SOIL SURVEY

REPUBLIC OF KOREA

SOIL SURVEY IN GWANGSAN GUN, DAMYANG GUN, GWANGJU SI, JEOLLANAM DO

SOTL survey

REPURUTG OE KORBA

SOTL SURVEY

REPUBLIC OF KOREA

SOIL GURVEY TN GWANGSAN GUN, DAMYANG GUN, GWANGJU ST, JEOLLANAM DO

Report pxepared for
the Government of the Republic of Korea
y
the Food and Agriculture Organigation of the United Nations acting as executing agency for
the United Nationa Development Programme

UNTYED NATIOGS DEVELODMENP PROGRAMME
FOOD AND ACRTCULPUTE ORCLME $\angle A T$ ON OF THB UNTTED MATIONS
Rone, 1970

This technical report is one of a sexies of repoxts prepared during the course of the UNDP/SF project identified on the titl: page. The conclusions and recommendations given in the report are those considered appropriate at the time of its preparation. They nay be moditied in the light of further knowledge gained at subsequent stages of the project.

The designations employed and the presentation of the material in this document and its maps do not imply the expression of any opinion whatsoever on the part of the United Nations or the Food and Agriculture Onganization of the United Nations concerring the legal or constitutionel status of any country, territory or sea area, or concerning the delimitation of erontiers.

EAO. Soil Survey, Republic of Korea. Soil Survey
in Gwangsan Gun, Damyang Gun, Gwangiz Si, Jeollanam Do. Rome, 1970. 104 p. 2 maps. AGL:SE/KOR 13. Techaical Report 6.

ABSTRACT

This report describes aoil survey activities in Gwangean Gun and Gwangju Si_{B}, which were part of the Koree Soil Survey conducted by the Government of the Republic of Korea with the assistance of the United Nations Special Fund 1/.

The entire area of the two Guns and Si (95453 hectares) was mapped in detail. including paddy lands, upland orop fields and forest lands. Together with the accompanying map, which is printed at a scale of $1: 250000$, the report presents an inventory of soil and soil conditions in the surveyed area. Individual soils are described and laboratory data for representative profiles are given, The report includes soil descriptions and interpretations, and provides data and recomendetions for specific land resource analysis and planaing.

The basic information about the soils js interpreted for application to the various aspects of agriculture in the area, including land use adjustment, reclamation and development, increasing production, and the improvement and conservation of lands according to their capabilities. To show general land use potential the soils of the area are placed in seven land capability classes showing limitations and choices for practical use. The soils in each capability class are given, the suitability and limitations for cultivated crops and pasture are described, and management practioes required for higher yields are suggested. About two-thirds of the cultivated land in the aurvey area (23470 hectares of a total of 35 344) is used for paddy rice. Management of the soils for peddy rice is discussed and the soils are placed in four paddy suitability groups, indicating progressively greater limitations in the use of the land for rice.

1) The United Nations Special Fund and the Expanded Programme of Technicel Assistance were merged to form the Dnited Nations Development Programne on 1 January 1966.

Grateful aknowledgement is made of the keen interest and full support extended throughout the project towerd the soil survey team by the Ministay of Arricultwre and Forestry, the Coverment. Cooperating Agency and by counterpart staff.

TABLT OF CONTEMPMS

Page
Chapter 1 TMTRODUOTION 1
Chanter 2 GENERAL DESORIPPION OP THE AREA 3
2.1 Physiography and Drainage 3
2.2 Geology 3
2.3 Water Supply 4
2.4 Glimate 4
2.5 Agriculture 6
Chapter 3 HOW THE SURVEY WAS MADE 7
Chepter 4 DESCRTPTION OR THE GENERAD SOTL MAP 9
4.1 Introduction 9
4.2 Honanmaugrag Association 9
4.3 Hwaggyong-Hwabong-Hogye Association 10
4.4 Jisan-Yongji Association 10
4.5 Songjeong-Jeonam-Gwengrem Association 10
4.6 Mudewng-Sangag-Rock Land Association 11
Chaptex 5 DESGRTPTION OR SOLLS 12
5.1 Introduction 12
5.2 Beegsen Series 13
5.3 Bancheon Series 17
5.4 Bangei Series 19
5.5 Bangan Sexies 19
5.6 Bonryang Series 21
5.7 Chanmpyeong Serios 22
5.8 Goghwa Sexies 24
5.9 Gancdone Serios 26
5.10 Geugrag Series 27
5.11 Gwangu Series 28
5.12 Gwangean Series 30
5.13 Habin Series 32
5.14 Hagsan Series 34.
5.15 Hocye Series 35
5.16 Honam Series 37
5.17 IWabong Series 38
5.18 Hwadong Series 39
5.19 Hwanctyong Series 41.
5.20 Hyocheon Seriea 42
5.21 Jangseong Sexies 44
5.22 Jangweon Sexies 45
5.23 Jeongje Sexies 46
5.24 Jeonnam Series 48
5.25 Jingog Sexies 49
5.26 Jism Geries 50 50
Page
5.27 Manseong Sories 53
5.28 Mudeung Series 54
5.29 Raverwash, Cobbly (RC) 57
5.30 Rock Land (RL) 57
5.32. Sanam Serjes 57
5.32 Sangag Sexies 59
5.33 Seogto Series 61
5.34 Seongran Series 63
5.35 Sindab Series 65
5.36 Sinheung Series 66
5.37 Sinjeong Series 67
5.38 Songjeong Series 68
5.39 Subur Series 72
5.40 Sugge Series 73
5.41 Togye Serjes 74
5.42 Yeongsen Series 75
5.43 Yongji Series 77
Chapter 6 USt and Managmmet of sotls 79
6.1 Introduction 79
6.2 Capability Groups of Soils 79
6.3 Paddy Land Suitability Group 87
Appendix GLOSSARY 103.

LIST OF TABLES

1. Temperature, Precipitation, Dvaporation, and Sunlight Hours in and around Gwangju 3 it 5
2. Soil Series Classified according to the Current and
the Older Systems of glassification 14
3. Guide to Mapping Units 95
LIST OF MAPS
4. Location of the Axea Surveyed

- ix-

LIST OF ABBFEVIATTONS

cm	\cdots	centimetre
he.	-	heotare
m	-	metre
mm	-	millimetre

Chapter 1

IMTRODUCIION

The detailed soil aurvey deacribed in this report began in March 1965 and was completed in December 1967. It Sormed part of the Korea Soll Survey conducted by the Covemment of the Republic of Korea with the assistance of the United Nathons Special Fund I/. The Goverment cooperating agency was the Ministry or Agrioulture and Forestry. The axecuting agency for the United Nettons Special Fund was the Pood and Agriculture Organization of the United Mations.

The purpose of the report is to provide basio soil information required for the development and management of the various aspects of Korean agriculture tnoluding the reclamation and development of new lands for settlement, the improvenent and conservation of lands according to their capabilities, the increasing of produetion. and overall economic development through apreisal of the soll resources.

For the Korea Soil Survey new research methods and new cartographic methods have been used by FAO noil experts and trained counterpart staff. The counterpart persomel were trained in beobniques of soil. awrey, characterizetion, correlation, and classification by the FAO aoil scientiats. before participating in field work.

This report is an imventory of reacarch findinga, in maps and in writing of soil and soil conditions in Cwangju. Si, Gwangsan Gwa and Danyang Gun. It contains important information which will assist the Gun and Si personnel, land owners, and others in the wise use of the land, whether it is for agriculture, forestry, urban development, building aites or xecreational and other nonagrioulturel uses.

Techmioal Reports

The report has been compiled by the following: Seong-Chae Kim; Jeo-Doa So and Charies E. Downey. It is besed on the work of:

Gield Suryey: Soung-Chae Kim
Jaemon so
Seung-Yang Fa.
Yeon-Xyu Jeong
Yeong-Tag Oh
Beembog Shim
Seonm-Do Pazk III-RIo Lee

I/ The United Mitions Special Fund and the Expanded Programe of Teohnical Agasistance were merged to form the United Natione Development Frogramme on 1 January 1966.
Supervision: Cheon-S00 Shin
John F. DertingD. Yoshi zawaW.C. Bourne
Correlation: Cheon-Soo Shin
Ki-Tae Um
John F. Derting
D. Xoshizawa
W.C. Bourne
The list of reports, including the present volune, are given below:
Technical Report 1. The Soils of Korea (with map at scale. 1:1 000 000)
Technical Report 2. Soil Reconnaissance of Korea (with map at scale 1:250 000)
Technical Report 3. Soil Survey in Ulju Gun and Ulsan Si
Technical Report 4, Soil Survey in Gimhae GunTechnical Report 5. Soil Survey in Dalseong Gun and Daegu Si
Technical Report 6. Soil Survey in Gwangsan Gun, Damyang Gun, and Gwangju 81
Technical Report 7. Soil Survey in Sangju Gun
Technical Report 8. Soil Suryey in Pyeongchang Cun
Teohnical Report 9. Soil Survey in Gimje Gun
Technical Report 10. Soil Survey in Buyeo Gun
Each individual soil survey area report (Reports 3 to 10) is accompenied by a
detailed soil map at scale 1:250 000 .

Chapter 2

GETERAL DBSCRTPRTON OT THE ARBA

The surveyed area consists of Gwengsan and Damyeng Guns and Gwangju Si, and is located in the northern part of Jeonlanam Do, one of the southern most provinces of Korea. The area covers 95453 has and is bounded on the northeast by sunohang Gung, on the southeast by Hwasun and Cogseong Guns, on the southwest by Naju and Harpyeong Guns, and on the northwest by Jangseong Gun. In 1965 the surveyed area had a population of 603271 , approximately 57 percent of which was concentrated in Gwangju, the capital city of Jeonlanam Do.

2.1 PHYSTOCRAPY AND DRAINAGE

The surveyed area includes the upper portions of Yeongsan Gang (xiver) drainage basin and the associated broad Honam alluvial plain bounded by steep mountains ranging up to 1168 m on the northwest, north, northeast, and southeast sides. Lower foothills, rolling uplands and pediment slopes, occur throughout the central parts of the area. The alope and drainage of the valley floor is gentle to the southwest, and the flood plains of the valleys become transitionel to fluwiomaxine plains in adjacent Yeongsan Gun.

This area is drained by Yeongsen Gang and its tributaxies. The river originates in the northern parts of the Damyang Cun, and flows southwestwerd across the western part of Gwangju Si and the eastern part of Gwangsan Gun. The western and northerss parts of Gwangsan Gun are drained by Hwangyong and Geugrag Ganga and their tributaries, that flow eastward to join the main stream. The Gwangu Cheon dreing the northem and centrel areas of Gwangju Si , and flows northwestward, also joining tit. The Danyeng Gun is drained by the upper streams of Yeongsan Gang that consist of the creeks: Bomyang, Changpyeong, and Yong Cheons.

2.2 GBOLOGX

The surveyed area is mainly uadexiain by grante, andesite porphyry, granite gneiss, crystalline schist, tufe, porphyry, shele, conglomerate, porphyrite, dioxite, and Iimestone.

2.2.1 Parent Material

Parent material is the unconsolidated mass from which a soil is formed. It has much to do with the mineral and chemical composition of the soils. Most soils ins Gwangsen Gun, Gwangju City, and Damyang Gun formed from residual matorial, thet iss material that weathered from underlying rocks. Most of the surveyed asree is underiain by acidic coarse grained rocks, chiefly granite and granite gneiss. Soils of the

Samgag, Seongsan, Jeomann, Gwongsan, and Songjeong series axe the principal soils derived from these rocks. Generally they are deep, strongly acid, low in fertility and in organic matter content. Less acid andesite and tiner grained porphyry underites about 29 percent of the area, and occurs chielly in the southeastem paxt of Cwangju. This is the principal rock in Mt. Mudeung, and was the source of parent material for Mudeung, Jangweon, and Gagwa sojly. The solls dexived from porphyzy usually have more organic matter, and are higher in available phosphate content in the surface layer than those derived from granite. A mall extent of the surveyed area is underlain by shale from which aoils of the Habin, Sanem and Daegu series have been developed. Conglonerate underlies about 5 percent of the ares, and occurs chiefly in the eastern part of the surveyed area.

The Sinjeong soils derived from this matexial have very thin profiles. Crystalline sohist occupies about 3 percent of the surveyed area, and is exposed in the northwestern part. It is the main rock in a chain of mountains extending to Mt. Chilbong From a side of the Ewangryong xiver north of the Imgog Myeon seat through Mt. Yongjin. Theae mountains are generally steep, and the soils from this material are very shallow and stoxy sandy loen. Only one percent of the area is underlain by limestone, and ocours chiefly in the north part of the area in Gwang Ei Gwangsan Gun. Some traces of this rock can be found in gullied areas of crystalline bchist. The Jangseong soils are underlain by limestone, are generally steep, and have many rock outcrops. The aurveyed area has a vexy mell axea of sedimentaxy rook consisting of oxystalline tuft which occurs mainly in the western part of Gwangsan Gun and in the west side of th: road leading to Maju from Gwangju.

Aluvium is the parent material of the terrace and flood plain soils which are the most important agricultural noils. These show little profile development and for the most part are still receiving deposition. Those on the old high terraces have been in place long mough to have distinctly developed horizons.

2.3 WAPERR SUPPLX

Precipitation in the area generally is ample for the crops grown and is well distributed in the growing season. The Yeor-san river, one of the tive major rivera in the Republic of Korea (south), and its tributaries, such as Hwangryong and Geugrag Gangs, and Gwangju, Bonryang, Changpyeong, and Yong Cheons, are the main bources of surface watex. Most rice paddies have been developed along or near those streams, and about 40 percent of land in mice paddy is imxigated by them. In addition, there are many reservoire, farm ponds and dug wells throughout the area to irrigete rice paddies and fumish water for trual hones.

2.4 CLTMare

The area has a wam, humid continental climate with slighty cold, dry winters and hot, humid sumers. The temperature of the area is lower then that of the coastal axeas of the province being less influenced by the waxm ocean curxent.

Temperature, precipitation, evaporation, and sunlight hours in the axea are show in Table I. As shown there, the avorage monthly temperature abruptly rises in April and continues through August. The temperature begina to drop down in Ootober to an average of -0.60 C during January. The average daily macimum is 31.100 in Augugt, and 4.00 C in Jenuary. The average daily minimm temperature in August ia $22.6400_{\text {, }}$ and
＊Based on a 29－year record， 1940 through 1961，by the Gwangju Meteorological atation．

25．65t	$98^{\circ} \mathrm{v}$ ¢	$920 ¢ 己 2$	$2 t^{\circ} \mathrm{G} 8 \mathrm{t}$	9 ¢・ャを	720 28.	20． 285	－0．boz	をかってひ己	$58^{\circ} 86 \tau$	$6 S^{\circ} \mathrm{OLT}$	96.59τ	$\begin{aligned} & \text { scmo } \\ & \text { q4s? Tuns } \end{aligned}$
LL＇OS	－ 89	S．Sot	70．6II	$9^{\circ} \varepsilon L T$	b2｀ 29 T	$59^{\circ} 79 \mathrm{I}$	$L L^{\circ} \mathrm{E}$ ¢ T	Ot＇TEE	09＊＊6	08\％09	$80^{\circ} \mathrm{Z5}$	wotperodenil
$8^{\circ} 98$	$88^{\circ} \mathrm{Ct}$	88° ¢	$\varsigma^{9} 68 \tau$	6T0 202	E9＊ $2 己 己$	81．892．	96^{*} 26	02＊ 28	$90^{\circ} 69$	Sio	G．T¢	
$98^{\circ} \mathrm{L}$	68° 万	$2 カ ゚ 8$	0L＇9t	59＊ 2	65＊ 2	$50^{\circ} \mathrm{LT}$	$8 \varepsilon^{\circ} \mathrm{t}$ ¢	$6 \varepsilon^{\circ} \mathrm{G}$	$L \varepsilon^{\circ} 0$	$S^{\circ} \mathrm{E}-$	8°	（0） 0 anquxed
$62^{\circ} \mathrm{L}$	Soti	$20^{\circ} \mathrm{tz}$	¢ガ9	TT＊¢¢	$68^{\circ} 62$	$10^{\circ} \mathrm{LZ}$	$L S^{\circ} \varepsilon 己$	L208	TLOTI	$52^{\circ} 9$	0＊	（0）omagrad －med whuren
0.51	$2 \cdot S_{L}$	$6 \cdot G_{L}$	8×62	L．6L	$6^{\circ} \mathrm{T} 8$	$0^{\circ} \mathrm{LL}$	$8^{\circ} \leqslant L$	こ゚こん	$\nabla^{\circ} \mathrm{LL}$	$8^{\circ} \mathrm{TL}$	$2 \nabla^{\circ} \mathrm{L}$	（\％）fatprum 2Sexan
$9^{\circ} 2$	£2｀8	50° 訕	88° T2	$60^{\circ} 92$	T9 ${ }^{\circ}$ ¢	$8 \varepsilon^{\circ}$ โ	$58^{\circ} 9 \tau$	$6 \varepsilon^{\circ}$ IT	$99^{\circ} \mathrm{G}$	$\varepsilon T^{\circ} \tau$	$9^{\circ}{ }^{-}$	
－0ad	－AON	$\cdot 7.00$	－ $\mathrm{d}^{\text {des }}$	－ 8 nty	ATMS	voms	Nem		－20\％	－92通	－4e！	$\begin{aligned} & \text { wa } \\ & \text { uqu II } \end{aligned}$

TS nCoNVMD GNOOZV UNV NI SYnOH
Tatarid
$-\zeta-$
-4.8 c in January. Precipitation begins to rise in Jwne with a peak during July and decreasen from October. About 50 percent of the annual rainfall occurs in June, July and August. The first killing frost ocours between October 11 and 16 , often on Ootober 16 which is 27 days earlier than in the southern part of Korea. The date of last frost rangen from April 24 to May 2, and is usually April 29 which is 22 days later than in the most southern part of Korea.

The climate of Gwangsan and Damyang Guns is of the charactexistic humd, warm temperature, continental type. Here, the soils are warm enough for micro-organisms to be active from April through October, and are moist and aubject to leaching much of the time from April to September. Upland soils are dry to modexately dry much of the time from October through March. Paddy soils except for poomly dreined paddy are also moderately dxy during the wintex. The surface soil is frozen to a depth of about 15 cm for 60 days during the year.

The climate has not caused differences anong the soils, as it is nearly uniform throughout the area. As can be expected, most of the soilla are highly weathered, leached, strongly acid, and low in fertility.

2.5 ACRICULTURE

In 1965 in Gwangju City, Gwangean Gun, and Danyang Gun about 37 percent of the surveyed area or 35344 ha was in cultivated orops. All of the farms have been owner operated since the Farm Land Reform of 1949, The chief crops grown are 2 , 10 , berley, wheat, and soybeans. Average rice yields per 10 ares are 360 kg in Gwangsan cun (including Cwangju) and 330 kg in Danyang Gun. Average yields of baxley or wheat are about 220 kg per 10 ares. Seeding rice usually begins Garly in May, and the transplanting is from mid-June to late in July. The harvest is commonly finished late in October. Barley or wheat iss gown during October and early in November for winter crops, and is harvested late in June.

Chapter 3

HON THE SURVEY WAS MADE

This survey was made to leam what kinds of soils axe in Cwangsan and Danyeng Guns and Gwangju Si, where they are looated, and how they can be used. The entire soil Jandscape was ouserved including steemess, length, shape of slope, kinds of native plants or crops and kinds of rock.

Holes were made and profiles were observed at an average interval of about $200 \mathrm{~m}_{8}$ depending on the nature of the landscape. Spacing was much closer in the highly productive peddy lands than in the hilly and mountainous areas, where stones, rock outcrops, gullies, and similar features are important indicators of the kind of soil.

Comparisons were made among the profiles studied, and compared with those in other areas where detailed soil surveys have been carried out. The soils were classified and named according to the soil classification system used in Korea and other countries.

Soils that have profiles almost alike make up a soil series. Al the soils of one series have major horizons that are similar in thickness, axrangement, and other important characteristics. Each soil series is naned for a town or other geographio feature near the place where a soil of that sories was first observed and mapped.

Bancheon and Samgag, for example, are the names of two soil geries in the survey area. These would have essentially the sane characteristics as the Bancheon and Sengag mapped elsewhere in Korea. Solls of one series, however, can differ somewhat in texture of surface soil inoluding the smount and size of coasse fragments, in slope, and in the amount of erosion that is evident. Where thase differences are important in the use and management of the soils, some soil series have been divided into mapping units.

Other series have only one mapping unit. The Snggeong series, for example, is divided into mapping units based upon slope and also upon the evidence of erosion. Thus there are sloping and moderately steep mapping units of Songjeong soils with severe erosion as well as moderately steep Songjeong soils that are gullied. There is also another difference between the series and the mapping unit. The series includes a group of profiles that have a definite but limited range in their properties. The napping unit, however, must describe all of the important properties of the soils that are within the actual limits of the area show on the map. Usually within a mapped area there are some profiles that resemble other sexies more than the series named in the mapping units. In mapping units such as Mudeung rocky loam, 30 to 60 percent slopes, the part of the area that is rock outcrops obviously does not have a profile. In the Mudeung there are mapping units of Mudeung rocky loam. 30 to 60 percent slopes and Mudeung very rocky loamg 30 to 60 percent slopes. These mapping units vary mainly in the amount of rock outcrop in the area. of course it would be most desirable to have a map with these areas of other soils and areas of rock outcrop ghownin their true occurrence, but it is not practical.

Other axeas of land which do not have developed soils are also show on the soil map, but they are given descriptive names, such as rock land, or beach and riverwesh, sandy, and are called land types rather then soils.

Chapter 4

DESCRTPTMON OF THE GEMERAK SOLL MAP

4.1 TMPRODUCTION

The general soil map shows the soil assoctations in the survey area. A soil association is a landscape that has a distinctive proportional pattern of solls. It normally consists of one or more major soils, at least one minor aoil, and is hamed for the major soils. The solls in one association occur in another, but in different patterns.

A map showing soil assooiations is useful for the location of laxge tracts that are suitable for a certain kind of farming or other land use. For planning the menagement of a Cam or fields such a map is not suitable, because the soils in any one association ordinarily differ in slope, depth, stominess, drainage, and other characteristics that affeot management. pive soil associations axe shown on the general soil map.

The Mudeungmsamgagmack Land association is the laxgest in extent, occupying about 54 percent of the area. The second largest is the Honam-Ceugrag association, ocoupying about 20 percent. The other three associations axe gimilax in extent each ons having somewhat less than 10 percent of the total area.

4.2 HONAM-GEUGRAG ASSOCTATTOM

This association, level to neaxly level, imperfectly drained, noils of the Yeongan river plain, is about 20 percent of the survey area with an extent of 18800 has It is the most important association for agricultural production. The Honam-Geugrag complex covers more than one half of it, mainly in the higher part of the alluvisl plains.

These are level or nearly level, fine clayey, imperfectly drained aoils that are well suited for xice paddy. The Sinheung and Yeongsan solls each make up more than 10 percent of the area. Other important soils in the association are the Hagsan. Manseong and Sugye. The Honam-Ceugrag are glowly permeable and have high available moisture capacities, while the others have moderate pexmeability and available moisture capacitios. Whoh water is required fox rice production, although it is the principal crop in the area and yields are high. The Sinheung, Yeongean, Hagsang Manseong soils are usually planted to berley rollowing tice haxvest.

All of these soils need the application of lime and other fertilizer for higher production, which will cone from better management of the soils, as the entire area is now used for orops. This might include the irrigation of such crops as baxley and vegetables.

4.3 HWAMGRYONG-HMABONG-HOCYE ASSOCIATION

The association includes about 7850 ha, or about 8 percent of the area, and is level to gently gloping, very Bandy or gravelly, well drained soils on flood plain and gtrean or river chamels. The Ewaxgryong soils are most extensive, covering about one-third of the asbociation. The Hogye include about 22 percent, and the Bonryang, 20 percent. Riverwash cobbly and sandy units are 15 percent and others, including Fwabong and togye soils, are about 10 percent.

The Hwangryong soils axe excessively well drained, rapidy permeable, very gravelly to cobbly gands, with low available moiature capacities. The Hogye and Bonryang are also rapidly permeable and have low or vexy low available mointure capacities. The former are well drained, modexately permeable, productive soils.

Rice is the principal crop grown in the area and most yields are medium. The Hogye, Hwangryong, Hwabong, and Togye soils are usually cropped to baxley following the rice harvest. Some of the Hogye and Hwangryong axe used for bweet potatoes, truit, and vegetable crops during the sumer growing season.

Considerable water ia required for rice, and the production of nonirrigated crops is limited by drought, All of these soils need frequent applicetion of lime and other fertilizers for highest yields, which will come from better managenent of the solls, the entire area except the riverwash, now being cultivated. Better management might include the irxigation of barley, wheat and vegetables.

4.4 JTSAM YONGJI ASSOCTATION

This association mainly includes sloping floodplains soils and is gently sloping to sloping, moderately well to imperfectly drained loany soils of the small valleys. While this association is only about 9 percent of the survey area and 8400 ha in extent, it is importent for agricultural production.

The Yongji-Jisan complex are the nost actensive soils covering about 60 percent of the ascociation, mainly in the upper part of the strean valleys. They are gently aloping to moderately steep, loany, modarataly well drained to poorly drained soils that are well suited for rice production. The Subug are about 15 percent, and Gangdong and Saman 10 peroent each. The Subug are poorly drained, sandy over very crevelly sands with low availeble moisture capacities. Minor soils, including the poorly drained Hyocheon, make up the renairder.

Rice is the principal crop grown and yields vary greatly. Jisan and Yongja are usually cropped to barley following rice. fome better drained axeas axe in apple trees, and regetable crops are grow during the summer. All of these soils need frequent application of lime and other fertilizers for highest production, which will come from better management as the extire area is cultivated. This might inciude the irrigation of crops, such as barley, whest, and vegetables.

4.5 SONGTEONG-JEONHM-GNANGSAN ASSOCTATIOM

Soila with high or moderately high available moisture capacities are dominant in this association and are sloping to moder ately steep, deep and vexy deep, well drained clayey soils of hilly areas. They cover about 9 percent of the survey area,
in the lower mountainous areas of granite rocks. The Songjeong are about 30 percent and are most extensive, the Jeonnm about 15 pexcent of the total area, while the Grangsan-Jingog and the Songjeong-Sangag complex have about 10 percent each. A variety of soils including the Bancheon-Bongei, Gaghwa-Jangweon, and Bansan-Maegean complex; Hwadong, Seogto, Seongsan and Jangweon soils, make up the remaining 35 percent of the area.

The Songjeong are sloping to steep with deep, clay loam or sendy loam subsoils and sandy loan saprolite. Some upland crops are grown in the less eroded places, but generally the land is covered with a thin stand of poorly shaped pine trees and grass. Erosion has been and remains the greatest problen. The Gwangan soils are severely eroded and gullied, with fine loamy granite saprolite, containing some mica and much quartz.

The fine clayey B horizon of these soils has been mostly washed away, exposing the granite saprolite. The formation of gullies and continuing sheet erosion has lowered the usefulness and possible production. In addition, erosion lowers the potential production of many lower lying soils through depositing infertile materials on them. A thick stand of useful, adapted species of trees would do much to control this and obtain some return from the land.

Some of the less eroded soils are capable of producing some pasture if limed, fertilized, seeded to adapted species, and well managed. Areas of the Gwangsan and other soils with more favourable characteristios could produce moderate yields of upland barley, aweet potatoes, sorghum, millet, melon, soybean, corn, tobacco, and similar crops, but much fertilizer is needed. When these crops are grown, soil erosion is apt to be severe unless the land is properly managed.

4.6 MUDEUNG-SAMGAG-ROCX LAND ASSOCIATION

This association is in the eastern nd northern part of the Gun. These soils are steep and very steep, shallow soils of the high mountaing, and cover about 54 percent of the survey area. The Mudeung soils are the most extensive and make up roughly 40 percent. The Samgag are about 35 percent, and minor soils including Habin, Sinjeong and Jangseong soils comprise about 25 percent.

The Mudeung are shallow, usually having about 50 cm of loeny material over haxd bedrock. These soils have low available moistre capacities and are infertile. The Samgag are moderately deep sandy soils, with low available moisture capacities, and are low in productivity. The area is mainly in forest of pine trees, and there is little possibility of intensive use because of steep slopes and shallow soils. The bnall area of less sloping, moderately deep soils would produce good fruit and similar crops, as well as pasture and bay crops.

Chapter 5

DESCREPETON OF SOLLS

5.1 TMRRODUOLION

This section describes the soil series and mapping units of the survey area. The soil series is described first, and then the mapping unita of the serles, Following the name of each mapping unit there is a symbol in parentheses. This symbol identifies the mapping unit on the detailed soil map. To get full information on any one mapping wait, it is best to first read the description of the series which describes the general concept of a soil and then the mepping unit, which gives more detailed information about the area mapped awoh as slope, presence of other soils, rock outcropa, and other factors affecting use.

Additional information about the use of the mapping units can be found in the diecussion of Capability Unit and Paddy Suitability Groups. Table 3 liste these groupings for each soil.

5.1.1 Soil Clasmification

(1) order

Ten soil orders are recogaized In the curxent system. They ares Entisols, Tnceptisols, Aridisols, Mollisols, Spodosola, Alfisols, Ultisols, Oxisols, and Fistomols. The properties used to differentiate the soil orders are those that tend to give broad climatio groupings of soils. The exceptions. Entisols and Histosols, axe in many different climetes. Table 2 shows the rive soil orders in this surveyed area: ultisols, Alfisols, Inceptisols, Entisole and Mollisols.

Bntisols are young mineral soil that do not heve genetio horizons or have only the beginning of such horizons.

Inceptisols axe mineral soils in which horizons have definitely started to develop. They generally axe on young, but not recent land gurfaces.

Mollisols are mineral soils that have daxk coloured suxfaces with high organic mattex content and high base satuxation.

Afisols are soils containing a clay-emiched B horizon that has high base saturation.

Utisols are mineral soila thet have distinct horizons and are commonly on ald land surfaces. They contein a clay-enriched B horizon that has low base gaturation.
(2) Suborder.

Each soil ordex is subdivided into suborders, primarily on the basis of soil characteristics that seem to produce classes having the greatest genetio similarity. The suborders have a narrower climate range than the orders. The criteria for suborders chiefly reflect the presence or absence of waterlogging or soil moisture, texture, and the presence or absence of accunviated soluble matexial. The suborder is not shown in Table 2.

(3) Great Group.

Bach suborder is divided into great groups on the basis of uniformity in the presence, absence, and arrangement of diagnostic horizons and features. The diagnostic horizons are those that contain alluvial clay, iron, and humis, or are the thick dark coloured surface horizona or horizons which have a pan that interferes with water movement or root development. The featuxes are colours of dark brow and dark red that are associated with basic rocks; major differences in chemical composition; and wide differences in base saturation.

(4) Subgroup.

The subgroups are subdivisions of the great groups and are defined in terms of reference to them. One of the subgroups represents the central concept of the great group, and others called intergrades, have properties of one great group that are dominant and also weakly expressed properties of another great group, suborder, or order. Subgroups may also be made where the e is some soil property unlike that of the great group, suborder, or order. The names of subgroups are derived by placing one or more adjectives before the name of the great group. An example is:

(5) Families.

Each subgroup is divided into femilies, primaxily on the basis of properties important to the growth of plants or to the behaviour of soils when used for engineering. Among the properties considered are texture, consistence, permeability, reaction, mineralocy, soil temperature, and thickness of horizons.

(6)

Series.

The series consists of a group of soils that formed in a particular kind of parent material, having a genetic horizon that, except for texture of surface soil, is similar in differentiating chaxacteristics and in arrangement in the goil profile. Among these characteristics are colour, structure, reaction, consistence, and mineralogical and chemical composition. In Table 2 the soil series in this area are olassified according to the current system of soil classification.

5.2 BAEGSAN SERTES

The Baegsan series consists of pently sloping to sloping, well drained, deep to very deep soils developed in recent alluvial-colluvial materials eroded from areas underlain by porphyry, granite, and granite-gneiss. This series is a member of the fine loamy family of Dystric Pluventic Butrochrepts.

A typical profile follows:
Apl-o to 17 cm ; brown to dark brown (10YR 4/3) 1oam; very
weak, fine granular structure; very friable, slightly sticky,

stros 0 Trozpod mater-pey	sTos 73.10	s4Tapnidst otder	Noreto sute	บes8uran
$\begin{array}{r} \text { stros } \\ \text { ortozpod motien-pey } \end{array}$	sposth		coneto aute	n¢3uemp
stuos Rety OTWH-MOT - stTOB otrozpog motrex-pey	STOsTET		corsto euti	รูงโnex
ReT5 otwnimot	scos	squdenbecder opquanmte	Apues xano furot outir	suopsuen
oftorpoz motrejuper	§TOsT3T	sftepntary otacy	Asmpo outis	Qurzen
	9TOSTET	Ejtepnture otcim	Someto sutit	2noescoueup
ctios tetantiv	stosyout	squamitytn - idet	Iono Aucet asures	Suefrueg
ortorpod motex-por	scosmy 7	spmpncorv otume	A Anto ounis	uesteg
$\begin{array}{r} \text { sttos } \\ \text { ortozpod Mottex-pog } \end{array}$	\$TOSTTW	sitepntare otuk	Teqe Texs-icto	cemued
	S10aty	sitepatder octer	Roneto auth	स०eपoura
STTOS Temmter	scostaceoul	 	Aureot outis	Wesserg
Choxy Tros 40025	20pa	cnoxicns	ATtures	setwes
29T9				
- DT -				

stros tetantty Net. OTumH-ROT	sTostqueoul	sqdonbetder 	təao suret outa	suoesury
Sttos feto octumy-mot	stosţadenul	sqุdenbeqder otqueante	Aureot outa	wests
$\begin{array}{r} \text { sttos } \\ \text { ○тTOzpod MOLTə --poz } \end{array}$	stostatin	Sqtapntari otciciu	NoReto vutu	sostres
$\begin{array}{r} \text { stros } \\ \text { otrozpod mottex-poy } \end{array}$	8TOsT7T0	sqTupatare otciad	Ronteto outa	wetruoog
	stostadeoul		Sureot outit	effuoos
stosourrete	atosţcoooul		Sureot eutu	पоенstrer
9TOsout TT	stostaut	squeпq.iopn otuqut	Sureot eutas	Inoessures
Sttos Rett octumhemot	stostqdeout	สq¢onbetdeti otquəantat	Aurot out	H0eYoofi
sttos Tetantur	scostauti	รqueumesdep ofaki	Teqeteris Apues	SuORLSuemH
stios otcozpod mottex-pog	STOSTJTV	ตรTepntarer ombvi	SoReto outa	Stopemi
styos tetantty	stostautit	squeuruesdep otaiu	spures	Suoqem
Sttos Seto otumhemot	stoşコTV	SJtenbeaupo otasif	Noseto outu	weuori
stros tetantut	stostrem	sttopntdeti oupueantat	Teqoters Sureot	- CO OH
stros tetantiv	stostadaoul	 	Apres xəa Rureot outit	4es\%e\%
atosounti	stostydeoul		furot ascroo	utqeen
cnoxy Ttos qeoxn	دepat	dnowsans	NTTure	
ท०Tqeotatsceto 8 ¢6T		บัTู20TJTSSET0 queu		Sopos

(p.7400) 2 -Tqe:

$\begin{array}{r} \text { stros } \\ \text { ortozpod motiod } \\ - \text { paz - }- \text { TBTAntit } \end{array}$	stostydeour	○тqueantia	Aurot autic	Tferuoz
steos foto vtury－mot	sなosをす\％		xano Aureot outcia	wersuoax
styos tetantur	stostaut	squaumasaten saditu	Teqatars Apurs	2．90］
Sot otumizort	stosthaxoux		Sates aut	afonc
stros temantu －Reto otuminot	stostydout	squenbetarel otquentia	TB2eToys Apures xoso furot esxtoo	Snqus
etros otrozpod motrex－pari	stosthtn		Rumeot outil	Suoaçuos
stosomatic	stostydeout		Aurot autit	8 800e？uts
stros retantt of Reth otuman mot	stostadeous	sqdenbetar otquantio otiay	Areot suru	Sumeurus
Otrozpod motiox－por	stostaxy	squenbeururg ocaicu	spurs	qepurs
styos tetamitl	stostradeoux	2Tquantle otiabio	Surot esmeos	uressuos
stososeu	stostydeour	otquanncai oçaqsic	Teqa Teys－Aureot	07，3005
atosountt	stost？${ }^{\text {deour }}$		furot asceos	sesures
8 Losomatic	stosthdeout		Surot euticis	Sumeprin
¢nox	sepro	drozsqus	¢Tture	
		－97．－		

and plastic: common, fine pores: comnon, fine roots; clear. smooth boundary: pH 5.2 .

A12-17 to 30 cmi dark yellowish brown (10KR 4/4) loami weak, fine granulas gtructure; friable, alightly stioky, and slightly plastic; comnon, medium to coarse porea; very few, fine roots; clear, mooth boundary; pli 5.6.

B- 30 to 68 cm brown to dark brown (7.5 RR 4/4) loamp weak, coarse blocky skructure; firm, sticky, and plastic; commong mediun pores; vexy few, very fine roots; clear, smooth boundaxy; pH 5.8.
c-68 to 120 cmi brown to dark brown ($7.5 \mathrm{YR} 4 / 4$) and gtrong brown (7.5XR 5/6) loam; very weak, medium blocky structure; firm, sticky, and plastic; few, fine pores; some weathered gravels; pH 5.8.

The Ap horizon is brown, dark brown, or yellowish brown sendy loan or silt loam. The B horizon is brown, dank brown or strong brown loam or silty clay loam with blocky structuxe. The C is similax to the B except that it lacks structure.

The Beegsan soils, associated with the Bensan and Seongsan, are finer-textured than the Seongsan and heve a weak structure in the subsoil and a Iighter coloured surface horizon than the Bansan which possess a moderate structure in their clayey subsoil.

The soils of Baegsen sexies are medium to strongly acid, high in natural fextility, and medium in organic matter. Permeability ia moderate, and availeble moisture capacity is high. Cation exchange capacity is medium, and base saturation medium to high.

Gultivated crops predominate, and their rields are high.

5.3 Bancheon sbries

The soils, gently sloping to moderately steep, vell drained, deep, were formed in old alluvium on slightly to moderate dissected strean terxaces in the northeastexn part of the survey areas. This series is a member of the fine cloyey family of Typic Hapludalfs.

A typical profile follows:
Ap-0 to 11 cm: brown to dark brown (10YR 4/3) silty clay loam with few, fine motbles of strong brown ($7.5 \mathrm{YR} 5 / 6$) weak, coarse subangular blocky and weak, tine to medium granular blocky and weak, fine to medium granulax structure; friable, sticky, and plastic; clear, smooth boundary: pH 5.3.

B21t-m-11 to 21 cm : yellowish brow (10YR 5/6) silty clay loam with common, fine, prominent motbles of brown to dark brown (7.5 KR 4/4); moderate, mediun subanguler blocky structure; firm; abrupt, smooth boundary; pK 5.6 .

B22t--2l to 40 cm ; reddish brown ($5 \mathrm{YR} 4 / 4$) silty clay; moderate, coarse prismatic breaking to coaxse blocky structure; firm, sticky, and plastic; thick, clay cutans; few, medium, soft manganese concretions; few, fine roots; clear, smooth boundary; pH 6.4.

B23t--40 to $80 \mathrm{~cm} ;$ xeddish brow (5 YR 4/4) silty clay; weak, coarse priamatic, breaking to weak, medium subangular blocky structure; firm; thick clay cutans; clear, smooth boundary; pH 6.5.

B3t---80 to 110 cm ; mottled strong brown (7.5TR 5/6) and yellowish red (5YR 5/8) silty clay loam; weak, coarse blocky structure; firm; common, medium soft manganese concretion; some gravels; ph 6.3.

The Ap horizon is brown or dark brown ailty clay loam, silty clay, or loam. The B2 horizon is yellowish red, reddish brown, or red silty clay to clay loam. The B3 horizon is strong brown or yellowish red sillty clay loam or clay loam.
the Bancheon, occurring with the Gwangiu, Jeonnem, and Benggi, are aimilax to the Gwangju in many respects, but lack gravel that is present in the Bangei soils. In contrast to the Jeomam the Bencheon soil formed in alluvium, whereas the Jeomam developed in residum weathered from granite and poxphyrite.

The Bancheon, strongly to very strongly acid, are moderate in natural fertility and medium to low in organic matter. Pemeability is slow, and available moisture capacity is high. Cation exchange capacity is medium to high and base gaturation is high.

Most areas recently in forest, been cleared for agricultural crops.

5.3.1 Bancheon-Bangei. Complex, 15 to 30 Percent Slopes, Eroded (BBD2)

These soils are on moderately steep boundaries of the higher old alluvial plains and the present lower alluvial plein. They occur as small areas mostly in Deejeon Myeon in the westem part of Danyang Gun. The soils, consisting of about 80 percent Bancheon and 20 percent Banggi, have similar profiles, except the former are very gravelly.

The profiles of the two are similer to the ones described for their xespective series, but small areas of less or greater slopes than the described range have been included.

The Banggi soil of this complex is difficult to till in places because of the gravel and the cobbles in the surface leyer. The main management problem is erosion control. The soils are used for common crops except rice, and are best suited to pasture and mulberry.

Capability unit IVe.
Paddy suitability group P4ac.

5.4 BANGGI SERTES

The Banggi series, consisting of moderately steep, deep, well drained soils formed in gravelly to cobbly alluvial material, is on the slopes between the older, higher terrace level and the lower alluvial plain. This series is a member of the loany skeletal family of Typic Hapludalfs.

A typical profile follows:
Ap-0 to $18 \mathrm{~cm} ;$ brown to dark brown ($7.5 \mathrm{XR} 4 / 4$) gravolly clay loam; weak, fine to mediun granular structure; friable, slightly sticky, and slightly plastic; many, fine roots; clear, smooth boundary; pH 5.4 .

B2t-18 to $35 \mathrm{~cm} ;$ yellowish red (5YR 4/6) gravelly clay loam; weak, medium to coarse blocky breaking to medium to coarse granular structure; firm, sticky, and plastic; common, fine roots; gradual, smooth boundary; pH 5.6 .

B3t-35 to $65 \mathrm{~cm} ;$ yellowish red (5xp 5/6) gravelly to cobbly sandy clay loan; weak, medium to coarse blocky breaking to medium to coarse granular sturcture; slightly firm, sticky, and plastic; few, fine roots; clear, smooth voundary; pH 5.8.

Cl -65 to 120 cm ; strong brown ($7.5 \mathrm{YR} 5 / 6$) gravelly to cobbly sandy clay loam; weak, fine to medium crenvlax structure; slightly firm; few, fine roots; pH 5.8.

The Ap horizon is brown, dark brown, grayish brown, or dark grayish brown or dark grayish brown clay loam, silty clay loam or silt loam. It generally contains e few gravel, and in some places is gravelly or cobbly. The B is yellowish red, strong brown, yellowish brown gravelly clay loam, gravelly silty clay loam, or gravelly silty clay. The C is very gravelly to cobbly sandy clay loam or stony silty clay loam. The gravel content increases with depth.

The Banggi, occurring with the Bancheon and Hwadong, and differing from the Seogto soils in having much more clay, are strongly to medium acid, moderate in natural fertility, and medium to low in organic matter. Permeability is moderate, and available moisture capacity is moderate to low. Cation exchange capacity is medium, and base saturation high. The soils occur as small areas at the edges of alluvial plains, and generally are in poor pine forest with a few small cultivated areas.

5.5 BANSAN SERTES

The Bansan series consists of gently sloping to sloping dark coloured, well and moderately well drained deep soils formed in meinly residuun of granite and porphyrite. Alluvium washed from adjacent, slightly higher soils may have contributed to their dark surfaces. Hard bedrock depth ranges irom 3 to 5 m below the surface. This seriea is a member of the fine clayey family of Humic Hapludults.

A typical profile follows:
Ap-0 to $9 \mathrm{~cm} ;$ dark brown (10MR 3/3) silt loam; very weak; fine to medium subangular blocky and fine to medium gramulas structure; friable, slightly sticky, and slightly .
plastic; common, fine, pores; comon, fine roots; gradual, mooth boundexy: pH 5.2.

Ap2-9 to 16 cm : dark yollowish brown (10YR 3/4) silt
loan; very weak, fine to medium granular structure; friable, slightly sticky, and plastic; common, fine poxes; common, fine roots; cleax, smooth boundary; pH 4.8.

A3-m to 39 cm ; dark yellowish brown (10YR 3/4) ailt loam: weak, medium to coarse subangular blocky gtructure; friable, slightly bticky, and plastio; common, fine pores; common, vexy fine roots; alear, smooth boundary; pH 4.8.
 fine distinct mottles of dark reddish brown ($5 \mathrm{YR} 2 / 2$); moderate, medium to coarse subangular blocky structure: firm, sticky, and plastic; many, fine to medium pores; clear, smooth boundary: pH 5.0.

ITB21t- -42 to 71 crag dark reddish brown (5 YR 3/4) ailty clay loan; strong, medium to coarse subangular blocky structure; firm, sticky, and plastio; thin, clay cutans; many, fine to medium pores; very few, very fine roots; clear, smooth boundaxy; pH 5.9.

IIB22t-71. to $100 \mathrm{~cm} ;$ yellowish red ($5 \mathrm{yR} \mathrm{4/8)}$) clay: moderate, mediun to fine subanguler blocky structure: friable, vexy stioky, and very plastio; thin clay cutans: few, fine to mediun pores; very few, vexy fine roots; pH 5.1 .

The surface layer is brown to very dark brown, dark yellowish brown loam to ailty clay loam. The subsoil is yellowish red or dark reddish brown to atronc brown silty clay loam, clay loam or silty clay, and occassionelly with mottles of greyish brown. The 0 hoxizon is strongly weathered granitic saprolite, and ranges in texture from sandy loam to silty clay loam. It usually beging at depth of 150 cm below the surface.

The Bansen are associated with the Seongsan, Jeonnam, and Baegsan soils. These are similar to the Seongsan in topography, but are more developed and have a darker surface layer. The Bansan are less drained, and have a darker surface than the Jeonnam that formed in residual material. These soils are moderately dereloped, while the Baegran axe undeveloped or weakly developed.

The Bansan are medium to strongly acid, high in natural fartility and medium in organic matter content. Permeability is slow, available moisture capacity is high. cation exchange capacity is low, and base saturation is medium to high. They are found chiefly in the concave areas between the alluwial soil of the valleys and the soil on the mountain slopes.

Most of the areas are cultivated to barley, wheat, soybean, vegetables and othex. similax crops. A few small axeas are cultivated only to paddy rice each year. Yields are generally high.

5.5.1 Bensan-Baegsan Complex, 2 to 7 Percent Slopes (BEB)

These soils occur on gently sloping pediplains or concave areas between the alluwial soil of the valleys and the soil on the mountain footslopes.

The complex consists of about 60 percent Bansen and 40 perceat Baegsan soil.
Profiles are as described in their respective series, but included are small exees of soils with lighter coloured suriaces soils, and a few areas of less or greater slopes than the described range.

The soils are mostly in cultivated crops, and are best suited to those commonly grown in the areas. However, if cultivated to paddy rice, they are subject to drought.

Capability unit IIe.
Paddy suitability group P2ac.

5.5.2 Bansan-Baegsen Complex, 7 to 15 Percent Slopes (BEC)

These soils are on sloping concave areas, swales of the slightly disseoted old bedrock pediplains, and on the depressions chiefly between the alluvial soil of the local valleys and the soil on the mountain slopes. About 70 percent of this complex is Bansan, and the rest is Baegsan soils. The profiles axe similar to those described as representative for their respective series, but, a few small areas of greater slopes than the described range, and small axeas with lighter coloured surfaces, have been included.

Cultivation is generally suitable and crops in the area, such as barley, wheat, upland rice, soybean and vegetables grow well. These soils are subject to drought, and the main management concern is erosion control.

Capability unit IIIe.
Paddy suitability group P3ac.

5.6 BOMRYANG SERTES

This series, consisting of nearly level, deep, well drained soils developed in recent alluvium, is found in floodplains chiefly along the Yeongsan river and its tributaries, and is a member of the coarse loamy over sandy nonacid family of Typic Udifluvents.

A typical profile follows:
Ap-0 to $12 \mathrm{~cm} ;$ dark brow (10YR 3/3) tine sandy loam; weak, fine to medium gramular structure; Priable, slightly stioky, and slightly plastic; common, fine roots; clear, smooth boundaxy; pH

C1-12 to 60 cm ; brown to dark brown (10XR $4 / 3$) fine sandy loam; weak, medium blocky breaking to fine to medium granulax structure; slightly firm, slightly sticky, and alightly plastic; few, fine roots; clear, smooth boundary;

IIC2-60 to 100 cm ; brown (10 XR 5/3) loany send; few gravel.

The Ap horizon is brown, dark brown, yellowish brown, or dark yellowish brown fine aandy loam or loam. The Cl horizon is brown, dark brown, yellowish brown, or atrong brow fine sandy loam and contains some gravel in places. The IIC2 horizon is brown or yellowish brown loamy sand. Gray mottles are common in the upper horizon of the soils used for paddy rice.

The Bonryang occurxing with the Hagsen soils, are better drained and less mottled than the Hagsan, and are generally low in organic matter, moderately low in natural fertility, and medium to strongly acid. Permeability is rapid, and available moisture capacity low. Cation exchange capacity is low, but base saturation high. Most of the areas are cultivated for crops such as barley, wheat, Indian millet, soybean, potatoes, and vegetables. Peddy xice is grow on a fen small axeas. Crop yields are generally low.

5.6.1 Bonryang Sandy Loam, 0 to 2 Percent Slopes (Bo)

This soil is on level to nearly level flood plaing, mainly along the Yeongsan river and its tributaries. Most areas have a profile aimilar to that described tor the sexies, with some areas of 3 percent slopes, small areas with loany sand textures throughout the profile, and some soile with gray colours in the lower subsoil, being included.

This soil generally is in good tilth. Runoff is alow, and infiltration rapid. The Bowryang soil is generally best cropped to berley, wheat, soybean, and vegetables. Leaching of crop nutrients and droughtiness are the principal management problems.

Capability unit IIs.
Paddy suitability group PAbc.

5.7 CHANGPYEONG SERTES

The Changpyeong series, including gently sloping to sloping, very doep, well drained soils developed in old alluvium on terraces, is a member of the fine clayey family of Typio Hapludalfs.

A typical profile follows:
Ap--0 to 9 cm ; yellowish red (5 YR 4/6) silty clay; moderate, mediun to fine blooky struotures friable, sticky, and plastic; few; medium pores; common, fine roots; abrupt, smooth boundary; pH 4.6.

B21t--9 to $40 \mathrm{~cm} ;$ yellowish red (5MR 4/8) silty clay; strong. fine to coarse angular blocky structure; sixm_{3} aticky, and plestic; common, medium pores; tew tine roots; gradual. smooth boundary; pH 5.0.
B22t-40 to 60 cm ; yellowish red (5YR 4/6) silty clay with common, medium, prominent black spots; strong to moderate. mediun angular blooky breaking to moderate fine granular structure; very firm, sticky, and plastio; moderately thiok
clay cutans; few; modium pores; very few, fine roots; gradual, smooth boundaxy; pH 5.0.

B3t-60 to $132+\mathrm{cm}$; yellowish red ($5 \mathrm{YR} 4 / 6$) silty clay loam; strong, medium angular blocky structure; friable, slightly stioky, and slightly plastic; few, fine pores; common, mediun blocky manganese oxide mottles; pH 5.2.

The Ap horizon is browa, strong brow, yellowish red, or dark xeddish brown silty clay to silty clay loam or clay. The B2 horizon is yellowish red or red to daxk red silty clay or clay with continuovs clay cutans. The substratum, not described in the profile, usually begins at a depth of 1.5 to 3 m , and is alluvium ranging in texture from ailty clay to sandy clay loam. Buried paleosols are frequently with the lower strata that are cobbly or gravelly.

The Changpyeong are in the same genercl areas as the Banoheon, Gwangsan, and Gwangju soils. These are fincr textured, and have a stronger structure than the Bancheon, differing from the Gwangan in parent material, and from the Gwangju soila in the lack of silty upper horizone.

The Changpyeong are asually medim in organic matter content, but the nowly oleared or uncultiveted soils contain only small amounts of this. These soils are mecium to strongly acid, and moderately high in natural fertility. Permeability is very slow, and available moisture capacity is moderate to high. Cation exchange capacity is medium to high, and base saturation high.

Grops, wuch as baxley, wheat, soybean, and sweet potato are general and paddy rice is grown in a few areas.

5.7.1 Changpyeone Silty Clay Loam, 2 to 7 Percent Slopes, Eroded. (CpB2)

This goil is on gently sloping, slightly dissected pediplains. The profile generally is similar to that described for the series, but includes some axeas of only slightly eroded soil, and silty clay lom to silty clay subsoils.

It cenerally is in poor tilth, the root zone is thick, and the hazard of further erosion, moderate. A few mell areas are in rice pady, with the oultivation of barley, wheat, potato, and other aimilar crops, being usual. The main management problen is erosion control.

Capability undt IIe.
Paddy suitability group P2ac.
5.7.2 Chonrpyeons Silty Clay, 7 to 15 Percent Slopes, Eroded. (Cpe2)

This very deep and well drained soil is on sloping and disseoted pediplains. The protile is similan to that described for the series but inoludes some areas of only slifgtly croded soil with a sureace layer of brown to strong brown ailty clay lom, small areas of greater slopes than the described range, and a few mall areak with heavy ailty oley loan to light silty chay gubeole.

The root penetration is poor becouse of high clay content. Gultivated crops are usual but some areas at a higher elovation are in forest. The soil is suited to a wide range of non-imrigated cropo, but mpecial management is needed to control erosion. Paddy rice ia grom on some of the lower areas.

Capability unit IIIe.
Paddy suitability group P3ac.

5.8 GAGEWA SERTES

The series, consisting of sloping to moderately steep, well drained, deep soils formed in old colluvial material weathered from granite, porphyry, and schist, occupies colluvial, and mountain footslopes, and is a member of the fine clayey family of Iypio Hapludults.

A typical profile follows:
All-- 0 to 7 cm brom to dark brown (7.5YR 4/4) gravelly ox cobbly clay loam; moderate, very fine to fine granular structure; friable, sticky, and plastic; many, fine to medium roots; clear, smooth boundary; pH 6.7.

Al2-7 to 22 cm : strong brown (7.5YR 5/6) cobbly clay loam; moderate, fine to medium granular structure; friable, sticky, and plastio; common, fine poxes; common, fine roots; clear, wavy boundary; pH 5.7.

A3--22 to 50 cm ; strong brown (7.5. YR 5/6) cobbly clay loam; weak, medium to coarse subangulax blocky and moderate, very fine to medium granulax structure; firm; common, medium pores; few, fine roots; clenz; wavy boundary; pll 6.0.

B21--50 to 75 cm ; yellowish med (5ya 4/8) very cobbly clay: strong, fine to mediun subangulear blocky and fine, angular blocky structure; fixm, very sticky, and plastic; sew, vexy fine pores; continuous reddich brown (5XR 4/4) day cutans: veny few, very fine roots; diffuse smooth boundary: pH 6.3.

B22-75 to 150 cm ; reddish brown ($5 \mathrm{YR} 4 / 4$) cobbly to stony clay; strong, medium to coarse subangalar blocky atructure; few, fine pores; common, medium and coarse manganese concretions; diffuse, wavy boundary: pH 6.6.

Where only slightly eroded, the surfacu layer is brown to dark brow, and where exoded, it is yellowish brown to dark yellowish brown. Its texture is grevelly clay loam to gravelly loam, but it is free of grevel in some places. The aursace soil ranges from 6 to 20 cm in thickness. The subsoil is yellowish red, reddish brown or strong brown very stony clay to clay loam. The C horizon is yellowish brown to brown very stony loamy soil or bouldery coarse sandy granitic material.

The Gaghwa, associated with the Jangweon and Seogto soils are more clayey and redder than them and lack the fragipans that distinguish the Jangweon.

The Gaghwa are medium to strongly acid, and moderately low to medium in organic matter content. The available moisture capacity is moderate to high, and permeability is moderately slow. Cation exchange capacity is low, and base saturation high.

These soils occupy about 2 percent of the surveyed area, and occur in small areas on mountain footslopes. Most of the aneas are cultivated for crops usually grow on upland soils, but about 30 percent is Korean pine. Chestnut and persimmon also grow in some places.

5.8.1 Gagha-Jangweon Complex, 7 to 15 Percent Slopes (GJC)
 This complex of soils ia on sloping, dissected mountaix footslopes. About 80 percent of the mapping unit is Gaghw, and 20 percent, Jangweon soils. the proriles are aimilar to those described for their respective series, but included are some ereas with a Blightly gravelly or gravel-free surface layer, a few mall areas of leas or greater slopes than the described range, and small axeas of very etony soils. Infiltration is slow, and runoff is medium to rapid. The root zone is relatively thick, and the bilth, poor.
 The soils of this complex occur as small axeas, and are on the mountain footslopes throughout the Guns. Baxley, wheat, soybean, red pepper, potato, and similex crops are suited. About 70 peroent of the Gaghwe iss cultivated, and the rest in wooded. The Jangweon soil is mostly in grassland. The main managenent problems are erosion control and atone removal from the suxface layer.
 ```Capability unit IIKe. \\ Paddy suitability group P3ac.```
 5.8.2 Gaghwa-Jangweon Complea, 7 to 15 Percent Slopes, Eroded (ajc2)
 These soils, occurring in sloping, dissected mountain footslopes, consist of about 85 percent Gaghwa and 15 percent Jangweon soils. Profiles are similar to the ones described for the respective series except that these soils have a generally eroded surface layer. With these soils are included mall areas of shallow and deep gullies, a few small areas of less or greater slopes than the described range, and amall areas of very cobbly to stony soils.

The soils are well suibed to cultivation, such as soybean, red bean, sorghum, red pepper and other deep rooted crops with some axeas in forest. The main management problem is erosion control.

Capability unit ITIe.
Peddy suitability group P3ac.

5.8.3 Gemwa-Janrweon Complex, 15 to 30 Percent Slopes (GJD)

These soils are in moderately steep. dissected monntain footsiopes. about 80 perm oent of this mapping unit is Gaghwa, and 20 percent Jangweon soils. The profiles are similar to those described for their respective series, but inoluded, are: many areas with a gravel-free loam surface layer, small areas of greater slopes than the described range, and a few small areas of very cobbly to stony soils.

These soils are suited to cultivation, such as barley, wheat, soybean, potato, and similar crops. About 70 percent of the unit is cultivated, and the rest in in forest on grassland. The main management problem is exosion control and the removal of gravels from the surface.

Capability unit TVe。
Paddy suitability group P4sc.

5.8.4 Gaqhwa-Jangeon Complex, 25 to 30 Percent Slopes, Eroded (GJD2)

About 75 percent of the unit is Gaghwa and 25 percent Jangweon soils. The proriles are as described for their respective sexies, but include many areas of a very cobbly
and atony soll. sone gullied aweas, a fow small areas of greator blopes than the deacrubod range, and amall areas ox Seogto moils.

Most areas were only recontly cleared and now axe cultrated to wheat and noybean. Chestmut and peraimon trees grow in aome placea and about 30 peroent is atill in pine forest. These nolls ape mithable for growing such crops as soybeang barley. wheat, sorghum, red pegper, potato and cotton. The main management problem is orosion control and the removal of gtones sxom the aurface.

```
Capability unit IVo.
```

Paddy guitability grow P4ac.

5.9 GANGDONG SERCES

The aerion conaista of neaxly level, poorly drained, deep soila formed in alluvium, These moils ocourxing in mall valleys and alluwial plaina, are members of the fine loany over sandy nonacid Comily of Fluventic Haplacauepts.

A typheal profile follows
Apl-o to 12 cm ; live gray ($5 \times 5 / 2$) loam wi.th many, fine to medium prominent yellowish brown (101R 5/4) mottlea: massive silighty sticky, and alightly plastic: fow, fino yellow mica, common, tine roota abrupt, smooth boundaxy: pH 5.6 .
 coanse, prominent mottles of reddish brown ($5 \mathrm{MR} 4 / 4$): mascive: slightly sticky and slightly plastic: few, tine pores; fes, fine roots; abrupt, smooth boundary; pit 5.7 .

B2lg-24 to 37 cmg dam gray ($5 \mathrm{Y} 4 / \mathrm{L}$) Loan with x ew medium distinct mottles of oliwe brom (2.5 Y 4/4) weak, coarse primatic structure; sbicky and plastic; few, fine pores: diffuse, mooth boundary; pHI 5.7.

B22g-37 to 90 cm : Very dark gray (5Y 3/2) loam masaive: sticky and plastic: ground water table occurs 90 cm below the surface; nome partially decompased pieces of wood; pH 5.7.

Cg-90 to 190 onf very dawk gray ($543 / 2$) loany sand: massive; no mottles: meny, pertially decomposed pieces of wood: pll 6.3.

The A horizons are groyish brown to daxk grayigh brown or gray to dark gray ailt loan, loam, or sandy low with mothles of olive brown, strong brown ox yellowish brown. The subsot i is gray, dark grey, or very dark gray clay loam, allby clay loam or ailt loam.

It in aometines gtatitied with tine andy lom, and usually contains some gravela. The C horizon is dark gray loamy gand or sand. It begins at depth of 50 to $100 \mathrm{om}_{\text {g }}$ and sometimes extexads to a depth of 150 cm .

The Gangdong occur with the Sugye, Sindeb, and Subug golls. The last mentioned heve sandy loam or coarse loem upper horizons. The Suecye leok the very aandy lower
horizons, and the sindab are aandy throughout the profile
The Gangdong are slightly to strongly acid, and medium in natural ferthity. Permeability is moderate in the upper horizons, rapid in the lower horizons, and available moisture capacity is very hich. Cation exchange capacity is medium and base saturation high.

These soila ocoupy very amell tracts of the area and are generally in paddy.

5.9 .1

Gangdone Loam, 0 to 2 Percent slopes (cd)

This is a deep, poorly drained soil in the low lying areas of the alluwial plains of the small to medium sized streame. The profile le generally gimilar to the one described for the series, and includes some areas of gently gloping soid, and small areas with loam or sandy loam textures throughout.

The very high ground weter table, shallow root zone and poor drainage, limit productivity. Paddy rice ia best suited and is the only oultivated crop.

Capability unit IIv.
Paddy euitability group P2b.

5.10 GEUGRAG SERTES

The Geugrag sexies consisting of nearly level to gently aloping; deep, imperfectly drained soils formed in alluwium on low tersaces, is a member of the fine clayey family of Aeric Ochraqualfs.

A typical profile follows:
Ap1-0 to 10 cm gray ($5 \mathrm{y} 5 / \mathrm{I}$) silt loam with comon, fine, distinct mottles of brom to dark brom (7.5YR 4/4); weak, fine to medium granular struoture; friables sticky, and plastic; meny, fine roote; abrupt, smooth boundary: pR 5.5.

Ap2-10 to 21 cm; dark gray ($5 \times 4 / 1$) ailt loam with commong fine to medium prominent mothles of reddish brow ($5 \mathrm{KR} 4 / 4$): weak, mediun subengular blocky structure; friable, stioky, and plastic; patchy thin clay cutans; common, fine roots; abrupt, smooth boundary; pH. 6.5 .

BI-21 to $45 \mathrm{~cm} ;$ grayish brown (2.5Y 5/2) silt loam; moderate, coarse prismatic atructure; firm, sticky, and plastic; moderately thick clay cutans; common, medium, distinct, soft dark brom ($7.5 \mathrm{YR} 3 / 2$) concretion; few, fine pores: very few, fine roots; abrupt, smooth boundary: pll 7.0 .
B21-45 to 82 cm ; mottled yellowish brown (10YR 5/6) and Iight gray (5Y T/L) silty clay loam; moderate, coarse prismatio gtructure; fixm, very sticky, and plastic; moderately thick clay cutans; common, medium, hard black (N2/) concretions; very few, fine pores; clear, smooth boundary; pH 7.0 .

B22--82 to 117 cm ; atrong brown ($7.5 \mathrm{xR} 5 / 6$) si1ty clay loamg weak, coaxse primatic, breaking to medium subengular blocky atruoture friable, very sticky and very plastic; patchy moderately thick clay cutans; abrupty smooth boundaxy; pH 6.8 .

The Ap horizon ranges from 12 to 18 om in thickness, and is gray, dark gray, or darle grayish brown ailt loan or milty clay with mothles of yellowish red, atrong brown, brown, or dark brown. The B horizon is gray, grayish brown in the upper part and strong brown, yellowish brown, or dark yellowish brown mottled with gray coloure in the lower part. It is heevy allty clay loan or silty clay. Clay cutans axe common throughout the profile.

The Geugrag, occurxing with the Honan and Fwadong soils, differ from the Honam in being less gray, in having more mottles, and occurring on a slightly higher elevation then the lattex. These soils are more gray, and occur too on a nomewhet lower positions than the Hwadong.

The Geugrag are mediun to slighty acid, high to moderately high in naturel fertility, and medium in organic matter, Permeability is slow, and available noisture capacity high. Cation exchange capacity, and base saturation are high.

The soile cover about 5 percent of the aurveyed area, and are in rice paddy, with about half planted to barley or wheat for a winter crop.

5.11 GWAMGJU sertes

The Gwangju series, consisting of gently sloping to aloping, very deep, well drained soils developed in ailty material over old alluvium, occurs on terraces mainy in Pyeongdoag Hyeon of the southwestera part of Gwangen Gun, and is a member of the fine clayey family of Typic Hapludults.

A typical profile follows:
A11--0 to 5 cm ; brown to dark brown (7.5YR 4/4) bilty cley loam moderate, very fine to fine grenular structure; very friable, slightly sticky, and alightly plastic; many xoots; clear, smooth boundary: pH 4.5.

A12-5 to 15 cm ; brown to dark brown (7.5XR 4/4) ailty clay loan: weak, fine to medium subangular blocky breaking to moderate, fine granmlar structure; friable, stieky, and plastio: few, very tine pores; many roots; clear, smooth boundary: pil 4.5.

B21t- -15 to 55 cm ; yellowish red ($5 \mathrm{yR} 4 / 6$) Bilty clay: modexate, fine to medium subangular blocky structure; slightly fixm, stioky, and plastic; common, very fine to tine pores; patchy, thin clay cutans; few roots; gradual. wavy boundaxy: pH 5.0.

B22t- -55 to 69 cm ; yellowish xed ($5 \mathrm{XR} 4 / 8$) silty clay; moderate, tine to coarse aubangular blocky atructure; slightly firm, sticky, and plastio; common, very fine pores; few roots; clear, wavy boundary; pH 5.0.

B23t-69 to 115 cm y yellowish xed (5 सR 4/6 to 5/6) ailty clay loam; strong, fine to coarse angular and subangular blocky structure; firm, very sticky, and very plastic; very few pores; continuous thin clay cutans; very few roots; gradual, wavy boundary; pH 5.0 .

B36-115 to 170 cm red ($2.5 \mathrm{TR} 4 / 8$) to yellowimh red ($5 \mathrm{MR} 5 / 8$) ailty clay loan; moderate, very coarse prismatic atructure breaking to moderate angular and gubangular blocky structure; very fixm, very aticky, and very plastio; continuous Rine clay cutans; very few pores; gredual, wavy boundary; pH 4.5.

B3t-115 to 170 cm: red (2.5 YR 4/8) to yellowish red (5 YR 4/8) silty olay loan; moderate, very coarge prismatic structure breaking to moderate anguler and subangular blocky structure: very firm, very sticky, and very plastic, continuous rine clay outans; very few pores; gradual, wavy boundary; pH 4.5 .

C-170t cn; browish yellow (10xk 6/6) anl ty clay loam; massive; firm, very eticky, and yexy plastic\% comon. continuous clay cutans; pH 4.5 .

Where not eroded, the surface layex is generally brown to daxk brown ailty clay loam or silty clay. The B2 horizons range from yellowish red to yellowish brow or strong brown in colowx, and from silty clay to silty clay loan in texture, The B3 horizons are yellowish red, red, or dark red allty clay loam, silty clay, or clay,

The Gwangju occur with the Bancheon and Changpyeong soils, and differ from the latter in having a surface layer devaloped in a gilty matexial. The Gwangur are aimilar to the Jingog, but the latter were formed in silty material ovex residum derived from granite.

Thege aoils are atrongly to very atrongly aoid, and low both in natural fertility and organic metter. Pemeability is slow, and available moisture capacity high. Cation exchange capacity is medium to high, and base aaturation low. Most areas have been oleared for cultivation.

5.11.1 Gwangju-Bancheon Complex, 2 to 7 Peroent Slopes (GBB)

These soils are in gently aloping: alightly dissected terxaces or alluvial fans ohefly in the northwestern part of Gwangsan Gun. The complex conaista of about 70 percent Cwangju and 30 percent Bencheon soils. The profiles are aimilar to those decribed for their reapective series and include a few small eroded area, and mall areas with olay subsoils.

These soila, sbicky and plastio when wet, dry wery hard and commony produce wide cracks. Tilth is generally fair and infiltration is very alow. Mont of the areas are cultivated, and under good management the nolls are well auited to wide range of crops. But, erosion is a problem, if cropping is regular.

Capebility unit ITe.
Paddy mitability group P2ac.

5.11.2 Gwangju-Bancheon Complex, 7 to 15 Percent Slopes, Froded (GBC2)

These soils occur on sloping, slightly to moderately discected terraces, fans and footslopes, mainly in the northwest of Gwangsan Gun. About 80 percent of the complex has a profile like the Gwangju, and 20 percent like the Bancheon aeries. Small areas of greater alope than the described range, some areas of a only blightly eroded soil, and a few small axeas of soils with heavy silty clay to clay B horizons; are included.

Cultivation to nonirrigated orops is guitable and general. The slope and slow infiltration make the hasard of turther crosion severe.

Capability unit IIIe.
Paddy suitability group P3ac.

5.12 GWAMGSAN SERTES

The Gwangan seriea conaists of sloping to moderately steep, well drained, very deep soils formed in residum weathered from granite, granite gneiss, porphyry, and sometimes achist. These soils occupy dissectod bedrock pediplains. Bedrook depth is from 2 to 7 m from the surface. The aeries is a member of the fine clayey family or Iypic Hapludults.

A bypical profile follows:
Ap-o to $10 \mathrm{~cm} ;$ reddish yellow ($7.5 \mathrm{YR} 6 / 8$) ailty clay loam; weak, fine to mediun subangular blocky and moderate, fine to mediun granular atruoture; friable, slightly sticky, and plastio; few, very fine pores; many, fine roots; olear, smooth boundary; pE 4.9.

B21t- -10 to 22 cm ; yellowish red ($5 \mathrm{MR} \mathrm{4/8)}$) nilty olay loam; moderate, fine to medium subangular blocky and moderate, fine granulax structure: firm, sticky, and plastic; thin, clay cutans; few, vexy fine pores; common, fine roots: some quartz; abrupt, amooth boundary; pH 5.0.

B22t-22 to 54 cm ; dark red ($2.5 \mathrm{YR} 3 / 6$) clay; strong; fine to medium aubangulax blocky gtruoture; very firm, very sticky, and very plastic; thin, clay cutans; few, fine pores; few, fine roots; some quartz; abrupt, smooth boundary: pH 4.9.

B23t--54 to $93 \mathrm{~cm} ;$ red ($2.5 \mathrm{xa} 4 / 6$) clay; moderate, medium to coarse subangulax blocky structure; firm, sticky, and plastic; few, fine pores; thin, olay cutans; very few, fine roots; clear, amooth bomary: pH 4.9.

B3t-93 to 150 cm ; yellowish red ($5 \mathrm{IR} 4 / 8$) silty clay; moderate, fine to medium subangular blocky structure; firm, sticky, and plastic; thick, clay cutans; many, fine yellow and white mica; pH 4.9.

The A horizon is reddish yellow, yellowish red, yellowish brown, or strong brown silty clay loam to silty clay. The upper B2lt horizon is red to dark red or
yellowish red silby clay loam, silty clay, on olay, and the B22t and B23t horizons are yellowish red to red clay or silty clay. The C horizon, not deacribed in the profile, is saprolite of silt loan, silty clay loan, sandy loan, or sandy clay loam. It begins at depth of about 150 ch and extends to below 200 cm . Coarse quaxtia sands and fine gravels may be present.

The Gwangsan, associated with the Jeonnam and Changpyeong, axe finer textured, have a darker and redder subsoil than the Jeomam and differ from the Changpyeong in parent material.

The Gwangsan soils are medium to strongly acid, moderate to moderately low in natural fertility and medium to moderately low in organic matter. Permeability is slow, and available water capacity high to moderate. Cation exchange capacity is medium to high and base asturation low.

The Gwangsan soils cover about 2 percent of the area, mainly in the central part. Vegetation consists chiefly of pines with an understoxy of azalea, but alder, acacia, or grasses, were recently planted to protect the soils. Most areas have been cleared for cultivation, but about 30 percent is atill forested.

5.12.1 Gwangsan-Jingog Complex, 7 to 15 Percent Slopes, Eroded (GGC2)

These soils axe on low hills of old bedrock pediplains. The Jingog are mall areas on the less sloping ridge tops and the Gwangsan are on the slopes between the Jingog soils and the alluvial plain. The Gwangsen cover about 80 percent of the area, and the Jingog, the remaining 20 percent. Most areas of the latter have slope gradients of less than the described range and are not as eroded as are the Gwangsan. These soils have profiles that are similar to the one described in the series.

Because of lesser slope and erosion the Jingog have fewer problems, in obtaining a high yield level and continuing a high production, than the more sloping and eroded Gwangsan soils. Wheat, barley, soxghum, upland rioe, and millet, are suitable and cultivated. This iss 70 percent of the area, with the rest being wooded on in grassland. A severe managemeat problem is exosion control.

Capability unit IITe.
Paddy suitability group P3ac.
5.12.2 Gwangsan-Jincos Complex, 7 to 15 Percent slopes, Severely Eroded (GCC3)

The Jingog soils, about 20 percent of this unit area, ocoupy small axeas on ridge tops that have slope gradients of less than the described range. The Gwangsan soils are distributed on the slopes between the ridge tops and alluvial plains and occupy the remaining 80 percent. The Jingog are not so groded as the Gwangsen. The aurface layer of these soils is very shallow, and the subsoil is exposed in most places. Shallow gulies are comon throughout the unit area. Othexwige, profiles are similar to those described for their respective series.

The complex is suited to cultivation, but 30 percent is still wooded or in grassland. Brosion is severe hazard to management if cropping is regular.

These soils are on low hills of the bedrook pediplain. The Jingog are mall areas on the less sloping ridge tops and the Gwengsen axe on the moderately steep slopes from the ridge tops to the lower alluvial plain. The Cwangsan solle, the most extengive, cover about 80 percent of the area, and the Jingog the remaining 20 percent These soils have profiles gimilex to those described for the geries.

Beoause of theix leaser slope and erosion, the Jingog have fewer and less bevere problems in use. At present the soll is in poor pine forest, although with proper attention aome crops may be profitably grown, and hay and pasture, with liming and fertilization will give high yields.

Gapability unit TVe。
Paddy suitability group P4ac.
5.12.4 Guangean-Jingog Complex, 15 to 30 Pexcent Slopes, Severely Froded (CCD3)

This complex consiste of gullies (5 percent), Jingog soils (20 percent) and Gwangean soils (75 percent). The Jingog soila occupy ridge tope and have slope gradiants less than the described range while the Cwangson aoils oocupy the slopes between the ridge tops and the alluvial plains. In most pleces the subsoil is exposed, otherwise, the profiles are as described for their series. Tncluded in this unit are small areas of greater slopes than the described range.

These soila are poorly suited to cultivation beceuse of the ateep alopes and severe erosion hazard. Most areas are in poor forest.

Capebility unit IVe.
Paddy suitability group P4ao.

5.13 HABIN SERTES

The Habin series consists of moderately steep to steep, shallow, somewhat exoessively drained soils developed in residum derived from red shale. These soils occupy strongly dissected mountainous areas. Hard bedrock renges from 30 to $50 \mathrm{~cm}_{\text {g }}$ from the suxface. This series is a member of the coarse loany family of tithic Futrochrepts.

A typical profile follows:

[^0]Where eroded, the surface layer is usually weak red to reddich brown, or dusky red, gravelly to cobbly loam, silt loan, or clay loam, Hard bedroek is erposed at the surface in some places, and the 0 horizon is very gravelly to cobbly olay lom to loam.

The Habin occurxing with the Jeongja soils, are also shollow and somewhat redaish brown in colour and developed in ture material. They both difter from the Samgag in. underlying materials and greater gravel content and axe similar to the Mrdeung in bexture and depth. But, they are redder in colowe, have different underlying rocks, and are in lower topographic positions.

The Habin soils are strongly acid, low in natural fertility and low in organic matter content. Permeability is rapid in upper horizons but the underlying shale is not permeable, and available moisture capacity is very low. Cation exohange capacity is low, and base saturation medium to high.

The Habin soils ocoupy small tracts of the surveyed area, and occur ohjefly in the hilly areas of the western part of Samdo Myeon, Gwangsen Gun. Most of the areas are in pine forest.

5.13.1 Habin Rocky Loam, 15 to 30 Percent Slopes, Eroded (HbD2)

About 35 percent of the area of this soil is rock outcrops. In most other areas the profile is similar to that described fox the series, but here the subsoil is exposed in most places and the originel loan surface layer was washed away by the exosion. With this soil are included: some axeas of less or greater slopes than the described renge, small axeas of Jeongja soils, a few small axeas of ony slightly eroded soil with a dark reddish brown surface layer, and with a gravelly to cobbly clay loam surface layer.

The slope and thin root zone limit productivity, but the coil is suitable to woodland, and a few small aloping areas can be cultivated to shallow rooted orops. Some grazing may be obtained from thia soil if well managed. At present poor pine forest predominates. The main managenent concern is exosion control.

Capability unit VIe.

5.13.2 Habin Rocky Loam, 30 to 60 Percent Slopes, Froded (Ebre)

The original surface layer of this soil has been eroded, the aubsoil is exposed in most places, and between 30 to 40 percent is rock outcrops. The remainder of the mapped areas generally have a profile similar to that described for the series. Included with this soil are many areas with a gravelly to cobbly clay loam gurface layer, and small areas of Jeongja soils.

The areas covered by this soil are small, and mostly are in poor pine forest. It is only suitable for woodland and the rain managenent problem is erosion control.

Gapability unit VIe.

5.14 HAGSAM SERTES

The Hagsan in nearly level to gently sloping, moderately well drained and deep soils on alluvial plains, footslopes and alluvial fans, chiefly near the Yeongsen river and its tributaries. This series is a member of the fine loany over sandy family of Aquic Fluventic mutrochrepts.

A typical profile follows:
Apl-0 to 12 cm ; dark gray ($5 \mathrm{~K} 4 / 1$) loam; massive; slightly sticky and plastic; common, fine roots; clear, amooth boundaxy: pHE 5.8.

Ap2--12 to 19 cm gray ($5 \mathrm{X} 5 / 1$) loam with comnon, fine, distinot dark grayish brown (10yR 4/2) mottles; weak, medium to fine, subangular blocky; few, fine rice roots; conmon, fine pores; few, fine round gravel (6.0 percent); slightly aticky and alightly plestic; abrupt, smooth boundary; pH 5.6.

B21-18 to 25 cm ; yellowish brown (10VR 5/8) clay loam with common, fine distinct red ($2.5 \mathrm{TR} 4 / 8$) and few, fine, distinct olive gray (5Y 5/2) mottles; weak, coarse prismatio breaking to fine and medium, weak subengular blocky; crushed yellowish browa to daxk yellowish brown (10yR 5/6-4/4) firm, slightly sticky, and plastic; few, fine roots; common, fine pores; clear: smooth boundary; pH 5.8.

B3--25 to 57 cm ; dark yellowish brown (10yR 4/4) sandy clay loam with common, medium faint dark grayish brow (10YR 4/2) mottles; weak, coarse prismatic breaking to weak, medium and coarse subangular blocky: firm, sticky, and plastic; continuous, thin, dark gray (10YR $4 / 1$) coatings; very few, fine roots; few, fine pores; cleax, smooth boundary.

IIC-57 to 103 cm ; dark grayish brown (10YR 4/2) loamy coarse aend; few, fine faint brown to dark brown mottles; single grajin round gravel (10\%); gradual, smooth boundary; pH 6.5.

The Ap horizon is grayish brown, dark grayish brown, gray or daxk gray silt loom to loam. The B2 horizon is grayish brown or gray, and is mottled with strong brown, yellowish brown or yellowish red. Its texture includes silt loam, silty clay loan or fine sandy loam, and is occasionally stratified with light clay loam. The lower substratum is brown to dark brown or grayish brown loany sand, and contains gravel in some places.

The soils of this sexies occur with the Bonryeng and Hwangyong but are less drained and more mottled in the upper horizons than the former, and do not have high content of gravel like the Hwangyong. They are strongly acid, moderate in natural fortility, and medium in content of organic matter. Permeability is moderate in the upper part, rapid in the lower part, and available moisture capacity is moderate to low. Cation exchange capacity is mediun, and base saturation high.

Rice paddy ia general with a few small areas cultivated to other orops.

5.14.1 Hagsan Loam, 0 to 2 Percent Slopes (Hs)

The profile resembles that described for the sexies, but in many places, has a gillt loam surface layer. With this soil are included small areas of the Hwerygong and Bonryang.

The surface layer is in good tilth, the root zone is thick, and infiltration is rapid.

All of the areas are in paddy, are suited to a limited number of crops, and could be used intensively if drainage is provided. About half grow paddy rice during the sunmer and berley or wheat in the winter.

Capability unit I.
Paddy suitability group P2c.
5.14.2 Hagsen Loam, 2 to 7 Percent Slopes (HsB)

These soils are on footslopes and fans with dominant slopes of less than 4 percent. Most areas have a profile similar to thet described for the series, but in some areas this soil has a silt loan suxface layer. With this soil are included small areas of better dxained, and very gravelly soils.

The surface layer is easy to till and the root zone is thick. Infiltration is moderate. The Hagsan soil is suited to wide range of crops if well managed. Most of the areas are cultivated to barley or wheat in the winter and paddy rice during the summer. Some areas near towns axe used for growing vegetable crops.

Capability unit IIe.
Paddy suitability group P3ac.

5.15 HOAYE SERTES

The Hogye series consistan of nearly level to sloping, deep, well drained soils formed in alluvium, These soils, occupying alluvial fans and enall valleys chiefly in mountainous areas, belong to the loamy skelotal family of Fluventic Hapludolls.

A bypical profile follows:
Ap-0 to $11 \mathrm{~cm} ;$ very daxk grayish brown (10yR 3/2) gravelly loam; moderate, fine to medium granular structure; friable, sticky, and plastic; clear, smooth boundaxy: pH 5.2.

A -11 to 26 cm ; very dark grayish brown (10yR 3/2) gravelly silt loam; weak, medium to coerse subangular blocky and moderate, fine to medium gramiar structure: friable, sticky, and plastic; clear, smooth boundary; pHI 5.8.
c-26 to $60 \mathrm{~cm} ;$ brown to dark brown (7.5YR 4/4) very gravelly loam; weak, medium to coarse subangulax blocky structure: firm, sticky, and plastic; pHI 6.3.

The A horigon is dark brown or vaxy dark grayich brown, but it in dark grayish brown to vexy dark gray in paddy soils. Ita texture is alightly gravelly to gravelly silt loam, loam, or fine sandy loam. It ranges in thickness from 25 to 60 om . The C horizon is brom to dark brown or dark yellowish brown very gravelly loam, or very gravelly sandy loam.

The Hogye soils, differing from the Seogto soils chiefly in having darker colourb in the surface layer, ocour in alluvial fans rather than in mountain footalopes. They also differ from the Hagsan soils in having much gravel and darker colours.

The Hogye ace medium to strongly acid, moderate in natural fertility, and high in organie matter content. Permeability is moderate to rapid and available moisture capacity is low to medium. Cation exchange capacity is medium and base aetraration high.

They occur chierly on mall velleys in mountainous areas of the Guns, and are cultivated for many kinds of crops including rice.

5.15.1 Hogye Gravelly Loam, 0 to 2 Percent Slopes (Hg)

Most areas have a profile similar to that described for the seriea. Tncluded are many axeas with a silt loam surface layer, and small axeas of sendy loam suriace soil.

The moil is well suited to cultivated crops other than paddy rice. Most areas are cropped to barley, wheat, cotton, soybean, and vegetables, with some areas in paddy rice. The mein management problem is droughtiness, due to the limited available moisture capacity. This soil is easier to till when gravel is removed erom the surface.

Capability unit XIs.
Paddy suitability group P3bo.

5.15.2 Hogye Gravelly Loam, 2 to 7 Percent Slopes (HpB)

The profile generally is as described for the series, but gravels have been removed from the plough layer in many parts for easiex cultivation. Some areas of allt lom or sandy loam surface layer, are also included.

The mapping mitt is the laxgest one of the Hogye series, with mort areas being cultivated. The soil is well suited to a wide range of crops if well managed, and may be cultivated to paddy rice in summer and barley or wheat in winter. Droughtiness ia the main probelm. The removal of gravel from the plough layer is the main management concern.

Capability wait IIs.
Paddy suitability group P4abc.
5.15.3 Hogye Cravelly Loam, 7 to 15 Percent Slopes (HgC)

The profile in most axeas resembles that described for the series. Maxy parts are gravel free in the surface layer because of the industry of farmers. With thit soil are included a few areas of clayey soil recently washed from adjacent uplands. and small axeas with a sandy loam surface layex.

The soil of this unit ine suited, and cultivated to a wide range of crope. Paddy rice is grown in many areas after haxvest of winter crops, such as wheat or berley. Droughtiness and suxface gravel removal are the principal menagement problems. Frosion io only a slight management hazard.

Capability unit TITe.
Paddy suitability group P4abo.

5.16 HONAM SBrtes

The Honan sexies, consisting of nearly level to gently sloping, deep, poorly drained soils formed in alluvium on alluvial plains, is a member of the fine clayey family of Typic Ochraqualfs.

A typical proxile followss
Apl-0 to 15 cm ; gray ($5 \times 5 / 1$) silty clay loan with many, fine to medium distinct mottles of brow to dark brown ($7.5 \mathrm{YR} 4 / 4$) : massive; sticky and plastic; many, fine roots: clear, smooth boundary: pH 5.7 .

Ap2-15 to 32 cm gray ($5 \Psi 5 / 1$) silty clay with many, tine to medium distinct motties of strong brown ($7.5 \mathrm{MR} 5 / 8$) and dark reddish brom ($5 \mathrm{PR} 3 / 4$); weak, mediun subangular blocky structure; stioky and plastic; patchy moderately thick cutans; few, fine pores; common, fine roots; abrupt, smooth boundaxy: pH 6.8 .

Blir--32 to 50 cm : olive gray ($5 \times 5 / 2$) silty clay loam with many, medium distinct mottles of yellowish brown (10ye 5/6): moderate, coarse, prismatic struoture; firm, very sticky, and very plastio; moderately thick clay outans; Lew, fine roote; clear, smooth boundaxy: pH 6.6 .
 mediun distinct mottles of strong brown (7.5 YR 5/8) : moderateg coarse to very coarse, prismatic structure; firm, very sticky, and very plastio; moderately thick clay cutans; cleax, emooth boundery: pH 6.6.

B22ir- -85 to 112 cm y very daxk gray ($543 / 1$) silty olay with very faint olive (5Y 5/4) mottles; massive; firm; cleax, smooth boundary; pH 5.6.

The Ap horigon is 15 to 18 cn thick, and is gray to daxk grayish brown silty clay loam, or clay loan with meny mottles of strong brown or yellowish red. The B2 horizon is gray, olive gray, or grayish brow sility clay loom or gilty clay with many mottles of yellowish brown and strong brown.

The Honam soila are associated with the Geugrag although the latter are less gray In colour, and occur on higher elevated positions than the former.

These soils are neutral to medium acid, high in natural fertility, and medium in organic matter. Permeability ia slow, and available moisture capacity high. Cation exchange capacity and base saturation are high.

The Honam are most extensive in the Guns, and all of the areas are in rice paddy. Some better drained areas of these soils are cultivated to barley during the winter.

5.16.1 Honam-Geugrag Complex, 0 to 2 Percent Slopes (HG)

These soils, on level to nearly level broad alluvial plains, consist of about 80 percent Honam and 20 percent Geugrag. The profiles are similar to those described for their respective series. With the soils of this complex axe included some axeas of a soil with fine sandy loam or silt loam surface layer.

Single cropping of paddy rice, because of poor drainage, is best suited. Most of the areas are in rice paddy, and some of the better drained parts in winter crops, such as barley. The installation of a well designed drainage system would allow a greater variety of crops.

Gapability unit ITIw.
Peddy auitability group PI.

5.16.2 Honam-Geugras Complex, 2 to 7 Percent Slopes (HGB)

The soils oocur on gently sloping broad alluvial plains. The slope ranges dominantly from 2 to 4 percent. About 60 percent is Honam soil and the rest is Geugrag The profiles are similar to those described for their respective series.

Tilth generally is poor because of the high clay content in the surface layer. The root zone is thick, and runofe, very slow. The hazard of erosion is alight.

The soils are in, and best suited to, paday rice, but if drainage were provided, could be used intensively for many crops.

Capability unit ITW.
Paddy suitability group P2a.
5.17 HWABONG SERTES

The Hwabong series, consisting of nearly level, excessively drained, deep soils that formed in recent alluvium, ocoupies flood plains chiefly along the Yeongsan river and its tributaxies, and is a member of the sandy family of Typic Udipsamments.

A typical profile follows:
Ap-o to $19 \mathrm{~cm} ;$ yellowish brown (10xR 5/4-5/6) loamy aand; single grain; very friable; common, fine roots; gradual, smooth boundary: pH 5.2 .

C1-19 to $38 \mathrm{~cm} ;$ yellowish brown (10YR 5/4) sandy loam; single grain; very friable; few, fine roots; abrupt, smooth boundery; pHI 5.5 .

```
C2-38 to 56 cn: yellowish brown (10VR 5/6) Ioany sand;
single grain; very friable; few, fine roots; abrupt, smooth
boundary; pH 6.O.
C3--56 to 87 cm; strong brown (7.5VR 5/6) fine sandy loam;
single grain; very friable; very few, fine roots; abrupt,
smooth boundary: pHE 6.3.
c-87 to 120 om: yellowish brow (10yR 5/8) very friable
sand.
```

The solls axe yellowish brown, browng or strong brown coarse loamy sand or sand. Some thin strata of aandy loam and gravelly sand are present in meny profiles.

The Iwabong axe usually with the Boncyang soils that have gendy loem upper horizons over coarse sand lower horizons, very similar to the lower protile of the Hwabong.

The Hwabong, strongly to very strongly acid, axe low both in natural fextility and oxgenic matter. Permeability is very rapid, and available moisture capacity, very Low. Cation exchange capacity is low, and bese saturetion vaxiable but mainly high.

These soils are not extensive in the Guns, and most of the areas are in cultivated crops, such as rye, wheat, peamts, and other vegetables. Some axeas axe used as a nursery to grow seeding trees, such as poplax.

5.17.1 Hwabong Loamy Sand, 0 to 2 Percent Slopes (Hv)

Most areas of this soil have a profile similax to that described for the series.
This soil is easy to work with a moderately thick root zone, but it is subject to overflow and drought. Paddy rice is not suiteble but some hortioultural crops are. Most areas axe cultivated, with some used for a mursery to prow seeding trees, such as poplar. Main management concerns are flood control, and the leaching of plant nutrients.

Gapability unit IVs.
paddy suitability group P4bo.

5.18 ENADONG SERTES

The Hwadong seriea, consisting of neaxly level to gently aloping, deep, moderately well drained soils developed in old alluvium, occurs in slighty dissected low berraces and is a member of the fine clayey family of Aquic Hapludalfs.

A typical profile follows:
Apl-0 to 10 cm, grayish brown (2.5y 5/2) silt loam with few, fine prominent mottlea of strong brown ($7.5 \mathrm{yt} 5 / 6$): weak, coarse subengulax blocky breaking to moderate, fine to medium grenulan structure; friable, stioky and plestio; clear: smooth boundeny; pH 5.7.

Ap2-10 to 21 om; grayish brown (2.5yR 5/2) silty clay loam with common, fine prominent mottles of strong brown ($7.5 \mathrm{vR} \cdot 5 / 6$); weak, coarse subangular blocky brealing to moderate, fine to medium granulare atructure; frieble, aticky, and plastie: abrupt, smooth boundery: pH 5.9 .

B21t-21 to $50 \mathrm{~cm} ;$ mottled brown to dark brown ($7.5 \mathrm{MR} 4 / 2$) strong brown ($7.5 \mathrm{xR} 5 / 6$), brown to dark brown (10yR 4/3), and yellowish red (5YR 5/6) silty clay loam; strong, medium prismatic structure; very tirm, very sticky, and very plastic; thick clay cutans; few, fine roots; common, fine soft manganese concretions; clear, smooth boundary; pH 6.6 .

B22t-50 to 120 cm: reddish brow (5 IR 4/4) ailty clay; weak coarse prismatic breaking to weak, very coarse prismatio structure; very firm, very sticky, and very plastic: thin gray (10YR 5/1) clay cutans; few, granite and porphyry gravel; clear, smooth boundary; pH 6.0.

B23t--110 to 160 cm reddish brown ($5 \mathrm{YR} 4 / 4$) sandy clay loam; weak, coarse prismatic atructure: with thin gray (10yR 5/1) olay cutans; very fixm; very sticky, and very plastic; few granite and porphyry gravel; clear, smooth boundary; pH 6.2.

The Ap horizons range from 12 to 24 om in thickness, and are commonly gray, grayish brown, or dark grayish brown in paddy. Texture rangea from ailt loom to ajlty olay loan or silty clay. The B2 horizons are mottled, yellowish brow, yellowish red, brown, dark brow, heary silty clay loam, silty clay, or sandy clay loam. The C horizon is yery deep, and dominantly silty clay loang silty clay or silt loam, with a wide range in colour and mottling.

The Hwadong soils, in the general areas of the Bancheon and Geugrag soils, are found in lower physiographic positions than the Bancheon. They axe neutral to medium acid, moderate in natural fertility, and mediun in organic matter content. Permeability is slow, and available moisture capacity high. Cation exchange capacity is high to mediun, and base saturation high. These soils are not extensive and most are in rice paddy.

5.18.1 Hwadone Silty Clay Loom, 0 to 2 Percent Slopes (Hd)

The profile is generally similar to that described for the series, but included are small axeas of Honam and Geugrag soils.

This soil has a moderately thick root zone, and generally is in good tilth. Brosion is not a management problem and the soil is best suited to cultivation. Paddy is general, being used for growing rice in summer and barley or wheat in winter.

Capability unit I.
Paddy suitability group P2o.
5.18 .2

Hwadong Silty Clay Loem, 2 to 7 Pexcent Slopes' (HdB)
Mhis very deep and moderately well drained soil occurs on gently sloping, moderately to slightly dissected low terraces. Most areas have a profile similar to that deacribed for the series.

With this soil are included some areas of only slightly exoded soil that have a surface layer of yellowish brown silty clay loam or olive gray ailt loan, amall areas of Bancheon and Geugrag, and a few areas of severely eroded soil with a silty clay surface layer.

Tilth is generally good except in exoded areas. The exosion hazard, hovever, is moderate, and the soil is well suited to cultivation, being used for growing rice, with some areas cropped to barley or wheat after the harvest.

Capability unit IIe.
Paddy suitabllity group P2ac.

5.19 HwANGRYONG SERIES

The Hwangryong series, consisting of nearly level, deep, excessively drained soils that formed in alluvium, occupies flood plains and small valleys, and is a member of the sandy skeletal family of Typio Uaipsamments.

A typical profile follows:

The Hwangryong soils have a brown to dark gravelly to very gravelly loamy sand or a sandy loam surface layer, 12 to 20 cm thick, gray to grayish brown in paddy soils. The C horizon is yellowish brown to dank yellowish brown, very gravelly loany coarse sand or sand.

The Hwangryong soils oceur with the Hwabong and Hogye, differing from the former in having a gravelly profile, and from the latter by being coarser textured and more permeable.

The Hwangryong are slightly to strongly acid, and are low both in natural fertility and in organic matter. Perneability is very rapid, and available moisture capacity very low. Gation exchange capacity is very low, and base saturation medium to high.

The soils are mostly in the flood plains along the rivers in the Guns, and grow crops; such as paddy rice, wheat, rye, and potato.

5.19.1 Hwangryons Sandy Loam, 0 to 2 Percent Slopes (Hy)

Most areas have a profile similar to that described for the series, but inciuded some areas with a loany send and gravelly loam textures.

The soil or this unit is suited to cultivation, and most areas are used for paddy rice as ixrigation is available. Areas where water is not available are cultivated. to other crops. The main management problem is the application of clayey soil to minimize leaching of fertilizers.

Capability unit IVs.
Paddy suitability group P4bc.
5.19.2 Hwangryong Gravelly Sandy Loam, 0 to 2 Percent Slopes (HL)

This soil is gravelly to wery gravelly throughout the profile, otherwise it is like that described as representative for the series. Inoluded with this soil are areas of a loamy sand and some areas of a gravelly loam.

Many areas are in paddy, where irrigation is available, but rice is poorly suited. Beause of the lack of water in some areas, crops other then rice are growng and drought resistant varieties are needed here. Main management concerns are removal of gravels from the plough layer and lessening the effect of leaching.

Capability unit IVs.
Paddy suitability group PADo.

5.20 HYOCHEON SIRTES

The Hyocheon series consisting of neaxly level, deep, poorly drained soils that formed in alluvium, occupies broad alluvial plains and small valleys, and is a merber of the fine loamy nonacid family of Fluventic Haplaquepts.

A bypical profile follows:
Ap-0 to 9 cm ; olive gray ($5 \mathrm{~T} 4 / 2$) silt loam with common, fine prominent yellowish red ($5 \mathrm{YR} 4 / 8$) mottles; weak, coaxse subangular blocky structure; friable, sticky, and plastic: very few, fine pores; many, fine roots; diffuse, smooth boundary.

Blgw-9 to $21 \mathrm{~cm} ;$ dark grayish brown (2.5Y 4/2) loan with common, fine to medium prominent mottles of strong brown ($7.5 \mathrm{YR} 5 / 8$); moderate, coarse subangular blocky structure; firm, sticky, and plastic; common, fine roots; clear, smooth boundary.

B21g-21 to 32 cm ; olive gray ($544 / 2$) clay loan with common, coarse distinct mottles of dark yellowish brown (10uR 4/4): moderate, coarse prismatic breaking to moderate coarse to medium subangular blocky structure; firm, sticky, and plastio; very thin clay cutans; abrupt, smooth boundary.

B22g-32 to 47 omp olive gray ($545 / 2$) clay lom with many. coasse, prominent motblea of atrong brown (7.5x 5/6): moderate, vexy coarse prismatic breaking to coarse, subangular blocky structure; firm, sticky, and platio; thin clay curans; vexy fow, fine rootes abrupt, smooth boundary.

B23g-47 to 77 cm ; gray ($5 \mathrm{Y} 5 / \mathrm{L}$) clay loan with row, fine very daxk brown (10\%R 2/2) mangenese mottlea and many. coarse to medium mottles of atrong brown (7.5vR 5/6): very weak, coarse to medium subangulax blocky structure; firm, very stioky, and very plastio: very few, very fine roota; abrupt, smooth boundary.

B3g-77 to 95 cn: dark gray (5 4 4/1) olay loan with commong fine strong brown (7.5YR 5/6) mottles and pale yellow ($5 x 7 / 3$) FeCO_{3} concretion; very weak, very coarse prismatic gtructure; firm, very stioky, and very plastio; sone olay skin.

C--95 to $120 \mathrm{~cm} ;$ dark gray $(5 x 4 / 1)$ ailty olay loan with few, fine to medium white FeCO_{3} mottles: massive; fimm, very sticky, and very plastic.

The Ap horizon ranges from 9 to 15 on in thickness, and is gray, dark gray, olive gray silt loan, ailty clay loam, silty clay with mottles of yellowish red or yellowiah brown. The B2g horizons axe olive gray, gray, or grayish brown clay loam or clay with strong brown or dark yellowigh brown mottles. The C horizon is gray to dark gray clay loan to silty olay loam or loam with strong brown mottles and pele yellow ox white ferrous carbonate concretions.

The Hyocheon soils ave similar to the Honan oxoept in having ferrous carbonato, Less gray mottles, and a finer texture.

These soils are medium to atrongly acid, moderately high in natural fextility, and mediun in content of organic mattor. Permeability is moderate, and available moisture capacity is mediura. Cation exchange capecity is medium and base aaturation high. The Eyocheon soils are not extensive in the Guns, and usually are in paddy. Single cropping of peddy rice is practised each year beceuse of poor drainage.

5.20.1 Hyocheon Loan, 0 to 2 Percent Slopes (He)

This deep and imperfectly drained soil is on level to nearly level alluvial plains and narrow valleys. Most areas have a profile similar to that described for the series, but included in this unit are a few axeas of a soil with a sendy loan surface layer deposited by flood along the small streams, and mall areas of solle with silty clay or sendy loam.

The surface runoff is nostly slow.
The soil is not suited to a wide range of crope, and is cultiwated and beat auited, only. to paddy rice bocouse of poor drainage and high ground weter tablo. But many other crops could be grown if drainage were provided.

Capability unit TIw.
Paddy muitability group R1.

5.21 JANGSEONG SERTES

The series consists of steep, shallow, somewhat excessively drained soila developed in residuum derived chiefly from limestono. These soils, chiefly near or at Gwangsan Ri, Rimgog Myeon in the northern part of the Gwangsan Gun, are also scattered on the valleys and footslopes of Mt. Yongjin and Mt. Chilbong in the west. Bedrock ranges from 10 to 30 cm from the surface. This series is a member of the fine loamy family of Lithic Udorthents.

A typical profile follows:
A-0 to $10 \mathrm{~cm} ;$ dark reddish brown ($5 \mathrm{yR} 3 / 4$) slightly
gravelly clay loan; moderate, fine to medium granular and weak, fine subangular blocky structure; friable, slightly stioky, and slightly plastic; many, fine roots; clear, smooth boundary; pH 6.0 .

BI-10 to 31 cm ; dark reddish brown (2.5yR 3/4) gravelly clay loan; moderate, very fine to medium subangular blocky structure; firm, sticky, and plastic; few, medium pores; common, fine roots; limestone gravel; clear, smooth boundary; pil 5.9.

B2--31 to 48 cm ; dark reddish brown ($2.5 \mathrm{yR} 2 / 4$) gravelly clay; moderate, coarse to medium subanguiar blocky structure; very firm, very sticky, and very plastio; few, medium pores; common, fine roots; pH 5.7.
$\mathrm{R}-62+\mathrm{cm}$; limestone.
Where only slightly eroded, the A horizon is brown to dark brown or dark reddish brown, slightly gravelly to gravelly clay loam or gravelly gilt loam. The B horizon is dark brown or dark reddjsh brown grevelly clay loan or gravelly loam. The R horizon is a hard limestone layer. These soils differ from the Mudeung beoase of their development in limestone.

They are slightly acid though the bedrocks are alkaline. Natural fertility is moderate, and organic matter content is medium. Permeability is moderate and available moisture capacity low. Cation exchange capacity is medium, and base saturation high.

Forest consisting chiefly of Korean pines mixed with some oaks is generel with chestnut trees growing in some places.

5.21.1 Jangseone Rocky Silt Loam, 30 to 60 Percent Slopes (JsE)

About 30 to 40 percent of the areas are rock outcrops, and the profile is usually similax to that described for the series. Included with this unit are many small areas of soils that are deeper than the described range, and a few small areas of acid soils overlying acid rocks.

The surface runofe is very rapid, and erosion hazard is severe. Root zone is thin.

Foor pine forest mixed with some oaks, is general and woodland is best suited, but, with good grazing maxagement, moderate yields of forage could be obtained.

Gapability unit VIe.

5.21.2 Jangseong Rocky Clay Loam, 30 to 60 Percent Slopes, Rroded (Jsm2)

This soil is on steep to very steep, strongly dissected hills and mountainous areas, with about 30 to 40 percent of bedrock exposed. The profile otherwise is as described for the series.

However, included with this soil are small areas of only glightly eroded soil. areas that have a clay loam on sandy loam surface layer, and a few small axeas of Mudeung soils.

Surface runoff is wery rapid, and erosion hazard severe.
The soil is not suited to cultivation, but well suited to woodland, and poor pine forest mixed with some oaks predominates. The main managenent concern is the control of accelerated erosion.

Capability unit VIe.

5.22 Jancweon berues

The series, consisting of sloping to moderately steep, moderately deep, moderately well drained soils with fracipax, occupies dissected footslopes and colluvial fans, and is a member of the fine loamy family of Typic Fragiochrepts.

A typical profile rollows:
Ap-0 to 15 cm ; brown to dark brown (10YR 4/3) gravelly loan; very weak, medium subancular blocky breaking to moderate, fine to mediun granular structure; friable, alightly stioky, and sligkty plastic; common, fine roots; cleax, smooth boundary.

B2I-15 to 22 cm ; 1 ight yollowish brown (10 mh 6/4) gravelly loan; week, fine to mediun subangulax blocky breaking to medium gramular structure; friable, aticky, and plastic; comon, Sine roots; abrupt, smooth boundary.

B22-22 to 70 cm ; brown ($7.5 \mathrm{IR} 5 / 4$) gravelly loan with
few, fine pale brom (10yR 6/3) or dark reddish brown
($5 \mathrm{YR} 3 / 3$) mottles; moderate coarse prismatic breaking
to weak mediun platy; very firm, sticky, and plastic.
The surface layer is brown to daxk brown or grayish brown to dark grayish brown, and ranges from gravelly silt loam to grevelly loam or gravelly ailty clay loam in textuxe. The suosoil is yellowish brown, brown, strong brown or pale brown, gravelly silt loan to gravelly silty clay loan with mottles of pale brown, daxk reddish brown or grayish brown. The 0 horizon is pale grayish brown, strong brown, or pale brown, variably weathered gravelly silt loam to gravelly sillty clay loam.

The Jangweon soils are ascociated with the Seogto and Gaghwa soils, are similax in bexture, but have fragipan horizons and more developed profiles than the Seogto, and a more yellow subsoil than the Gaghwe.

The Jangweon, strongly acid, axe moderately low both in natural fertility and in organic metter content. Permeability is very slow, and available moisture capacity is medium. Cation exchange capacity is low, and base saturation low to medium.

These soils ocoupy amall tracta of the Gun, and are cultivated chiefly to noybean, buckwheat, and potato. About 10 percent of these soils is still in forest of mixed pine and oak, or in grassland.

5.22.1 Janoweon Gravel1y Loam, 7 to 15 Percent Slopes (JwC)

This moderately deep and moderately well drained noil ocours on mountain footslopes. Its profile is similar to that described for the series, but includes many axeas that have a surface layer of gravelly clay lom with mottles of grayish brown to dark grayish brown, some areas of a grevel free soil. throughout the profile, a fow small areas of sandy loan surface soil, and snell areas of the Seogto and Gaghwa soils.

The surface layer has a poor tilth, and the root mone is generally thin. funorf is medium to rapid, and erosion hazard is moderate.

The soil, generally cultivated, is not suited to a wide range of crops, but is well suited to soybean, buckwheat or potato. A few small axeas are in poor pine forest and grassland. The main management problem is erosion control and gravel removal from the surface.

Capability unit IVe.
Peddy suitability group P3ac.

5.22.2 Jangweon Crawelly Loam, 15 to 30 Percent Slopes, Exoded (JwD2)

This soil, on moderately steep footslopes of the Mudeung mountains in the southeastern part of the Gwangju city, has a profile similar to that described for the series. With this soil are included small areas of greatex slopes than the described range, some areas with a gravelly, clay loam surface layer, a few small areas of a gravelly sandy loan surface layer, mall areas of a subsoil with grayish brown mottles, and small areas of Seogto and Gaghwa soils.

Surface runoff is rapid, and erosion hazard is moderate to severe.
The areas are mall and generally cultivated to nonirrigated crops. But, because of the high gravel content and relatively shallow soil depth, fruit trees, grapes, or woodland are better suited. The main managenent problem is erosion control and the removal of stones from the plough layer.

Capability unit IVe。
Paddy suitability group P4ac.

5.23 JEOMGJ SERTES

The Jeongja sexiea, consisting of steep, shallow, excessively drained soils developed in residuun weathered from basic crystalline rocks, is in strongly disseoted
hilly to mowntainous areas ohiefly in a paxt of Samdo Mreon. Grangaan Cun and 1 a nember of the fine loamy family of Itthic Eutrochrepts.

A bypical profile follows:

$$
\begin{aligned}
& \text { moderate, mediun to coarse aubangular blocky breaking to } \\
& \text { fine gramulax structume: friable, slightiy sticky, and } \\
& \text { slightly plastic: cormon, tine to medium pores; many } \\
& \text { roots: pHE 6.0\% gradual, smooth boundary. } \\
& \mathrm{B} 2-11 \text { to } 38 \mathrm{~cm} \text {, dark reddiah brown (5YR 3/2) gravelly } \\
& \text { to cobbly clay loam: weak, fino to mediun subenguax } \\
& \text { blocky breaking to fine gramulax structuref fxiable. } \\
& \text { Blightiy atioky, and alightly plastio: faw fine poreas } \\
& \text { many roots: pH 6.0; abrupt, mmooth boundary. } \\
& \text { R-3-38+ cm: hard bedrock. }
\end{aligned}
$$

Where only alightiy aroded, the A hoximon rangea from brown to daxk brown or davk reddish brown in colourg but in the eroded areas it is duely red to reddish brown. Its texture raxges from stony loam to stony clay loam or gtony ailt loam. The B hortzon it dark reddich brown, brown, or dark brow gravelly or cobbly olay loan or gravelly loan. The 12 hoxizon beging at dophh of 20 to 50 cm .

The Jeongja are alightly to medium acid, modecotely low in netural fertility and modium to low in orgenio matter content. Pemeability ia moderate and available noisture capacity is low. Gation axchange capactty is medium, and base aaturation 10w.

Moat of the areas are in forest conaisting chiefly of pinea, whth some oake and aldera.

5.23.1 Jeongia Rocky Loam, 30 to 60 Percent Slopes (Jje)

About 7 pexcent of tho axeas of this aoil 19 rock outcrops, but the rest has. a prorile much Iike that described for the serien, except the bedrook in many areas is sonewhat deeper ranging up to 70 om or moxe. Inoluded with thie soil axe ame areas thet have an unweathered tute bedrock layer 33 cm below the murece, small areas of shallow soll over shale, and solla conatiting of mainly granite saprolite.

Surfece munofe in rapid, erosion hazerd severe, and the root zone thin Thie soil is not suited to cultivationg but well suited to woodland. Most areas are in Rorest.

Cepability wit VITe.
5.23 .2 Jeoncia Rocky Loan, 30 to 60 Percent Slopes. Eroded (JiEe)
nock outcropg occupy about 10 percent of the axeay but the profile 1 detherwise gimilar to that deacribed for the series. Included with this soil axe a Iew mall gullied areas, mall areas of shallow aolls over shale, and soils consisting mainly of amprolite.

Surface munoff in repid, and the erosion hazard severe.
Woodland is auited with most areas in poor forest.
Capability unit VITe.

5.24 JEONMM SERTES

The Jeomam series, consisting of sloping and moderately steep, deep, well drained soils formed in residuum weathered chiefly from granite and granito gneism, is in dissected old bedrock pediplains, and is a member of the fine olayey family of Typic Hapludults. Depth to bedrock ranges from 2 to 8 m .

A typical profile follows:
 weak, medium to coarse subangualr blocky gtructure; friable, sticky, and plastic; few, fine pores; some quartz; many, fine roots; clear, smooth boundary; pH 4.9.

A3-6 to 18 cm ; strong brown ($7.5 \mathrm{KR} 5 / 6$) silty clay loam: weak, mediun to coarse subangular blocky structure; firm, sticky, and plastic; many, thin clay cutans; common, medium to coasse pores; some quartz; common, fine roots; clear, smooth boundarys pH 5.7 .

B1t-18 to 35 cm ; yellowish red (5YR 5/8) silty clay loam; moderete, medium to coarse subangular blocky structure; firm, sticky, and plastic; thin clay cutans; common, medium to coarse pores; few quartz; Iew , fine roots; gradual, smooth boundary; pH 6.0.

B21t--35 to 67. om; yellowish red ($5 \mathrm{YR} 4 / 8$) silty clay; moderate, fine to medium subangular blocky istructures firm, very sticky, and very plastio; thin, clay cutans; common, medium to coarse pores; very few, very fine roots; abrupt, smooth boundary; pH 5.3.

B22t-67 to 94 cm strong brow ($7.5 \mathrm{mR} 5 / 8$), yellowish red (5IR 5/8) gilty clay loam; moderate, fine to medium subangular blocky structure; firm, very sticky, and very plastic; thin clay cutans; common, medium to coarse pores; wery few, very fine rootsi abrupt, wavy boundaxy; pH 5.2 .

B22t-94 to 140 cm ; reddish brown ($5 \mathrm{YR} 5 / 4$) silty clay
loam with meny, coarse faint mottles of strong brown (7.5 YR
5/6); moderate, fine to medium angular blocky structure;
thin, clay cutans; very few roots; pil 5.1.
Where only slightly eroded, the A horizon is brown, strong brown, or yellowiah brown, but where severely eroded, is reddish brown or yellowish red. The toxture is ailt loam, silty clay loam, or silty clay. The B horizon is yellowish red, reddish brown, atrong brown or red silty clay loam or silty clay, and ranges from 80 to 200 cm in thickness. Mica flakes are common in all horizons.

The Jeonnam soils are associated with the Gwangsan, Bansan, and Jingog soils, and are less red in the subsoll and lower in clay content than the Cwangsan. The Bansan soils occupy a concave position, and have a darker surface layer.

These soils are strongly acid, low in natural fertility, and moderately low to medium in organic matter content. Permeability is slow, and available moisture capacity is medium to high. Cation exchange capacity is medium to high, and base saturation low.

The Jeonnam soils cover extensive areas mostly in the control part, but also are in smaller areas throughout the Guns. About 40 percent is cultivated, the remainder being in forest consisting of Korean pines and scattered alders.

5.24.1 Jeonnan Silty Clay Loam, 7 to 15 Percent Slopes, Eroded (Jnc2)

Most areas have a profile as described for the series. Included with this soil are some areas of only slightly eroded soil, the surface layer is generally brown to dark brown or yellowish brown silt loam, loam or clay loam, some areas with light clay loam subsoils, and a few small areas of less and greater slopes than the describod ranges.

Surface runoff is medium to rapid, and erosion hazard. This soil has a thick root zone. The areas of this soil are small and well suited to cultivation. The main management concern is erosion control.

Capability unit IIIe.
Paddy suitability group P3ac.
5.24 .2

Jeomem Silty Clay Loam, 15 to 30 Percent Slopes, Eroded (JnD2)
This very deep, well drained soil occurs on moderately steep, dissected hill sides and foot slopes of the old bedrock pediplains. The profile is generally similar to that described for the series. Included in this unit axe some areas with a Iight clay loam B horizon, a few greater slopes than the described range, and some gullied axeas.

The soil is not suited to cultivation except for some of lower slopes, but is well suited to pasture, hayland, or woodland. Forest is widespread with some parts in cultivated crops. Erosion is the main management problem.

Capability unit IVe.
Peddy suitability group PAac.

5.25 JINGOG SBRTES

The Jingog sexies consista of gently sloping to moderately ateep, deep, well drained soils developed in silty material over a soil developed from granite saprolite. These soils occur in slightly dissected old bedrock pediplains in Bia Myeon of Gwangen Gun. Bedrock renges from 2 to 8 m below the surface. This series is a member of the fine clayey family of Typic Hapludults.

A typion profile followas
A11-0 to 5 cm : atrong brown ($7.5 \mathrm{YR} 5 / 6$) ailt 10 an ; moderate, Sine gramlar structure; friable, gticky, and plastio; common, fine poresi many, fine xoots; gradual, smooth boundery; pH 5.7.

A12-5 to 28 om; strong brown ($7.5 \mathrm{XR} 5 / 6$) silty clay loam; masaive breaking to weak, fine and medium subangular blocky atructures fxiable, sticky, and plastic: few, fine pores; common, fine to medium roote; abrupt, smooth boundary pH 5.5 .

ITB2l--28 to 57 om; yellowiah red (5YR 4/6) bilty clay; moderate, fine to medium subangular blocky atructure; firm, very stioky and plastic; thin, clay cutans: common, fine to mediun pores; clear, amooth boundexy: pH 5.6 .

ITB21-57 to $99 \mathrm{~cm} ;$ red ($2.5 \mathrm{vR} 4 / 6$) sinty clay with few, tine prominent mottles of dask reddish brown (5MR 2/2): atrong, fine to medium, angular blocky structure; very fimm, very sticky, and plastic; moderately thick clay cutans; common pores; few, very fine roots; clear, smooth boundary: pH 5.7.

IIB23-99 to 130 cm dark red (2.5रR 3/6) a11by clay with many, coarse prominent mottles of atrong brown (7.5YR 5/6) and many, fine to medium, prominent mottles of black (10XR 2/1); moderate, fine to medium, subangular blocky structure; very fine, very sticky, and plastic; moderately thick clay outans; pH 5.9.

The A horizon is strong brown to light yellowish brown ailt loan or ailty clay loam. The B2 horizon is yellowish red to red silty clay or ailty clay loam, and the lower subsoil is red to dark red or yellowish red silty olay to clay. The B horizon is very thick. The C horizon, not shown in the profile is red, yellowish red, or yellowish brown gilty clay or ailty clay loam.

The Jingog, essociated with the Gwangsen soils, are medium acid, and are low both in natural fertility and orgenic matter. Permeability is slow, and available moisture capacity is medium or high. Cation exchange capacity is medium to high, and base saturation low.

Moat of the soils are in pine forest with an understoxy of shrubs. A fow snall areas are cultivated to nonirrigated crops.

5.26 JISAN SERTES

The series consists of gently sloping to sloping, deep, poorly drained soils developed in alluvium, occupying small valleys and alluvial fans. The depth of deposited alluvium ranges from 1 to 1.5 m . This series is a member of the fine loany nonacid tamily of Fluventic Haplaquepts.

A typical profile follows:
Ap-0 to $12 \mathrm{~cm} ;$ olive gray ($5 \mathrm{Y} 5 / 2$) loam with few fine distinct mottles of strong brown ($7.5 \mathrm{VR} 5 / 8$); massive breaking to moderate, medium granular structure; friable, slightly sticky, and slightly plastici common, fine roots; abrupt. smooth boundary: pH 5.5 .
Blir-12, to 28 cm ; light olive gray ($5 \mathrm{X} 6 / 2$) loam with many, fine to mediun distinct mottles of strong brown (7.5YR 5/8); moderate, coarse prismatic structure; friable, slightly sticky, and slightly plastic; moderately thick clay cutans; few, fine roots; clear, smooth boundary; pH 7.4.

B21ir--28 to 50 cm ; grayish brow (5 Y 5/2) loam with many, medium mottles of yellowish brown (10YR 5/6); moderate, coasse prismatic structure; friable, slightly sticky, and slightly plastio; few, fine pores; moderate, thick clay cutans; clear, smooth boundary: pi 7.4 .

B22ir-50 to 62 cm: dark gray (54 4/1) loam with common, fine distinct mottles of strong brown ($7.5 \mathrm{TR} \mathrm{5/8)} \mathrm{;} \mathrm{coarse}$ prismatic structure: fimm, sticky, and plastic; gradual, smooth boundary: pH 7.3.

B31-62 to 82 cm mottled, gray ($5 \mathrm{X} 5 / 1$) and strong brown (7.5YR 5/8) loam; weak, medium prismatic structure; friable, sticky, and plastic; few, fine quartz; clear, smooth boundary; pH 7.3.

B32--82 to 112 cm ; mottled dark gray (5 y 4/1) and brown to dark brow (10YR 4/3) sandy loan: friable: few quartz: gradual, smooth boundary:

C-112+ cmp mottled gray (5Y 5/1) and strong brown (7.5YR 5/6) loam; friable, sticky, and plastic; weathered tine gravels and moderately weathered coarse gravels: pH 7.0 .

The Ap horizon ranges from 10 to 18 cm in thickness, and ia gray to dark gray or grayish brown to dark grayish brown loam to silt loam or silty olay loam with gtrong brown or yellowish brown mottles. The B horizon is gray to dark gray ox grayish brown loam or clay loam to silty clay with mottles of strong brown, yellowish brown, or reddish brown. The C horizon, gray, olive gray, or grayish brown loam, silty clay loam, or sandy loam, has grevels in some profiles.

The Jisan are usually in naxrow walleys, whereas the Honam are in broad alluvial plains, and both differ from the Subug in being finer textured.

They are strongly acid, moderate in natural fertility, and medium in organic mattor content. Permeability is moderate, and available moisture capacity medium. Cation exchange capacity is medium, and base saturation high.

The Jisan soils cover about 6.5 percent of the surveyed area, and are scattered throughout the Guns. Rice paddy is general with some areas growing barley or wheat after its harvest.

5.26 .1

Jisen Loam, 2 to 7 Pexcent Slopes (JiB)

Most areas have a profile similar to thet described for the series. Included in the areas are some nearly level soils, and small axees of better drained soils. This soil ts fair in workability, and hae a thick root zone. Surface runoff is slow.

Paddy rice is beat suited, and nonirrigated crops auch as barley or wheat will grow better if adequately drained. Paddy predominated, and about 60 percent of the erea is planted to winter barley or wheat.

Capability unit TIw.
Paddy suitability group P2a.

5.26 .2 Jisan Loam, 7 to 15 Percent Slopes (Jio)

Most areas have a profile similar to that described for the sexies. In this unit are included some areas of ailty olay loam to clay loam surface, small areas of a gently sloping, and small areas of better drained soils.

The soil is easy to work, and has a thick rooting zone. Suxface runoff is glows and exosion hazard moderate. Paddy rice is well suited, as would be other crops, if adequate drainage wexe provided. About 80 percent of the aree i used to grow rice, and wintex barley or wheat. Erosion comirol is the main problem.

Capability unit ITIe.
paddy auibabiliby group 33 .

5.26.3 Jisan-Yongit Complex. 2 to 7 Percent Slopes (JyB)

The complex consists of about 80 percent poorly dxeined Jisen soils end 20 percent moderately well drained Yongji soils. This unit is on gently sloping naxrow valleys throughout the surveyed area.

Proriles are similar to those described for their respective sexies, and include some areas of level to nearly level soll, and small areas of soils with coarse lomm and sandy loam texture.

Surface runoff is slow, and the root rone is thick. Only paddy rice grows to which the land is best suited. Some of the areas, mainly Yongji soilng are cultivated to rice and barley. There is no problem in growing rice, but poor drainage limits the use.

Capability mit TIw.
Paddy suitbability group P2a.
5.26 .4 Jisen-Yongji Complex, 7 to 15 Percent Slopes (JYG)

These soils occur on sloping narrow valleys and fanc. About 70 percent ia poony drained Jisen, and the rest, moderately well drained Yongji nolls. Most areas have profiles as described for the respective series. With these soils are included some arear of a soil thet contains sand and some gravel, and small areas of well drained soils with coarse lam or sandy Loam subsoile.

The root zone of theac soils is thick and workability in fair. Surface runof is slow, and erosion hazard slight. They are best suited to cultivation, and about 80 percent grow rice and barley. The rest is cultivated only to paddy rice becauge of poor drainage. The main management problem is erosion control and drainage for other crops.

Capability unit ITIe.
Paddy auitability group P3a.

5.27 MANSEONG sbrtes

The Manseong series, consisting of nearly level, moderately deep, imperfectly drained soils, formed in recent alluvium on broad, alluvial plains adjacent to river channels, is a member of the fine loamy over sendy skeletal nonacid family of Aerio Fluventio Haplaquepte.

A typical profile follows:
Ap-on to 12 cm ; dark gray ($5 \times 4 / 1$) loam with few, fine to medium prominent mottles of dark yellowish brown (10YR 4/4): weak, fine to medium granular structure; friable, alightly stioky, and alightly plastic; few, fine pores; many, fine roots; clear, smooth boundary: pHE 5.3 .

A12-12 to 18 cm ; olive gray ($5 \mathrm{y} 5 / 2$) loan with few fine to medium prominent mottles of yellowish brown (10YR 5/4); weak, coarse platy structure; firm, sticky, and plastic; few, fine pores; few, fine roots; abrupt, smooth boundery; pH 5.4.

Bg- 18 to 52 cm ; olive gray ($5 \times 5 / 2$), ailt loam with maxy, fine to medium prominent mottles of yellowish brown (10YR 5/6); weak, coarse prismatio structure; firm, stioky, and plastic; many, fine pores; few, fine roots; abrupt, smooth boundaxy; pH 6.3 .

IICl- -52 to $70 \mathrm{~cm} ;$ light olive gray (5 y 6/2) gravelly and with connon, coarse prominent mottles of strong brown (7.5 KR 5/6); single grain; ebrupt, smooth boundaxy; pH 6.7.

ITc2-70 to 120 cm ; light olive gray ($546 / 2$) gravelly sand; ground water table occurs below 100 cm ; pH 6.7 .

The surface layer is olive gray, gray or grayish brown to dark grayish brown loam, ailt loam or Pine sendy loam with dark yellowish brown or yellowish brown motties. The C horizon is light olive gray ox daxk gray gravelly sand or gravelly Loamy and with strong brown mottles. The graval content increases with depth.

The Menseong, associated with the Honam and Hwangyong, are less drained than the Hoggye, and are deeper before the gravelly sand layer than the Subug. They are also different physiographicelly from those two soils.

The hanseong are strongly acid, moderately low in natural fertility and low to medium in oxganic matter content. Permeability is rapid, and available water capacity high. Cation exchange capacity is low and base saturation high.

They cover about 2 peroent of the gurveyed aneas, mont of then are in rioe paddy: with nome barlay or wheat growa in the winter.

5.27.1 Manseonc Loam, 0 to 2 Percent Slopes (Ms)

Thia 16 the only Manecong soil mapped in these Guns, and $1 s$ moderately deop and. imperfectly drained, ocurming on level to nemily leval broad alluvial plains chiefly adjacent to river chamela. In places the surface layer is silt loam or fine sandy loam, but the profile otherwise ia similar to that described for the aeries.

With this soil axo included mall axeas of sand deposited by floods, and mall areas of the Honem and Hwangyong soils too small to be mapped separately.

The ground water table ia high and ponded and the root zone thick.
Host areas are in mice paddy to which the soll zlone is sut ted because of poor drajnage and the high ground water table. Wetneas and coarge texture in the c horizon is the chief managenent hasard.

Capability undt ITIT.
Paddy suitability group peb.
5.28 mudeunc sertes

The Mudeung sexies consists of moderately steep and very steep, shellow, somewhat excessively dreined solls, formed in residuun dexived from porphyxy and prophyrite, and occupying atrongly dissected hille or mounteinous areas. Fron the surface to bedrock is less than 50 cm . This geries is a member of the fine lomy family of Lithic Dystrochrepts.

A typical prorile rollows:

Where only aitighty eroded, the A hoxizon is brown to yery daxk brown ow dark grayish brown, very gravelly to stomy loam, or ailt loam, but it is yellowinh brom to dark yellowish brown gravelly to xocky sendy loem in severely eroded areas. The Chorizon is yellowish brown to strong brown or brown to darle brown gravelly day loam or loam.

The soila are medium to strongly acid, low in natural fertility, end medium to high in organic matter content. Pexmeability is modexate, and available moisture capacity low. Gation exchenge capacity is moderata, and base saturation low.

The Mudeung soils occur mostly on Mt. Mudeung and the related ridges of Bonryang Myeon, and some areas to the north of Rimgog Myeon.

Forest of Korean pines mixed with some oake, alders, shrubs and maples, is the usual cover.

5.28 .1

Mudeune Rocky Loam, 15 to 30 Percent Slopes (MdD)
About 25 to 50 percent of the areas are rock outorops, and in some places, the surface layer is sendy loam with many stones and gravels. The profile otherwise is similar to that described for the series. With this soil are included a few mall areas of mainly granite saprolite, and mall areas with greater slopes than the described range.

This soil has a thin root zone, surface runoff repid, and erosion hazard severe. Because of the shallow soil depth and high stone content, it is well suited only to woodland, and when well managed for grassland, moderate amounts of grazing may be obtained.

Capability unit VIe.
5.28.2 Mudeung Rocky Loem, 15 to 30 Percent Slopes, Broded (MaD2)

About 25 to 50 percent of the areas are rock outcrops. The profile is usually gimilar to that described for the sexies. Included with this soil are small areas of greater slopes than the described range and a few small axeas of soils that are mainly granite saprolite. Surface runoff is rapid, erosion hazard severe to very severe, and the root zone very thin.

The soil is well suited only to woodland, and poor pine forest, with an understory of azaleas, which now covers it. The main managenent problem is exosion control. Moderate yields of pasture could be obtained if the soil were well managed for grazing.

Capability unit VIe.
5.28.3 Mudeung Rocky Loam, 40 to 60 Percent Slopes (MaE)

About 25 to 50 percent of the areas are rock outcrops, but between the rocks the profile is like that described for the series. With this soil are included some areas underlain by shale rocks having a profile similar to the mudeung except for the thin 0 horizon, small areas of greater slopes than the described range, and small areas of soils consisting mainly of granite saprolite.

Suxface runofe is rapid, but erosion hazard is slight in the areas with grass cover. This would be severe to very severe if the soil were cultivated. The areas are large, and suited only to the present forest. Well managed pastures would produce moderate anounts of grazing.

Capability unit We.

5.20.4 Mudeung Rocky Loam, 30 to 60 Percent Slopes, Eroded (Mare)

About 25 to 50 peroent of the arean are rock outcrops. Host axeas have a profle similar to that deacribed for the sertes. With thia soill are included mall areas of greater alopes than the described range, and smell areas consisting mainly of grante saprolito.

Poor pine foreat with some aldera and an uxderetoxy of arelea is general and only suitable. Severe erosion as the chief managenent hazard. Low yields of grasing may be obtained if the soil is wall managed.

```
Capability unit VIe.
```

5.28 .5 Mudeung Very Rooky Loam, 30 to 60 Percent Slopes (Mve)

This soil on steep slopes in the mountainous areas, has between 50 to 90 percent of rock outcrops, with bedrock generally less than 50 cm . In places the surface layer is brow to wery dark brow on dark yellowigh brown andy loan with many stonea and gravele. The nowroky axeag heve a profile gimilar to that described tor the aeries. With this soll are inoluded small areak of greater alopes than the desoribed range, and a few axeas of goils concisting mainly of granite aprolite.

Surfece runoti is rapid, and erosion harard is bevere to vory severe.
All axeas are in forest congisting chielly of pines with an understory of azalea, and shrub, to which alone it is suited.

Capability unit vIIe.

5.28.6 Mudeune Soils, 15 to 30 Percent Slopes, Cullied (MDO4)

This mapping unit consista mostly of 50 to 90 percent rock outcrops and shallow or deep gullies. In most places the mon profile has beon deatroyed by severe erosion, and remains only between rocks, but in those areas the profile is similar to that described for the series. Included with this soil are maxy areat that have a surface layes of yellowish brown to very daw yellowish brow, stony or gravelly sandy loamg and mall axeas of less or greater blopes than the described range.

The areas are small, and axe mostly in forest with poox pines growing between rooks. This soil is auited to wood and. The mein management problem is soll conservation.

Capability unit vie.
5.28.7 Mudeung Soile, 30 to 60 Pexcent Slopes, Gullied (Mded)

The mappine whit consists chiefly of rock outcrops and shallow or deep gullies, with about 50 to 90 percent being composed of the tormer. The soil profile in most places has been destroyed by severe exosions and many ahallow and deep gullies have been tormed.

However, the protile remaining between rocks and gullies is as described for the series. In this unit are included a Pew small areas of greater glopes then the described range. The soil is not suited to cultivation, but it is to woodland. Most areas are in poor pine forest with an understory of shrub.

Capability unit VITe.
5.29 RTVERWASH, COBBLY (RO)

This mit, consisting of areas with only atones and cobbles mixed with sand, occurs mainly along the tixbutaxies of the Fvangyong river, one of the upper gtreams of the Yeongsan river, and along the gtreams beginning in Mudeung.

Most areas are Prequently fooded in the rainy season. The cobble materials are sometimes used for conetruction materials for building and road pavement.

Capebility unit VITI.

5.29 .1 Riverwash Sandy (RS)

This mapping unit consists of fine to coarse sand and gravel, and occupies areas along the main gtream of the Xeongsan river. Sand in the riverbed generally is gravel free. With this unit are included small axeas of waterwash sand along the small tributaries, too small to be mapped separately. In the rainy geason flooding is general, and the land type is not suited to agricultural use. Sand, however, may be used for construction materials.

Cepebility unit VIXI.

5.30 ROCK LAMD (RL)

The land concists of areas with rock outcrops, talus of porphyry, and ahale, on steep to very steep mountainous areas chiefly in Mudeung mountain. More than 90 pexoent is rock outcrop and talus, and in many places severe erosion has exposed the bedrock. In this land type are included small areas of crystalline schist, orystalline tuff and granite on hilly areas. Plants in the rock land aree generally do not grow well. Some poor pine trees are growing between rocks. This land type may be a source of rock fox construction puposes.

Capeibility unit VIII.

5.31 SAMAM SERTES

The Sanam serieg, consisting of gently sloping, deep, moderately well drained soils, wes formed in alluvium washed from the areas underlain by red shale, and ocoupies small valleya in Sando Myeon of the western Gwangsan Gun. The sexies is a member of the fine loamy family of Aquio Dystrio Eutrochrepts.

A bypical profile follows:
Ap-0 to $14 \mathrm{~cm}_{\mathrm{g}}$ brown (7.5 TR 5/2) silt loam with common, Pine to medium prominent mottlea of yellowish red ($5 \mathrm{IR} 5 / 6$): massive; friable, atioky, and plastic; few, fine porea; comnon, fine to medium roots; clear, smooth boundary; pH 5.6.

Bl- -14 to 22 cm ; reddish brown (5 YR $5 / 3-4 / 3$) silt loam with comon, fine to medium prominent mottles of yellowish xed ($5 \mathrm{YP} 4 / 6$): moderate, medium to coarse mubangular blocky structure; friable, aticky, and plastic; common, fine pores; few, fine roots; cleax, smooth boundaxy; pH 6.6.

B21-22 to 36 cm ; reddish brown ($5 \mathrm{MR} 4 / 3$) silty clay Loam with common, fine to medium distinct mottles of strong brown ($7.5 \mathrm{YR} 5 / 6$); moderate, fine to mediun prismatic structure; firm, sticky, and plastic; common, fine pores; fine gravel; few, fine roots; abrupt, smooth boundary; pH 6.8 .

B22-36 to 49 cm: brown (7.5YR 5/2) ailty clay loam with common, fine to medium prominent mottles of strong brow (7.5YR 5/6); strong, coarse prismatic atructuxe; firm, very stioky, and very plastic; moderately thick clay cutans; common, fine pores; few, fine roots; clear, smooth boundary; pH 7.0 .

B23-49 to 67 cm : grayish brown ($10 \mathrm{YR} 5 / 2$) silt loam with common, fine prominent mottles of yellowish brown (10yR 5/6): moderate, coarse prismatic structure; firm, very sticky, and very plastic; thin clay cutans; common, fine pores; few? weathered fine gravels; few, fine roots; cleas, amooth boundery: pH 7.2.

B3-67 to 83 cm ; light brownish greay (10YR 6/2) Ioam with common, fine to medium prominent mottles of brown to daxk brown (7.5YR 4/4) and strong brown (7.5MR 5/6); week, coarse prismatic structure: firm, sticky, and plastic; thin, clay cutans; common, fine pores; few, strongly weathered fine grevels; very few, fine roots; abrupt, smooth boundary; pIF 7.2.
c- -83 to 100 cm mottled brom ($7.5 \mathrm{yR} 5 / 4$), strong brown
(7.5TR 5/8), and"dark brow ($7.5 \mathrm{Xr} 3 / 2$) gravelly loam; very weak, coarse prismatic atruoture, firm, sticky, and plastic: common, fine pores: pli 7.2.

The Saman soils have a brown to reddish brown or pale red silt loam or silty clay loan A horizons 12 to 15 cm thick. The surface layer is mottled with yellowish red or gray to reddish gray. The $B 2$ horizon is reddish brown, reddish brown, brown or grayish brown silt loam to silty clay loam or clay loam with mottles of strong brown or yellowish brown. The chorizon is gray to grayish brow gravelly loan or silty clay loam, and is mottled with browish yellow brown to very dark brown or atrong brown.

The Saman soils differ from the Baegsan chiefly in having hues of 5 YR in the upper part. The Baegsen too, axe better drained.

They are neutral to medium acid, moderate to high in natural fertility and medium in orgenic matter content. Permeability is moderate, and available moisture capacity is medium. Cation exchange capacity is medium, and base saturation high.

Most of the areas are in rice paddy, with about 40 percent planted to winter baxley after xice harvest.

5.31.1 Samam Loam, 2 to 7 Percent Slopes (SaB)

Most areas have a profile as described for the series. The surface runoff is slow, and erosion is a minor problem. The root zone is thick.

The areas of this soil, small, mostly in paddy, are well suited to paddy rice cultivation. About 40 percent of that used for rice is planted to barley in the winter. The main management concern is drainage for a wider range of crops.

Capability unit IIe.
Paddy suitability group P2ec.

5.32 samgag series

The Sangag series consists of moderately steep to steep, deep, somewhat excessively drained soils formed in granite and grenite gneiss saprolite. These soils are on strongly dissected, hilly to mountainous areas. Bedrock is from one to three metres or more, from the surface. The sexies is a member of the coarse loamy family of Typic Dystrochrepts.

A typical profile follows:
Ap-0 to 20 cm ; yellowish brown (10YR 5/6) sandy loam; fine to medium granular structure; friable, slightly sticky, and slightly plastic; meny, fine roots; abrupt, smooth boundary; pH 5.5 .

Bl-20 to 80 cm ; mottled, white (107R 8/2), yellowish brown (10XR 5/6), gray (2.5Y 1N5/), and daxk reddish brown (5YR 2/2) crushed colour; light yellowish brown to yellowish brown (10YR 6/4 to 5/4) sandy loam; saprolite massive; diffuse, smooth boundary; pH 6.3.

The Samgag soils have a brown to dark brown or yellowish brown to atrong brown sandy loam or gravelly to stony sandy loam surface layer 5 to 15 cm thick. The B horizon is granitic saprolite of yellowish brown to pale brown or strong brown loamy sand, sandy loam, or send. The C horizon, not described in the profile, begins at 50 to 100 cm and is similar to the B_{9} but has a paler colour.

The Samgag soils differ from the Mudeung in having coarser texture and a more light coloured surface layer, and from the Songjeong soils in being less developed.

The soils are strongly acid, low both in natural fertility and in organio mattere permeability is vexy rapid, and available water capacity is low Cation exchange oapacity and base saturation axe low.

The Sangeg cover very extonsive areas of the Guns, and are widely distributed throughout the gurveyed area. Forest, consisting chiefly of Korean pinea, mixed with some alders and an understory of azalea, is general, with some small lower slopes being cultivated to paddy rice.
5.32.2 Samgas Rocky Sendy Loam, 15 to 30 Percent Slopeg, Eroded (SmD2)

Rock outcrops occupy about 25 to 50 percent of the ereas of this wnitg and in most places the surface layer is stony to gravelly. The profile otherwise is usually gimilar to that described for the series. With this soil are included some areas of only slightly eroded soil having a surface layer of brown to daxk brown ailt loom, a few small areas of less or greater slopes than the deacribed range, small areas of ghallow soil to hard rock, and soile with yellowigh red thick clay loan B horizons.

Surface munof is moderate to rapid, and erosion is a severe hazard.
Pine forest with some alders and an understory of azelea, is general and suited, but some lower slope areas have been cultivated to potato. Frosion is the chief hezend to management. Moderate yields of hay and parture could be obtained if these soils were well fextilized and menaged.

Capability unit VIe.
5.32 .2 Samgeg Rooky Sandy Loam, 15 to 30 Peroent Slopes, Severely Broded (SmD3)

This deep and somewhat excessively drained aoil with many outcrops that occupy about 25 to 50 percent, is in hilly to mountainous areas. The C horizon has been exposed in many pleces, but otherwise, the protile is as described for the series. Included with this soil are small areas of deep gullied land a few small axeas of the soils shallow to cock, and some areas of lese or greater slopes.

The root zone is thick, surface runore rapid, and erosion a very severe hazaxd. The areas of this unit axe smell, and mostly in forest, to which it is suited if well managed. The chief management hazard is erosion. Some areas are capable of producing fair yields of hay and pasture crops if heavily fertilized and well managed.

Capability unit VIe.
5.32 .3 Sangar Rocky Sandy Loam, 30 to 60 Percent Slopes, Eroded (Smer)

About 25 to 50 percent of the aree of this unit is rock outcrops. In the nonrocky areas the protile is similar to that described for the series. Included with this soil are some areas of only slightly eroded soil that have a brown to dark brown sandy loam or silt loam surface layer, a few mall areas of greater slopes, small scattered areas of gullied lend, and severely eroded soil.

Surface runoff is rapid, and erosion hazard severe. Available moisture capaciby is low The soil is not suited to cultivation, but is to woodland if well managed. Mos areas are in poor pine forest mixed with some alders and an understory of ghrub and azalea; The main management concern is erosion control.

Rock outcrops occupy about 30 to 50 percent of the area of this unit, and the C horizon has been exposed by severe erosion. In other reapects the profile reaembles that described for the series. Included with this unit are small scattered axeas of rock land and gullied lend, a few small areas of soil shallow to hard rock, and a soil with a thick yellowish red clay loen subsoils.

The soil has a thick root zone, but available noisture capacity is low, Runoff is rapid, and exbsion is a very severe hazard to management. This very large axea is mostly in poor pine foxest.

Capability unit VIIe.

5.32 .5 Samgeg Soils, 15 to 30 Percent Slopes, Gullied (ScD4)

The wnit consists of Samgag rocky and stony to gravelly sandy soil with many deep or shallow gullies. This soil is in moderately steep, strongly dissected hills and mountainous areas, with many areas strongly dissected by an intricate pattern of deep and shallow gullies. Bedrooks are exposed in many places, but otherwise, the profile is as described for the series.

Only woodlend is suitable, comprising now of scattered poor pine trees, growing in large areas that are otherwise left idle.

Capability unit VIIe.

5.32.6 Samgay Soils, 30 to 60 Pexcent Slopes, Gullied (Sge4)

This soil, distributed over the steep, strongly dissected slopes throughout hilly and mourtainous axeas of the Guns, has meny deep and shallow gullies and rook outcrops. In most places the oxiginel A and B horizons have been eroded away, and the coarse sandy loam 0 horizon is exposed. Otherwise the profile is aimilar to that described for the series. Many areas are also strongly dissected by an intricate pattern of gullies.

This soil is usually bare, but where grass cover has been developed, the soil is not eroded. Only some retarded pines now grow between gullies. The soil is not suited to cultivation, but suitable for woodland and the main management problem is soil conservation.

Capability unit VIIe.
5.33 SEOCTO SERTES

The Seogto series, consisting of sloping to moderately steep, deep, well drained soile formed in colluvium washed from areas underlain by porphyry, granite and granite gneiss, are in dissected mountain footslopes and terrace edges. The bedrock ranges from 100 to 250 cm from the surface. This series in a nember of the loamy skeletal family of Dystric Fluventic Eutrochrepts.

A bypical profile rollowe:
Ap-wo to 10 cm; brown to dark brown (10xR 4/3) very gecvelly silt loamp weak. fine granular atruoture; triable, alightly sticly, and alightiy plastic: common. fine to medium poree; common, fine roots gredual. smooth boundary: pI 5.2.

B1 -10 to 19 cm yellowimh brown to brown (10\%R $5 / 4$ to 10\%R 5/3) vexy gravelly eilty clay loam; weak fine grenviar structure and weak, fine to medium gubangular blooky structure; Ixiable, sticky, and plactios common. fine to medium pores; few, fine roots; olear, smooth boundary: pll 5.0.

B21-19 to 34 cmp yellowich browa (10YR 5/4) very gravelly bo cobbly ailty clay loam: week fine to medium subangular blooky and weak, fine gramular atructure; irieble, aticky, and plastici few, fine to medium porest cleax, mooth boundery: pH 5.1.

B22-34 to 52 om? yellowiah brown (10YR 5/6) vexy gravally to cobbly silt loam; weak, fine to medium subangulax blocky atructure; friable, sticky and plastio; very few, fine xoots: clear, gmooth boundexy: pH 5.2 .

B3-m5 to 80 cms nottled, brown to dark brown ($7.5 \mathrm{yR} 4 / 2$). pale brown (10rR 6/3), and very dark brown (IOYR 2/2) very gravelly to cobbly silt loam; moderate, fine to medium subangular blocky atructure; friable, stioky and plastic: few, fine pores; pli 5.2.

The Ap horizon je brown, dark brown or dark yellowish brown very gravelly allt loem, very gravelly clay loam or gravelly loam. The B horizon is yellowish brown to brown or brownich yellow, very gravelly bo btony silty clay loam, silt $10 a m$ or lom. The C horizon not described in the profile, is aimilar to the B but lacks atructure. These soile, stony aandy loam throughout the profile, in some places have developed in meterial of granite and cryatalline schist.

The Seogto goila associated with the Jangweon, Gaghw, end Kogye goile, differ Erom the Gaghwa in having higher gravel content and in lacking a B horigon rioh in clay.

They are strongly acid, low to moderately low in natural fextility and low to medium in organio matter content. Pemeability is moderately rapid, and available moisture capacity is medium. Gation exchange capacity is $10 w$ to medium, and bese Eaturation medium to high.

The Seogto soils occupy suall tracts of the gurveyed aree, and genexally are in cultivated crops. Some 20 percent of the area lis in forest congigting chiefly of Korean pines mixed with some oaks and shmbs. Chestrut and persimmon trees grow in many places.

5.33 .3 Seofto Gravelly Loam, 7 to 15 Percent Slopes (St0)

Most areas have a profile mimilar to that described for the series. With this soil are included small areas that have a gravelly silt loam surface layer. a sow
mmall areas of soils with compact fragipans, more clayey soils, some dark coloured soils, and small areas of greater slopes than the described range.

The surface runorf is medium to rapid, and exosion hazard is slight to moderete. The root zone is thiok, but the high stone content may be a barrier here.

A wide range of crops will grow if well managed. Moat of the areas were recently cleared and are in cultivated crops. Chestnut and persimmon trees grow in many places; some 20 percent of the areas are still in pine forest. The main management problem is erosion control and the removal of cobbles and stones from the plough layer.

Capability unit IIIe.
Paddy suitability group PAabo.
5.33 .2 Seogto Gravelly Loam, 15 to 30 Percent Slopes (StD)

Most areas heve a profile as described for the sexies, but also inoluded are many areas of eroded soil having a yellowish brown to derk yellowish brown ox strong brown atony sil ty olay loam surface layex 10 to 20 cm thick, small areas of soil with a dense compact fragipan, some areas of more clayey soils, some dark coloured soils, and small areas of greater slopes than the described range.

The surface runoff is rapid, the erosion hazexd is moderate to severe.
Many axeas of this soil are suitably in forest, and some were recently cleared and are in cuttivated crops. Chestmut and persimmon brees grow in places. Brosion and high stone content are the chief management hazards.

Cepability unit IVe.
Paddy suitability group P4abo.

5.34 SEONGSAN SERTES

The series consists of gently sloping to sloping, deep, well drained soils developed in recent alluviummeolluvium weshed from the adjacent areas of Jeonnam, Semgag. Songjeong and similax sojls. These soils ocour in colluvial alopes and conceve areas. Depth to bedrock is very deep, renging from 5 to 10 m . This series is a member of the coarse loamy family of Dystric Fluventic Eutrochrepts.

A typical profile follows:
Ap=on to 17 cm g strong brown (7.5VR 5/6) aandy loam; vexy weak fine granulan structure; loose; few, fine roots: abrupt, amooth boundary; pH 5.5.

B1-17 to 67 cm; strong brown (7.5YR 5/8) sandy loam; single grain: very friable, alightly eticky, and slightly plastie; few, fine pores; very few, fine roots; abrupt, smooth boundary; pH 5.5 .

B2-67 to 130 cm ; strong bxown ($7.5 \mathrm{MR} \mathrm{5/8)} \mathrm{sendy} \mathrm{loam:}$ gingle grain; very friable; pH 5.5 .

The Ap horizon is somewhat variable in colour depending on the age of deposits. It is red to yellowish red in recent deposits and is strong brown, dark yellowish brown ox brown to dark brown in older deposits. Its texture is sandy loam, silt loan or loam. The B horizon is atrong brow, yellowiah red or brownish yellow sendy loam ox loam to clay loan. the Chorizon, not described in the profile, is brown to pele brown sandy loam. In the depression areas the lower part of the 0 horizon is occasionally mottled with grayish brown or atrong brown.

The Seongsan soila associated with the Songjeong soils, differ from the Bansan in having lighter coloured surface and in lacking the silty clay loam subsoil. They are coarger textured, moxe friable, and more permeable then the Baegsan, and are finer textured and deeper than the Toge that occupy low torraces and fans.

The seongsan are strongly to blightly acid, moderate in natural fertility, and medium in orgamic mattex content. Permeability is rapid, and available moisture oapacity is low. Cation exchange capacity is low, and base satuxation high.

These soils cover about 2 percent of the surveyed areag and are mainly in the northern and central parts of the Guns. Most areas are in coltivated crops, much as potato, redish, water melon or upland rice. A few small areas are in pine foreat or grassland.

5.34.1 Seongsan Sandy Loam, 2 to 7 Percent Slopes (SuB)

This deep, well drained soil is on gently sloping concawe areas chiefly in the noxthem and control parts of the surveyed area. The profile in as described for the series, but included are many areas that have a surface layer of brown to dark brown or red to yellowich red loam on sandy clay loam, small ereas of soil with thick clay loam or silty clay loam subsoils, and small axeas of eroded soils.

This soil has a thick root zone, with the surface runore medium to slow, and erosion hazard slight.

The soil is well suited to cultivation, but not for paddy wice. In some places orchards have been ostablished. The main management concern is orosion control.

Capability unit ITs.
Paddy suitability group PAabo.

5.34 .2 Seongsan Sandy Loam, 7 to 15 Percent Slopea (SzC)

This deep and well drained soil is found on sloping narrow valleys, with a profile generally similar to that describod for the series. Included with this soil are many areas having a loan or sandy day loam surface layer 30 to 50 cm thick, small areas with a thick silty clay loam to clay loam B horizon, and a few areas of greater slopes than the described range.

This soil has a thick root zone, with surface ranoff medium to slow, and erosion hazard severe.

The areas of this soil are small, and are mostly cultivated to crops other than rice, to which it is well suited. Some parts are in foreat. Erosion is the chief
managenent hazard, but well fertilized and managed pastures should produce moderate amounte of grazing.

Capability unit IIIe.
Paddy suitability unit P4abc.

5.35 SINDAB SERTES

The aeries, consisting of level, deep, poorly dreined soils developed in alluvium on depressed areas of thood plains, is a member of the sandy ramily of Pypio Peammequents.

A typical profile follows:
Ap-0 to 9 cms grayish brown $(2.5 \times 5 / 2)$ sendy loam with common, fine prominent mottles of brown to dack brown ($7.5 \mathrm{IR} 4 / 2.4$) massive; friable, slightly sticly, and slightly plastic; common, fine pores; meny, fine roots; abrupt, smooth boundaxy.

As-g to $17 \mathrm{~cm} ;$ dark gray ($5 \mathrm{X} 4 / 1$) sandy loam with many tine to medium mottles of reddish brown ($5 \mathrm{IR} 4 / 4$): masaive; friable, glightly sticly, and slightly plastio; common, tine pores; common, fine roots; abrupt, smooth boundary.

01g-17 to 31 cms dark gray to gray ($5 \mathrm{y} 4 / 1$ to $5 / 1$) sandy loam with few, fine prominent mottles of strong brown (7.5MR 5/6): massive; very friable; very few, fine pores: few, fine roots; abrupt, smooth boundary.

G28-31 to $120+\mathrm{cm}$: dark gray (5y 4/1) sand to loany and: single grain: very friable.

The A horizon is grey, dark gray, or grayish brown coarse sandy loam or loamy sand with mottles of brow to dark brown or reddish brown. The C horizon is gray. dark gray, of bluish gray sand, sandy loam or loamy send with mottles of strong brow or yellowish red, and containg grevels in some places.

The Sindab are associated with the Gangdong and Hwangyong. These are andy throughout the profile, while the Gangdong have loamy upper horizons.

These soils are slightly to medium acid, and are low both in natural fertility and in organic metter. Permeability is rapid, and available moisture oapacity low. Cation exchange capaciby is low, and base saturation is medium to high.

The Sindab cover very small tracts of the area, and are in rice paddy.
5.35 .1

Sindab Sandy Loam, 0 to 2 Percent Slopes (Sn)
This deep and poorly drained soil is the only one in this surveyed area, and ocours in level to nearly level deprescions of the flood plains. Most areas have a profile similar to that described for the series, but inoluded are small areas that have a thin surface layer of brown silt loan to alay loam.

This soil has a high ground water table and a thick root zone. The surface runof is very slow. Because of the poor drainage and coarse texture, it is not suited to cultivation, and only will be really suited to paddy rice if clayey soil is added. Even if drained these mmall areas are a poor prospect for other crops because of the low available moiature capacity.

Capability unit IVw.
Paddy suitability group P3b.

5.36 staneung sertes

The Sinheung series, consisting of nearly level, deep, imperfectly drained soils formed in recent alluvium on broad alluvial plains, is a member of the fine loany nonecid family of Aeric Fluventic Haplaquents.

A typical profile follows:
Ap-0 to 15 cm ; very dark grayish brown ($2.5 \mathrm{Y} 3 / 2$) loam; weak, fine to coarse granular structure; friable, slightly sticky, and slightly plastic; few, fine pores; many, fine roots; abrupt, smooth boundaxy; pH 6.0.

A1-15 to 35 cmp grayish brown ($2.5 Y$ 5/2) loam with many, fine to medium prominent mottles of dark brown (10YR 3/3); massive; slightly firm, slightly sticky, and slightly plastic;
comon, fine pores; common, very fine roots; abrupt, amooth
boundary: pH 6.3 .
A3-35 to 55 cm g grayish brown (2.5 xR 5/2) loan with common, fine to medium distinct motties of dark brown (10xp 3/3); massive; firm, slightly sticky, and alightly plastic: many, vexy fine to medium pores; common, very fine roots: abrupt, smooth boundery; pli 6.3 .

B22-55 to $75 \mathrm{~cm} ;$ grayish brown (IOYR 5/2) loam with common, fine to coarse distinct mottles of daxk brown (10yR 3/3); moderate, very coarse prismatic; structure; firm, sticky, and plastic; clay cutans; many, fine to medium pores; very Sine roots; abrupt, smooth boundary; pH 7.0.

B22-75 to 100 cm ; yellowish brown (10रr 5/8) silt loam with many, coarse faint mottles of grayish brow (10YR 5/2); moderate, very coarse prismatio structure; sticky and very plastio; common, vexy fine to fine pores; few, very fine roots; gradual, smooth boundary: pH 7.0.

B3-100 to $130 \mathrm{~cm} ;$ yellowish brown (10 YR 5/8) 3oam with comon, coarse faint mottles of pale brown (10xR 6/3); massive; frieble, slightly sticky, and nonplastic, common, fine to coarse pores; abrupt, smooth boundary; pH 7.0.

C-1304 cm; dark grayish brown (2.5Y 4/2) fine sandy loam; single grain; loose: pH 6.5.

The Sinheung soils have a grayish brow to dark grayish brown or olive gray silt loam, sandy loam or loam A horizon. The B horizon is yellowieh brown but has mottles of grayish brown to dark grayish brown, and its texture is loam, silt loam, or sandy loam. In rice paddy the upper B horizon is mainly gray. Fine white and yellow mica is generally present throughout the profile.

The 0 horizon is dark erayish brow sandy loam or silt loam to silty clay loam, which may be coaxser with depth.

The Sinheung occur as small areas along the river sides of the surveyed area with the Hagsan and Yeongsan soils. These are less drained than the Hagsen, and are deeper, finer textuxed, and higher in clay content than the Subuc.

They are medium to strongly acid, moderate to moderately high in natural fertility, and medium in organic matter. Permeability and available moisture capacity are moderate. Cation exchange capacity is medium, and base saturation is medium to high.

Most areas are in rice paddy, which is oultivated to barley or wheat in the winter.

5.36.1 Sinheung Loam, 0 to 2 Pexcent Slopes (Sh)

This deep and imperfectiy drained soil is on level to nearly level, broad alluvial plains. The surface layer is generally grayish brown to dark grayish brown fine sandy loam or silt loam, and ranges in thickness from 15 to 25 cm . otherwise, the profile is generally as described for the series. Included with this soil are a few small axeas with coarse sand throughout the prorile, small areas of three percent slopes, and small areas of better dxained soils.

The soil is easy to worl:, has a thick root zone, and surface runoff in alow. It is in, and best suited to, paddy rice. It may also be used to grow barley or wheat in the winter. Additional drainage is needed for maximum crops of barley.

Capainility unit IIw。
Paddy suitabiaity group pl.

5.37 SINEONG SERTES

The Sinjeong series, consisting of sloping, deep, well drained, moderately permeable soils formed in residuum derived chiefly from tuff conglonerate, is distributed on the lower hills or mountain footslopes in the western part of Gwangsan Cun, and is a member of the fine loamy family of Typic Dystrochrepts.

A typical profile of Sinjeong series, on 10 percent slope of cultivated land in Taega Ri, Samdo Hyeon follows:

A-0 to $8 \mathrm{~cm} ;$ dark reddish gray (5RR 4/2) loang weak, fine to medium, granular structure: friable, nonstioky and nonplastic; few, very fine pores; many, fine to medium roots; clear, mmooth boundary.

Bl- -8 to 26 cm ; dark reddish gray ($5 \mathrm{YR} 4 / 2$) loam; weak, coasse subangular and weak, fine to medium granuler
structure: firm, nonsticky, and alightly plastic; few, fine pores; comnon, fine roots: abrapt, smooth boundary.
B2-26 to 70 cm ; mottled weak red (IOR 4/2), very dark gray ($7.5 \mathrm{YR} \mathrm{NB} /$), white ($7.5 \mathrm{YR} \mathrm{NB} /$) and pink ($7.5 \mathrm{YR} \mathrm{1/4} \mathrm{)} \mathrm{)}$ sandy loom; weak, mediun subangular blooky structure; firm, gradual, smooth boundary.
c- -70 to 150 cm ; very lixm sandy loam.
The A horizon is dark reddish gray, reddish brown to dark reddish brown or brown to dark brown loam, silt loam or fine andy loam. The B horizon is various in colour, dark reddish gray, weak red, pale red, very dark gray; white loam, gilt loam, fine sandy loam or clay loam. the c horizon is maprolite of very firm sandy loam, loamy sand, or clay loan with verious colours.

In the relatively mooth simple alopes, these solla are usually associated with the Hebin, and at high elevations, occur with the Jeongja.

They are strongly to medium acid, moderately low in natural fertility, and low in organic matter content. Available moistrue capacity is medium or low. Cation exchange capacity is medium and base saturation low.

Cultivated crops, such as barley, wheat, potato, soybeans, and vegetables predominate with a few small areas in pine. Erosion control is the main management problem.

5.37.1 Sinjeong Silt Loam, 7 to 15 Percent Slopes, Eroded (SjC2)

The profile of the soil is as described for the series, but inoluded axe some areas of brown to dark brow, noneroded soil, and a few small areas of less or greater slopes than the described range. The rooting zone is moderately thick and surfece runote rapid.

This soil is moderately suited, and used, for crops such as soybean, potato, barley, wheat and vegetables. The two main management problems are erocion, and droughtiness due to the low available moisture capacity.

Capability unit ITIe.
Paddy suitability group P3ac.

5.38 SONGJEONG SERTES

The Songjeong series, consisting of sloping to moderately steep, deep, well drained soils formed over grante and granite-gneiss saprolite, occur in dissected old bedrock pediplane of mountainous areas, chiefly in the central part of the suryeyed area. Bedrock ranges from 2 to 5 m from the surface. This series is a member of the fine loany femily of Typic Hapludults.

A typical profile follows:
Ap-0 to 16 cm ; brown to daxk brown (7.5\%R 4/4) loan:
weak, medium to coarse subangular blocky breaking to weak,

Gine to medium gromular structuxep friable, stioky, and plastic; few , fine to mediun pores: many, fine roote; abrupt, gnoobh boundexy: pRI 5.2.

Belt- -16 to 34 cm: redaish brom ($5 \mathrm{vR} \mathrm{4/4} \mathrm{)} \mathrm{clay} \mathrm{loem;}$ moderate, coase prismatic breaking to moderate, medium subangular blocky atructure: fim, sticky, and plastio; thin, clay cutans; conmon, fine to medium pores; comnon, fine roots: clear, smooth boundary: pH 5.8.

B22t-34 to $50 \mathrm{~cm}:$ yellowiah red ($5 \mathrm{mp} 4 / 6$ to $4 / 8$) clay loom: moderate, mediun to coarse subangular blocky gtructure; friable, slightly stioky, and slightly plastic; thin clay cutana; common, fine white and yellow mica; few, fine pores: cleax: mooth boundary; pH 5.9 .
$03-50$ to 90 cmi yellowish red ($5 \mathrm{mR} 5 / 8$) clay loam: maseive: friable, glightly sticky, and slightly plastic; conmon, fine white and yellow mica; clear, smooth boundary; pll 5.9.
$02-90$ to 150 cm; cxushed colows strong brown (7.5YR 5/6) clay loam; mascive; friable, slightly sticky, and slightly plastic; common, fine mica.

The Songjeong soils have a brown to dark brown or yellowish browng friable loam or silt loam Ap hoxizon in the only alightly exoded areas but the severely eroded. surface layer ranges from red to yellowish red. The B2 horizon ia yellowish red, reddish brown, or red clay loam, sandy clay loam or silt loam. The o horison is yellowish brown to gtrong brown or yellowish red clay loan or Eandy loom acidio crystalline saprolite. White and yellow mice are common throughout the protile.

The Songjeong, mainly associated with the Jeonnan soils, are somewhat coarser textured, and moxe permeable, heving moxe mica then the lattex.

They are strongly acid, moderate to moderately low in natural fertility, and medium in organio matter content. Permeability is moderate, and available water capacity is medium. Cation exchange capacity is medium, and base saturabion low.

About 60 percent of the area is in cultivated orops, such as wheat, potato, and other vegetables, while the remainder is still in forest of pines, alders, acscia, and an understoxy of azalea.

5.38.1 Songjeong Loam, 7 to 15 Percent Slopes, Severoly Hroded (SoC3)

In most places the surface layer is red to yellowish red clay loam to gandy clay loan or loam 8 to 12 om thick. The profile otherwise is generally gimilar to that described for the series, but includes some areas with silty clay to clay b horizone. mall areas of less or greater slopes than the described range, and some areas of slightly eroded soils.

The burface runoff is rapid, and exosion is a severe hazard. The root zone is generally thick, and the plough layer friable and easy to woxk.

Or these small axeas about 70 percent have been cleared for olltivated orope, and the reat is in forest. This noil is suited to cultivation i severe erosion. the
main management problem is controlled. Production of pasture and hay crops can expect high yields if lime and fertilizer are used, and good management praciised.

Capability unit IIIe.
Paddy suitability group P3ac.
5.38 .2 Songjeong Loem, 15 to 30 Percent Slopes, Severely Eroded (SoD3)

In most areas this soil has a red to yellowish red or yellowish brown clay loam, loan or sandy clay loan surface layer. Otherwise, most areas have a profile similax to thet described for the series.

Included in areas mapped as this soil are some areas with silty clay or clay B horizons, with the B horizon eroded from the soil exposing the underlying saprolite, small areas of greater slopes than the described range, and a few areas of gullied land.

This soil has a thick root zone. Surface runoff is rapid, and erosion is a very severe hazerd. This soil is difficult to work because of steep slopes.

These small axeas are mostly in pine forest with some alders and acacia, with some recently cleared parts in cultivated crops. Main problem in managing the soil is to control erosion, Moderate to high yields of forage crops may be expected when this soil is limed, fertilized, and planted to an adapted species.

Capability unit IVe.
Paddy suitability group PAabc.
5.38 .3 Songjeong Soils, 15 to 30 Percent Slopes, Gullied (SoD4)

The unit consists of areas from which exosion has removed all of the original surface soil and most of the oxiginal subsoil. There are intricate patterns of shallow and deep gullies in many areas. Included in this mapping unit are some areas of the Samgag soils, and small areas of less or greater slopes than the described range.

Surface runoff is rapid, and the erosion hazard is very severe. The root zone is thin. This soil, of small extent and poorly suited to cultivation, may be suitable for pasture plants if the severe erosion is controlled. Some of the areas are protected by grasscover, but generally the land is bare and idle. Brosion control is the main managenent problem. Some tree growth could be obtained if planted.

Gapability unit VIIe.
5.38.4 Songieong-Sampar Complex, 7 to 15 Percent Slopes, Froded (SSC2)

The soils, occurring as small areas in gently sloping mountainous areas throughout the Guns, have 80 percent Songjeong and 20 percent Samgag soil. They ocour in such an intricate pattern that they could not be mapped separately at the soale used. Most have profiles similar to that described for their respective series, but generally the surface layer of the Songjeong soil is yellowish red to red loam or clay loam to sandy clay loam. With this complex are included small areap of less or greater slopes than the described rance, some areas of only slightly eroded soils where the surface layer is brown to dark brow, or strong brown loan to silt loam or fine sandy loam.

Surface runoff is rapid, and erosion hazard severe. These soils have a thick root zone, but are poorly suited to cultivation. The areas are small and are mostiy in pine forest mixed with some alders and acacia. A few small parts are cultivated to such crops as rye, potato and radish. Properly limed, fertilized and managed, forage crops would produce moderate yields. Erosion is the chief management problem.

Capability unit IITe.
5.38.5 Songjeonc-Samgac Complex, 7 to 15 Percent Slopes, Severcly Broded (SSC3)

This complex, consisting of about 75 percent Songjeong and 25 percent Samgag soil, occurs as small areas in the mountainous areas of the Guns.

These soils have profiles like those described for the series.
Whth the soils of this complex are included a Iew small areas of gullied land, and smell areas of greater slopes then the described renge.

The root zone is generally thick, surface runofe rapid, and the erosion hazerd severe.

Pine forest mixed with some aldexs and acacia predominates in these small areas, with about 10 percent in cultivated crops. These soils are poorly suited to cultivation and the main management concern is exosion control. Areas limed, fertilized, seeded to adopted forege crops, and properly managed, would produce moderate yields.

Capability unit ITIe.
5.38 .6 Songeong-Samgar Complex, 15 to 30 Percent Slopes, Froded (SSD2)

The soils, occurring as small areas in moderately steep slopes of the mountainous areas throughout the surveyed areas, are about 60 percent Songjeong and 40 percent Samgeg. Profiles are similar to those described for their respective series. Bedrock is more than 150 cm from the suxfece. With this complex are included small areas of greater slopes than the described range, and a few mall areas of only slightly eroded soil.

Surface runoff is rapid, and the erosion hazard severe. These soils are poomy suited to cultivation, but are better suited to woodland or pasture. Forest is general with a few smell areas in crops, but properly fertilized, limed, seeded and managed, pasture will produce moderate yields. The chief management hazard is exosion.

> Capebility wnit IVe.
5.38 .7 Songjeong-Sancae Complex, 15 to 30 Percent Slopes, Severely Froded (SSo3)

This complex, consisting of about 60 percent Songjeong and 40 percent Sangeg soil, occurs as small areas in moderately steep slopes of the mountainous areas. In most places the original surface layer has been eroded, with some shallow and deep gullies being fownd. The present surface layer is red to yellowish red or yellowish brown loam, clay loam or sendy cley loam 5 to 8 cm thick. Bedrock is more then 150 cm from the surface. The profiles otherwise are similar to those described for their respective series.

Abstract

With this complex axe included small areas with silty clay or clay subsoils, small axeas of greater slopes than the described range, and a few small areas of eroded soil where the sur face layer is brown to dawk yellowish brown. The root zone ia thick, surface runoff rapid, and erosion hagard very severe. - Most exeas in forest are well suited to woodland, but not fox most agricultural crops. The main management problem is exosion control, but this is usually low in well managed pastures. Moderate yields of forage orops oan be obtained when the soill is well managed.

Capability unit TVe.

SUBUC SEPTES

The Subug series, consisting of gently sloping to sloping, deep, poorly drained goils formed in alluviun on small valley flood plains, is a member of the coaxse loany over sandy akeletal acid family of Fluventic Haplaquepts.

A typical protile follows:
Ap-o-0 to 16 cm i dark grayish brown (10yR 4/2) gravelly sandy loam with few, fine, distinct dark yellowish brown (10YR 4/4) mottles; massive; friable, slightly sticky, and slightly plastic; few, fine pores; common, fine roots; abrupt, srooth boundary; pH 5.1.

B21g-16 to 35 cm ; wery darle grayish brown ($2.5 \Psi 3 / 2$)
grayelly sandy loam with common, fine prominent mottles of daxk yellowish brown (10YR 3/4); massive; friable; slightly sticky, and alightly plastic; common, fine pores; few, fine roots: abrupt, smooth boundary; pH 5.8.

B22g-39 to 56 cm ; gray to olive gray ($5 \mathrm{~T} 5 / 1-5 / 2$) cobbly to eravelly loany coarse sand with comnon, fine, prominent mottles of dark yellowish brown (IOYR 3/4); abrupt, Emooth boundaxy: pH 5.5.

B23s-56 to $100 \mathrm{~cm} ;$ gray ($5 \mathrm{Y} 5 / 1$) very gravelly to cobbly sand with few, fine, distinct olive brow (2.5 Y 4/4) mottles.

The surface layer is gray to dark gray or grayish brown to dark grayish brown loan, silt loam or sandy loan usually motbled with yellowish brown or reddish brown. It contains cravels in some places. The 3 horizon is gravelly sandy loam or gravelly sand, and beging at a depth of 15 to 50 cm .

The Subug, occurring as small areas with the Gengdong and Jisan soils, have gravelly textures, while the Gangdong and Jisan have only small amounts of pravel. They are also grayer and lacking in the dark surfece present in the Hogye.

The Subug are medium to strongly acid, moderate in natural fertility, and mediun in organio matter content. Permeability is moderately rapid, and available moisture capacity is low. Cation exchange capacity is low, and base saturation mediun to high.

The Subug are mostly in paddy, being used only for rice because of poor drainage.

5.39.1 Subug Sandy Loam, 2 to 7 Percent SLopes (SpB)

In many places the surdece layer is free of gravel, but most areas have a profile similax to that described for the series. With this soil are included many areas that have a loan surface layer, a few small areas of river level with gravelly surface soil, and small areas of gravel free soils.

Surface runoti is mediun to glow.
The areas of this soil are mall, and are mostly in peddy rice, to which it is well suited, for, if drained to grow other crops it would be dronghty , me main management concerng axe $100 d$ control, removal of gravele from the plough layer, and drainage.

Capability unit IVm.
Paddy suitability group P3ab.

5.39 .2 Subug Sandy Loam, 7 to 15 Pexcent Slopes (SpC)

Most areas heve a profile similaw to that described for the series, but inoluded are mall areas that lack gravel in the profile.

Surface runofe is medium to slow.
The small axeas of this boil are mostly in paddys and probably unsuited to a wide range of orops, even $i f$ drainage is provided, because of the low available moisture capacity. The main management problem is soil drainage and the removal of grevels from the plough layex.

Gapability mitt IVW。
Paddy suibability group P3ab.

5.40 SUGYE SERTES

The sucye series, consisting of nearly level, moderately deep, poorly drained soils developed in alluvium on alluvial plains or on mall valleys, is a member or the fine silty acid family of Fluventic Haplaquepts.

A typical profile follows:
Ap-m to 10 cm: light olive brom ($2.5 \pm 5 / 4$) silty clay loam with many, fine to medium prominent mottles of reddish brown (5 VR 4/4) and common, medium taint mottles of daxk gray ($5 \mathrm{Y} 4 / 1$); massive; friable, very sticky, and very plastio: few, fine pores: meny, fine to medium roots; abrupt, smooth boundary; plif 4.9.

B2lg-10 to 29 cm ; dark gray (5 Y 4/1) silty clay loan with common, fine to medium, prominent mottles of yellowish brown (loyr 5/6); massive; friable, very stioky, and vexy plastic; comon, fine pores; common, fine roots; clear, smooth boundary; pH 5.5.

```
B22g-29 to 51 cm; daxk gray silty clay loam with common,
fine, prominent mottles of reddish yellow (5IR 6/8) or
brown (7.5 XR 5/4); weak, very coarse prismatio structure;
friable, very sticky, and vexy plastic; common fine pores:
few, fine roots; abrupt, smooth boundary; pH 5.3.
cgl-51 to 65 cm; dark gray (5Y 4/1) or bluish gray silty
olay loam with few, fine distinct mottles of grayish brown
(2.5Y 5/2); massive; friable, very sticky and very plastic:
fow, fine pores; few, very fine roots; abrupt, smooth boundary;
pHE 5.2.
```

Cg2-65 to $120 \mathrm{~cm} ;$ dark gray (5Y 4/1) or bluish gray ailty clay loan; massive; very sticky and very plastic: few. fine pores; few, very fine roots; pH 5.1.

The Sugye soils have an Ap horizon of gray to dark grayish brown or olive brown silty clay loan to silty clay with mottles of reddish brown. The B horizon is dark gray, or olive gray silty clay loam mottled with reddish brown or yellowish brown. The C horizon is gray, olive, or bluish gray, sonetimes dark silty clay loam or clay loam, and begins at a depth of less then 50 cm . It is mottled in some places.

The Sugye soils, occurring as small areas with the Honam and Geugrag soils, have less clay and less mottles in the B horizon than the latter two.

The Sugye are medium to strongly acid, and moderately high both in natural fertility and organic matter. Permeability is moderate, and available moisture capacity is high. Cation exchange capacity is medium, and base saturation medium to high. All of the areas are in paddy, and used for rice because of the poor drainage and high ground water table.

5.40.1 Surye Silty Clay Loam, 0 to 2 Percent Slopes (SK)

The profile generally is similar to the one described for the series, but includes small areas of gently sloping soil, and a few snall axeas of soils with heavy silty clay and silty clay texture.

The ground water table is on or near the surface during wet season, and is found about 50 cm below the surface in the dry season. This soil has a thin root zone.

These small areas are mostly in paddy rice, to which it is best guited as the poor drainage and high ground water table limit the alternatives. However, the installation of a well designed system of drainage would permit the growing of a wide variety of crops, and high yields could be expected.

Capability unit IIw.
Paddy suitability group PI.

5.41 TOGYE SERTES

The Tozye series, consisting of gently sloping, well drained, moderately deep soils formed in alluvial-colluvial materials washed from areas underlain by granite,
is in alluvial footslopes, fans, and low terraces. This series is a member of the sandy family of Typic Udipsamments.

A typical profile follows:
Ap-0 to 9 cm ; brown to dark brown (7.5YR 4/4) loamy coarse sand; weak, fine to medium granular structure; frieble, $;$ many, fine to medium roots; clear, smooth boundary: pH 5.7.

C--9.9 to $100 \mathrm{~cm} ;$ strong brown (7.5MR 5/6) Ioany coarse sand; single grain; friable; many, fine mica; few $_{8}$ fine roots; pH 5.7.

The Ap horizon is brown to dark brown or dark grayish brown loamy coarse sand to loam, containing fine gravels in some places. The C horizon is strong brown, brown, or yellowish brown loamy coarse sand to sand or coarse sand with fine gravel.

The Togye are associated with Samgag and Seongsan soils in the lower position, but differ from the Bonryang and Hwabong in being on fans and terraces rather than on flood plains.

These soils are medium to strongly acid, moderately low in natural fertility, and moderately low to medium in content of organic matter. Permeability is rapid, and available moisture capacity very low. Cation exchange capacity is very low, and base saturation high.

The Togye soils, scattered as small areas over the surveyed area, are all cultivated to orops other than rice.

5.41.1 Togye Loamy Coarse Sand, 2 to 7 Percent Slopes (ToB)

The profile is as described for the series, but includes a few small axeas of lesser slopes.

The ground water table occurs two metres below the surface. Suxface runof is slow. This soil has a thick root zone, and is suited for horticulture crops, mostly other than rice. The main nanagement concern is to lessen leaching, resulting from the coarse texture.

Capability unit IVs.

5.42 yeongsan series

The Yeongsan series, consisting of level, moderately deep, poorly drained soils developed in alluvium on the broad alluvial plains, is a member of the fine loamy over sandy family of Typic Ochraqualfs.

A typical profile follows:
Ap-0 to $12 \mathrm{~cm} ;$ gray ($5 \mathrm{Y} 5 / 1$) loam with few, fine prominent mottles of brown to dark brown ($7.5 \mathrm{YR} 4 / 4$); massive; friable, sticky, and plastic; few, fine pores; common, fine roots; clear, smooth boundary; pif 5.1.

Ag-12 to 23 cm gray loam with common, fine to medium prominent mottles of yellowish red ($5 \mathrm{XR} 5 / 6$) and dark reddish brown (2.5YR 3/4) weak, coarse subangular blocky structure; friable, stioky, and plastio; common, fine pores; few, fine roots; abrupts, smooth boundary; pH 6.5.

Bl- -23 to 36 cm ; olive gray ($5 \mathrm{X} 5 / 2$) clay loam with many, mediun to coarse distinct mottles of yellowish brown (10YR 5/6) and yellowish red ($5 \mathrm{YR} 4 / 6$); moderate, coarge primmetic structure; firm, sticky, and plastic; thin clay cutans; many, fine pores; few, fine roots; clear, smooth boundary; pH 6.7.

B2-36 to 55 cm ; gray ($5 \mathrm{R} 5 / \mathrm{A}$) clay loan with few, fine to medium prominent mottles of yellowish brown (10 KR 5/6); strong, coarse, primatic structure; moderately thick clay cutans; firm, very sticky, and very plastic; many, fine pores; very few, fine roots; abrupt, smooth boundary; pH 6.3.

B3-55 to $72 \mathrm{~cm}_{8}$ olive gray ($5 \pm 5 / 2$) loan with many, fine to mediun distinct mottles of yellowish red (10yR 5/8) moderate, coarse prismatic structure; sticky and plastic; many, fine pores; few, fine roots; abrupt, smooth boundary; pH 6.3.

Cl- -72 to 100 cm ; grayish brown (10yR 5/2) sandy loam with few, fine prominent mottles of dark reddich brown ($5 \mathrm{YR} 3 / 4$); single grain; very friable, sticky, and nonplastic; common, fine pores; pH 5.7.
c2--120t om; grayish brown (10YR 5/2) sand.
The Yeongsan soils have a grayish brown to dark grayish brown or gray loan to silt loam or silty clay loam surface layer 15 to 20 cm thick. The subsoil is gray, olive gray or grayish brown clay loam to loam. The 0 horizon is dark gray to grayish brown sandy $20 a \mathrm{~m}$ to sand, and begins at a depth of 60 to 80 cm .

The Yeongsan soils occur as small areas on the broad alluvial plains with the Honan soils, but are shallower, and coarser in texture than them. They also differ from the Jisan soils, in lacking gravel and in having a shallower, and ooarsex textured C horizon.

The Yeongsan are medium to strongly acid, moderately high in natural fertility, and medium to high in organic matter content. Permeability is moderate, and available moisture capacity high. Cation exchange capacity is low, and base saturation is high.

Most areas are cultivated only to paidy rice with a few small areas being used for barley or wheat.

5.42.1 Yeongsan Loan, 0 to 2 Percent Slopes (Ys)

This soil is the only one mapped in this surveyed area, and occurs on level to nearly level broad alluvial plains. The profile is as described for the series.

With this soil are included many areas of a grayish brown to daxk grayish brown silty clay loam or gilt loan surface soil, a few small areas of a brown sandy loam surface layer recently washed from adjacent uplands, some areas with a silty clay subsoil, a few small areas having a substratum begiming at depth of 40 to 50 cm , and small areas of gently sloping soil.

Surface runoff is slow, and permeability is moderate in the upper layer and rapid in the lower layer. The root zone is thick, and the ground water table high.

This extensive soil is best suited, and in, paddy rice. It is also suited, if well drained, to nonirrigated crops, such as baxley and wheat. The only management problem is an adequate drainage system, required to cultivate other crops.

Capability unit IIw.
Paddy suitebility group Pl.

5.43 YONGJI SPRTES

The Xongji series consists of gently sloping to sloping, deep, moderately well drained soils. These soils are in narrow valleys and fan terraces, and the depth of alluvial deposits ranges from 100 to 150 cm . The series is a member of the fine loamy family of Aquic Eluventic Eutrochrept.

A typical profile follows:
Ap--0 to $10 \mathrm{~cm} ;$ olive brown ($2.5 \mathrm{Y} 4 / 4$) silt loam with few, fine distinct iron mottles of yellowish brown; weak, fine granular structure; friable; many, fine roots; clear, smooth boundary; pif 5.5.

Aix-10 to 19 cm ; gray to dark gray ($5 \times 5 / 1-4 / 1$) clay loam with common, fine distinct yellowish brown (loyR 5/6) mottles; moderate, coarse prismatic structure breaking to moderate, very coarse subangular blocky structure firm, slightly sticky, and slightly plastic; thin clay cutans: Sew, fine roots; clear, smooth boundary; pH 5.8.

B21-37 to 53 cm ; daxk gray ($5 \mathrm{Y} 4 / \mathrm{I}$) clay loam with mottles of dark yellowish brown (10YR 4/4); moderate, coaxse prisnatio structure breaking to moderate, very coarse subangular blocky structure; very firm; continuous clay .cutens; abrupt, smooth boundaxy; pi 7.8.

B22-53 to 85 cm ; mottled, gray ($5 \mathrm{Y} 5 / 1$), strong brown (7.5YR 5/8), and very dark brown (10XR 2/2) clay loam; moderate, coarse, prismatic structure breaking to moderate, very coarse subangular blocky structure; firm; thick clay cutans; clear, smooth boundary.
cl- -85 to $150 \mathrm{~cm} ;$ light gray ($547 / 1$) sandy loam with common, medium to coarse prominent reddish brown ($5 \mathrm{XR} 4 / 3$) iron mottles; massive; friable, clear, smooth boundary; pH 6.5.

IIB-150 to 170 om; mottled gray ($545 / \mathrm{I}$), brown to dark brown ($7.5 \mathrm{YR} 4 / 4$) and reddish brown ($5 \mathrm{YR} 3 / 4$) firm, silty clay.

The surface layer of these soils ranges in colour from grayish brow to dark grayish brown or olive brown to light gray, and in texture from silt loam to loam. The subsoil is gray to dark gray or variously mottled clay loam to silty clay loan or loam. The chorizon is pale gray or gray silty clay to ailty clay loan with yellowish red and reddish brown mottles. Gravels occur in some places.

The Yongji occur with the Jisan soils in the lower slopes, but are better drained than them. They are medium to strongly acid, moderately high in natural fertility and medium in organic matter content. Permeability is moderate, and available moisture capacity high. Cation exchange capacity is low, and base aaturation high.

Paddy predominates, with rice grown in sumer and barley or wheat in winter.

Chapter 6

use and managmeni of sotls

6.1 INPRODUGTION

In this section of the soil survey, the system of capability classification used by the Korea Soil Survey Project is explained, the soils in each capability unit are given, the suitability and limitations or the soils for cultivated crops and pasture are described, and the management practices required for higher yields are shown.

Soil characteristios favourable for paddy rice differ from those for other crops. These characteristics are considered in the discussion of capability groups, but are expanded in greater detail in the following section on paddy suitability groups. The subsection on capability groups also describes the suitability of some soils for woodland.

6.2 CAPABILITY GROUPS OF SOILS

Capability classification is a grouping of soils to show, in a general way, their suitability for most kinds of farming. It is a practical classification based on the limitations of the soils, the risk of damage when they are used, and the way they respond to treatment when planted to common field crops or sown to pasture crops. They are classified according to degree and kind of permanent limitation, but without consideration of mejor and generally expensive land-forming that would change the shape, depth, or other charecteristios of the soils, and without consideration of possible but unlikely major reclamation projects.

Cagability olasses

The broadest grouping, are designated by Romen nunerals I through VIII. The numerals indicate progressively greater limitation and narrower choices for practical use. There are no soils placed in Class V in this surveyed area. Classes are defined as follows:

Glass I Soils have few limitations that restrict their use.
Class II Soils have moderate limitations that reduce the choice of plants or require special management practices.

Class III Soils have severe limitations that reduce the choice of plants, require special management practices or both.

Class IV Soils have very severe limitations that restrict the choice of plants or require very careful management or both.

Class V Soils have little or no erosion hazard, but have other limitations, impractical to remove, that limit their use to pesture or woodland.

Class VI Soils have severe limitations that make them generally unsuitable for cultivation and that limit their use to pasture or woodland.

Class VII Soils have severe limitations that make them unsuitable for cultivation or pasture and limit their use to woodland.

Class VITI Soils and landforms that do not produce vegetation of commercial value.

Capability subclasses are soil groups within each capability class, and are designated by adding a small letter, e, s, or w to the class numeral, for example, Ile. The letter 'e' shows that the main limitation is risk of erosion unless close-growing plant cover is maintained, 's' that the soil is shallow, droughty, or stony, and "w' that water in or on the soil interferes with plant growth or cultivation.

The classification does not necessaxily reflect the value of the land. The Class IIw and IIIw lends are well suited to peddy rice, and produce high yields without apecial management and irrigation. These soils are too wet to produce good yields of other crops without additional drainage. The IVs soils produce good crops of melon and peanut, but they are too droughty to grow most other crops. In Class I there are no subclasses because the soils have few limitations.

The soils of a subclass are so similar in their important characteristics that they have similar management, productivity and crop responses. Some individual soils within a subolass may have secondary problems. Some wet soils designated as 'w' are sloping and have a secondary problem of erosion. These problems are explained in the subclass. Some management suggestions are given in the mapping unit description of this report. Detailed information on the management of paddy soils is given in the paddy suitability section.

6.2.1 Class I. Soils That Eave Few Limitations

This cepability unit consists of level to nearly level, deep, moderately well drained, slowly or moderately permeable soils that have high or moderate available moisture capacities. These soils are:

Hagsen loam, 0 to 2 percent slopes.
Hwadong silty clay loam, 0 to 2 percent slopes.
Natural fertility and organic matter content are moderate. They have few limitations thet restrict use, and are well suited to a wide range of erops, inoluding paddy rice. Paddy predominates, Deing cultivated to winter barley after paddy rice each year. In the Hwadong soils, water remains on the surface after a rainfall because of its slow permeability, and drainage ditches are required. If sand and a large amount of compost are applied, this will improve the fine soil texture. Good management practices include proper fertilization, liming as needed, and all available crop residues turned in.

6.2.2 Class II. Soila That Have Noderate Limitations

6.2.2.1 Suboless ITe

In this capability unit are gently sloping, deep, moderately well to well drained, moderately permeable, fertile coils, with a generally high evailable noisture capacity. They are:

Bensan-Beegsen complex. 2 to 7 percent slopes.
Changpyeong ailty clay lom, 2 to 7 percent slopes, eroded.
Gwangju-Bancheon complex, 2 to 7 percent slopes.
Hagsan loam, 2 to 7 peroent slopes.
Hwadong silty clay loam, 2 to 7 percent slopes.
Samam loan, 2 to 7 percent slopes.
The soils of this unit are suited to a wide range of orops, such as soybean, rice, corn, barley, and wheat, but are subject to moderate erosion hazexd when ploughed and not protected by soil conservation practices. Strong soil acidity is common.

Brosion can be controlled by contow farming, grassed waterways, and diversion chemels. Many areas have been level-terraced and diked to grow paddy rice, and in the paddies, erosion and runoff are controlled as long as the dykes are properly maintained with well-construoted weir dams.

Good management also inoludes minimun tillage, crop residues turned in, liming as needed, and proper Pertilization.

6.2.2.2 Subolass IIs

In this capability unit are level to nearly level or gently sloping, deep, well drained, rapidly permeable, light and dark-coloured, coarse textured, gravelly soils that have low available moiature capacity. These soils axe:

Bonryang sandy loam, 0 to 2 percent slopes.
Hogye gravelly loam, 0 to 2 percent slopes.
Hogye gravelly loam, 2 to 7 percent slopes.
Seongsan sandy loam, 2 to 7 percent slopes.
They are well suited for a wide range of crops, such as soybean, barley, potato, and vegetabies, and to orohard and mulberry field.

Rapid pexmeability and gravel content are the chier limiting factors and therefore, they are subject to moderate droughtiness because of the high water loss. Removal of gravel will make cultivation easier, but it is a difficult process. Frequent application of fertilizer rather than a large bingle application will leasen effects of the leaching of plant nutrients.

This capebility unit consiste of level and gently gloping poorly to imperfectiy drained, moderately or moderately xapidly permeable soils that have a high water bable. These solls axe:

Gangtong loam, 0 to 2 percent alopes.
Honam-Geqgreg complex, 2 to 7 percent mlopes.
Myocheon loam, 0 to 2 percent slopes.
Jisan loang 2 to 7 percent slopes.
Jisan-Yongji complex, 2 to 7 percent slopes.
Sinheung loam, 0 to 2 percent slopes.
Sugye silty clay loan, 0 to 2 percent slopes.
Yeongan loam, 0 to 2 percent slopes.
The wit generally has high available moisture capacitien except for the Gangdong soils which are loany over sand. Paddy rice is suited, but special management practices are needed to grow other crops. Installations such as drainage ditches axe required to lower the water table to grow such crops as bexley, soybeans, and corr. Becaure most of the soils have been shaped into paddy, no special measures to control erosion are necescery, and soil losses are low if the paddy dikes axe properly meintained. If they are drained, winter grain crops such as barley would grow well after the rice harvest, and drainage would also permit a good growth of crops other than rice during the summer. Proper fertilization, and liming as needed, will increase orop yields. In this context, the Cangdong soils should be given a split application of fextiligex to reduce the leaching of plant mutrients.

6.2.3 Glass III. Soils That Have Severe Limitations

6.2.3.1 Subolass IITe

In thia cepability mit are mostly sloping, deep, well drained or poorly dreined, gravelly to cobbly, eroded soils. These soils ares

Bansen-Beegsan complex. 7 to 15 percent slopes.
Changpyeong silty clay, 7 to 15 percent glopes. eroded.
Gaghwa-Jangweon complex. 7 to 15 percent glopes.
Gaghwa-Jangweon complex. 7 to 15 percent slopes, exoded.
Gwangju-Bencheon complex. 7 to 25 pexcent slopes, eroded.
Gwangsan-Jingog complex, 7 to 15 percent slopes, exoded.
Gwangsen-Jingog complex, 7 to 15 percent slopes, severely aroded.
Hogye gravelly loam, 7 to 15 percent slopes.
Jeonnam silty olay loam, 7 to 15 peroent slopes, eroded.
Jisan loan, 7 to 15 percent slopes.
Jisan-Yongji complex, 7 to 15 percent slopes.
Seogto gravelly loam, 7 to 15 percent alopes.
Seongean sandy loam, 7 to 15 percent slopes.
Sinjeong silt loam, 7 to 15 percent slopes, eroded.
Songjeong loam, 7 to 15 percent slopes, severely eroded.
Songjeong-Samgag complex, 7 to 15 percent slopes, eroded.
Songjeong-Samgag complex, 7 to 15 percent slopes, sevexely
eroded.

The soils in this unit generally have a moderate or high available moisture capacity. They are suitable for and are being used for barley, wheat, soybean, and other comon summer crops, Some areas are in woodland. The Jisan Yongji, and some others, are planted to paddy rice during the summer and barley or wheat in the winterspring. The Jisan soils need to be drained to grow the latter two because of the high water table.

Erosion is the chief hezard in cultivated areas. Contour tillage, terraces, grassed waterways, and weir dams will help retard runoff and control erosion. Wetness or high water table in the Jisen soil is another severe limitation in growing crops other then rice. For these a system or ditches is needed to remove excess surface water, and to lower the water table during the wet seasons.

Welds are somewhat reduced after dry seasons, but some areas cen be used for rice and other crops when water sources are developed. Gravel and cobbles need to be removed, if present, for easter cultivation.

Proper fertilization and liming are necessaxy, and all crop residues should be turned in for higher yields.

These soils are also suitable for pasture, and a conplete establishment programe including land preparation, liming, fertilization, seeding of adapted plants and regulation of grazing, will make long lived, productive pastures.

For orchards and mulberxy fields, the construction of bench bexraces will assist in erosion control. Growing of green manure as an intercrop between orchards or mulbery trees will improve soil fertility, reduce erosion and increase yields.

6.2.3.2 Subclass IIIw

In this capability unit are level to nearly level, poorly drained, deep solla that have high water tables. These soils are:

Honam-Geugrag complex, 0 to 2 percent alopes.
Manseong loam, 0 to 2 percent slopes.

Available moisture capacity is high, pexmeability in Honam-Geugrag soile slows but moderate to moderately rapid in the Manseong solls.

Paddy rice is grown each year, whth some soils planted to winter baxley after its harvest.

Whe high water table is the chiex hazard in growing orops othex than rice, and a gystem of ditches and other installations are needed to remove excess surface water. lower the water table, and to improve internal drainage. However, this is dificult because of the low elevations and the slow permeability of the subsoil which permits only slow drainage. Pumping would be required to lower the water table in many areas because of the lack of outlets. Bedding or hill row culture will improve drainege and permit the growing of general crops on the Fonammeugreg soilis.

Gover crops and crop residues will supply orgenio mettex and help to maintain tilth in areas of intensively cultivated soils. Higher yields can be expected if adequate fertilizer and lime are used.
6.2.4 Glass IV. Soils With Very Severe Limitations

6.2.4.1 Suboless IVe

In this capability unit are mostly moderately steep, deep, well drained, cobbly or rocky, eroded soils. They are:

Bencheon-Banggi complex, 25 to 30 percent slopes, eroded.
Gaghwemangweon complex, 15 to 30 pexcent slopes.
Gaghwe-Jangweon complex. 15 to 30 percent slopes. exoded.
Gwangsen-Jingog complex, 15 to 30 pexcent slopes, exoded.
Gwangsan-Jingog complex, 15 to 30 percent alopes, severely eroded.

Jangweon gravelly loam, 7. to 15 percent slopes.
Jangweon gravelly loam, 15 to 30 peroent slopes, eroded.
Jeonnam silty clay loan, 15 to 30 percent slopes, exoded.
Seogto gravelly loam, 25 to 30 percent slopes.
Songjeong loam, 15 to 30 percent slopen, severely exoded.
Songjeong-Samgag complex, 15 to 30 peroent slopes, exoded.
Songjeong-Samgag complex, 15 to 30 percent slopes, severely exoded.

Most of the solls have modexate or low avcilable moisture capacitiegy but in those exoded, the original surface layer has been washed away, and the light-coloured subgoil is now exposed. As a result, natuxal fertility and organio matter are both low.

The areas are generally in poor pine forest, with some crops grown. Gultivation is not well suited, but pasture, orchards, and trees, are. Erosion is only a mall problem when these soils are covered with a good grass pasture, and high yields can be expected if fertilizer and lime are used. Orchards established on bench terraces will produce well without danger of erosion. Cover crops and other erosion control. measures are necessery in clean-tilled orchards, while the maintaining of grassed waterways will prevent gullying. Many areas with aparse stand of trees are eroded very rapidly mainly because of the removal of leaves and other surface litter.

For higher yields of the general agricultural crops, the soils sould be treated With much lime, phosphorus, and compost. Crop residue left on the auriace provides cover, promotes the infiltration of water, and reduces loss from erosion.

6.2.4.2 Subclase TVe

This capability unit consists of level to gently sloping, deep, well drained, very coarse textured, rapidly permeable soils that have very low available moisture capacity. These soils are:

Hwabong loamy sand, 0 to 2 percent slopes.
Hwangryong aandy loam, 0 to 2 percent slopes.
Hwangryong erevelly sandy loam, 0 to 2 percent slopes.
Togye loamy coarse sand, 2 to 7 percent slopes.
They are low both in natural fertility and in organic matter, are generally poorly suited to most cultivated crops, but well suited to peanut, melon, tobacco, some vegetables, poplar, mulberry, and orchards. Some of the Hwangryong soils are in paddy rice as water is readily available from the nearby streams. Droughtinese or low available moisture capacity is the chief hazaxd, with damage from erosion on the more sloping soils being a limiting factor. Elooding is only for short periods of time, when most danage is done by the rapidy moving water.

The addition of fine clayey soil will improve the coaxse textuse and water holding capacity, and split applications of fextilizers will lessen the effecta of leaching caused by rapid water loss. The fiwagryong soils are easier to cultivate if grevel is removed from the surface.

6.2.4.3 Subclass IVw

In this capability wnit are level to nearly level or gently sloping to aloping. poorly drained, deep, rapidly permeable, coarse textured soils that have high water table. These soils are:

Sindab sandy loam, 0 to 2 percent slopes.
Subug sandy loam, 2 to 7 percent slopes.
Subug sandy loam, 7 to 15 percent slopes.
The Sindab is on the depressed flood plains that have poor drainage outlets. The Subug soils are in small valleys in the general axeas of the Samgag. The soils or this unit are low in available moisture capacity, natural fertility and organic matter content.

Wetness is the chief hazard. They are poorly suited to most culbivated crops, and are being used only for paddy rice because of the high water table. Yields are generally low.

These soils are also subject to droughtiness when drained because of the rapid permeability. The Subug can be properly dreined, and cultivated to many kinds of crops, but the Sindab are difficult because of their lower elevations than the strean bed. Proper fertilization by split application is needed because of the leaching of fextility elements through the coarse-bextured soils.

6.2.5 Class VI. Soils Suitable Only for Pasture and Woodland

6.2.5.1 Subolass VIe

This capability unit consists of moderately steep to steop, deep or shallow, well drained, stony to rocky, and eroded soils. These soils are:

Habin rocky loam, 15 to 30 percent slopes, exoded.
Habin rocky loam, 30 to 60 percent slopes, eroded.
Jangseong rocky silt loam, 30 to 60 percent slopes.
Jangseong rocky clay loan, 30 to 60 percent slopes, eroded.
Mudeung rocky loam, 15 to 30 percent slopes.
Mudeung rocky loan, 25 to 30 percent slopes, eroded.
Mudeung rocky loam, 30 to 60 pexcent slopes.
Mudeung rocky loam, 30 to 60 percent slopes, eroded.
Sangag rocky sandy loam, 15 to 30 percent slopes, eroded.
Samgag rocky sandy loam, 15 to 30 percent slopes, severely eroded.
Semgag rocky sandy loam, 30 to 60 percent slopes, eroded.
Because of the steep slopes, shallow soil depth, advanced erosion, rockiness or stoniness, they are unsuitable for cultivation, but are for pasture and woodland if properly managed. Poor pine forest or grassland predominates, but managing the latter is difficult in many places because of the steep slopes. Intensive grazing will leave the soils bare and subject to further erosion.

Farmers should select areas best suited to trees or pasture, and improve the wooded parts by protecting then from grasing. Trees can be planted where necessaxy, or the areas can be cleared and improved for pasture. Many of these soils have a surface layer that is strongly acid in reaction. This is favourable to pine treesp but not to pasture which will require, as a result, much liming. Some of the soils can be developed into orchard ox mulberry fields.

6.2.6 Class VII. Soils Limited to Woodland

6.2.6.1 Subcless VIIe

This capability unit consists of ateep, well drained, deep, rocky, sevexely eroded or gullied soils. They are:

Jeongja rocky loam, 30 to 60 percent slopes.
Jeongja rocky loam, 30 to 60 percent slopes, eroded.
Mudeung soils, 15 to 30 percent slopes, gulied.
Mudeung very rocky loam, 30 to 60 percent slopes.
Mudeung soils, 30 to 60 percent slopes, gullied.
Sangag soils, 15 to 30 percent slopes, gullied.
Samgag rocky sandy loam, 30 to 60 percent slopes, severely eroded.

Samgag soils, 30 to 60 percent slopes, gullied.
Songjeong soils, 15 to 30 percent slopes, gullied.
This unit is so steep, rocky, severely eroded or gullied that it is suited only for woodland. Gultivation is not practicable, and grazing is severely limited even under intensive management. To reduce losses from erosion, leaf litter should be left on the surface and the bare areas should be reforested.

6.2.7 Class VIII. Hon Productive Soils

This capability unit consists of miscellaneous land units and soil materials that are so shellow and rocky, coarse, or periodically flooded, that useful planta do not grow. They are:

Riverwash, sandy.
Riverwash, cobbly.
Rock land.
6.3 PADDY LAND SUITABILTTY GROUP

Rice is the most important crop in Korea, and grows well on soils that are too wet for growing most other, things. These wet soils are classified as IIw or IITw in the capability classification. About 23470 ha or 66 percent of the total cultivated arees (35344 ha in the survey area) are used for paddy rice. In this section, the use and management of the soils suitable for growing it are discussed.

Management of paddy land can be plamed more effectively if soils are grouped according to those characteristics that affoct the growth of paddy rice and management
of padies. For this reason, the soils of the surveyod areas have been placed in fous paddy land suitability groups, which are designated by P1, P2, P3, and P4. The numerals indicate progressively greater limitations in the use of land for rice. the four suitability groups for rice paddy used by the Korea Soil Survey are defined as follows:

P1 Very well sujbed:

Land that is suitable for rice paddy without the necessity of apecial development or management practices. This soil has no special limitations or hazards.

P2 Well suited:
Land that is suitable for rice paddy with the application of simple special developnent and management practices. This has moderate hazards and limitations.

P3 Moderately suited:
Land that is suitable for rice paddy with the application of difficult special development and management practices. This has severe hazards and limitations.

P4. Poorly suited:
Land that is of limited or questionable suitability for paddy because of very severe hazards, limitations, and very difficult special managenent practices.

Suitability subgroups are soil classes within each suitability group; they are designated by adding small letters, a, b, c, or d to the group mameral, for example, pace. The letter ' a ' shows that the main limitation is slopes; ' b ' that the soil is limited mainly because of coarse texture or rapid permeabllity; ' c ' that the soil is well drained or has low water table; and ' d ' that the soil is limited mainly because of adverse chemical nature, such as acidity and salt. In group PI there is no subgroup because the soils heve no special limitations.

Some of the soils in subclass IIw and IIIw of the capability system are classified as Pl because the high water table is a desirable characteristic. Steep, gullied, stony or rocky soils are unsuitable for paddy rice, and are not included in the ciassification.

6.3.1 Group Pl. Very Well Suited

6.3.1.1 Paddy suitability group P1

This group consists of level to nearly level, deep, poorly or imperfectly drained, very slowly permeable soils that have high water table. These soils are:

Honam-Geugrag complex, 0 to 2 percent slopes.
Hyocheon loam, 0 to 2 percent alopes.

Sinheung loam, 0 to 2 pexcent slopes.
Sugye silty clay loam, o to 2 percent slopes.
Yeongsen loam, 0 to 2 percent slopes.
This group is dominantly fine textured, and generally has high available moisture capacities. Most of the soile are high in natural fertility and high or medium in orgenic matter content.

Few management practices other then proper fertilization and good oultural practices are required. Deep ploughing will help obtain somewhat higher yields and calcium silicate fertilizer will reduce lodeing of rice. The high water table is a limitation to growing winter grain crops such as baxley or wheat, during the winterspring season. Early season cultwre, good varieties, and high level fertilization are also sensible measures in oxder that high yields may be obteined.
6.3.2. Group P2. Well Suited

6.3.2.1 Paddy guitability gxoup P2a.

Solls in this group are gently sloping, deep, poorly drained, moderately permeable, and have high water bable and moderate to high available moisture capacity. These goils are:

Honam-Geugrag complex, 2 to 7 pexcent slopes.
Jisen loam. 2 to 7 percent slopes.
Jisan-Yongji complex, 2 to 7 peroent slopes.
Slope is the only impoxtant limitation. It arfects paddy size and shape. Paddy gystems constructed on the gently gloping sojls heve smell paddies with irregular shapes, and axe subject to losses of jrrigetion water and runore unless dykes are properly maintained. Well-constructed weir dams are needed to control runoft from walls and to regulate the weter level for growing xice. Deep ploughing with adequete fertilizetion would increase yields, and application of calcium silicate will help prevent lodging.

6.3 .2 .2 Paddy suitability group P2ac

This group consiats of gently sloping, deep, well dreined, moderately to slowly permeable soils with medium and heavy textures. These soils have low water tables. They are:

Bensan-Baegaen complex, 2 to 7 percent slopes.
Changpyeong silty clay loan, 2 to 7 percent slopes, eroded.
Gwengju-Bancheon complex, 2 to 7 percent slopes.
Ewadong silty clay $10 a m$, 2 to 7 percent slopes.
Saman Loem, 2 to 7 pexcent slopes.

The available moisture cepacity in these aoils is mostiy high or moderately high. and natural fextility is dominantly moderate or moderately low. Fwadong and Samam soils mostly in rice paddy, are also oultivated to barley or wheat during the wintersprine. The rest are used sor barley, wheat, soybeans, and other summer erops ercept for rice, and are well suited to paddy rice if paddy is established, water sources developed, and cobbles removed.

The slope and low water table axe chief limitations, and therefore, this group ie subject to some droughtiness. Because of the low water table, frequent ixrigation is needed to supply rice plants with enough water. Paddy systems require well conetructed weir dams to proteot the dykes from demage by owerflow Deep ploughing and application of caloium silicate are good cultural practioes, and the Hwadong ghould have sendy solls epplied becauge of the high clay content. Winter grain crope like barley or Wheat grow well during the winter and spring after paddy rice. Crope other than rice will do well during the summer.

6.3 .2 .3 Paddy guitability mroup P2b

This group consists of level to nearly level, poorly drained to moderately well drained, loamy soils over candy soils. These soils, having high watex tables, are:

Ganglong loam, o to 2 pexcent alopes.
Manseong loam, 0 to 2 pexcent slopes.
Availeble moisture capacities are low and permeebility repid, but the high water teble is favourable for the growth of paddy rice. Natural fextility is moderate to low and orgenio matter content, low to moderately low.

Becanse water is avallable, most of the soils are used, and axe well nuited to peddy rice, but if drained, because of their rapid pexmeability and low available moisture capacity, drought will be a hazard. The addition of fine clay, compost, and the split application of nitrogen, are necessary to reduce leaching effects. Occasional green mamure orops will improve soil fertility.

6.3.2.4 Paddy suitability srono P2c

Soils in this group are level to nearly level, deep, moderately well drained. and have a low water table. They are:

Hagsen loam, 0 to 2 percent slopes.
Hwadone silty alay lom, 0 to 2 percent slopes.
The Hegsen soils mocerately permable in the upper, and rapidly permeable in the lower horizons, has a moderate to low available moisture capacity The Gwadong soila are fine textwed. have slow permeability and high available moisture capactties.

Pady mice is well muited, but the low water table aequires a good irmigation sybtem to maintain the necessary watex level. In the Hegsan soil. losses of water and dissolved plant mutrients are a moderate problen. The loss of nitrogen fertilizer oen be reduced by making several small applications during the growing season. In the Hwadong, sand applied to surface layers will improve the bextwe, while a laxge amount of compost will improve soil tilth and rextility. Baxley grows well in the winter. spxinc, and aummer crops such as soybean may be grown well inetead of paddy rice.

6.3.3 Group P3. Moderately Suited

6.3.3.1 Paddy auitability group P3a

Soils in this group are gloping, poorly drained, deep, moderetely permeeble, having high water tables and high availeble moiatare capacities. They are:

Itsan loem, 7 to 15 percent slopes.
Jisan-Xongji complex, 7 to 15 percent slopes.
Paddy rice, because of the high water table, is suitable, but atrong slopes limit aize and ahape, and leave the soils gubject to dike demage and loss of irrigation water following excessive rains. Weir dams are needed to control the runoff and regulate the water level reguired for xice growth. Deep ploughing and proper fertilization will inorease yields.

6.3.3.2 Paddy suitability group P3ab

This group consists of gently sloping to sloping; moderately well drained and poorly drained, deep, rapidly permeable, medium and coarse textured soils that have high water tables and low availeble moisture capacities. These soils are moderate in natural fertility and organio matter. They are:

Subug sandy loam, 2 to 7 percent slopes.
Subug sendy loam. 7 to 15 percent slopes.
Paddy rice, because of the high water table, is suitable, but the slope and low available moisture capacities are limitations.

Peddy dykes with well-built weir dams are needed to control erosion, and nitrogen with other fertilizers should be applied in several applications during the growing season to reduce leaching. This will be assisted by the addition of fine clay and a large anount of compost. Dense planting and dryland direct seeding are good rice culture practices.

6.3.3.3 Paddy suitability group P3ac

This group consiste of sloping, deep, well or moderately well drained, moderately to moderately slowly permeable goils that have low water tables. These soils are:

Bensen-Baegran complex: 7 to 15 pexcent slopes.
Changpyeong silty clays 7 to 15 percent slopes, eroded.
Gaghwa-Jangweon complex; 7 to 15 percent slopes.
Gaghwa-Jangwoon complex. 7 to 15 percent slopes, eroded.
Gwangju-Bancheon complex, 7 to 15 percent slopes, eroded.
Gwangsan-Jingog complex, 7 to 15 percent slopes, eroded.

Gwangsan-Jingog complex, 7 to 15 percent slopee, severely exoded.
Hagsen loam, 2 to 7 percent slopes.
Jangweon gravelly loam, 7 to 15 percent glopes.
Jeomam silty clay loam, 7 to 15 percent slopes, eroded.
Sinjeong loam, 7 to 15 percent slopes, exoded.
Songjeong loam, 7 to 15 peroent sloper, severely eroded.
Ceneral crops othex than rice, and some areas in forest or orchard are usual, but paddy rice conld be developed with the application of difficult special development and management practices. For the peddy land use of the soils, they should be level.. texraced, diked, and have an adequate water supply. Paddies constructed on these boils will need weix dams to protect dykes from overflow damage following intense rains, as the mlopes make them subject to erosion. The paddy system also permita other general crops to grow on the soils without erosion loss. Deep ploughing and application of compost will be good mancgement practices.

6.3 .3 .4 Paddy suitability group P3b

The only coll in this group, is level to nearly level, deep, poorly drained, rapidly permeable, sendy soil with a low available moisture capacity and a high water table. This soil is usually on lower positions than the stream bed. It is sindab sandy loam, 0 to 2 percent slopes.

Paddy rice is general, and because of the high water table, suitable. But the land is subject to droughtiness in drained beceuse of the rapid permeability and very low available moisture capacity. Application of olayey soil, compost, and the split application of fertilizer, will reduce the leaching of plant nutrients and inorease crop yields. The occesional growing of green manure orops will improve soil fertility.

6.3 .3 .5 Peday suitability group P3bo

The soil is Level to neaxly level, deep, well drained, moderately rapidy permeable, eravelly, and dark coloured, and has a low water table. The group consists of Hogye gravelly loam, 0 to 2 Percent slopes.

The soil is only moderately suited to paddy rice because of the gravel content, low water table, and rapid permeability, Most areas are now used for corn, potato, soybean, barley, vegetables and some other crops, with a few small areas in rice poddy.

To grow the last, a dependable water supply is requixed, as losses of water and plant nutrients in paddies would be high. If not removed, the gravel content intertexee with cultivation.

Fine clayey soil and a large amount of compost if applied, will leasen the effects of leaching and improve the available moiature capacity. Proper fertilization. thick planting and dryland dixect seeding are good cultural practices.

6.3.4 Group P4. Poorly Suited

6.3.4.1 Paddy suitability group P4abo

This group consists of gently sloping to aloping, well drained, deep, moderately to moderately rapid permeable, gravelly soils with moderate to low available moisture capacities. These soils, having low or no water table, are:

Hogye gravelly loam, 2 to 7 percent slopes.
Hogye gravelly loam, 7 to 15 peroent slopes.
Seogto gravelly loam, 7 to 15 percent slopes.
Seogto gravelly loam, 15 to 30 percent alopes.
Seongsan sendy loam, 2 to 7 percent slopes.
Seongsax sandy loam, 7 to 15 percent slopes.
Songjeong loam, 15 to 30 percent slopes, severely eroded.
Logye loany coarse send, 2 to 7 percent alopes.
Very few areas have been developed into paddy systems, the majority being cultivated to other crops. They are poorly suited to rice because of the slope, high water requirements, and the lack of a dependable water supply. Construction costs would be high, as would losses of water and plant nutrients. The gravel too would interfere with cultivation if not removed.

Good weir dams to control paddy wall erosion are necessary, as is the addition of fine clayey soils to reduce leaching effects of plant nutrients. Proper fertilization, thick planting, and dryland direct seeding are good rice cultural practices, while compost added to the soil will improve yields.

6.3.4.2 Paddy suitability group Piac

This group consists of moderately steep, well drained, deep, moderately to moderately slowly permeable soils that have very low water tables. These soils are:

Bancheon-Banggi complex, 15 to 30 percent slopes, eroded.
Gaghwa-Jangweon complex, 15 to 30 percent slopes.
Gaghwa-Jangweon complex, 15 to 30 percent slopes, eroded.
Gwangsan-Jingog complex, 15 to 30 percent slopes, eroded.
Gwangsan-Jingog complex, 15 to 30 percent slopes, severely eroded.

Jangweon grevelly loam, 15 to 30 percent slopes, exoded.
Jeomam silty clay loam, 7 to 15 percent slopes, eroded.

At present, most of the soils are in forest of low productivity, and some areas are in cultivated crops other than rice. Paddy rice is poorly suited because of strong slopes and lack of water. These need to be level-terraced for peddy systems and require a dependable source of watex. Strong slopes will also affect paddy size and shape, and those made on the moderately steep slopes will be small and ixregular in shape. Dryland direct seeding may be a way of growing xice on these soils, but cobbles and gravel must be removed for easier cultivation.

Deep ploughing, application of caloium silicate and compost; are good management practices, while the occasional green manure crop will improve soil fertility. Erosion of paddy walls would be controlled by weir dams. Winter grain crops will grow well following the rice harvest.

6.3.4.3 Paddy suitability group PAbc

Soils of this group are level to nearly level, deep, well drained, rapidly permeable, sandy soils with very low available moisture capacity and low water tables. These soils are:

Bonryang sandy loam, 0 to 2 percent slopes.
Hwabong loany sand, 0 to 2 percent slopes.
Hwangryong sandy loam, 0 to 2 percent slopes.
Hwengryong gravelly sandy loam, 0 to 2 percent slopes.
They have low clay content and low cation exchange capacity, and are subject to droughtiness. Paddy rice is grown in a few small areas where water is available, but the rest is poorly suited to cultivated crops other than peanut, melons, mulberxy, and some orchard. To grow paddy rice an irrigation system should be installed.

The loss of water and plant nutrients can be controlled to some extent by applying clayey soil. Split application of fertilizer will reduce their being leached.

Table 3
gUtde to mapping units

Map Symbol	Mapping Unit	Gapability Unit	Page	Paddy suit. Group
BBD2	Bancheon-Banggi complex, 15 to 30 percent slopes, eroded.	IVe		P4ac
BEB	Bancheon-Baegsan complex, 2 to 7 percent slopes.	IIe		P2ac
BEC	Bansan-Baegran complex, 7 to 15 percent slopes.	IIIe		P3ac
Bo	Bonryang eandy loam, 0 to 2 percent slopes.	IIs		P4be
CpB2	Changpyeong sillty olay loam, 2 to 7 percent slopes, eroded.	IIe		P2ac
$\mathrm{CpC2}$	Changyeong silty clay, 7 to 15 percent slopes, eroded.	IIIe		P3ac
GJC	Gaghwa-Jangweon complex, 7 to 15 percent slopes.	IIIe		P3ac
GJc2	Gaghwa-Jangweon complex, 7 to 15 percent slopes, eroded.	ITIe		P3ac
GJD	Gaghwa-Jangweon complex, 15 to 30 percent slopes.	IVe		P4ac
GJD2	Gaghwe-Jangweon complex, 15 to 30 percent slopes, eroded.	IVe		P4ac
Gd.	Gangdong loam, 0 to 2 percent slopes.	IIw		P2b
GBB	Gwangju-Bancheon complex, 2 to 7 percent slopes.	IIe		P2ac
GBC2	Gwangju-Bencheon complex, 7 to 15 percent slopes, eroded.	IIIe		P3ac
GG62	Gwangsan-Jingog complex, 7 to 15 percent slopes, eroded.	IIIe		P3ac
gGC3	Gwangsan-Jingog complex, 7 to 15 percent slopes, severely exoded.	IIIe		P3ac

Table 3 (Cont'd)

$\begin{gathered} \text { Nap } \\ \text { Symbol } \end{gathered}$	Mapping Unit	Capability Unit	Page	Paddy Suit. Group	Page
GGD2	Gwangsan-Jingog complex, 15 to 30 percent slopes, eroded.	IVe		P4ac	
GGD3	Gwangsen-Jingog complex, 25 to 30 percent slopes, severely eroded.	IVe		P4ac	
H6D2	Habin rooky loam, 15 to 30 percent slopes, aroded.	VIe			
H6E2	Hebin rooky $10 a m, 30$ to 60 percent slopes, eroded.	VIe			
Hs	Hagsen loam, 0 to 2 percent slopes.	I		P2c	
HeB	Hagsan loam, 2 to 7 percent slopes.	IIe		P3ac	
Hg	Hogye gravelly loam, 0 to 2 percent slopes.	IIE		P3bc	
HgB	Hogye graveliy loam, 2 to 7 percent slopes.	IIs		P4abo	
HgC	Hogye gravelly loam, 7 to 15 percent slopes.	IIIe		P4abe	
HG	Honam-Geugrag complex, 0 to 2 percent slopes.	IIIw		P1	
HGB	Honem-Geugrag complex, 2 to 7 percent slopes.	IIW		P2a	
Hw	Hwabong loamy sand, 0 to 2 percent slopes.	IVs		P4be	
Hd	Hwadong silty clay loam, 0 to 2 percent slopes.	I		P2c	
HAB	Hwadong sillty clay loam, 2 to 7 percent slopes.	IIe		P2ac	
HK	Hwangryong sandy loam, 0 to 2 percent slopes.	IVs		P4bo	
HL	Hwangryong gravelly sandy loam, 0 to 2 percent slopes.	IVs		P 4 bc	
He	Hyocheon loam, 0 to 2 percent. slopes.	ITw		P1	

Table 3 (Cont'd)

May Symbol	Mapping Unit	Capability Unit	Page	Paddy Suit. Group	Page
Jew	Jangseong rocky silt loan, 20 to 60 percent slopes.	VIe			
JaE2	Jangseang rooky olay loam, 30 to 60 percent slopes, eroded.	VIe			
JWC	Jangweon gravelly loam, 7 to 15 percent slopes.	TVe		P3a0	
Tw02	Jangweon gravelly loam, 15 to 30 percent slopes. exoded.	IVe		P4ac	
JjE	Jeongja rocky loam, 30 to 60 percent slopes.	VITe			
JjE2	Jeongja rooky loan, 30 to 60 percent slopes, eroded.	VITe			
Jnce	Jeomen silty clay loem, 7 to 15 percent slopes, eroded.	IIIe		P30c	
Jnde	Jeonnem silty clay loam, 15 to 30 percent slopes, eroded.	IVe		P4ac	
Jib	Jisen loem, 2 to 7 pexcent slopes.	IIW		P2a	
Ji6	Jisen loam, 7 to 25 percent slopes.	IITe		P38	
JYB	Jisan-Yongji complex, 2 to 7 percent slopes.	ITW		P2s	
JXC	Jisan-Xoncji oomplex, 7 to 15 percent slopes.	TTIE		P3e	
Ms	Manseong loam, 0 to 2 percent slopes.	IIIw		P2b	
MdD	Mudeung rocky loam, 25 to 30 percent slopes.	VIe			
MdD2	Mudeung rocky $10 a m, 15$ to 30 percent slopes, eroded.	VIe			
MdD4	Mudeung soils, 15 to 30 percent alopes, gullied.	VITe			
MOE	Mudeung rocky loan, 30 to 60 percent slopes.	VIe			

Table 3 (Cont'd)

$\begin{aligned} & \text { Map } \\ & \text { Symbol } \end{aligned}$	Mapping Unit	Capability Unit	Page	Paddy Suit. Group	Page
MdE2	Mudeung rocky loam, 30 to 60 percent slopes, eroded.	VIe			
MvE	Mudeung very rocky loam, 30 to 60 percent slopes.	VIIe			
MOEA	Mudeung soils, 30 to 60 percent slopes, gullied.	VIIe			
RC	Riverwash, cobbly	VIII			
RS	Riverwash, sandy	VIII			
RL,	Rock land	VIII			
SaB	Sanam Loam, 2 to 7 percent slopes	IIe		P2ac	
SmD2	Samgag rocky sandy loam, 15 to 30 percent slopes, eroded.	VIe			
$\mathrm{SmD3}$	Samgag rocky sandy loom, 15 to 30 percent slopes, severely eroded.	- VIe			
Sgid	Samgag soils, 15 to 30 percent slopes, gullied.	VIIe			
Sne2	Sangas rocky sandy loam, 30 to 60 percent slopes, eroded.	VIe			
SmP3	Samgag rocky sandy loann, 30 to 60 percent slopes, severely eroded.	VIIe			
Sged	Samgag soils, 30 to 60 percent slopes, gullied.	VIIe			
Stc	Seogto gravelly loam, 7 to 15 percent slopes.	ITIe		P4abo	
Sto	Seogto gravelly loam, 15 to 30 percent slopes.	IVe		P4abo	
SzB	Seongsan sandy loam, 2 to 7 percent slopes.	IIs		P4abc	
58 C	Seongsan sandy loam, 7 to 15 percent slopes.	ITIe		P4abc	

Table 3 (Cont'd)

Hap symbol	Mapping Unit	Capability Unit	Page	Paddy Suit. Group	Page
Sn	Sindeb sandy loam $_{3} 0$ to 2 percent slopes.	IVw		P3b	
Sh	Sirheung loam, 0 to 2 percent slopes.	IIW		P1	
SjC2	Sinjeong loan, 'f to 15 percent alopes, eroded.	IIIe		P3ec	
Soc3	Sonejeong loam, 7 to 15 percent slopes, severely eroded.	IIIE		P3ac	
Sod 3	Songjeong loan, 15 to 30 percent slopes, severely eroded.	IVe		P4abo	
So34	Songjeong soils, 15 to 30 percent slopes, gulised.	VIIe			
ssce	Songjeong-Sangag complex, 7 to 15 percent slopes, eroded.	IIIe			
5503	Songjeong-Samgag complex: 7 to 15 percent slopes, severely eroded.	III θ			
Scod	Songjeong-Sangag complex, 15 to 30 percent slopes, eroded.	IVe			
SSD3	Songjeong-Samgae complex, 15 to 30 percent slopes, severely eroded.	IVe			
SpB	Subug sandy loam, 2 to 7 percent slopes.	IVw		P3ab	
spC	Subug sandy loan, 7 to 15 percent slopes.	IVw		P3ab	
Sk	Sugye ailty clay loan, 0 to 2 percent slopes.	ITV		Pl	
Tob	Togye loany coarse sand, 2 to 7 percent slopes.	IVa		Paide	
10	Yeongsan loan, 0 to 2 percent slopes.	IIw		P1	

Appendix

GLosshm:

Acidity	See reaction, soil.
Alluvial	Consisting of or fommed in material deposited by water.
Alluvium	Soil material that has been transported and deposited by water.
Available Moisture Capacity	The cepacity of a soil to hold water in a form available to plants. The amount of moisture held in a soil between field capacity, or about one-third atmosphere of tension, and the wiltine coefficient, or about 15 atmospheres of tension. Terms for available moisture capacity fiven in this survey (determined to a depth of 125 cm) axe the following: Hich -25 om or more; medium -15 to 25 cm ; low -7 to 15 cm ; and very low - less than 7 cm .
Base Saturation	The degree to which soil material that has base exchange properties is saturated with exchangeable cations other than hydrogen, exprossed as a percentage of the cation-exchance capacity: Hich - 60 to 100 percent; medium - 35 to 60 percent; and low - Less then 35 percent.
Cation-cx change Capecity	A measure of the total amount of exchanceable cations that can be held by a soil. It is expressed in terms of milliequivelents (me) per 100ε of soil material that is neutral in reaction (pH 7.0) or at some other stated pH value: Hich 10 me or more; medium -6 to 10 me; $l o w-3$ to 6 me; and very low - less than 3 me.
0 lay	As a soil separate, the mineral soil particles less than 0.002 mm in diameter. As a soil textural class, soil material that is 40 percent or more clay less than 45 percent sand, and less than 40 percent silt.
Clay Film	A cutan composed of oriented clay particles.
Colluvial.	Having been transported by gravity mass slippace or a combination of slippage and local wash.
Colluvium	Soil matemial, rock sregments or both moved by creep; slide, or local wash and deposited at the base of a steep slope.
Consistence, Soil	The feel of the soil and the ease with which a lump can be crushed by the fingers. Terms commonly used to describe consistence are -
	Loose. - Noncohexent; will not hold torether in a mass.

Gutan	A coating or film, on the outside of a soil aggregate or mass, It may consist of clay, silt, oxides or iron or manganese,
organic matter, or other materials,	

Mapping Units	The units shown on soil maps. They may be mainly soil series, phases of soil series, complexes of soil series, or some other combination such as mixtures of soil series and rock outcrop.
Massive	Consigting of large, uniform masses of cohesive soil, in some places with ill-defined and irregular breakage, as in some of the fine-textured alluvial soils; structureless.
Paddy	A mell field that has been levelled with a bunt capable of retaining a shallow depth of water. Paddies are used principally for growing rice.
Permeability, Soil	The quality of a soil that enables it to bransmit air and water. The following relative classes of soil permeability, used in this soil survey, refer to estimated rates of movement of water in millimetres per hour through saturated, undisturbed cores under a 2.5 cm head of water: Very alow - less than 1 mm slow 1 to 5 mm ; moderately slow - 5 to 15 mm moderate -15 to 50 mm ; moderately rapid - 50 to 150 mm ; rapid - more then 150 mm .
Reaction, Soil	The degree of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is precisely neutral in reaction because it is neither acid nor alkaline. An acid, or "sown", soil is one that gives an acid reaction; an alkaline soil is one that is alkaline in reaction. In words, the degrees of acidity or alkalinity are expressed thus: Extremely acid............................... $\frac{\mathrm{pH}}{} 4.5$ Very strongly acid............. 4.5 to 5.0 strongly acid.................... 5.1 to 5.5 Medium acid.................... 5.6 to 6.0 Slightly acid..................... 6.1 to 6.5 Neutral ….................................... 6.6 to 7.3 Mildly alkaline 7.4 to 7.8 Hoderately alkaline 7.9 to 8.4 Strongly alkaline 8.5 to 9.0 Very strongly alkaline 9.1 and higher
Sand	As a soil separate, individual rock or mineral fragments in soils having diameters ranging from 0.05 to 2.0 mm in diameter. Most send grains oonsist of quartz, but sand may be of any mineral composition. As a textural class, soil material that is 85 percent or more sand and not more than 10 percent clay.
Silt	As a soil separate, individual mineral particles in a soil that range from the upper limit of clay (0.002 mm) in diameter to the lower limit of very fine sand $(0.05 \mathrm{~mm})$. As a textural class, soil material that is 80 percent or more silt and less than 12 percent clay.
Slope	Soil slope is measured by using a hand level and is expressed as the percent the vertical distance (change of elevation) in

of the horizontal distance. Slope classes and terms used to describe them are as follows:

Slope Percent	Class	Mapping Symbol
$0-2$	Nearly level	A
$2-7$	Gentiy sloping	B
$7-15$	Sloping	C
$15-30$	Moderately gteep	D
$30-60$	Steep	E
60 or more	Very ateep	F

3011

Structure, Soil

Teryece

Textures Soil
Water Table

The thin outer layer of the earth's crust which serves as a medium for the growth of land plants.

The arrangement of primaxy soil particles into compound paricices or clusters that are separated from adjoining aggregates and have properties unlike those of an equal mass of unaggregated primexy soil particles.

An alluvial plain that has elevation above the present flood plain.

The relative proportions of send, gilt and clay in a soil mass.
The upper surface of ground water; the highest part of the soil or underlying rock that is wholly saturated with water.
gENERAL SOIL MAP OF GWANGJU SI.
GWANGSAN GUN AND DAMYANG GUN.

Scale 1:250,000

Soil Assnciations

[^0]: A-0 to 6 cm ; dark reddish brown ($5 \mathrm{YR} 3 / 3$) slightly grewelly loam; moderate, tine to medium gramlare and very weak, fine subangular blooky structure: friable, slightly aticky, and alightly plastic; many, fine to mediun roots; abrupt, smooth boundaxy\% pH 5.6.
 cl- -6 to $12 \mathrm{~cm} ;$ reddish brown ($2.5 \mathrm{XR} 4 / 4$) very gravelly olay loam; moderate, fine to medium, subangular blocky structure; firm, sticky, and plastio; many, fine to medium roots; abrupt, smooth boundary; pH 5.6.

 02-12 to 25 cm ; slightly weathered red shale bedrock.
 $\mathrm{R}-25+\mathrm{cm}$; red shale bedrock.

