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FORYWORD

There is probably litile argument among forest managers that the ability to estimate
the volume of trees and stands and to predict what the forest will produce, on different
sites, in response to particular itypes of silvicultural treatment, is central to all
rational planning processes connected with forestry. There is, however, a considerable
diversity of opinione over what constitutes "yield"; and how it may be estimated and
projected into the future,

This manual is an attempt to codify current practices in the field of tree and stand
volume estimation and forest yield prediction in a way that is practicable and useful to
the person who is charged with the responsibility of producing volume estimations and
yield forecasts, but perhaps has not had the benefit of extensive experience in this field.

I+ must be appreciated, however, that this is a fisld of human endeavour that is
currently in a state of rapid eveolution, especially with regard to forests growing in
tropical enviromments. Consequently, all that is said in this manual must be regarded as
provisional and subject to future refinement for particular situwations that can arise, or
new technigues that can be developed, whilst other techniques may exist which are not
referred to in this text and which may be superior for particular purposes.

Thus it is not a manual in the true sense; it is rather a set of guidelines for the
choice of procedure combined with more precise instructions concerning calculation tech-
nigque for some specified cases,

The manual is done with special reference to the tropics and applies to natural as
well as man made forestse Because of the great difficulties in assessing growth and
yield of natural mixed and uneven aged forests, the methods given to construct growth
models, however, mainly apply to even aged forests. For mixed forests no specific
instructiona are given but rather some examples of possible ways of dealing with the
problem.

The manual consists of two volumes. The first volume describes techniques of
measuring trees and the assessment of volume of itrees and stands, and the second volume
deals with growth and yield prediction., Descriptions of statistical and mathematical
techniques, selected statistical tables, blank copies of calculation and data recording
forms and an annotated bibliography are included in & series of appendicese

Volume I of the manual has been written by Francis Cailliez, Centre Technique
Forestier Tropical (CTFT), Nogent—sur—Marne, France, and Volume II by Denis Alder,
Commonwealth Forestry Institute (CFI), Oxford, Great Britain, who also compiled the
appendices, The work of the two authors has been coordinated by Jbran Fries, Swedish
University of Agricultural Sciences, Uppsala, Swedens The work was formulated and guided
by Jean-Paul Lanly and Karn Deo Singh of the Forest Resources Divigion of FAD, Jean
Clement (CTFT) was associated at the initial stage of the study.

The first draft of the manual was presented at the meeting of the IUFRC Subject
Group S4.01 (Mensuration, Growth and Yield) held in Oxford in September 1979, and was
discussed for one full day in detail. Among the participents there were tropical forest
mensurationists especially invited by FAOD to make a thorough and critical review of the
contents of the manual, In addition, the manual was also sent to a number of specialisis
for commenis. Based on these remarks, & revised version of the manual was prepared by
the authors concerned,

This manual, being the first of its kind in the field of tropical forestry, has con-
siderable scope for further improvements and additionss Particularly in the case of mixed
uneven aged stands further complementary studies are immediately needed, Al suggestions
in thia respect will be very much appreciated,

MeAs Flores Rodas
Asai gtent Director=General
Forestry Department
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1. INTRODUCTION
THE PROBLEM OF GROWTH AND YIELD PREDICTION
STt REASONS FOR PREDICTING GROWTH AND YIELD
In order to understand the reasons for the diversity of methods that are being used
for growth and yield prediction, it is useful to examine in more detail why growth and yield

prediction is necessary.

1+1.1 Production Planning

Effective forest management involves the use of treatment regimes for control of the
growing stock in such a way that the increase in the economic and/ or social value of the
growing stock is more rapid than the interest sccumulating on the cost of treatment.

At the same time, all harvesting operations will deplete the future growing stock to
a greater or lesser degree. Too heavy a rate of harvesting will ultimately liquidate the
forest regource; too low a rate may both deprive a community of immediate rescurces and
reduce potential growth in the forest for the future.

Clearly, rational decisions about treatment and harvesting intemsity and timing can
only be made if the response of the forest to these operations can be quantified. Growth

and yield studies are the means to this end.

1a1e2 BSilviocultural Research and Flanning

Although the primary objective of growth and yield etudies is probably the quantifi-
cation of forest production in response to treaiment and harvesting, there is a strong two-
way relationship between growth and yield studies and more qualitative forms of silvicultural
research. It is a two-way relationship because:

(i) The silviculture of a species may determine the type of model that can be used
to predict its growth; and may permit a logical basis for grouping species in
complex forests. Important silvicultural features of a species will suggest
features and relationships that must be included in = quantitative model if it
is to be effective.

(11) A quantitative model can be used, if it contains suitable relationships, to test
silvicultural hypotheses and to suggetst experimental designs and treatments that
are likely to provide useful results,

Tatleld Ef’cological Research and Environmental Manasement

Quantitative modele for growth and yield prediction may interact with the needs of
ecological research and environmental planning in zeveral ways. For example:

(i) A forest model may indicate the amount of light reaching the forest floor at
different stages of the growth cycle.

(ii) A forest model may readily by adapted to show the biomass and rate of production
of the tree crope



(ii1) The duration of the growth cycle during which the forest crop is available %o
large herbivores is important information for wildlife management.

On the whole, ecological modelling uses rather different techniques from those used
in growth and yield studies in forestry. Thie is because the latter has, of necessity, to
focus upon a Vvery precise prediction of the geometric properties of the crop; whilst in
ecology, it is possible to deal with populations and levels of an ecosystem as a whole.
Furthermore, ecological models tend to concentrate on descridbing or explaining the main
qualitative features of an ecosystem; a high level of precision is rarely either possible
or necessarys On the other hand, forest models must be reasonably precise if they are to
justify their existence and fulfil <their aim.

The techniques of ecologioal modelling do provide a number of useful pointe of contact
with forest modellings

(i) In mixed forest, species composition can be modelled by ecological population
dynamics techniques.

(ii) Where mortality, defect, or loss of growth is attributadble to specific diseases
or peste of Imown etiology, then this may be quantified as population dynamics
mode} in which habitat information is derived frem a forest growth model and
tree growth is influenced by pest population levels,

In the future, these points of contact are likely to enlarge. In particular, the
increasing interest in non-wood products from forests and the intractable problems of complex
mixed species and age forests may be best accommodated by using modified forms of ecological
energy flow/nutrient cycle models.

142 THE METHODOLOGY OF GROWTH AND YIELD PREDICTION

The methodology of growth and yield prediction may be thought of as containing four
main phases, which are discussed in the following paragraphs.

1.241 The Egtimation of Growth and Yield

The estimation of growth or yield invelves two kinds of problem. One is the problem
of definition of what constitutes yield. This may be the timber volume of the crop, or it
may be the timber volume of a particular group of species, or it may be some non—timber
product, such as bark, foliage, resins, etc.s The most common emphasis in tropical countries
is on predicting the volume and assortment of all wood products, including timber, pulpwood,
poles and fuelwood. Because the species composition affects the utility of the product,
yield camnot be considered apart from species composition in mixed stands.

The measurement of yield and of growth is relatively easy once appropriate definitions
have been made. The main difficulties are practical ones assoclated with access to the
forest, demarcation and measurement of plote and the maintenance of permanent plots over
long periods of time. These problems are dealt with in Sections 2 and 3.



1.,2,2 The Construction of a Mathematical Mo§1e1 and ite Fitting to Growth and Yield Data

Once data ie available, a mathematical model can be constructed and fitted to this
data. A mathematical model consists of sets of eguations or graphs showing the quantitative
relationships between the variables,

The process of fitting the model may be statistical, using for example linear regres-—
sion, or it may be subjective, by drawing lines through dates plotted on graphs. Such hand—
drawn curves can be subsequently expressed as equations if required. Appendix A of this
manual gives & number of methods of curve fitting.

The types of curves drawn or equations fitted may be based upon scme natural law of
growth, or it may be empiricals In the latter case, the function or equation is chosen
solely for ite ability to represent a particular shape.

At the present time, there is no genuine function for tree growth based upon a natural
law, although there are some, euch as the Chapman-Richards function (described in Section 5)

which are partially representative of growth processes.

“1e2e3 Testing of the Model for Validity

Once a model bas been constructed and fitted to data, it must be tested to determine
its validity and precision. This is best done with a second set of dats which was not used
to fit any of the functions in the model. The model is used to predict the behaviour of the
stands which produced the test data and the results are compared with the actual obeervations.
It is often necessary to repeat this process of validation a number of times, with adjustments
or corrections to the model as a result of apparent anomolies showing up at each stage.

There are a number of reasons why mocdels can perform badly when validated:

(i) The original data set may represent a different pattern of growth bebaviour to.
the test set.

(ii) Inappropriate methods of fitting the equations may have been used in model
construction.

(1ii) Some of the functions may be extrapolated during the test with the validation
data into 2 region where they are inaccurate.

(iv) If the model involves a system of equetions, it may become unstable when treated
ag a whole, even though each function separately may fit the data adequately.

(v)" There may be various kinds of mhuman error during transcription or application
of the various equations or graphs.

These pointe are spelt out at some length in order to emphasise the importance of
thoroughly testing any model before applying it to planning or research. Section 6 deals
with model validation in detail.
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1.2.4 The Aoplication of the Model to the Reguired Fnd-Use

Eesentially, the growth and yleld model may be applied in one of three ways:

(i)

(Gids)

(i1i)

As a simple table or graph or set of itables or graphs. These can be used by
foreat planners directly or can be fed in in ‘tabular form to a computer for
updating a set of inventory data.

As a programme for a computer or calculator which can produce a table or graph
of growth and yield for a particular set of treatments. This is appropriate
when the model has sufficient inherent flexibility so that it is not possible
to define all possible predictions in one set of tables.

Az a computer programme which forms & sub-model within a larger computer prog-
ramme for forest plamning and which will usually incorporate a data base of
inventory information and various economic or technical constraints on harvesting
and treatment operatioms,
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2+ DESIGN OF YIELD PREDICTION STUDIES

2s1 SPECTAL FEATURES OF REGRESSION PARAMETER ESTIMATION

Sampling or experimental desigme for growth and yield studies ghould be conditioned
by the type of model to be fitted to0 the datz obteined. Thie is usually seome sort of
regrezsion model.

The following points should be borne in mind:

(1) Vhen the model to be fitted is known to be linear in form, then sampling or
experimental treatments should be concemtrated at the two extreme ends of the
line. For a surface relating three variables, the four extreme corners should
be sampleds

(ii) More usually, the precise shape of the function to be fitted is unknown and
likely t0 be somewhat curved. In this case, a good practice is to break the
range of the predictor variable into 5 equal sections and sample each section
at the same intensity (subject to (iii) below).

(1i1) Sampling intensity in any part of the range should be proportiomal to the
variance of the samples around the models This is particularly relevant when
predicting volume, as discussed in Part I of this manual.

(iv) Random or systematic sampling by area, which is most appropriate for foresti
inventory, is inefficient as a basis for constructing growth and yield meodels,
as it involves too high a sampling intemsity in the central part of +the range
of response and too low an intensity at the exiremes of respomse.

(v) In experimental designs for growth and yield prediction, extreme treatments
should always be incorporated, especially with respect to stand density. This
will add greatly to the acouracy of the model which can be fitted to the resul-
tant data.

2.2 SAMPLING DESIGN FOR MODEL CONSTRUCTION

Sampling is en alternative to experimentation in situations where the variables
entering the model cannot be controlled by the research worker. In growth and yield studies,
this provisc applies principally to site veriation. Forest type can be controlled by selec-
tion of the experimental area, or by establishment of the desired type of forest; stand
density can be contrelled by silvicultural and harvesting operations.

Experiments are generally more efficient and hence less expensive for & given accuracy
and precision of prediction than sampling. However, both types of data are necessary if site
variation is to be effectively included in the model.

The real effects of harvesting operations are also very difficult to simulate experi-
mentally and must usually be determined by a sampling programme, carried out shortly after
harvesting.



2.2.1 Temporary Plots

Temporary plots are primarily used for estimation of relationships which are not
time dependent. Howevery this distinction is blurred by the possibility of determining
time-dependent relationships from annual ring information in situations where these are
Present.

2.2.1.1 _Porest inventory

Forest inventory designe are primarily detemmined to give an accurate estimate of
forest growing steck in relation to land area. However, much of the information gathered
may be uzseful in growth and yield studies.

The general subject of forest inventory design and analysis is covered in the FAQ
Manual of Forest Inventorys

It is generally inefficient to require the measurement of parameters on all forest
inventory plots that are only required for growth and yield prediction. It is better %o

select a subset of plots for more detailed measurement.

222s1,2 Growth estimation from annusl rings

Where clear anmual ringe are present, then studies on temporary plots can be used in
place of permanent sample plotse In general, the use of anmual rings for increment estima~
tion is more difficult and meore expensive than the use of permanent sample plots. On the
other hand, results are obtairned much more quicklye.

2e2+¢1.3 Bampling for allometric relationghips

An allometric relationship is one between one measurement on & tree and another. For
example, the relatienship between crown diameter and bole diameter, or between total height
and bole length. Allometric relationships may be important in some models. The necessary
data is often not available in a suitable form from a forest inventory, so it becomes
desirable to carry out a sampling programme to determine the relationshipe

The basic sampling unit is usually the single tree, although for convenience plots
may be laid out and all trees on the plot measured, The number of samples will depend upon
the relationghip being studieds A good general procedure is to analyse the data as sampling
ie being carried out and to terminate sampling once the required degree of accuracy has been
obtained.

A tree volume tariff is = particular example of an allometric relationshipe.

2+2+]s4 Sampling to define parameters of harvesting operations

Most yield prediction medels accept as inputs the formal specifications for inter-
mediate or cyclic harvesting operations. It is possible to assume that the operation will
be carried out as specified, or it is possible to carry out 2 sampling programme 10 examine
the relationship between the theoretical specifications and the actual results.
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Additionally, most models will require information about the harvesting treatment
that are not covered by the specifications. For example, it is usually necessary to know
the diameter distribution of removed stems or the relatiomship between the number of stems
removed and the basal area removeds

Sampling carried out shortly after harvesting will provide information on these
matters. Alternatively, concealed semi-permanent plots can be set up which are measured
before and after the harvesting operation to give an accurate determination of trees
removed.

A general feature of these studies is the need to use larger sized plots than other
types of study. Typical figures would be:

tniform forest O0e? = 0.5 ha
VMixed tropilcal forest 5 =10 ha

This is because real harvesting operations tend 4o have very heterogeneous effects associated
with extrection tracks and loading areas.

2.2.1.5 Regeneration surveys

In mixed tropical forests or any other type of mixed age forest, or uniferm forests
being regenerated by direct seeding, estimates of regeneration may be an important part of
2 yield prediction modele.

Plots for regeneration surveys need to be small. They may be subplots within convene—
tional ferest inventory plots or they may be based on a spearate sampling scheme carried out
3-5 years after logging. Typically, the plots are subdivided into quadrats; on each quadrat,
the presence or absence of species is recorded. Actual counts of trees above a certain
diameter or height may also be madey but do not usually add greatly fo the usefulness of the
information. Typical plot sizes are 0,01 ha (10 x 10 m) or 0.04 ha (20 x 20 m), subdivided
in each case into 1 m2 or 4 m2 quadrats.

2.2:.2 Permanent Sample. Flots

Most foresters would consider the data obtained from permanent sample plots (PSPs)
t0 be the most important contributor to a growth and yield model., Although this remains
true for many situations, experiments mugt be considered as a necessary adjunct to introduce
extremes oi ‘treatment that are not found in the forest; whilst measurements on annual rings
provide an alternative to PSP measurements.

2,2.2.1 MNumber of PSPs required

It is not possible to define ‘the nunber of PSPs required from purely statistical
criteria. The precision of a model fitted to PSP data will depend upon the location of plots,
and the duration of remeasurement as well as on the covariances of the various predictor
variables and coefficients in the fitted models

Bxperience suggests however that approximately 100 plots covering the range of site
variation and stend history may be sufficient in a given forest type or plantation species,
unless there is evidence for distinctively different growth pattems on part of the geographic
Tanges



Palele? Loca'l'(ion of PSPs

Permanent sample plots should be placed with equal frequency in:

=~ poor sites
~ average 8ites
» good sites

arid
~ low density stands
~ gtands of average density
- high density stands

and

- Yyoung or recently logged stands
- mid~rotation or midway through felling cycle
-~ at rotation age or at the end of the felling cycle.

This will probably result in an area distribuiion for plots which is quite uneven,
and appear to be proportionately deficient in the average stands. However, this is the most
efficient method of sampling to estimate regression parameters, as discussed in section 2.7.

The type of stratification implied azbove may not be possible, due to a lack of know
ledge of forest growing conditions, in which case plots may be laid down systematically or
using a geographical stratification to give equal area coverage. In this case, many more
plots will be required than if the more effective type of stratification described above is
used.

2.2.2,3 Size of PSPs

In general, the size of permanent sample plots is governed by forest type and the
heterogeneity of atocking and species distribution.

In wixed tropical forest, a size of 1 ha is usually appropriate. This may conveniently
be divided into 100 10 x 10 m quadrats.

In uniform forest, sizes around 0.05 ha are commonly used.

These figures may be varied a great deal for different circumstances. For experi-
ments, larger sized plots are more normale The table below gives some details.

PERMANENT PLOT SIZES

Forest type Mixed Uniform

Sample plots 1-2 ha 0. 04-0,08 ha
Experiments (excluding surrounds) 1-5 ha 0.08-0.12 ha
Studies of real* harvesting operatione 510 ha Qa1 = 0,5 ha

* As opposed to simulated operations, which come under the category of experiments.

Mhese figures should not be treated too rigidly.



2.2'2'4 ShE,Ee of PSPs

Generally epeaking, PSPs may be either rectangular or circular. In inventory, other
shapes are used, esge crosses and clusters of circular plots, which have specific advantages
for area sampling but are not particularly useful for PSKs,

Circular plots are faster to lay out than rectangular plots for sizes below 0." ha
in open stands, or 0.05 ha in dense stands. Their use ie also recommended in plantations
as effective area is not related to the arrangement of planting rows.

Rectangular plots are more appropriate for plot sizes greater than 0.1 ha.

The ratio of length to breadth for rectangular plots can be altered as required. On
gteep topography, a high ratio, up to 5 to 1, is better, with the length running up and down
the slopese On level ground, a square plot has a smaller perimeter and will therefore be

easier to demarcate and measure.

202,295 TFrequency and timing of ranea.surements_.

The frequency with which P5Ps should be remeazsured depende upon the growth rate of
the trees. It is alsoc useful to remeasure a new plot after a shorter than normal interval
in order to benefit as rapidly as possible from the growth data the plot provides.

It should be noted that in general, the longer the interval between remeasurements,
the more accurately the tree increments can be determined.

In an organization responsible for a large number of PSPs, it is a good idea to
alternate remeasurements so that perhaps only one third of the plote are measured in any
one yesr.

Remeasurement intervals can be given approximately as follows?

Forest type Measurement interval (yrs)

Young plantations in
tropics b

Older plantations or
other uniform forest
in tropics 2-4

Mixed itropical forest 3-5

Temperate uniform
forest 3-5

The timing of remeasurements should cbviously take into account seasonal effects.
If there is a definite growing season, measurement should be carried out after the growing
season is finished, as timing is less criticiel. In any case, a given plot should always
be measured in the same month when annual measurements are made, to allow exact one year
comparisong and increment estimation. With longer remeasurement intervals and lese seasonal
climates, timing becomes less critical.
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In some cases, timing of measuremenis may be restricted by access considerations or
seascnal gvailability of labour.

2.2:2,6 Sampling with partial replacement

Strictly speaking, sampling with paritial replacement is an inventory design where
gemi-permanent plots are used to supplement information from temporary plots. However, the
same general concept can be applied to permanent sample plots.

The more times a PSP is measured, the less information it provides compared with the
previous measurement, unless it is growing into an age-site-stand demnsity stratum that has
not been well samplede.

For uniform age forests, two basic sampling strategies arise with P3Ps:

(i) Plots are established through all age classes. In this case, sampling is more
efficient if a provortion of plots is replaced after the third or fourth
remeasurements.

(ii) Plots are established in young plantations only (because no older age classes
exist)s In this case, & proportion of the plots, say 30%, must be retained
throughout the rotation. The remaining TO% are replaced after 3 or 4
measurements.

In mixed forest, an analogous situation exists, except that instead of age, one is
concerned with the number of years since the last harvesting operation.

2.3 EXPERTMENTAL DESIGNS

Experiments are the most efficient and useful gource of data for constructing models
of growth and yield. However, the usefulness of many experiments that have been laid down
in forestry research is limited by a failure to clearly envisage the mathematical model that
the experiment is designed to test or parameterize.

Growth and yield studies are not primarily concerned with detemmining significant
differences between treatments, but with constructing response surfaces. It is also & common
error to assume that long term forestry experiments can provide useful solutions to problems
that have their origins in current and highly fluid economic conditions. It @almost always
happens that by the time the experiment starts to provide useful data, economic conditions
have changed so that the results are irrelevant.

The solution o0 this problem is always to set up the experiments with the intention
of defining general principles, via a mathematical model, rather than to gelect the 'best’
of a set of treatments.

Similarly, the parameters to be measured should never be defined in economic terms,
but always in ecological or silvicultural terms.

Short term experiments that are defined in terms of economic parameters are necessary
for the costing of silvicultural treatments and determination of utilizable ylelds in rela~
tion to specific harvesting methods, but these matiers are outside the scope of this present
manual.
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The principal experimental designs that are relsvant to growth and yleld researsh
can be subdivided into randomized or systematic designs., The former can be subject to con-—
ventional analysis of wvariance, whilat the latter are usually satisfactory when regression
ie the principal method of analysis and may be more economical than randomized designe to
set out on the ground. BRandomized designs can however also be analysed by regression and
are therefore probably to be preferred in all cases except plantation spacing expsriments.

2+43¢1 Randomized Designs

A principal feature of randomized designs iz the allocation of treatments to the
plots within an experiment by some random process, usually a table of random numbers,

Another feature of randonized deeigns is the principle of replication. Any treatment
must be applied at least twice, on two different plots.

These two features are the common characteristics of a wide diversity of experimental
designsy including fully randomized experiments, latiices, latin squares, incamplete blocks,
split plots, etce. Standard textbooks, such as Snedecor (see bibliOgraphy) cover the analysis
and appropriate usage of such designs. Dawkins, in his well known book of Statforms, gives
calculation pro formas for many such designs,

In growth and yield studies, probably only two randomized designs dre widely appro—
priates These are the randomized block and the factorial experiment.

2.3.1.,1 Randomized block experiments

The structure of a typical complete randomized block experiment is illustrated below.

[itz] ve [sefefule]
44
v [refsafur]e]

b1 |t3
The treatments, of which there may be any number (prcvided there are at least two),.
are designated by t1, t2, etc.. These are grouped into blocks, labelled b1, b2, etcss Thers
may be any number of blockss FEach block contains one replicate of each treatment.

The blocks are laid ocut so that the variations in site or forest condition are small
within the blocks, compared to the veriation between blocks.

The plots within a block do not necessarily have to be physically adjacent, as shown
above, but usually the plots are relatively close compered with the distance between blocks,

The treatments are assigned to each plot withina block using & table of random numbers,

An incomplete randomized block arises when one or more treatments are not replicated
in one or more blocks., Thie may be a deliberate feature of design, especially where there
are large numbers of treatments, or it may be the result of loms of one or more plots through
accidents. The analysis of variance of an incomplete randomized block experiment is somewhat
more complex than for a complete one, but as far as regression studies are concerned, it does
not make & great deal of difference.
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In growth and yield experimentation, randomized block experiments are suitable for
situations where the treatments do not form a clearly defined dimensional continuum, For
example, if the treatments comprise initial spacing for a plantation crop, then this can be
varied continuously and factorial or c¢linal design is more appropriates But if the treat-—
ments are specifications for rainforest harvesting framed in terms of epecies groups and
different cutting limits for different groups, then there is no clear continuum between
treatments aznd a factorial or clinal design cannot be useds A randomized block design is
therefore most appropriate..

2e3.1.2 Factorial experiments

Factorial experiments are intended for situations where the treatment consists of
twoc or more interacting factors. For example, in a plantation thinning experiment, one
might designate the age of thinning and the intensity of thinning as two separate factors.

Each level of a factor is combined with each level of every other factors Thus if
there are 3 levels of one factor and two levels of a second factor, there will be a total
of gix treatments.

A11 the treatments should be replicated at least twice. It is efficient to group
the replicates into blockse, as this allowe the variation betweenblocks to he accounted for,

Gualitative treatments such as for example pruning or no pruning, can te included in
a factorial experiment as a treatment with two levels - present or absent.

Factorial experiments are well suited to studies in uniform forest involving timing
and intensity of thinning, initial spacing, pruning and the use of fertilizers and weed
contrel. They are more difficult to apply meaningfully in mixed forest because of the
conplex nature of the treatment definition and effects.

2.3.2 BSystematic Designs

Systematic designe are those in which treatment locations are not randomized, but
are laid out in some systematic pattern to economize on the size and cost of the experiment.
Systematic experiments cannot be analysed by analysis of wariance, but they are very
efficient as & means of providing data for regression parameter estimation.

The main application of systematic designs is towards spacing experiments in unifomm
foreste In any situation where there is the slightest doubt as to the likely outcome of the
experiment, e.gs fertilizer experiments, a randomized design should be used.

For spacing experimentsy two basic design approaches are possible.

2.3.2,1 BSingle tree experiments

In the single tree systematic spacing design, the spacing varies between each tree in
a continuous fashion. One well-known example is the Nelder fan, in which trees are planted
along radii going out from a central point, with the distance between trees along radii
increasing s the same rate as the distance between radii. The general appearance is
illustrated below.
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Nelder fans are a little difficult to plan and execute on the ground and some equally
effective rectangular designs are possible, The diagram below indicates one in which spacing
between trees is increased by half a metre for each tree, in both the vertical and horizomtal
direction, This plen has the advantage of testing all combinations of square and rectangular
spacing and replicating each single combination twice. By using a smaller increment than %
metre, a larger experiment is cbtained, which is less likely to be affected by the loss of
single trees,
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Single tree spacing experimenis provide very useful data ¢n the response of dismeter
and crown diameter to spacing for uniform forests, dbut the data is not easily compatible
with that from conventional plots unless a single tree modelling strategy has been adopled.

Single tree experiments are also very sensitive to the loss of trees, which upset their
arrangement and design.

2.342.,2 (Clinal plots

Clinal plots are those in which the treatments are arranged so that successive levels
are adjacent. The main advantage of clinal plots is the possibility of eliminating the plet
surround except on the outside of the experiment. Thie is illustrated by the diegram below.
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For spacing experiments, it is usually desirable to have from 5 to 8 treatments, The
closest spacing should be either 2 x 2 m or 2% x 24 m, depending on whether a narrow crowned
species (e.g. Bucalypt or Pine) or wide crowned species (e.g. Gmelina arborea) is involved.
The widest spacing should be 7 x Tm or 8 x 8 mi It is very important to always incorporate
these two extremes, as discussed in seetion 2.1.

Data from clinal plots can be combined with other plot data without difficulty. The
plote themselves are lesg sensitive to the loss of individual trees than single tree
experiments,

2.4 EXAMPLES OF GROWIH AND YIELD EXPERIMENTS

There are literally an infinite variety of ways in which experiments may be designed
and executed to provide data for growth and yield prediction. The main purpcse of this
section is to present synthesized examples of the most cammon types of experiment, with
some discussion of their usefulness and the special problems of execution and analysis.
There is here a wide divergence in technique between methods for uniform forests of a single
age and mixed forests.

2 4-T Unifom Porests

Orowth and yield studies in uniform forest have tended to concentrate on the effects
of stand demsity, fertilization and pruning. Fertilizer and pruning experiments will not
be considered directly in this manual as they are rarely relevant to the direct problem of
yield prediction. Stand density is of primary importance, as it is the major variable which
the forester is able to control during the rotation of a uniform forest., There are four
basic ways in which the interaction between stand demsity and growth may be studied
experimentally.

2.4.1.1 Spacing experiments

Spacing experiments may be laid out either as single tree experiments or as clinal
plots. The latter is probably a more useful type of experiment, Between 5 and 8 different
spacings may be used, It is better to thin the plots to their finsl epacing in the second
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or third year of growth than to plant directly at the final spacing; <+the latter approach is
too sensitive to poor survival following plantings When the thinning to the final spacing
is carried out, it should be a non-selective thinning to achieve the desired spacing, not a
low or crown thinning.

A spacing experiment should bhe continued over the whole of a normal rotation of the
crops Once established, it should not be thinned.

It is very easy to analyse spacing experiment data to provide a flexible growth model
for the species in question. The details are discussed in section 5 of this manual,

2.4e1.2 Constant basal area thinning experiments

In a constant basal area thinning experiment, plote are laid out systematically or
randomly and allowed to grow until each pleot reaches itz designated basal area. It is then
thinned every cne or two years to maintain the basal area at the designated level for each

plot.

Careful records must he kept of the number of trees removed and the basal area removed
if this type of experiment is to be very useful,.

Analysis is more difficult than for a spacing experiment and involves the fitting of
a model predicting basal area increment 28 a function of basal area and other variables, for
example age and stocking.

As a strategy for constructing a dynamic thinning experiment, thie approach has the
advantage of simplicity of design, although the execultion may net be so easy, as careful and

continuous record keeping is required if the results are tc be fully useful.

2.4.1.3 Thinning experiments uweing graded thinning treatments

In this type of experiment, & number of thinnings are defined (typically 4), which
differ from each other in terms of both timing and intensity of thinning and possibly in
termms of initial spacing also. These treatments can be roughly classified from light
thinning to heavy thinning,

This type of experiment is very similar 4o & constant basal area thinning experiment
in terms of analysis and rscord keeping. HRecords must be kept of the numbers and baszl area
of stems removed at each thinning. 4#nalyeis can be by several methods, the best of which is
the fitting of & predictive model of diameter or basel area increment as a function of bhasal
area, stem numbers, age, etca

The principal advantage over a constant basal area experiment is that the thinnings
used are treatments which might be used in reality, allowing costing of thinnings, thinning
damage, windthrow risk and effects on wood quality to be assessed on the experiment. Addi-
tionally, thinning need not be performed so frequently as on the constant basal area experi-
ment, simplifying administration.



- 16 ~

244.1.4 Factorial experiments with different components of thinning treatment

A thinning treatment in a uniform forest can be broken down into a number of compo-
nents, viz:

initial spacing

age of first thinning

proportion of stocking removed at each thinning
time t0 elapse between each thinning.

Other variations are possible, as for example the basal area at first thinning and
‘at subsequent thinnings, or the use of height instead of age.

When the experiment is designed in this way, it can be set out as a factorial experi-
ment by assigning a number of levels to each thinning component.

The resuli will be a large experiment, with & considerable number of treatment plots,
but in the analysis it is possible to separate the different effects of thinning age,
thinning intensity, etc.. OUbvicusly the large number of treatments means that very careful
administration is required, whilst the factorial nature of the eyperiment may be easily
upset by accidental occcurrences such as fire or disease outbreak.

2.4.2 Mixed Forests

The main function of experiments in mixed forest is to provide a controlled degree of
disturbance of the forest so that ultimately a2 model may be fitted relating the increment of
trees to the various parameters of the stand fellowing treatment.

A common problem with experimente laid down in mixed forest is that the treatments
are specified in terms which are irrelevant to the main parameters of the stand that control
growth, This is discussed at length and with numerous examples by Synott (see bibliography).
However, a typical case would involve the definition of four treatments as for example:

1 = Log all merchantable species down to 30 cm

2 - As for 1, but peison or ring-bark all non-merchantahle species down to 30 om
3 - As for 2, but killing non-merchanteble stems down to 10 om

A ~ As for 3, but removing merchantable species down to 20 cm.

The effect of treatments defined in this way upon the stand will depend entirely upon
the condition of the stand prier to logging, its size class and species class distributicn.
Tt is possible for the most severe treatment (e.g. 4 above) to have the least effect.

Cther problems have arisen by selecting only a subset of trees for increment measure-
ment, on the basis of merchantability criteria which have an unfortunate tendency to change
during the intervals between plot measurements. The method of measuring increment has often
been unable to cope with the development of buttresses.

At the moment, growth and yield research in mixed tropical forests is developing
rapidly. The following recommendatione are made therefore simply to help avoid the mistakes
of the past and not in order to impose a strait-jacket of unnecessary regimentation on
current worke.
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268624 Randomized block deSign

It is suggested that a randomized design, with replication, should always be adopted
in mixed forest experiments. The replicates should be blocked with site and species distri-
bution patterns, as well as past logging history, as uniform as possible within blocks. This
implies a careful preliminary survey of the experimental area.

2.442:2 Tregstment definition

Treatments should be defined in terme of total basal area to be left after logging
a.nd/or poisoning or girdling, of trees above a minimum size of 10 cm.

Other definitions of treatment are possible, but should always be made in temms of
the remaining stand and not the material to be removed and should be independent of economic

criteria.

The treatments adopted should alweys include two extremes, one being an wndisturbed
stand and the other being an extremely severe treatment, perhaps removing all material over
10 cm diameter,

2+4.2%3 Measurements and plot desigm

Large plots are required for experiments involving felling treatments. Typically a
200 x 200 m plot (4 ha) with a 100 m surround is necessary. On the main plot, all large
trees (say over 30 ¢m) should be mapped. Subdivision of the plot into 20 x 20 m quadrats
is desirable and allows local competitive effects to be included into models of growth,
regeneration and mortality.

Detailed counts of seedlings can be made on a systematic subsample of quadrats.

The methods of increment measurement are discumssed in section 3.
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3, PROCEDURES FOR DATA COLLECTION AND PRIMARY ANALYSIS

3 SAMPLE PLOT DEMARCATION
:{30‘1,‘1 Location

Permanent sample plots, in particular, need to be accurately located on forest maps
and their precise position in the forest determined through the use of survey tape and
compasse In addition to recording positions on maps, it is helpful to place stone or con—

crete markers on nearby forest rocads showing the bearing and distance to the plot from the
marker.

Temporary plots also need to be located on working maps, but the degree of precision
required is not usually so great.

Design principles relating to plot location are discussed in section 2,2,

3.7T.,2 PSP Tdentification on the Ground

P5Ps rmust be permanently marked on the grounds Circular plots should be marked at
the plot centre with a post of durable wood, concrete or metal bearing the plot identifi-
cation number. This central point should alsc be indicated by digging intersecting trenches
50 cm deep and approximately 2.5 metres long, with the point of intersection being the plot
centre. This provides a permanent mark on the ground in the event of the plot centre post
being lost or stolene.

Rectangular plots should similarly be marked at the four corners with posts, one of
which carries the plot identification number. Trenches should be dug to intersect at the
corner post positions.

The plot identity should also be prominently painted on a tree near to the centre or
a corner post bearing the plot identity.

Rectangular plots subdivided into quadrats may also have smaller poste placed at the
gquadrat intersections. These should be of a different size to the corner posts 1o avoid

confusion. Alternatively, quadrats may be resurveyed at each measurement.

3+1.3 Determination of Bige Trees

Mot trees will be either clearly within the plot or clearly outside it. Some will
intersect with the plot edges These should be included if the estimated centre of the tree
is inside the line demarcating the plot and excluded otherwise.

The edge of a circular plot ie determined by using & line or rope stretched from the
centre post, Care should be taken that the line does not have significant elasticity (many
light nylon lines are very elastic) or become wrapped arcund the centre post whilst working
round the plot.

The following table shows radii (i.e. distance from plot centre post to edge) for
comon plot areas of circular plots.
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Plot area (ha) Radius (m)
0.04 11,28
0405 12,62
0,08 15496
0,10 17.84

With small rectangular plots, the edge may be determined by taking e line of sight
between two cornmer posts. With larger plots with intervening vegetation, it will be neces-
sary to insert extra edge markers along & bearing between the corner posts. Small vegetation
may be judiciously removed along the plot edge, provided cne is not destroying regeneration
that forms part of the forest growing stocke.

3¢1s4 Marking Trees

Trees on permanent plots should if at all possible be permanently idemtified. There
are two ways of doing thisc:

4+ By palnting the identity number on the tree

2, By using embossed aluminium tags nailed to the tree.

If the tree number is painted on, then the measurement point for diameter should also
be marked by painting a ring sround the tree. If an aluminium tag is used it should be
nailed to the tree a fixed distance above the diameter measurement point, usuzlly 50 cm
above, s0 that the latter can be exactly relocated. The reference point for diameter
measurement is of course nommally at 1.3 m initially, except for buttressed rainforest
trees, but may change as ground level alters over time.

An aluminium tag should also be nailed to the stump of the tree, close to ground level.
This helps to identify cut stumps and gives added security against loss of tags.

Paint markings should not be used as the sole means of identification with epecies
that shed their bark (e.g. many Bucalyptus species ). Markings should be renewed at each
remeagurement where they are becoming worn or have been lost,

3.1.5 Mapping Trees on the Plot

If possible, trees on a plot should be mapped at the initial assessment. For circular
plots, record the distance and bearing of each tree from the plot centre. For rectangular
plots, subdivide the plot into quadrats, each of which is not more than 10 m by 10 m and
then measure the distance of the tree from the two quedrat boundaries. Record these dis-
tances ag the coordinates of the tree within the quadrat.

Mapping trees is helpful both in resolving the frequent confusion over tree identities
that occurs and in the analysis of growth phenomena on the plot.

3,16 Identity Mumbers for Ingrowth

In natural forests, ingrowth present at each assessment will need to be given an
identification number, a quadrat number and coordinates on the plot map. Great care is
necessary to ensure that the identity number given is not one previously assigned on that
plot, including trees that have died or been removed et an earlier stages Otherwise great
confusion results when the data ig proceseed;
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3.2 SAMPLE PLOT MEASUREMENT FORMS AND PRIMARY ANALYSIS

3.2.1 Uniform Forests

Sample plots in even-aged, monospecific forests (norma.lly plantations) require
measurement of:

1. Diameter over bark at 1.3 m, using a girth tape calibrated infrem units, on each
tree,

2. Tree heights on a systematic sample of 8 trees, together with heights of dominant
trees not included in the sample.

Daninant height is defined as the mean height of the 100 thickest stems per ha., Thus
the number of trees regquired for dominant height estimation is the plot area times 100. For
example, on a plot of 0.04 ha, 4 trees are requireds Trees with broken or sigmificantly
damaged tops are not used in height sampling,

Additional characters can be noted on each iree. Disease problems, dying trees, wind
or insect damage and trees marked for thinning can be recorded. Such additional notes should
be coded in a rigidly standardized way and entered on the plot record forme. The following
coding suggestions may be adopted:

Code Description
no entry Tree healthy, undamaged, unmarked for thinning, single non-defective
stem.
A Animal damage.
B Tree broken by winde
D Disease problem.
L Doutle or multiple leader or stemse.
M Tree marked for thinning (but s%ill standing),
S Tree dying from suppression.
gy Tree has been felled {may be measured on the ground).
W Tree leaning or fallen from wind damage,
X Tree dead.

Following the letters, numeric codes can be placed indicating the degree of severity
of the problems The following scale is suggested:
i Damage/disease present but very light.

2 More severe damage — is likely to significantly reduce growth or
impede utilization.

2 Very severe damage/disease. Likely to kill tree or make it
unutilizable,



Other codes can be introduced for gpecific problems.
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The important point is that for

such a system to be of any use, it must be rigidly adhered to without alteration or omission
Over many years.

Form 3.1 is shown as a recording form for this type of plot. It is specifically
designed to facilitate automatic data processing. Field entries should be made in zoft
pencil with arubber being used to remove errors,

The primary variables calculated on a plot ares

Te

3o

4

Be

Stocking per ha (N). Divide the total number of live trees on the plot by plot
areas, From the example entered in form 3.1:

N = 9/ 0.04 = 225 stems/ha.
Diameter of the mean basal area tree (D ). Sum the diameters squared and divide

by the number of trees on the plot. Taﬁe the square root of the result. Fo
the example: :

Sa2 = 16237
D = 16237 / 9)
= 42,5 cm.

Stand dominant height H,» This is the mean height of the specified number of
dominant trees on the plot. For the example,

Hy = (3241 + 29.6 + 30.8 + 33,1)/4
= 31’4 Me

Stand mean height H., This is the mean of the systematic sample of height trees
or as in the example on form 3.7, the mean of all heights. In the example,

H. = 31-.7 Me

Stand volume Ve This is uwsually calculated from an individual tree volume tariff
entered by diameter and height. There are two methods:

(i) Calculate the volume of the tree of diameter Dg and height H and then multiply

by stocking N to give volume in m3/ha..

(ii) Caleuwlate individual tree volumes v from diameter d and height h. Sum these
volumes and divide by plot area to give volume per ha.

In this second caese, if h is not known for all trees, either estimate it
from a height/diameter regression (c.f. section 3) or use H instead.

Both methods introduce an error into volume estimation. The first one has an error
that may result from the distribution of diameters and the second one from the estimation
of heights. The second method is generally preferable for accuracy, especially if volume
iz being estimated to a merchantable top diameter limit.
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Form 3.1 Sample Plou Assessment Form - Plantations
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Several different volumes may be calculatedy using different volume equatioms, For
example:

vob Over bark total volume (ises to the tip of the tree)s

Vub Under bark total volume.
V7 Volume to 7 cm top diameter limit.

V15 Volume to 15 om top diameter limit.

‘The various symbols and unite used for primary stand variables are listed in Table

3-16
Table 3.1

SYMBOLS FOR PRIMARY STAND VARTABLES

Symboel Description Units
A Stand age from planting years
Dg Diameter of the tree of mean
’ basal area cm
G Stand basal area w2/ha
H Stand mean height m
Ho Stand dominant height, defined

as the mean height of the 100

largest diameter stems/ha m
X Stocking - number of live trees/ha trees/ha
] Stand volume. Type of wolume is m3/ba

denoted by a subscript e.g.

Vub = underbark volume
V-!- — over bark volume to T cm

Measurements made immediately after thinning may be indicated by & prime T )
B.g. N' stocking after thinnning. Removals in thinnings should be denocted by
a subscript e. E.g,. Ge would be basal area removed in thinning.

3¢2,2 Mixed Forest

Primary analysis in mixed forest aims mainly to construct a stend tzble giving stem
numbers grouped by size classes for each species or especies group.

Once the stand table has been constructed, then various alternative measures of growing
stock can be derived from it ueing different criteriz. For example, cne may wish to derive
total basal aremn of trees in a given combination of species groups over a certain size; on
another occasion one may repeat the summary using different species groups or size limits.
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A stand table can of course be constructed directly as the plot is being measured,
by recording only counts by size and species classes. This procedure is not recommended
with any type of inventory except the most preliminary rescurce assessments. Individual
tree dimensions and species should always be recorded, even though the intention may be to
subsequently summarize the data. This is particularly important on permanent plots, since
it allows individual tree increment estimatess

Measurement forms for plots in mixed forest may vary considerably, depending on the
characteristics being recorded. The following types of situvation are commonly found:

(a) Mixed dropical montane forest {A few light demanding species of mixed age)s

Form 3.1 may be used with the first 'code' column being reserved for species
as a two digit or two letter code. A systematic sample of heights should
always be meausred, to allow a heigh‘t/diameter curve to be conetructed,

€p) Tropical rainforest (large numbers of mixed species, climbers, epiphytes,
buttresses ).

large plote, cver 1 ha, are normally used, subdivided into 10 x 10 m subplots
or quadrats. Heights are not normally measurable, but trees may be classified
by crown shape and crown position. Two reference diameters should be measured
on stems forming buttresses. There are normally several hundred distinct
species likely to occur on a plot.

(¢} Sub-humid wocdlands (E.g. Miombo forest in eastern Africa).

Here tree form and length of merchantahle bole are important characteristice.
Height is easily measurable because of the openness of the forest, but only to
the nearest metre because of diffuse crown shape. There are likely 4o be over
100 possible species presents

(d) Arid-zone woodland

Trees are likely to be multi-stemmed with height and species being the only
characters of importance. Height sghould be measured to the nearest decimetre.

Figure 3,1 shows alternative record formats for tree measurements for these four
cases, together with the record format from Form 3.7 for plantations for comparison. A
'record' is assumed to be the amount of data that can be entered on one BO-column punched
card, which represents the commonest medium for data input to a computers

3.,2.3 Initial Assessment of Permanent Plots

When a permanent plot is aesgessed for the first time, the following additional
information is required:

(1) The exact area of the plot, as a plane projection i.e. corrected for elope.

(2) Basic site infommation including latitude, longitude, aspect, altitude, slope,
slope position, forest history and past land use.

(3) Meteorological information from the nearest weather station glving monthly
pracipitation and mean minimum and maximum temperatures.
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(4) The positiong of all the treee on the plots. For circular plots, these ghould
be recorded as a bearing and distance from the plot centre. For rectangular
plots, these should be given as X and Y coordinates in decimetres from the most
gsouth—-west corner of the plot.

(5) Soil profile information including?

- cgolour

~ texture

- pH

- analysis for N, F, K, Cay Mg
- depth

- bulk density

for each discernible soil horizon. The soil pite or auger holes should be
replicated on each plote Two samples sghould be sufficlent except on very large
and variable plots. Analytical techniques may vary somewhat according to methods
already in use in a particular country and special conditione encountered, and
should be determined in collsboration with soil sclentists. However, once a
system for s0il analysis has been settled upon, it should be modified only for
very strong reasons and, at the time of modification, a series of mamples (20

or 30) should be analysed by both the old and new methods to determine a
regression relation to allow results from the old methods to be compared with
the new ones.

343 STEM ANALYSIS PROCEDURE
Stem analysis refers to the reconstruction of the growth history of a tree by

(a) Felling the tree;

(b) Cutting discs at intervals of around 2 m along the stem;

(¢) Careful counting and measurement of growth rings on the discs.

4 great deal of information about stand dynamics can be gained from stem analysis,

but in this manual the main concern is that of reconstructing the dominant height growth
higtory of a stand.

The procedure is only possible in seasonal climates and with specles producing clearly
defined rings.

For height growth reconstruction, only the height of measurement and ring count need
be recorded. With species and climates producing very vnambiguous ringe this can be done
in the field with little difficulty.

Where rings are not #0 clear, discs must be cut, clearly marked in the field as %o
their point of origin on the tree and their orientation (i.e. which way up the disc was on
the tree), and returned to the laboratory for assessment by one of two methods:

(1) Planing and pelishing the disc, followed by counting of ringe along twe axes
using a microscope on a vernier rack and pinion mountings

-‘(2) Cutting of two samPIes along a cross, with subsequent analygis by XI—ray densitometry.



i 2] -

re 1

Fi

RECORD FORIATS FOR TREE MEASUREMENTS IN DIFFERENT FOREST TYFPES

= 7 u.“mwma -] TWELS " =
i = (31 Ak
by = e —
a N.M bt m Lubisp ]
w PR T -
=) S0y emDys bl ﬂ
P T alT T e DT [a] 2iee. 5N
Q L Y — [T TEE FL-ppe
| iebisy — LHbIgH — m .
n Tl s "y
[ & g 1s B F o a X o
fona — T £ — oW = -
n Paravagcq w O a — ﬂ »araWig - W Audism |
¥ ﬁ “AH a E
i =] Ma. FE R aqos - T 2907 -
233y — £31784% — 31234 G —
o ) L=F)
= w e M (3 M p.w.wwmo - Tl v, =y
¢ Bty Jo o s T o -
a o} [ =n FRCE f Aubagd |
r.w 1o 43y ] e
18 e FRL e t
.._c P [} Seos “ W | cLeveodow o n..“.uw._un “
Bl inday sSa2ds w by
[ SRt Eer
w - oo — ﬂ —
+ |Bewa 280 S2HoMNAD) ) i
LETEL Al B TR + WAL AW ] — Avbips =
T Wi HS 3100 _‘-
. — agos ™ - 2amy =
Famy = A HYIAH = E-TEE XLy csacat
_eoD
0 =] m T oy 172430 ] SWELE o —
i3 <
. el = w32 th
2 A B o e ¥ Lubion
m = & W AH FCLET F
S ‘day Eak 1 (-1 26T
“LMY HDTgE | o i =1
W | € I =5 i LT 5313343 o
L Anbian - __.m £ I & ey )
n ¥ (58 a =i m TaaLy U —
P [ m 2 o
2 fowa . w_& MF = X P oM — @ =
| 2aLawgig 2 o i v ot d iudign
] = [
o - 290> _ Foes ns Iaao =
g — S510348 —4 FavaFdS — EP-Ei= P S
= 1 FrECE]
- m.uln-s — iasag | il Cwd T
u 2. — Ewn o w
M - _., oy nrews [T W S —f
m_ ey mmods | FEEET i =
= Ead L
m — | 4ebee — ~iAve T Ay ™ mh .M.ona =
" THITNG T ]
B | awsan 7 i - & [
ﬁ < k3 - ﬁ = TRALL WM -
o = |la - & =
.m.‘ TR — m W 2 FORB B -]
LW  — % m N o YRIAWW T — m FRCTEF-TV R
1 L £ - oy — ...3 sep e
. % a.m § i T212745 ST |
Fo|s” M == AT
= r mw TH iossna " PNAUS e
ﬁ ) Ja | gaw TSvas | W a
v = - e 8
[) — AshEH  —
¢ - 29a3  — 0 _:.w...:?t 8 nT
TS — B ﬁ “LMvy moFaw T F3 AGOD =
o] o Taiongn
u Awnh
| awbew v — ¥ .,
ﬂ Adwve — I SWRLS “Ber |
T » e
r dewn  — - — " VWD w b
e g — m ] Iy e AMBEn  —
" Id
“aw H — aeo, - - 2dea
TS & — FaRaes T S203843
-
e
13 oo P
o g0 o©
] £ a B He O
o w42 + o
TR ity £ o BB
i o o 2o
g £ e o0 o
= E &
i O Ee ey B o
o u o ot = © @ —
P un LF o & 1 d cCHP G
@ o £r 1 m MO onmk o
- [+ ] ] o+ M Nl O+ L
G G S ed o - &@ o
il =R LEES 9L EES
- A o~ Y] m .n _M o
Ao B - A B o
) fo=] N S < e O



5= 20 =

In either of cases (1) or (2), false rings or very faint rings should be checked
against climatic records. With X-ray densitometry, which produces a numerical estimate of
ring width and density, direct correlation with climatic variablee is pomsible,

The age at which the tree reached a given height is given by the number of rings at
the base of the tree minus the number of rings at the given height. From this, height can

be plotted directly on age for the tree.

If the sample tree is & well-formed dominant, then this height-age curve may be
regarded as essentially the same as a height-age curve derived from & permanent sample plot,
and may be analysed in the same way.

3.4 SPECIAL METHODS OF TREE INCREMENT ESTIMATION

3.4.1 Simple Messurements

‘On permanent plots, tree increment is estimated by taking the difference between
successive diameter memsurements, divided by the measurement interval. For this to be an

accurate procedure:
(1) Individual trees must be clearly and uniquely identified on the plote

(2) The point of measurement on the tree must be precisely relocatable. Two alter—
native methods are possible:

(i) paint a ring at the point of breast height measurement. This may be
excessively conspicuous under some circumstances;

(ii) insert a nall a preciee distance above the point of measurement (50 cm

is suggested) and relocate the point of measurement with reference to
the nail. This nail may also bear the tree identification tage.

3.4.2 Remeasurement on Buttressed Trees.

When trees are developing buittresses, it is customary to measure diameter at a refe-
rence point about 1 metre above the buttresses. Since buttresses will extend between
remeasurements, it is obviously necessary to move the reference diameter from time to time.

This procedure makes any increment determination from successive remeasurements
imposaible.

Two approaches may be adopted to counter this problem..

First Use two reference diameters at each remeasurement. Then, if it is necessary
to move the lower reference diameter, it replaces the upper one and a new reference diameter
is formed above the original top reference diameters In this way, direct increment estima~
tion is always possible.

It is recommended that the two diameters should be 1.5 m apart, with the lower one
1 metre gbove the top of the buttresses.
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The process is illustreted in the diagram below.

d
2
d4
1
first measurement second measurement third measurement
[ : ¥ e ; !
increment = (dq on 2nd mess. - increment = (d; on 3rd meas. -.

do on 1st meas.) / time interval do on 2nd meas.) / time interval

Note that these reference diameters should be marked with paint or nails. It is
essential to climb the trees with ladders and measure diameters with girth tapes. Optical
instruments such as the Relaskop are not sufficiently accurate for increment estimation.

Second The other approach is to use girth bands, as described below, and make
increment estimates over short periode (1-2 yearS) before butiresses can significantly
influence the reference diameter.

3.4.3 Girth Bands

Girth bands may be constructed locally cuite cheaply and are particularly useful
for intensive research in, for example, thimnning experiments. Without a vernier scale,
they are accurate to = 3 mm, which is quite adequate for increment estimation over 1 year
periods on tropical species. With the addition of & vermier scale, the accuracy increases
t0 + 0,05 mm diameter. At thie level, they can indicate physioclogical responses and
seascnal growth fluctuations. (Conventicnal girth meaBurements by contrast cannot give
increment more accurately than I 4 om diameter even on quite small trees and are much
worse on very large trees.)

The basic requirements for construction are as followsé

(1) Basic materials required are a roll of 1 om wide gteinless gteel band, a large
length of 1/3 cm coil spring, scales templates for the main and vernier scales,
matt~black ceramic paint, a shaped hole punch for the spring fixings and a gas
or electric oven.

(2) Suvitable lengths of band are wrapped around empty tins and painted on one side
with the black paint. The tin, with the band, is baked to cure the paint.
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(3) A zero mark is scratched in the paint et one end with 2 metal point. If a
vernier scale is 1o be added, it is included at this point, with the position
of the graduations being defined by the vernier template.

(4) The approximate girth of the tree must be known before adding the 'long' scale,
about 10 cm actual length (equivalent to c. 3 cm of diameter), so that the band
can be cut to the correct length and the scale put on at the correct pointe The
scale is scratched onto the band using the appropriate scale template.

(5) Slote for the retaining spring are punched ir the band, one outside the zero
mark (& vernier scale), the other inside the long scale. The spring is fitted
through one end, the band placed around the tree, taking care to remove loose
bark and avoid sag at the back of the tree, and then the free end of the spring
is slotted in. The spring should be cut to & length that gives a good pogitive
tension to the band.

Increment is measured as the scale movement between the initial and final reading.
The scales are normally infrem unite, giving direct reading of diameter. If the starting
point of the long scale is placed an exact number of centimetres from the zero mark, the
band aleo gives an absolute reading of diameter. TIf the long scale starts at an arbitrary
point, then absolute diameter (as opposed to increment ) should be measured with a separate
girth tape just above or below the band.

Templates for cutting the bands can be purchased from foresiry instrument suppliers,
or manufactured locally in any well equipped workshop.

Various kinds of sophisticated girth bande, some equipped for telemetry, can be
purchased directly. DBecause of their expense; these should only be used for the most inten-
sive kinds of research and under close supervision of the experimental area against animal
or human damage.

3.4.4 QGrowth Ring Feasurements

Where growth rings are present, they can be used to estimate increment. The most
relisble method is by the use of stem sections on complete felled trees, taken at de«b.h.

The width of the last three or four annual rings should be measured on two diameters
at right angles on the section. These diameters should be along the major and minor axes
if the section is elliptical. This gives the periodic underbark increment. It is necessary
to construct a regression relating underbark diameter measured directly, with overbark
diameter measured with a girth tape to convert the increments underbark onto a common scale
with normal debshe. measuremente.

Increment can also be estimated from samples bored from the tree. This is subject
{0 numerous errors, especially in species with soft timber. The resultant core may be
stretched or spiraslly compreesed. It may not be accurately radial.

Because the difficulties in counting growth rings in tropicael areas often require
resort to calibrated microscopes or X-ray densitometre, complete sections should be regarded
as essential. The use of increment borers is not usually a possible option.
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3.5 INDIRECT TREE DOMINANT HETGHT ESTIMATION

Because tree height estimation is a relatively slow procedure, it is not usually
desirable to measure more than 8-10 trees on a plote If the heights of all trees on the
plot are reguired, then a height—diameter curve of the form

h = by +bgd + byd?
can be constructed. Some speclal points should be noted:

(‘1) The calculation method for this regression is given in Appendix 2.2, together
wvith an example.

(2) With more than one plot in & single gtand, the sample trees should be pooled
to fit the heigh‘b/diameter regression.

(3) Samples between stands of varying demsity or age should never be pooled for
determination of the regression unless comparison of separate regressions
(Appendix A 2.8) shows there is no significant difference.

(4) The fitted regression should not be used to predict heights unless three condi-
tionsg are satisfied:

(i) The regression F value is significant at the 95% level.
(i1) Mhe b1 coefficient is positive.
(1i1) The hz coefficlient is negmtive,

(5) Once the regression has been calculated and +ested to see if it is uable, mean
height H can be estimated as the height predicted when Dg is subgtituted for 4
in the regression.

(6) Similarly, dominant height H, is predicted when the mean diameter of the domi-
nants (i.e. 100 largest diameter trees per ha), symbolised by D , is entered in
the regression for 4.

Referring back to point (4), it ghould be noted that when these conditions are not
satisfied, it is safer to assume that the individual tree heights h used for volume estima-—
tion are equal to the stand mean height H, This situation arises in many itropical species
because the variation in tree heights is unrelated to diameter differences and the instru-
mental error involved in measurement is greater than the effects of diameter on height.
Significant regressions and well-developed relationshipe between tree diameter and height
are more likely to occur with more shade-tolerant species and at higher stockings per ha.

In mixed age stands, the regression will always be significant and can always be
used for individual tree height determination. However, care should still be taken not to
pool regressions for different stands without adequate statistical tests for the homogeneity
of the data.
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If the height—diameter regression is fitted to an age series of plantations (i.e. a
series of stands of different ages) it will aleo be significant. It should be noted however
that this is a different kind of model to the one fitted within a uniform age stand and will
not reliable predict individual tree heights within one uniform stand (althoughit will predict
mean height H as a function of mean diameter Dy provided that stand demnsity ie constant ).
Within 2 single-age stand, the regresasion reflects dominance differences. Between age
classes, it reflects a time-dependent growth relationship.
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4. DATA STORAGE SYSTEMS

4.1  ADVANTAGES OF COMPUTER-BASED DATA STORAGE SYSTEMS

A computer-based data storage system will store all permanent sample plot, experi-
mental plet and temporary plot data on magnetic tapes or discs. This data can be accessed
quickly for summarization and analysis. It can be subjected to auwtomatic error checking
procedures to pin-point doubtful measurements. It can be updated or corrected relatively
easily.

Computer information storage (CIS) still requires maintenance of a conventional filing
system on each permanent plot or experiment, in which original field sheets and any queries,
notes, diagrams and procedursl orders are keptl.

Until recently, the capital cost of a computer system and the lack of skilled person—
nel inhibited the use of CIS. With the advent of the microcomputer, costs have fallen
drastically and are now of the same order as those for a motor vehicle. Microcomputers
usually operate in BASIC, which is a language designed for easy learning. Anybody with a
suitably facile brain can teach themselves BASIC, given access to a microcomputer. In
addition, some forestry institutions of fer specialized ftraining in data processing for
graduate or technical staff.]/

Lack of OIS is a significant inhibiting factor in the development and validation of
yvield models and effective yield plamning and contrel. With manual extraction of data from
files, only the simplest kinds of model can be construcied, whilst validation by residual
analysis is not possible because of the stupendous amount of work involveds UNor is it pos—
gible to examine alternative modelling strategies on the same data or to update the model
functions as new data is collected.

Furthermore, the productivity of skilled staff using manual procedures is exiremely
low. Collection of adequate quantities of data tends to be inhibited, because manusl pro-
cedures are simply unable to cope with it.

Tt is strongly recommended that all forestry organizations should either:

(a) Have accesg to a large computer facility, with an absolute maximum job turn-~
around of one day. This job turnaround should be considered from the time the
results are returned and should take intoc consideration periods of the month
when the main computer may be totally unavailable (due to priority allocation
of computer time to other users), transportation difficulties to or from the
canputer, etc..

or
(b) Purchase a microcomputer system with:

- 32-62k bytes of memory
= Mywin drive diskette or hard disc systeh
~ A printer

1/ E.g. The Commonwealth Forestry Institute at Oxford, U.K,
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- A4 teletype that can be interfaced to the computer, with paper tape reader/
punch, for use in on or off-line data preparation
«~— A BASIC or FORTEAN compiler.

This type of system would cost arcund $10 000 in Burope or North America at
current prices (mid-1 9"{9).

Option (b) gives the forestry organization an in-house, dedicated computer that is
likely to provide greater productivity and more rapid personnel training than option (a).

A2 DATA VALIDATTION

Frrorg arise in magnetically-stored data from the following sources:

(:‘I'))' Field measurement errors
(2) Data entry or keypunching errors
(3) Programme errors.

The third type of error must be assumed %o be eliminated by thorough testing of any
computer programmes used to store, correct, update, print or select data. The testing of
programmes is the responeibility of the programmer, who is as directly responsible for the
errors of his programmes as is the field worker who fails to make correct measurements.

Data entry or keypunching errors are largely eliminated by the process of verificae:
tion, which should always be used with any large mass of data. Verification involves
entering every item of data twice, by two different operators or in two separate runs. The
two date sets are then checked against each other, automatically, and any inconsistencies
reported to the operator, who can supply an appropriate correction, The actual detaile of
the verification process will depend on the data entry system used. Most data preparation
crganizations will offer verification as a normal service and this should always be expli-
citly stipulated when submitting data for keypunching.

Field measurement errors cannoct be wholly eliminated, but they can be reduced:

(2) By attention to the training and morale of field workers and by provision of
euitable instruments for their usee

(b) By running data checking programmes on the megnetically stored data. The data
checking is based on examination for logical inconsistences such as very large
or very small measurements, negative increments in diameter or height, missing
tree numbers or tree numbers which have Treappeared since a previous harvesting,
changes in species identification and so on.

Any such logical inconsistency is reported by the data checking programmes and must
be examined to determine the likely source of the errors A correction must then be supplied,
using a data editing programme, to amend the magnetically-stored data.

The entire process is an ongoing one, as indicated diagrammatically below.
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Collect date in

the field
\l’ Return to field
Keypunching to determine true
i = 3 : value
‘l/ \\ BUpPpLy / fh
. , corrections
Verification

Any errors 7. Yes/?

Data storage on
magnetic media

Is correction
l’ possible in the office
Programme checks ,I\

Any logical errops 7?7 — Yen

Nol

Data ready for
analysis

443 CONTRACTS FOR THE PREPARATION OF COMPUTER PROGRAMMES

Contracte for computer programme preparation should contain clauses covering the
following conditions:

(i) Full provision by the contractor of gource listings (in BASIC, FORTRAN or other
language used) of any programmes written.

(ii) Pull documentation of all programmes, including:
(a) A dictionary of meanings for identifiers or variables used in the programme,

{b) Flow diagrams indicating the sequence of operation of any programmes or
subprogrammes written by the contractor and the sequence and nature of
data transfers from external media and magnetic storage.

(c¢) Explicit definition of the record structure and usage of all magnetic files
and all input and oubput media.

(d) Explanation of theory behind the programme method, together with references
to texts or other background material.

{iii) Liability by the contractor for any programme errors or for any failure of the
programmes to operate as specified when used in accordance with the documentation.

(iv) Instruction by the contractor of some member of the forestry organization staff
in the vge of the progrommes, up to the point where the programmes can be demon~
strated to operate to the satisfaction of the forest management without any
supervision by the contractor.
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{(v) Copyright over all supplied documentation, programmes and reports to be vested
in the forestry organization.

It may be possible to reduce the coet of a contract to some degree by relaxing pointe
(iii) and (v), but the other points should always be insisted on if the programmes written
are to be of any continuing use to the organization.

4.4 STORAGE SYSTEMS FOR PLOT DATA
4.4.1; _In‘troducticn

I4 is not the intention to provide detailed descriptions of programmes for storing
and summarizing permanent plot, experimental plot or temporary plot data. These will proba~-
bly need to vary a good deal according to the computing facilities available. Only the file
structures for input and output and the types of functions the programmes can perform, will
be described here.

A.4.2 File Structures

A file, in computing terminology, consists of some body of machine-readsble informa~
tion on magnetic media (tape or disc) or on punched cards or paper tape. Input filee provide
data for a particular programme and may themeelves be ocutput files from another programme.

File structure defines, in the present context, the organization of the different
types of information that must be grouped together to represent a single plot.

-

For permanent plots, the basic informmation on a single plot may be defined as follows:

~ Plot initial assessment

18t plot measurement:
2nd 1" n

Repeated on the 3rd " -

tape/disc for -
each plot

oo an wp

n'th plot measurement

-~ End-of-plot record
For temporary plots, the record structure is much simpler, being only:

Plot 1 assessment
Plot 2 ol
Plot 3 "

Plot n assesement
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These record structures relate to the permanent data base, which may be on either
magnetic tape or disce. For input of data for permanent plots, two types of different input
may be possible:

(i) Initial assessments

(i1) Remeasurement data.

In case (i), a new plot would be created in the database, but the programme would
neasd to check that plot identification did not conflict with an existing plet.

In cass (ii), an existing plot would have to be present (otherwise an error weuld be
"reported.), with the new measurement being at the appropriate point.

Experimental plots could normally ke treated in the same way as permanent plots.
However, related treatment plots would te placed adjacent to each other on the tape, for
oxample as:

~Treatment 7

BlOCk 1 - L]

~ Treatment n

 Treatment 1

Block 2 - .

- Treatment n

r Treatment 1

Block m { !
- Treatment n

To retrieve all the data for the experiment from the tape, n x m plots would be reoad
from the starting position on the tape (or disc) or the first plot in the experiment.

4.4.3 Error Checking and Editing Functions

The following error checks are required for permanent plot information=

(1) That the plot exists on tape (if a new plot is not being added to the systemr)
or does not yet exist (if a new plot is being added ).

(2) That the remeasurement dates are in a consistent and ascending sequence.

(3) That trees which have been thinned (i.e. disappeared in past measurements) do
not reappear on later measurements.

(4) That trees do not change species (on mixed forest plots only) or plets do not
change species {on plantation plote).
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(5) That diameter increments are positive and not excesaively large.

(6) Checking of the size ranges of parameters such as height, diameter, species
code, etc, for excessively large or small values or unrecognised codes.

On temporary plots, only the checks in the 6th category are possible.

Data should be added to the database even though it contains errors; an editing
programme may then be used to manipulate and amend the magnetically-stored data. With any
significant amount of data, this is usually much more convenient than attempting to correct
the original punched cards.,

4.4.4 Plot Summaries

The plot summary programme may incorporate the error checking procedures (or they
may be in a separate programme). Its main function will be to produce summarized informe—
tion relevant to the particular forest type in question, for use in further analyses. For
plantations, the summaries may include plot mean and dominent height, mean basal area
diameter, basal area, stocking and volume. For mixed forest, the summaries will normally
algo include stand tables of melected characteristics by species and size clasgses.

The summary programme ghould be able to produce its output both in a printed form,
with titling text to make it comprehensible and in machine readable form, without text, for
direct input to data analysis programmes. The machine readable ocutput may be put onto
magnetic tape or disc or punched on paper tape or cards, as appropriate. If the ocuiput is
onto magnetic tape, this should normally be done in 'formatted' or character—encoded form,
rather than in machine binary code.

For mixed forests in particular, but also for plantatione, it is useful to have a
facility sco that only selected parts of the ocutput are printed or placed on tape.

4,4.5 Other Utilities

Two other programmes will probably be needed with a sample plot data base:

— A sorting programme, able to reorder the sequence of plots on tape so that they
are grouped by forest, district, species, commartment, etc.. Normally,plots will
be entered onto the data base in an arbitrary order, whereas the summaries will
probably be preferred with some logical sequence.

— Archival and character-encoding programme, to transfer the main data base on disc
or tape into a form suitable for archival (see below) or transfer to another
computer site. This will involve character-encoding or formatting, the entire
data bage and writing it onto a magnetic tape.

A.4.6 Deta Bage Security

4 large data base stored on disc or magnetic tape can readily be destroyed by acci-
dents, programme or computer failures. It is essential therefore that affer each addition
of a significant amoumt of information, the entire data base is copied onto a spare tape or
disc to give a complete second copy. These spare copies can be rotated, so that at any one
time there is an up to date working version, an up 4o date archived version and two or three
previous archived versiong of the data base,
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4.5 DATA TRANSFER BETWEEN CCOMPUTER -SYSTEMS

The necessity frequently arises for transferring data between computer systems,
either for cooperative research or to permit research workers from one organization to study
elsewhere using their own data.

large amounts of data are best transferred on industry-standard magnetic computer
tapes. These may be 9-track or T-track tapes. The following informmation should be ascer—
tained when the tape is written:

~ The number of tracks (7 or 9)
~ The density (usually 800 or 1 600 bits per inch)
~— The parity (even or odd)

~ The inter-block gap in mm (or failing this the exact mark and manufacturer of
the tape drive mecha.nism).

Tapes for transfer between computers should alwaye be character-encoded or formatted
and should preferably use fixed-length records of moderate size, probably less than 120
characters per record, to facilitate reading the tape. The type of character-encoding used
(EFCDIC, ASCII, BCD, etc.) should be determined if possible but is not critical, as trans-
literation from one to the other is quite simple. A listing of the first and last few
hundred lines of the tape should be sent with it to help check that when the tape is read,
no records or parts of records have been lost.

Header labels and tapemarks are generally a nuisance when reading strange tapes, so
it is better to write the tape as a single file, without a tape label at the start. The
end of information is nommally indicated by a double tape mark.

Information concerning the mode of the tape (tracks, density, parity, character code),
the contents and the address of origin should be attached to the tape with a sticky label.

Tapes can normally be sent easily through the post. However, high frequency metal
detectors may erase some or all the information on a tape. The parcel should therefore be
clearly marked and easily opened for vieual inspection.
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9« ANALYSTS OF GROWTH AND YIELD DATA FOR UNIFORM FOREST

Uniform forests are those in which the main crop trees are of a lknown, uniform age.
They are usually composed of a single species or a few ecologically similar species.
Uniform forests are, by definition, managed under & clear felling system, with or without
intermediate thinnings. Regeneration may be by planting, artificial or natural seeding or
from coppice.

In this type of situation, the main parameters of growth and yield prediction are
well understood. There is a wide variety of possible models available. The main limiting
factor on the effectiveness of a model is usually the availability of data for the forests
in gquestion covering a wide range of sites, ages and stand densities.

The growth and yield of a forest can be modelled at three basic levels. These are
the whole stand, the size class and the individual tree. For uniform forests, stand models
are usually adequate for most purposes. BStand models are also very much simpler to both
construct and use. Consequently, this is the modelling strategy dealt with most fully; the
other two approaches are discussed briefly in section 5.7.

Bven within this single level of stand modelling, there is a wide variety of choice
in the particular set of functions to be incorporated in the model. Some altermatives are
bresented in the different sections which follow, together with an attempt to define situa—
tions in which a particular method ie most appropriate. Other altermatives have been omitted
simply recause of the need t0 keep this manual reasomably concise.

On the whole, techniques are incorporated which are characterized by simplicity,
accuracy and flexibility.

Within a particular aspect of stand medelling, such as for example the productiom of
sets of basal area/height/stand density curves, an attempt has been made t¢ include both
graphical methods and statistical methods of differing degrees of complexity.

5.1 SITE CLASSIFICATION
The relatively high accuracy possible with growth and yield models for uniform stands
results partly from the precision with which it is possible to classify site. This is

itself a result of the fact that age is normally imown from management records and height
of the dominant trees can usually be measured by hypsometers or similar instruments.

5.1.1 Use of Dominant Height as an Indicator of Site

The height of a uniform stand, at a given age, is a good indicator of the potential
productivity of that type of forest on that particular site. Hence the construction of
height/age curves corresponding to different site classes is the first step in growth and
vield model construction.

However, the mean height of a stand is usually sensitive not only to age and =ite
class, but also to stand density. Consequently, dominant height is normally used in defining
the height of a stand. Dominant height is almost entirely insensitive to stand density
differences.



s

Dominant height can he defined in various ways, but the definition with the wides®
currency is that the dominant height of a stand is the mean height of the 100 thickest
stems per hectare. Dominant height is also sometimes termed’'top height'.

Under some circumstances encountered in wniform forests in the tropics, dominant
height ceases to be a good indicator of site class. This cccurs with young stands of veuy
fast growing crops and also with certain species which are notoricusly variable in their
height growth, such as Pinus caribaea. This situation can be detected by ranking permanert
plot data by height within each age class. If the rank position of plots on successive
cccasions 18 poorly correlated, then any site class curves constructed must be considered
of doubtful value.

The problem arises simply because of the great variability of height growth, celative
to the effect of site, on these types of stands. It conld be partly overcome by a redefini-
tion of dominant height to require a larger sample of height trees per plokt, e.g. equivalent
to 200 or 400 stems/ha.. An alternative idea is to correlate final productivity with envi-
ronmental variables and use a site classification based purely on slope, altitude, scil bype
or other factors which appear to be significant.

5.7.2 Construction of Site Index Curves

The height-age-site index relationship is basic to uniform foresi growth prediction,
The relationshiv is usually referred to simply as the site index curves for a speciss in a
given enviromment.

Construction of site index curves may e by grapnicel msthods or by regression
analysis.

5+.1.2.1 Graphical methods of construction

Graphical methods of construction proceed as follows®:

1. Plot all available height-age data for stands of %the speoies in question.
Dominant height should be used, rot meen height, as it is much aore indep:iadent
of variations in stand density. Both temporary and permanent plols may be in—
cluded on the graph. With pemmanent plots, the peoints from successive remeasure-
ments should be joined with straight lines. This stage is illustrated in figure
5.1, which shows data from Pinus patula stands in Uganda.

2. Next draw curves by hand through the data. These sheuld attempt to follow the
trends of:

(i) The plots on the lower edge of the mass of data;
(ii) The median tendency through the data;
-(iii) The upper edge of the data.
In each case the curves should follow ae parallel as possible to the tendencies

of permanent sample plots on that part of the graph. The drawing of these three
curves is shown in figure 5.2.
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Figure 5.7

DATA FROM PERMANENT AND TEMPORARY SAMPLE PLCTS READY FOR
CONSTRUCTION OF SITE INDEX CURVES
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Figure 5.2

HAND-DRAWN SITE INDEX CURVES SKETCHLED THRCUGE THE DATA TO REPRESENT
THE MINIMUM, MEDIAN AND MAXTHIM TRENDS

r b



Dominant height (m)

35

30

25

20

15

10

Figure 5.3

TRACING OF THE THREE MAIL SITE INDEX CURVES WITH TWO INTERPOLATED
INTERMEDTATE CURVES ADDED AND FACH CURVE ASSIGNED A SITE CLASS
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When all of the date is from temporary plois,the same method can be applied, but
there is = possibility of considerable error due to the fact that the plots at
different ages may not be equally representative of different sites,

Two additional curves can now be interpolated between the upper and central
curves and lower and central curves. The system can then be traced onto a
separate piece of paper, giving the result shown in figure 5,3,

The curve system can be described as an eguation using the methods described in
Appendix A.1. The curves themselves are uwsuzlly numbered sequentially and
referred to as site class curves (or sometimes yield class, production class,
etce Jo  Thus in figure 5.3 the site classes are numbered from I (most productive)
to V (least productive).

The simplicity of this technique of constructing site index curves by graphical

methods is

(s

(i1)

(1ii)

5-4

Mat

obvious., It has three significant disadvantages:?

The curves produced depend tc a great extent uwpon the judgement of the persom
doing the work, especially if the data is sparse or largely from temporary plots.
Tifferent people will produce different sete of curves, which may be more or lesa
accurate and unbiased in representing the real trend.

When there is a large amount of data and it is already stered in a form acceptable
to a computer (e.g. on 80 column Hollerith cards or on magnetic 'I:ape), then this
is a very slow method compared to statistical techniques which can be carried out
by computer.

When siage 4 above, of describing the curve system as an equation is required
(as when the curves are to be used within an inventory or growth projection
progreame), then the work involved in this step alone may be as great as the
entire task of fitting the curves directly by one of the statistical techniques.

+2.2, Mathematical methods of fitting site index curves

hematical techniques of fitting slte index curves have considerable advantages

over graphical methods when a computer is available and the amount of data is large, However,

it should

not be assumed that the results of these techniques are necessarily more accurate

than hand-drawn eurves; this will depend very much on the correctness of the helght growth

model chosen and the validity of the statistical assumplions used in the fitting of the
parameters of the model. Mathematical techniques can be classified into four groups in the
Tollowing way:
temporary plot permanent plot
data data
"N . 1 P - I
proportional minimum- nested multiple
curves maximum regression regression
method withount with & priori

site index gite index
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Of these four methods, nested regression is statistically the most appropriate and
is also amenable to manual calculation. Consequently we shall examine this technique in
most detail, discussing the cther methods somewhat more briefly.

A1l four methods can be related to a single model of height growth, which is the
Schumacher eguation _1_/ 3

Hy = H__oexp(v/8¥) -(1)

where H, is dominant height, H ., is a parameter to be fitted and represents the maximum
height the gpecies could reach, exp( ) is the mathematical notation to indicate that the
expression in the bracket is 2 power of the constant e = 2,71828 (i.e. exp(2) means ee),
b and k are parameters to be fitted and A is the age of the stand.

The shapes given by this equation are illustrated in figure 5.4. By taking logarithms
t0 the base e (In) of both sides of equation (1), one gets:

In H, = 1n Hy,, + b/Ak -(2)

If we let 2 =1n H gy, then a and b can be fitted by linear regression, provided k is kmowm.
Appropriate valuee of k for most species lie between 0,2 and 2 and can be estimated by
techniques described later in this section or by nonlinear estimation as described in
Appendix A.4. For many species, an assumed value of k = 1 will give a satisfactory fit.

The » parameter in equation (2) should always be negative; if it is not, check calculations
for errorss The a parameier will normally be between 2 and 7; again, check for errors if
there is large divergence from this.

For proportional curves fit egquation (2) to the set of temporary sample plot data as
a whole by linear regression, with the dependent variable Y as 1n Hy and the predictor
variaule X as ‘t/Ak. If k is not known, follow the suggestions in Appendix 4.4 to debermine
ite

Thieg gives the average height growth trend, assuming that in each age class, all
sites have an egual likelihood of being representeds If it is known that, for example,
older age classes fall on poorer sites and younger ones on the best aites, then do not use
this method. FEither construct hand-drawn curves or, if PSP data is available, use nested
regression.

Once the mean height growth curve has been fitted, curves of the same shape can be
drawn to pass through different site index values. If the site index S is defined as the
dominant height of the stand at an index age A;, then the a parameter for the curve to pass
through this site index, ay is given by:

8y = 1nS - b/AS ~(3)

whére b and k are from the average curve.

l/ Schumacher, FeXey 1939 A new growth curve and its application to timber yield studies.
J. Porestry 37:815-820,
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The minimum—maximum method is more flexible in the type of curve shapes that result
than the proportional curve method, but it requires multiple observations in each age class
(at least 3), and hence cannot be used with limited amounts of data. The process proceeds
as follows:

(1) In each age class, calculate the mean H  for all plots and the minimum and
maximum values of H .

(2) Fit three separate regressions of the type shown in equation {2) to the ma.xd mum ,
minimum and mean sets of observationse The nonlinear k parameter can be assumed
as a congstant for all three sets or it can be fitted independently.

(3) As a final step, the separate coefficients for each of the three lines can, if
desired, be harmonized to give a gingle equation, using the methods given in
Appendix A.1.

A more complex variation on this method is justified with large amounts of data in
each age class, as might be obtained from a forest inventory. The height observations in
each class are sorted into order, from maximum to minimum and each point is assigned a site
clasg S from:

§ = (L-%)/n

where i is the plot's position after sorting and n is the number of plois in the age class.
Once the plots have been assigned a site class, then the analysis can proceed using multiple
regreseion as in the last method described below.

It should be thoroughly appreciated that the above methods for use with temporary
sample plot data should be regarded ae producing results that are enly of provisional
usefulness, as they depend critically upon the assumption that all sites have an equal like-
lihood of being represented in each age classs

This is rarely the case in reality and hence the curves produced will be in some
degree defectives The only solution is to obtain recurrent height—age data from permanent
plots or stem analysis trees, which can be analysed by one of the following methods.

Nested regression methods are of two typess There ie first of all the use of condi-
tional (or zero-one) variables in multiple regression, as described in the example in
Appendix 2.10. This method has not, to the author's knowledge, been used in site index
curve construction, probably because with any realistic number of plots, the number of
variables involved in the regressicn would be enormous; but the approach is by no means
inf'easibley given a specially adapted programme to generate and handle the many zero—one
variables. The second method, first described by Bailey & Clutter 1/ involves the use of
the common slope and common intercept estimators from covariance analysise. This metheod is
well suited to site index curve construction and is sufficiently simple to make manual
calculation of the parameters possible,

1/ Bailey, Rele and Clutter, Jels, 1974 Base-Age Invariant Polymorphic Site Curves.
Forest Science 20:155~59
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The common glope regression model is depicted in figure 5.5(a) and iz given by the
equation:®

YT = a; +bX =il

where a3 is different for each ploty but b (the slope) is the same for all plots, The common
intercept model is shown in figure 4.5(b) and is represented by the equation:

Y = a+b; X -(5)

where the intercept a is the same for all plots, but the slopes b; differ.s In terms of the
Schumacher equation, either model can be used, with Y as 1n H  and X as 1/,  The common
slope model corresponds in shape to sets of proportional curves, but there is an important
distinction between thie approach and that for temporary plots, in that the distribution of
sites in the different age classes has no effect on this method.

i e B
REGRESSIONS WITH COMMON SLOPES OR COMMON INTERCEPTS

(a) Commen slope resressions for four mlots

¥

-

L : : . X

(b) Common intercept regressions for three plots
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The statistical estimators for the common slope and common intercept models are as
follows:

-(nix Y i ke /

Iz s sods ) x .Z Y. " n.)

The common slope b = 14 2,58 d i § 1 -(6)
mzo

nj ;
135" - Gyl /e

i B N4 ny 2
Y. -2 (= xij.x xlaria/z X, ;)

1j
— . = -(1)
n, - i((g Xy 4) /§ %349

et B3

Fil
z
The commoen intercept a = :‘l
z
ol

As these formulae appear rather complex (al'though in concept they are quite simple)
some calculation pro formas are provided with a worked example. These are form 5.1, paris
1 and 2, Part 1 carries out the within-plot summations, corresponding to the £ for the j
subscript from 1 to njy in the above formulae, whilst part 2 of the form cerries out the
between-plot summations, corresponding to £ for i from 1 $om in the fommlae.

The example uses the datz shown in figure 5.6, from 6 permenent sample plote in
Cupressus lusjtanica stands in Kenya. 4 k parameter value of 1 is assumed for illustration
purposess The height—age data ars transcridbed into the first two columns of part 1 of fomm
5«1 Two sheets of this form are necessary for the six plotas The transformed X and Y
values are entered in columne 3 and 4. X2 is entered in column 5 and X times Y in column 6&:
Calculations should be carried out to at least four significent digite. The totals for
each plot (within-plot totals) for columns 3 to 6 are entered in the appropriate lines The
number of points in each plot is also entered. One then turns to part 2 of form 5.1 to
continue the calculationss For each plot, the various within-plot totals (EX? =Y, X2 and
E.XY) and the number of pointe n are combined according to the formulae shown at the top of
the columns of part 2. These figures are then totalled belween-plois to give the items
marked (1) %o (6) at the bottom. Finally the common slope and coammon intercept coefficients
are calculated ae shown in the last two lines.

The final result in this numerical example is that the common slope coefficient is
=9.222, whilst the common intercept coefficlent is 3.583. If either of these models is
plotted as a set of aite index curves, they will be found to bend over much more sharply
than is indicated by the data in figure 5.6, This ariszes because the assumed value of k
is much too large for this set of data.

Bailey & Clutter, in the paper referred to earlier, show how it ims possible to
calculate the nonlinear k coefficient directly using & regression model containing this
coefficient in linear form, provided that remeasurement data (from PSPs or stem ana.lysis)
is available so that height increment can be estimateds The method is as followst
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1, Caloulate a set of transformed Y values for the 2nd, 3rd, etc. observations
within a plot, from the formulat

Y, = In {-[?iifﬁﬂzl]

A3 584 j-1

%(H1J+Hij—15}

There is no Y value correspending to the first height observation.
2 Calculate a corresponding set of transformed X values from the formula:
X5 o= 1n(2/(Ap5+a1500))
3, PFit a common slope estimator using form 5.1 or eguakion (6) using these trans=~
formed X and Y values. Note that if form 5.1 is used, only the first two

columns and totale (1) and (2) are required on part 2.

i Subtract 1 from the common slope estimator obtaineds The result is the estimate
of k required.

When using manual calculation, form 5.2 can be used to carry out the transformations

in steps 1 and 2 above. It has been completed for the first plot in the exanple data %o
illustrate the usage.

The formulae for the commen slope and common intercept estimators, together with the

transformation iechnique for estimating the k parameter, can easily te programmed for emall
computers or programmable calculators. Any programmable calculator with at least 15 data
registers and 200 programme steps should be adeguete.

values

When k parameter is fitted in this wey to the deta in figure 5.6 the following
are obtained}

k = 0.25
b = —6.638 {common slope model) A
a = 64311 {common intercept model?)

Let us examine the construction of a set of aite indexcurves fram these resulis,

using the common intercept model,

age Ai.

We haves
InH = 6.311 + bi/A nEh =(8)

The parameter b; depends upon site index S . For e selected gite index; at index

in S Ou25

6.311 + bi/Ai

-
o
]

( noS - 6-311)-Ai0.25
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If we wish to plot curves for eite indices 16, 18, 20, 22, 24, 26 using an index age
of 20 yearsy; we have:

] by
16 -7.483
18 -7.234
20 =)
22 -6.809.
24 -6.625
26 —6,456.

Then from equation (8), substituting the b, for each site index curve, values of Hg
can be caleculated for selected values of A. The curves that result from the above parameter
values are shown in figure 5,7, on the same scale as is used for the data in figure 5.6.

If one wishes to calculate the site index of a stand, given its age and dominant
height, then use the formula:

In 8 = a+ (InHy - a)e(8/a)K -(9)

For example, for the parameter values for a and k glven above, suppose we have a
gtand of 14.5 m at 11.5 years. Then the estimated site index is given by:

in § D25

6,311 + (In 14.5 - 6.311).(11.5/20)

3.144

on 8 23,2

Hence we can say that the site index of this stand is 23 m

When the common slope model is used, instead of the common intercept model, then the
basic ecuation is:

WmB = s + v/A¥ -(10)

with Q’i belng dependent on site index as:

) k
ay = _:ms.-'b/Ai -(11)

with site index for a selected height-age observation being given by:

ns = InH_ +b(/85~1/8") ~(12)
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Form 5.1 Common _glope and common intercept regression models
Part 1 Plot data summarization., Use as many part 1 sheets
as necessary for all plots.
Data transformations used: X = | JAce
Y = o, HEgHT

Plot 3

Raw data Transformed datsa
A H X X x? Xy
5.4 G.6 0. 1693 2.26419 c.c222% 0.23 b
7.6 .o O3 g 2. %99 o.-at13 0.3 185
-6 . B 0.0843 4L | 2.6%9¢:6 0.CO8M0 C.2542
/.6 |52 |o.oféal | 2.72132 .00 | ©.2346
i2.6 | /6.3 o.07%9377 ] 2.T1[/v2 0.004630 | &. 22158
12.6 117.5 lo.o40]| 2.83622 | 0.00547 &.2120
Moty | /8.3 |0-06%ut | 290F7 | © 20482 | ©.2019

Totals| o 5 1o g3 |8.6358 | 0.0726% | 1.1173

Plot 35

Haw data Pransformed datn
4 4 ¥ v )[2 XY
£.T [ 5.1 0.1492 | 2.0919 |o02223 | 0.3122
$.< 0.7 C.iib | 2372 | ao0138k o. 27189
g5 /0.8 0. 1083 | 2.3795 |0.01I08 ©.2505
/0.6 2.8 0.0%4r | 2.62577 |o.008%0 o L3832
i2.6 .3 D.OTIRRN 2.6603 | ©.00630 o2l
3.6 1152 |o.0o740]l 2123 | 0.00%49 | c.201 b
[T 6.5 0.0694-¢| 28034 (0.00uk2 | 0. 1741

Totalsl n 1 1o e394 | 17.6622 |o.01271 | 1. 6372

Plot 36

Raw data Trangformed deta
A H 2 Y x? XY
6.7 2.9 @.1492 | 21861 0.0222% 10.326%
1.6 (4.1 ©.1316 | 2.4069 |0 o(13] o.31 67
/0.6 .6 o043 |2.68]0 |0-CO8BG0O ©.2629
i@ 6.5 |©0.0862 | 2. 8033 |00CO0TLR | 0.2 4|7
126 [ 181 |0.07937| 28959 | ©.00630 | ©0.2298
/3.5 200 007407 2.9987 | 00059 | ©-2219
lo.e | z2l.¢ 10.05%4L] 3.044L5 |6.004,82 | ©.2114
Tovals n 7 1, (343 | /190135 |0.07253 | 1.8007




= 54 =

Form 5.1  Common slope and common intercept resression models
Part 1 Plot data summarization. Use as many part 1 sheets
as necessary for all plots.
Data transformations used: X = 1/ Age
T = tog HEGHT
lot L e
ftaw data Trangformed data
A H X ¥ x?2 i
/6.7 211 0.05988 |2.04932% | c.cO 359 0. 1826
17.¢ 224 jo.0%6f2 | 3./i09! Q.o032% o.1167
20.6 |28.! lo.068sy|2.228% | 0.204i36 c.-1Sek
2.6 26877 [0.044L30| 2. 2U65 |0 . 00211 0.1503
22.6 [26.3 |O.04p28] 3.2696 |©O-00 (95T Q. T
2yt |27.7 0.0 098] 2.32'4 [0o.00 1680 | ©.136]
Totalsi n ¢ |o.2948 [19.2/89 |0.0 1495 C.T456%
Plot &2
Haw data Pransformed data
A H ¥ Y %2 XY
o AW 0.04608 | 2.89569 |0v.00ciki2 |0 12334
22.6 | /7.4 (0.0Gl2s | 2.7452 C.OoVi%H O 13l
23.5 | 20.0 |o.0w255 | 2.9957 o.0018 | o 12775
266 | 22.3 |o.03159 | 3.f0ub .00 L | . 1167
27.6 | 23.3 1@.03628 | 3./e85 o.o0 (3] S Ll
28.5 | 24-2 [0.03509 [3.1864 |00 (22 o. (/18
29-4 |24.7 |o.o340[[3.2068 |0.00r/b6 o .j0f!
Totals n 7 lo.2768 |21.%5031 lo.olioo . 8L 328
[Flot [7¢%
Raw data Iransformned data
A H X Y X° XY
22.7 | 28.3 |0.04uo05 | 3.34-29 (o.co =
23.8 | 28.9 |0.0426% | 3.%6%R | c.co§l oyl
25.6 3.1 003906 13.4372 oD i83 S 1343
265 | 32.5 00374 [3.4Bt2 |[CO0 1%L | 0. 0314
23. 6 33.0 02437 |3.4965 |o.ocoiail e 1223
9.4 | 33.6 |jo.03u0l|2.85145 |ooo b o. 1/9S
Totals B ¢ |o.2324 [20.8342 jo.c0fo8 |0-1978
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Form 5.1 Qommon slove end common intercept regression models

Part 2 Totals between plots and coefficient caleulation
e EXY-»II}?Y zxz_%lf Z};;{}QH %%—Zﬂ n oY
2 |-o.04uk83 |0.00563077| j4L.7688 645618 | 7 18 4358
35 |[-O0.0LILET i6.00491395 -15.‘?‘”2 & 52655 7 171.5€23
36 |~0.058005 (0.00563248| (4.99T1 6. 45618 | 17.013¢
b6 |~0.003%%9|0.00026827] 18.19671 | 5.89232 | 6 | (9.2189
52, |-0.0034221|0.00013348{ 2115637 | 6.T1506 | ] |21.503
198 [-0.0015028 |0.c000T237120. L1986 | € 94821 65 |20.63562

‘ , b 5 6
Totals l’o.:gz':é. %—l,ofé.gé.({- 3‘]1:0./2,'? "Iiés.zoth "llz—o ‘Jf’é»"séo

Common slope b = (1)/(2) = "o"s‘q'g('_’ojégeg = =9.222
116.56 — 110.127)
Common intercept a = ((6)-(3))/((5)-(4)}) = = (ko — 32 2045)

= 3.583
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I_“iggi"e 'E-6
Data from 6 permanent sample plots in Cupressus
lugitanica stands in Kenya. Used in text example
for fitting site index curves by nested regression
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Form 5.2

Transformations Yo ags and height data from PSP's to fit Io
parameter in Schumacher equation by common slope estimator
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Figure 5.7

Site index curves produced for the data in
figure 5.6 by Bailey & Clutter's nested regres-
gion method using the Schumacher equation
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Multiple regression methods of fitting site index curves can be used as an alterna-

tive 0 nested regression when the site index or site class of the plot ecan be determined
prior to fitting the medel. There are perhaps five ways in which this a priori site class
or gite index determination can be made:

(1)

(2)

(3)

(4)

(5)

For a long series of plot measurements which have passed through the index age,
gite index can be taken directly as the dominant helght at the index age.

For series of measurements which do not pass through the index age, an eguatiom
such as the Schumacher equation can be fitted independently to each plot and
used to predict the dominant height at the index age, which is then taken as
the site index for the plot.

For temporary plot data, site class can be assigned on the basis descrited
above under the maximmm—mininrum method of fitting site curves. This method
should not be used with PSP data as it is wasteful of the information inherent
in such data.

4n exipting set of site curves can be used tc assign site clase to the plots.
Altermatively, hand-drawn curves can be made specially for a particular analysis,
to classify plots., This technique ig useful when existing curves are almost
gatisfactory, but of not quite the correct curvature or one wishes to approxi-
mate hand-drawn curves by an equation.

An environmental variable such as altitude; rainfall, etec. can be used as the
site indicator variable. This approach is rarely successful due to the poor

correlation usually found between a single environmental variable and helght

grow‘tha

Once the method of assigning site class to the plods has been determined, one has a
set of data in which three varisbles are known for each cohservation?

Tominant height Ho‘
Age A
Site class or index 5

Multiple regression can then be used to fit 2 model which relates Hy, to A a2nd S
using various different transformmations. Two types of model have been used:

(1)

(2)

Constrained models, for use with site index curves, where height is expressed
relative to site index and age relative to index age A,. The regression fitted
is one without an intercept. An example would be the model:

] 2

(Hy -8) = by(A—-4y) +bp(h - &)
Thie kind of model is forced to give a dominant height H0 equal to site index
S when the age is equal to the index age A;.

Unconstrained models, with an intercept termm. When used with site index,
rather than site class, the curves must be conditioned after fitting to ensure
that the dominant height corresponds to the site index at the index age.
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Some examples of the types of uncongtrained models that can be fitted ares

_ 2
B, = byA+Dbd+b5+ byheS + b4A ~(13)

= =
log B, b+ b1/A + 8 + b3;3/.q (14)

0

Equation (13) is based on the quadratic equation. See figure 4.2.1(e) in Appendix &
for‘the shapes that a single curve may take. Obviously for site index curves, only one case
of the several possible shapes is desired. Eguation (14) 1is based on the Schumacher equa~
tion, or figure 5»2.1(3).

An infinite variety of other models is poseible. In all cases, it _ie essential to
plot the curves after fitting and to overlay them on a graph of the data to ensure that the
trendse are accurately followed. No reliance can be placed on the statistical parameters

e.ge By residual standard deviation) associated with multiple regression in determing the
suitability of the curves.

When site index ie used, as opposed to mite class, then it will be found that if the
curves are plothed, the predicted dominant height H at the index age Ay is generally not
equal to the aite index S, This is because there is8 no constraint in the fitting process
0 bring about thie coincidence. Curves for selected real site index values 5% are graphed
by calculating the statistical site index S reguired in the model to give a line passing
through S* at Ai.

Thus from model (13) we have:

2
. A 3 . b -
S by + By + 1,8 + D48 + b A (15)

a 2

- o 5% D, = = A -

. (s bo = b4, b4Ai )/(1@2 + by i) (15)
or from model (14) we have:

" * = S+b.8
log 8 he +b1/Ai + b, X /Ai

S = (log S* - by - b1ai)/(b2 B b3/Ai) -(16)

The necesgity for conditioning site index curves and the mysieriocus and confusing
distinction between statisgticel site index S and real site index 5% has led many workers +o
use models of the constralned type described above. Unfortunately, it is often the case
thet many standard mltiple regression programmes do not have a facility for fitting equa~
tions without an intercept termy so thet this option is not available to the reseasrch worker.,

With site class curves, the problem does not arise, since there is no requirement
for the curves to pass therough a particular point.

Multiple regression technidques have the advantage of great flexibility in the type of
model adopted. They have the disadvaentages of requiring g priori eetimation of site index, of
belng insfficient statisticallyin not meking use of the nested nature of PSP data and of being
based on the invalid assumption that the pite variable is kmowm to a high degree of precision,
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5.1+3 Site Assessment Models Based on BEnvirvonmental Factors

Site index or site class curves are ohbviously only useful as a tool for predicting
production potential when applied to existing stands. A large class of forest management
decisions require some assessment of potential production of a given specles hefore it has
been established or at least very early in the life of young stands.

This is only possible in two types of situationt

Very generaiized predictions as to maximum productivity in a given region by
comparison with optimal productivity of similar forests growing under similar
environmental conditions elsewhere in the world.

= 'More detailed prediction of site class with reference to a particular set of

height /&ge curves for a given specles by construction of & functional relation-
ship for forests already established in the region in question, between gite
class and enviromnental factors such as soil nutrients, depth and texture,
altitude, aspect and rainfall.

The first approach ie particularly relevant for mixed nalural forests. Az far as
man-made uniform foreste are concerned, it corresponds more to the phase of species and
provencnce selection than t0 that of detailed yleld prediction with which this manusl is

concerned.

Fels3e1 Functional models for siie class prediction

Site classe prediction models are constrncted in the following etages:

(1)

(2)

(3)

(4)

Construction of gite index or site cless curves from permanent sample plois in
existing forest.

Collection of environmentzl date from permanent and/ or temporary plots. Fach
plot is also assigned a site class on the basie of dominant helght and age from
the site index curves, The environmental data collected should correspond to
the suggestions glven in section 3.2.3.

The various envirommental variables are transformed and selected as described
in the following section, +to produce a predictive model in the form:

8 = B0 + blee! + b2,82 + ccss:0ne + bD.ERD

where b0, bly etc. are coefficients fitted by multiple regression and el to en
are relevant transformations of envirommental variables.

Confidence limiteg for predictions can be defined from the methods given for
multiple regression in Appendix A, In generaly it ie also desirable to test
the function by comparison of actuml and predicted site clamses for an inde-
pendent set of data to that used to fit the funciion. This independent data
should preferably be from a different regiom from the main data to test the
regional stability of the prediction function.
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I A Const;'uction and selection of environmental variables

The total number of environmental varizbles measured may be quite large, possidly as
many as 100 per plot, whilst a useble model should contain the smallest possible number of

most easily measurable variables.
Reduction in the total number of variables can be achieved in several ways:

- By synthesis of some items of information. For example, climatic data may be
synthesized to give the length of the wet Brason or growing season with tempera-
tures over 6° Cy or average temperatures during the wet season or more complex
techniques based on evapobranspiration formulae.

= Statistical selection of the most significant varisbles. Principal components
analysic can be used for this, but it is perhaps simpler to use stepwise multiple
regression analysis.

~ Graphical analysis of varisbles considered likely to be most important as limiting
factora In growth, selecting only those with definite and cbviocus relationships
with site class,

The actual measured variables should if poseible be transfommed in order to give
values that are likely to be correlated with growth. The most obvious example is aspect,
which may be measured in degrees from O to 360, where values around zero and 360 both corres—
pond to northerly directions. Taking the sine of the angle divided by 2 gives an aspect
code between zero for northerly directions and one for southerly slopes.

5¢1.3.3 Problems in the application of eite assessment functions

To be effective, & site assessment model should be described in terms of predictor
variables that are easily measurable. They should also have z relatively high correlation
coefficient, preferably over 0.8 with 20 or more points. Otherwise the relationship may be
statistically significant, but of no practical use for prediction purposes because of low
precision. The predictive equation should also have as few predictor variabls as possible,
preferably not more than three or four.

The predictor variables should be quantities which dre readily determinable using
conventionally aveilable equipment.

An example is shown in figure 5.8 of a predictive model which fulfils these criteria.
It is based on a single varisble, which is the number of days in the growing season exceeding
6°C, BSite index ie expressed in terms of mean annual volume increment per annum at ite

MEXL1MIN

The fewer predictor variables are involved in a model, the more likely it is to be
usable over a wide region. With many predictor variables, the model becomes very semsitive
to the relationships between them, especlally if some of the predictor variables are
highly correlated. Consequently, regional shifts in the balance between predictor varie-
bles can easily invalidate a complex model.
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HEEI‘E io 8

Site assesement model for Scotch Pine (P, sylvestris)
forests in Swedene Average productivity of regions is
plotted against mean number of days exceeding 6°C per
years (Reproduced from Fries, J., 1978 "The assessment
of growth and yield and the factors influencing it"
Special paper to 8th World Forestry Congress, Djakarta)
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5e2 STATIC METHODS OF PREDICTING YIRLD

Static yield prediction methods are those in which yield is predicted directly as a
function of age, site class and the history of stand demnsity. The methods are static in the
sense that the resultant yield functions do not permit any varistion in the history of stand
treatment, except intec broad classes of alternative thinning treztments that are already
present in the data.

The compbonents of yield that are of major interest to the foreet manager are volume
and mean diameter. To determine the volume of stends requires a knowledge of smtem numbers
and height, as well as mean dismeter. OStem mmbers are usually the basis for defining
thinning treatment, whilst height is the most common means of site classification.

In this section, static methods of predicting mean diameter will be considered.
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Figure 5.9
._Shape of the relationship between mean diameter
and domin_an't'heig;h‘t—

(a) With temporary plot data, a scatter diagram iz obtained, The true
shape of the diameter/height relationship is difficult to define.
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('b) With thinning experiment data, the shape of the relationship and
its dependence on stand density is very clear, A represents the
lightest thinning and D the heaviest.
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5.2.1 Grephical Methods based on the Diameterggei@t Function

When data from a mass of temporary plote is graphed with mean diameter on the verti-
cal axis and dominant height on the horizontal axis, a diagram is obtained similar %o figure
5.9, If the data is from a thinning experiment, something like figure 5.9t is obtained.
Treatment A represente the lightest thinning, i.e. the heaviest stocking, and Treatment D ie
the heaviest thinning, with the lowest stockings..

It can be seen that the curve is concave with respect to the horizontal axis. With
temporary plot dats or with permanent plots, a series of hand-drawn curves can be constructed
in a manner exactly analogous %Yo that described in section 5.1.2.1 for site index curves,
except that here the curves demarcate differences in stand history rather then site classe.

With temporary plot data, the shape of the curve may be defined basically from the
upper and lower envelopes of the scatter diagram, but obviously the curve shepe can be easily
misconstrued as a result of a few exceptional or anomolous points and remains largely a
metter for subjective judgement. With permanent plot data on the other hand, the main curve,
trends are readily wvisible from the slope of the linea joining remeasurements on the mame
rlot.

Height is used on the horizemtal exis as 2 site-dependent indicator of age. OCraphs
can be plotted using age instead, but in thie case a separate set of curves is needed for

each site class.

Once a set of curves has been drawn; the stocking history represented by each density
class must be determined. This is discussed in section 5.2.3.

Hand-drawn curves can be expressed as efuations by using one of the various approxi-
mation methods described in Appendix A.

5.2.2 Direct Statistica? Estimation of Mean Diameter Prediction Functions

Functions can be fitted directly to mean diameter data by methods analogous to those
ugsed for fitting site index curves. The predictor variables may be dominant height and stand
treatment history (designated by T), or mey include age and site index az separate variables
instead of ag the comblhed variable doninant height. The methods that may be used to fit the
functions include:

(1) With temporary plot data:

~ Sort data by diameter within helght classes and assign an order number
after sorting. 4djust order numbers within each height class onto a comon
scale by the transformation:

= i / n
where i is the order number within & height class and n is the number of
points within the classs T 1B an index of treatment history. A multiple

regression of one of the types dimcussed below can then be filtted using T
as an independent predictor variable,

- Fitamean trend line by simple regression of mean diameter on dominant height
and then construct proportional or parallel (anamorphic) setas of curves.
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(1i) With permanent plot data:

~ Simple nested regression, as described in section 5.1.2.2 for site index
curves, This depends on being gble to find a transformation for the data
that will result in a figure like figure 5.5a or 5.5b for a common slope or
common intercept model, The Schumacher eguation may be suitable or a simpler

transformation of the type:
Dg = a + b.HOk
vhere k is a power between 0 and 1.

— Multivariate nested regression, either using the conditional variable tech-
nique described in Appendlx A2,9 or using more advanced multistage regression
techniques,

~ Conventional multiple regression, after assigning a treatment history value
T %o each plot. This may be done in various ways, lncluding & variation on
the sorting method described above for temporary plots in which average
values of T calculated for each measurement are taken for plote managed

according to a congistent thinning schedule,

With thinning experiments, T values may be assigned for emch treatment simply
ag 14 2y 3 etcs if the treatmente can be clearly ordered according to their
degree of intensity.

A very common approach to fitting multiple regression models to permanent
plots is to use spacing relative to height or even simply stocking, as
indices of treatment hietory. Thim method can appear to work quite well,
but introduces special conceptual difficulties which are discussed below in

section 5.2.3.

The actual mathematical function that is used for the basis of the fitting method
is not very important, provided it is capable of assuming the correct shape. This will be
a curve that is gently concave with respect to the horlzontal axis, i.e. bending dowawards
away from the straight line, as shown in figure 5.%. Suitsble models are:?

(1) Dg = BO + b1.Ho + b2,T + b3.HooT + bd. Ho?
(2) Dg = b0 + b1 Ho™ 4 b2, + b3, Ho'uP

The second model can be fitted using trial values of k between O and 1 with linear
regression methods, selecting a value that gives a maxdmum coefficient of correlation or it
can be fitted directly by nonlinear regression.

Whatever function is used to f£it the data, the results should be examined grephically,
overlaid on the data, for anomolous behaviour.

Se2+3 Defining Treatment Hlstory in Terms of Stocking and Age

The classes of treatment history may be defined graphically or by a numerical methed,
a8 discussed in sections 5.2.1 or 5.2.2 respectively. Once this has been doney then the
actual stockings involved may be determined by a process of tabulatlone If the function or
graph relates mean diameter to dominant height, then for each treatment class, construct a
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table of height clasmes and determine the average stocking per ha in each class. The height
classes can subsequently be converted into classes of age and site index by reference 4o the
relevant site index curves.

When the mean diameter function has been fitted using stocking or relative spacing
28 an index of treatment history, then it is not necemsary to determine the stocking corres-
ponding to a partiocular treatment history. However, the cosfficients determined for such a
function are dependent upon the particular relationship between age and stocking cbserved in
the data. Fallure %o realise {his can mean thet the function may be used for age/stocking
combinations not represented in the data, giving mors or less erroneocus resulis.

5.2.4 Static Tield Functions Predicting Basal Area or Volume

4g well as constructing static yleld functione 4o predict mean diameter, it is posmsi-
ble to use identical techniques 4o predict besal area or volume per hectare. The achual
shapes of the functions willbe scmewhat different and will be as shownin figures %.10a or b,

In general, use of mean diameter involves certain advantages in terme of overall
model simplicity. If besal area or volume are predicted; then it is usually necessary %o
have some function which wlll allow mean diameter to he determined subsemquently.

Alsoy, with basal area or volume per hectare, a large component of the response to
dirferent stand densities is simply the mulitiplicative effect of different stockings. With
the mean diameter function, this influence im removed, sc that resuliant relationships focus.
upon the real effects of competitiom.

5+2.5 Limitations of Static Tield Models

Static yield models have three significent disadvantages:

(i) It is difficult to combine together data from stande with radically different
or variable treatment histories and obtain a conaistent and effective yield
function.

{41} Once the model has been conetructed, it cannot be used to predict yields for
altermative treatments apert from those represented by the treatment hiestories
incorporated in the model.

(i{i) Detemmination of thinning ylelds is difficult, unless accurate records of the
diameterse of removed shema are kept. TVery oftem with PSPe or even wiih experdi-
ments zuch data are unavailable.

On the other hand, static models are undeniebly eapier to comstruct and use than
dynamic models and,in appropriate situations, at least as accurate.

5.3 DYNAMIC METHODS OF PREDICTING GROWPH AND YIELD
A dynamic model is one which models rates of change within a system. As far as

forest yield studies are concerned, this mesns that the basic prediction is of increment in
diameter, basal area or volume.
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Shape of the volume and basgl area functions
over dominant height

(a) Volume per hectare on dominant height. Note that the solid line
represents a limit not exceeded &t very high stand densities, If
logarithmic scales are used on both axes, the relation appesrs
a8 & streight line,

v decreasing

stand density

Ho

(b) Basal arez per hectare on dominant hefght. The solid line is a
limit not exceeded at very high stand densities.

decreasing stand
density

Ho
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Dynamic models have the advantage of being more realistically representative of the
true cause and effect dependence between stand demsity and ztand yield than are static yield
models. They are free from the limitation that the data should represent a congistent series
of stand histories and conseguently can be used as the basis for analysing and synthesising
data from very diverse types of experiments and permanent sample plota,

Growth models are based around functions that predict increment (of mean diemster,
basal arsa or volume) over short time intervals, as a function of stand density, expressed
in terms of basal area a.nd/or age and stand age and gite classe The latter two variables
may be combined as dominant height as was done for the static yield models.

To produce yield predictions, the growth function smmust elther he integrated mathe-
matically or iteratively summed over a succession of years, This latter process is usunally
achieved by writing a small computer programme, which becamer by definition = computer
simulation model of forest growth.

In the sections following, these techniques are digcussed in more detail, with parti-
cular reference to functions of stand basal area increment. The techniques are not greatly

affected by the use of mean diameter or volume as zlternative perameters, but basal area
increment is perhaps the simplest to model.

Se3e1 The Bagal Area Increment Function

5+3.1.1 Bagal ares increment as a function of dominant heigrht

Stand basal area inorement for most plantation species, when plotted over dominent
height, shovs the following type of trend:

Ig A

maximum inecrement
[

H Hb Hc

where I is current annual basal area increment per ha, Hg is dominant height and NT’ NE’
etce arf different levels of constant stocking, with N, greater than N,, which is grealer
than sz and so on, The curve has three regions which can be distinguished for the purposes
of practicel data analysis:
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“1s The range H, to Hb shows increment Tising sharply to a maximum and then falling
again. There are strong differences between stocking classess This part of
the curve is difficult to fit with simple regression models. With some species,
it cccurs at too early an age to be represemted in sample plot data.

2% The range Hy to B, shows a strong decline in basal area increment with time
(increasing Ho) and marked differences between stocking classes. This part of
the curve cen easily be modelled by several of the regreseion functions of the
type shown in figure A.2.1 in Appendix A. The following model includes the
effect of stocking:

In Iy = by + by Hy®  + by NE =k ~(1)

The coefficient k can be given assumed wvalues (1, 2 etes) or fitted by nonlinear
regression. Natural logarithms (base e) are used to transform I =as this sim-
plifies the use of an integral form of this model (see section 5?3.3).

3« Beyond H,, the differences between stocking classes becomes negligible and the
baeal srea increment will be almost constant. This part of the curve is beyond
the culmination of memn amual velume increment in most epeciesy bul will be
relevant to yield prediction in long rotation sawlog stands. ¥odel (1) above
produces a satisfactory type of response in this region.

It is difficult, 28 has been noted, to find a well behaved linear function that fiis
the entire range of thie curve without bias over any portion of it. Because the point I
usually occurs early in the life of the stand, it is better %o fit a function such as (1)
above only to data beyond the maximum Ig, and to predict standing basal area G at Hy from
a yield function in terms of stocking. For example:

N+ b2N2 -{2)

Gy, = a,+131

where G, is the initial basal area, at a defined dominant height Hy, and depends only on
the stocking at that point in time, regardless of previous stand history.

523e102 Other methods of predicting basal area increment;

Basal area increment can be predicted as a function of age or of standing basal area.
Phen age is used; different sets of increment curves are required for esach sife index class.
With standing bdamal area, satisfactory models cannot be obtained for stands with very varia-
ble historiess Conasequently, the prediction of basal ares incrememt from dominant height
and stocking, as described above, is recommended.

5e3¢1.3 FPractical problems ip analysis of increment dats

Increment data ie always very variable, This ie the combined effect off
1s Year to year variation in inorement due to climatic fluctuations.

2. Instrumental error. Simple measurement systems such as diameter tepes may have
the same order of error as the lncrement being measurede.
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A consequence of this is that large amounts of data are regquired to obtain satis-
factory estimetes of the regression coefficients. Purthermore;, because the effects of
different stand densities show out only weakly through the gemeral varlation, extreme
differences in stand demsity must be present in the data if a density~dependent model is
t0 be constructed.

The best increment fumctions may only heve coefficients of determination of between
0.7 and 0.8, Mo test the suitability of a particular model under these circumstances, it
must be used in its integral form (or as part of a simulation model) to predict final yields.
Small bieses in the increment function which do not show up graphically or by direct residual
analyeis can produce large errors in yield prediction because ervor in the increment funcition

is always cumulative,

5¢3.2 Constructing s Growth Model with Spacing Fxperiment Data: Mersh's Responss
Hypothenis

It is possible to develop growth models based on spacing experiments of the type
described in section 2, using simplified graphical techniques, which can give accurate pre-
dictions for the growth of stends subject to & variety of different thimming treatments.
The basis of this method is Marsh's hypothesise:

"The increment of thinned stands is equivalent to thet of unthinned stande of the
same stocking {measured in stems per umit area.) and density (measured in basal area
or volume per unit area.), ut of younger age (ice. the age at which they had the
pame basal ares or volume per unit area)', 1/

This hypothesia has been volidated with meveral eub-tropical species and appears to
give aecurate snd unbiased estimates of growth following thinning, provided that the growth
is measured over not less than 3 years. The method proceeds ag follows:

(1) Tirst graph the spacing experiment results using smoothed mesns for each
stocking level, using bamal area over age (figure 5411 Jo

(2) Define the thinning treatment to be umed in texms of both the basel area ab
which thinning takes place and the basal srea and gtocking to be removed.

Suppose for example we have a treztment schedule ap follows:

Plant at 1 300 trees/hs.

Thin, neo. Thin at Basal fArea 8 sfter ELE.‘@EE.E
s . Thinaing Thinning
28 22 900
B a5 28 500
5 35 30 300
CF 3% clserfall

- ' ds %o Thinning.
1/ Marsh, BuK. and Burgers, TeFe 1973, The Response of Even—aged Pine Stan
Forestry in 8, Africa, 14t 103~111.
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Figure 5.11

Annlvysisg of spacing experiment

veing Marsh's hypothesis
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(3) Draw the treatment schedule on the graph (broken lines on figure 5.11) and from
Marsh's hypothesis determine the time interval between thimmings.

Thin now arent fAge Interval Real Age at Time of Thinnine
4 0-8 8 8
2 84 5—1 39 5 "5 13
3 14.5-18:5 4 17
Ccr 20~23 3 20

(4) Recomstruct the basal a.rea/&ge relationship using the correct age axis for the
thimmed stend. It is then possible %o construct the verious other yield etati—
stics for the stand in relation to age.

& variation on this method ellows a single diagrem to be used for construcing yield
curves for different site classes. Thie involves using dominant height, instead of age, as
the x~axls of the graph. Height is then vsed 28 2 gite-dependent transfovmation of ase with
the age intervals being determined via the site index curves. This method can also be used
where the <pacing experiment data do not adequately cover a range of sites, to provide hypo-
thetical yield tables for such sites. Note however that the substitution of deominant height
for separate site-age comblnations may not alwmys give a sufficiently accurete representation
of site-dependent responses,

Increment functions obtained from permanent sample plots of uncontrolled spacing or
from tree increment cores can be used to construct curves for sband bassl area of wnthinnes.
stands at different stockings, which may then be analysed graphically as abovs. This is
convenient when the users of a paTticulayr growth model do not bave access to computing
equipment.

5.3.3 Conversion of Growth Models to Tield Models by Interration

56231 Introduction

The mathematical integration of a basal srea increment function for a given mexries
of thinning operations resultsin abasal area yleld function for that thinning series. Mathe—
matical integration has advantages over simulation as a way of using & growth medel in that
no speciel computing equipment is needed. On the other hend, many deceptively simple growth
models (e.g. equation (1), mection 5.3.1.1) may be very aifficult to integrate.,

This method assumes an elementary kmowledge of differentisl and integral caleulus
on the pert of the research worker.

5+:3.3.,2 Basic theoxy

If we have an increment function of the type shown below:
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where q is any growth rate (basal areay diameter or volume growih) and t is the time axis,
then the growth rate equation is represented very generally by:

g = £{t) (1)

whilst the area under this increment curve ic the total accuwmilated yleld. Thus the aceu-
nulated yield up to time +, is given by:

1
- ) 2
Q= Q+ t.{j qedt (2)
vhere Q, is the accumulated yield at the start of the period, .,

For an unthinned stand, the basal a.rea/a.ge curve represents the integral function
equivalent to equation (2) sbove with @ =0 and t = 0. Hence any function fitted to data
from unthimmed etands provides an a.lrea.&y integra.tgd form of growth model. Consequently,
if any date from a spacing experiment is fitted with a yield function dependent on stend
dengity, then that yield function can be used %o mccurately predict the growth of thinned
stands, This is a generslization of Marsh's hypothesis to any type of growth function
using any variables.?l /

5s3e3.3 Application of an integral yield model to differemt thimming {reatments

If an integral yield model has been fitted to data from unbthinned stands which
predicte bagal ares from dominant height and stocking, thus:

¢ = f(Ho, N) (1)

! / Marsh'e hypothesis as discussed earlier ism egquivalent to integration of a function of
the form:
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Then if the stand is thinned at a dominant height H‘t to0 a stocking Nt’ the yield
up to the time of thinming will be:

G.t = f(H‘I;r No) (2)

where N _is the initial stocking (after early mortality is accounted for). If the thinning
ratio (C.f. section S.4) is:

T‘i‘ L N'
¢ /G

- @ = NJ/N
T I/G
then for thisz pawbticular thinning the stending orop basal ares after thinning will bes
T r/(}f
whilst the yleld at an interval t + {1 after the thimning will bey

G‘t-bi . G't1 N f(%-pj_, N-t;)- = f(n-tl Nt)' (4)

5¢3e3.4 Example of use of an integral yield model

Figure 5,12 shows dmta from a spacing experiment in Pinus patula stands at Kwira,
Tanzania, designated Experiment 345. In all there were 8 treatmente, laid out systematically,
with 2 replicates for each treatment ueing rectanguler plots of 0,08 ha. Figure 5.12 shows
only the data from 4 plots at stockings of 173, 347, 694 and 1 388 atema/ha.. A model to
predict standing basal area was fitted to the whole set of date {192 cbeervatioms) by
weighted multiple linear regression, using the model:

= & W
In G b, +7b, E +b2E+b3E:i (s)
where H* .= '1/(110 = LN
mpd B = 100/ / N
The model was weighted by G to avoid the excessive biaﬁ towards lower values that

often results when a logarithmic transformation is used. An B of 0.95 was cdbtained with
coefficient values:

b 44,0865
b, 1.5991
b, 0,047838
by —443063

The model is' shown on figure 5,12 overlaid on data from 4 treatments.
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Figure 5¢12 Spaoing experiment 345 at Kwira, Tanszania,
in Pinus patuls stands
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It was desired to construct a yield table for stande planted at 1 100 stems/ha.,
thinned once at 9 years using systematic thinning to 700 stems/ha and clear felled at
16 years,

For average sites, 9 years corresponded 1o a dominant height of 17 m, and the
rotation age of 16 years to 24 me The basal area at 9 years, prior to thinning, can be
calculated directly from equation (5):
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B¢ = 1/(17 - 1.3)
= 00,0637
E = 100/,/1 100
= 3,02
In G = 4.0865 + 1.5991 X 0,063T + 0,047838 x 3.02 — 4,3063 x 3.02 x 0,063
= 3,5043
oo = o0 o 3326 0°/ta

8ince the thinning from 1 100 to TCO stems/ha. was to be systematic, the proportion
of basael area removed would be the same as the proportion of stocking removed, From squa~
tion (3) above, with T = 1,0 by definition:

c! 00/1_100
1/33.26
- 2.7 n'/0a

Therefore the basdal area extracted in thimming waat

G = 33,26 - 21,17
- 2
= 12,1 m /ha

N ) corres—

The yield at clearfelling is obtained from equation (4), where f(Ht+i' L

ponds to equation (5) entered with H = 24 m, and N = 700 stems/ha, giving:

W

and f(Ht’ Nt) i0 equation (5) entered using H = 17 ms

" N_b) = 35,98

f(Ht,a N_t) = 26497
so that basal area yield at clearfelling is given by:

GC'F = 2117 + (35098 = 26-97)
2
= 30,18 m"/ha

5:3¢3s5 Fitting cm\pa.ti‘ble zrowth end yield models to increment data

¥When no suitable specing experiment dats is aveilable for direct fitting of the
integrated form of a yleld model, then a growth model can be fitied to increment data from
permanent plote or stem analyses which can subsequently be integrated to give a yield model,
-Clu't'berl/ preoposed a growth model of the fypet

1/ Clutter, Jel. 1963, Compatible growth and yield models for Loblolly Pine, Forest
Seis 9 (3): 354-3T1
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1
Ig = G(a+1bS - 1n0)A (6)

where I 1is basal area incremen't/ha/year, S is gite index and a and b are coefficients which
can be gstimated by linear regression by fitting the function:

(AE£+1nG)=‘a+bS M
G

where the expression on the left hand side is the dependent Y variable and site index S is
the predictor variable. This model integrates to give the yield equation:
1

lnGt = a+DbS-A (_a+bS--1nGo) (8)

A
.t

where G, is the yield at the end of the period and Go is the yield at the start of the
period, HNo thinnings may occur dulng the prediction interval, but the basal area after
thinning becomes Go for predicting the basal ares immediately prior to the next thinning.

5¢3¢4 Use of Growth Models by Simulation

Se3sds1 Requirements for a simulation model

Simulation modelling ie a much emsier method of using a growth model than mathematical
integration in the majority of cases, but it does normally require accese to a small computer,
To use a growth model by simulation, the following points must be defined from permanent
gample plote or experimental datet

(1) The heigbt/age/site index functiont

H = f ’ (4,8)

(2) The basal area increment function, in terms of

height basal area
or age and and / or
and site index stocking/ha
Ig_ = fg(Ho, ¥)
or Ig = f2 (Ho, a)
or Ig = f2(A,N,S)
or Ig = fg(A, G, S) cef. Clutter's model,

section 4.1.1.5 for an example

or other cambinations of A,G,N,S,Ho on the right hand eide,



T

(3) The relationship between stocking removed and besel area removed for each
thinning type:

F/A - £(0h)
(4) The volume function from height and basal areat
V e f 4(H°,G)

(5) The initial basel srea of the stand at & certain reference age or height at
which the simulation commences, a5 a function of the planted stocking:

G = f5(N°)
These functions need not be continuous mathematical relationshipes. ZFach function
may be a set of equations, one of which is selected by a conditional process; or it may be
e sot of tabulated values, as will be meen in the example below.

5¢3e4¢2 Method of construction of a simulation model

Simulation models are constructed by coding the functional relationships end the
logical interconnections between them, as statements in a computer language, usually FORTRAN,
BASIC, or AIGOL. This 'source language' model is then 'compiled' by the computer into its
own internal machine code and run in the computer. As it runs, it will require data
definings

1+ The slte index and initial spacing of the stand
2, The timing and intemsity of thimmings.

The programme will then generate ocutput, in the form of a stand table or graph, as
designed by the computer programmer. The simulation can be divided into two logically
distinct phases:

(1) The initislization phase, where the initial values of stand basal area, helght
and stocklng are defined and table headings are printed out.

(2) The dynamic phase in which the growth of the gtand over A 18 computed and added
to existing growlng stock; any required harvesting cperations are carried outy
and the age of the stand is incremented by B and the process repeateds During
the dynamic phase, sumaries of growing stock are printed out. The dynamic
phase 18 terminated when the stand is clearfelled or a previously set time
1imit is reached. (A im 2 period of time (usually one %o five years) end B is
the length of the periode )

S5e3eds3 Ixample of & simple simmlation medal

In thie example, we comstruct a simple simulation model in BASIC for even-aged Pinus
patula stands. 'The functions in the model are as followst



1) The beight-age function is taken from Alder 1/ and ist
InH = b+ b1/A + ((1n 8 ~ 01)/02) (’b2 +b3/A)

where b 4, b, b_, b are obteined from regression analysis from PSP date and
for P._patula ch"have the values:

b = 3.6068
b1 = =17.513
b, = 0,008057
b

2
y ™ 0.3308

vhilet C,» Oy aTE defined astr

o

= b . +b
c‘l, o 1/ 15
By = by 'b3/15
The index age for site index is 15 yesrs.

(2) The basal area increment function is derived from Experiment 345, Kwira,
Tenzania, by tabulating mean basal area increment by classes of stocking and
daninant helght, glving the result shown in Teble 5.1. This table is used
directly in the progremme without further analyweis,

(3) The thinning retios are defined by the following simple assumptionss

(r) Systematic thinning: T, = 1.0

(b) Selective low thinning: First thinning # = 0a7
‘Later thinnings 'I'r = 0,9

(4) The volume funotion is the Pinus patula stand volume equation for Kenya:

V, = N(~0.0072 + 0.00003887 Dg° + 0400002077 B D
+ 0,000032765 Dg H) €

This gives total volume. The merchaniable volume to 20 cm diameter top im
calculated by:

Vo= ¥ (0.97352 — 21.9737 axp (-0.15407 Dg))

(5) Initialization of basal srea is done by using a stand besal area of zero at:
age 3 years.

_1_/ Alder, D. 1977. A CGrowth and Management Model for Conifercus Plantations in Eest
Africa, De Phil, thesis, Oxford Univeraity.
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Table 5,1

VALUES OF BASAL AREA INCREMENT TABULATED BY STOCKING AND HEIGHT
FOR EXPERIMENT 345, KWIRA, TANZARTA

Spacing clesa, m.

2=3 J=4 4-5 5-6  6&-7 7-8 8-9
Dominant
Height, m.
3=5 3.89 2.87
5-T 6.59 3.68
T-9 7.22 4.49
9-11 Te33 5,10 385
11-13 | 5.80 5.39 4,55 3.56 Bkl
13-15 | 4.59 4.59 4,41 3.50 2.84 1.91
15-1 ) 2,88 3,30 M.55 2.93 284 2:38 LS
17-19 | 2.24 2«22 3¢ 34 2.50 2.00 2,11 1.54
19-21 | 2.05 2,03 2.40 1.73 l.42 l1.72 1.43
21=-23 | 2,01 LT 1.99 1.32 1.28 1.37 127
23~-251{1.86 1.93 1.59

Values within the table are basal area increment per ha per ammm.
E.g. at a _spacing of 4.5 m and a daninent height of 12 m; increment
is 4.55 m /hafyr.

The programme listing is given below:

5 SELECT PRINT 005(64)

10 REM EXAMPLE OF STAND GROWTH SIMULATION MODEL

20 REM INITIALIZATION PHASE

30 PRINT "SIMULATION MODEL FOR PINUS PATULA PLANTATIONS®

40 PRINT "GIVE INITIAL STOCKING AND SITE INDEX, PLEASE"

50 INFUT N,S

60 REM READ TABULATED INCREMENT VALUES

70 DIM T{(7,11)

80 MAT READ T

90 DATA 3.89,6.59,7.22,7.33,5.90,4.59,2,82,2.24,2.09,2.01,1.86
100 DATA 2.87,3.69,4.49,6.10,5.39,4.59,3.30,2.22,2.03,1.57,1.93

110 DATA 0,0,0,3.83,4.55,4.41,4.35,3.34,2.40,1.99,1.59
120 DATA 0,0,0,0,3.56,3.7¢C,2.93,2.50,1.73,1.32,0

130 DATA 0,0,0,0,3.17,2.84,2.34,2.00,1.42,1.28,0

140 DATA 0,0,0,0,0,1.91,2.18,2.11,1.72,1.37,0

150 DATA 0,0,0,0,0,0,1.51,1.54,1,43,1.27,0

152 REM READ SITE INDEX CURVE COEFFICIENTS

153 READ BO,B1,B2,B3
154 DATA 3.6068,-17.513,0.008057,0.3308
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320
330
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LET C1=B0+B1/15

LET C2=B2+B3/15

REM SET STAND BASAL AREA TO ZERO,AGE TO 3
LET G=0

LET A=5

REM READ DETAILS OF STAND TREATMENT
PRINT "HOW LONG IS THE ROTATION, PLEASE"™
INPUT R

DIM A1(10),81(10),T$(10)

PRINT "HOW MANY THINNINGS, PLEASE"

INPUT M

IF M = 0 THEN 300

FOR I=1 TO M

PRINT "GIVE AGE,STEMS/HA LEFT, AND TYPE(S/L) FOR THINNING ":I
INPUT A1(I),N1(I),T$(I)

NEXT I

LET M=1

SELECT PRINT 215{(120)

REM PRINT TABLE HEADINGS

PRINT

PRINT TAB(20);"GROWING STOCK":;TAB(80);"THINNINGS"

PRINT

PRINTUSING 3260

4 AGE HDOM STEMS/HA DIAM{G) BA/HA VOL/HA VOL/HA(20CM)

VOL/HA VOL/HA{20CM)

370
380
390
400
L1o
411
412
420
430
440
bs50
g0
470
480
490
500
510
515
516
520
530
540
550
560
570
580
590
600
605
610
620
630
640
650
660

REM DYNAMIC PHASE OF SIMULATION
REM CALCULATE DOMINANT HEIGHT

LET H=EXP{BO+B1/A+{{LOG{S)-C1)/C2)*(B2+B3/A))

REM SELECT HEIGHT AND STOCKING CLASS FOR GROWTH INCRMENT
LET Hi=(H-1)/2

IF H1{12 THEN 420

LET H1=11

LET E1=SQR(1/N}®*100-1

IF T(E1,H1}=0 THEN 920

REM ADD INCREMENT TO CURRENT BASAL AREA

LET G=G+T(E1,H1)

REM TEST IF THINNING REQUIRED IN CURRENT YEAR

IF A=A1(M) THEN 670

REM CALCULATE MEAN BA DIAMETER, & VOLUMES

LET D =SQR(G/(N®*0D.00007854))

LET V=N*{-0.0072+0.00002887%D!2+0.000020T7 #H*D+0.00003276%D1 2%H)
LET V1=V¥(0.97352-21.9737*EXP{~0. 15407%D})

IF V1 ) O THEN 520

LET V1 = O

REM PRINT GROWING STOCK DETAILS

PRINTUSING 540,A,H,N,D,G,V,V1;

T BT HiRER fi . # #HE . FEESLF HEEF L
REM PRINT THINNING DETAILS IF A THINNING WAS PERFORMED
IF T2=0 THEN 600

PRINT TAB(64);

PRINTUSING 590,N2,D1,G1,V2,V3;

¥ fHHHE HH #REE FEEELE BENPLH

REM INCREASE AGE BY 1 YEAR, & REPEAT DYNAMIC PHASE
PRINT

LET A = A4

LET T2=0

IF A(= R THEN 370

PRINT

PRINT TAB(20):;"END OF SIMULATION"

STOP ;



670
680
690
700
710
720
730
T40
750
760
770
780
790
800
810
820
B30
Bup
850
850
861
862
870
880
890
900
910
920
930
gu0

960

B

REM SECTION TO SIMULATE LOW OR SYSTEMATIC THIKNNING
REM DETERMINE THINNING RATIO FROM THINNING TYPE

IF T$(M)="L" THEN 720

LET T3=1

GOTO 760

IF M)1 THEN 750

LET T3=0.7

GOTO 760

LET T3=0.9

REM CALCULATE STOCKING REMOVED N2 & BA REMOVED G1
LET N2=N-N1{M}

LET G2=N1(M}/N/(T3/G)

LET G1=G-G2

REM ADJUST STOCKING & BA OF RESIDUAL STAND

LET G=G2

LET N=N1(M) _

REM COMPUTE MEAN DIAMETER AND VOLUMES OF THINNINGS
LET D1=5QR{G1/(N2*0.00007854})

LET V2:=N2%(-0.0072+0.00002887%D1!2+0.00002077*H*D12+0.00003276*D112#K}

LET

V3=V2*{0.97352-21.9737*EXP(-0. 15407¥*D112))

IF V3 ) 0 THEN 870

LET
REM
REM
LET
LET

V3 =2 0

INCREMENT THINNING NUMBER AND RETURN TQ MAIN PART OF
SIMULATION

M=M+1

Te=1

GOTO 480

REM
REM

SECTIOK TC ABANDON PROGRAM WHEN SIMULATIONS GOES
OUTSIDE LIMITS OF AVAILABLE GROWTH DATA

PRINT TAB(20);"SIMULATION EXCEEDS RANGE OF GROWTH FUNCTION™
950 PRINT TAB(20);"RUN ABANDONED"

END

The output produced by one run is shown in figure 5.13. Table 5.2
lists the definitions of each of the variables used in the programmes
This simulation programme is intemded to be an example of the flexi-
bility of the technique and im not intended to suggest that the
specific functions used are in any wense the best or most preferable

methods.
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Lomputer printout produced by stand growth
simulation model

SIMULATION MODEL FOR PINUS PATULA PLANTATIONS
GIVE INITIAL STOCKING AND SITE INDEX, PLEASE

1700 23
ROW LONG IS THE ROTATION, PLEASE
16

HOW MANY THINNINGS, PLEASE
1

GIVE AGE,STEMS/HA LEFT, AND TYPE(S/L)} FOR TRINNING 1

8 700 S
GROWING STOCK THINNINGS
AGE HDOM STEMS/HA DIAM(G) BA/HA VOL/HA VOL/HA(20CM) STEMS/HA. DIAM(G) BA/HA VOL/HA VOL/HA{20CM)

5 6.1 1700 7.0 6.5 B.6 0.0

6 8.5 1700 10.1 13.8 5,3 0.0

7 10.8 1700 12.5 21,1 96.0 0.0

8 12.9 700 1.2 1.1 61.8 0.0 1000 1,2 15.9 138.8 0.0
9 14.8 700 16.9 15.7  101.6 0.0

10 16.5 700 18.6 19,0 137.7 0.0

11 18B.1 700 19.6 21,2 168.4 0.0

12 19.5 700 20.5 23.2 198.7 10.0

13 20.7 700 21.4 25.3 230.1 38.5

W 21.9 700 22.1 26.8 257.8 63.1

15 22.9 700 22.7 28.4 285.9 89.4

16 23.9 700 23.5 30.3  317.9 122.6

END OF SIMULATION
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Ta'ble :202

DEFINITION OF VARIABLES USED IN STAND GROWTH
STMULATTION PROGRAMME

Variable Size Description of use

A Stand age, years

A1 10 liat of ages for thinnings

BO i

B1 Coefficients for height growth function,

B2 | representing b g Byy bos b3 in text

B3 4

c1 ] Coefficients for height growth functiom,

o B repregenting 42 S in text

D ‘Mean basal area diameter of growing stock

g} Menn basal area diameter of trees removed in thinning

B The gtand density class, going from 1 for epacings of
2-3 m o 7 for spacings of 8 m or more

4 The basal area/he of the growing stock

1 The basal ares/ha of trees removed in thimnings

G2 The basal area of growing stock immediately after
thinning

H The dominant height of +the stand

H1 The dominant height class; going from 1 for heights
3~5 my to 11 for heights over 23 m

T A counter for thinning nmumber during the reading in of
thinning details

M initially, the number of thimnings. During the dynamic
phese, represemts the next thinning number due

N The stocking/ha of the stand

M 10 The list of residual stockings to be left after each
thinning

N2 The number of trees per ha removed in a thinning

R The rotation age for the stand, in years
The site index of the stand, in m dominant height at age
]

by T'T’i The table of diameter increments corresponding to the

spacing class (1st dimension) and height class (2nd dimen-
gion)s Values as per table 5.1 in text.
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Varisble Size Description of use
T2 Set to 1 Af the stand has been thinned in the curvrent

year of simulated time, otherwise set to 0, Controls
the format of printing.

T3 Gives the thinning ratio T, as defined in the text for
each type of thinnings BSet to 1 for systematic thinning,
0,7 for 18t low thinning, 0.9 for other low thinnings.

T4 40 A list of thimming types, for each thimming., mS®
represents systematic thinning and "L" thimning from
below.

v The total volume over bark per ha of the growing stock,

il The volume oebe/ha to a top diameter limit of 20 cm, for
the growing stock.

v Total volume/hs of thinnings.

Volume/ha to 20 cm limit of thirmings,

5‘

5.4 THINNING

The ecanomic component of growth in wniform stands managed for timber will be partly
removed in commerical thinnings. In addition, non-commercial thinnings may be cerried out
to reduce stand density and give a corresponding greater stand mean diameter in subsequent
thinnings and the flnal crop.

Cbviocusly, the modelling of thinning is central to any exercise in yield prediction.
A thinning operation is very largely characterized by the number of stems per ha and the
basal area per ha removeds In single tree models, it is necessary to describe the distri-
bution of removed trees; but +this is not necessary for stand models, which are the main
subject of this sectiwm.

5,4,1 The Thinning Ratio

A useful way of characterizing thimnings is in temms of the thinning ratio:

, No._of stems left/Nos stems before thinaing
g .o Basal area left/Basal area before thinning

With a little algebra, the thinning ratic cen be secen as being equivalent also tof

2
(Mean BA diameter before thinning)
(Mean BA diameter after thimning)?

Thinning ratio =

Typical values for the thimning ratio for differemt types of thinning are:

Thiming type Value of thinning ratio
Barly low thinnings 0s6~0.8
Later low thinnings Ce8-140
Nen—selective thinning 1.0

Crown thinning Te1=143
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The thinning ratio can be determined empirically using temporary plots on which
thinnings are carred out by contractors or which are marked for thinning without actually
felling the trees. The first technique gives a more realistic assessment, but may not be
appropriate for experimental types of thimning which one simply wishes to evaluate on a
dynamic model,

Egtimaten of thinning ratios obtained from permanent sample plots may not be relia~
ble, as PSPs are normelly clearly marked in the forest and hence are unlikely to receive
typical treatment.

S5¢4¢2 Estimating Thinning Tields in Static Holels

In order to estimate the thinning yield for a particular static yield function,
then the actual thimming intensity, defined in terms of stocking removed or basal area
removed, and the thinning ratioy, ag defined above, must be known. It is also necessary to
know whether the yield function is based on meagurements made immediately before thinning,
immediately after thinning or, as is most normal, an umcontrelled mixture of measurements
before, after and between thinnings.,

Assuming that the yield functiom predicte mean basal area diameter and it is besed

on an uncontrolled mixture of date, then the diameter predicted at the time of thinning may
be assumed to be a mean of before and affer thinning diameters, vizi

p = (I +Da)/2 (1)

where Dp is diameter predicted from the static yield function and Db and Da are the before
and after thinning diameters at that point in {timey which have t0 be detemmined.

The thinning ratio mlso relates the umknown dismeters Da and Db, glving two simul~
taneous equations:

Tr = Db'/Da’ (2)
These two equations can be solved 1o give Da and Db:
Da = 2Dp/{14./Pr) (3)
Dt = 2Dp - Da (4)
Knowing the before and after thimning mean basal area dilameters, then it is possible
to work out the basal area removed knowing the stocking removed or the stocking removed

knowing the basal area removed.

In the case where thinming intensity ie specified in tewme of stocking, then the
‘mean basal area diameter of the trees removed in thinnings is given by:

Tre Mo — HNp

i m - ) ®
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Note that equations (5) and (6) are independent of the assumption (1) that predicted
diameters are averages of values immediately before and afier thinning.' Thus either equation
(5) or (6) can be used to determine mean diameter of thinnings if the functions are defined
in terms of predictions of after thinning diameters or before thinming diameters rezpectively,

A1l the algebra leading to the above formulae is based on the simple relation:
8 - Wk
where G is basal area, is stocking, k is the constant 0.00007854 for diameters in centi-~
metres, basal area in m /ha and stocking in mmbers/ha, and Dg is the mean besel area

diameter. Once the mean diameter of thinnings is knowm, then total and merchantable volumes
can be readily calculated from a suitable volume equation,

Ss+4.3 Estimating Thinning Yielde in Dynamic Models

As with static yleld models, both the thinning intensity and the thinning ratio
muat be kmown. From these two statistice, the basal area removed for a given stocking or
altematively the stocking removed for a given basal areas can be readily determmined and
both parameters of the growing stock sdjusted for the thimning, with thinning removals being
calculated directly. Examples have already been dimcussed in sections 5¢3.3 and 5.3.4.

An essential femture of thinning in dynamic models is that the aubsequent growth is
influenced by the intensity of thinning, as stand density will be modified following treat-
mente In a static model this does not happen and, hence, the danger of obtaining incorrect
results with static models by applying thinning treatmente that do not correspond to the

fitted functions.

55 MORTALITY

Mortality can often be regarded as negligible in many types intensively managed-
uniform forest, once a particular crop has become established. In other cases, however,
there is a marked reduction of stem numbers over the passage of time which must in some way
be accounted for by the growth and yield model. There are several types of mortality which
must be considered.

54561 ‘Esta'bliahment Mortality

Establishment mortality defines the percentage of viable meedlings which fail to
survive the first year. In the cese of plantations, it is obviously quite easy 1o define
in the field, but in the case of stands established by artificial or netural seeding, it is
probably better to consider the absolute number of seedlinge that become established, rather
than to consider a ratio defining percentage survival or percentage stocking.

Survival can alsc be defined in terms of percentege of the area that is Iully stocked,
as discussed in section 6.

The factors thaet most strongly influence survival and must be considered in any
model congtructed to predict it are:

=~ The method and intenaity of site preparetion.
= The weather at the time of estsblishment and for the monthe following.
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= The agpect of the site.
— The degree of exposure of the site.
— The nature of the top 10 cm of the soil, in particular, and of the soil gensrally.

For plantations, the following must also be considereds

- The age of the seedlings.
~ Procedurss for handling the seeldings from nursery to the forest.
= The season of the planting in relation +o dormancys

‘For seeding by aritificlal or netural methods, one must consider:

- Pagticldal coatings or treatments to reduce seed predation.
~ Seed pre~treatment to stiwmulate or improve gemmination.

Cbviously, determminaticn of all thege parameters and their inclusion in a useful
quantitative model is virtually impoesibles It iz better to construct simple and robust
models that can easily be related to practices followed in a particular areas or poini of
time.

The medel will usurlly be in the form of a multiple regressica beitween survival
(relative or sbeolute) and two or three of ihe above parameters, coded in appronriate ways.

5:5¢2 Density-Dependent Mortality

Density-dependent mortality may be a direct result of suppression, bui more uniaually
is indirect, in that the lesa vigorous trees; with crowns lower in the cancpy, becoms sus-
ceptible to disease or animal damage to a much greater degree than more vigorous itrseas.

Thie type of mortality can usually be omitted from modela of stands planted at wide
spacings and grown on short rotations cr subject %o adequate thimning. However, many growth
and yleld predictiocne relate to unthinned stands or to etands in which thinning has been
delayed and hence some effort must be made to include this type of mortality.

A useful model is the Reineke line, in which stocking is plotted against dominant
height, using logaritbmic scales on both axes. This gives a diagram of the type shown in
figure 5.15. The Reineke line defines the maximum stocking that can be sustained at any
given dominant height.

If stands are normally well thimmed, it may be difficult to obtain the necessary
data to construct thig line. There are advantages in establishing in a given plantation =
series of about 10 plote of forest established st 1 x 1 or 2 x 2 m on widely different sites
t0 provide this data. This obviously does not apply in cases where there are extensive
unthinned stands.

In etatic yield models, density-dependent mortality is implicit in the mean di_ame'i;er/
dominant height functions and need not be explicitly defined.

In dynamic growth models, the reduction in stocking caused by mortaliiy will be
effected by a simulated low thinning, with a thinning ratio around 0.6, whenever the
stocking height relaticnship moves to a point to the right of the Reineke line.
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Figure 5,15

Relationship between ptocking and dominant height over time
in ap unthinned, heavily stocked uniform forest

Stocking/ha.
(log scale) Y, Reineke line

initial > xa onset of density-dependent
density % mortallty

The arrow indicates the
direction of progression
over time

Dominant helght
(log scals)

Note that although the Reineke line will be very well defined for a single stand,
its position and slope may be dependent on site. The lowest part of the line may

alsc tend to bend downwards, giving a slight curve.

5:5+3 Disease and Pest Mortality

As mentioned in section 5.5.2, some aspects of disease and pest related mortality
can be implicitly included in & simple density-dependent model. However, there are many
cases where the disease or pest incidence is epidemic in nature and tends to occur as out-
breakes following particular patterns of weather and moving cutwards from epicentres of
infection. Techniques for modelling such problems are somewhat beyond the scope of this
manual. Such models are often stochastic, in that only the probability of an outbreak can
be predicted.

The probability of an outbreak may be a function of weather pattern, condition of
the forest growing stock or of distance from another outbreak area. From a managerial point
of view, the prcbability of an outbresk can be used to assess the expected value of the crop
at some future point in time and hence the opportunity cost of pre—emptive felling or of
taking or falling 4o take control measures.
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Se5¢4 Windthrow and Fire Demage 2

As with pest and disease problems, both windthrow end fire damage effects have
density-dependent and demsity-independent effects, with the latter tending to be catastrophic
in nature, i.e. destroyingthe whole stand. Again, the catastrophic component can only be pre—
dicted asa probability of occurrence, dependent n climatic and site factors, as well as the
condition of the growing stock. With fire, additiomal factors, such as the time since the
last controlled burning and the use of low pruning, may be important variebles in determining

the probability of catastrophic demage.

The succaessful prediction of the probability of a caitzstrophic eveat ie extremely
difficult where such evenis are rare. Where fire, wind damage ox certain pests or diseases
are normal, such models may be constructed; but it is still likely to require a careful
process of data gathering and evaluation over szbout 20 years before anything useful may
emerge. It should also be noted that the parmmeters for such models must be continunally
reviesed, as they are likely to be very sensitive to climatic fluctuations.

5.6 STAND VOLIME PREDICTION

In the foregoing parts of section 5y various methods of predicting dominant height,
basal area, stocking and mean bassel area diameter have besn discussed. The final stage in
a yield prediction system for a single stand iz to use these variables t¢ predict total and
merchantable volumes

Part I of this manual hae dealt exhaustively with the techniques of messuring and
modelling the volume of individusl %trees. This section omly conceme iigsif with & resumé
of methods particularly appropriate to models of stand volume from the parameters nommally
calculated in a yleld model,

iAo d] Stand Volume Fguations Based on Dominagnt Heioht and Beeal Arves

Totel stend volume, either to the tip or to some emall diameter limit such 2z 10 omg
can be accurately predicted by an equation using basal area and deminant height. Typical
equations are:

(1) ¥V = B0 + Bl.GeH {linear)
(2) v/6 = bo+ v1.H (1inear, weighted by G)
4
(3) log ¥V = b0 + blolog G + b2.1log H (logarithmic)
(4) v/ = 1O+ b1.H 4+ b2.H (quedratic, welghted by ¢)
?

A wide variety of other models is possible. Ar has been discussed in Part I, some
form of weighting is normally desirsble for fitting volume equations, as the residuval error
tends to be approximately proportiomal %o the volume. Bruations (2), (3) and (4) all achieve
this, Model (2) is very simple to fit graphicelly.

The quantity V/G is widely kmown a8 form height and has the dimension metres.

The degree of fit obtzined when stand total volume is regressed with basal area and
dominant height with models auch as the above is usumlly very high, ofiten with correlatiocn
coefficients exceeding 0,99.
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54642 Using Tree Volume Equations to Predict Stand Volume

It ig a fairly commonplace practice to use & tree volume equation to predict stand
volume by entering the equation with mean basal area diameter and Lorey's mean height. The
latter ies the mean of a systematic sample of tree heights weighted by tree bassl area,
Alternatively, arithmetic mean height or deminant height are used,

This method gives a hiased result in most ceses because the equation coefficlents
have not been influenced by the changing diameter digtribution and form of trees with stand
parameters.,

In many cases the blas, which is nommally towards underestimation of stand volume,
is small enocugh to be regarded as negligible., The method will tend towards sericus under-
estimation of volume however if the equation ie prediciing volume to a2 cut—off diameter and
the mean diameter is close to this limit.

5643 IEgtimation of Volume to 2 Top Diameter Idimit

I+ is often the case in uniform forests that volume yields are required to be esti~
mated for two or three top diameter limits. This may be done as follows:

(1) Fit a2 stand volume equation as described above (ss 5.6s1.)y either overbark or
underbark, as required.

(2) For each sample plot, calculate the ratioc of volume to the selected top diameter
limit to total wvolume,

(3) A greph of these ratios against stand mean diameter will produce a diagrem of
the type shown below.

A
1.0 J

&

Top ‘diamrter
(4) This shape can be fitted by the function:
R = 1 - asexp(b.Dg)
which can be transformed into:

1og(i - R) = a* 4+ buDg

and fitted by linear regression, Not that a is exp(a.*)*.
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With several merchantable rvatios, 2: attempt can be made to harmomize the coeffi-
cients so that they are themselves functions of the top diameter limit. Alternatively, one
could attempt to construct a multivarlable extension of the sbove model incorporating mer-~
chantable diameter.

When fitting the model, it is important that data points with zero ratios are
excludeds When the function is actually used, if a negative ratio is predicted, the mer-
chantable volume should be taken as zero.

Se6e4  Volumes of Thinnings

Various methods of calculating thinning volumes can be adopted. The stand volume
equation may be entered using the basal area of thinnings. Alternatively, a tree volume
table may be entered with thinmming mean diameter and estimated mean height (perhaps from a
height/diameter regression). The most unbiased method is to cometruct a stand volume
equation using only thinnings, i.e. 2 regreesion of thinned volume on thinned basal area
and stand dominent height. This regression caen be tested %o see if 1t differs significantly
from the general stand volume equation and, if not, tke latter may be used. '

Because thinning volumes are often not measured, it may not be possible to construct
such a model. It is suggested that in such cmses, thinned volume iz calculated es the dif-
ference between stand volume immediately bafore and after thinning. This techniques may be
applied to both total and merchanisble volumes.

BeT ADVANCED TECHNIQUES OF GROWTH AND YIELD PREDICTION

There are two types of model which can be applied to uwniform =tande which bave not
been referred to directly in the foregoing sections, in spite of the fact That they are in
use in a number of forestry organizations. These are size class modela and tree position

models.

5aTet Size Class Models

In a size class model of & uniform stand, the growing siock at any point in time is
described by = frequency distribution of tres sizes. The increment on each size class is
calculated separately, usually as a function of site, age and stend demsity and the ralaticn
between the size clase diameter and the mean or dominant diameter.

Thinnings and mortality must be described in terms of frequency distributions also,
with the growing stock distribution being modified for each thinning or mortality event.

The advantage of this type of model for uniform stands is that it gives more detailed
information sbout the size assortment of yield, especially if a stem taper function is also
used for volume calculation. The disadventage is that the analysis of the growth data is
more complex than for whole stand models and requires consideration of additional parameters
for diameter distributions; whilst the use of the model necessitates access %o an electronlc
computer.

Models of this type are not necessarily more accurate in predicting whole stand
paremeters such a8 basal ares or mean diameter; but they do provide more detalled informa~
tion about the ptand.
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54 Te2 Tree Position Models

Tree position models are thoese in which the actual spatial relationship between all
the trees in a simulated plot are represented by the model. Inter—~tree competition is
dependent on the relative sirzes and positions of neighbouring +reess This information is
used to provide a competitive index for each tree which ie used to reduce the actual growth
of the tree, relative to that which it would have if it were growing free of any competition.
The latter is dependenit on the age and site.

Tree position models require a formidable number of calculations and stretch the
resourceg of even quite large computers. As a technique for modelling the growth of uni-
form stands, they are unnecessarily complex, since they do not provide significantly more
useful information about stand growth than a size class model, whilst requiring probably
two orders of magnitude more calculations. The principle advantages of tree position models
are in relation to physiological research and to growth and yield prediction in mixed stands.

For readers interested in pursuing the literature ocm these more advanced types of
model, the bibliography published by the Commonwealth Agricultural Bureau entitled "Compu-
terized Methods in Forest Planning and Forecasting" is recommended. Details are in
Appendix D,
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6. ANALYSIS OF GROWTH AND YIELD DATA FOR MIXED FOREST

Mixed forest, in the context of thie manusl, implies any forest in which the indi-
vidual stands that compose the basic mensurational unit contain e mixture of age classes.
Typically, mixed forest will contain also & veriety of species, which may be ecologically
quite gimilar or composed of several ecologlcal groups, with each group tending to be
dominant in a particular stratum of the canopy or on particular microsites or in different
successional phases following gap formation or harvesting operations.

The dlstinction between mixed mnd uniform forests is not zbeolute. There are cases
in which a mixed stend conslsts essentially of omly two age classes ~ very small understorey
regeneration and a dominant overatorey - and where harvesting is essentially a clear felling
operation. In these cases, the techniques of vwniform stand yleld prediction may be largely
applicable. Similarly, stends of uniform age, but of mixed species, may need 1o be analysed
using methode eppropriate for mixed stands, in order to ellow for differemt proportions of
species mixtures within a single model.

Mixed foreste generally involve much more mevere mensurational and sampling problems
than uniform forests. . The value per unit area of a mixed forest will normally be lower than
that for a uniform forest at maturity and, hence, once cannot easily justify an equivalemt
sampling inteneity. At the same time, the diespersion of valuable specles and the variability
of the forest, implies that the sampling intensity required to obtain the same predictive
power as for a uniform stand model must be much greater.

The mensuretional problems imposed by poor access, dense understorey, buttresses
and the near impoesibility of iree total height memsurement in many cases, meana that
measurement costs are much higher for a givem level of precision. This tends to further
reduce the amount of mampling that can be undertaken within & fixed cost budgete.

Consequently, most attempts at yleld prediction in mixed forest have bean based upan
relatively emall quentities of data; the resultant models not unnaturally have much lower
precision than would be considered sdequate in uniform forest management. There are some |
exceptiona to this, as for example the yield prediction work in the Philippines reported by |
Revilla 1/, which cites results from Dipterocarp forest involving over 240 permanent sample
plO‘b‘:‘lc

Becauvse of the variety of species composition, floristic structure, ecological
situationa and silvicultural practices thet are possible in mixed forest, there are an even
grester diversity of modelling strategies available than for uniform stands. Many of the
publisghed methode are essentially untested except on the basis of very small numbers of plots.
The techniques selected for discussion in thie section are perhaps the most robust methods
and frll into three groups:

~. Yield functions applicable to simpler types of mixed foreste.
= Transition matrix models.

= Distance-independent tree models based on difference equations.

1/ Revilla, AsRe 1979 TYield prediction in cut-over Dipterocarp stends in the Philippines,
Paper to Seminar on Management of Dipterocarp Forests, Metro Manila. 20 pp.
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It is probeble that in the long termy a fourth group of models, the tree pomition
models, will be the most effective basis for yield prediction in mixed stands. However,
such models require more powerful computers then are normally aveilable today and comsiderable
investment into research into appropriate sampling techniques before they become a viable
vroposition.

In this chapter;, we do not attempt to glve any specific instructione concerning the
-onstruction of growth models end yleld forecasting for mixed forests but rether some exmmples
of poBsible ways of dealing with these problems. Extensive work is however going on in the
field of modelling for mixed forests and it is hoped that viable methods will shortly be
devel oped.

= SITE CLASSIFICATION

Because mixed foreste normally compriee many species, the concept of mite index must
re Telated either to & species within an individual tree model or to a species association
in a yield model. There are many specific techniques for determining site index that have
cen proposed., They are all equivelent however in their origing, B8Site indicators are either:

~ Mensurational parameters in verious combinations. (E.g. dominant height and age
in the conventional uniform stand eite index curve).

~ FPovironmental factors, such as altitude, moll type, rainfall, etc.; or indirect
environmental indicators such as indicator species or goegraphic groupings.

The first class of site indicetor reyresents in fact the cbamerved residval from =
narticular model, in which eite ie not inclwied, Thus if one deviees a model, such as for
axample, a transition matrix model; for a mir»d stand, end applies it to a numher of plots,
nne will find e different residual error for emach plot. That error can be coded on a scale
such as 1, 2, 3; 4, 5 etc., with 2 medlan velue representing a zero error amd one then has
a mensurational site class sytem applicable to those plots.

To use such a eite claes system in j§ ractlce, the arrors {1.es site tndices) muat be
1etermined at one point in time and them usul a® a compenmating input to the model for a
prediction at a second point in time. This ie precieely what 1o done with a conventional
set of site index curves for & plantation. From a lmown helght-age input, eite class im
determined, which is then fed into the mode. at a second point in tlme in order to cbtain a
much more accurate prediction of subseguent height than would be possible from the mean
height-age curve.

Once a set of elte class values hat. been assigned by detemmining residusls from a
site-independent model, then the residuals 'san be correlated with environmental factors,
to determine which are most effective in aplaining the residual variation of the model.
Indicator specles are included by using a;zero—one veriable for each speclest gnero for
sbeence from the plot and one for present on the plot. Other qualiiletive factors, such as
acll type, can be coded in the same way. ‘ippendix A diecusses the use of zero-one variables
in multiple regreseion,
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The use of mensurational variebles as site indicators is less ersy with a mixed
gtand than with uniform stands and can only effectively be done with a siatic yield moedel.
However, environmental factors can be used as site indicators with any type of model; with
mixed forests, envirommental site indicators will thus be more important than with uniform
stands. In mixed forests, envirommental parameters are a necessary part of an effective
model; whereas with uniform stvands using height as a basis for site determination, envirom~
mental parameters are sn optional extra.

It should be appreciated from the #bove discussion that the convenitonal terms site
index; site class, ebtc. are to some degree mirnomers., What one 18 really dealing with are
self-calibrating models, using an error estimate at one Poini in time io reduce the predice
tion error for a later estimate. There iz nothing inherently one-dimensionzsl about the
effect of the enviromment on a forest growth models In addition, some part of the error
that self-calibration can effectively compensate for may be unrelated to the environment
and may be due to historical factors (past stand trea-hment), stand density, if this is not
adequately incorporated in the modely and genetic effects (provenance or species variation).

These points can be summarised symbolically as follows:

Time T, Growth/yield model.
Solves

T, = £(X,I)

for I such that Y1 =Y;*\\ \\

Fit regression
between I, and E,
J J
I =g(BRE.)
/g( 'EJ
e«
Time T2 Use I = BCBsEz)
l—% Compute:
. - f(Xz,I)
to determine predicted
yield
8ymbola
B Coefficients in the regression between siie index and envircnmental
parameters.
Ej Set of envircnmental parameters on a series of plots, used to fii regreesion.
E Environmental parameters on plot at time '1‘2

2
f() Any mathematical model used as the growth model.
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g() Any mathematical function (linear or nonlinear)} used as the site index-
envircnment regression.

i Estimated Bite index wvalue for a plote.

Ij Set of site index values on the same plots as Ej were determined,.

X1) Independent variables used in the growth or yield model at times 1 and 2,
)

x2)

Y1) Yield estimated from the model at times 1 and 2.
)

Y2)

Y; Actual yield on plot on which 11 were detemined.

6a2 STATIC YIELD FUNCTIONS FOR MIXED FOREST

6.2.1 General Principles

Stetic yield functions have been discuesed in section 5 with reference to uniform
forests The principal feature of a static function is that time ie included in the model
as a total elapsed time from some reference point. In a uniform forest, the reference point
is usually the date of planting or establishment end time is the age of the forest, In a
mixed forest model, the time base may be the last harvesting operation or the last forest
inventory or it may be some other point.

The model must take the general formm:
T = f(x1 'Iz'aoo.xn't)

where Y is the measure of yleld of interest., Thie may be timber volume of merchantable
species, basal area, fuelwood tonnage/ha, or non~timber yield such as frult, seed or bark
production.

The variables xi are any variables which fulfil two criteria:

(,1) They are useful in predicting Y, That is, they add significantly in a statis-—
tical sense to the goodness of fit of the funtion £() to the yield.

(2) They can be determined without requiring remeasurement of the forest at time t.
They may be inventory statistics at the base time to, or they may be regional
site indices derived from soil, topographic or climatic data. They may be
qualitative variables denoting the particular type of harvesting treatment the
forest bas received.

The time elapsed from the time base is t. This must be present if the function is
1o be useful as a planning tool.

The form of the function will vary tremendously depending upon the yield being pre-
dicted, the date involved and, to some extent, the sophistication of the analytical toole
available,
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6:2.2 Data Analysis Procedures

The data may be from temporary or pemmanent plots or from experiments. The simplest
type of data analysis that one is likely to undertake will be multiple linear regressiom,
coupled with graphical analysis of data and of residuals. 4n electronic computer is there—
fore essential, although it could be quite a small one.

The data from the plots must be summarized prior to determmining the yield equation.
The summary will derive the following types of information for each plet, on each occasion.
of measurement.

(T‘l) Plot identity; for experiments this will includeé bleck number, treatment
number and replicate number.

(2) Yields§ there may be only one type of yield to consider (e.g. total merchan—
table volume) but more usuzlly yleld will be expressed by species groups and
in size/qua.lity classesy 80 there may be elght or more types of yield.

(3) Possible predictor variables. These include:

~ Basal a.rea/ha by species groups at time 1:‘-0.

- Stocking % by species groups at time t .

— Logging intensity at time 'co.

~ Silvicultural class.

- Forest type codee.

- Envirconmental indicators (soil type, altitude, rainfall, etc. s

Once the plot summaries have been derived, they are maintained in camputer acces-
sible form for the various subsequent analymes.

For analysis purposes, variocus procedures such as principal components analysis,
stepwise regression, combinatorial regression can be used to give the automatic selection
of the predictor variables which 'best' predict the yields. However, & priori selection of
predictor variebles in a relatively simple equation is generally prefereble, combined with
a careful graphical analysis of residuals and preferably some commonsense relationship
between the form of the function and the reality of the biological situation predicted.

6.2,3 Methods of Selecting a Yield Equation

Section 5 has considered the various forms of eguation that can be used to model
asymptotic growth processes. In Appendix 4, figure A+2.1. shows a variety of basic functioms
vwhich can represent other shapes besides the asympiotic. In developing & curve or function
to model yield development in natural forest, it is best first to graph the dats, plotting
yield against time from the time base (whether a felling or inventory)s The data should be
claseified by basal area of the stands at the base time; separate graphs may be drawn for
different sites or forests of different species camposition.
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On the basis of such graphs, a suitable equation can be selected from the various
forme described elsewhere in thie manuals The data may be fitted directly, using multiple
regression or nested regression; or a hand—drawn line may be pkeiched through the data and
subsequently approximated by an equation if required,

In many instances where only light selection felling is carried out and the forest
is a complex mixture of many specles and ecological types, there may be no direct relation-
ship discernible over time between yield, basal area and site class. In such cases, predic-
tion of growth with a simple yield medel is not an effective strategy.

Be2ad Problems with Static Yield Models in Mixed Forest

Because static yield models are relatively straightforward to construct and use, it
might seem that they offer something of a panacea for the problems of yield prediction in
mixed forests. Unfortunately, this is far from the case. The problems are essentially of
the same kind as those discussed in section 5.2,5 regarding yield models for uniform forésts,
but are rather more severe in degree,

There are two basic kinde of problem:

(‘i} A particular model of yield has Implicit in it a historical sequence of events
correspanding to those ocourring in the data set used to conetruct the model.
The model cannot be applied reliably to data which has experiemced a different
history.

(2) There is a problem of compatibility. Suppose for example one predicts three
typee of volume; Vm for merchantable species; Vp for partially merchantable
species; and Vu for unused Bpecies. ‘The total of these three should logically
represent the total volume of the forest. However, if one compares (Vm+ ViV )
with total volume, either from actual data or from a fourth function fitted
directly to total volume, one will find a considersble biga.

Neither of these problems is insurmountable in principle. With adequate quantities
of data from permanent plots and long term experiments, historical factors representing
different sequences of treatment can be incorporated as additional qualitative variables.
Compatibility problems may be overcome by fitting constrained regressions which are forced
to satisfy particular requirements.

Static yield models above all suffer from the basic limitation that they cannot
utilize data from varied historical sources (e.gs different types of experiments, permanent.
sample plots and short term tree increment plots); nor can they be adapted to predict yield
for historical regimes (i.e., sequences of treatment) other than those implicit in the data
used 10 construct theame

Gaded Conclusione regarding Static Yield Models in Mixed Forest

= Static yleld models are relatively simple to construct, glven sdequate data.

~ In many types of mixed forest, c.ear relationships between time, treatment
intensity and site are not observatle, In such cases, static models cannot be

nus ed..
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~ Care must be taken with a static model to recognize that it is tied to predefined
historical treatment sequences implicit in the data used to construect it.

~ When predicting several types of yield, either constrained regressiome should be
fitted or it must be accepted that the different predictioms cannot be regarded
as additive to an uibiesed total.

6s3 TRANSITION MATRIX MODELS

Transition matrix models provide a method for making short term predictioms of forest
growing stock on the basis of large guantities of poor quality data from recurrent memsure-
ments. They can be developed from, for example, continuous forest inventory data based on
permanent plots or temporary plots near the same locatimme, in which trees have been measured
only by diameter and species classs The method con be used with data that conteins aignifi-
cant numbers of erromeous measurements. Short term predictions, in this context, implies
pericds up to forty or fifty years or one cutting cycle,

The method ie objectivey, but not necesearily very accurate. Ite principal advantage:
is that the data base can be analysed automatically and may be strictly conventional inven-—
tory date. Tis princpal disadvantage is that it is not usually poesible to construct
adeffuately refined transition matrices unless large quantitles of data are asmilable.

6.3.1 Definition of a Transiticn Watrix Wodel

A transition matrix model reguires that a system be represented by a row of variables
which may be called a gtate vector. One cen imagine this as, for example:

dm = (Illﬂ, ngtoc.omn)

where each ¥mi represente the number of trees in the i th diameter clases The first sub-
script (m) denotes the time periocds The x's do not need to represent size classes. They
could, for example, be total biomass in different trophic levels of an ecosystem; or
development stages in an animal population. But in growth models for mixed forests, the
state vector elements will normally be size classess

The transition matrix itself, denoted by T, consists of an n x n table of elements,
like thiss

L= +11 t12 t13 ® 8 ¥ & e t1n
+21 t22 NE = B e SEen

" = 2 ® @ & 8 = w'e o @ e & @
» - . - . L] . 9 L ] L ] [ I ] AN o -
'311 M2 e e @ s s o tnn
Bach element tij represents the proportion of element xmi that becomes xm+1,j over
the intervel m to m+1. The total value of am+1,j will be the sum of all the tij times the
xmi. That im:

xotlyj = Ezti.i..mi (1)
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By repeating equation (1) for each value of j from 1 to ny one calculates an entires
new set of values for Im+1 from Xm.

The following example may clarify matters.
The table below aseumes a state vector (X) of diameter classes, as indicated:

Diameter class at end of period

£20 20-40 40-60 60=80 80+ Total
Diameter <20 0.6 0.39 0. 01 0 o 1.0
at stari 20-40 0 0.68 0,30 0,02 0 1.0
of 40-60 o) 0 0.75 0.21 0.04 1:0
period 60--80 0 0 0 0.9 0,1 1.0
80+ 0 0 0 0 1.0 1,0

The transition matrix probabilities are given within the tables Note that the zero
values of the lower diagonal are indicative of the fact that trees do not move into smaller
size classes. The addition of the transition probabilities to 1.0 along the rows is neces—
sary if 2ll the states of the system are truly defined by the state vector.

Now assume that the diameter clase distribution at the start of the period is:

diameter <20 20-40 A40-60 60-80 80+
frequency 1037 219 88 22 -7 trees /'ha.

Construct a table as shown below, with the class total in the right hand column and
the other figures obtalned by multiplying the total by the corresponding transition proba-.
bilitys Thent

Diameter class at end of periecd

<20 2040 40-60 60-80 80+ Total
DMameter £ 20 623 404 10 1037
at start 20-40 149 66 4 219
of 40~60 66 19 3 88
period, 60-80 ! 20 2 22
B0+ i T

Total 623 553 142 3 12

add the columns vertically to get the new frequency distribution for the stand,

This exsmple ignores ingrowth, mortality and harvesting. These are considered in the
following sectionse.

6.3.2 Methods of Constructing Transition Matrices

The methods for comstructing transition matrices may be differentiated according to
whether single tree, permanent plot remeasurements are available or whether one is dealing
only with diameter class measurements.
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603+2,1 Bingle tree date

Second measurement

I & B © D 5 u . W H Total
Firgt I
measurement A
B
G
D
M

The framework of the transition matrix is shown above. The letters A,B,CyD, 44,
denocte successive diameter classes. M denotes mortality and H harvested stems. I denctes
ingrowth,

The transition matrix is conetructed as follows:

(1) Define the initial class and final class, over 1 time period, of a tree. Tally
that tree in the sppropriate row/colmnu intersection and in the total column on
the rights The latter is based on the initial class value. Ingrowth trees are
defined as those which appear in a class at the second measurement, but were not
present in any class at the first messurement. Mortality trees are those which
are dead at the second measurement; and harvested trees those which have been
removed.

(2) Once all the trees in the entire data set have been tallied, divide the tran—
gition tallies by the total in the right hand column to give a proporticm,
rounded to two decimal places.

(3) Check that the transitions along each row add to 1.0, If there is a small
discrepancy (¥ 0,01 or 0.02), it will be a rounding errorj adjust some figures
at random mmtil they total 1.0. If there is a large discrepancy, there has
been an aritbmetic error in that row.

If one of the totals columns is zero, that clase must be amalgamated with an adjacent
size class, as there are no data defining transitions relating to it.

603.2,2. Size class data

The diagram below illustrates a transition matrix as it must be constructed if only
size class dats is mvailable, It must be assumed that:

= All ingrowth occcurs into the lowest size class..
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Outgrowth from one class can only occur int¢ the next higher clars.

The number of stems hervested in each class is known from an independent scurce
or deduced from the treatment prescriptiom.

The shaded blocks in the $able are not usedf they are geros within the main $ren-
sition matrix,

Diameter classes in the stand at the first measurement are entered in column A,

I H A
: /K
7N

Diameter classes at the second messurement go in row B, Harvested stems are entered in |

column H.

The diagonals Po and Pr are calculated from the following formulae:

Po = B~A+ Po* + H ~(2)
Pr = A~ Po -(3) [

In equetion (2), A ise the row total and B the colunn total for a partiounlar Po; Po®*
ig the value of Po in the next row down. Po* ie zero by definition for the largest asize
class, H is the barvested stems for that rows Po is calculated recursively, starting at
the bottom right cormer with Po* = 0, and then working up 1o the left.

After the values of Po and Pr have been calculeted in a'l:ems/ha, they are converted
%o proportions by dividing by the corresponding row total A.

The statistics Po and Pr represent real processes as follows!}

(1) In the ingrowth row, I, Pr is the proportion of seedlings which does not emter

{2)

the lowest diameter class. Po ig the proportion which does and is accomnted asm

ingrowth,

In the other rows, represemting svccessive aize classes, Pr is the proportion
of stems in that class which remein there during any one time period.



(3)

e BB

Po ie the proportion of stems growing out of one class and into the next higher
class during any time period.

The figure shows the value of A corresponding to the ingrowth row as a 7. Any arbi-

trarily large figure may be used, as this row represents the total number of seedlings
forming the potential ingrowth pool. However, if regeneration surveys are cnducted, then
this figure may be estimated absolutely or modified in proporticn to a percemtage stocking.

Not

e also that the transition H/H ie shown as 1.0 because 100% of the stems harvested

in period A (the earlier period) will remain harvested at period B!

Mortality can be added to the matrix in a way exactly similar to harvesting. ILike

harvesting, it must be measured, which means that the number of dead trees in each size class
muet be asseassed at perlod B. It im also added to egquation (2) in the same way as H.

,6'6 3-3

6.4_3 L 4

Ref

;nemenfts to transition models

Two basic refinements musi be added to 2 transition matrix medel for mixed forest
before it becomes a workable tool:

(2)

()

Species must be grouped and separate matrices conetructed for each groups, The
number of groups should not be too large, otherwise one may have too little
data for many iransitions.

Data should be grouped into basal arsz classes for different forests, to allow
a different transition matrix to be used for different stand denaities,

Disadvantages of Trunsition Models

Transition matrix models have several disadvantages.

It is difficult and tedious to represent dynamic interactions. For example, the
interaction between stand deneity and growth rate. It can only be dome by heving
a geparate transition matrx for each level of the controlling varieble, This
may be tolerable with only ome significant irteraction, but with {wo or more, the
nmber of matrices required ie the product of the number of levels of each inter-
ection.

The precision of a 4ransition model is limited by the need to work with broadly
defined classes; otherwise too many undefined transitions ocour or the maitrices
become too large for easy computation.

Transition models are inefficlent in terms of the number of parameters required
to define a growth process. 4 9 x 9 matrix (81 paremeters ) might only correspond
to a single tree parameter growth equation.

Because of their inefficiency and lack of dynamic interaction, transition matrix
models offer little mcope for improved understanding of forest growth processers
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6.4 DISTANCE-INDEPENDENT TREE MODELS BASED ON DIFFERENCE RQUATIONS
6.4.1 Definition

A tree model is one in which each tree in a stand iz indiwvidually represented by a
set of variables, describing, for example, tree species, tree diameter; height end crowm
condition. In a distance~dependent model, the tree position in the stand is also represented;
typically as x—y coordinates. In a distance-independent model, tree position is not repre-
sented. DMetance-independent models are generally much more economical in terms of computer
resources than tree position models; bdbut give a lesa reslistic and detailed represenmtation
of inter—tree competitive processes. In this manual, only the distance—independent model is
conpidered, as experience has suggested that for gross projections in yield, there ie no
gpecific advantage in going for the more complex and computetionally demanding tree position
model.

6.4.2 Allometric and Dynamic Variahles

As hag been said, each tree in the stand is represented by a set of variables. 1In
the simplest case, a ftree will be represented by only one variable, its diameter. Usually,
gpecies will also be identified and perhaps height or crown class. Other tree variables,
such as crown diameter, velume or biomass, may be derived by allometric relationships with
tree diameter and height.

Dynamic variables are those which are predicted from the state of the tree at a
previous time periods Allometric variables are those which represent static relationships

between different dimensions of the tree at the same point in time.

6.4:3 Representation of Competition

Ths individual tree dynamic variables, such as diametery; will be predicted from an
equation incorporating tree diameter at the last time pericd and also some measure of stand
density. Stand density may be represented in a number of ways, as an absolute memsure guch
as number of trees over a certain size limit or the basal area of trees in the stand or as
a relative measure such as basal ares divided by the mazimum basal area possible on that
aite; or it could be measured in some novel way by considering, for exampley total leaf
biomass on & given area.

Howevar stand density is measured, it will retain the property that it is in same
gense the summetion of the individual tree variables in the stand. Thus basal area is the
sum of the individual trec mectional areas.

Stand deasity obviously varies from place to place in a sfand, If the model repre-
aents a large plot, of say 1 or 10 ha, then the overall stand density will not necessarily
reflect very accurately important wariations such as the occourrence of gaps. This difficulty
can be avcideg by dividing the simulated plot into quedrats, of say 10 x 10 my, and calcu~
lating the stand demsity as it affects any one quadrat as the average density of that quadrat
and its eight neighbouring quadrats. For edge quadrats, the neighbours can include the
quadrate on the opposite side of the plét in order to avold edge effects.
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6.4.4 TData Requirements and Approaches to Analysis

Data must be available from permanent or temperary sample or experimental plots in
order to define all the dynamic and allometric relationships in a model. Any variables
included in the model must have been actually measured on sample treess If competition is
t0 be defined in terms of quadrat stand demsities, as discussed above (section 6.4.3), then
the sample plots or experiments must alsoc have been measured so that trees could be placed

in quadrats, and a quadrat by quadret competition index calculated.

With mixed specles forests, it may well be that rare species will not be represented
by many points. In these cases it 1 better to group the rarer specles together and provide
them with a common set of growth and allomeiric functions.

Unlike a transition matrix model, the process of fitting the various equations in the
model to the field data requires comsiderable skille The various problems are discussed
elsewhere in this manual, notably in section 5 and Appendix Ay but the research worker has

to consider:
— the problem of selecting a fumction which produces the appropriste shape

= fitting the data using a suitable and adequate statistical and/or graphical
fechnigque, together with an examination of residusle for bias

= what will happen if in applylng the model, an exirapolation will be demanded
from a particular function and if the result it gives under such ciroumstances
is reasonable, if not necessarily accurate.

6.4.5 Basic Model Strmcture

The overall model structure is very similar to that for dynamic sfand models, dis-
cussed in section 5.3.4, and is illustrated in the diagrem belows There is first of all an
initialization phase, where the gtate of the stand at the ghtart of the simulation is glven,
This could be derived from actual inventory data or it could be gemerated randomly or from
a set of functions,

Initialize tree variation

}Compute competition indices for each
quadrat

Compute growth for a given pericd of fime,
esge 1 Yyear, tree by itree
Increment time
Triod by 1
25 . 4 Remove harvested trees, compute yield
Remove dead trees

Generate new ingrowth trees

Print summary of plot statistics
for thies period
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Then the model enters a cyclic or iterative phase, where each cycle represents ome
unit of the basic growth period, typically 1 or 5 years. In each iteration, a series of
calculations are repeated following the main stages indicated, Generally, the order in
which these stages are carried out is not important; so that one could, for example, remove
dead or harvesied trees before, rather than after, calculating growth on the residual stand.

64406  Ingrowth, Mortality and Harvesting

From the point of view of tree model comstruction, ingrowth, mortality end harvesting
have in common the following:

- they involve the creation or removal of trees from the 1ist of trees in the modal

= they are inheremtly random processes and canmot e=slly be treated as simple
functiomal relationships

~ adeguate descriptive data iz often lacking on these parameters.

Ingrowth and mortelity are often both partially deneity dependent; so that the
mmber of ingrowth trees or the number of trees dying may both be functions of stand demsity.
Once this number has been detemmined, the actual selection of individuanls may involve &
variety of ad hoc rules. With ingrowth, one typically crestes trees of random sizes and
species with limits determined perhaps by a probebllity dietribution based on data, or per-
haps on an arbitrary maximmm sige thai appears reasonnble. With mortaliiy, the likelihood
of any individual tree dying may be a function of its size and species.

Stochastic or probsbilistic processes of this kind can be modelled very easily in a
coanputer simulation by ueing a wniform rendom number generator that produces randomly diestri-
buted numbers between zero and one. Such functione are often standard library functioms in
FORTRAN programming and ars part of the standard language in BASIC.

Suppose for example that & functiom indicates that a particular tree in the modsl
has a 0.7 probability of dying in the current years A random number betweem O and 1 is
generated; if it is less than 0eT; then the tree i presumed to have died and a mortality
routine 1s entered which records the detalls of the tree for the plet summary and removes
it from the teble of trees alive in the models If the randon number is greater than 0.7,
then the tree survives and grows until the next period.

Harvesting processes are similar to mortality in that they involve the remcoval of
trees, but usually in accordance with definite rules relating to the species and size.

6.4.7 Conclusions Regarding Tree Models

Individual 4ree models are highly flexible, but require considerable skill in both
computer programming and in data analysis on the part of the research workzr, They also
require the use of a large computers There is no single stereciyped method of constructing
guch models. The interested reader should study references such as those given in the CAB
(1977) Bibliography listed in Appendix Be

Individual tree modela are not a panacea. Like all other forecasting methods they
require an extensive data bzse of remeasurements on carefully maintained and assessed
permanent sample and experimental plots. Also, like other methods discussed earlier, their
gophigtication is no guarantee of their accuracy.
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Tw, VALIDATION OF GROWIH AND YIELD MODEIS

7.1 THE ROLE OF VALIDATION

Validation isy literally, the process of determining vhether or not a model truly
represents reality. However, the following peointe must be borne in mind:

~ Model predictions approach reality as a set of succemsive approximations as more
and more effort is put into date collection and medel construction.

- At some point,; the effort inveolved in obtaining more data or producing a more
statistically sound model hecomes more expensive than the marginal improvement
in model predictiocns werrent.

—~ Forest models do not have a wniform degree of error cover their whole reange of
predictive behavicur, but will be more or less accurate over different ranges of
predictor variables.

The process of validation may be as time consuming and expensive as that of model
construction. Special experiments may need to be constructed to test the modely data pro-
cessing systems may need to be set vp t0 allow models to be validated by comparison with
large numbers of plots; coneiderable statistical analysis may be required to estimate the
covariances of residual errors.

This input of effort into the validation process is in no sense wasted. Science
differs from philosophy and religion in being subject always to the criterion of empirical
validation of theories and models, A model which is nol validated is simply speculation and
guesswork.

Furthermore, the nature of model congtruction implies that it must interact with
validation as a cyclic process.

Data collection

= -
Model Validatlon
conatruction

Validation will show weakmesses in model behavienr which will lead to improved model
structure or to the necesaity of collecting more field data. Ixperiments on models, even
those which are quite invalid may lead %o alternative concepts of experimental demign and
data capture.

Te2 VALIDATTICN DATA

In order to validate a model, its bebaviour must be compared with ocbservations from
real situations whose history and treatment are precisely kmpwn. Thie data can be called
validation data and may be obtained from experiments, permanent sample plots or temporary
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gample plotse Two distinct situations usually exist with respect to velidation data:

+— The data used to validate the model is the same as that used to construct the
various functions forming part of the models We can call this gelf validation.

- The data used 4o validate the model has not been used to estimate any of the
function parameters in the model. This situation may be called independent

validatjons

There is nothing extraordinary about the concept of gelf validation. It is ‘the
nommal procedure for regression analyeisy for example, where all statistical estimailors are
based on the errors between model predictionsand the observed values used to fit the model.

Self validation can however, be dangerously misleading, Regression analysis provides
a good examplet if the assumptions of the statistical model used {uniform error variance,
normally distributed uncorrelated errors, predictor variables known without error) are incor—
rect +then the statisticel estimators and parameter values obtained will also be incorrect.

Self wvalidation is particularly dangerous with small nunbers of observations and
with very complex modele. With s8imple models (perhaps only one or two functione) and with
large amounts of comparison data it can be quite acceptable.

Independent validation is a much more setisfactory procedure from every point of
view. It gives an absolute reflection of how effective a model ie as a predictive iool.
The main difficulty with independent validation is that a considerable body of data may
need to be jgnored when constructing the model. Probably the best procedure, and one widely
adopted by the systems medelling community, is that of halving the data se% by a random or
systematic process and using half the dsta for model construction and bhalf for validation.

Unfortunately, there is a certain grey area between self validation and independent
validation. It is possible to construct a model using one type of information from a set of
plot or experimental data and validate it using ancther, independent statistic from the same
plots. Such partially independent validation may be regarded es less satisfactory than
fully independent validation, but more indicative of & model's true validity then self
validatiocn.

Ted RESIDUAL ERRORS

Validation of medels is usually based upom an enalyeis of residuwal errors. These
are defined as:

Residual error = Observed value — predicted value

Thie is exactly analogous to the residual error used in regrezssion analysis. It 1s
suggested that the reader refer to the notes in Appendix A.2,6; identical techniques can be
applied to error analysis from models.

If the residual error is to give a true indication of a model’s performance, it must
be assumed that the model can be set up in such a way that the independent variables giving
rice to the observed value are identical to those for the predicted value. If this ia not
the case, then the error of the model will tend %o be exaggerated.
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For example, a dynamic stand model requires information about the planiting demsity
and timing and intemsity of thinnings if it is to make an accurate prediction. Such a
model requires long term permanent sample plots or thinning experiment data for accurate
validatione.

A growth and yield model will generally predict several statistics, for example mean
diameter, dominant height, total volume and merchanteble volume. Remidual errors generally
increase (relative to the statistic predic'bed.) from height to diameter; to total volume to
merchantable volume. Consequently, it is usually sufficient to carry oui validation gtudies
on total volume or merchantable volume; wunlegs there is a epecial need to know the precision
of diameter and height estimates, these need not be the subject of separate validation
studies,

Residual errors can be summarized in several ways:

Graphically, as plote of residual errors against predicted velues or predictor
variabless The comments in Appendix 4.2.6 apply in this case.

: 5 g . _
= MAs a coefficient of detemmination, analogous 4o R in regression studies: This
is calculated as:

Sum of squares of residual errors
Sum of aquares of observed values

= 4As a residval standard deviation, calculated as:

Sum of syuares of repiduml errors

No. of validation samples — Noe. of predictor varisbles

- As a percentage residual standard deviation (equivalent to & coefficient of
variation) calculated as:

Residual standard deviation

Hean predicted value

In quoting or using these statistics, the reader sheuld appreciate that they are
approximations which cannot neceesarily be related to specific confidence intervals or levels
of significance,

Ted GRAFHICAL COMPARTSORNS

Analysis of residnal errors is a somewhat abstract technique. An alternative approach
to model validation is that in which a graph is plotted of the statistic of interest against
gsome predictor variable for both real stands and the yleld model. For example, one could
plot the development of volume against time for actual stands and for a model.

This type of approach gives a more concrete appreciation of the sirengths and weak-
nesses of a model, than residual analysis. However, it camnot effectively be used to summerize
the behaviour of a model involving many predictor variables: nor can it easily be used to
represent regults with large amounts of wvalidation deta. d
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It is suggested that toth types of validation are usually necessary. Residual
analyaip can be used with large sets of data and to summarize resulis into a small number
of etatisticsy over the whole range of predictor variable values. Graphical comparisons are
effective for presenting the key aspects of model behaviour for publication or communication.

7.5 DEFINING THE LIMITS OF MODEL UTILITY

The residual errors from a model will generally tend to increase as one moves towards
more extreme values of predictor variables. This is likely to be especlally true if one's
validation data covers a broader range of sites, ages and growing conditions than the data
used to construct the model,

However, there will be limits to the validation data, as there will have been to the
data used in model construction. It is important, as part of the validation process, that
one examines how the model behaves ocutside these limite and estimates, for each type of pre—

dictor variables, a range of values cutside which the model predictions become cbviously
inaccurate and unusable,

This is important because many applications of growth and yleld models may be in
situations where absurd wvelues are not immediately apparent. For example, as part of an
economic forest sector model or as a component in a programme for calculating cutting plansw

The limiting range of values within which a model may be reasonably precise (to
quoted specifications) should therefore be explicitly defined during the validation procees.
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8. THE APPLICATION COF THE MODEL TO THE EEJUIRFD EN USE

8e1 INTRODUCTION
Emsentially, the growth and yield model may be applied in one of three ways:

(i) As 8 simple table or graph or set of tables or graphs. These can be used by
forest planners directly or can be fed in tabular form to a computer for updating
g set of inventory data.

(ii) As a programme for & computer or calculator which can produce a %able or graph
of growth and yield for a particular sst of treatments. Thie is appropriate
when the model has sufficient inherent flexibjility =o that it is not possible
Yo define all possible p_redictions in one set of tables.

(ii1) As a computer programme which forms a Bub-model within a larger computer pro—
gramme for forest planning and which will usually incorporate a data base of
inventory information and various economic or tecbnical constraints on harves-
ting and treatment operations.

Alternatives i and ii heve been sufficlently dealt with in 5.3.4. Remaina to comment
on alternative iii where the model is used in comnection with inventory data in forest
planning.

A necessary prerequisite in this case is that the variables included in the model
as parameters (predictor variables) also are included in the inventory data.

8.2 EVEH-AGED STANDS

In the case when the forest consiste of even—-aged stands the following three functions
might be included in the models

Ho = f (Sp, S, A)
g = T (SP, Sy A, G) or' Tg = of (Sp' Ho, N
Bf ~ f (Sp, Hoy N} or Hf = f (Sp, Hoy § G)

vwhere Sp denotes species, S site quality class, Ho dominant height, A age, N mumber of trees
per hectare, G basal area per hectare, Ig basal area increment per hectare and year and Hf
form helght, defined by the function V = G.Hf where V is volume per hectare. In this case,
the variables Sp, A, Ho, N and @ have to be known for the inventory data while site class,
3y may be calculated by means of the first function.

We may assume that the model im calculated by means of obsarvations on growth and
yield plots. We may further assume that the inventory data, to which the model will be
applied, i derived from observations on sample plots. If the plot size is the same in both
cases the model may directly be applicable to the lnventory data. If, however, there is a
difference in slze in that the inventory plots for example are smsller than the growth and
yield plote, the model may give biased results. Thera are two remsons for this. One is
that the site clase will be somewhat underestimated on small plots (0.01-0,02 hectares)
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compared to larger plots (0.05~0.1 hectares). 'This bias isy however, usually only a few
percent. The cother reason for biams is that the effect of competition from trees ocutside the
plot will inerease with decreasing plot size. This in turn means that a growth function
containing competition or demsity variables like N or G ie correct only for plots of the
size for which it was calculated. The size of this biae depends on the difference in size
between the growth plots and the inventory plots, the type of growth function in the model
and finally on the variation within the inventoried stands. Nothing can therefore be said
in general about the size of this errors

Provided that the growth plots and the inventoxy plots are of more or less equal
sizey the application of the model to the inventory dats should be done by forecasting the
development for every single inventory plots Al the end of the forecasting perisd, the
plots may be sorted into strata according to species, mite class and age and the sums and
means for each stratum caleunlated.

Ify however, there is a great difference in plot size in that the growth plots are
much bigger than the inveniory plots it might be advisable firstly 4o mort the inventory
data according o species, site class and age and then to apply the model to these sirata
instead of to each separate irnventory plot.

8.3 NIXED STANDS

In the case of a forest consisting of mixed (uneven aged) stands the following
functions might be included in the forecasting model:

Iv = £ (8, Fy G(1)y G(2), we. G(n), N(1), N(2), .. H@}, L{1), L{2), ...
L(n))

Vo= £ (S, Fy 6(1), 6(2), .. G(n), B(1), H(2), ... %(n))

whers Iv is growth in merchaniable volume per hectare and year, S is site class defined by
environmental indicators {soil type, altitude, rainfall, etc.), F is forest type, G{1), G(2),
aes G(n) is basal area after logging by species group per hectare, N(1), WN(2) ... ¥N(n) is
the number of trees after logging per specles group and hectare, L{1), L{2) ... L(n) i=
logging intensity per species group and finally V is merchantzble volume after logging per

hectare.

To enable forecasiing the same varisbles (predictor variables) have o be recorded
in the inventory as thome included in the model. The discussion on plot sizZe in relation
to forecasting for even-aged stands applies in principle also to mixed standes, Tt must be
admitted, however, that very little so far has been done in the field of growth models for
tropical mixed forests and that this field still is in a stage of resezrch. It is thus not
posgible to give any precise instructions on how %o make forecasts concerning the development
of tropical, mixed forests after logging. For temperate, mized forests, models have been
developed by which reliable forecasts may be done {see e.g. Monserud 1980)s It mighi be
worthwhile trying these models alsc for tropical mixed forests, but this has so far not been
done.

Monserud, A, Ek, A, 1980, Comparison of two stand growth models for northern bhardwoods -
Wright H, (editor) 1980. Planning, performance and eveluation of growth and yield
studien. Meeting of TUFRO 54.01, Comcnwealth Foresiry Institule, Oxford, Great

Britain, pp.8a.
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Ta EQUATIONS AND GRAPHS

This section concerms methods of expressing graphical relationships =& equations.

1ul The Straight Line

The simplest type of graph is the straight line:

Thie can be represented ag an equation by:

¥y = &+ bix

a is the value of ¥y at the point where the line crosses the y axis (i.e. at »=0)s b is the
slope of the liney and can be conveniently worked out from a graph as follows:

(i)

(i)

(iii)

Take any convenient interval a x (say for example, 10 wmits of x), and drew a
line AB of that length parallel to the x axis (see diagram above).

Measure the length &y of the line parallel to the y axis from B to the graph
line. If BC ie measured upwards, Ay is positive. If C is below B then Ay
is negative.

The slope b is given by Ay/ Ax. Note that.Ay and AX are measured in the
mits of the y and x axes, and not in actual distanoe orn the paper in
centimetres eto.

An slternative algebraic method of caleuwlating the a and b coefficients for a
gtraight line is as follows:

(1)

Take any two convenient points on the line, designated by (x1, y1) and
(x2, yz),a.s shown on the diagram below. =



yz R D S

R iy

- 118 =

N (!2r32)

—

(41) Caloulate the slope b ass
boe (yey,)/ (12-:1)
(iii) Caloulate the intercept ast

g = y'1-'b.x1

1.2  Transformations for Cwrve Fitting

Hany relationshipe between variables in forest yleld prediotion are in the form of
curves when represemted graphically. The modelyor mparticular equation that represents the
ourve, must be known if an exaoi representation of the owrve is to be worked out.
practice, the corrsot model im not ususlly kmown and only an approximetion is possible.

Perhaps the most easily fitted a2nd used approximating equations are those whioh
involve iransformaijons of the x or y units, but leave the general equation in linear form.

Common transformations are:

e (2.71828:..-)

log10 x logarithm to the base 10
1] n n "
log or In
1 /x reoiprooal
\/x square root
:l:2 BOUATS

The transformations oan be applied i¢ both the x and y variables to give wvarious

combingtions and resultant ourves.
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Data that iz obvicowsly not linear in form can be plotted using various transforma-
tions until & linear sheps iz obtained. The work is redused if one hae some idea in advence
of the fransformations likaly to he suwocessful. In the main part of this manual examples
for particulsr types of data are suggested.

1.3 fxample of Approximation of a Curve Using Transformation to a Straight Line

Figure A.1.1(x) shows & curve ropresenting = relationship between tree volume (V)
and diameter (D). We sssume that the ourve has beem drawn by hand and it is desired to
express it as an equation.

Pointe at convenient interwvals on the x=axis are tabulated from the graph:

Points from Original

Function Transformations
bi] ¥ D2 log D log V
10 0.05 100 1.000 =-1,301
20 0,20 400 1,301 =0.699
30 0245 200 1.471 -0a347
40 0.85 1 &00 1.602 0,071
50 1.50 2 500 1.699 0.176
55 1.9 3 02% 1.740 0.279

The first transformation tried is shown in figure Aa1¢.1('b), where D2 is plotted
ageinst V. The points from the eriginal curve almost follow a straight linme, but there is
8till & slight owvature apparent.

Another transformation is ghown in figure A.1.1{c ). Here we have taken logarithms
to bass 10 of both axes. The transformed valuss are listed for the 6 melected points inm
the table above. It can be seen that thie tramasformation gives an almost perfeot fit,
exoept for the smallest point whioh ie slightly above the line. From the figure we can
caloulate the slope and intercept for this line, Taking the two points (1.301,=0,699) and
{1 w7404 0.2?9) ghown by the doubls oircles on the figure and as D at 20 and 55 om in the
table sbove, we haves

b o= (0,279 = (~0.699))/(1.740 ~ 1.301)
0.978/0.439
2,228

&

=0,699 =2,228 x §.301
=3.597

1]
#

So our equation approximating the ourve ir figwre A.1.1(a) is:

1og10V = =3,507 + 2,228 1og10D
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Flgga A.1.1

(a)

(b) Vv

(c) 0.5

0,0
-0,54

_1'0.

=15

Transformation of a hand-drawn ourve to give a straight line approximation,
(a) Original free-hand curve with selected points for calculation of transformed values.
(b) x-axis transformed by taking square of selected pointe. (o) x and y axee tramsformed
by taking logarithms fo base 10 of the selected polnts.
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1.4  FPolynomials for Curve Approximation

Equations involving only two coefficiente are convenient for the approximation of
Ffunctions because they can be drawn ag straight lines with euitable iransformations. How
ever, some shapes of ourve cannct be treated in this ways In this case the technigque of
fitting a quadratic or oubio polymomial to the funotion may yield good resulte.

A polynomial is an eguation of the form:

+bx+bx-2+'b13+..u+bnxn

y= Byr Oy 2 3

where n is the order and the b; are ocefficients. The higher the order the greater the

flexibility of the function. On the other hand, high order polynomiale are difficult to
fit by manual technigues.

For quadratic (2and order) and cubic (3rd order) polynomials, manual calculation of
the ocoefficients is possible in about 30 minutes with the help of a 4-fumotion (+, —, X, =)
caloulator. A form is provided to assist the user (form i.1) which shows in this case the
fitting of a cublic equation to the line in figure A.1.2. Four poinite are taken from the
function to be fitted and entered in table (1) of the forms The points need not be in any
order, but it ies desirable that:

(i) One point each should represent the two extremes of the function.(In this
case, X1 and 3(3.)

{1i) X4 should not be an extreme point if the quadratic equation coefficients are
40 be caloulated.

(iii) The other points should be more or less evenly spaced.

(iv)  When only the quadratic equation is to be calculated,three points are
sufficient.

Form A.1 explaine the neceseary calculations.

Quadratic and cubic ocurves provide a useful means of approximating hand-drawn ourves
by an equation. When using them the following detaile should be noted:

(i) Always check the caloulations and the suitability of these curves by drawing
the function on top of the original curve. It is uwsually preferable to start
by fitting the quadratic equations Then, if this is not sufficiently accurate,
compute the cubic equation coefficiente.

(i1) Never use a polynomial equation to extrapolate beyond the two extreme points
used in fitting it. If extrapolation is nesessary, extend the hand-drawn
curve first and then fit a new equation with a new extreme point.
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e A.1.2

n"

(see form A,1 for oaloulations)

Hand-drawn curve approximation by a cubic polynomial.

iy

£ o i am oan e i mm m m o  e

I S

B ey e e R ke o e ] sl nE mm mm ——

425

rn
x

20

A T T e ——

)
|

i

l

t

I

!

I

1

i

)

!

]

i

!

I

)

1

)

)

)

I
=
1 i
o
o

151

10 1%
5



Form A.l

Objective:

Y=h + b KX+ b
: a 1

of

Yeh +h
(4]

Items marked & axe not required for the quedratic curve calculatione,
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To caleculate the coefficients by in eithar of the equations:

1

ox.z -+ b3tx3

X + bz.xz

Coefficients for am approximebing guadratic or cubic curve

{oubic curve)

{quadratic curve)

(’I} Tabulate 3 or 4 data points for the function and compute mguares and cubbs,

i 1 2 3 b
Y 9.2 16,0 21.0  |° 19.4
X| 5 10 20 MRT
)(% 25 100 400 = 225
}(? 125 = 1000 < 8000 < 3375
(2) From table (1) calculate differences as showm:
: = 2 w2 |3 -3
i Yi:-i-‘] “Yi xi+1 Xi Xi-ﬂ Xi Xiﬂ ><l
<
1 6.8 5 75 875
- L
, 5 10 300 7000
31 -1.6 -5 ~175 4625

{3) From table (2) construot the terms shown in the table below according te the
follewing definitions:

V.

i U, i Wi
1 <>

1.36 15 175
Z 0.5 30 N 700
3 <> < ' f<>

032 35 925

;= (T -1,)/ (X, 0~%y)

i

2 2
vye (KR (R X))

%" (xiﬂ-xi)/ (X1 7%)

fons



-~ 124 -

Form A.1 (oon‘tinusd..-)
From table (3) caloulate the terms in the following table from these defini-

(4)
: tiones
{ V., -~V A .
L1 9a™% 4 P 9 B - AR
<o
1 15 ~0.05733 35
T = = . q = (e - /(v v

(5)  Caloulate the soeffioients ascording to the following formmulae:

Coefficient Cubic eqm. Quadratic eqm.
b, (py=p,)/(a,7a,) None
= 04002133
'b -b 3
2 By P
= =0x1320 -
b L ] o] » o) L]
4 1.1‘I 'b v b3 w1 ) b v1
= 26967 =5 =
x -205995 =
* *
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o Graphs Involving Three Variables

411 the graphg considered in the above paragraphs relate a y variable with an x
variable. Many relationships involve a third variable which we may call a z variable.
The graph may appear something like this:

X

Here; each level of & (z,i, 22, 239 oto.) forms a distinct relationshlp hetwasn x
and y. Such cases are common with site index ourves where height (y) depends on age (x)

for different levels of site index (z), or wolume or bassl area curves depending on height
(x) and etand density (z)a

Swh syetems of curves having been drawm by hand ihrough data may need to be
expresged as equatione for caloulation or tebulation purposes, for use in a computer
programme, or simply for converience of commmication snd analysis.

The system of curves can be expressed either:

(1) as a series of separate equations with a different relationship between x
and y for each level of zj or

(ii) a3 a single equation in which z enters as a distinot varisble.

The first method oan lead to the seoond by the process ocalled harmonization. Setse
of equatione of the first type have two dlsadvantagest

(i) There is no method of determining & valus of y given a2 z value intermediate
between the levels chosene

(it) 4 large number of coefficients are required %o desoribe the curve system,

BEquations of the zeocond type are therefore to be preferred; they are more concise
and can be used to calculate y for any given valuse of x and z (within the range of the
curve sy‘a‘tem).

The example below shows how a system of harmonized curves oan be constructed. The
goneral principle involves graphing the coefficient valuse against the z variable levels

and for each ococefficient, deriving a new expression to predict the ccefficient value given
a partiounlar z.



1.6 Example: Fitting an equation to a system of ocurves by harwonization

Figure A.1.3 shows a eystem of height (H) over diameter (D) curves for individual
trees in four different age classes (A). The ourves were originally drawn by hand through
data.

The firet stage is to fit a separate equation to each line, It is decided to use a
quadratic function as the approximating equation.

Figure A.1.3

Hand=drawn curves of height on diameter for different age classes, to be

approximated by harmonized quadratic equations !Bee gxample in 'tert!. 7

304"

* / 2
201

15
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The calculations, which are not shown, involve selecting 3 points from each line and
caloulating the coefficients according to the method of form A.1., The selected points are
ghovm on each curve in the Tigure by ©¢ « The table below gives the coefficient valuss for
each age class:

Coeffici
Roes . ib:.ents .
Class .8 1 . 2
5 2.2 1.0625 -0.0219
0 506 10500 =0,0250
15 9,8 11375 =0.0281
20 12.5 1.2750 (). 0313

In ovder to redupe the system of four quadratic equations to & single system, the
coefficients bj must be made to depend on sge. The form of this dependence can best be
seen by graphing the coefficients against age olass (figurs A.1.4).

From that figure it oan be seen that the relation between by and age follows a
gentle curve, whilst by versus sge is a sleeper, more asymmetric ocurve; by versus age
appears almost exactly linear. The equations were celeculated (zgein using form A.1) for
these three curves as follows:

by = =0.0187 +1.153 A ~3.100 a2 —(1)
b, = 10225 ~0.0 ; £ 5 5 53 )

g = 15225 ~0.0508 A +0.00400 &” =6.67 = 10 ~ 4 (2}
b, = ~0.0188 ~0,000627 A (3}

The general equation for the lines in figure A:.1.4 is the guadratic equation, as
selected earlier, with the form:

2
Hs bo + b1D + b21] ~(4)

The ooefficient values in equation (4) can now be derived for any age between the
Limits 5 and 20 using equations (1) to {3).

This iz & fairly complex example of harmonization intended to illusirate the full
scope of the prineciples involved. In praotice some simplification is often acceptable.
For example, in the above case & quite close approximation to the original hand-drawn
funotion can be obtained if average valuss of bl and b, are used and only bp depends
upon age a8 a linear function:

'b0= a.o + a_l,&

the overall eguation, substituting for by will be:

2
H= a.0+a1A+b1D+b21)
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F‘J.E e L- 1.4

Coefficient values plotied againet age oclass A for the
guadratic equations fitted to the lines of figwre A.1.3

(a)

(v)

(c)

i4

127
10 4

L)

1.250

1.200

1.150 ]

1.100

1.050 ©

-0.02z2 2

—0.024 b

_0.026'

—0.030 -

o
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This model is not a perfect fit (as is the one worked out above) but the error over
the range of the hand-drawn function is within + #m of predicted height which may well be
acceptable if the original data wae well scattered and consequently the hamd=drawn lines
subject to some wncertainty.

As with polynomials, harmonized functions should never be used extrapolation!
If extrapolation is necessary, draw the extemded curve set by hand to cover the range of
intended use and resaliculate all the coefficients of the approximating function.

2. CURVE FITTING BY LINEAR LEAST SQUAHES ANALYSTS

2,1 Simple linear Regresesion

linear regression analysis is deslt with in many text books in great detail and with
pumerous examples {c.f. Snedecor, Draper & Smith and Seber in the bibliography). It is
proposed here only to give the barest oubtline of the fundamental ideas, basic caleculations
and most epsential statistical parameters.

Linear least squares analysis is a mlightly more precise name for linear regression
analysis. It refere to a technique for fitting predictive equations to raw data (i.e.
mmsmoothed observations) based on the principle of minimizing the squares of the deviations
from a straight line through the points. When the assumptions, which are listed below, are
fully satisfied the perameters (coefficients) for the fitted equation will be those which
are most likely to be correct in a sfatisiical senses When the assumptions are not satis-
fied, then the method will etill give parameter estimates, but they will no longer be the
pest ones obtainable; better paramester estimates could be obiained by deriving from first
principles correct "maximum likelihood eguations™ for the particular class of problem
involved. Thiz latter subjeot is outeide the scope of this appendix.

The definition of the simplest type of regression problem can be shown with the help
of figure A.2.1. I% involves a relationship between two veriables, x and y. The x variable
is assumed to be the one that is to be used to predict the y veriable. The etatistical
model is:

=(1)

whers the a; are the random deviations of each point from a line. In figure A.2.1 the
s0lid line represents the part

= a + bex +
¥y= a X+ ay

¥y = a+ bex

usually called the regression equation. a and b are the coefficlents of this equation whose
egtimation from the data ie the primary purpose of the analysis. The ej are called residualg!
end represent the vertical distances between the points and the lins.
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Form A.2 Caloulation of statistics for simple linear regression using Statform 11

from Dawkins, 1968 (reproduced with permission).

in figure 4.2.1,

The date ie that shown

LINEAR REGRESSION and CORRELATION
Line - : E - ;
1| Nature of the observations: H\ff-"f':‘-’c-'--” h&fg— c{m%?ﬁimom
2 ¢ Dependent or lefi-hand variable, y: ol e ‘
3 H*‘ZA'?M'! 4.
4 | Independene or r'Jg}lt—Hand variable, x: Lb\wﬂ&tw, M.
3
6 | Sums of squares and products, | = s q ................ pairs of observations
71 &y) =605t & IyxIx =4(1%92 | (Zx) = 63504 | ¥ x
B oy? = LILB. Zyx = L1839 e 2134 it 2
ol Sy == 672 it ZyExn = 6928 {ZxPn = jo_g__[a_, 22 .
10| SSy = 994 SPyx = 2s1 §5% == {071% 16 | 2
11 | Linear {Cocﬁicicm; SPyx/SSx = ©O.88219. . = b B FE-
12 | regression | Constant; y—bx = ... 2.6310% = o« 29 | 3¢
13 | Regression 88 = bXSPyx = .wu £38.9¢ 14|32
14 { Total 85 is the §Sy. Total df. = n—1 = g . 2 2<
t5 | Residual SS and d.f. obrained by subrraction. o =3
16 ANOVAR Variance | Table b2 | &>
17 Source 5 d.f MS ratio EO| W] *°
18 Regression 838.76. .1 237031 R 2328
19 Residual 155.0 - - e e SRl
20 Total 9 4+ 4
21 | Cocfhcient of determinarion, 2,
22 Regression $8/Total 55 = gsc’ /q?.q‘_: Ok
23 ! Coeflicient of linear correlation, r,
B4 b o= s/r"’— = “Q‘i'? ........ with sign as for b
25 | Resdual standard deviation = VResid M§ = #: 11 = SD. resid.
26 | Coefficient of residual variation 4, = toox S resid.fy = L94% = cvy, Iy Ex
27 | Standard error for random samples = SD resid./ Vit = f:37 = SE resid |24+ 6| 252
28 | Student's t for n—a d.f. and Poos is . 234 . ¥ . 1%
29 | Sampling crror % = 100X SE. resid. )y = C:6.% = Bl - 7‘_3 _ 2%
30 | Standard error of the cocfficient b is VVResid. M§/S5x = ©:{%33 = SEb
31 | Its t-ratio is b/SEb, or /variance ratio, = %:1856 . — tnto
32 | Confidence limits for estimation of y from obscrvations of x; if nr observations arc taken of x, having
11 amean of X', there arc mt possible estimates of y. Confidence limits for their mean y {(=Zy/[n) arc:
;5" y 41X SD. residx VL = +(=Sc‘T:f_£f

Statform 11 Commonivealth Forcstry Institnte, Oxford 1968
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Figure A.2.1 A simple linear regression model fitted to data

4 7

30 4

20 4

10 4

Regression line ¥ = a2 + b.X

Confidence interval at 295% level

® Point formed by mean X and y values in data
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The assumptions made in simple linear regression are that:

(i) The model is truly linear, as represented by equation (1) above, and not
curved in any senge.

(iil The residuals are normally distributed with & constant variance over the
rahge of x values under consideration.

(111) The residuale are independent of each other; 4they are not correlated or
grouped in any way.

(iv) The values of the sample points on the X axis can be determined exactly.

The ocalculation of the various stetistios required for linear regression analysis are
shown in form A.2y which reproduces Statform 11 from Dawkins (see bibliography for details)
with the working of the data shown in figure A+2.1. The most important statisiice are the
coefficients (lines 11 and 12), the variance ratio (line 18), the coefficient of determinae
tion r2 (line 22), the residual standard deviation (line 25) and the confidence limits for
predictions (lines 32-35).

The r? values and the residual standard deviation are useful for the comparison of
regresgions. The highear the r2 the more precise the relation. When r2 is one, the residuals
are zero and the data fall exactly on the line. Similarly, the closer the residumal standard
deviation approaches to zero, the more precisely the regression predicts the y values. The
confidence intervala of the regression line show the limits within which the true mean of &
selected number of y values should lie.

It will be noted that the regression line will always pass through the point formed
by the mean of the x and y values. The confidence bande are a2lso cwrved in form and become
rapidly wider as one moves outzside the range of the data contributing to the regression.

The x variable in a regression analysis is called the independent or predictor
variable; it provides the basis on which the predictions will be made. The y variable
is called the dependent or response variable; it is assumed to be oontrolled in some
degree by the level of the predictor variables.

2,2 Regresgion with Two Predictor Variablese

Regression with two predictor variables assumes the model

I= bo + b X+ b2Z

1

where the X and Z are known predictor variables and Y is the dependent variable; the by
are the coefficients to be determined. The aseumptions and general prinociples are the same
as for simple linear regression. The ovefficients end statistice for thie model can be
calculated by hand although the method is rather more invelved than for simple linear
rTegresgion. It is a useful model for fitting a variety of curves, as will become apparent
in section 2.3,
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Form A.)} shows how the caloulations proceeds. The example uges the data from figwre
AsZel and form As2 for the height-diameter relationship of 9 sample trees, but this time with
the addition of an extra variable (diameter)?, so that the equation being fitted becomes:
2

H= b0+b1D+b2D

After working through the form the coefficient values calculated are:

b, = 0.00953469

all to 6 significant digits. It is important when carrying out the calculations to work
to 6 or more significant digits and not to rownd small numbers (such as 811 829 &3 in the
example) to a few decimal places; otherwise considerable loss of acouracy may result.

The lower wvariance ratio and t—=values for the coefficients obtained with this
regregsion as compared with the earlier linear one (figure 2.2.1 y form A.2) reflects the
fact that the addition of the extra variable increases the umoertainty of the parameter
estimates with respect to the population frem which this sample of points was drawn. In
this case neither of the t—values is significant for the two variable coefficients by and
bo; this indicates that the model would be just as efficient for prediction purposes if
one or other variable were ommitted.

2.3 Data Transformations and Curve Fittine

Various types of curvilinear fumctions may be fitted wsing linear regreesion tech-
nigques by making appropriate transformations of the dependent and predictor variables. It
is desirable when making transformations of data to prooeed through the following stages:

(i) Plot the wntransformed data on normal graph paper and examine it to =ee whether
any curvature in the iremd line is apparent.

(ii) If a curvature ie apparent, select an appropriate transformation for the
dependent a.nd./or predictor variables and calculate transformed values for
each data point.

(iii) Plot the transformed values on normal graph paper and examine the points to
see whether the trend is now linear. If it is, fit a2 regression uesing the
transformed data values.

The gelection of a suitable transformation can be aided by the diagrams in figure
A.241, which illustrate some commonly used curve shapes. Functions (a) to (d) can be
fitted by simple regression. Punctions (e) and (f) require two predictor variables;
consequently the transformed values cannot be examined graphically as in (iii) above.
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Form Ae3 Coefficients and statistics of a regression with two
predictor variables {part 1)

Description of problem: Heiyht- hiomiler dalnfrom axosple i
secXige A2l Gu-ath B = RS

A

(1) Regression data ‘ {4) Corrected products
Iy = IX¥-IX.X¥/n = 935(. coo
T B G4
27 1 259 Izy = LZY=3Z.IY/n = 52331.467
e | . 2 = 1x%-(5%)%/n = (078.000
{6 21 el -
.y IXz = IXZ-3X.1Z2/n = _51NHb.020
2z 1 L 127 = 12%-(352)%/n = 3233501.556
2_1 s 1225 ==
34 32 liore (5) Detgmigant & gauss multipliers
D= rx“.22°-(Ix2)° = 159768020.7
b | R ) GRE W _
: &= Iz /D = 0.020L4 1]
2 45 |{2e2% g,= ~Ixz/D = ~0.00036079]
e 4o |leoo g= 2x°/D = 6.71388 w0 ©
(6) Regression coefficients
'b2= 8o-IXY+83.12Y = ©.00Q 95 36¢-£9
b0= Y-bllxﬁbgoz = g‘ 3“ 77
(7) Reegression sum of squares
zirg = bl._zxy-s-bz.my = R52.30
(8) Residual sum of squarea N
8% EIYO-IFT = Iyt bl
(9) Residual degrees of freedom
(2) Totdls and products ldf= 1-3 = &
¥? TUF  izy o 3 W ixy 7839 sy 276461
BN X 252 |zz 3+
(o) reias x? 9134 jzxz 2958 |
YT =I¥/n= 273 232 10589338 Part 2)
Z = EX/H = .7..8 :
% = ZZ/n = 903--j
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Form A.3 (... Part 2)
(10) Cbrrelations between variables
Ty = D/ f(sx5.y) = O.UBT
Loy = Iyz/\f( zze.zyz) = O.q2L2y
2
Ty = xz/\f (2. 22°) = . q7b3

¥Multiple correlation coefficient R and R*

£1.13
2 - s9¥sy = ©.3575
R =yRZ2 = 0.92-60
(12) Analysis of variance
sum of mearn variance
SCUATEeSs d.f. sguare ratio
Regression ):3'2 852.3¢ . Wb U 18.05
Residual £3° (4l.bb|af & ] 23.6l = 52
Total Iy* 9%4.00 {n-1 3
{(13) Residuzal st dard deviation

8 = Jéz = L&.Bﬁa

Coefficient

by

{(14) Standard error and t-value of coefficients

b,

Standard error 8y,

E-(gl= O.GQlS

B-\IEBZ c.0l2 6?—

it = b/sb

o .§27

0186

16

Confidence intervals for predictions

where x = (

X = X) and

z=(Z—-'Z)-
will be zero; for a single point it will be unity.

Por a series of m estimates of Y at a given level of X and 2,
the standard error of the mean prediction is given by:

Sy = s. f(l/m +1/n + gl.-x2 + 208yeXeZ + ga.zz)

For a large sample, 1/m
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Figure A.2.1 Curve shapee resulting from different functions
that can be fitted by linear regression.

{c = 10% or & depending on whether logarithms
to hase 10 or base e are used,)

(g) ey =8% % lag %
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The effect of data transformations upon the basic assumptions of linear regression
involves three important points:
(i)  Regressions in which the same dependent variable has been subject to different
transformations cannot be compared directly for goodness of fit using the

correlation coefficient R (or B%).

(ii) The distribution of the residvals will be influenced by any transformation of
the dependent variable.

(ii1) The regression may be biased by a transformation of the dependent variable.
For comparison of regressions for goodnsss of fit when several transformations of

the dependent variable are involved, the Firnival Index must be uwsed-'» This is calculated
ags

mes (T2 (T
or more simply:
FI = By antilog (( £log £9(3)"1)/n)
Here s is the residumal standard deviation from the fitted regression: n is the mumber
of data points; and £'(y)~' ie the reoiprooal of the derivative of the traneformation

applied to the y variable with respect to .

Since the non-mathematical reader will not be familiar with derivatives, appropriate
forms for the commonest transformations are given belows:

Traneformation 1 32-1

None 1
10g1 o~ 2.3026 ¥y
log W ¥
¥/ W

1/y -y
¥ /05y

In the above y is the original data variable, w iz any weight to be used in fitting
the y to normalige residuals {see later seotion on weighted regression for more deta.ils),
k is any constant that iz wsed to traneform y by reising it to = constant power. Be.ge 1if
y2 were the dependent variable, k would be 2, Note that when no transformation is applied
the Furnival Index is identical with the residual standard deviation.

1/ See Furnival, GudMe, 1961 4n index for comparing equations vsed in constructing wvolume
tables. Forest Science 7{4)337=341.



Given a set of regressions for which Furnivel Indices have been computed, all
involving the same basic dependent variable, the equation which fits best will be that with
the smallest index.

The effect of transformations upon the residurls' distribution and upon the bias of
the regression will be considered in detail in the section upon residual analysis and
weighting. For simple usage of the transformation principle in association with manual
calculation, the correction factor for bias resuliing from a logarithmic transformation of
the dependent variable should be mentioned.

This correction factor for bias, due to Meyanju assumes that the model being calcu—
lated hae the form:

1055 yv= f{x) + e

where the errors e; are normally distributed and homogeneous with a standard deviation s,
which is the residwml gtandard devietion calculated in the regression analysis. The model
that is to be actually applied is however:

_ (=)

where a is either 10 or e depending on whether common or natural logarithms are to be used.
If the assumptions about error disiribution are correct,; then a systematic error will occur
which can be compenmated for by using a correction factor C so that the above formula

becomes:

L6

= C
The correction factors for common and natural logs are:

(i) Common {base 10) logs:
2
¢ = 10.1-1513 5

(ii) Natural (baseze) logs}
6o B /2

where s is the residual standard deviation obtained from the original regression with log
WL

The validity of the correction factor is dependent upon assumptions about error
distribution which need not be correct. Henoce, it is not possible to state in any fixed
or dogmatic fashion that this correction should or should not be used in a particular casej
preferably the distribution of the residumls should be examined graphically as described in
the section on residwal analysis before arriving ot any decision.

In practice, when the degree of fit obtained is high (i.e. R® over about 0.9) then
the various arguments about alternative fitting methods, error distributions, efc., are
esgentially academio; +the fitted function may be safely manipulated and transformed as
it it were a determinigtic algebraic function.

Y See Meyer, Hehoy 1944. A correction for systematlsc error oscurring in the application
of the logarithmic volume equation. Pemnsylvania State University Forest Research Paper 7.



2.4 Multiple RegressionL Analvsis

Simple linear regression and regression with two prediotor variables represent models,
respectively, of the type:

Y= a+ beX =(1)

Y= a -+ b1 oK + 'b2.Z _(_27)

vhere a, by by and by are the coefficients to be estimated and X, Z and Y are variables.
Both of these are examples of the general muliivariate linear regression model which has
the form:

Y: bo + b1-x1 -+ hzoxz + b3.X3 + v e e oW + bm-xm -—(3)

‘where the bj are the coefficients to be estimated by regression and the X; are different
predictor variables. This can be written in short form as:

m
T=12,+¢ bi.xi =(4)

The various predictor variables can be of the following different sorts:

(1) Each Xj may be a separate independent variable. For example, in a particular
applioation Xy may be height and X; diemeter. The independent variables may
be more or less correlated among themselves, provided the correlation i= not
perfect (i.ee R= 1)s In the latter case one of the variables involved must
be ommitted.

1) Some variables may be combinations and/or transformations of other variables.
For example, X3 might be log(Xp) and Xy might be X,.X,. However, edditive
combinations (e«ge X3 = Xy + X3 or X1 - XQ) are not permitted; they result
in perfect correlation among va.rii}sles.

(1ii) Some variables may be conditional variables having values of only zero or one.
For example, in a particular regression, Xq might be zero for data from one
seed source and one for data from a different source. This is discussed
firther in the section on comparison of regressions and covarianoe analysis.

In most applications in foreet yield predicition only a few basic independent variables
are involved, oftemn only 2 or 3, but with perhaps 2 or 3 other variables constructed as
transformations in order to provide partioular cwve shapes. For example, the site index
model:

logH= b

s % ‘n1/A + b5 + b3.S/A

involves three basic variables: height (H), age (A) and site index (S). These are trans-
formed and combined to give the regression model:

0 E ‘n0 + b1.x1 + 1:2.]{;2 + b3.X'3

where Y is log(H), X, is 1/A, X, ie S and X, is S/A.
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2.5 Calculations for Bstimating the Paremeters of a Multiple Regression Model

4s in the previocus cases of regression with one and two predictor variables, in mul
mltiple regression one ias primgrily concerned to calculate the coefficient values, the
coefficient of determination (R”), the residual standard deviation, the variance ratio of
the residuals to the regression mean square, the standard errors of the coefficients and
the mtatistics necessary for conatructing confidence intervals for predicted values.

These parameters are usually estimated using a computer programme. Manual calcula-—
tions are very tedious and it 1s very easy for errors to slip in. However, the manual
calculation procedures are given here both for the benefit of those who wish to use them
as they stand and as an algorithm thet will provide the basis for a computer programme if
it is necessary to write one from scratch.

It is beet to consider the calculations as following a number of stages:
Stage ! Define the model to be fitted and tabulate the transformed variable values.
The general model is:

m
= b .X +
L Sl T TR

where Y, are the dependent variable observations (j = 1 to n)s xij are the predictor wvariable
observations with m variables per observation (i = 1 to m) and n observations. The b; are
the coefficients to be estimated, the 84 are the residunls between the observed Ys and the

Ys which will be estimated from the linear model.

In the calculation example we wish to fit the models

= + <X, + oL+ Y4
B b0 bT 1 b2 P b3 3

given the data:

Y X, X, X,
1 4 9 4
3 3 9 9
[ 3 6 6
o 5 8 3
14 4 7 1
18 6 4 5
19 5 3 7
21 7 1 9
24 6 3 4
26 7 2 5

where n is 10 (number of observations) and m is 3 (number of predictor variables )+
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Stage 2 Form the totalse and cross—products of the data defined algebraically as:

f1) Totals

P =FX,, fori= 1ton
ij

(ii) Cross—troducts

n
=LX WX  foriand k= 14om
i3 ki
3
n
PY. =LY .X, fori="1tom
1 j‘] 1]

Phix

For the example we have the following totals and producis:

k e T |12 3
Ty 142 50 52 53
P e e e 9 3
1 270 227 267
2 - 350 256
8 = - 339
k 1 2 3
PY 811 h22 752

The total sum of squares of the Yo must also be calculated:
2
£Y = 274

Stage 3 Correct the sums of products for the means. From the values Pxik' PY:‘. and
Y2 the following corrected wvalues are formed:

Q'X = Px — I .I n
ik ik i 1{/
QI e IY — T .T ’

i a s n

Zyz = EY2 = 'I'f/n
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The calculated values for the example ares

1 20 -33 2
i’ - 79.6 -19.6
k 1 2 3
QY 101 =216.4 = <0.6
2
Iy = 697.6

Stage 4 Solve for the coefficient values and at the eame fime invert the cross-
preduct matrix uwsing Jordan elimination,.

QX and QY are arranged in a table {which we will call C) in the following way:

1 2 3 . o fﬁ k s & & m 1
2 2
- Qx L ]
. ik QY
. i
i 5
* L]
m m
At the same time, the values QX Q.X QX y otc. are filled in as having the
same values as QX12, QX13, etc, For t exa.mpie we have therefore:
C i > 1
13 49 1 2 3 4
1 20 =33 2 101
2 2 -19.6 58.1 =0,6

Having drawn up the table or matrix C we are now ready to proceed with the steps of
the Jordan elimination process.
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Jordan slimination

kfth oolunn
i; ®ix %13
ij ckk ckj ktth row
[s]
ij 1 ik ;3

Perform m reduotions of the tables On the k'th reduction replace each element °ij
of the table by a new valus cij* according to the following eeguence:

(i) let o ¥ = 1/okk (ckk is called the 'pivot!')

(ii) let each element of the k'th colum, excluding the pivot, be replaced by:

*

= wc. *
%k T "Cik* ke

(iii) let all the elements ¢, but excluding the k'th row or the k'th colum, be
replaced by: 13

c ¥*=c¢ 4+ 0o *,0 .
ij ij ik = kj

(iv) let the elements of the k'th row, excluding the pivot, be replaced by:

g e ne &

kj kk
After the last reduction then the elements cl1 to cmm gomprise the 'inverse matrix!
6f the regression problem. These elements, as we shall ses, are important in calculating
the variances and covariancee of the coefficients and hemoe the confidence limits of the
regresgion estimates. The elements in the mtl'th colum are the regression coefficients

bl to bm. For the numerical example the three reductions are shown below:

REDUCTION 1
0.05000000 ~1.65000000 0.10000000
-16.30000000 -k9.75000000

5,05000000

1..65000000 25. 15000000

-0.10000000 -16.30000000 57 .90000000  =10.70000000
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REDUCTION 2 ’
0.15825049 0.06560636 -0.96938363 +.7B8608349
0.06560636 0.03976143 -0.64811133 -1.97813121
0.96938369 0.64811133 47.33578528  -42.94353876

REDUCTION 3
0.17810238 0.07887895 0.02047887 0.90664807
0.07887895 0.0U863523 0.01369178 -2.56610485
0.02047887 0.01369178 0.02112566 -0.90721086

Although Jordan elimination sounds fairly complex when explained in full, and is
certainly very tedious to carry out manually, it can be programmed very easily for a com-
puter. Below is a2 section of oode in BASIC which inverts and solves the regression problem
in the matrix C. The variable letters used correspond exactly to the explanation above,

Code in BASIC for Jordan Eliminations

100 FOR K= 1 TO M

110 1ET C(K,X) = 1/C(¥,X)

120 FORI = 1 to M

130 IF I = K THEN 190

140 LET C(I,K) = —C(I,K)*C(K,K)
150 FOR J = 1 TO M+

160 IF J=K THEN 180

170 LET C(T,J)=C(T,J)+ C(I,K)}*C(K,J)
180 NEXT J

190 NEXT 1

200 FOR J = 1 0 M1

210 IF J=K THEN 230

220 LET C(K,J) = C(K,J)*C(K,K)
230 NEXT J

240 NEXT K

The coefficients b, to b have now besn ocaloulated and are stored in o

to
o
Thus, for the nu&ericaf example we haves s

c
mym+1°

b2 -‘=—2.566
=-0‘ 2
b, 907

rounding to 4 significant figures. The intercept b, is calculated from:

8]
m
b = {Ty = Ebs.T;)/n
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For the numerical cxample we have: !
by = {142 - (50 x 0.9066 + 52 x (~2.566) + 53 x (=0.9072))/10

= 27.82 (to 4 sig. figures)

The elements o,, to ¢ of the final table after the last Jordan reduction we will
refer to as the inverse matr?g Ge

Stage 5 Caloulate total, regression and residual sum of squares and hence coefficient
of determination (RZ), variance ratio (F) and residual standard deviation.

The total sum of squares (TSS) is zyz, as calculated at stage 3.
The regression sum of squares (RSS) is given by:
m

RSS = [hi.QYi

The residual sum of sguares (DSS) is obtained as the difference between these two:

DSS = T35 -~ R3S

The degrees of freedom for the total sum of squares is n-1. For the regression it
iz ms For the residualas it ia n-m~1,

The mean square of the regression (RMS) is:
S = RSS/m
The mean square of the residuals (DMS) is:
DMS = DSS/(n—m-1)
The variance ratio ig:
F= RMS/DMS with n-m-1 and m degrees of freedom.
Thie F value can be used to test the statistical eignificance of the regression.
For the numerical example we have therefore:

TSS = 697.6 (see Eyg in stage 3)
RSS = 0.9066 x 101 + (=2,566) x (=216.4) + {-0.9072) x (=0.6)

= 647.4

DSS = 69746 —647.4 IMS = 50,2/(10=3-1)
= 50.2 = 8,367

RMS = 647.4/3 F = 215.8/8.367

= 215.8 = 25,79 with 6 and 3 d.f.
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The F values from tables with these d.f. and for P=0.1% is 23.70. Hence we may say
that there is less than 1 chance in 1 000 of the relation between the dependent and predictor
variables being due purely to chance factors outside the regression model,

The coefficient of determination R® is given hy:
2
R® = RSS/TSS

The multiple ocorrelation coefficient R = \fRz.

For the example we have:

2

R™ = 647.4/697.6.
- 0.9280
R = 0.9633

The residual standard deviation 8 is the square root of the residual mean square:

s =+/DMS

which for the example is:
8 = 2.8093

Stage 6 Calculate gtandard errors and t-statistice for the regreasion coefficients.

The standard errors of the coefficients b

S(bi) = S ‘/;Jll

40 b are given by:
1 m

The t=values of the 'bi are given by:
t(bi) = bi/s(bi).

These t-valuss can he tested for significance with n-m—1 d.f+ For the numerical
example we have:

Coefficient Stﬁd t Significance
‘o,l 0.5066 1.221 0.742 -
b, =2.566 0. 6380 =14022 *
b, =0.9072 0.4205 ~2,157 -

** indicates signifioance at the 1% level (+=3.71 with 6 d.f.). Coefficients by and by are
not significant. This does not mean that both can be removed from the regressions One or
the other (preferably the least significant, here b1) could be removed and the-r?sults rocal-
culated by the procedure explained later. The %t-values of the remaining coefficients would

be found to have inoreased and both would probably be significant in the new regression.



- 148 =

Stage _{- Standard errors of predictione from the model are derived from the formulas
ot

s =s/i/k+1/h+§ Se, . xx)

i i 1J 13

where x; = (xl - 'ii), Xy is a given value of predictor variable i, X is the mean value for
the regression model data and k is the number of repeated sstimates of Y to be made, Sy is
the standard error of the mean estimate of Y. For a single prediction, k= 1; for the
population standard error, 1/k= O.

For the example, suppose we wish to caloculate the standard error for a single estimate
of Y at Xg = 8, Xo = 4 and Xy = 6

First calculate the x5

I}

8-5.0= 3

*

X2= 4"’ 5.2= -1.2

= "'.'=O|
% 6 = 543 7

Then calculate the sum gge, . x,x, :
131 )

3(3 x 0.,1781 + (=1.2) x 0.07888 + 0.7 x 0.02048)
+ (=1.2) x ( 3 x 0.07888 + {4.2) x 0.04864 + 0.7 x 0.01369)
+ 0,7(3 x 0,02048 + {=1.2) x 0.01369 + 0.7 x 0.02113)

& 1.178
Then 8 = 2,893 v/ (1 + 1/10 + 1.178)
= 44366

Thus, the standard error for a single estimate of Y from this model at X1 = 8‘_,
9(2 = 4, X3 = 6 is + 4.366.

This formula will also give the standard error of the intercept bo-* if required,
using 1/k-.= 0 and X, = -Jzi.

This completes the main calculations for multiple regression. Two other types of
caloulation are commonly performed. These are the computation of the correlation matrix
between variables and the shortcut calculation for removal of wvariables from a regression.

The correlation matrix This is a table showing the correlation between any pair
of variables. It is constructed by arranging a matrix V as follows:




= UG\ »

| 2 3 4 i a wows o mH

W ro

QY | &

.

and then noting that the correlation between variable i and variable j ist

r. =V /Y, V)

] 1] i1 JdJ

This can be done at any time after stage 3 in the regression caloulation.

Since the matrix V is symmeirical about the diagonal V11 to V ¢ it is not necessary
to calculate the lower half, as, for example, Tpy = Typt and B0 Ona

Removing a variable from the regression When a variable ig found to be non-signifi-
cant it may be desirable to recaloulate the regression statistics with that variable omitted.

To do this the values of the inverse matrix c¢ and the coefficients are adjusted
according to the following formula where u denotes the subscript of the unwanted variabler

 *® = = b
b, b, ®in u/ouu

* 1 -
®i5 ° %ij Oiu'oju/oun
For the numnerical example suppoBe we wish to omit the effect of variable X A The
original inverse matrix amd coefficients were (to 6 significant figures):
1 2 3 Y

14 0.178102 0.0788790 0,0204789 0.906648
2 0,0788790 0.0486352 0.0136918 —2.56610
3 0,0204789 0.0136918 0.0211257 -0.907211

Eliminating wvariable 1 we have:
b *= =2.56610 = 0,0788790 x 0,906648 / 0.178102
= =2.96764
by* = =0,907211 - 0,0204789 x 0.906648 / 0178102
= =1,01146
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The revised inverse matrix is:

2 2
2 0.0137007 0.00462197
3 0.00462197 0.0187710

The variouvs other statistiocs from stage 5 on can then be recalculated for the new
regression. A second, third, etc. variable may be successively eliminated in this way.

Thie completes the summary of multiple regression calculations. This work is usually
performed by compuier but can be done by hand for small problems. (reat care should be taken
not to lose signifioant digits by rounding to & fixed number of decimal places during the
matrix inversion process.

2.6 Residual Analysis

Residual analysis is a tool that should be zssociated with the intelligent use of
multiple regression. Its purpose ie threefold:

(1) To determine whether the residuals from the regression oonform to the
asgumptions of the model, i.e. are wncorrelated, normally distributed
and of uwniform variance.

(ii) To assess 'lack of fit'! in the model from eystematic trends in the residuals.

(iii) To examine visually the shape of relationships between residuals and possible
predictor variables not yet introduced into the regression model.

Residual analysis (like most other aspects of regression calculations!) is very
tedious to perform by hand. It should however be part of every good computer programme
for multiple regression analysis.

The residual e is defined as the difference between thg actual valus of the dependent
variable Y and the value predicted from the regression model Y. That is:

When the e. are plotted against the ?i then peveral possible kinds of graphs may be

i
obtained:

(1)

L] -
- ® . -
s s *

-
& -8 . ? a
] e,

(=4 ]
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This is the ideal gituation with the variation in the e; uniform with respect to ?v
The model appears to have no undesirable characteristics,

(ady e;

ol
.
T
5 R g
o P -—— e, e E- .- - - -
o Fm oy
o

1

This indicates systematic behaviour of the e. with Tespect to Y and shows lack of
fit. In other words, there is a better model than %he current one, using the same basio
predictor variables but with different or additional transformations that could be fitted
and would remove the sysiematic trend in the e;.

(111)

ge

¥

Here the variancee of the e; are not wniform with respect to Y. In this case, better
estimates of the coefficients can be obtained either by using a transformation of the Y
variable or through the use of weighted regression (Bee next section 2.7).

When the e; are plotted against X variables not yet included in the model then one
may have either a random scatter or some systematic pattern similar to (ii) above. In the
latter case the X wvariable could be included in the regression. The shape of the general
trend in the pattern may not be linear, but following one of the trends shown in figure
A.2.1. In this case the appropriate transformation of the X variable can be used.

For example; suppose we have the model:

Te bo + b1x1 + b2x2

where the residuals plotted against an additional variable X3 give the following pattern:
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The dotted line (- --) appears to follow a slight cwrve which could be allowed for
by edding X, and X3 to the regression (c.f. figure A.2.1(e)) to give the model:

= X
i b0.+ b1 1 + b2K2 + 'b3x3 + 'b4)§

After fitting this second model the trend of the residuals from the new model against
X3 would appear similar to the first residwal pattern shown in (i) above.

247 Weighted Regmesgion

Weighted regression is used when the residuals do not have wniform variance with
respect to the Y values. This situation commonly arises when complex transformations of
the Y variable are used to obtain particular curve shapes. In yield prediction it is also
commonly found with volume data where the variance tends 4o be proportional to the volume.

Associated with each observation is a particular weight wye The value of this can
be determined empirically or it may be derived from some theoretical reasoning. For the
best fit the weights w; should be proportional to 1 /532_ where g; is the residual standard
deviation at Yi'

Empirical weights can be calculated as follows:

(1) Fit the unweighted regression model using the procedures described in the
preceding section.

(2) Caloulate the squared residuals:

2

®4

O = 5
i 1

(3) Then either:
2 .
(1)  Tabulate mean values of Wy (= 1/ei) for classes of Y i

or

(11) Fit a regression relsting ey to Yi (possibly a simple Tegression:
2
e = a+ baY

will be adequatg for most cases)s Use this regression to predict a
weight W, (=1/8)) for each ¥;.
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In the case of theoretical weights then one uses whatever formulation iz invelved
to calculate the wi for each Yi.

For weighted limear regression with one predictor variable, the caloulations are as
follows:

(1,) Compute weighted totals, sums of squares and products:

A= Tw, B= 2w, .x, e Ew,.x?
1 i O oL

M

D = X [} E = q s k = . .
LS Twye P ¥ abgmy,

=

(2) Calculate weighted means and corrected products and squares:

X = B/A y= D/a

2 .
§s_=C-B /A SP = F - B.D/A

(3) A1l other calculations then proceed as from line 11 of form A.2 {Statform 11
of Dawkine, 1968),

For multiple weighted regression the same general principles apply. Most advanced
regression programmes have a facility for weighting.

Weighted regression should not be used unless there ie strong a priori theoretical
justification for its_use, or alternatively, a clear indicated itrend in the squared residuals
when plotted against Y that may provide the basis for empirical weighting.

For well defined functions with high R2, weighting is wnlikely to result in much
practical improvement in the degree of fit. It is a technigue that may be regarded as a
refinement o analyeis to be used once preliminary analyses of a pet 0f data have been
completed.

2.8 Compzrison of Regresesion Lines

It is frequently necessary to try and decide wiether or not two or more regression
lines are so similar that they can effectively be replaced by a single line. This case may
arise, for example, when it is deeired to pool data from different specles with similar
growth habits or from different forests, regions, site types or provenances.

The regressions to be compared may be simple regressions with a single predictor
variable or multivariate regrescions. Two basic technigues exist for the comparisons

(1) Covariance analysise This ig perhaps more suited to manual computation
and simple regression, although it can equally well be extended to the
mltivariate ocases

(ii) Significance tests on conditional variables. This is quite suitable for
complex models and interactions, but leads to large multivariate problems.
It is & useful method of adapting standard computer multiple regression
packages to regression comparison problems.




Covariance analysis is a large subject. Here, only the technigques ne¢ceesary for com—
paring the slopes and intercepts between simple regressions are considersd. The calculations
are explained in relation to an example representing hypothetical data for the velume-height
line from two geographically distinot plantations {called I and II), using 10 plots on each.
The data is illustrated in figure A.2,2 and set out in table A.2.1. The problem is to
determine whether it is reascnable t0 combine the data to fit a common regression line hased
on all 20 plots. The model to be fitted iz the logarithmic volume line with the form:

log V= a+ be log H -(1)
This is the linear form of the model with the parameters a and b being estimated by
vimple regression. By talking antilogs to both sides the equation becomes:
V= AdD -(2)
where A = 10*. In this form points from the fitted line can be calculated for plotting on
normal graph papers.

Figure A.2.,2 Hypothetical volime-height data used for comparison
of regression lines example, section 2.9,

Volume (m3/ha)

250 =
+ Plantation I
& Plantztion II
200 +
150 &
100 .
50 -
O ) 13 = - T ¥ ]
B 10 15 20 25 30

Stand height (m.)

combined regression

= = w = individual regression lines;
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Table Ae2.1. Original and transformed data from two
plantations used in the regression
comparison example.

Volume Height logs V loge H
Bl o mg/ha m. y x
Plantation 1

1 30,0 12.9 144771 1.1106

2 23.3 11.6 1.3674 1.0645

3 212.6 2449 2.3276 1.3962

4 151 10.8 11790 1.0334

5 50.4 15.8 147024 1.1987

6 189.4 25.8 2,2714 1.4116

i 68,7 18.2 1.8370 142601

8 221,2 254 2.3448 1.4048

9 123.9 22.1 2.0931 1.3444

10 60.8 1647 1.7839 1.2227

Plantation II1

11 70.6 15.4 1.8488 1.1875
12 131.3 18.5 2.1183 1.2672
13 201.7 24.6 2.3047 1.3909
14 15646 22.9 2.1948 1.3598
15 136,2 20.8 2.1342 1.3181
16 87.0 167 1.9395 1.2227
17 95.0 16.5 19777 1.2175
18 108.4 iani 2.0350 1.2480
19 93.6 18,0 1.9713 1.2553

20 57T 15.3 1,7612 1.1847
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The sums,y sums of squares and products of the data (table 4.2.1) are calculated both
for the separate sets of data and for the two sets combined as follows:

Statistic Souxce of Data
I 11 Combined (C)

Ty 18.38954 20, 28547 38,67501
I 35.37950 41439075 7677025
5X 12.44696 12.65166 25,09862
£x° 15.67703 16.05102 31,72805
XY 23.43337 25.76286 49.18623
n 10 10 20
S8y = zy2-(zy)2/n 1.56198 0.24072 1.98243
S8x = px=(zx)°/n 0.18435 0.04457 0.23101
SPxy= ¥xy-2X.5y/n 0,53398 0.09837 0.65176
coefficients:

b = SPxy/SSx 2.89657 2,20716 2.82135
a= (gy-begx)/n ~1.76640 -0,76388 —1. 60685

regression sums of squares:

RSS = b.SPxy 154671 0.21712 1.83884

From these basic calculations the analysis of variance can be performed. The
following additional quantities are calculated:

(1) Sume of squares between b coefficients:

SSb = $RSS - (£SPxy)2/sSSx

For the example this is:

SSb = (1.54671 + 0.21712) ~ (0.53398 + 0.09837)2/
(0.18435 + 0.04457)

= 0.,01708
(ii) The sume of squares between a coefficient:
SSa = $5Sy — £RSS
= (1.56198 + 0.24072) ~ (1.54671 + 0.21712)
= 0.0388?
(1ii) The residual sum of sguares:

S8 = SSyc - (88a + SSb + RSSC)

where the U subscript denotes quantities from the combined regression
statistice on the table above.
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For the example, the deviation sum of squares is:

DSS = 1.98243 — (0.03887 + 0.01708 + 1.83884)
= 0.08764
(iv) The degrees of freedom for the above quantities are as follows where n_ and
nyy are the number of points in the separate regressions, r is the num%er of

regressions being compared and n, is the total number of pointe:

statistic d.f,
SS;)rG n, = 1
eSS =
nI + n]:I 2r
38b ) r -1
Ssa )
RSSC L |

The analysis of variance table for the comparison of regressions may be set out as
follows:

Sum of Mean Variance

Source of Variation Squares dofe Square Ratio
Combined regression

RSS, 1.83884 i 1.83884 335, 7
Between slopes SSb 0.0%708 i 0.01708 3.1
Between intercepts

SSa 0.03887 1 0,03887 Ta T®
Residuals 1SS 0.08764 16 0.005478 -
Total SSyC 1.98243 19 = -

The astericke demote the significance level of the different variance ratios,
determined by looking up F values in statistical tables with 1 and 16 d.f. at the 5% (*),
1% (*%) and 0.1% (***) probability levels. In the above the regression is very highly
significant (ie.e. not due to ohance)s The difference between glopes in the two separate
regressions is not significant, i.e. iz most likely due to chance sampling effects in the
two etz of datas On the other hand, the intercepts do differ significantly at the 5%
level, suggesting that the regressions are in fact distinot although they have the same
slope. Consequently, we may conclude fer the example that the data from the two planta-
tiong cannot be pooled to give a combined regreesion for prediotion purposes without a
consequent loss of accuracy. J

This comparison method can be extended to any number of simple regressions by noting
that in the above calculations, wherever separate quantities for the %wo regressions are
added together, then any number of quantities may be added. Dawkins (see biblicgraphy)
presents a calculation pro forms for comparing up to 4 regressions.
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The use of conditional variables for comparison of regression lines. Conditional
variables are those which can only take values of zero or one, depending on whether a parti-
cular observation is to enter into some part of a regression model or not. They can be used
for the comparison of regression lines and for fitting sets of nested data (Bee section 2.10).

Congider the case described in the example abhove, comparing volume height lines for
two Bimple regressions from plantations I and IXI. For each plantation we have a model:

log V= a+ balog H -(1)

We can form a single model for hoth sete of data if we introduce an extra variable 2
which is zero for data from forest I and one for data from forest II. This combined model
is:

log V = 31 (1 + aQ'Z) + b1(1 + bg.Z)log H -(3)

For observations with Z= 0 (forest I) then this amownts to:

log V= a, * b, log H -(4)

But when 2 = 1 (forest I1) the coefficients are:
V= -
log (a1 + a.2) + (b1 + bz)IOg H (5)
To fit equation (3) by linear regression the brackets are removed giving:

logV=a, +aa2+blogH+ b b2.log H -(6)

b
1 12 1 12
which is equivalent to the regression equation:

e 5% X
i c0 + 01 ’ + c2X2 + 03 3

Using a multiple regression programme to fit the coefficients, the values obtained
were:

t
Sy =1.76640 —15.3
e 1.00179 3e1
o, 2489657 25,2
03 -0.68884 -2e7

The + values for the coeffiocients with 16 d.fe indicate a similar but not identical
rosult to the covariance analysis. The coq coefficient, corresponding to the term 2 in
equation (6), indicates a highly significant additional term for the intercept for the
second set of data. The ey coefficient, corresponding to Z.log Hy is also significant at
the 5% level, indicating that the slope of the two sets of data differs. In the covariance
analysis it will be remembered, the slopes did not differ significantly although the inter-
cepts did. This difference in the resulta of the two methods is due to the difference in
the statistical models and, the hypotheses being testeds The covariance analysis asks the
question:

"Do either or both of the regressions differ significantly from a pooled regression?
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vhereas; this technigue asks:

"Does the second regression intercept (cq) or elope (c3) differ from that of the
firet regression™

It will be appreciated that the second type of test will be more sensitive to
differences than the first, but on the otherhand, it is not so directly relevant if one
wishes $o know whether one can safely pool regressions.

The coefficient values for the two separate lines can be worked out from the above
coefficients and will be found to be idemtical to the coefficients for the separate lines
fitted in the vovariance analysis. They are:

JForest I:
Intercept S =1.76640
Slope C, 2489657
Torest II
Intercept 00+c1 =0.76461
51 N
ope o to, 2,20773

In fact, the figures appear to differ in the third decimal place from those calculated
earlier, but this is an effect of rounding error, as in the computer programme all calcula~
tions, including the logs transformations were carried out to 15 significant figures, whereas
with the mnual calculation used in the covariance analysis, only 5 to 8 significant figures
were used.

The use of conditional variables can become quite ocomplex and is also quite flexible.
Tor example, given any dependent variable Y and any predictor variable X with a conditional
variable Z, we can have a model with & common slope and only a different intercept for the
two sets of data:

= + +
¥ cq cqz 02X

With three sets of data, two conditional variables are needed. They are;

Z1 0 for data from get 1, 1 for sets 2 and 3.

22_ G & " M 1 and 2, 1 for set 3.
And the model to test for different slopes and intercepts ist
= + o, 2 X X
Y Sy * 042, + 0222 + 03X + c4Z1 + 0522

Further information on the ways conditional variables may be used is given in the
next section.
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2+9 Nested Rezression Using Conditional Variables

Conditional variables whose value may be either zero or one have already been alluded
to in the previous section. Apart from their use for comparing regressions they can be used
to fit regression models to nested data.

Nested data arises when the measurements are grouped into sampling wmits or plots
where the within—-plot regression may be different from the between—plot regression. The
commonest situation in forest yield ptudies is with permanent sample plot measurements
where one has data grouped by plots. A& typical problem will illiustrate the point:

Example Figure A.2.3 shows hypothetical height-age data from 5 permanent
sample plots each of which has been remeaswed 3 or 4 times. The
objective is to estimate the mean slope of the height-age relation—
ship, using a gquadratic model of the form:

2 o]
H e bO + b1A + b2A -(1)

where b, and b, are assuned to be the rame for all plots but: by,
may differ (expressing a site effact).

If a regression analysis is made of the data in figure A«2.3 using equation (1) as
the model and treating each observation as separate and independent, then the coefficient
values obtained are:

80
bo T4 807

b, 0.6939

b2 -0,008652

with a2 coefficient of determination (Rz) of 0,53 and an F value of 4.,94. The significance
level of the regression is 0.2%.

It can be seen from figure A.2.3 that this regressionydrawn as a broken line,
obviously underestimates the mean slope of the plote.

To fit the nested model then 4 artificial} variables are introduced which can be
called P2 to P5. Thego have the following values:

P2 -~ 1 for data from plot 2, zero for all other data

P. - 1 1] " T " 3!‘ ¥ 1} " 1] 1}
3

P =1 " " n 1] 45 1 i1 " " "
4

P ™ 1® ar " S it " ¥ W "



- 161 =

Figure A.2.3 Hypothetical height-age data to exemplify
effect of fitting nested regression

Stznd Height (m.)

25
20 A
15
19
#——= Observations on 1 PSP
——.- Ungrouped data regression
> ‘J w— Nested regression for the
' mezn site
e T T = T T 1
o 5 10 15 20 o5 Age
The model fitted is:
H=a, +aP +aP +aP +aP +b4+hb A2 ._ng

1 H'2 38 44 b 1 2

where the a; and b; are the regression coefficients. This is the quadratic model as in
equation (13, but with a different intercept for every plot. The intercept values equivalent

to by in equation (1) are:
Plot Intercept
1 2y
2 ag + ap
3 aq + ay
4 i |
5

a1 + a5
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When fitted to the data from figure A+2.3 the coefficient values obtained weres

8, T.432
as -0,3915
a3 ~1.755
8y =-3,427
ag -6,833
by 0.9192
by ~0.01157

with a8 coefficient of determination of 0.98 and an F value of 70.88 with 6 and 9 degrees of
freedome This is significant at less than 0.0001%, The slope of this line, given by by and
bo, is drawn on figure A.2.3 for the mean intercept values of the plots as a heavy solid
lines It can be seen that this gives a much better repregentation of the mean slope of the
plots than the regression fitted to ungrouped data.

This technique can be extended to give different intercepts and different slopes for
each plot or a common intercept and different slopes. The latter case is most likely to be
useful with models that result in asymptotic graphs such as the Schumacher equation (see
main text). TFor a single X and Y variable and with 3 plots, for example, we have:

Common slope, different intercepts:

= + P + X
¥y 2y a2 2 a3P3 + b1“

Different slope and intercepts:

N P alEl B R4 R Y
R By Bty FTRGl < D D S

Different slope, common intercept:

= + b X+ bP X4+ b P X
Lt Tl Rl
In the above the a; and b; are intercept and slepe coefficients to be fitted by
regression; the X and Y are normal variables and the Pj are variables which are 1 for
plot j and zero for other plots.

These ideas can be extended to multivariate models, although the number of coeffi-
cients becomes fairly large. Nested regressions of this type can be caloulated by hand,
as slthough the number of variables may be large, the 0—1 nature of most of the variables
means that many short-cuts are possible in the calculations. If this is done, then the
Jordan elimination technique for inverting the correoted cross—product matrix, given in
section 2.5, ie not the fastest or easiest method; Seber (1977 - see bibliography) gives
details of more effioient methods for those acquainted with matrix algebra. However, for
computer programmes the relative inefficiency of conventional caloulation techniques ie
unimportant since the processing times involved are in any case very short.
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=T SOLUTION OF EQUATIONS

3.1 Solution of the Quadratic Equation

The quadratic equation is widely used as a regression model for data exhibiting a
slight curvature in the X~Y trend. Having fitted an equation to predict Y, it may some-
times be necessary to solve for X given & known wvalue for Y. To do this, one uses the
standard formula for the roots of a quadratic equation. If the regression model jis:

2
Y = bO + b1x + bzx

then rewrite it as:
2
aX F+bdX+c=20

where a = b2, b= b; and ¢ = bO—Y,uand obtain X from:

X= b tv 12 - dao
2a

There are normally 2 solutions, depending on vwhether a + or a - sign is taken before
the square root sign. It will usually be obvious that only one of the two solutions calcu—
lated in a particular case is possible. For example, one might derive diameters of 20
and =15 as solutions to a problem; only the positive diameter has any meaning.

When b2 is less than 4ac, the quantity under the asquare root sign is negative and
there is no real solution to the egquation. For most foreetry applications this is likely
to imply an error in the coefficient values or a Y value that is too large or too small,
Suppose, for example, that one has a height-age function that reachee a maximum at 42 m
height. If one tries 3o solve it {0 see at what age the stand will reach 50 m, then this
condition will arise; there is no solution.

1.2 Graphical Solution of Egquations

There are quite a number of complex models that cannot readily be manipulated by
algebra and which must be solved either by a graphical or a numerical methods The graphical
method of solution is self-evident and can best be illustrated by an example. It consists
simply of plotting the value of Y for an equation of the type:

Y= £(X)

for selected values of X; joining the points by a smooth curve and then estimating the
value of X for the desired Y at which a solution is reguired.

Suppos e, for examplz, that one has fitted the eguation:
log MAI = -0.8892 - 0.03055 & + 2,097 log A

relating mean annual volume jncrement $c age for a plantation and it is necessary toc solve
it to determine the age when MAI first reaches 15 m3/ha/yr. For a graphical solution use
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the equation to caloulate MAI for a series of ages which it is hoped will bracket the
desired answer. Below are tabulated a series of MAIs calculated for ages 10 to 30:

Age HAT
10 T«99
15 13.15
20 16.91
25 18.99
10 19,58

These are then plotted, as shown by the +8 in the graph below, and connected by a
smooth curve. It is then possible to read off the x value corresponding to the lmown y
value which in this case is, for an MAI of 25 m3/ha/yr, an age of 17.2 years.

MAI (m3/ha/.vr)
20 7

157

104

5 - ; , Age (yrs)
10 A5 20 25 30

The main disadvantages of graphiocal solution methods are:

(i) The acouracy is restricted to perhaps * 3% of the range of the x scale..

(ii) The method is slow and essentially manual. It cannot be used within a
computer programme or be programmed into a calculator.
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3.3 Numerical Sclution of Eoustione

There are a number of numerical sclution methode for equations, but one of the
gimplest and most reliable is the so—called *'Bisection Method!. This proceeds through
the following stages:

(4) Define the function to be solved as:
Y= f(x)

where y is a known value, but x is the unlnown to be determined by the method.
There is a range of values within which x must be lmown to lie, from x, to xy,
such that:

(1) f(xa) ig lese than f(xb);

(2) f(x,) —= y has the opposite sign to f(xy) = y.

(ii) Calculate a trial value x; from:
=k
x, = 2(xa + m%)
{iii) Calculate the value y; for x.:o
1 1
®,.= £(x, )

(iv) itk y; is greater than y, let x = x;
yi i6 less than y, let x_ = x.}
¥; is exactly equal to y, then the solution is x;;

this case is unlikely to occur in practice.,

(v) Go back and repeat steps (ii) to (iv) n times, where n is determined by
the accuracy to which one wishee to approximate the correct solution. Given
initial values of x, and Xy then the accuracy of the solution will he:

accuracy = 2nn(xa-xh)

After the n iterations have been completed, then x; is the desired solution to the
accuracy stipulated above. In practice, since the iterations are carried out at high speed
by computer or programmable calculator, it is usually sufficient to use a fixed value of n,
say 15 or 20 for a range of different problems. We have for example:

No, of Tterations Accuracy as % of Range
5 3%
8 0.3%
10 0.1%
15 0.003%
20 0,0001%

30 10~1%
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For moat forestry problems 15 iterations are sufficient to give a realistic degree
of accuracy.

As an example of the bisection method, suppose that we have, as in the previous
section, an equation relating age (A) and mean annual inerement (MAI) of the form:

log MAT = -0,8892 - 0,03055 A + 2,097 log A
which we wish to solve to determine the age at which MAI reaches 15 m3/ha./yr. Taking x, as

1 yeary Xy, as 30 years and y as 15 years, then applying stages (ii) to (iv) enumerated abvove,
the solution goes as follows:

= T % xi Iy
1 1.000 304000 154500 13.595
2 154500 30,000 22.750 18.254
3 15,500 22,750 19.125 164370
4 15,500 19,125 17.312 15.091
5 15.500 17.312 164406 14.370
6 164406 17.312 164859 14.737
7 16,859 17.312 17.085 14.916
8 17,085 17.312 17.199 15.004
9 17.085 17.199 17.142 14.960
10 17.142 17.199 17.170 14.982
11 174170 174199 17.185 144993
12 17.185 17199 Ti7ete 14.999
13 17192 17.199 17195 15,001
14 17192 17.1% 17.193 15.000
15 17.192 17193 17.193 14,999

The main disadvantages of the bisection method is that compared tc some numerical
solution methods (notably Newton's method), the convergenoe with each iteration is quite
slow; the method also faila when there are two (or any other even number) solutions within
the initial range given, and of ocourse, one &t be able to stipulate a range for the solu—~
tion. For most forestry work these disadvantages seldom become important. If they do
appear to be oritical, then the worker should refer to some textbook on numerical methods,
such as, for example, Stark {1970) for more detailed guidance.

4é FITTING NONLINEAR MODELS

A nonlinear model is any model which cannct be transformed into a form whose
parameters can be estimated directly by linear least squares analysis, as desoribed in
section 2.

For example, the equations

Y = a..xb

can be transformed by taking logarithms of both sides to give the linear model:

log ¥= logA+ b logX
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so that log A and b can be directly estimated by linear regression. On the other hand:

AR N o

where ay b and ¢ are coefficients to be determined, carnot be directly transformed into such
a linear form and hence it is said to be B nonlinear model or eguation.

In this manual it is only possible to deal with fitting metheds for a limited range
of nonlinear functions in common use in growth and yield studies characterised by the
following features:

(1) There is only one predictor (X) and one dependent (Y) variable;

(i) There are three parameters to be estimated (which we will call ay b and k)
by the fitting process;

Kiii) Provided that parameter k is assumed to be a known valuey; 2 and b can be
estimated, using appropriate transformations,by simple linear regression.

The types of equations which fall within these restrictions sinclude the following
widely used forms:

Y= @+ b.xk
Y= a..exp('b.xk)

b
Y = a(l - exp(=keX))

There are a nunber of other models hesides these that also can be fitied, but these
are less commonly used in forestry work and hence are not listed here.

The main problem is the estimation of the parameter k. TFor a known wvalue of k we
can derive linear forms for the three equations as follows:

T a+ b.(X)

whare Xk iz the predictor variable.

loge ¥ = 1oge a + b.(Xk)
where again the predictor variable is xk and the dependent variable is 1ogeY.

log Y= log a + belog (1 = exp(=k.X))
e e e

where the predictor variable is loge(1 = exp(-k.X)) and the dependent
variable is 1ogeY.

These three linearized forms can all be fitted using simple linear regression except
for the k parameter. The value of k which gives the beat fit can be estimated graphically.

The essential principal of the graphical approach is to calculate the residual sum
of squares for the linear forms, using the conventional methods described in section 2.1,
for a series of trial values of k. These residual gums of squares are plotted graphically
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against the trial values of k and a smooth curve is drawn through the points. The value of
k at which a minimum sum of squares is observed ito occur provides the best estimate of ki

the regression is recalculated uwsing this value of k to give the corresponding best estimates
of the a and b parameters.

For example, suppose we have the daita relating plot age and height shown on figure
A.4.1 to which we wish to fit the model (3):

’ 3P
Y= a1l - exp(-k.X))
where plot height is Y and apge is X. We use the linear form:
log Y= loga + b.log(1 = exp(~k.X))
and estimate log a as the intercept and b as the slope in a simple linear regression of
log ¥ on log{l-exp(~keX)). 1In this regression we are mainly concerned at this stage with
the residuals or deviations, sum of squares, symbolised as DSS. This can be obtained ag

shown on Form A.2 in section 2.1. With the data from figure A.4.1 and wsing the trial
values of k shown below we obtain the deviation sums of sguares:

k Deviation Sums of Sguares
0.05 0.2802
0.15 0.0302
0.25 0.0732
0.35 0.2657
0.45 0.4885

The beet fit (minimum DSS) appears 1o be near a k value of 0.15. Taking some addi-
tional trial values we have:

k o
0.1 0.0916
0u13 0.0543
Out7 0.0187
0.19 0,0187
0.21 0.0287
0.23 0.0474

Plotting these values graphically (figure A.4.2) we can see that the minimum appears
to be cloge to k= 0,18, When the coefficient values are calculated for this value of k,
we find:
log,a = 3.290 £«  « a=26.8) % =5,199
and hence ocur resultant equation ist
H = 26.83(1-exp(-0.18.4))7" 1%

which is plotted on figure A.4.1 as a broken line.
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Figure 4.4.1 Hypothetical height-age data for a plot,

(m.)

together with a model (broken line) fitted
by the nonlinear regression method
desoribed in the text
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Graphical determination of k parameter
value which minimizes residual sums of
Bguares in a nonlinear regression

Interpolated k wvalue
at the minimum regidual
sum of sguares
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This approach can be easily extended in two waye, although a detailed discussion
iies outeide the scope of this manuals

(1) Any model in which only one of the parameters to be fitted is nonlinear
can be fitted in an analogous manner to that described above. For example,

we could have:

k
= +bX +bX +0b ka

T= B+ 5%+ BN T Pyh%
and fit the bj; using multiple linear regression with a series of trial
valuee of k;j plot the resultant residual sums of squares for each trial;
estimate the resultant k at the minimum; and then fit the b; using that

value of k.

(ii) The search for the value of k which minimizes the residual sum of eguares
can be automated 80 that all the parameters including the nonlinear para—
meter can be calculated by a oomputer programme. This is quite easy to
do with a single nonlinear parameter with the resultant programmes being
compact enough even for some progremmable calculators. Suitable minimiza-
tion methode are suggested in Sadler (1975).

The above methods are designed for the worker who does not have access to a large or
medium sized computer. Given good computing facilities, the best and most flexible approach
to nonlinear curve fitting is by one of the modifications of the so-called Gauss-Newton
procedure, a6 discussed in such standard textbooks as Draper & Smith (1966), These methods
are quite difficult to understand, although the ultimate result, namely a set of fitted
coefficients, may be easy enough to use. Consequently, most workers will need access to
a computer programme that can be adapted to their machine« There are a number of such
programmes available, including for example, SNIFPTA (Small Nonlinear Fitting Algorithm)
which is written in ANSI 66 FORTRAN and is available from:

Biometrics Section

Unit of Tropical Silviaulture
Commonwealth Forestry Institute
South Parke Road, Oxford OX1 3RB
United Kingdome
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Appendix B

TABLES OF COMMON TRANSFORMATIOMS USED FOR

REGRESSION MODELS DESCRIEED IN THE TEXT



Table 1
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Natural logarithms {base e) for values 1 to 100

g % X in X X in X
0.00000 36 3.58351 71 B.26267
0.69314 37  3.61091 72  U4.27666
1.09861 38  3.63758 73  U4.29045
1.38629 39 3.66356 T4 4.30406
1.60943 4o 3.68887 i) b.31748
1.79175 1 WA 76  4.33073
1.94591 42 3.73766 77T 4.34380
2.07944 43  3.76120 78  4.35670
2.19722 by 3.78418 79 L, 36944
2.30258 4s  3.80666 80 4.38202
2.39789 46  3.82864 81 4.3944Y
2.48h90 47 3.85014 82 4.40671
2.56494 ug  3.87120 83  4.41884
2.63905 4o 3.89182 gh 4.143081
2.70805 50 3.91202 85  4,.L4u265
2.77258 51 3.93182 86  u4.bs5u3Y
2.83321 52  3.95124 87  4.46590
2.89037 53 3.87029 88 4. 47733
2.94443 54 3.98898 89 4. 48863
2.99573 55 4,00733 90 4. 49980
3.04452 56 h.02535 91 U,51085
3.09104 57  4.04305 92 4.,52178
3.13549 58  U4,06044 93 4,53259
3.17805 59 4,07753 94 4.54329
3.21887 60  4.,0943Y4 g5 e 55387
3.25809 61  4.11087 96 4.56434
3,29583 62  4,12713 97  4.57471
3.33220 63 4,14313 98 4,58u496
3.36729 64 4.15888 99  4,59511
3.40119 65  4.17u38 100 4.60517
3.43398 66  4.18965 101  4.61512
3.46573 67 4. 20469 102 4. 62497
3.49650 68  4,21950 103 4.63472
3.52636 69  4.23410 104 4,.64439
3.55534 70  4.2u849 105  4,65396
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.00

1.00
1.10
1.22
1.34
1.49
1.64
1.82
2.01
2.22
2.45

2R ©

3.00
2:32
3.66
4,05
4,48
4.95
B 457
6.04
6.68

7.38
8.16
9.02
9.97
11.02
12.18
13.16
14.87
16.44
18.17

20.08
22.19
24.53
B9
29.96
&, M
36.59
40.4%
u4.70
k9. 40

54.59
60. 34
66 .68
73.69
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90.01
99 .48
109.94
121.51
134.28

Exponential function exp(X) for values 0 to 5
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1.
22
13.
1B
16.

20.
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33.
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45.
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37
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5.10
5.64
6.23
6.88
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9.29
10,27
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20.69
22,817
25.27
27.93
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Table 3
) 4 0.2
2 .87055
3 80274
4 75785
153 T2477
6 69882
1/ 67761
8 65975
9 6L439
10 63095
11 61904
12 608136
13 59870
14 58989
15 58181
16 STu3y
T 56742
18 56097
19 55494
20 54928
21 .5h394
22 53890
23 53413
24 52961
25 52530
26 52120
27 51728
28 51353
29 50994
30 50649
31 50318
32 50000
35 49693
34 49397
35 JH9111
36 ugB3s5
37 L8569
38 48310
39 48060
Hlo) 47817
41 7882
42 47353
43 47130
4y 46914
45 46704
46 46499
y7 46299
48 46105
L9 45915
50 45730

_17_7—

Povers of reciprocals for vzluyes 2 t¢ 50

Value of Power

0.8

.23849
.21082
.189U6
17242

.15848
. 14685
. 13697
. 12848
.12108
. 11458
. 10881
. 10366
-09903
.09484

.09102
.08754
.08434
.0813¢
.07867
.07614
.07379
.07159
.06954
.06762

.06581
.06410
.06250
.06098
.05954
.05817
.05687
.05564
.05447
.05335

.05228
+5 125
.05028
.0ug3y
.ouguy
.0u758
. 04675
.0l4595
.0u518
LohhLy

.04373

(0,

.50000
+33333
.25000
.20000
. 16666
. 14285
.12500
il kD

.10000
.09090
.08333
.07692
07142
. 06666
.06250
.05882
. 05555
.05263

.05000
. 04761
. 04545
. 04347
.0u166
. 04000
.03846
.03703
03571
. 03448

«03333
.03225
.03125
.03030
.02941
.02857
02777

.02702

02631
.02564

.02560
.02439
.02380
.02325%
02272
02222
.02173
02127
.02083
. 02040

.02000

1.2

00191

.00087
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Table 4  Spacing and relative spacing ¥ from height and stocking

Spacing 2.0 2.5 3.0 35 4.0 4.5 5.0 6.0 Til0
N/ha. 2500 1600 1111 816 625 Loy hoo 278 204

Height  —emeecccccccecmcmccem——e= Relative spacing § =ecememcmmcaos
5 40 50 60 70 80 89 100 119 140
6 33 41 50 58 66 74 83 99 116
i 28 35 Y 50 5T 64 i 85 100
8 25 31 37 43 50 56 62 T4 87
9 22 27 33 38 uy 4o 55 66 7T

10 20 25 30 35 40 4l 50 59 70
iy 18 22 27 31 36 40 45 54 63
12 16 20 25 29 33 S 1 49 58
13 15 19 23 26 30 34 38 L6 53
14 14 17 21 25 28 32 35 b2 50
15 13 16 20 23 26 29 33 39 46
16 12 15 18 21 25 28 31 37 43
17 il 14 17 20 23 26 29 35 i1
18 11 i3 16 19 22 2u 27 33 38
19 90 13 15 18 21 23 26 31 36
20 10 12 15 7 20 22 25 29 35
21 9 11 14 16 19 21 23 28 33
22 9 ¥ 13 15 18 20 22 27 31
23 g 10 13 15 17 19 2 26 30
24 8 10 12 14 16 18 20 24 29

25 8 10 12 14 16 17 20 23 28

26 i 9 11 13 15 I 19 23 26

27 7 9 11 12 14 16 18 22 25

28 7 8 10 12 14 16 T 21 25

29 & 8 10 12 13 15 17 20 24

30 6 ] 10 11 13 14 16 19 23

31 6 8 9 11 12 14 16 19 22

32 6 7 9 10 12 14 15 18 . 21

33 6 7 9 10 12 13 15 18 21

34 5 T 8 10 11 13 14 17 20

35 5 7 8 10 11 12 14 17 20

36 5 6 8 9 11 12 3 16 19

37 5 6 8 9 10 12 13 16 18

38 5 6 7 9 10 i 13 15 18

39 5 6 A 8 10 11 12 1% - 17

40 5 6 7 8 10 11 e 14 17

b1 l 6 T 8 9 10 12 14 i/

4o 1 5 7 8 9 10 % 10 16

43 i 5 6 8 9 10 Tt 13 16

by ) 5 6 ) 9 10 19 13 15

u5 ¥ 5 6 7 8 9 11 12 15
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Appendix C

BLANK COPIES OF CALCULATION AND

DATA RECORDING FORMS DESCRIEED IN THE MAIN TEXT
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Form 3.1 Sampie Plot Assessment Form — Plaptations

Sheet ,es0f0es

Forest District Compartment Plot number Species

T OO O O [T orsiee

e (11T ™[ ™ (OO O
month year no. of

Tree no. Diameter bhob Height &, = e Codedl e e e cards

L ] b
§ !

L d

i . .

Notes R T T N R R R R N R N W N I W NI AR I AR A A A S I

P IS S P e T APE RSSO GPAPItIa Nt st ssrsnantslsssNsNetosstrninl

AR E R N RN A N RN N SN NN RN N R NENR RN NI NI A RN NN RN BN ]

Assessed by R R BRI A NS I RO O R I ) Date ‘o--/.--o/ooo-

USE BACK OF FOrM FOR HEIGHT CALCULATIONS



Form 4.1

Part 1

- 18 -

Gommon elope and common intercept regression models

Plot dats summarization. Use as many part 1 sheets
as hnecessary for all plots.

Data transformations used: X =

i =
Flot
Raw data Transformed data
% Y x2 XY
Totala n
Plot
Raw data Transformed dats
£ Y x° XY
Totals n
rlot
Raw data ‘‘ranaformed data
X ¥ % XY
———
r. —
e

Totals n




Form 4.1 gommon siove and common intercept resression models

Fart 2 Totals between plots and coefficient calculation
g g EATEY (sX
IXY-IXsY 2 g . = n 34
Plot el Rt 59 R g

..
—

Totels (— 2_] ._3_l &] ﬂ ,QI

Common slope b= (1)/(2) = =

Common intercept a = {(6)-(3))/((5)-(4))

]




Transformations to age and height data from PSP's to fit k

Form ‘412
parameter in Schumacher equation by common slope estimator
A e | b || X H|d|le]f|a|h]|y
: e d f
Q'o\e\\ Age Sum | Diff 2/a In ¢ |Height | Sum | Diff /b /2 /g In h_ ]
|
" B & &l 5
=Y
)
o P, (Fuas P T ] o ek E 5 b e Ve S Wy~
e # 5 e S s R Rl ekl
| | 7 =y
Transfer
to form 4.1
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Form A.1 Coefficients for an approximating quadratic or
cubic curve

Objective To calculate the coefficients bi in either of the
equationsa:

2

Y b, + b X + E2.X ¥ b3.X3 (cubic curve)

oxr 2

bo + blaX + bz.X-

Items marked < are not required for the quadratic curve
calculations.

¥

(quadratic curve)

(1) Tabulate 3 or 4 data points for the function and compute
sgquares and cubes.

il 1 ] 2 | 3 | &

{2) Prom table (1) calculate differences as shown:

| Tog—I1 | Xin~ X x.+1 _xiz x|+1 'xia
1 =
) - =

ik - ° S

(3) From table (2) construct the terms shown in the table
below, according to

- : 1  the following defini-
] U; ' Vi Vﬁ tions:
1 - (Y1+1 Y3/ (%5,1-%4)
i = — 75 =
2 o . Wy X 1+1 X )/(X1+1 i)
3 - ° I T (X1+1—K )/(x1+1 Xi’)
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Form 4.) (continued....)

(4) Prom table (3) calculate the terms in the following table,
from these definitions:

I | % —=V¥ p@ ; 7 Py= (03,0930 0y n-vy)

1 | -

i

(g 330/ (V3 1-%5)

2<> <> >

(5) Calculate the coefficients according to the following

formulae:
Coefficient Cubic egn. Quadratic egn.
b3 (pzdpl)/( -qqul-) None
b, Py -by.qy Py
b, Y. =b, o X =b,.X2=b, X5 V. b, o b
%% 170y X =bae Xy =Dy Xy g =g ~ R,




Form A.3 Coefficients and statistics of a regression with
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two predictor variables (part 1)

Description of problem:

(1) Regression data

{4) Corrected products

Ey2 = ZYQ—(ZY)Q/H =

kS = Z
Ixy = IX¥~3IX.Z¥/n = o
. Izy = EZY-IZ.2Y/n =
1 522 = $AC—(2X)%/n =
Ixz = ZXZ-IX.%Z/n = _
2 2 2
$2° = IZ°-(I2)°/n =
I (5) Determinant & Gauss multipliers
J D e zx2.2z2—(rxz)2 -
&= zzz/D =
j {6) Regression coefficients
by= 8 o IXY+8,0 LZY =
b2= gz.zxy’-i—gyzzy =
b0= Y-blox—bzoz =
(7) Regression sum of squarss
A2 s
Iy = b1,£xy+bzozzy £
(8) Residual sum of squares
£d2= Zy?'—ZSfZ =
(9) Residusl degrees of freedom
(2) Totals and products laf= n-3 =
Y Y XY Y
n X o ZZ
£x? X2

{3) Means

T » Y/
T a Fr/E
Z:Ez/n

i}

i

£Z2 h Part 2%
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Porm A.3 {...Part 2)

(10) Correlations between variables

T = rxy/V(zx°. 1y°) =
Top = Xyz/J(ZZZ.Zys) =
Ty = txz/\f(zx¢. 229) =

11) Multiple correlation coefficient R and RE
2

R E?/zy =

11

R =4RZ =
(12) Anzlysis of variance
sum of mean ) variance
sguares diafla square ratio
Regression 292 2
fesidual ng af = g%
Total £y? n-1

(13) Residual standard deviation

S=J52=

(14) standard error and t-value of coefficients

Coefficient _ b1 : b2

Standard error Sy s.{glg S-f€3=

= b/Sb

(15) Confidence intervals for predictions

For a series of m estimates of ¥ at a given level of X and Z,
the standard error of the mean prediction is given by:

- 2 2,
8y ™ s.Jkl/m +1l/n + gy eX" + 2.850X.2 + g3.z]

where x = (X - X) and 2z = (2 - Z). For a large sample, 1/m

will be zero; for a single point it will be unity.
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,.A.Enen)dix D

ANNOTATED BIBLIOGRAPHY

This bibliography is not a comprehensive bibliography of forest mensuration Iitera-
ture. It eimply suggestis a set of reference books to acoompany thie manual, which may be
used to research or extend the techniques suggested.

Technical articles referred to in the text are given as footnotes and are not
represented here,



o S =

Apsmann, E.,, The Principles of Forest Yield Stuly. Pergemon Press, pp 506

1970
L very comprehensive treaty on the theory of forest growth, inveliving discussion
of nimerous examples. MNost of the concepis are generalized from North Buropean,
aven-aged stande, and gre not necessarily valid in the tropics. Only statio yield
and allometric models are discussede.

Avery, TeE,, Foresi Heasurements. MoGraw-Hill., pp 290,

1967
Emphasiges practical aspects of field work and primery anzlysis of data, as opposed
te model construsction. Oriented to North American practices and terminology, so
not entirely suited for the tropice, but etill a useful textboolks

Burley J. and Wood, PoJ. (Editors), A Manual on Species and Provenance Research with
1976 Particular Referenoce to the Tropicse Tropical Forestry Paper 10, Commonwezlth
Forestry Institute. Oxford.

A umeful companion volume to the preseunt work, covering rractlicel aspeots of
research requirements for the exploratory pheges of the iatreduction ef axotic
plantation species, Praciiocel in orientation and simply written., Separaie
special appendix (by JoFs Hughes and Ral. Plumtre) covers wood quality siwlies.

Cab, Computerized Hethods in Forest Plananing end Morscasting. Armotated Bibliography Fl4.
1977 Commonwealth Agricultural Bureau, Uk,

Covere published world literature 1973~1976. Givee & full abstract on each
reference. Most entries are directly relevant to the field of yield prediotion

and control.

Carrony LoTe, An Outline of Forest Mensuration. Australian National Universiiy Press.
1968 PP 224.

Better oriented %o yield and volume table consbrustion in widely spaced plantations
thzn American or European texis. Brief and clear summary of methods, but does not
digcuss problems of model fitting or comstrucition.

Daniel, C. and Wood, F.S., Fitting Equations to Date. Wiley-Inierscience. pp 342

1971
Covers practicel use of multiple regression for model Titting, inolwding residual
analyeis, nesied regression models, stepwise regression and non-linear fitting.
Includes examples and dooumentation for a ocomputer package, but no sowrce listinge.

Day, 8.Ce, PFORTRAN Technigues. Cambridge University Presse. pp 96.

1972
A pood supplement to any introductory FORTRAN courss. Covers methods of drawing
graphs, sorting, pointers, stacks, open subroutines, recursion and other technigues.
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Draper, N. and Smith, Hs, Applied Regression Analyeis. Wilep-Interscience. pp 407.
1966
Now almost a classical textbook on multiple and non=linear regression. Covers
theory of simple regression, matrix algebra for multiple regression, residual
analysis, stepwise regression, use of regression to analyse controlled experi~
ments, and introductory non-linear regression. Elementary matrix algebra is
required, together with differential calculus..

FAO, Manual of Forest Inventory with Special Refarence %o Mixed Tropical Forests. Food
1973 and Agriculture Organization, Rome. pp 200,

An essential reference for yield stuwdly worke. Much discussion of design of forest
sampling and appropriate formulase. Practical guldelines for execubing a forest
inventory and data recording.

Fries, J. (Editor), Orowth Models for Tree and Stand Simulations Research Note Nee 30.

1974 Department of Forest Yield Research, Royal College of Forestry, Stookholm, Sweden,
pp 379. (Available from J. Fries, University of Agricultural Sciences, S~750 07
Uppsala, Sweden )

Collection of papers from IUFRO, Worlkdng Party 54.0l1-4 msetinge. Many useful
ideas.

Fries, J., Brukhart, H, and Max, T., (Bditors), Orowth Models for Long Term Forecasting of
1978 Timber Yields, -FWS-1-78, School of Forestry and Wildlife Resouroes, Virginis
Polytechnic Institute and State University, Blacksburg, VA 24061, USA. pp 249

Colleotion of papers from IUFRO, Subject Group 54.01 meeting. Many useful idess.

Green, PsEs and Carroll, J.D., Mathematical Tools for Applied Multivariate Anslysis-
1976 Aoademic Presse pp 376.

A good self-teaching text for matrix algebra as it relates to multiple regrescisn,
prinoipel component analysis, factor analysis and ordination analysis.

Huschy Bs, Miller, Csl. and Beers, T.W., Forest Mensuration.

1972
A 'classical' foreet mensuration ¥exzt, emphasising meesurement rather than modelsy
and with only wery limited treatment of growth prediction. Oriented to North
American oconditions, 8o some practioes are inappropriate for tropioal use, while
specifically tropical problems are not considered. A useful bexthook of basile
mensuration.

Land, A. and Powell, S., FORTRAN Codes for Mathematioal Programming. Wileys pp 249

1973
Gives complste programmes and full dooumentation for linear, integer and quadratic
programming using FORTRAN, with a brief explanation of underlying theory.



= 193 ae

Pardey J.3 Dendrometries

1961
& classical text of forest mensuration, hut with rather more emphasis on yield
table comsiruction then Husch et al. Very guod on inmstrumental measuremenis,
espeoially Relaskop, and on the develogument of simple models for the inter—
relationship of sgtand varisblee. Probably the best current text book on forest.
mensuration. Not oriented to tropical problemse. In French.

Pielou, EeCsy HMathematical Ecologye Wilsy-Intersciences pp 3185,

1977
An excellent refershoe book for mathematical modelling of population dymamios,
pepulation dispersion and association analysis. Of more interest to thse eoologi.st/
silvioulturist than to the forest manager. The assoclation analysis section is
important for studies in tropical rainforests,

Poole; ReW., A4n Introduction to Quantitative Ecology:. MoGraw-Hill., pp 532.

1974
Covers a wide range of %feohniques in eoolog_;; with an emphasis on model building.
Less theoretical, and with more examples emd wors hasic and introductory informa—
tion than Pielou (Bee sbove). Assumes a little calouluvs and mairix algebra.

Prodan, M., Torest Biomsirics. FPergamon Prese. pp 447.

1968
Very useful trestment of the statistical backgrownd to forest growth sivdiaes.
Requires moderate mathematical competence. Good treatment of fitting non~linear
grawth functions, but the book is not dirsetly oriented to practical application.
Mainly influenced by Buropean foresiry practisss.

Royce=Sadler, D:y, Numeriocal Hetheds for Non-linear Regrossions University of Queensland
1975 Press. pp 89.

A summary of the main praotical metheds for fitting the ccefficlents of non—
linear modelse Assumes gome calewlup and matrix algebra. Very olear and brief
exposition of the easential slgorithms.

Seber, G.A.F.; Linear Regreesion Analysin. Wiley-Interscience:. pp 465.

1971
Hore theoretical, wore comprehensive and more up to date than Draper & Smith.
Good undersitanding of matrix algebra requirsd, but a very useful refersnce
book for the statistician.

Shannon, R.E., Systems Simulation: The Art end Soience. Prembice-Hall. pp 387w

1975
A useful reference book for workers interseted in the construstion of simuwlation
medels. Covers random number generation, model fitting, systems analyeis,
expeviments on models, deoision-making using modele and gives several case
studies.
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Snedecor, GoWo and Cochrany WeGs, Statistical Methodse Iowa State UP.

1967
Exnallent reference book for statistical methods. Does not require an evceseively
high level of mathematical ability (caloulue and matrix algebra not needed).
Subjeots covered include linear and non=linear regressicn, multiple regression,
exparimental and =mampling design znd analyeis. All techniques are well illustrated
with worked ezamples and there sre numerous test guestions on each section.

Stark, P.A.y; Introduction to Numerical Methodz. Maemillsn. pp 334,

1970
Basio texthool on numerical methods for computers. Inclules solution of equations,

simultaneous equations; numerical initegration snd differentiationy end interpola-
tion with polynomialse Most methode are illustrated with short FORTRAN programmese
Also gives introduoiion to matrix algetra. Requires mathematioal ability to about
univergity entrance standard, Ixplaine matrix algebra, but assuvnes nowledge of
caloulus.

Universal Eacyclomedia of Mathematics. Pan Bookse pp 715,

An inexpensive {paperback) and exteemely useful refsrence book for formulae in
algebra,; trigonomeiry, geometry, calculus, etc.,; mathemastioal tables and
terminologys

Wagner, HoM., Prinoiples of Management Soience. Prantice-Hall. pp 612

1975
An excellent textbook of quantitative decisgion-malking methods for managers,
including linear and mathematical programming of all types, inwventory contrel,
simulation and gueueing models. Does not assums much mathematical ability (no
calculus or matrix algebra)e

Wright, H. (Fditor}, Plsnning, Performance and Fvaluation of Growth and Yield Studies.
1980 Conmonwenlth Forestry Institute, Oxford, Great Britan (in print).

Collection of papers from IUFRO, Subject Group 54.01 meeting. Many wseful idcas.



