 4.15888 99 4.59511

30 3.40119 65 4.17438 100 4.60517
31 3.43398 66 4.18965 101 4.61512
32 3.46573 67 4.20469 102 4.62497
33 3.49650 68 4.21950 103 4.63472
34 3.52636 69 4.23410 104 4.64439

35 3.55534 70 4.24849 105 4.65396
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Table 2 Exponential function exp(X) for values 0 to 5

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09
0.1 1.10 1.11 1.12 1.13 1.15 1.16 1.17 1.18 1.19 1.20
0.2 1.22 1.23 1.24 1.25 1.27 1.28 1.29 1.30 1.32 1.33
0.3 1.34 1.36 1.37 1.39 1.40 1.41 1.43 1.44 1.46 1.47
0.4 1.49 1.50 1.52 1.53 1.55 1.56 1.58 1.59 1.61 1.63
0.5 1.64 1.66 1.68 1.69 1.71 1.73 1.75 1.76 1.78 1.80
0.6 1.82 1.84 1.85 1.87 1.89 1.91 1.93 1.95 1.97 1.99
0.7 2.01 2.03 2.05 2.07 2.09 2.11 2.13 2.15 2.18 2.20
0.8 2.22 2.24 2.27 2.29 2.31 2.33 2.36 2.38 2.41 2.14

0.9 2.45 2.48 2.50 2.53 2.55 2.58 2.61 2.63 2.66 2.69

1.0 2.71 2.74 2.77 2.80 2.82 2.85 2.88 2.91 2.94 2.97
1.1 3.00 3.03 3.06 3.09 3.12 3.15 3.18 3.22 3.25 3.28
1.2 3.32 3.35 3.38 3.42 3.45 3.49 3.52 3.56 3.59 3.63
1.3 3.66 3.70 3.74 3.78 3.81 3.85 3.89 3.93 3.97 4.01
1.4 4.05 4.09 4.13 4.17 4.22 4.26 4.30 4.34 4.39 4.43
1.5 4.48 4.52 4.57 4.61 4.66 4.71 4.75 4.80 4.85 4.90
1.6 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.31 5.36 5.41
1.7 5.47 5.52 5.58 5.64 5.69 5.75 5.81 5.87 5.92 5.98
1.8 6.04 6.11 6.17 6.23 6.29 6.35 6.42 6.48 6.55 6.61
1.9 6.68 6.75 6.82 6.88 6.95 7.02 7.09 7.17 7.24 7.31

2.0 7.38 7.46 7.53 7.61 7.69 7.76 7.84 7.92 8.00 8.08
2.1 8.16 8.24 8.33 8.41 8.49 8.58 8.67 8.75 8.84 8.93
2.2 9.02 9.11 9.20 9.29 9.39 9.48 9.58 9.67 9.77 9.87
2.3 9.97 10.07 10.17 10.27 10.38 10.48 10.59 10.69 10.80 10.91
2.4 11.02 11.13 11.24 11.35 11.47 11.58 11.70 11.82 11.94 12.06
2.5 12.18 12.30 12.42 12.55 12.67 12.80 12.93 13.06 13.19 13.32
2.6 13.46 13.59 13.73 13.87 14.01 14.15 14.29 14.43 14.58 14.73
2.7 14.87 15.02 15.18 15.33 15.48 15.64 15.79 15.95 16.11 16.28
2.8 16.44 16.60 16.77 18.94 17.11 17.28 17.46 17.63 17.81 17.99
2.9 18.17 18.35 18.54 18.72 18.91 19.10 19.29 19.49 19.68 19.88

3.0 20.08 20.28 20.49 20.69 20.90 21.11 21.32 21.54 21.75 21.97
3.1 22.19 22.42 22.64 22.87 23.10 23.33 23.57 23.80 24.04 24.28
3.2 24.53 24.77 25.02 25.27 25.53 25.79 26.04 26.31 26.57 26.84
3.3 27.11 27.38 27.66 27.93 28.21 28.50 28.78 29.07 29.37 29.66
3.4 29.96 30.26 30.56 30.87 31.18 31.50 31.81 32.13 32.45 32.78
3.5 33.11 33.44 33.78 34.12 34.46 34.81 35.16 35.51 35.87 36.23
3.6 36.59 36.96 37.33 37.71 38.09 38.47 38.86 39.25 39.64 40.04
3.7 40.44 40.85 41.26 41.67 42.09 42.52 42.94 43.38 43.81 44.25
3.8 44.70 45.15 45.60 46.06 46.52 46.99 47.46 47.94 48.42 48.91
3.9 49.40 49.89 50.40 50.90 51.41 51.93 52.45 52.98 53.51 54.05

4.0 54.59 55.14 55.70 56.26 56.82 57.39 57.97 58.55 59.14 59-73
4.1 60.34 60.94 61.55 62.17 62.80 83.43 64.07 64.71 65.36 66.02
4.2 66.68 67.35 68.03 68.71 69.40 70.10 70.80 71.52 72.24 72.96
4.3 73.69 74.44 75.18 75.94 76.70 77.47 78.25 79.04 79.83 80.64
4.4 81.45 82.26 83.09 83.93 84.77 85.62 86.48 87.35 88.23 89.12
4.5 90.01 90.92 91.83 92.75 93.69 94.63 95.58 96.54 97.51 98.49
4.6 99.48 100.48 101.49 102.51 103.54 104.58 105.63 106.69 107.77 108.85
4.7 109.94 111.05 112.16 113.29 114.43 115.58 116.74 117.91 119.10 120.30
4.8 121.51 122.73 123.96 125.21 126.46 127.74 129.02 130.32 131.63 132.95
4.9 134.28 135.63 137.00 138.37 139.77 141.17 142.59 144.02 145.47 146.93
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Table 2 Exponential function exp(X) for values 0 to 5 

X .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 
0. 1 1. 10 1. 11 1. 12 1.13 1. 15 1. 16 1. 17 1. 18 1.19 1.20 
0.2 1.22 1.23 1.24 1.25 1.27 1.28 1.29 1. 30 1.32 1.33 
0.3 1. 34 1. 36 1. 37 1.39 1. 40 1'.41 1. 43 1. 44 1.46 1.47 
0.4 1.49 1.50 1.52 1.53 1.55 1.56 1.58 1.59 1. 61 1.63 
0.5 1.64 1.66 1. 68 1.69 1.71 1.73 1.75 1.76 1.78 1.80 
0.6 1.82 1.84 1.85 1.87 1.89 1. 91 1.93 1.95 1.97 1.99 
0.7 2.01 2.03 2.05 2. 07 2.09 2. 11 2.13 2.15 2.18 2.20 
0 .8 2.22 2.24 2.27 2.29 2.31 2 . 33 2.36 2.38 2.41 2.43 
0.9 2.45 2.48 2.50 2.53 2.55 2.58 2.61 2.63 2.66 2.69 

1.0 2.71 . 2.74 2.77 2.80 2.82 2.85 2.88 2.91 2.94 2.97 
1.1 3.00 3.03 3.06 3.09 3.12 3.15 3.18 3.22 3.25 3.28 
1.2 3.32 3.35 3.38 3.42 3.45 3.49 3.52 3.56 3.59 3.63 
1.3 3.66 3.70 3.74 3. 78 3.81 3.85 3.89 3.93 3.97 4.01 
1.4 4.05 4.09 4.13 4.17 4 .22 4.26 4 .30 4.34 4.39 4.43 
1.5 4.48 4.52 4.57 4.61 4.66 4.71 4.75 4.80 4.85 4.90 
1.6 4.95 5.00 5.05 5.10 5.15 5.20 5 .25 5.31 5.36 5.41 
1.7 5.47 5.52 5.58 5.64 5.69 5.75 5.81 5 .87 5.92 5 .98 
1.8 6.04 6. 11 6.17 6.23 6.29 6.35 6.42 6.48 6.55 6.61 
1.9 6.68 6.75 6.82 6.88 6.95 7.02 7.09 7.17 7.24 7.31 

2.0 7.38 7.46 7.53 7.61 7 .69 7.76 7.84 7.92 8.00 8.08 
2.1 8.16 8.24 8.33 8.41 8.49 8.58 8.67 8.75 8.84 8.93 
2.2 9.02 9.11 9.20 9.29 9.39 9.48 9.58 9 .67 9.77 9.87 
2.3 9.97 10.07 10.17 10.27 10.38 10.48 10.59 10.69 10.80 10.91 
2.4 11 .02 11 . 13 11 .24 11.35 11.47 11 .58 11 .70 11 .82 11. 94 12.06 
2. 5 12.18 12.30 12.42 12.55 12.67 12.80 12.93 13.06 13.19 13.32 
2.6 13.46 13.59 13.73 13.87 14.01 14.15 14.29 14.43 14.58 14 .73 
2.7 14.87 15.02 15.18 15.33 15.48 15.64 15.79 15.95 16. 1 1 16.28 
2.8 16.44 16.60 16.77 16 .94 17 .11 17.28 17.46 17.63 17 .81 17 .99 
2.9 18.17 18.35 18.54 18.72 18.91 19. 10 19.29 19.49 19.68 19.88 

3.0 20.08 20.28 20.49 20.69 20.90 21 • 11 21.32 21.54 21.75 21.97 
3. 1 22.19 22.42 22.64 22.87 23.10 23.33 23.57 23.80 24.04 24.28 
3.2 24 . 53 24.77 25.02 25.27 25.53 25.79 26.04 26 . 31 26.57 26.84 
3.3 27. 11 27 . 38 27.66 27.93 28.21 28.50 28.78 29.07 29.37 29.66 
3.4 29.96 30.26 30.56 30.87 31 . 18 31.50 31 .81 32.13 32.45 32.78 
3.5 33. 11 33.44 33.78 34.12 34.46 34.81 35.16 35.51 35.87 36.23 
3.6 36.59 36.96 37.33 37.71 38.09 38.47 38.86 39.25 39.64 40.04 
3.7 40 . 44 40.85 41.26 41.67 42.09 42.52. 42.94 43.38 43.81 44.25 
3.8 44.70 45.15 45.60 46.06 46.52 46.99 in .46 47.94 48.42 48.91 
3.9 49.40 49.89 50.40 50.90 51. 4.1 51.93 52.45 52.98 53.51 54.05 

4.0 54.59 55.14 55.70 56.26 56.82 .57.39 57.97 58.55 59.14 59-73 
4.1 60 •. 34 60.94 61.55 62.17 62.80 63.43 64.07 64.71 65.36 66.02 
4.2 66.68 67.35 68.03 68.71 69.40 70.10 70.80 71.5? 72.24 72.96 
4.3 73.69 74.44 75.18 75.94 76.70 77 .47 78.25 79.04 79.83 80.64 
4.4 81.45 82.26 83.09 83.93 84.77 85.62 86.48 87.35 88.23 89.12 
4.5 90.01 90.92 91.83 92.75 93.69 94.63 95.58 96.54 97.51 98.49 
4.6 99.48 100.48 101 .49 102.51 103.54 104 . 58 105.63 106.69 107.77 108.85 
4.7 109.94 11 1. 05 112.16 113.29 114.43 115 .58 116.74 117.91 119.10 120.30 
4.8 121.51 122.73 123.96 125.21 126.46 1?7.74 129.02 130.32 131.63 132.95 
4.9 134.28 135.63 137 .00 138.37 139.77 141.17 142.59 144.02 145.47 146.93 
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Table 3 Powers of reciprocals for vaìue 2 tO 50

Value of Power
X 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

2 .87055 .75785 .65975 .57434 .50000 .43527 .37892 .32987 .28717 .25000
3 .80274 .64439 .51728 .41524 .33333 .26758 .21479 .17242 .13841 .11111
4 .75785 .57434 .43527 .32987 .25000 .18946 .14358 .10881 .08246 .06250
5 .72477 .52530 .38073 .27594 .20000 .14495 .10506 .07614 .05518 .04000
6 .69882 .48835 .34127 .23849 .16666 .11647 .08139 .05687 .03974 .02777
7 .67761 .45915 .31112 .21082 .14285 .09680 .06559 .04444 .03011 .02040
8 .65975 .43527 .28717 .18946 .12500 .08246 .05440 .03589 .02368 .01562
9 .64439 .41524 .26758 .17242 .11111 .07159 .04613 .02973 .01915 .01234

10 .63095 .39810 .25118 .15848 .10000 .06309 .03981 .02511 .01584 .01000
11 .61904 .38321 .23722 .14685 .09090 .05627 .03483 .02156 .01335 .00826
12 .60836 .37010 .22516 .13697 .08333 .05069 .03084 .01876 .01141 .00694
13 .59870 .35844 .21460 .12848 .07692 .04605 .02757 .01650 .00988 .005Q1
14 .58989 .34797 .20526 .12108 .07142 .04213 .02485 .01466 .00864 .00510
15 .58181 .33850 .196911 .11458 .06666 .03878 .02256 .01312 .00763 .00444
16 .57434 .32987 .18946 .10881 .06250 .03589 .02061 .01184 .00680 .00390
17 .56742 .32197 .18269 .10366 .05882 .03337 .01893 .01074 .00609 .00346
18 .56097 .31469 .17653 .09903 .05555 .03116 .01748 .00980 .00550 .00308
19 .55494 .30796 .17090 .09484 .05263 .02920 .01620 .00899 .00499 .00277

20 .54928 .30170 .16572 .09102 .05000 .02746 .01508 .00828 .00455 .00250
21 .54394 .29587 .16094 .08754 .04761 .02590 .01408 .00766 .00416 .00226
22 .53890 .29042 .15651 .08434 .04545 .02449 .01320 .00711 .00383 .00206
23 .53413 .28530 .15239 .08139 .04347 :02322 .01240 .00662 .00353 .00189
24 .52961 .28048 .14855 .07867 .04166 .02206 .01168 .00618 .00327 .00173
25 .52530 .27594 .14495 .07614 .04000 .02101 .01103 .00579 .00304 .00160
26 .52120 .27165 .14158 .07379 .03846 .02004 .01044 .00544 .00283 .00147
27 .51728 .26758 .13841 .07159 .03703 .01915 .00991 .00512 .00265 .00137
28 .51353 .26371 .13542 .06954 .03571 .01834 .00941 .00483 .00248 .00127
29 .50994 .26004 .13260 .06762 .03448 .01758 .00896 .00457 .00233 .00118

30 .50649 .25653 .12993 .06581 .03333 .01688 .00855 .00433 .00219 .00111
31 .50318 .25319 .12740 .06410 .03225 .01623 .00816 .00410 .00206 .00104
32 .50000 .25000 .12500 .06250 .03125 .01562 .00781 .00390 .00195 .00097
33 .49693 .24694 .12271 .06098 .03030 .01509 .00748 .00371 .00184 .00091
34 .49397 .24401 .12053 .05954 .02941 .01452 .00717 .00354 .00175 .00086
35 49111 .24119 .11845 .05817 .02857 .01401 .00689 .00338 .00166 .00081
36 .48835 .23849 .11647 .05687 .02777 .01356 .00662 .00323 .00157 .00077
37 .48569 .23589 .11457 .05564 .02702 .01312 .00637 .00309 .00150 .00073
38 .48310 .23339 .11275 .05447 .02631 .01271 .00614 .00296 .00143 .00069
39 .48060 .23097 .11100 .05335 .02564 .01212 .00592 .00284 .00136 .00065

40 .47817 .22865 .10933 .05228 .02500 .01199 .00571 .00273 .00130 .00062
41 .47582 .22640 .10772 .05125 .02439 .01160 .00552 .00262 .00125 .00059
42 .47353 .22423 .10618 .05028 .02380 .01121 .00533 .00252 .00119 .00056
43 .47130 .22213 .10469 .04934 .02325 .01096 .00516 .00243 .00114 .00054
44 .46914 .22009 .10325 .04844 .02272 .01066 .00500 .00234 .00110 .000q1
45 .46704 .21812 .10187 .04758 .02222 .01037 .00484 .00226 .00105 .0004Q
46 .46499 .21622 .10054 .04675 .02173 .01010 .00470 .00218 .00101 .00047
47 .46299 .21436 .09925 .04595 .02127 .00935 .00456 .00211 .00097 .00045
48 .46105 .21257 .09800 .04518 .02083 .00960 .00442 .00204 .00094 .00043
49 .45915 .21082 .09680 .04444 .02040 .00937 .00430 .00197 .00090 .00041

50 .45730 .20912 .09563 .04373 .02000 .00914 .00418 .00191 .00087 .00040
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Table 3 Powers of reciprocals for values 2 to 50 

Value of Power 
X 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

--------------------------------------------------------------------------
2 .87055 .75785 .65975 .57434 .50000 .43527 .37892 .32987 .28717 .25000 
3 .80274 .64439 .51728 .41524 .33333 .26758 .21479 .17242 • 13841 .11111 
4 .75785 .57434 .43527 .32987 .25000 .18946 .14358 . 10881 .08246 .06250 
5 .72477 .52530 .38073 .27594 .20000 .14495 .10506 .07614 .05518 .04000 
6 . 69882 .48835 .34127 .23849 . 16666 .11647 .08139 .05687 .03974 .02777 
7 .67761 .45915 .31112 .21082 • 14285 .09680 .06559 .04444 .03011 .02040 
8 .65975 .43527 .28717 .18946 .12500 .08246 .05440 .03589 .02368 .01562 
9 .64439 .41524 .26758 .17242 .11111 .07159 .04613 .02973 .01915 .01234 

10 .63095 .398-10 .25118 . 15848 .10000 .06309 .03981 .02511 .01584 .01000 
11 .61904 .38321 .23722 .14685 .09090 .05627 .03483 .02156 .01335 .00826 
12 .60836 .37010 .22516 .13697 .08333 .0506<> .03084 .01876 .01141 .00694 
13 .59870 .35844 . 21460 .12848 .07692 .04605 .02757 .01650 . 00988 .00591 
14 .58989 . 34797 .20526 .12108 .07142 .04213 .02485 .01466 .00864 .00510 
15 .58181 .33850 .19694 . 11458 .06666 .03878 . 02256 .01312 .00763 .00444 
16 .57434 .32987 · 18946 .10881 .06250 .03589 . 02061 .01184 .00680 .00390 
17 .56742 .32197 .18269 .10366 .05882 .03337 .01893 .01074 .00609 .00346 
18 .56097 .31469 .17653 .09903 .05555 .03116 .01748 .00980 .00550 .00308 
19 .55494 .30796 .17090 .09484 .05263 .02920 .01620 .00899 .00499 .00277 

20 .54928 .30170 .16572 .09102 .05000 .02746 .01508 .00828 . 00455 .00250 
21 .54394 .29587 · 16094 .08754 .04761 .02590 .01408 .00766 .00416 .00226 
22 . 53890 .29042 · 15651 .08434 .04545 .02449 .01320 .00711 .00383 .00206 
23 .53413 .28530 · 15239 .08139 .04347 '-02322 .01240 .00662 .00353 .00189 
24 .52961 .28048 .14855 .07867 .04166 .02206 .01168 .00618 .00327 . 00173 
25 .52530 .27594 · 14495 .07614 .04000 .02101 .01103 .00579 .00304 .00160 
26 .52120 . 27165 .14158 .07379 .03846 .02004 .01044 .00544 .00283 .00147 
27 .51728 .26758 .13841 . 07159 .03703 .01915 .00991 .00512 .00265 .00137 
28 .51353 .26371 .13542 .06954 .03571 .01834 .00941 .00483 .00248 . 00127 
29 .50994 .26004 .13260 .06762 .03448 .01758 .00896 .00457 .00233 . 00118 

30 .50649 .25653 · 12993 .06581 .03333 .01688 . 00855 .00433 .00219 .00111 
31 .50318 .25319 .12740 . 06410 .03225 .01623 .00816 . 00410 . 00206 .00104 
32 .50000 .25000 .12500 .06250 .03125 .01562 . 00781 .00390 .00195 .00097 
33 .49693 .24694 .12271 .06098 .03030 .01505 .00748 .00371 .00184 .00091 
34 .49397 .24401 .12053 .05954 .02941 .01452 .00717 .00354 . 00175 .00086 
35 .49111 .24119 · 11845 .05817 .02857 .01403 .00689 .00338 .00166 .00081 
36 .48835 .23849 .11647 .05687 .02777 .01356 .00552 .00323 .00157 .00077 
37 .48569 .23589 · 11457 .05554 .02702 .0131~ .00537 .00309 .00150 .00073 
38 .48310 .23339 .11275 .05447 .02531 .01271 - .00514 .00295 . 00143 . 00059 
39 .48050 .23097 · 11100 .05335 .02564 .0123~ .00592 .00284 .00136 .00055 

40 .47817 .22865 .10933 .05228 .025Qll _ .0119~ .00571 .00273 .00130 .00052 
41 .47582 ·.22640 .10772 .05125 .02439 .01150 .00552 .00252 .00125 .00059 
42 .47353 .22423 · 10618 .05028 .02380 .01121 .00533 .00252 .00119 .00056 
43 .47130 .22213 .10459 .04934 .02325 .01096 .00516 .00243 .00114 .00054 
44 .46914 .22009 .10325 .04844 .02272 .01056 .00500 .00234 .00110 .000~1 

45 .46704 .21812 .10187 .04758 .02222 .01037 . 00484 .00226 .00105 .00049 
46 .46499 .21622 .10054 .04575 .02173 .01010 .00470 .00218 .00101 .00047 
47 .46299 .21436 .09925 .04595 .02127 .00935 .00455 .00211 .00097 .00045 
48 .46105 .21257 .09800 .04518 .02083 . 00960 .00442 .00204 .00094 .00043 
49 .45915 .21082 .09680 .04444 ;02040 .00937 .00430 .00197 .00090 .00041 

50 .45730 .20912 .09563 .04373 .02000 .00914 .00418 .00191 .00087 .00040 
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Table 4 Spacint and relative ssacint % from het and stocking

Spacing 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 m.
N/ha. 2500 1600 1111 816 625 494 400 278 204 256

Height Relative spacing %

5 40 50 60 70 80 89 100 119 140 160

6 33 41 50 58 66 74 83 99 116 133

7 28 35 42 50 57 64 71 85 100 114

8 25 31 37 43 50 56 62 74 87 100

9 22 27 33 38 44 49 55 66 77 88

10 20 25 30 35 40 44 50 59 70 80

11 18 22 27 31 36 40 45 54 63 72
12 16 20 25 29 33 37 41 49 58 66

13 15 19 23 26 30 34 38 46 53 61

14 14 17 21 25 28 32 35 42 50 57

15 13 16 20 23 26 29 33 39 46 53
16 12 15 18 21 25 28 31 37 43 50

17 11 14 17 20 23 26 29 35 41 47

18 11 13 16 19 22 24 27 33 38 44

19 10 13 15 18 21 23 26 31 36 42

20 10 12 15 17 20 22 25 29 35 40

21 9 11 14 16 19 21 23 28 33 38

22 9 11 13 15 18 20 22 27 31 36

23 8 10 13 15 17 19 21 26 30 34

24 8 10 12 14 16 13 20 24 29 33

25 8 10 12 14 16 17 20 23 28 32

26 7 9 11 13 15 17 19 23 26 30

27 7 9 11 12 14 16 18 22 25 29

28 7 8 10 12 14 16 17 21 25 28

29 6 8 10 12 13 15 17 20 24 27

30 6 8 10 11 13 14 16 19 23 26

31 6 8 9 11 12 14 16 19 22 25

32 6 7 9 10 12 14 15 18 21 25

33 6 7 9 10 12 13 15 18 21 24

34 5 7 8 10 11 13 14 17 20 23

35 5 7 8 10 11 12 14 17 20 22

36 5 6 8 9 11 1 13 16 19 22

37 5 6 8 9 10 12 13 16 18 21

38 5 6 7 9 10 11 13 15 18 21

39 5 6 7 8 10 11 12 15 17 20

40 5 6 7 8 10 11 12 14 17 20

41 4 6 7 8 9 10 12 14 17 19

42 4 5 7 8 9 10 11 14 16 19

43 4 5 6 8 9 10 11 13 16 18

44 4 5 6 7 9 10 11 13 15 18

245 4 5 6 7 8 9 11 13 15 17
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Table 4 Spacing and relative spacing % from height and stocking 

Spacing 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 B. O m. 
N/ha . 2500 1600 1111 B16 625 494 400 278 204 256 

Height -------------------------- Relative spacing % -------------------

5 40 50 60 70 80 89 100 119 140 160 
6 33 41 50 58 66 7~ 83 99 116 133 
7 28 35 42 50 57 64 71 85 100 114 
8 25 31 37 43 50 56 62 74 87 100 
9 22 27 33 38 44 49 55 66 77 88 

10 20 25 30 35 40 44 50 59 70 80 
11 18 22 27 31 36 40 45 54 63 72 
12 16 20 25 29 33 37 41 49 58 66 
13 15 19 23 26 30 34 38 46 53 61 
14 14 17 21 25 28 32 35 42 50 57 

15 13 16 20 23 26 29 33 39 46 53 
16 12 15 18 21 25 28 31 37 43 50 
17 11 14 17 20 23 26 29 35 41 47 
18 11 13 16 19 22 24 27 33 38 44 
19 10 13 15 18 21 23 26 31 36 42 

20 10 12 15 17 20 22 25 29 35 40 
21 9 11 14 16 19 21 23 28 33 38 
22 9 11 13 15 18 20 22 27 31 36 
23 8 10 13 15 17 19 21 26 30 34 
24 8 10 12 14 16 18 20 24 29 33 

25 8 10 12 14 16 17 20 23 28 32 
26 7 9 11 13 15 17 19 23 26 30 
27 7 9 11 12 14 16 18 22 25 29 
28 7 8 10 12 14 16 17 21 25 28 
29 6 8 10 12 13 15 17 20 24 27 

30 6 8 10 11 13 14 16 19 23 26 
31 6 8 9 11 12 14 16 19 22 25 
32 6 7 9 10 12 14 15 18 21 25 
33 6 7 9 10 12 13 15 18 21 24 
34 5 7 8 10 11 13 14 17 20 23 

35 5 7 8 10 11 12 14 17 20 22 
36 5 6 8 9 11 12 13 16 19 22 
37 5 6 8 9 10 12 13 16 18 21 
38 5 6 7 9 10 11 13 15 18 21 
39 5 6 7 8 10 1 1 12 15 17 20 

40 5 6 7 8 10 11 12 14 17 20 
41 4 6 7 8 9 10 12 14 17 19 
42 4 5 7 8 9 10 11 14 16 19 
43 4 5 6 8 9 10 11 13 16 18 
44 4 5 6 7 9 1C 11 13 15 18 

45 4 5 6 7 8 9 11 13 15 17 
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LmallE_2

BLANK COPIES OF CALODIATION AND

DATA RECORDING FORME DESCRIBED IN PI-JE MAIN TEXT
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APJ)!lndix C 

BLANK COP:rn:; OF CALCUlATION AND 

nATA REX:ORDING FORMS DESCRI1!E:D IN THE MAIN TEXT 



Plot
area

Tree no.

Slope

Diameter bhob Height

R.
LI

Assessment
date

month year

- - - Codes

Office
use

II
no. of
cards

Sheet ...of...

SpeciesCompartment Plot numberForest District
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Form 3.1 Sample Plot Assessment Form - Plantations 
Sheet ••• ot ••• 

Forest District Compartment Plot number Species 

I I I CD 
Plot Slope Assessment 
area I CD date OJ 

month year 

Tree no. Diameter bhob Height - - - - Codes - -

Notes .......................................................... . 

• • • • • • • • • 10 ••• •• 0 ••••••••••••••••••••••••••••••••••••••••••••••••• 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Assessed by •••••••••••••••••••••••••• Date •••• / •.•• / •••• 

USE BACK OF FCIDI FOR HEIGHT CALCULATIONS 

Office 
use 

IT] 
no. of 
cards 



Data transformations used: X =

lot

fray; data

Totals n

Transformed data
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Form 4.1 mm n one and common interagression models

Part 1 Plot data summarization. Use as many part 1 sheets
as necessary for all plots.

Y =

Totals n
=IC=

X Y X2

Plot

Raw data Eransformed data
X Y

XY

XY

Plot
Raw data Transformed data

-4-q. Y ]

Totals n _

Form 4.1 

Part 1 

- 1~-

COmmon slope and common intercept regression models 

Plot data summarization. Use ' as many part 1 sheets 
as necessary for all plots. 

transformations used: x = --------------------------y = 

fPiot 
Raw data Transformed data 

X y X2 yy 

Totals n 

Plot 

Raw data Transformed datu 
x y X2 yy 

Totals n 

(Plot 

Raw data /rransformed data 

X y X2 XY 

Totals n 
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Forui 4.1 Common slope and common intercelIxeLreaL.312n_m2d.L1L

Part 2 Totals between plots and coefficient calculation

Common slope b = (1)/(2) =

Common intercept a = ((6)-(3))/((5)-(4)) =

.

Plot IXY-TY
2
x -()

EXEXY
(ELY'

n EYEX2 EX2

I

;

,

rtals
_
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Form 4.1 Common s lone and common intercept regression models 

Part 2 Totals between plots and coefficient calculation 

rXrXY (rx ) 2 
rXY-gg rx2_(rx)2 rx2 n rY Plot rx2 

n n 

Totals W W l2.I ~ ~ ~ 

Common slope b = (1 )/(2) = = 
--------------------

Common intercept a = «6)-(3))/«5)-(4)) - ________ _ 

= --- - ----



Form 4.2 Transformations to age and height data from PSF's to fit k
parameter in Schumacher equation by common slope estimator

Transfer

to form 4.1

1 i j A a b C X H
J

d e f g h
J

\ ,\
Age Sum arff 2/2 In c Height Sum Diff e% dA Vg In h

erf-At:

1....toemarasovmaceasw=-rrensaler-mdeman.

I 

~~ 
~ ~ 

I I 

Form 4.2 Transformations to age and height data from PSP's to fit k 

parameter in Schuma cher equation by common slope estimator 

J A · IJ 
a b [ x.. 

IJ H·· IJ d e f 9 h y. 
IJ 

.~ Va ~ ~ ~ o~ Age Sum Diff In c Height Sum Diff In h 
. ,{., .. . . ., 

... . -., . - . :0 •• ~ ....... . 

-",. "~~' ~ .,.~.'. 

I ~a::l~" ':-,;~ -r :!-r '. 'J ... .... ::.:.;:;;,r: c' - • ••• """'-., .... ' · "'0 . :"":, : ... : .. -. ... ~ ....... ... ~ ..... 'l~ ~"_ V ~ ~' ,,~: I' e' -·l·· · ·- ·~ t -.- r' '-:r '-'~ f 

IJIIII 
Transfer 

to form 4. 1 

~ 

00 .. 
I 
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Form A.1 Coefficients for an approximating quadratic or
cubic curve

Objective To calculate the coefficients b in either of the
equations:

Y = bo +.X + b2.X2 + b3.X3 (cubic curve)

Tabulate 3 or 4 data points for the function and compute
squares and cubes.

From table (1) calculate differences as shown:

From table (2) construct the terms shown in the table
below, according to
the following defini-
tions:

(Yd.4-1Yi)/(xi+1xi)

(X2
x 2. +1 y-

1+1 i" -1+1 `11

or
2Y = b + b .Y + b .X- (quadratic curve)o 1 - 2

Items marked <> are not required for the quadratic curve
calculations.

W . = (x3 x3)/(x x.)
1+1 i 1+1 i

V . =
1_

4

Yi

Xi
...

\II +1
....

i-41 1 1

1

<>

2
... ,. .

v. wi

1

2
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Form A.l Coefficients for an approximating quadratic or 
cubic curve 

Objective To calculr.te the coefficients bi in e·i ther of the 
equations: 

(cubic curve) 
or 

(qua dra.tic curve) 

Items marked <> are not required for the qU8.dratic curve 
calculations. 

(1) Tabula te 3 or 4 data points for the function and compute 
squares and cubes. 

I 1 2 3 4 

Y; 
<> 

X 
<> 

I 

X? <> 

X3 <> <> <> <> 

I 

(2) Froe t a ble (1) calcula te differen ces a s sh own : 

I 

1 
2 
3 

I 

1 
2 
3 

'li+1 - 'li \+1- Xi X2 _X2 
'i+1 i 

<> <> <> 

From table (2) construct the terms 

u· I v· I w· I 
<> 

<> 

<> <> <> 

X3 _X3 
i +1 i 

<> 

<> 

<> 

shown in the tabl e 
below, according to 
the following defini­
tions: 

u i = (Yi+l-Yi) /( Xi+l-Xi ) 

Vi= (X~+l-X~) /(Xi+l-Xi) 

Wi= ( X~+l-X~)/(Xi+l-Xi) 



Form A.1 (continued....)

(4) From table (3) calculate the terms in the following table,

- 186 -

from these definitions:

pi= (ui+i-ui)/(vi+i-vi)

qi=

3
bo Y1 -b1 .X1 -b2* X2-b3-

Y -b .X -b .X2
1 1 1112 1

Quadratic eqn.

None

pl

1

v1.+1-vi P.
1

q.
i

1

.0.

.c. .0.

(5) Calculate the coefficients according to the following
formulae:

Coefficient Cubic eqn.

b3 (p2-P1)/(c12-q1)

b2 p1-b3. q1

b1 u1 -b2ev1 -b3owl ul -b2.vi
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Form A.l (continued ••. • ) 

(4) From table (3) calculate the terms in the following table, 
from these definitions: 

I Vi+1-Vj PL 
q. 

I 

1 
<> 

ql.. = (VI. l-W. )/(v. l-v.) 
1.+ 1. 1.+ 1. 

2 <> <> <> 

(5) Calculate the coefficients according to the following 
formulae: 

Coefficient Cubic eqn. Quadratic egn. 

None 

= 

= = 

= = 

= = 

" " " " " " " " 



Regression data

Description of problem:

Totals and products

-187-

Form A.3 Coefficients and statistics of a regression with
_T2_redjc-ples(Etart 1)

zZY

ZZ

EXZ

(4) Corrected rroducts

fy7-:-EY72;51-/n =

Exy = .EXY-XX.EY/n =

Ezy = EZY-EZ.ZY/n =
Xx.2 = EX2-(Y,X)2/n -
zxz = EXZ-YX.EZ/n =

= Ez2-(IZ 9 n =2

(8) Residual sum of squares
777-Ed-= Ey -Ly =

1--(77) Regression sum of squares
-2

= b1..ncy+b20Izy =

La....Residual degrees of freedom

idf= n-3 =

(5) Determinant 8: Gauss multi-_iers
2.D = Yx-.Ez--(Ixz)2

.0"1 = Ez2/D°
.0- = -yxz/Do9 -
g3= Ex2/D

=

=

=

=

(6) Regression coefficients

bi= g10Exy-t-g9.1.zy =

b2=
g2 .Exydrbcx3

).-Zy =-
b0= Y-b1°7-b20Z

______
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Form A.3 Coefficients and statistics of a regression with 
two predictor variables (part 1) 

Descri~tion of problem: __________________________ -----------

(1) Regression data ( 4) Corrected products 

Y v Z rye. = I.Ye._( H) e. /n = A 

ryqf = rXY-I.X.I.Y/n = 
rzy = I.ZY-rZo rY/n = 
rx2 = rx2_(LX)2/n = 
rx~ = I.Xz-rx.rz/n = 

I 
rz2 = rz 2 •. pz)2Ln = -
( 5) Determinant & Gauss multipliers 

D = xx2.rz"-(rxz)" = 

gl= rz2/D = 

g2= -1.xz.jD = 

g3= rx 2/D = 

( 6) Regression coefficients 

bl = gl .ryqf+g2· rzy -
b2= g2·rxy+g3orzy = 
bO= Y-bl oX-b 2oZ = 

(7) Regression sum of squares 

rye. = blo ryqf+ b2.lZY = 

(8 ) Residual sum of Sf!.uares 

1.d"= lY"-ry~ = 

( 9) Residual degrees of freedom 

( 2) Totals and products df= n-3 -
1.y2 1.Y rXY r/,Y 

n rx 1.Z 

(3) Means 1.X2 rxz 

y = I.Y/n = 1.<12 B 
A = i.:X/n = ,. 
" = rZ/n = 

I 
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Multiple correlation coefficient R and R-

R2 = r.Y/zy =
,R =/R2

Analysis of variance

Residual standard deviation

Confidence intervals for predictions

For a series of m estimates of Y at a given level of X and Z,

the standard error of the mean prediction is given by:

,
= s. \r(l/m +1/n + g1.x2 + 2.g20x.z + g3.z2 )

where x = (X - 7) and z = (Z - 7). For a large sample, l/m

will be zero; for a single point it will be unity.

(14) Standard error and t-value of coefficients

Coefficient
b1 b2

Standard error sb sq-gi=

t = b/sb

sum of
so.upres d.f.

mean
square

variance
ratio

Ty-2 2

Residual Id7 df =7. S-

Total Zy2 n-1

Form A.3 (...Fart 2)

(10) Correlations between variables

r
yx = Exy//(Ex2.zy2) =

yz

xz

=

=

Eyz//(Ez2.Ey2)
f 2 2,zxz//kEx .zz )

=

=

- 188 -

Form A.3 ( ••• Pe.rt 2) 

(10 ) Corr el a tions between variables 
r = r.xy/{( r.x2• ry 2) = yx 

r.yz/{( r.z 2.r.y2) ryz = = 
r = r.xz/{(r.x2. r.z 2 ) = xz 

(11) Multiple correlation coefficient R and R~ 

r? = r.Y/ry = 
R = { R2 = 

(1 2 ) Anal ysis 
sum 

of variance 
of 

sQua.res d.f. 

Regression r.y-2 2 

Residua.l r.d« df 
Tot al r.y" n-l 

mean 
square 

= 

(13) Residual s tandard deviation 

variance 
r at io 

s" 

(14) Standard error and t-value of coefficients 

Coefficient bl b 2 

Standard error sb s·{gl= s·{g3= 

~ = b/s b 

(15) Confidence intervals for predictions 
For a series of m estimates of Y at a given level of X and Z, 
the standard error of the mean prediction is given by: 

where x = (X - X) and z = (Z - Z). Fer a large sample, lim 
will be zero; for a single point it will be unity. 
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Appendix D

ANNOTATTID BIBLIOGRAPHY

This bibliograPhy is not a comprehensive bibliography of forest mensuration litera-

ture. It simply suggests a set of reference books to acoompany this manual, which may be

used to research or extend the teohniques suggested.

Technical articles referred to in the text are given as footnotes and are not

represented here.
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Assmann, E., The Principles of Forest Yield Study. Pergamon Press. pp 506
1970

A very comprehensive treaty on the theory of forest growth, involving discussion

of numerous examples. Most of the ooneepts are generalized from North EUropean

even-aged stands, and are not necessarily valid in the tropics. Only static yield
and allometrio models are discussed.

Avery, T.E., Forest Measurements. MoGraw-Hill. pp 290.

1967

Emphasises practical aspects of field work and primary allalysis of data, as opposed

to model construotion, Oriented to North American practices and terminology, so

not entirely suited for the tropics, but still a useful textbook.

Burley J. and Wood P.J. (Editors), A Manual on Species and Provenence Research with

1976 Particular Referenoe to the Tropics. Tropical Forestry Paper 10, Commonwealth

Forestry Institute. Oxford.

A useful companion volume to the present work, covering practical anpeots of
research requirements for the exploratory phases of the introduction of exotic

plantation species. Praotioal in orientation and eimply written. Separate

special appendix (by J.F. Hughes enri R.A0 Plumtre) covers wood quality stndies.

Cab, Computerized Methods in Forest Planning and Forecasting. Annotated Bibliography F140

1977 Commonwealth Agricultural Bureau, MC.

Covers published world literature 1973-1976. Gives a full abstract on each

reference. Most entries are directly-re/event to the field of yield prediction

and control.

Carron, L.T., An Outline of Forest Mensuration. Australian National University Press.

1968 pp 224.

Better oriented to yield and volume table construotion in widely spaced plantations

than American or European texts. Brief and clear summary of methods, but does not

niscuss problems of model fitting or construotion.

Daniel, C. and Wood. F0S02 Fitting Equations to Data. Wileyeintersoienoe. pp 342.

1971
Covers praotical use of multiple regression for model fitting, inoleding residual
analysis, nested regression models, stepwise regression and non-linear fitting.

Includes examples and documentation for a computer package, but no source listing.

A good supplement to any introduotory FORTRAN course. Covers methods of drawing

graphs, sorting, pointers, stacks, open subroutines, recursion and other techniques.

Day, A.G., FORTRAN Techniques. Cambridge University Press. pp 96.
1972
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1971 

Covers practical use of multiple regression for model fitting, iltoluding residual 
analysis, nested regression models, stepwise regression and non-linaar fitting. 
Includes examples and dooumentation for a oomputer package, but no source listing. 

Day, A.C., FUR'fRAN Techniques. Cambridge University Press. pp 96. 
1972 

A good supplement to any introductory FURTRAN oourse. Covers methods of drawing 
graphs, sorting, pointers, stacks, open subroutines, recursion and other teohniques. 
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Draper, N. and Smith, Hog Applied Regression Analysis. Wiley-Interscienoe. pp 407.
1966

Now almost a classical textbook on multiple and non-linear regression. Covers

theory of simple regression, matrix algebra for multiple regression, residual

analysis, stecwise regression, use of regression to analyse controlled experi-

ments, and introductory non-linear regression. Elementary matrix algebra is

required, together with differential calculus.

FAO, Manual of Forest Inventory with Special Reference to Mixed Tropical Fbrests, Food
1973 and Agriculture Organization, Rome. pp 200.

An eesential reference for yield study work. Much discussion of design of forest

sampling and appropriate formulae. Practical guidelines for executing a forest

inventory and data recording.

Fries, J. (Editor), Growth Models for Tree and Stand Simulation, Research Note No. 30.
1974 Department of Fbrest Yield Research, Royal College of Forestry, Stockholm, Sweden,

pp 379. (Available from J. Fries, University of Agricultural Sciences, S-750 07
Uppsala, Sweden)

Collection of papers from IlIFRO Working Party 54.01-4 msetings. Many useful

ideas.

Fries, J., Brukhart, H. and Max, To, (Editors), Growth Modela for Long Term Fbrecasting of

1978 Timber Yields. -FWS-1-78, School of Forestry and Wildlife Resouroes, Virginia

Polytechnic Institute and State University, Blacksburg, VA 24061, USA. pp 249.

Colleotion of papers from TUFRO, Subject Group 54.01 meeting. Many useful idear.

Green, P.E. and Carroll, J.D.2 Mathematical Tools for Applied Multivariate Analysis.

1976 Academic Press. pp 376.

A good self-teaching text for matrix algebra as it relates to multiple regression,

principal component analysis, factor analysis and ordination analysis.

Husch, B., Miller, C.I. and Beers, T.W. Fbrest Mensuration.

1972
A tclassicale forest mensuration text, emPhasising measurement rather than models,

and with only very limited treatment of groarth prediction. Oriented to North

American conditions, so some practices are inappropriate for tropical use, While

specifioally tropical problems are not considered. A useful textbook of basic

mensuration.

Land, A. and Powell, S., FORTRAN Codes for Mathematical Programming. Wiley. PP 249.
1973

Gives complete programmes and full dooumentation for linear, integer and. quadratic

programming using FORTRAN, with a brief explanation of underlying theory.
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Farde, J., Dendrometrie.

1961

A classical text of forest mensuration, but with rather more emPhasis on yield
table construction than Husoh et al. Very good on instrumenta/ measurements,

especially Relaskop, and on the development of simple models for the inter-

relationship of stand variables. Probably the best current text book on forest

mensuration. Not oriented to tropical problems. In French,

Pielou, E.G., Mathematical Ecology. Wiley-interscience, pp 385.
1977

An excellent reference book for mathematical modelling of population dynamics,

population dispersion and association analysis. Of more interest to the ecologist/

silviculturist than to the forest manager. The association analysis section is

important for studies in tropical rainforests.

Poole, R.W., An Introduction to Quantitative Edology. McGraw-Hill, pp 532.

197A

Covers a wide range of teohniquss in eoologY with an emphasis on model building.
Less theoretical, and with more examples and more basic and introductory informa-

tion than Pielou (Bee above). Assumes a little caloulus and matriz algebra.

Prodan M. FOrest Biometrics. Pergamon Press. PP 447.
1968

Very useful treatment of the statistical background to forest growth studies.

Requires moderate mathematical competence. Good treatment of fitting non-linear

geserwth functions, but the book is not directly oriented to practical application.

Mainly influenced by European forestry practioes.

Royce-Sadler, D.9 Numerioal Methods for Non-linear Regression. University of Queensland

1975 Press. pp 89.

A summary of the main practical methods for fitting the coefficients of non-

linear models. Assumes soma calculus and matrix algebra. Very olear and brief

exposition of the essential algorithns.

Seber, G.A.F. Linear Regression Analysis. Wiley-interscience. pp 465.
1977

More theoretical, more comprehensive and more up to date than Draper & Smith.

Good understanding of matrix algebra required, but a vary useful reference

book for the statistician.

Shannon, R.E., Systems Simulation: The Axt and Science. Prentice4fall. pp 387.
1975

A useful reference book for workers interested in the oonstruction of simelation

models. Covtrs random number generation, model fitting, systems analysis,

experiments on modele, deoisione-making using models and gives several case

studies.

Parde, J., Dendrometrie. 
1961 
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Snedecor, 0.W. and Cochran, N.G., Statistical Methods. Iowa State UP,

1967
Ekoallent referenoe book for statistical methods. Does not require an eTcessively

high level of mathematical ability (calculus and matrix algebra not needed).

Subjeots covered include linear and non-linear regression, multiple regression,

expArimental and sampling design and analysis. All teohnives are well illustrated

with worked examples and there are numerous test questions on each seotion.

Stark, P.A., Introduction to Numerical Methods, Macmillan. FP 334.
1970

Basic textbook on numerical methods for computers. Includes solution of equations,

simultaneous equations, numerical integration and differentiation, and interpola-

tion with polynomials. Most methods are illustrated with short 10RTRAN programmes.

Also gives introduction to matrix algebra. Revires mathematical abili*y to about

university entrance standard. Explains matrix algebra, but assumes knowledge of

calculus.

Universal ancyclopaedia of Mathematics. Pan Books. pp 715.

An inexpensive (panerback) and extremely useful reference book for formulae in

algebra, trlgonometry, geometry, calculus, etc., mathematical tables and

termino logy.

Wagner, H.M., Prinoiples of Management Science. Prentice-Hall. pp 612.

1975
An excellont textbook of quantitative decision-making methods for managers,

including linear and mathematical programming of all types, inventory control,
simulation and queueing models. Does not assume muoh mathematioal ability (no

calculus or matrix algebra).

Wright, H. (Editor), Planning, Performance and Evaluation of Growth and Yield Studies,
1980 Commonwealth Forestry Institnte, Oxford, Great Britan (in print).

Collection of papers from =Rot Subject Group 54.01 meeting. Many useful idas.
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Basio textbook on numerical methods for oomputers. Inoluies solution of equations, 
simultaneous equations, numerioa1 integration and differentiation, and interpol,.,.. 
tion with polynomials. Most methods are illustrated "lith short FORTRAN programmes. 
Also gives introduction to matrix algebra. RequirM mathematioal ability to about 
university entrance stlUldard. Explains matrix algebra, but assumes knowledge of 
calouloo. 

Universal Encyolo]:aedia of Jf,athematics. Pan Books. pp 115. 

An inexpensive (Jlf\perbaok) and ext"emely useful referenoe book for formulae in 
algebra, trigonometry, geometry, calculus. etc., mathematioal tables and 
terminology. 

Wagner, H.M., Prinoiples of Management Soienoe. Prentice-Ha.ll. pp 612. 
1975 

An excellent textbook of quantitative decision-ma.king methods for managers, 
including linear and mathematical programming of all types, inventory control, 
simulation and queueing models. Does not assume much mathematioal ability (no 
oalculus or matrix algebra). 

H. (Editor), Planning, Performanoe 
Canmon"ealth Forestry Institute, 

and Evaluation of Growth and Yield St,ul.ies. 
Oxford, Great Brit"" (in print). 

Collection of papers fran IUFRO, Subject Group 54.01 meeting. Many useful ideas. 


