PRELIMINARY ASSESSMENT FOR THE SHRIMP FISHERIES OF THE NEGOMBO LAGOON (SRI LANKA)

PRELIMINARY ASSESSMENT FOR THE SHRIMP FISHERIES OF THE NEGOMBO LAGOON (SRI LANKA)

by

Michael Sanders

Stock Assessment Specialist
FAO Consultant (Fisheries Management Advisor)
Aruna Jayawardena
Shrimp Biologist
National Aquatic Resources Research and
Development Agency (NARA)
Sumana Ediriweera
Fishery Economist
Department of Fisheries and Aquatic
Resources Development (DFARD)

PREPARATION OF THIS DOCUMENT

This paper is one of the scientific papers produced by the UNDP/FAO Marine Fisheries Management Project in Sri Lanka (SRL/91/022). The project is the first national executed project in fisheries in the country funded by UNDP while FAO provided a consultant as Fisheries Management Advisor, Mr. Michael Sanders. The paper is a result of a good cooperative work between the consultant and the counterparts provided by the Government of Sri Lanka. Not only the scientific work that the paper offers is of importance, but it is the scientific advice generated by this work that forms the basis for the development of management plan for fisheries in the Negombo Lagoon. This kind of work which is directly related to the process of development of fisheries management plan is still meagre in developing countries and thus it is of importance to publish it in the FAO Circular to enable wide distribution. The project received technical backstopping from Mr. P. Martosubroto from the Marine Resources Service (FIRM) of the FAO Fisheries Department.

Sanders, M.; Jayawardena, A.; Ediriweera, S.

Preliminary assessment for the shrimp fisheries of the Negombo Lagoon (Sri Lanka).
FAO Fisheries Circular. No. 958. Rome, FAO. 2000. 98p.

Abstract

The Negombo Lagoon has an area of 3164 hectares and is situated some 40 km north of Colombo. It is part of a much larger Muthurawajawela Marsh-Negombo Lagoon coastal wetland. Apart from at the single narrow opening to the sea at its northern end, the water depth within the lagoon is less than 2 m . Six principal gears are used for catching shrimp inside the lagoon. Trammel nets are the most common, which along with cast nets are operated across the central portion of the lagoon. Stake nets are used immediately inside the entrance. Around the perimeter, lagoon seines (drag nets) and brush pile are the common gears. Fyke nets are also used at the southern end of the lagoon. Outside the lagoon, nonmechanized shrimp trawlers are operated north of the entrance, while mechanized shrimp trawlers are used 5-10 km to the south. The estimated catch from all gears operated inside the lagoon in 1997 was 613 t of shrimp and 1044 t of others (mostly fish). The production from trawlers operated outside the lagoon was 270 t of shrimp and 239 t of others. Fourteen species of shrimp were identified, with six of these being major contributors to the catches. Penaeus indicus and to a lesser extent, P. semisulcatus were the most important in the trammel net and cast net catches. P. indicus was also the main species from brush piles. The stake nets set at the entrance caught mainly Metapenaeus dobsoni and M. moyebi. The latter were the major component of the catches with lagoon seines. The other important species caught in the lagoon was M. elegans. The main species in the trawl catches were M. dobsoni and Parapenaeopsis coromandelica. The former was the only major contributor to both the lagoon and outside catches. P. indicus and P. semisulcatus were relatively scarce in the trawl catches. Estimates of the growth and mortality parameters for each species are provided. Cash flow analyses are also reported in respect to base case fishing units for each gear type. The report includes a mathematical modeling of the fishery, undertaken in order to investigate likely outcomes from changes in the fishery inputs, particularly the consequences to catch weights and CPUEs from applying different fishing efforts. Also included is a discussion of the management implications along with a set of recommendations.

FOREWORD

This study of the fisheries of the Negombo Lagoon, and the associated trawl fisheries conducted outside the lagoon, was done as a component of the UNDP funded Marine Fisheries Management Project (SRL/91/022). The project was executed through the Ministry of Fisheries and Aquatic Resources Development (MFARD) with support from FAO. It sought to establish a mechanism for the management of fisheries, to strengthen the capabilities of the field staff in fisheries management, and to promote the participation of the fishing communities as major entities in the formulation and implementation of management. The project's many activities have included drafting a management plan for the Negombo Lagoon fisheries, which has now been approved for implementation. The plan envisages the lagoon as a Fisheries Management Area (as defined in the Fisheries Act), provides for the establishment of management infrastructure, and empowers the local communities to engage in fisheries co-management.

As an adjunct to the management plan, this study was undertaken to determine both the biological and financial performance of the lagoon and nearby shrimp fisheries. It demonstrates an approach to assessing performance, and the benefit from having inputs from both fishery biologists and economists. The task was highly ambitious due to the complexity of the fisheries, involving a multitude of species, gears and fishing locations. The remaining and substantial challenge is to utilise the findings, together with local knowledge and experience, to ensure that the fisheries are maintained, and continue to provide substantial employment and financial benefit. The achievement of these objectives will require the successful implementation of the fisheries management plan, and strong community participation in management. Future performance will also continue to be linked to the success of the surrounding economy. Fortunately, the fishermen of Negombo already have a good appreciation of the strategies and potential benefits. The stake net fishery at the entrance to the lagoon is a fine and long-standing example of community based fisheries management.
M. T. K. Nagodavithana, Director of Fisheries \& National Project Director Department of Fisheries and Aquatic Resources Development
(DFARD), Colombo, Sri Lanka

ACKNOWLEDGEMENTS

The collection of detailed catch and effort data for the lagoon fisheries, was undertaken by Mr. D. Bandula (Fisheries Inspector). Supplementary catch and effort data were collected by Mr. H. Perera and Mr. M. Gunawardane (Research Assistants, NARA). The persons locally engaged in the sampling of catches and the recording of biological data were Mr. Leslie Fernando, Mr. Stanley Joseph, Mr. Aruna Sampath, and Mr. Susantha Nandimal. At different times, their work was supervised by Mr. R. Wickremasinghe (FI Negombo), Mr. Nishantha Ranasinghe, Mr. M. Fernando, and Mrs. W. Ekanayake (DFAR HQ). Financial control was exercised through Mr. D. Disanayake (District Fisheries Extension Officer). All these persons contributed substantially to the success of the study.
Contents
EXECUTIVE SUMMARY AND RECOMMENDATIONS ix
INTRODUCTION 1
CATCH WEIGHTS AND FISHING EFFORTS 5
SPECIES COMPOSITIONS FOR SHRIMP 18
LENGTH COMPOSITIONS FOR SHRIMP 20
MORPHOMETRIC RELATIONSHIPS FOR SHRIMP 32
LENGTH AT AGE RELATIONSHIPS FOR SHRIMP 40
NATURAL MORTALITY RELATIONSHIPS FOR SHRIMP 55
FINANCIAL ANALYSIS OF CONTEMPORARY PROFIT 57
BIOLOGICAL MODEL OF THE FISHERIES 66
PROJECTIONS OF PERFORMANCE FROM USING THE MODEL 91
CONCLUDING COMMENTS 96
REFERENCES 98

EXECUTIVE SUMMARY AND RECOMMENDATIONS

Fishing Gears and Methods

Fishing inside the lagoon involves the use of eight principal gear types. Except for gill nets and hand lines, these gears are used mainly to catch shrimp. The most common gears are trammel nets. These along with cast nets are operated across the central portion of the lagoon. Stake nets are operated immediately inside the entrance at the northern end. These are set at night during the outgoing tide, and target species aggregated at the entrance and migrating to sea. The gears used in the shallower waters are lagoon seines and brush pile. Brush piles are dead tree branches, each encompassing an area of 5-10 m in diameter. The fish and shrimp aggregate within the branches, and are periodically removed with surrounding nets. The other gear used in the lagoon for catching shrimp are fyke nets. These are set at the southern end adjacent to the marsh. Outside the lagoon, there are non-mechanised shrimp trawlers operated north of the entrance, and mechanised shrimp trawlers operated 5-10 km to the south. Apart from the latter, all craft are of traditional design. Fishing from mechanised craft is prohibited within the lagoon.

Catches, Fishing Efforts, and Catch Values

The estimated catch from all gears in 1997 was 2258 t (whole weight), comprised of 883 t of shrimp and 1375 t of others (mostly fish). The contribution from the lagoon was 613 t of shrimp and 1136 t of others. The single most productive gear was trammel nets. These caught 304 t of shrimp and 1044 t of others. The production from trawlers operated outside the lagoon was 270 t of shrimp and 239 t of others. The fishing efforts expended within the lagoon totalled 312638 landings and 1642952 fishing hours. The former indicates almost 1000 landings per day. The combined effort with trawls was 24660 landings and 168 479 fishing hours. The monthly catches per unit effort (CPUE) indicated that spring and autumn were the most productive seasons for shrimp. The CPUEs for the non-shrimp species show much less seasonality. The value of the catches (at the landing sites) for all gears was estimated as Rs 154 million (equiv. \$US 2.5 million). The contribution from the gears used in the lagoon was Rs 114 million. About two-thirds of these amounts were from the shrimp components.

Species and Sizes of Shrimp in the Catches

Fourteen species of shrimp were identified. Six of these were major contributors to the catches. The most important in the trammel net and cast net catches were P. indicus and to a lesser extent P. semisulcatus. P. indicus was also the main species caught from brush piles. The stake nets set at the entrance caught mainly M. dobsoni and M. moyebi. The latter were a major component of the catches from lagoon seines. The other important species caught inside the lagoon was M. elegans. This and M. moyebi are able to complete their life cycles within lagoon environments. Very few were found in the catches from outside. The main species in the trawl catches were M. dobsoni and Pa. coromandelica. The latter is a wholly marine species. M. dobsoni was the only major contributor to both the lagoon and outside catches. P. indicus and P. semisulcatus were relatively scarce in the trawl catches. The sizes of the shrimp caught differed substantially between gears. The smaller sizes were from the lagoon seines and brush pile, and larger sizes from the trammel nets, cast nets, and trawls. The stake nets produced mostly small and intermediate sizes.

Growth and Mortality of Shrimp

Analyses were undertaken to establish the mathematical relationships between each of carapace length and age, carapace length and total weight, and carapace length and total length. The rates of growth at 'mid-length' were estimated to be approaching $1 \mathrm{~mm} /$ week (carapace length) for P. indicus and P. semisulcatus, about $0.6 \mathrm{~mm} /$ week for M. dobsoni, M. elegans and Pa. coromandelica, and about $0.4 \mathrm{~mm} /$ week for M. moyebi. P. indicus and P. semisulcatus were shown to attain much larger maximum sizes than the other four species, with M. moyebi being the smallest. Females invariably grew larger than males. Most of the shrimp caught in the lagoon were aged from several months to about one year, and between about 6 and 14 months for those caught outside. It was concluded for the main species that two cohorts enter the fisheries each year, from separate spawning in spring and autumn. It was presumed that these were linked to the spring and autumn rainy seasons. Analyses were undertaken to determine the adult natural mortality rates, and the mathematical relationships between natural mortality and age. The findings were consistent with the maximum age for all species being about 2 years. Slightly lower adult mortalities were estimated for the larger species, and for females. The major cause of natural mortality was presumed to be predation.

Investments, Fishing Costs, and Remunerations

Cash flow analyses were undertaken in respect to hypothetical base case fishing units. These utilised data collected during interviews with fishermen-owners. Estimates of the investment (in craft and gear) required to replace existing units with new items ranged between Rs 25000 for brush pile and lagoon seine units to about Rs 320000 for a mechanised trawl unit. Fishing costs were found to be low, except for mechanised trawlers for which engine fuel was a major item. Investment in craft and gear, repairs and maintenance, and payments to crew were the main items of cost. Daily trip costs (other than the payments to crew) and annual administrative charges (eg. craft registration and fishing operations licence) were generally negligible. No craft were insured. Few owners had borrowed, and roughly an equal number had received government subsidies to meet the costs of craft and gear. Crews were invariably paid a share of the catch value less other (ie. non-labour) trip costs. The estimated monthly remunerations per crew were found to be remarkably similar for all gears, and ranged from Rs 4500-6000. The monthly remunerations to fishermen-owners for their labour and investment were estimated as between about Rs 5000 - 13000 (after subtracting depreciation). The upper value relates to operating a mechanised trawler (for which a relatively large investment is required). The lower value approximates the remunerations to be expected, from operating either a trammel net, cast net, or brush pile unit. This is little different from the estimated remunerations per crew.

Mathematical Model of the Fisheries

A model was formulated to investigate the likely outcomes from changes in the fisheries inputs, particularly the consequences to catch weights and CPUEs from applying different fishing efforts. The model was structured to accommodate eight gear types and the six main shrimp species. The required inputs included the fishing efforts, the parameters describing growth and natural mortality, catchability coefficients, selection/recruitment ogives, and recruitment numbers. The last three of these inputs were estimated internally from the model. The chosen values were those for which the estimated and observed length frequencies, associated with inputting the contemporary fishing efforts, were in closest agreement. The outputs estimated from the model were the annual catch numbers, catch weights, CPUEs, and catch length frequencies. A substantial shortcoming of the model, the absence of 'spatial separation' for those stock components migrating to different locations,
was understood and accommodated within the interpretation of the findings. A future task will be to include the 'spatial separation'. This is likely to require the collection of additional data, so as to clarify the migration behaviour for each species.

Applications of the Model

Three hypothetical scenarios were examined. In the first scenario the fishing effort with stake nets was varied while the efforts for the other gears were maintained at the contemporary levels. The results indicated that substantially increased catches were likely, from increased stake net effort. In reality, there is very little scope for increased effort, as the suitable sites (for stake nets) at the entrance of the lagoon are already fully utilised. Reducing the stake net effort produced near proportional reductions in stake net catch, associated with very marginally increased CPUEs (in the trawl fisheries). In the second scenario, the fishing effort with trammel nets was varied. The estimated decrease in trammel net CPUEs from increased effort was judged as likely to be unacceptable. The loss of catch from reduced effort was found to be greater than the increase in catch from the other gears. The results as such provide no justification for deliberate change in the trammel net effort. In the third scenario, the combined fishing efforts for the trawl fisheries were varied. The findings indicated that the potential to increase the mechanised trawler catch is negligible (other than from gaining access to previously fished ground off Colombo, which is presently denied for security reasons). There seems some scope to increase the catch from non-mechanised trawlers, although this would be associated with substantial reduction in the already modest CPUEs.

Implication for Future Management

It was concluded that the fisheries are performing satisfactorily at the present levels of fishing effort. This is in the sense that the opportunities for employment appear fully utilised. Attempts to expand the fisheries would cause reduced remuneration levels, which are already low to modest. The integrated character of the fisheries (eg. different gears being targeted at different species and sizes) confers stability and should be preserved. Another beneficial characteristic to be maintained is the generally low fishing costs, in large part the consequence of the traditional crafts and methods used. As the scope to increase catches or employment seems negligible, the priorities for management will continue to be social harmony and an appropriate sharing of the benefits. The community based management being applied successfully in the stake net fishery, provides a useful blueprint upon which the management of the other fisheries might be based. Beneficial outcomes are most likely to be achieved with the communities fully incorporated within the management process. These views are reflected within the recent changes to fisheries legislation, and in the shortly to be implemented fisheries management plan for the Negombo Lagoon.

Recommendations

1. The 'open access' character of the fisheries (other than the stake net fishery) means that the present CPUEs and hence remunerations to the fishermen are insecure. They would be reduced from their present modest levels in the event of an increase in the number of fishermen and craft. While an influx is not believed to be imminent, it is nevertheless recommended that the ability to control the number of fishing units be established at the earliest. Furthermore, that this control be exercised through co-management arrangements that include the local fishing communities as major participating entities.
2. The present management regime prohibits the use of motorised craft within the lagoon for the purpose of fishing. It also prohibits the use of certain fishing gears and methods that are damaging to the lagoon environment. There is a separation of the trawler fleets operating outside the lagoon: the non-mechanised trawlers being engaged north of the entrance, while the mechanised trawlers are confined to grounds well to the south. These measures all serve to preserve harmony and an appropriate sharing of the fisheries resources. It is recommended that the measures be continued.
3. The fisheries are characterised by low costs of fishing (other than the mechanised trawl fishery for which there are fuel costs). This is highly important in preserving acceptable remuneration levels. It is recommended that attempts to introduce new technologies or increased quantities of gear per fishing operation that might ultimately lead to reduced remunerations be avoided. Some trammel net fishermen have sought to enhance their share by increasing the number of nets used. This acts to reduce the catches of the other fishermen, unless they also use more nets. In order to avoid an unnecessary spiralling of gear usage and hence costs, it is recommended to limit the quantity of trammel nets able to be used from a craft during a fishing operation.
4. Although not investigated during this study, the future performance of the fisheries is highly vulnerable to changes in the environment within the lagoon. The lagoon is a shallow, largely enclosed water-body, surrounded by urban development, and industrial encroachment. It is recommended that extreme care be taken to preserve and where necessary enhance the fisheries values of the lagoon environment. Particularly sensitive elements in respect to the potential impact on fisheries, will be the mangroves, sea-grass beds, sediment and pollution levels, loss of waters through reclamation, water depth at the entrance, and diversion of water flows. Any damaging effects from fishing activities themselves should also be avoided.
5. Including the fishing communities as major participants in the management process will presumably be reflected by greater adherence to management measures. It will remain necessary nevertheless that an effective monitoring and enforcement presence exist, hence it is recommended that the local enforcement capability be reviewed. Improvement might be achieved by re-defining the duties of the existing Fisheries Inspectors (FI), who presently are almost solely engaged in extension and social welfare activities. The alternative approach would be to establish a small group of dedicated enforcement staff operating directly from the District Fisheries Extension Office (DFEO).
6. Concerning future research, there is a need for additional studies to both confirm and improve on the present findings. An important reason why 'spatial separation' was not included in the fisheries model, was incomplete knowledge about migration for each of the shrimp species. It is recommended that a substantial shrimp tagging study be implemented. This should seek to determine, for example, the extent of migration between the two trawling grounds, the proportions of the shrimp leaving the lagoon which migrate to each ground, and the proportions which delay leaving the lagoon (until the next rainy season).

INTRODUCTION

General

This study of the fisheries of the Negombo Lagoon was done as a component of the UNDP funded Marine Fisheries Management Project (SRL/91/022), executed through the Ministry of Fisheries and Aquatic Resources Development (MFARD) with support from FAO. Its objectives were to assess the present performance of the fisheries, the extent by which performance might be improved (or safeguarded), and to demonstrate assessment methods. As shrimp are the principal target species, some of which are known to migrate to the sea, it was judged necessary to also study the linked trawl fisheries operated outside but adjacent to the lagoon. The study was commenced in January 1997. Data on the species and sizes being caught, catch weights, fishing efforts, fish prices and fishing costs were collected over the following 14 months. Use was made of the existing staff capabilities within each of the Department of Fisheries and Aquatic Resources Development (DFARD), and the National Aquatic Resources and Development Agency (NARA). It was also necessary to recruit a small team of persons selected from the fishing communities, to undertake that part of the work associated with the sampling of catches. This was administered from the District Fisheries Extension Office (DFEO) in Negombo.

Negombo Lagoon

The Negombo Lagoon, situated some 40 km north of Colombo and with an area of 3164 hectare, is part of a much larger Muthurawajawela Marsh-Negombo Lagoon coastal wetland. The connection to the sea is by a single narrow opening at its northern end. Other than at the entrance, the water within the lagoon is less than 2 m in depth. There is dispersed freshwater input through the marsh at the southern end, particularly during the rainy seasons centred around each of April and October. Multiple uses of the lagoon and surrounds include fishing, aquaculture, agriculture, tourism, trade and shipping. The large town of Negombo is at the northern end adjacent to the entrance. Most of the lagoon perimeter is fringed by habitation. During the past several decades there has been visible degradation of the lagoon environment. This is well documented in the Conservation Management Plan (WCP, 1994). It has occurred from inadequately planned settlement, industrial and municipal pollution, intensification of fishing, deforestation, and general habitat destruction. There are eight principal fishing gears used within the lagoon, of which six are important for the capture of shrimp. In addition, both non-mechanised and mechanised shrimp trawlers are operated outside the lagoon. Summary descriptions for these gears and methods are given below. They are based largely on the information given in Fishing Craft and Gear of Sri Lanka (DFAR, 1995). A general depiction of the fishing locations in respect to each of the gears is shown in Figure 1.

Fishing Gears and Methods

Stake Nets: The use of stake nets (kattudel) occurs immediately inside the entrance. These are set during the night on the out-going tide, and targeted at the shrimp aggregated inside the entrance, as well as shrimp migrating to the sea for spawning. There are some 62 sites (legally designated) suitable for the placement of stake nets. The nets can only be operated in channels of about 3 to 4 m in depth. Two men are usually required to install and operate a stake net. Nine or ten mangrove sticks of 4 to 6 metres length are fixed into the lagoon bed. The wings of the net (each about 20 m in length) are fixed in an upright position onto these sticks. Then a cod-end of conical shape (15 to 18 m in length) is fitted at the apex
between the wings. After the net is installed, a kerosene lantern is suspended from a separate stick attached to the craft anchored adjacent to the cod-end. The light from the lantern acts to attract shrimp and fish to the vicinity of the net. The use of stake nets is subject to 'community-based management'. This includes the stake net societies administrating the allocation of sites amongst their member fishermen.

Fyke Nets: The fyke nets (muttugam dela and udugam dela) used at the southern end of the lagoon, are little different from the stake nets used at the entrance. They are also operated from very early morning and principally targeted at shrimp. The placement of the nets is with the wings opening towards the mangroves. In order to reduce the catch of very small shrimp, the mesh sizes used in the wings and cod-end are generally larger than in stake nets. When used to catch fish, a different higher opening cod-end is attached between the wings. Fishermen using fyke nets are usually also engaged in other types of fishing. The nets are sometimes operated by fishermen working alone, although mostly there are two fishermen working together.

Trammel Nets: The lagoon fishery that attracts the largest number of fishermen involves the use of trammel (disco) nets. They operate with small lagoon craft (oru) or log rafts (theppan), up to 4 m in length. Propulsion is by poling. Up to 30 net pieces are operated by a single fisherman. Much less commonly, two fishermen may operate a larger quantity of gear. The net pieces are about 20 m in length, with mesh sizes of $25-30 \mathrm{~mm}$ in the inner panel, and $130-150 \mathrm{~mm}$ in the outer panels. The nets extend from the water surface to the lagoon bed. They are laid across the tide, with one end anchored by a $1-2 \mathrm{~kg}$ stone. The other end is attached to the craft anchored by a pole driven into the lagoon bed The nets are set throughout the central area of the lagoon. This is done in the very early morning, with the catches being landed at around 10 or 11 A.M. the same day. The fish and shrimp are removed from the nets at about hourly intervals. The shrimp are generally large and hence valuable, although only a small proportion of the catches by number and weight.

Cast Nets: Cast nets are also used principally across the central area of the lagoon, and targeted at the larger shrimp. They may be operated at night, in association with light attraction by kerosene lantern, or during daytime. Their use is much more seasonal than for the other gears. The method requires substantial physical exertion by the fishermen, and is not sufficiently remunerative other than when shrimp are abundant. The cast nets able to be used from craft are about 5-6 m in length (measured from the apex). The hauling lines are about 3 -6 m in length. After being thrown, the net sinks to the bottom, and is then slowly hauled to the surface by a cord attached to the apex. The net progressively 'collapses' while being hauled, due to the weight of the lead sinkers around the circumference, with the catch remaining entangled in its folds. The skill required of these fisherman, is to cast the net so that it covers as large an area of the lagoon bottom as possible.

Lagoon Seines: The lagoon seine (gawana dela) is another physically demanding gear used in the lagoon. They are operated seasonally in the shallower depths of $1-1.5 \mathrm{~m}$ adjacent to the shoreline, and are targeted at concentrations of small shrimp. Two fishermen, one at each end, are required to drag the net while wading, usually in the same direction as the tidal current. The net is about $40-50 \mathrm{~m}$ in length and $4-5 \mathrm{~m}$ in depth. Floats are attached to the headrope, and lead sinkers to the bottom rope. Each fisherman ties the end of the bottom rope to one leg. Fishing is undertaken during daylight. The net is dragged about $40-50 \mathrm{~m}$. during each encircling operation. The canoe is also dragged by one of the fishermen. A third fisherman is sometimes involved, in which case they will all take turns in dragging the net. The lagoon seine is perceived as a highly productive gear, but sometimes criticised for its damaging effect when used over sea-grass beds.

Brush Pile: The other gear operated in shallow depths is the surrounding net (mas athu) used in association with brush pile (kottu). The latter are dead branches embedded in the lagoon bottom, covering a surface area of about 5-10 m in diameter. At intervals of about 30 days, each brush pile is encircled with a surrounding net attached to about $12-15$ poles fixed to the lagoon bed. All the branches of the brush pile are then removed, after which the area within the net is progressively reduced, so as to confine the catch and allow its removal. About 3-4 hours are required to dismantle a brush pile and complete a surrounding net operation. The typical length of a surrounding net is $40-50 \mathrm{~m}$. Re-establishing the brush pile occurs during the same or next day. A fisherman will usually operate only a few brush pile (1 -5) while engaging in other types of fishing. Some fishermen operate a larger number, up to $20-25$ brush pile.

Non-mechanised Trawlers: The use of non-mechanised trawlers occurs outside the lagoon, to a distance of 5 km north of the entrance. They are operated during day-time in waters up to 12 m depth, from craft of traditional design, fitted with outrigger and sail, and manned by 4 persons. The nets are towed under sail power; rarely the crew may row when there is insufficient wind speed. The net is shaped like a long narrow cone, with a small codend about 1 m in length, and a larger body of about 7 m . No floats are used for the head-rope. There are lead sinkers placed at intervals along the foot-rope, and heavy stones of $30-35 \mathrm{~kg}$ attached at each end. The net on each side is connected to the towing ropes by bridles, of about 4.5 m to the stones, and a shorter length to the head-rope. The towing of a net takes about 1 hr , after which it is manually hauled. The direction of the craft is then reversed (without turning) and the net returned to the water. There are about 4-6 trawls during a fishing day.

Mechanised Trawlers: The mechanised trawlers are operated from the Hendala Canal on grounds commencing about 5 km south of the entrance. They are prevented by regulations from fishing on the same grounds as the non-mechanised trawlers. The craft are of the 3.5 t type, 28 ft in length, and of reasonably modern design. They are powered by inboard diesel engines of $25-40 \mathrm{HP}$. The net is towed from thick bamboo poles, extended as booms either side of the craft. The fishing operations and net design are otherwise similar to those with the non-mechanised trawlers. The nets are larger, with a cod-end of about 2.5 m in length, and a body of about $12-15 \mathrm{~m}$. Floats are attached to the head-rope, lead sinkers at intervals to the foot-rope, and $30-35 \mathrm{~kg}$ stones at each end. The nets are recovered manually. While some craft are used throughout the year, the operations of most are confined to about 5 months centred on June/July. Up to two-thirds of the boats may be idle in some months. A few may be used in catching fish with other gears.

Figure 1: Fishing locations by gear type.

CATCH WEIGHTS AND FISHING EFFORTS

Introduction

The findings reported here are from two separate data collection activities. In respect to each of the gears used in the lagoon other than stake nets, catch and effort data were collected for a sample of landings (usually six or seven), on each of two days per month, at each of five landing sites. The total numbers of landings by gear type were also recorded for these days. The sites had previously been chosen as representative of the landing sites generally within the lagoon. In was assumed that fishing took place on 24 days in each month. It was also necessary to know the numbers of craft operating at the five sample sites (185 craft), and at all landing sites (1151 craft). These values were obtained from a frame survey undertaken in September 1997. Utilising all these data, the catches and efforts for the sample landings were raised in a series of steps, to obtain estimates for the month by gear type.

In respect to the use of stake nets and trawls, catch and effort data were collected in respect to a selection of landings (from a few to as many as 20) on each of $2-4$ days per month. The catch values and number of crew (including skipper) were also recorded. The landings were sufficiently localised to allow determination of the total number of craft engaged on the sample days. At the time of the frame survey in September 1997, there were 154 stake net craft, 135 non-mechanised trawlers, and 95 mechanised trawlers. In the process of raising to obtain monthly estimates for each gear type, it was assumed that fishing occurred on 30 days each month in the case of stake net fishing, and on 25 days each month for the trawlers. The estimates obtained for both the monthly and annual catch weights, fishing efforts and CPUEs, separately in respect to all gear types, are given in Tables 1 to 11.

Catches, Efforts and CPUEs

The annual catch from all gears was determined as 2258 t . This was comprised of 883 t of shrimp and 1375 t of others (mostly fish). The contribution from the lagoon was $613 t$ of shrimp and $1136 t$ of others. The single most productive gear type was the trammel net. These produced 304 t of shrimp (mostly P. indicus) and 1044 t of others. The production from trawlers operated outside the lagoon was 270 t of shrimp and 239 t of others. The fishing effort expended within the lagoon totalled 312638 landings and 1642952 fishing hours. The former represents roughly one thousand landings per day. Two thirds of this effort was from trammel nets. The effort expended by the trammel net fishermen amounted to 228736 landings and 1110311 fishing hours. They generally used about 30 net pieces during each fishing day. The combined effort with trawlers was 24660 landings and 168479 fishing hours.

The 'all species' CPUEs estimated for trammel nets and cast nets were around 5 $\mathrm{kg} / \mathrm{landing}$ or $0.9 \mathrm{~kg} /$ fishing hour. These are the gears operated by fishermen working alone. The CPUEs for the remaining gears were substantially higher; roughly two times higher for lagoon seines, 4 times higher for trawls, and six times higher for stake nets. These gears require more fishermen to be engaged. Lagoon seines and stake nets require the involvement of two persons, while the crew on a trawler is normally 4 persons. Using these values gives CPUEs/fisherman which are about the same for each gear, other than stake nets, which are 3 times higher. In a sense, the latter is an exact 'compensation' for the stake net fishermen, whose access to the fishing sites is restricted (by the rules of the stake net societies) to every third night.

Seasonality was reflected by the trends in the monthly CPUEs. In the case of shrimp, the spring and autumn months were the most productive, particularly the latter. This can be seen most clearly in the CPUEs for trammel nets, cast nets, lagoon seines, stake nets, and nonmechanised trawls. The CPUEs for the non-shrimp species indicate much less seasonality. There was a greater use of cast nets in spring and autumn, whereas for most other gears, the monthly efforts were generally constant throughout the year. This would suggest that fishing with cast nets is generally profitable, compared with other gears, only during the months when the shrimp are abundant. A virtue of trammel nets is that they are also highly effective in catching fish, which helps to maintain acceptable remuneration levels during the offseasons for shrimp. The use of mechanised trawlers was largely confined to a single most productive period, centred around June and July.

Discussion

These catches and efforts are the most comprehensive so far reported for the Negombo Lagoon. They are nevertheless not without error. The catch weights are not from actual weighings, but are approximations from visual examination by the enumerators at the landing sites. The information on fishing efforts was from questioning the fishermen at the time of landing, and hence reliant on the ingenuity and integrity of the interviewees. In some months, the less used gears were poorly represented amongst the sampled landings. Also, in the short time during which the catches were available for examination, it was not always possible to achieve a fully comprehensive identification of all the species. Notwithstanding, it can be reported that the fishermen appeared always fully cooperative, and the enumerators were well trained and committed.

Table 1: Annual catch weight, fishing effort, and CPUEs.

	Lagoon Seine	Brush Pile	Cast Net	Trammel Net	Gill Net	Hand Line	Fyke Net	Stake Net		Mech. Trawl	All Gears
Catch Weights (kg)											
P. indicus	9653	1190	42374	246764	2012	--	43	35454	3475	4513	345477
P. semisulcatus	1781	198	2492	28097	43	--	--	15001	103	14	47729
P. monodon	355	274	2368	23040	1562	--	15	793	421	433	29262
P. merguiensis	--	--	--	--	--	--	--	2063	1299	1415	4777
Small shrimp spp.	14374	164	10777	5790	1277	--	6769	158091	181639	76577	455458
sub-total	26163	1827	58011	303690	4894	--	6828	211402	186938	82951	882703
Others (mostly fish)	40096	42236	29403	740773	153377	27620	5537	97011	134621	104429	1375103
total	66259	44063	87414	1044464	158271	27620	12365	308413	321559	187380	2257806
Effort (hr)	45805	39395	108166	1110311	224510	32927	17942	63897	119604	48875	1811431
Effort (landings)	5438	6757	15693	228736	35285	5919	3688	11123	17204	7456	337298
Av. hours/landing	8.4	5.8	6.9	4.9	6.4	5.6	4.9	5.7	7.0	6.6	5.4
CPUE (kg/landing)											
P. indicus	1.77	0.18	2.70	1.08	0.06	--	0.01	3.19	0.20	0.61	
P. semisulcatus	0.33	0.03	0.16	0.12	0.00	--	--	1.35	0.01	0.00	
P. monodon	0.06	0.04	0.15	0.10	0.04	--	0.00	0.07	0.02	0.06	
P. merguiensis	--	--	--	--	--	--	--	0.18	0.08	0.19	
Small shrimp spp.	2.64	0.02	0.69	0.03	0.04	--	1.84	14.21	10.56	10.27	
sub-total	4.81	0.27	3.70	1.33	0.14	--	1.85	19.01	10.87	11.12	
Others (mostly fish)	7.37	6.25	1.87	3.24	4.35	4.67	1.50	8.72	7.82	14.01	
total	12.18	6.52	5.57	4.57	4.49	4.67	3.35	27.73	18.69	25.13	
CPUE (kg/hr)											
P. indicus	0.211	0.030	0.392	0.222	0.009	--	0.002	0.555	0.029	0.092	
P. semisulcatus	0.039	0.005	0.023	0.025	0.000	--	0.000	0.235	0.001	0.000	
P. monodon	0.008	0.007	0.022	0.021	0.007	--	0.001	0.012	0.004	0.009	
P. merguiensis	--	--	--	--	--	--	--	0.032	0.011	0.029	
small shrimp spp.	0.314	0.004	0.100	0.005	0.006	--	0.377	2.474	1.519	1.567	
sub-total	0.572	0.046	0.537	. 0.273	0.022	--	0.380	3.309	1.563	1.697	
others (mostly fish)	0.875	1.072	0.272	0.667	0.683	0.839	0.309	1.518	1.126	2.137	
total	1.447	1.118	0.808	0.941	0.705	0.839	0.689	4.827	2.689	3.834	

Table 2: Monthly catch weight and fishing effort for lagoon seines.

Table 3: Monthly catch weight and fishing effort for brush pile.

	Jan'97	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Jan'98	Feb
Catch Weights (kg)															
P. indicus	329	242	--	31	28	105	30	--	--	39	101	286	1190	174	--
P. semisulcatus	45	69	--	37	--	--	--	--	--	47	--	--	198	--	--
P. monodon	30	90	--	12	--	22	--	29	--	16	50	25	274	610	--
small shrimp spp.	--	21	--	--	129	15	--	--	--	--	--	--	164	--	--
sub-total	403	422	--	81	157	142	30	29	--	101	151	311	1827	784	--
others (mostly fish)	4360	2272	814	3341	1652	4263	2449	5241	4651	4176	5073	3945	42236	12369	4130
total	4763	2693	814	3422	1809	4405	2479	5270	4651	4277	5224	4256	44063	13153	4130
Effort (hr)	3210	2420	784	4231	2352	3210	2352	3702	4181	5288	4368	3297	39395	9146	3360
Effort (landings)	597	415	299	747	448	597	448	581	523	933	672	498	6757	1161	560
Av. hours/landing	5.38	5.83	2.63	5.67	5.25	5.38	5.25	6.38	8.00	5.67	6.50	6.63	5.83	7.88	6.00
Av. aggreg. days	??	??	??	32.3	31.0	32.3	27.5	??	33.0	??	35.0	30.5	31.7	39.0	35.5
CPUE (kg/landing)															
P. indicus	0.550	0583	--	0.042	0.063	0.175	0.067	--	--	0.042	0.150	0.575	0.176	0.150	--
P. semisulcatus	0.075	0.167	--	0.050	--	--	--	--	--	0.050	--	--	0.029	--	--
P. monodon	0.050	0.217	--	0.017	--	0.038	--	0.050	--	0.017	0.075	0.050	0.041	0.525	--
small shrimp spp.	--	0.050	--	--	0.288	0.025	--	--	--	--	--	--	0.024	--	--
others (mostly fish)	7.300	5.477	2.725	4.475	3.688	7.138	5.467	9.025	8.900	4.475	7.550	7.925	6.251	10.650	7.375
total	7.975	6.493	2.725	4.583	4.038	7.375	5.533	9.075	8.900	4.583	7.775	8.550	6.521	11.325	7.375
CPUE (kg/hr)															
P. indicus	0.102	0.100	--	0.007	0.012	0.033	0.013	--	--	0.007	0.023	0.087	0.030	0.019	--
P. semisulcatus	0.014	0.029	--	0.009	--	--	--	--	--	0.009	--	--	0.005	--	--
P. monodon	0.009	0.037	--	0.003	--	0.007	--	0.008	--	0.003	0.012	0.008	0.007	0.067	--
small shrimp spp.	--	0.009	--	--	0.055	0.005	--	--	--	--	--	--	0.004	--	--
others (mostly fish)	1.358	0.939	1.038	0.790	0.702	1.328	1.041	1.416	1.113	0.790	1.162	1.196	1.072	1.352	1.229
total	1.484	1.113	1.038	0.809	0.769	1.372	1.054	1.424	1.113	0.809	1.196	1.291	1.118	1.438	1.229

Table 4: Monthly catch weight and fishing effort for cast nets.

	Jan'97	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Jan'98	Feb
Catch Weights (kg)															
P. indicus	5142	3472	944	--	9	--	34	37	2710	3388	26389	249	42374	944	84
P. semisulcatus	2273	--	17	--	--	--	11	12	62	77	39	--	2492	647	--
P. monodon	244	523	1494	--	--	--	--	--	--	--	108	--	2368	124	--
small shrimp spp.	3248	3173	1425	851	--	78	22	25	--	--	1955	--	10777	216	--
sub-total	10907	7167	3881	851	9	78	67	75	2772	3465	28490	249	58011	1930	84
others (mostly fish)	5738	3621	5152	1321	924	526	258	286	719	898	7721	2240	29403	3397	322
total	16644	10788	9032	2173	933	605	325	361	3490	4363	36211	2489	87414	5327	406
Effort (hr)	17727	14372	10973	2576	1866	1176	1232	1369	5338	6673	38850	6014	108166	14289	1540
Effort (landings)	2165	2240	1717	448	373	224	224	249	821	1027	5375	830	15693	2157	280
Av. hours/landing	8.19	6.42	6.39	5.75	5.00	5.25	5.50	5.50	6.50	6.50	7.23	7.25	6.89	6.63	5.50
CPUE (kg/landing)															
P. indicus	2.375	1.550	0.550	--	0.025	--	0.150	0.150	3.300	3.300	4.909	0.300	2.700	0.438	0.300
P. semisulcatus	1.050	--	0.010	--	--	--	0.050	0.050	0.075	0.075	0.007	--	0.159	0.300	--
P. monodon	0.113	0.233	0.870	--	--	--	--	--	--	--	0.020	--	0.151	0.058	--
small shrimp spp.	1.500	1.417	0.830	1.900	--	0.350	0.100	0.100	--	--	0.364	--	0.687	0.100	--
others (mostly fish)	2.650	1.617	3.000	2.950	2.475	2.350	1.150	1.150	0.875	0.875	1.436	2.700	1.874	1.575	1.150
total	7.688	4.817	5.260	4.850	2.500	2.700	1.450	1.450	4.250	4.250	6.736	3.000	5.570	2.470	1.450
CPUE (kg/hr)															
P. indicus	0.290	0.242	0.086	--	0.005	--	0.027	0.027	0.508	0.508	0.679	0.041	0.392	0.066	0.055
P. semisulcatus	0.128	--	0.002	--	--	--	0.009	0.009	0.012	0.012	0.001	--	0.023	0.045	--
P. monodon	0.014	0.036	0.136	--	--	--	--	--	--	--	0.003	--	0.022	0.009	--
small shrimp spp.	0.183	0.221	0.130	0.330	--	0.067	0.018	0.018	---	---	0.050	---	0.100	0.015	--
others (mostly fish)	0.324	0.252	0.469	0.513	0.495	0.448	0.209	0.209	0.135	0.135	0.199	0.372	0.272	0.238	0.209
total	0.939	0.751	0.823	0.843	0.500	0.514	0.264	0.264	0.654	0.654	0.932	0.414	0.808	0.373	0.264

Table 5: Monthly catch weight and fishing effort for trammel nets.

	Jan'97	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Jan'98	Feb
Catch Weights (kg)															
P. indicus	25127	26289	21681	4620	1606	659	907	31215	9194	41346	61448	22673	246764	5981	2404
P. semisulcatus	14519	4071	1141	508	152	94	52	280	3129	1973	752	1427	28097	11134	7026
P. monodon	375	9131	10774	904	279	53	72	247	229	225	272	478	23040	986	1084
small shrimp spp.	1846	921	835	193	952	294	129	112	149	--	358	--	5790	--	464
sub-total	41867	40411	34432	6224	2989	1101	1160	31854	12701	43544	62830	24577	303690	18101	10977
others (mostly fish)	74273	66841	66470	47408	57134	73624	75438	55148	67540	44805	57896	54198	740773	69807	55948
total 116140107252100902				53632	60123	74725	76597	87002	80241	88349	120726	78775	1044464	87908	66926
Effort (hr)	95125	87503	95285	76102	82975	81530	107717	117090	91807	93006	88090	94083	1110311	106077	92903
Effort (landings)	21278	22066	21577	15231	16500	15305	15977	20739	19187	20718	19337	20822	228736	21817	19971
Av. hours/landing	4.47	3.97	4.42	5.00	5.03	5.33	6.74	5.65	4.78	4.49	4.56	4.52	4.85	4.86	4.65
Av. number of nets	27.6	25.5	28.2	21.8	23.1	21.8	19.8	33.9	26.9	32.1	34.1	33.6	27.0	33.0	29.8
CPUE (kg/landing)															
P. indicus	1.181	1.191	1.005	0.303	0.097	0.043	0.057	1.505	0.479	1.996	3.178	1.089	1.079	0.274	0.120
P. semisulcatus	0.682	0.184	0.053	0.033	0.009	0.006	0.003	0.014	0.163	0.095	0.039	0.069	0.123	0.510	0.352
P. monodon	0.018	0.414	0.499	0.059	0.017	0.003	0.005	0.012	0.012	0.011	0.014	0.023	0.101	0.045	0.054
small shrimp spp.	0.087	0.042	0.039	0.013	0.058	0.019	0.008	0.005	0.008	0.000	0.019	0.000	0.025	0.000	0.023
others (mostly fish)	3.491	3.029	3.081	3.113	3.463	4.810	4.722	2.659	3.520	2.163	2.994	2.603	3.239	3.200	2.801
total	5.458	4.861	4.676	3.521	3.644	4.882	4.794	4.195	4.182	4.264	6.243	3.783	4.566	4.029	3.351
CPUE (kg/hr)															
P. indicus	0.264	0.300	0.228	0.061	0.019	0.008	0.008	0.267	0.100	0.445	0.698	0.241	0.222	0.056	0.026
P. semisulcatus	0.153	0.047	0.012	0.007	0.002	0.001	0.000	0.002	0.034	0.021	0.009	0.015	0.025	0.105	0.076
P. monodon	0.004	0.104	0.113	0.012	0.003	0.001	0.001	0.002	0.002	0.002	0.003	0.005	0.021	0.009	0.012
small shrimp spp.	0.019	0.011	0.009	0.003	0.011	0.004	0.001	0.001	0.002	0.000	0.004	0.000	0.005	0.000	0.005
others (mostly fish)	0.781	0.764	0.698	0.623	0.689	0.903	0.700	0.471	0.736	0.482	0.657	0.576	0.667	0.658	0.602
total	1.221	1.226	1.059	0.705	0.725	0.917	0.711	0.743	0.874	0.950	1.370	0.837	0.941	0.829	0.720

Table 6: Monthly catch weight and fishing effort for gill nets.

	Jan'97	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Jan'98	Feb	b
Catch Weights (kg) Nan																
P. indicus	--	--	157	45	--	45	1384	382	--	--	--	--		--		--
P. semisulcatus	--	--	--	--	--	13	29	--	--	--	--	--		--		--
P. monodon	776	--	601	--	--	90	65	31	--	--	--	--		--		--
small shrimp spp.	--	--	1254	--	--	22	--	--	--	--	--	--		--		--
sub-total	776	--	2012	45	--	170	1478	412	--	--	--	--		--		--
others (mostly fish)	9415	19145	10442	14559	19745	29117	17263	5873	14332	4970	3897	4619	153377	8171	2352	
total	10191	19145	12454	14603	19745	29287	18741	6285	14332	4970	3897	4619	153377	8171	2352	
Effort (hr)	9220	14963	14241	29565	27912	37516	32865	16218	20360	9332	5935	6381	224510	9644	5459	
Effort (landings)	1941	3069	2613	4480	5226	5823	5301	1908	2016	933	896	1078	35285	1659	840	
Av. hours/landing	4.75	4.88	5.45	6.60	5.34	6.44	6.20	8.50	10.10	10.00	6.63	5.92	6.36	5.81	6.50	
Av. number of nets	10.0	12.3	10.0	13.4	19.5	17.4	22.3	14.8	11.8	4.0	8.5	10.3	15.7	10.5	6.0	0
CPUE (kg/landing)																
P. indicus	--	--	0.060	0.010	--	0.008	0.261	0.200	--	--	--	--	0.057	--		--
P. semisulcatus	--	--	--	--	--	0.002	0.006	--	--	--	--	--	0.001	--		--
P. monodon	0.400	--	0.230	--	--	0.015	0.012	0.016	--	--	--	--	0.044	--		--
small shrimp spp.	--	--	0.480	--	--	0.004	--	--	--	--	--	--	0.036	--		--
others (mostly fish)	4.850	6.238	3.996	3.250	3.778	5.000	3.257	3.078	7.110	5.325	4.350	4.283	4.347	4.925	2.800	
total	5.250	6.238	4.766	3.260	3.778	5.029	3.536	3.294	7.110	5.325	4.350	4.283	4.486	4.925	2.800	
CPUE (kg/hr)																
P. indicus	--	--	0.011	0.002	--	0.001	0.042	0.024	--	--	--	--	0.009	--		--
P. semisulcatus	--	--	--	--	--	--	0.001	--	--	--	--	--	--	--		--
P. monodon	0.084	--	0.042	--	--	0.002	0.002	0.002	--	--	--	--	0.007	--		--
small shrimp spp.	--	--	0.088	--	--	0.001	--	--	--	--	--	--	0.006	--		--
others (mostly fish)	1.021	1.279	0.733	0.492	0.707	0.776	0.525	0.362	0.704	0.533	0.657	0.724	0.683	0.847	0.431	
total	1.105	1.279	0.874	0.494	0.707	0.781	0.570	0.388	0.704	0.533	0.657	0.724	0.705	0.847	0.431	

Table 7: Monthly catch weight and fishing effort for hand lines.

	Jan'97	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Jan'98	Feb
Catch Weights (kg)															
P. indicus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. semisulcatus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. monodon	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
small shrimp spp.	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
sub-total	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
others (mostly fish)	1762	1626	672	1762	1463	672	2217	1008	10554	756	2117	3011	27620	5740	2408
total	1762	1626	672	1762	1463	672	2217	1008	10554	756	2117	3011	27620	5740	2408
Effort (hr)	2837	2323	1120	2837	2090	1120	4106	1866	5823	1400	3920	3484	32927	7466	3780
Effort (landings)	597	581	224	597	523	224	821	249	896	187	523	498	5919	664	560
Av. hours/landing	4.75	4.00	5.00	4.75	4.00	5.00	5.00	7.50	6.50	7.50	7.50	7.00	5.56	11.25	6.75
CPUE (kg/landing)															
P. indicus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. semisulcatus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. monodon	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
small shrimp spp.	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
others (mostly fish)	2.950	2.800	3.000	2.950	2.800	3.000	2.700	4.050	11.780	4.050	4.050	6.050	4.666	8.650	4.300
total	2.950	2.800	3.000	2.950	2.800	3.000	2.700	4.050	11.780	4.050	4.050	6.050	4.666	8.650	4.300
CPUE (kg/hr) 2.800 3.000 2.700 4.050 11.780															
P. indicus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. semisulcatus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. monodon	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
small shrimp spp.	--	--	--	--	--	--	--	--	--	--	-	--	--	--	--
others (mostly fish)	0.621	0.700	0.600	0.621	0.700	0.600	0.540	0.540	1.812	0.540	0.540	0.864	0.839	0.769	0.637
total	0.621	0.700	0.600	0.621	0.700	0.600	0.540	0.540	1.812	0.540	0.540	0.864	0.839	0.769	0.637

Table 8: Monthly catch weight and fishing effort for fyke nets.

	Jan'97	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Jan'98	Feb
Catch Weights (kg)															
P. indicus	10	22	2	9	--	--	--	--	--	--	--	--	43	--	--
P. semisulcatus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. monodon	3	7	1	4	--	--	--	--	--	--	--	--	15	--	--
small shrimp spp.	53	119	182	1029	427	225	638	714	748	573	606	1457	6769	1042	403
sub-total	67	148	184	1043	427	225	638	714	748	573	606	1457	6828	1042	403
others (mostly fish)	34	76	78	444	167	240	95	588	508	671	981	1654	5537	1709	790
total	101	224	262	1487	593	465	732	1301	1255	1244	1588	3111	12365	2752	1193
Effort (hr)	133	296	250	1417	1133	1275	1381	1679	1677	2063	2625	4012	17942	1866	2034
Effort (landings)	33	74	50	283	267	300	283	315	383	458	500	741	3688	481	438
Av. hours/landing	4.00	4.00	5.00	5.00	4.25	4.25	4.88	5.33	4.38	4.50	5.25	5.42	4.86	3.88	4.65
CPUE (kg/landing)															
P. indicus	0.300	0.300	0.033	0.033	--	--	--	--	--	--	--	--	0.012	--	--
P. semisulcatus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. monodon	0.100	0.100	0.013	0.013	--	--	--	--	--	--	--	--	0.004	--	--
small shrimp spp.	1.600	1.600	3.633	3.633	1.600	0.750	2.250	2.267	1.950	1.250	1.213	1.967	1.835	2.165	0.920
others (mostly fish)	1.030	1.030	1.567	1.567	0.625	0.800	0.335	1.867	1.325	1.465	1.963	2.233	1.501	3.550	1.806
total	3.030	3.030	5.247	5.247	2.225	1.550	2.585	4.133	3.275	2.715	3.175	4.200	3.353	5.715	2.726
CPUE (kg/hr)															
P. indicus	0.075	0.075	0.007	0.007	--	--	--	--	--	--	--	--	0.002	--	--
P. semisulcatus	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
P. monodon	0.025	0.025	0.003	0.003	--	--	--	--	--	--	--	--	0.001	--	--
small shrimp spp.	0.400	0.400	0.727	0.727	0.376	0.176	0.462	0.425	0.446	0.278	0.231	0.363	0.377	0.559	0.198
others (mostly fish)	0.258	0.258	0.313	0.313	0.147	0.188	0.069	0.350	0.303	0.326	0.374	0.412	0.309	0.916	0.388
total	0.758	0.758	1.049	1.049	0.524	0.365	0.530	0.775	0.749	0.603	0.605	0.775	0.689	1.475	0586

Table 9: Monthly catch weight and fishing effort for stake nets.

	Jan'97	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year	Jan	Feb
Catch Weights (kg)															
P. indicus	798	1435	--	1739	1297	1193	1161	3048	2444	17577	4424	339	35454	546	1030
P. semisulcatus	4374	2750	3666	1475	929	37	39	190	1202	221	13	106	15001	911	1952
P. monodon	--	109	9	225	210	102	48	29	--	27	15	21	793	15	82
P. merguiensis	--	--	--	--	1270	--	--	--	--	--	--	793	2063	--	--
small shrimp spp.	5064	12769	3407	17354	10773	28844	6706	13098	10745	35393	11539	2400	158091	11524	17991
sub-total	10236	17062	7081	20792	14478	30176	7954	16364	14390	53217	15992	3660	211402	12996	21055
others (mostly fish)	16622	6022	3478	12406	17907	10308	3180	3773	13559	4939	2122	2697	97011	2341	2943
total	26857	23083	10559	33198	32385	40484	11135	20137	27950	58156	18114	6357	308413	15337	23997
Effort (hr)	4890	2688	1854	6055	6623	7659	4794	5646	6108	8460	5984	3138	63897	6165	5765
Effort (landings)	840	615	690	1035	1110	1200	750	975	1050	1350	938	570	11123	990	940
Av. hours/landing	5.8	4.4	2.7	5.9	6.0	6.4	6.4	5.8	5.8	6.3	6.4	5.5	5.7	6.2	6.1
Av. crew/craft	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.9	2.0	2.0	1.9	2.0	2.0	2.0
Catch Value (Rs'000)	1367	1779	744	1790	1497	2495	751	1517	1829	4773	1628	431	20601	1263	2048
Av. Price (Rs/kg)	50.9	77.1	70.5	53.9	46.2	61.6	67.5	75.3	65.5	82.1	89.9	67.8	66.8	82.3	85.4
CPUE (kg/landing)															
P. indicus	0.95	2.33	--	1.68	1.17	0.99	1.55	3.13	2.33	13.02	4.72	0.60	3.19	0.55	1.10
P. semisulcatus	5.21	4.47	5.31	1.42	0.84	0.03	0.05	0.20	1.14	0.16	0.01	0.19	1.35	0.92	2.08
P. monodon	--	0.18	0.01	0.22	0.19	0.08	0.06	0.03	--	0.02	0.02	0.04	0.07	0.02	0.09
P. merguiensis	--	--	--	--	1.14	--	--	--	--	--	--	1.39	0.18	--	--
small shrimp spp.	6.03	20.76	4.94	16.77	9.71	24.04	8.94	13.43	10.23	26.22	12.31	4.21	14.21	11.64	19.14
sub-total	12.18	27.74	10.26	20.09	13.04	25.15	10.61	16.78	13.71	39.42	17.06	6.42	19.01	13.13	22.40
others (mostly fish)	19.79	9.79	5.04	11.99	16.13	8.59	4.24	3.87	12.91	3.66	2.26	4.73	8.72	2.37	3.13
total	31.97	37.53	15.30	32.07	29.18	33.74	14.85	20.65	26.62	43.08	19.32	11.15	27.73	15.49	25.53
CPUE (kg/hr)															
P. indicus	0.16	0.53	--	0.29	0.20	0.16	0.24	0.54	0.40	2.08	0.74	0.11	0.56	0.09	0.18
P. semisulcatus	0.89	1.02	1.98	0.24	0.14	0.01	0.01	0.03	0.20	0.03	0.00	0.03	0.24	0.15	0.34
P. monodon	--	0.04	0.01	0.04	0.03	0.01	0.01	0.00	--	0.00	0.00	0.01	0.01	0.00	0.01
P. merguiensis	--	--	--	--	0.19	--	--	--	--	--	--	0.25	0.03	--	--
small shrimp spp.	1.04	4.75	1.84	2.87	1.63	3.77	1.40	2.32	1.76	4.18	1.93	0.76	2.47	1.87	3.12
sub-total	2.09	6.35	3.82	3.43	2.19	3.94	1.66	2.90	2.36	6.29	2.67	1.17	3.31	2.11	3.65
others (mostly fish)	3.40	2.24	1.87	2.05	2.70	1.35	0.66	0.67	2.22	0.58	0.6	0.86	1.52	0.38	0.51
total	5.49	8.59	5.69	5.48	4.89	5.29	2.32	3.57	4.58	6.87	3.03	2.03	4.83	2.49	4.16

Table 10: Monthly catch weight and fishing effort for non-mechanised trawls

	Mar'97	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Year
Catch Weights (kg)													
P. indicus	363	206	143	143	282	160	146	516	622	390	225	279	3475
P. semisulcatus	20	27	--	--	--	--	8	35	3	3	1	5	103
P. monodon	40	38	25	10	56	28	34	103	45	8	14	20	421
P. merguiensis	37	41	23	16	133	133	282	334	89	81	105	27	1299
small shrimp spp.	10355	5800	3394	9480	16996	7405	11441	30421	9616	9019	45647	22065	181639
sub-total	10815	6111	3586	9649	17467	7727	11911	31409	10375	9501	45991	22396	186938
others (mostly fish)	17576	5762	3446	8694	15303	12330	6819	22308	6434	7494	16502	11955	134621
total	28391	11874	7032	18343	32770	20057	18730	53717	16808	16994	62493	34351	321559
Effort (hr)	8547	7201	3116	8470	11600	12213	7270	10837	12501	10579	15426	11843	119604
Effort (landings)	1488	1025	613	1263	1700	1825	1138	1925	1450	1192	1969	1619	17204
Effort (hauls)	5950	4100	2450	5050	5350	5756	4263	7700	6735	5370	8581	6220	67524
Av. hours/landing	5.7	7.0	5.1	6.7	6.8	6.7	6.4	5.6	8.6	8.9	7.8	7.3	7.0
Av. crew/craft	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Catch Value (Rs'000)	1416	792	522	1386	2631	1268	1821	4456	1536	1243	5992	3269	26334
Av. Price (Rs/kg)	49.9	66.7	74.3	75.6	80.3	63.2	97.2	83.0	91.4	73.2	95.9	95.2	81.9
CPUE (kg/landing)													
P. indicus	0.24	0.20	0.23	0.11	0.17	0.09	0.13	0.27	0.43	0.33	0.11	0.17	0.20
P. semisulcatus	0.01	0.03	--	--	--	--	0.01	0.02	0.00	0.00	0.00	0.00	0.01
P. monodon	0.03	0.04	0.04	0.01	0.03	0.02	0.03	0.05	0.03	0.01	0.01	0.01	0.02
P. merguiensis	0.03	0.04	0.04	0.01	0.08	0.07	0.25	0.17	0.06	0.07	0.05	0.02	0.08
small shrimp spp.	6.96	5.66	5.54	7.51	10.00	4.06	10.06	15.80	6.63	7.57	23.19	13.63	10.56
sub-total	7.27	5.96	5.86	7.64	10.27	4.23	10.47	16.32	7.16	7.97	23.36	13.83	10.87
others (mostly fish)	11.82	5.62	5.63	6.89	9.00	6.76	5.99	11.59	4.44	6.29	8.38	7.38	7.82
total	19.09	11.58	1.48	14.53	19.28	10.99	16.47	27.90	11.59	14.26	31.74	21.22	18.69
CPUE (kg/hr)													
P. indicus	0.042	0.029	0.046	0.017	0.024	0.013	0.020	0.048	0.050	0.037	0.015	0.024	0.029
P. semisulcatus	0.002	0.004	--	--	--	--	0.001	0.003	0.000	0.000	0.000	0.000	0.001
P. monodon	0.005	0.005	0.008	0.001	0.005	0.002	0.005	0.010	0.004	0.001	0.001	0.002	0.004
P. merguiensis	0.004	0.006	0.007	0.002	0.011	0.011	0.039	0.031	0.007	0.008	0.007	0.002	0.011
small shrimp spp.	1.211	0.805	1.089	1.119	1.465	0.606	1.574	2.807	0.769	0.853	2.959	1.863	1.519
sub-total	1.265	0.849	1.151	1.139	1.506	0.633	1.638	2.898	0.830	0.898	2.981	1.891	1.563
others (mostly fish)	2.056	0.800	1.106	1.026	1.319	1.010	0.938	2.059	0.515	0.708	1.070	1.009	1.126
total	3.322	1.649	2.257	2.166	2.825	1.642	2.576	4.957	1.345	1.606	4.051	2.901	2.689

Table 11: Monthly catch weight and fishing effort for mechanised trawls

	Mar'97	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Year
Catch Weights (kg)													
P. indicus	428	150	551	511	1813	457	107	240	64	127	43	22	4513
P. semisulcatus	--	--	--	--	9	--	--	--	--	--	--	4	14
P. monodon	45	87	108	43	99	30	12	2	0	7	1	1	433
P. merguiensis	--	27	96	203	497	396	100	55	35	2	4	1	1415
small shrimp spp.	502	1995	4004	7595	21671	20390	9308	6122	1764	1273	912	1040	76577
sub-total	975	2259	4758	8352	24089	21273	9528	6418	1863	1408	960	1068	82951
others (mostly fish)	2550	3908	6975	17396	22659	13875	7236	12246	6347	3783	5238	2217	104429
total	3525	6166	11734	25748	46748	35148	16764	18664	8210	5191	6198	3285	187380
Effort (hr)	1474	1995	3785	4384	7894	8488	4607	5189	3212	2681	2454	2711	48875
Effort (landings)	225	338	650	713	1025	1175	700	831	538	413	406	444	7456
Effort (hauls)	831	1350	2819	3047	5123	5196	3215	3549	2242	1730	1658	1575	32333
Av. hours/landing	6.6	5.9	5.8	6.2	7.7	7.2	6.6	6.2	6.0	6.5	6.0	6.1	6.6
Av. crew/craft	3.1	4.0	4.0	4.0	4.1	4.9	4.2	3.6	3.2	3.1	3.1	3.3	3.9
Catch Value (Rs'000)	234	400	815	1292	3843	3206	1555	1227	402	286	339	325	13924
Av. Price (Rs/kg)	66.4	64.8	69.4	50.2	82.2	91.2	92.7	65.8	49.0	55.2	54.6	99.0	74.3
CPUE (kg/landing)													
P. indicus	1.90	0.44	0.85	0.72	1.77	0.39	0.15	0.29	0.12	0.31	0.11	0.05	0.61
P. semisulcatus	--	--	--	--	0.01	--	--	--	--	--	--	0.01	0.00
P. monodon	0.20	0.26	0.16	0.06	0.10	0.03	0.02	0.00	--	0.02	0.00	0.00	0.06
P. merguiensis	--	0.08	0.15	0.28	0.48	0.34	0.14	0.07	0.06	0.00	0.01	0.00	0.19
small shrimp spp.	2.23	5.91	6.16	10.66	21.14	17.35	13.30	7.36	3.28	3.09	2.25	2.34	10.27
sub-total	4.33	6.69	732	11.72	23.50	18.11	13.61	7.72	3.47	3.41	2.36	2.41	11.13
others (mostly fish)	11.33	11.58	10.73	24.42	22.11	11.81	10.34	14.73	11.81	9.17	12.89	5.00	14.01
total	15.67	18.27	18.05	36.14	45.61	29.91	23.95	22.45	15.27	12.58	15.26	7.40	25.13
CPUE (kg/hr)													
P. indicus	0.290	0.075	0.145	0.117	0.230	0.054	0.023	0.046	0.020	0.047	0.018	0.008	0.092
P. semisulcatus	--	--	--	--	0.001	--	--	--	--	--	--	0.001	0.000
P. monodon	0.030	0.044	0.028	0.010	0.012	0.004	0.003	0.000	--	0.003	0.000	0.000	0.009
P. merguiensis	--	0.014	0.025	0.046	0.063	0.047	0.022	0.011	0.011	0.001	0.002	0.000	0.029
small shrimp spp.	0.341	1.000	1.058	1.733	2.745	2.402	2.020	1.180	0.549	0.475	0.372	0.384	1.567
sub-total	0.662	1.132	1.257	1.905	3.052	2.506	2.068	1.237	0.580	0.525	0.391	0.394	1.697
others (mostly fish)	1.730	1.958	1.843	3.968	2.871	1.635	1.571	2.360	1.976	1.411	2.135	0.818	2.137
total	2.391	3.090	3.100	5.874	5.922	4.141	3.639	3.597	2.556	1.936	2.526	1.212	3.834

SPECIES COMPOSITIONS FOR SHRIMP

Introduction

The available data were from the sampling of catches. All or parts of catches were purchased at or adjacent to the landing sites over a period of fourteen months. Generally there were three purchases, each containing about one kilogram (shrimp and others), in each of four or five days per week. The numbers of shrimp of each species found in the samples were raised to the weight of the sampled catches. This was done separately in respect to each gear type. These numbers were summed over all the sampled catches for the month in question, and then raised to the total catch in the month. The latter were as reported in the previous section. The reference used when determining species was the FAO Species Identification Field Guide for Fishery Purposes (De Bruin, Russell and Bogusch, 1994). The Field Guide was also useful in providing brief descriptions of the preferred habitat and local biology for each species. The estimates for the annual catch numbers by species and gear are shown in Table 12.

Species in the Catches

A total of fourteen species were found. Twelve of these were in the catches from within the lagoon. The species caught exclusively outside the lagoon were Pa. coromandelica and Pa. uncta. P. indicus was the main contributor to the trammel net, cast net, and brush pile catches. M. dobsoni was the most abundant in both the stake net and trawl catches. It was the only species found to be abundant in the catches from both within and outside the lagoon. P. semisulcatus was important in the trammel net and lagoon seine catches. M. moyebi was also a major contributor to the catches from lagoon seines, as well as from stake nets.

Table 12: Species compositions.

Species	Annual Catch Number by Gear Type ('000)									
	$\begin{array}{r} \text { Lagoon } \\ \text { Seine } \end{array}$	$\begin{array}{r} \text { Brush } \\ \text { Pile } \end{array}$	Cast Trammel		Fyke Net		Non- Mech. Mech. Trawl			
			Net							
$\overline{P \text {. indicus }}$	449	966	9649	36794		20	4345	132	162	52516
P. semisulcatus	6483	--	577	8902	--	6477	5		22443	
P. merguiensis	0	--	6	5	--	48	24	66	149	
P. monodon	1	2	1	693	--	7	5	2	711	
P. latisulcatus	9	--	--	--	--	393	--	--	402	
P. canaliculatus	3	--	--	--	--	609	--	--	612	
Pa. coromandelica	--	--	--	--	--		14791	13264	28055	
Pa. uncta	--	--	--	--	--	--	490	104	594	
Pa. cornuta	--	--	--	--	--	111	7	1	119	
M. dobsoni	1060	22	--	--	6354	84907	63215	17798	173357	
M. elegans	107	0	26	810	353	7299	18	14	8628	
M. moyebi	7354	0	59	238	--	42923	54	--	50629	
M. monoceros	112	--	4	47	6	2664	6	--	2837	
M. affinis	1	0	4	--	--	300	211	169	684	
Totals	15580	991	10325	47489	6733	150081	78957	31579	341737	

Discussion

Six species (P. indicus, P. semisulcatus, Pa. coromandelica, M. dobsoni, M. elegans, and M. moyebi) accounted for some 98% (by number) of the total (all gears) catch. According to the literature P. indicus, P. semisulcatus and M. dobsoni breed in the sea. Their postlarvae migrate inshore (to lagoons and estuaries) for growth and maturation, and then return to the sea in the process of becoming adults. As such, they were expected to occur in the catches from both inside and outside the lagoon. This was found to be so, although P. indicus and P. semisulcatus were much more prevalent in the catches from the lagoon. It is possible that relatively few of these species survive the exploitation levels currently being applied within the lagoon. The findings given in a later section, suggest this may be the case for P. indicus, although unlikely for P. semisulcatus. Both M. elegans and M. moyebi are described in the literature as being able to complete their life cycles within lagoon habitats. This would account for their very low abundance in the catches from trawling. Pa. coromandelica is reported as a strictly marine species, which accords well with the findings from this study.

LENGTH COMPOSITIONS FOR SHRIMP

Introduction

The section concerns the individual lengths of the shrimp in the catches. Again, the data used for this purpose were from the sampling of catches. Measurements were taken of the carapace length (distance from the tip of the rostrum to the mid-dorsal termination of the carapace) for all the shrimp in each sample. The resulting length frequencies (ie. the numbers at each length) were raised to the weights of the sampled catches. Then, separately for each gear type and month, these frequencies were summed, and raised to the weight of the total catches. The resulting plots of the annual length frequencies for each combination of main species, sex and gear type are given in Figures 2 to7. The maximum size ranges for each species by sex are shown in Table 13. Presumed migration paths (for juveniles and adults) are shown for some of the species in Figures 8 to 11 .

Sizes in the Catches

The smallest P. indicus were caught with brush pile and lagoon seines (drag nets), these being the gears used in near-shore waters within the lagoon. The largest sizes in the lagoon catches were from trammel nets and cast nets. These gears produced generally larger sizes than from stake nets set at the entrance. The catches from the non-mechanised trawlers, contained similar sizes to those from the stake nets, as well as much larger individuals. The sizes in the catches from mechanised trawlers were generally larger than from the nonmechanised trawlers. This linkage between size and gear type was generally the same for P. semisulcatus. A major difference was that only intermediate sizes were found in the trawl catches.

Similarly for M. moyebi, M. elegans, and M. dobsoni, the smaller sizes were generally from those gears used around the margins of the lagoon, particularly lagoon seines. These species were all poorly represented in the catches from trammel nets and cast nets. The largest sizes in the lagoon catches were from stake nets and fyke nets. The small numbers of M. moyebi and M. elegans found in the trawl catches were of much the same lengths as from stake nets. In contrast, the M. dobsoni found in trawl catches were much larger, than from any of the gears used in the lagoon. The sizes of Pa. coromandelica caught from each of the nonmechanised and mechanised trawlers were generally the same. In respect to all species, the females present in the catches were generally larger than the males. This difference was most pronounced for M. elegans.

Table 13: Maximum size ranges in the catches.

	Carapace Length Range (cm)		Gear
Male	Female		
P. indicus	$6.4-6.6$	$7.4-7.6$	Mechanised trawl
P. semisulcatus	$4.6-4.8$	$5.4-5.6$	Stake net
Pa. coromandelica	$4.0-4.2$	$4.8-5.0$	Non-mechanised trawl
M. dobsoni	$3.6-3.8$	$4.6-4.8$	Non-mechanised trawl
M. elegans	$3.4-3.6$	$4.6-4.8$	Stake net
M. moyebi	$3.0-3.2$	$3.8-4.0$	Stake net

Discussion

There are several reasons why the sizes of shrimp in the catches might differ between gears. One concerns the affect of the gear itself (ie. gear selectivity). Another concerns the migration of shrimp as they grow larger. Typically, juveniles occur in shallow depths, and progressively migrate to deeper and more saline water as they grow. Hence, those gears used in shallow waters can be expected to catch smaller sizes than the gears set at greater depth. Similarly, for those species caught both inside and outside the lagoon, the catches from outside should contain the larger individuals. The sizes that might ultimately be reached will also be affected by mortality rates. Fewer individuals will reach large sizes when mortalities (as from fishing and natural causes) are high.

The observation that P. indicus (and P. semisulcatus) caught with stake nets are generally smaller than from trammel or cast nets was unexpected. It seems that while many individuals migrate through the entrance at small sizes, another portion remains for a longer period within the lagoon. The time lag is possibly until the next rainy season. This interpretation is supported by the second grouping of lengths (eg. at about 4.5 cm for males and 5.1 cm for females of P. indicus) in each of the stake net frequencies. Relatively few shrimp are represented by these groupings, which presumably is indicative of most being caught (as well as dying from natural causes) while inside the lagoon. This would accord with the substantial fishing effort being exerted by the trammel net and cast net fishermen.

In contrast, the migration of M. dobsoni appears not to include a portion remaining within the lagoon for a longer period. Only one size group is represented in the stake net frequencies. Also, many more are caught at the entrance or outside the lagoon, than within the lagoon. These observations indicate a stronger impulse to migrate from the lagoon at an early age. In this respect, P. semisulcatus appears somewhat intermediate, between P. indicus and M. dobsoni. The length frequencies for Pa. coromandelica contain no information about migration behaviour. The extent to which there might be migration between the two trawling grounds is completely unknown. This is so for all the species. The length frequencies for M. elegans and M. moyebi are consistent with there being little migration outside (or far from) the lagoon.

The largest sizes of M. dobsoni, M. elegans and M. moyebi caught within the lagoon, were from both stake nets and fyke nets. These gears are set at opposite ends of the lagoon. It had been expected that the catches with fyke nets would have contained much smaller shrimp. The explanation (untested) might be that the mesh sizes in the fyke nets are larger, and hence allow the small shrimp to escape. Another possible explanation is that in addition to the migration to the entrance at the northern end, there might also be migration through the narrow waterway at the southern end. The latter connects to the Handela Canal, which connects to the Peliyagoda River, which enters the sea some 20 km south of the entrance to the Negombo Lagoon. While this southward migration seems unlikely, due to the smallness of the waterway, it nevertheless remains a possibility.

Figure 2: Annual length frequencies for P. indicus.

Figure 3: Annual length frequencies for P. semisulcatus.

Figure 4: Annual length frequencies for Pa. coromandelica.

Figure 5: Annual length frequencies for M. dobsoni.

Figure 6: Annual length frequencies for M. elegans.

Figure 7: Annual length frequencies for M. moyebi.

Figure 8: Migration path for P. indicus.

Figure 9: Migration path for M. dobsoni.

Figure 10: Migration path for M. moyebi.

Figure 11: Migration path for Pa. coromandelica.

MORPHOMETRIC RELATIONSHIPS FOR SHRIMP

Introduction

During the study, the principal measurement of size for individual shrimp was carapace length. The additional measurements of total length (distance from the tip of the rostrum to the tip of the telson) and total weight were taken for a lesser number of shrimp. These combined data were analysed to determine the conversion constants in the relationships between carapace length and total length, and between total weight and each of carapace length and total length. In respect to the first, the relationships were assumed to be linear, while for the second a power curve relationship was assumed. In all cases, determining the best fit to the data was by 'least-squares' fit, using the curve fitting procedures in EXCEL. The conversion equations and plots of the data are shown for each species and sex combination in Table 14 and Figures 12 to 17.

Length to Weight Conversion

The relationships between weight and length, were found to be well represented by the power curve equation. It had been expected that the slope constants for females would be higher than for males, and that the intercept constants would be lower, as reported elsewhere (Dall et al., 1990). In the relationship between total weight and total length, this was found to be so for all species other than P. semisulcatus. This is suggestive of the males having a greater total weight for a given total length, at the upper end of the carapace length range; and possibly a lower total weight for a given total length, at the lower end of the range. In general, however, the weights at length for males and females were little different.

Length to Length Conversion

In all the species except P. semisulcatus, the linear slope constants for males were higher and the intercept constants were lower, when total length was regressed against carapace length. The opposite occurred when carapace length was regressed against total length. These are suggestive of the males having a greater total length for a given carapace length, at the upper end of the carapace length range; and possibly a lower total length for a given carapace length, at the lower end of the range. In reality, these differences between the sexes appear small for the size ranges represented in the data.

Table 14: Morphometric parameters.

Species	Sex	Total Weight vs. Carapace Length		Total Weight vs. Total Length		Total Length vs. Carapace Length		Carapace Length vs. Total Length	
		$a \times 10-5$	b	$a \times 10-5$	b	a	b	a	b
P. indicus	Male	3.52	3.22	0.343	3.11	-2.274	2.484	2.920	0.382
	Female	3.95	3.19	0.250	3.17	0.122	2.426	2.425	0.386
P. semisulcatus	Male	5.74	3.30	0.290	3.22	-1.333	2.772	0.903	0.355
	Female	7.04	3.24	0.291	3.22	-1.029	2.795	0.578	0.355
M. dobsoni	Male	36.3	2.63	0.827	2.91	5.846	2.441	-2.117	0.406
	Female	34.7	2.64	0.288	3.17	11.225	2.196	-4.316	0.445
Pa. coromandelica	Male	7.84	2.99	0.234	3.21	0.018	2.356	4.556	0.357
	Female	2.33	3.28	0.098	3.40	2.112	2.171	0.344	0.442
M. elegans	Male	22.2	2.83	0.370	3.13	6.990	2.425	-0.343	0.376
	Female	4.65	3.30	0.012	3.92	12.471	2.258	-4.887	0.435
M. moyebi	Male	30.1	2.77	1.030	2.88	3.921	2.684	0.161	0.346
	Female	31.4	2.74	0.330	3.17	8.549	2.409	-2.117	0.394

[^0]
Discussion

The main utility of the relationships presented here is in enabling the conversion between the different measurements of length, and from lengths to weights. This is necessary, for example, when describing how size as both length and weight increases with age. The estimates of the constants in the relationships between length and age are given in the next section. The conversion from numbers-at-length to weights-at-length is demonstrated in the later section dealing with modelling the performance of the fisheries.

Figure 12: Morphometrics for P. indicus.

Figure 13: Morphometrics for P. semisulcatus.

Figure 14: Morphometrics for M. dobsoni.

Figure 15: Morphometrics for Pa. coromandelica.

Figure 16: Morphometrics for M. elegans.

Figure 17: Morphometrics for M. moyebi.

LENGTH AT AGE RELATIONSHIPS FOR SHRIMP

Introduction

The data used for determining the length at age relationships were the length frequencies from the sampling of catches. The particular frequencies chosen were from sampling the non-mechanised trawl catches in the case of P. indicus, M. dobsoni and Pa. coromandelica; from sampling the stake net catches in the case of P. semisulcatus, M. elegans and M. moyebi females; and from sampling the lagoon seine catches in the case of M. moyebi males. These choices were in reflection of the perceived suitability of the data, including the need to minimise the biasing affect of migration. Growth was assumed to conform to the von Bertalanffy equation. The estimation procedures were those available within the FISAT computer software package (see Gayanilo et al, 1994). Plots of the length frequencies are shown in Figures 18 to 24. The estimates for the von Bertalanffy constants (L_{∞} and K) and other indicators of growth performance $\left(\mathrm{L}_{\infty} \cdot \mathrm{K} / 2\right.$ and $\left.\phi^{\prime}\right)$ are shown in Table 15. The relevant equations are given below this table. Approximate birth dates are given in Table 16.

Length at Age Parameters

The estimates for L_{∞} and to a lesser extent K were highest for P. indicus and P. semisulcatus. This reflects their growth to larger sizes and at faster rates. The lowest values are for M. moyebi. The growth rate when the shrimp are at their 'mid-length' (ie. half L_{∞}) is given by $\mathrm{L}_{\infty} . \mathrm{K} / 2$. The estimates for $\mathrm{CL}_{\infty} . \mathrm{K} / 2$ are approaching $1 \mathrm{~mm} /$ week (carapace length) for P. indicus and P. semisulcatus, about $0.6 \mathrm{~mm} /$ week for Pa. coromandelica, M. dobsoni and M. elegans, and about $0.4 \mathrm{~mm} /$ week for M. moyebi. The values for females are higher than for males. The same trend in growth performance is indicated by the estimates of ϕ^{\prime}.

Table 15: Growth performance.

Species	Sex	$C L_{\infty}$ (mm)	$T L_{\infty}$ (mm)	K $\left(y r^{-1}\right)$	K $\left(w k^{-1}\right)$	$C L_{\infty} K / 2$ $(\mathrm{~mm} / \mathrm{wk})$	ϕ^{\prime}
P. indicus	Male	64.6	177.8	1.50	0.0288	0.93	2.08
	Female	66.5	184.8	1.55	0.0297	0.99	2.12
P. semisulcatus	Male	55.0	151.1	1.47	0.0282	0.78	1.93
	Female	60.2	167.2	1.42	0.0272	0.82	1.99
M. dobsoni	Male	37.6	97.6	1.43	0.0274	0.52	1.59
	Female	48.7	118.2	1.52	0.0292	0.71	1.84
Pa. coromandelica	Male	39.0	91.9	1.41	0.0270	0.53	1.61
	Female	49.1	108.7	1.51	0.0290	0.71	1.84
M. elegans	Male	34.6	90.9	1.39	0.0267	0.46	1.50
	Female	47.0	118.6	1.50	0.0288	0.68	1.80
M. moyebi	Male	25.6	72.6	1.43	0.0274	0.35	1.25
	Female	35.0	92.8	1.40	0.0268	0.47	1.52

Note: $\quad \mathrm{L}_{\infty}$ and K are constants in the von Bertalanffy equation: $\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{\infty} .\left(1-\exp \left(-\mathrm{K} .\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)\right.$). $\mathrm{TL}_{\infty}=\mathrm{a}+\mathrm{b} . C L_{\infty}$ where a and b are the total length vs. carapace length constants given earlier. $\phi^{\prime}=\log _{10} \mathrm{~K}+2 \cdot \log _{10} C L_{\infty}$ is from Pauly and Munro (1984).

Approximate Birth Dates

Visual examination of the length frequencies indicated two cohorts, and hence two spawning periods in each year. This was so for all species, and is presumably synchronised with the rainy seasons. The birth dates were determined, by firstly estimating lengths at age (using the relevant L_{∞} and K values), and then backward extrapolation to length zero. As it was necessary to assume that shrimp of all ages grow according to the von Bertalanffy equation (which may not be correct during early life) the birth dates should be considered as approximate. They are generally indicative of spawning occurring around April and October. This could be confirmed by the future collection of data on gonadal maturity stages. The apparent differences between the sexes should be ignored, as in reality males and females will have identical birth dates.

Table 16: Approximate birth dates.

Species	Sex	Approximate Birth Dates	
		Spring Cohort	Autumn Cohort
P. indicus	Male	April 10	October 11
	Female	April 14	October 14
P. semisulcatus	Male	April 10	October 10
	Female	March 15	September 16
M. dobsoni	Male	March 19	September 19
	Female	May 9	November 11
Pa. coromandelica	Male	April 28	October 28
	Female	February 5	August 4
M. elegans	Male	April 6	October 7
	Female	June 14	December 15
M. moyebi	Male	January 9	July 10
	Female	March 8	September 8

Discussion

The estimates for the von Bertalanffy growth constants are indicative of the shrimp attaining close to their maximum sizes at ages of about 2 years. All values appear credible, and are in general agreement with those reported elsewhere (Dall et al, 1990). While the L_{∞} values for P. indicus are somewhat higher, they are compatible with the large sizes found in the trawl catches. The estimates for P. semisulcatus might need to be viewed with caution, being based on the length frequencies from stake nets (in which the large-sized individuals were generally absent). This was necessary due to this species being poorly represented in the catches from trawling. The estimated birth dates generally coincide with the normal occurrence of the rainy seasons. This might not necessarily mean that the onset of the rains is the triggering mechanism. The timing of the rainy season has been highly variable in recent years.

Figure 18: Annual length frequencies for P. indicus (non-mechanised trawl).

Figure 19: Monthly length frequencies for P. semisulcatus (stake net).

Figure 19: Monthly length frequencies for P.semisulcatus (stake net).(continued)

Figure 20: Monthly length frequencies for M. dobsoni (non-mechanised trawl).

Figure 20: Monthly length frequencies for M.dobsoni (non-mechanised trawl).(continued)

Figure 21: Monthly length frequencies for Pa. coromandelica (non-mechanised trawl).

Figure 21: Monthly length frequencies for Pa.coromandelica (non-mechanised trawl).(continued)

Figure 22: Monthly length frequencies for M. elegans (stake net).

Figure 22: Monthly length frequencies for M.elegans (stake net).(continued)

Figure 23: Monthly length frequencies for M. moyebi (stake net).

Figure 23: Monthly length frequencies for M.moyebi (stake net).(continued)

Figure 24: Monthly length frequencies for M. moyebi (lagoon seine).

Figure 24: Monthly length frequencies for M.moyebi (lagoon seine).(continued)

Introduction

Natural mortality rates applying to shrimp are known to be high. One of the methods for estimating natural mortalities, utilises the relationship between natural mortality and longevity (ie. duration of life) and hence growth rate. It was applied here to estimate the natural mortality rate for adult shrimp. Another method, which required information about egg production and mean parental age, was used to estimate the constants in the relationship between natural mortality and age. This was done in recognition that natural mortality is highest during early life, when the shrimp are small and fragile. The outputs from both methods are given in Table 17. An example of the estimation process in respect to the second method is shown in Table 18. The associated equations and a very brief description of the methods are given with these Tables.

Natural Mortality Parameters

The magnitude of the natural mortalities for adults is indicated by the M values. They are lowest for P. indicus and P. semisulcatus. This is consistent with their being less vulnerable to predation due to attaining much larger sizes. The linkages between natural mortality and growth are reflected by the estimates of M / K, which are supposed to be similar for like species. They were found to be lowest for the larger species. The utility of the values for the constants A and B, was in enabling the estimation of natural mortality rates for shrimp of different ages, as required for the modelling exercise described in a later section.

Table 17: Natural mortality parameters.

Species	Sex	M $\left(y r^{-1}\right)$	M / K	A	B
P. indicus	Male	2.69	1.79		
	Female	2.72	1.75	1.8280	0.9266
P. semisulcatus	Male	2.78	1.89		
	Female	2.64	1.86	1.7448	0.9497
M. dobsoni	Male	3.08	2.15		
	Female	3.02	1.99	2.2689	0.8606
Pa. coromandelica	Male	3.11	2.21		
	Female	3.10	2.05	2.3476	0.8536
M. elegans	Male	3.09	2.22		
	Female	3.01	2.01	2.2586	0.8489
M. moyebi	Male	3.35	2.34		
	Female	3.08	2.20	2.3648	0.8471

Note: Adult M values were determined from $\mathrm{L}_{\infty}, \mathrm{K}$, and water temperature $\mathrm{T}=28^{\circ} \mathrm{C}$ using the Pauly equation: $\mathrm{LN}(\mathrm{M})=-0.0152-0.279 . \mathrm{LN}\left(\mathrm{L}_{\infty}\right)+0.6543 . \mathrm{LN}(\mathrm{K})+0.463 . \mathrm{LN}(\mathrm{T})$ where L_{∞} is total length in centimetres. The relationship between natural mortality and age: $M_{t}=A+B / t$ is from Caddy (1991). A modification of the method of Caddy (1996) was used to estimate A and B. It is based on two progeny surviving to the mean parental age (MPA), from the lifetime egg production of a female (MLF), with the constraint that the adult M is as determined from the Pauly equation. The MPAs were assumed to be 1 year for all of the species. The assumed MLF values were: 550000 for P. indicus and P. semisulcatus, 300000 for M. dobsoni and Pa. coromandelica, 250000 for M. elegans, 200000 for M. moyebi. These are based on the fecundities reported in Dall et.al. 1990.

Table 18: Estimation of the natural mortality at age constants for P. indicus.

Carapace Length (cm)	Age (yr)	Mean Age (yr)	Natural Mortality Coef. (/yr)	Population Number	Description
L1,L2	t1,t2	t'	$\mathrm{M}^{\text {, }}$	N1,N2	
0.0001	0.000	0.003	360.21	550,000.0	Objective: Estimate A and B in the
0.2	0.020	0.029	34.15	456.9	relationship $\mathrm{M}_{\mathrm{t}}{ }^{\prime}=\mathrm{A}+\mathrm{B} / \mathrm{t}^{\prime}$ where $\mathrm{M}_{\mathrm{t}}{ }^{\prime}$
0.4	0.040	0.050	20.44	228.3	is the natural mortality coefficient at
0.6	0.061	0.071	14.82	148.7	mean age $\mathrm{t}^{\prime}[=(\mathrm{t} 2-\mathrm{t} 1) / \mathrm{LN}(\mathrm{t} 2 / \mathrm{t} 1)]$ and A
0.8	0.083	0.093	11.74	107.8	and B are constants (see Caddy, 1991).
1.0	0.105	0.116	9.79	82.8	Method: Input values for the von
1.2	0.128	0.140	8.44	66.0	Bertalanffy growth constants L_{∞} and K
1.4	0.153	0.165	7.45	53.8	were used to estimate t 1 and t 2 ; and
1.6	0.178	0.190	6.70	44.6	the latter used to estimate t^{\prime}. Next,
1.8	0.204	0.217	6.10	37.5	estimates of M_{t} ' were obtained based
2.0	0.231	0.245	5.61	31.8	on assumed values for A and B. The
2.2	0.259	0.274	5.21	27.1	latter were improved by 'iteration'
2.4	0.289	0.304	4.87	23.2	with the best choice being when the
2.6	0.320	0.336	4.59	19.9	mean lifetime fecundity (MLF) of an
2.8	0.353	0.370	4.34	17.2	individual female is reduced to two
3.0	0.387	0.405	4.12	14.8	offspring at the mean parental age
3.2	0.423	0.442	3.92	12.7	(MPA), with the adult mortality at this
3.4	0.462	0.482	3.75	10.9	age being as determined from the
3.6	0.503	0.524	3.59	9.4	Pauly equation.
3.8	0.547	0.570	3.45	8.0	Inputs: $\mathrm{L}_{\infty}=6.65 \mathrm{~cm}, \mathrm{~K}=1.55 / \mathrm{yr}$,
4.0	0.594	0.619	3.33	6.8	MLF $=550,000$ eggs, MPA $=1 \mathrm{yr}$,
4.2	0.644	0.671	3.21	5.8	and adult $\mathrm{M}=2.72$.
4.4	0.699	0.729	3.10	4.8	Outputs: $\mathrm{A}=1.8280$ and $\mathrm{B}=0.9266$.
4.6	0.759	0.792	3.00	4.0	
4.8	0.825	0.862	2.90	3.3	
5.0	0.899	0.949	2.80	2.7	
5.239	1.000	1.039	2.72	2.0	
5.4	1.078	1.134	2.65	1.6	
5.6	1.191	1.258	2.56	1.2	Note: MPA is the age attained by an
5.8	1.327	1.412	2.48	0.8	average parent, and MLF is the eggs
6.0	1.500	1.616	2.40	0.6	released during the lifetime of an
6.2	1.737	1.921	2.31	0.3	average parent. The Solver routine in
6.4	2.117	2.601	2.18	0.1	EXCEL was used for the iterations.

Discussion

The estimates of adult M are high for all species. They are in good agreement with values in the literature, and reflect maximum ages of about two years. The values for A and B are for female shrimp. In the absence of a suitable procedure for estimating natural mortality at age constants for males, it was assumed (for the purpose of the later modelling exercise) that they have the same values as the females. This is somewhat in contradiction with the estimates of adult M . These were found to be generally higher for males, and in accord with males being likely to experience higher predation, because of being generally smaller.

FINANCIAL ANALYSIS OF CONTEMPORARY PROFIT

Introduction

This simple analysis of financial performance has sought to determine the extent to which the fisheries are profitable. It is based mainly on data of fishing costs collected during interviews with fishermen-owners of craft. There were about fifteen interviews in respect to each gear type, other than fyke nets for which no fishing costs data were collected. The latter costs are believed to be similar but lower than for stake nets. In analysing the data, it was necessary to define base case fishing units considered typical for each gear type. The results are presented as cash flows over a 10 year period, with the product prices and costs assumed to remain constant. The catch rates are based on those determined during the study, and also assumed to remain constant. The net remuneration to each of the fishermen-owners and crew were the outputs of principal concern. Internal rates of return (IRR) were also estimated. The analyses are presented in Tables 19 to 25.

Fishing Costs

The fishing costs were generally low for all gear types, except for mechanised trawlers. Daily trip costs other than the payments to crew, were negligible, in most cases consisting only of the cost of lantern fuel. Although claimed during interviews, it was decided not to consider the provision of food and water as a cost against fishing. The fixed charges for administration were likewise negligible. Most persons interviewed claimed only the cost of renewing the registration and licences for their craft. No craft were insured. Labour costs were important (for those gears associated with the need for crew). The other main items of cost were those associated with the investment in craft and gear, and for repairs and maintenance. The additional and substantial cost for mechanised trawl units was for engine fuel and oil.

Remunerations to Crew

Crew were invariably paid a share of the catch value less trip operating costs, with the share differing according to the number of crew and other circumstances. The estimates from the analysis are presented as average monthly values. They are remarkably similar across gear types. In the case of stake nets, the remuneration per crew was estimated to be Rs 5 316, based on receiving a 33.3 \% share. The estimate for lagoon seines was Rs 4 986, based on a 40% share. This more even sharing between the lagoon seine fisherman owner and crew, presumably reflects both being directly engaged in the physically demanding task of dragging the net. The estimate for non-mechanised trawlers was Rs 5950 , based on 3 crew members receiving a 60% share. The estimate for mechanised trawlers was Rs 4359 , based on the 3 crew receiving a 45% share. The base case for brush piles, trammel nets and cast nets were without crew, and hence no crew remunerations were estimated.

Remunerations to Fishermen-owners

The estimates from the analysis are after subtracting all costs, including depreciation, but before the payment of interest (on borrowed money) and tax. Few of the fishermenowners claimed to have borrowed. Roughly an equal number claimed receipt of government subsidies when purchasing craft and gear. The estimates for the remunerations are roughly similar across gears, although understandably higher for gears in which the investment costs are highest. The remunerations as average monthly values were Rs 6345 for cast nets, Rs 5523 for brush pile, Rs 5619 for trammel nets, Rs 7108 for lagoon seines, Rs 10160 for stake nets, Rs 10633 for non-mechanised trawlers, and Rs 12825 for
mechanised trawlers. These have been listed in order of increasing investment. The cash-inhand will be higher than the values given, by amounts equal to the estimates for depreciation.

Internal Rate of Return (IRR)

In the estimation of IRR, it was necessary to separate the labour and investment components in the remunerations to the fishermen-owners. This was done by assuming that the remunerations to labour were 110% of the estimated remuneration per member of crew. Where the gears were operated without crew, the monthly remuneration to labour was assumed to be Rs 5000 . The resulting estimates of IRR are 71% for cast nets, 26% for brush pile, 20% for trammel nets, 45% for lagoon seines, 92% for stake nets, 55% for nonmechanised trawls, and 32% for mechanised trawls. These are generally high for all gears, although of little practical relevance. IRR is a measure of financial performance from the viewpoint of potential investors, whereas the opportunities being sought from these fisheries are more to do with subsistence and employment.

Discussion

The remunerations to crew are very similar across gears, with the monthly values ranging between about Rs $5000-6000$. They presumably accord with the opportunity cost of similarly skilled labour within the local communities being about Rs 5000 . The estimates for the monthly remunerations to fishermen-owners range between about Rs 5000-13000. These include returns to both labour and investment. The true return to labour is unlikely to be much different from the remunerations to crew. In comparing the profitability of nonmechanised and mechanised trawlers, it seems that the former has the better performance. The estimated remuneration to the crew for the mechanised trawlers is low. The remuneration to the fishermen-owners is likewise low, having in mind the substantial investment required to own a 3.5 t craft. These findings accord with many of the mechanised trawlers being operated only during the months around June and July when the shrimp are abundant. Another factor contributing to the modest performance, is the exclusion of these craft during other months from grounds adjacent to Colombo. This has been applied only during recent years, and stems from the enlargement of the security zone around the commercial port.

Table 19: Cash flow analysis for lagoon seines.

Table 20: Cash flow analysis for brush piles.

internal rate of return
26\%

Table 21: Cash flow analysis for cast nets.

Year 0

16,00
2,00
6,0
24,00
$\begin{array}{r}16,000 \\ 2,000 \\ 6,000 \\ \hline\end{array}$ 64,000
24,00
internal rate of return
71%

3
100
1.89
1.71
100
149
25
450
473
428
900

4
100
1.89
1.71
100
149
25

250
473
428
900
70,403
10,688
81,090
5
100
1.89
1.71
100
149
25
250
473
428
900
70,403
10,688
81,090
100
1.89
1.71
100
149
25

250
473
428
900
70,403
10,688
81,090

91010100100
149
25250
473
42870,403
10,68810,688
81,0900

Table 22: Cash flow analysis for trammel nets.

Year 0	1	2	3	4	5	6	7	8	9	10
	100	100	100	100	100	100	100	100	100	100
	1.238	1.238	1.238	1.238	1.238	1.238	1.238	1.238	1.238	1.238
	3.304	3.304	3.304	3.304	3.304	3.304	3.304	3.304	3.304	3.304
	100	100	100	100	100	100	100	100	100	100
	148	148	148	148	148	148	148	148	148	148
	45	45	45	45	45	45	45	45	45	45
	250	250	250	250	250	250	250	250	250	250
	310	310	310	310	310	310	310	310	310	310
	826	826	826	826	826	826	826	826	826	826
	1,136	1,136	1,136	1,136	1,136	1,136	1,136	1,136	1,136	1,136
	45,806	45,806	45,806	45,806	45,806	45,806	45,806	45,806	45,806	45,806
	37,170	37,170	37,170	37,170	37,170	37,170	37,170	37,170	37,170	37,170
	82,976	82,976	82,976	82,976	82,976	82,976	82,976	82,976	82,976	82,976
$\begin{aligned} & 15,000 \\ & 21,000 \\ & 36,000 \end{aligned}$										
	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
	0	0	0	0	0	0	0	0	0	0
	750	750	750	750	750	750	750	750	750	750
	10,500	10,500	10,500	10,500	10,500	10,500	10,500	10,500	10,500	10,500
	11,250	11,250	11,250	11,250	11,250	11,250	11,250	11,250	11,250	11,250
	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	50	50	50	50	50	50	50	50	50	50
	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	750	750	750	750	750	750	750	750	750	750
	750	750	750	750	750	750	750	750	750	750
	67,424	67,424	67,424	67,424	67,424	67,424	67,424	67,424	67,424	67,424
	$\begin{array}{r} 5,619 \\ 0 \end{array}$	$\begin{array}{r} 5,619 \\ 0 \end{array}$	$\begin{array}{r} 5,619 \\ 0 \end{array}$	5,619 0	$\begin{array}{r} 5,619 \\ 0 \end{array}$	$\begin{array}{r} 5,619 \\ 0 \end{array}$	5,619 0	5,619 0	5,619 0	5,619 0
	82,976	82,976	82,976	82,976	82,976	82,976	82,976	82,976	82,976	$\begin{array}{r} 82,976 \\ 7,500 \end{array}$
	82,976	82,976	82,976	82,976	82,976	82,976	82,976	82,976	82,976	90,476
36,000	0	0	0	0	0	0	0	0	0	0
	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500	3,500
	60,000	60,000	60,000	60,000	60,000	60,000	60,000	60,000	60,000	60,000
	11,250	11,250	11,250	11,250	11,250	11,250	11,250	11,250	11,250	11,250
	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5
	0	0	0	0	0	0	0	0	0	0
36,000	74,803	74,803	74,803	74,803	74,803	74,803	74,803	74,803	74,803	74,803
-36,000	8,174	8,174	8,174	8,174	8,174	8,174	8,174	8,174	8,174	15,674

Table 23: Cash flow analysis for stake nets.

net cash flow
internal rate of return
92%

Year 0	1	2	
	100	100	
	17.7	17.7	
	8.6	8.6	
	100	100	
	83	83	
	35	35	
	110	110	
	1,947	1,947	1
	944	944	
	2,891	2,891	2,
	161,601	161,601	161,
	33,033	33,033	33,
	194,634	194,634	194

28,000
30,000
58,000

	3,080	3,080	3,080	3,080	3,080	3,080	3,080	3,080	3,080	3,080
	63,787	63,787	63,787	63,787	63,787	63,787	63,787	63,787	63,787	63,787
	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400
	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
	4,400	4,400	4,400	4,400	4,400	4,400	4,400	4,400	4,400	4,400
	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
	50	50	50	50	50	50	50	50	50	50
	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400
	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400	1,400
	121,914	121,914	121,914	121,914	121,914	121,914	121,914	121,914	121,914	121,914
	10,160	10,160	10,160	10,160	10,160	10,160	10,160	10,160	10,160	10,160
	5,316	5,316	5,316	5,316	5,316	5,316	5,316	5,316	5,316	5,316
	194,634	194,634	194,634	194,634	194,634	194,634	194,634	194,634	194,634	$\begin{array}{r} 194,634 \\ 14,000 \end{array}$
	194,634	194,634	194,634	194,634	194,634	194,634	194,634	194,634	194,634	208,634
58,000	0	0	0	0	0	0	0	0	0	0
	3,080	3,080	3,080	3,080	3,080	3,080	3,080	3,080	3,080	3,080
	133,954	133,954	133,954	133,954	133,954	133,954	133,954	133,954	133,954	133,954
	4,400	4,400	4,400	4,400	4,400	4,400	4,400	4,400	4,400	4,400
	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5	52.5
	0	0	0	0	0	0	0	0	0	0
58,000	141,486	141,486	141,486	141,486	141,486	141,486	141,486	141,486	141,486	141,486
-58,000	53,148	53,148	53,148	53,148	53,148	53,148	53,148	53,148	53,148	67,148

4
100

8.6
100
83
35
110
1,947
944
2,891
161,601
33,033
194,634

100
17.7
8
100
83
3
1
1,947
9
2,8
161,601

10
100
17.7
8.6
100
83
35
110
1,947
944
2,891
161,601
33,033
194,634
194,634
8
100
$\begin{array}{rr} & \\ & 100 \\ 17.7 & 17.7 \\ 8.6 & 8.6 \\ 00 & 100 \\ 83 & 83 \\ 35 & 35 \\ & \\ 110 & 110 \\ 1,947 & 1,947 \\ 944 & 944 \\ 2,891 & 2,89 \\ 61,601 & 161,66\end{array}$
3,033 33,0
194,

Table 24: Cash flow analysis for non-mechanised trawl.

Table 25: Cash flow analysis for mechanised trawl.

Year 0	1	2	3
	100	100	100
	8.72	8.72	8.72
	13.00	13.00	13.00
	100	100	100
	128	128	128
	45	45	45
	240	240	240
	2,093	2,093	2,093
	3,120	3,120	3,120
	5,213	5,213	5,213
	267,878	267,878	267,878
	140,400	140,400	140,400
	408,278	408,278	408,278
			10

300,000
21,000
321,000
4
100
8.72
13.00

100
128
45

240
2,093
3,120
5,213

267,878
140,400
408,278

5	6
100	100
8.72	8.72
13.00	13.00
100	100
128	128
45	4
240	240
2,093	2,03
3,120	3,
5,213	5,
	267,878
140,400	267
408,278	140
	408

	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520
	156,941	156,941	156,941	156,941	156,941	156,941	156,941	156,941	156,941	156,941
	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000	15,000
	10,500	10,500	10,500	10,500	10,500	10,500	10,500	10,500	10,500	10,500
	25,500	25,500	25,500	25,500	25,500	25,500	25,500	25,500	25,500	25,500
	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
	400	400	400	400	400	400	400	400	400	400
	415.0	415.0	415.0	415.0	415.0	415.0	415.0	415.0	415.0	415.0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000
	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000	12,000
	153,902	153,902	153,902	153,902	153,902	153,902	153,902	153,902	153,902	153,902
	12,825	12,825	12,825	12,825	12,825	12,825	12,825	12,825	12,825	12,825
	4,359	4,359	4,359	4,359	4,359	4,359	4,359	4,359	4,359	4,359
	408,278	408,278	408,278	408,278	408,278	408,278	408,278	408,278	408,278	408,278
										120,000
	408,278	408,278	408,278	408,278	408,278	408,278	408,278	408,278	408,278	528,278
321,000	0	0	0	0	0	0	,	0	0	0
	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520	59,520
	214,486	214,486	214,486	214,486	214,486	214,486	214,486	214,486	214,486	214,486
	25,500	25,500	25,500	25,500	25,500	25,500	25,500	25,500	25,500	25,500
	415.0	415.0	415.0	415.0	415.0	415.0	415.0	415.0	415.0	415.0
	0	0	0	0	0	,	0	0	0	0
321,000	299,921	299,921	299,921	299,921	299,921	299,921	299,921	299,921	299,921	299,921
-321,000	108,357	108,357	108,357	108,357	108,357	108,357	108,357	108,357	108,357	228,357

BIOLOGICAL MODEL OF THE FISHERIES

Introduction

This section concerns the formulation of a mathematical model of the fisheries. The model is of the length-based 'Thompson and Bell' type. The biological inputs included those concerning growth in length (L_{∞} and K), the conversion of length to individual weight (a and b), and the natural mortality at age constants (A and B). The values used were as presented in the earlier sections. Most of the remaining inputs were determined internally within the model. These include the annual numbers of zero-aged shrimp (R), the catchability coefficients (q), and the selection/recruitment ogive constants (Ls and s, or S1 and S2). The latter were relevant to the estimation of size distributions for the shrimp in the catches. The remaining input was the annual fishing effort (X), as numbers of landings, for each gear type. The contemporary values were those estimated for 1997 (see Table 1).

The outputs from the model were estimated catch numbers, catch weights, and catch values, the associated CPUEs, and the shrimp length frequencies. They were in respect to each of the six main shrimp species, and eight gear types. In order to obtain output for the other shrimp, it was assumed their proportion (by number) would remain as presently observed, and their average individual weights would be the same as for the main species. In estimating the catch weights for the non-shrimp species (mainly fish), it was assumed their proportions (by weight) would also remain as presently observed for each gear type. A flowchart representation of the model is given in Figure 25. More detailed structure and example calculations are shown in Table 26. The underlying equations are described in Table 27.

Internal Estimation of Inputs

The internal estimation of model inputs involved iteration (ie. trial and error). After inputting the observed annual fishing efforts for each gear, the 'best choice' values for the number of zero-aged recruits, catchability coefficients and selection/recruitment ogive constants, were those for which the estimated and observed catch length frequencies (by species and sex) were in closest agreement. The latter was determined as when the sums of the squared differences between the estimated and observed length frequencies were minimised. The iterations were undertaken using the Solver routine in EXCEL. The resulting estimates for the inputs, including those determined outside the model, are shown in Tables 28 to 33. The estimated and observed length frequencies are shown in Tables 34 to 45.

Catch Numbers, Weights and Values from the Model

The estimated catch numbers, weights and values, from inputting the contemporary fishing efforts, are shown in Table 46 for each species and gear. As would be expected the estimates from the model are in good agreement with the observations given in earlier sections The estimated and observed catch weights for shrimp, for example, are respectively 862 t and 878 t . They are 1183 t and 1194 t for the non-shrimp species. These values do not include catches from gill nets or hand lines. These gears were not represented in the model, due to their not being used to target shrimp

Discussion

The main objective of the analyses was to produce estimates for those inputs to the model, for which external estimation was not possible. While the estimates appear sensible,
there is no objective way in which this can be confirmed at present. Their correctness or otherwise will be revealed over time from additional research and observation. A shortcoming which is likely to have caused some biasing, is the absence of 'spatial separation' within the model, as required to fully reflect the presumed migration patterns. It was not included because of the need for a more complete understanding of the migration behaviour for each species.

As structured, the model assumes that the exploitation of shrimp with different gears takes place simultaneously. This assumption is not valid for some of the gear interactions. The simultaneous exploitation of the shrimp occurring on the trawl grounds, for example, would require that they migrate rapidly backwards and forwards between the two grounds. As the grounds are some 10 km apart, this is unlikely. In the extreme there may be no migration between the grounds. The assumption of simultaneous exploitation for the larger P. indicus (and P. semisulcatus) occurring both inside and outside the lagoon, is obviously not realistic. The shrimp which have left the lagoon will not be accessible to trammel and cast nets, nor will those remaining (for a longer period) within the lagoon be accessible to trawlers.

Figure 25: Model flowchart.

Table 26: Worksheet example for P. indicus females.

Carapace	Start	Mean	Probability of Capture Ogive								Fishing Mortality Coefficient							
Length	Age	Age	Lagoon	Brush	Cast	Trammel	Fyke	Stake	Non-	Mech.	Lagoon	Brush	Cast	Trammel	Fyke	Stake	Non-	Mech.
Interval (cm)	(yr)	(yr)	Seine	Pile	Net	Net	Net	Net	Mech. Trawl	Trawl	Seine	Pile	Net	Net	Net	Net	Mech. Trawl	Trawl
L1, L2	$\mathrm{t} 1, \mathrm{t} 2$	t^{\prime}	Od'	Ob'	Oc'	Ot'	Of'	Os'	On'	Om'	Fd'	$\mathrm{Fb}{ }^{\prime}$	Fc'	Ft'	Ff ${ }^{\prime}$	Fs'	Fn'	Fm'
$\begin{array}{ll}0.0 & 0.2\end{array}$	0.000	0.003	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{ll}0.2 & 0.4\end{array}$	0.020	0.029	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{ll}0.4 & 0.6\end{array}$	0.040	0.050	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{ll}0.6 & 0.8\end{array}$	0.061	0.071	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$\begin{array}{ll}0.8 & 1.0\end{array}$	0.083	0.093	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.01 .2	0.105	0.116	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.21 .4	0.128	0.140	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.41 .6	0.153	0.165	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.61 .8	0.178	0.190	0.04	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.82 .0	0.204	0.217	0.11	0.03	0.00	0.00	0.01	0.01	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
$2.0 \quad 2.2$	0.231	0.245	0.25	0.10	0.00	0.00	0.02	0.02	0.00	0.00	0.0001	0.0001	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000
$\begin{array}{ll}2.2 & 2.4\end{array}$	0.259	0.274	0.49	0.28	0.00	0.00	0.02	0.05	0.00	0.00	0.0002	0.0003	0.0000	0.0000	0.0000	0.0003	0.0000	0.0000
2.42 .6	0.289	0.304	0.76	0.58	0.00	0.00	0.04	0.11	0.04	0.00	0.0003	0.0007	0.0001	0.0000	0.0000	0.0006	0.0000	0.0000
2.6 2.8	0.320	0.336	0.96	0.89	0.01	0.00	0.06	0.22	0.14	0.00	0.0004	0.0011	0.0002	0.0000	0.0000	0.0013	0.0000	0.0000
$\begin{array}{ll}2.8 & 3.0\end{array}$	0.353	0.370	0.99	1.00	0.02	0.00	0.09	0.38	0.37	0.00	0.0004	0.0012	0.0005	0.0002	0.0000	0.0023	0.0000	0.0000
3.0	0.387	0.405	0.83	0.82	0.04	0.01	0.13	0.59	0.68	0.00	0.0004	0.0011	0.0013	0.0012	0.0000	0.0037	0.0001	0.0000
$\begin{array}{lll}3.2 & 3.4\end{array}$	0.423	0.442	0.56	0.49	0.09	0.02	0.18	0.80	0.88	0.00	0.0003	0.0007	0.0032	0.0045	0.0000	0.0054	0.0001	0.0000
3.43	0.462	0.482	0.31	0.21	0.18	0.07	0.25	0.95	0.97	0.00	0.0002	0.0003	0.0067	0.0146	0.0000	0.0068	0.0001	0.0000
3.6	0.503	0.524	0.14	0.07	0.32	0.18	0.32	1.00	0.99	0.02	0.0001	0.0001	0.0126	0.0390	0.0000	0.0077	0.0001	0.0000
3.84 .0	0.547	0.570	0.05	0.02	0.51	0.37	0.41	0.93	1.00	0.13	0.0000	0.0000	0.0213	0.0859	0.0000	0.0076	0.0001	0.0001
4.04 .2	0.594	0.619	0.02	0.00	0.71	0.62	0.51	0.76	1.00	0.56	0.0000	0.0000	0.0323	0.1567	0.0000	0.0067	0.0002	0.0003
4.24 .4	0.644	0.671	0.00	0.00	0.89	0.87	0.62	0.54	1.00	0.92	0.0000	0.0000	0.0437	0.2366	0.0000	0.0052	0.0002	0.0006
4.44 .6	0.699	0.729	0.00	0.00	0.99	1.00	0.72	0.35	1.00	0.99	0.0000	0.0000	0.0531	0.2963	0.0001	0.0036	0.0002	0.0007
4.64 .8	0.759	0.792	0.00	0.00	0.98	0.94	0.82	0.19	1.00	1.00	0.0000	0.0000	0.0579	0.3081	0.0001	0.0022	0.0002	0.0008
4.85	0.825	0.862	0.00	0.00	0.86	0.73	0.90	0.10	1.00	1.00	0.0000	0.0000	0.0567	0.2666	0.0001	0.0012	0.0002	0.0009
$\begin{array}{ll}5.0 & 5.2\end{array}$	0.899	0.940	0.00	0.00	0.67	0.47	0.96	0.04	1.00	1.00	0.0000	0.0000	0.0501	0.1924	0.0001	0.0006	0.0003	0.0010
5.25	0.983	1.030	0.00	0.00	0.47	0.25	0.99	0.02	1.00	1.00	0.0000	0.0000	0.0401	0.1163	0.0001	0.0003	0.0003	0.0011
$\begin{array}{ll}5.4 & 5.6\end{array}$	1.078	1.134	0.00	0.00	0.29	0.11	1.00	0.01	1.00	1.00	0.0000	0.0000	0.0292	0.0591	0.0001	0.0001	0.0004	0.0013
$\begin{array}{ll}5.6 & 5.8\end{array}$	1.191	1.258	0.00	0.00	0.16	0.04	0.97	0.00	1.00	1.00	0.0000	0.0000	0.0195	0.0256	0.0002	0.0000	0.0004	0.0016
5.86	1.327	1.523	0.00	0.00	0.08	0.01	0.92	0.00	1.00	1.00	0.0000	0.0000	0.0121	0.0095	0.0002	0.0000	0.0005	0.0020
6.06 .2	1.500	1.791	0.00	0.00	0.03	0.00	0.84	0.00	1.00	1.00	0.0000	0.0000	0.0073	0.0032	0.0002	0.0000	0.0008	0.0028
6.26 .4	1.737	1.921	0.00	0.00	0.01	0.00	0.75	0.00	1.00	1.00	0.0000	0.0000	0.0045	0.0010	0.0003	0.0000	0.0012	0.0044
$\begin{array}{ll}6.4 & 6.6\end{array}$	2.117	2.601	0.00	0.00	0.00	0.00	0.64	0.00	1.00	1.00	0.0000	0.0000	0.0043	0.0004	0.0008	0.0000	0.0033	0.0121
6.66 .64	3.155	5.934	0.00	0.00	0.00	0.00	0.58	0.00	1.00	1.00	0.0000	0.0000	0.0137	0.0009	0.0047	0.0000	0.0217	0.0795

Carapace Length Interval (cm) L1, L2	Natural	Population Number		Catch Number ('000)								Indiv.	Catch Weight (kg)							
	Mortality			Lagoon	Brush	Cast	Trammel	Fyke	Stake	Non-	Mech.	Whole	Lagoon	Brush	Cast	Trammel	Fyke	Stake	Non-	Mech.
	Coef.	Start (mill.)	Mean (mill.)	Seine	Pile	Net	Net	Net	Net	Mech. Trawl	Trawl	Weight (gm)	Seine	Pile	Net	Net	Net	Net	Mech. Trawl	Trawl
	M'	N1, N2	N'	Cd'	Cb'	Cc'	Ct'	Cf'	Cs'	Cn'	Cm'	w,	Yd'	Yb'	Yc'	Yt'	Yf'	Ys'	Yn'	Ym'
$0.0 \quad 0.2$	7.0931	2985016	420484	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0
0.20 .4	0.6939	2480	1788	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0	0	0	0	0	0	0	0
0.40 .6	0.4289	1239	1008	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	001	0	0	0	0	0	0	0	0
0.60 .8	0.3215	807	690	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0	0	0	0	0	0	0	0
0.81 .0	0.2635	585	514	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.04	0	0	0	0	0	0	0	0
1.01 .2	0.2276	450	402	0.05	0.00	0.00	0.00	0.01	0.04	0.00	0.00	0.08	0	0	0	0	0	0	0	0
1.21 .4	0.2036	358	324	0.23	0.02	0.00	0.00	0.01	0.18	0.00	0.00	0.14	0	0	0	0	0	0	0	0
1.41 .6	0.1868	292	266	0.86	0.16	0.01	0.00	0.02	0.64	0.00	0.00	0.22	0	0	0	0	0	0	0	0
1.61 .8	0.1746	242	222	2.65	1.00	0.03	0.00	0.04	2.08	0.00	0.00	0.33	1	0	0	0	0	1	0	0
1.82 .0	0.1657	203	187	6.72	4.67	0.13	0.00	0.05	6.00	0.00	0.00	0.47	3	2	0	0	0	3	0	0
2.02 .2	0.1592	172	159	14.01	16.13	0.51	0.01	0.08	15.37	0.00	0.00	0.65	9	10	0	0	0	10	0	0
$2.2 \begin{array}{ll}2.4\end{array}$	0.1547	147	136	23.94	41.07	1.83	0.10	0.12	34.99	0.00	0.00	0.87	21	36	2	0	0	30	0	0
2.42 .6	0.1516	126	117	33.45	76.97	5.87	0.73	0.17	70.56	0.49	0.00	1.13	38	87	7	1	0	80	1	0
2.62 .8	0.1498	108	100	38.17	105.98	16.81	4.32	0.23	125.85	1.44	0.00	1.44	55	153	24	6	0	182	2	0
$2.8 \quad 3.0$	0.1492	93	86	35.51	107.04	42.94	21.18	0.31	198.27	3.46	0.00	1.81	64	194	78	38	1	360	6	0
3.03 .2	0.1497	79	73	26.90	79.18	97.62	85.63	0.41	275.43	5.76	0.00	2.24	60	178	219	192	1	618	13	0
3.23 .4	0.1511	68	63	16.53	42.77	197.03	284.28	0.52	336.40	6.77	0.00	2.74	45	117	539	778	1	921	19	0
3.43 .6	0.1537	58	53	8.20	16.76	350.75	770.14	0.63	358.92	6.60	0.05	3.30	27	55	1158	2543	2	1185	22	0
3.63 .8	0.1573	48	43	3.24	4.71	543.79	1681.05	0.73	330.33	5.92	0.36	3.94	13	19	2143	6626	3	1302	23	1
3.84 .0	0.1621	39	34	1.00	0.93	719.20	2895.88	0.78	256.86	5.01	2.34	4.66	5	4	3352	13498	4	1197	23	11
4.04 .2	0.1684	29	24	0.23	0.12	791.19	3838.84	0.76	164.55	3.93	8.11	5.47	1	1	4325	20984	4	899	21	44
4.24 .4	0.1763	20	16	0.04	0.01	711.07	3846.14	0.66	85.29	2.83	9.53	6.36	0	0	4524	24470	4	543	18	61
4.44 .6	0.1861	13	10	0.01	0.00	524.60	2926.51	0.51	35.94	1.88	6.82	7.35	0	0	3858	21521	4	264	14	50
4.64 .8	0.1986	7	6	0.00	0.00	328.96	1751.01	0.37	12.75	1.19	4.37	8.45	0	0	2779	14791	3	108	10	37
4.85 .0	0.2143	4	3	0.00	0.00	185.06	869.50	0.26	4.02	0.76	2.80	9.65	0	0	1785	8388	2	39	7	27
5.05	0.2345	2	2	0.00	0.00	98.00	376.04	0.19	1.18	0.52	1.89	10.96	0	0	1074	4121	2	13	6	21
$\begin{array}{ll}5.2 & 5.4\end{array}$	0.2612	2	1	0.00	0.00	49.91	144.68	0.14	0.33	0.38	1.38	12.39	0	0	618	1792	2	4	5	17
5.45 .6	0.2976	1	0.8	0.00	0.00	24.24	49.11	0.11	0.09	0.30	1.09	13.94	0	0	338	685	2	1	4	15
5.65 .8	0.3496	1	0.6	0.00	0.00	10.94	14.34	0.09	0.02	0.24	0.89	15.62	0	0	171	224	1	0	4	14
5.86 .0	0.4217	0.5	0.4	0.00	0.00	4.48	3.51	0.07	0.00	0.20	0.74	17.44	0	0	78	61	1	0	4	13
6.06 .2	0.5564	0.3	0.2	0.00	0.00	1.62	0.70	0.05	0.00	0.17	0.61	19.39	0	0	31	14	1	0	3	12
6.26 .4	0.8761	0.2	0.1	0.00	0.00	0.49	0.11	0.04	0.00	0.13	0.48	21.49	0	0	11	2	1	0	3	10
6.46 .6	2.2679	0.1	0.0	0.00	0.00	0.11	0.01	0.02	0.00	0.09	0.32	23.74	0	0	3	0	1	0	2	8
6.66 .64	13.5814	0.0	0.0	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.04	25.21	0	0	0	0	0	0	0	1
totals				211	497	4707	19563	8	2316	48	42		343	857	27117	120734	40	7760	210	342

Table 27: Equations used in the model.

```
t1 = -(1/K).LN(1-L1/L
t'}=(\textrm{t}2-\textrm{t}1)/\textrm{LN}(\textrm{t}2/\textrm{t}1
O}\mp@subsup{}{}{\prime}=\operatorname{EXP}(-((((L1+L2)/2)-Ls)^2)/(2.s^2)) or
O
F' = (t2-t1).O'.q.X where X is fishing effort
M' = (t2-t1).(A+(B/(t2-t1)).LN(t2/t1))
N2 = N1.EXP(-(F'+M')) where F' is summed for all gears
N' = (N1-N2)/(F'+M') where F' is summed for all gears
C' = F'.N
w' = (1/(L2-L1)).(a/(b+1)).(L2^(b+1)-L1(b+1))
Y' = C'. w'
C = SUM(C')
Y=SUM(Y')
```

Table 28: Biological inputs to the model for P. indicus.

		Male			Female		
No. of zero length recruits	$\mathrm{R}=$	2932679	000000	$\mathrm{R}=$	2985016	000000	
Asymptotic carapace length	L $\infty=$	6.46	cm	$\mathrm{L} \infty=$	6.65	cm	
Curvature coefficient	$\mathrm{K}=$	1.50	/yr	$\mathrm{K}=$	1.55	/yr	
Total weight/carapace length constants	$\mathrm{a}=$	0.0000352		$\mathrm{a}=$	0.0000395		
(when w in gm and 1 in mm .)	$\mathrm{b}=$	3.2195		$\mathrm{b}=$	3.1878		
Natural mortality at age constants	$\mathrm{A}=$	1.8280		$\mathrm{A}=$	1.8280		
(when age in yr)	$\mathrm{B}=$	0.9266		$\mathrm{F}(/ \mathrm{yr})=\mathrm{B}=$	0.9266		$\mathrm{F}(/ \mathrm{yr})=$
Catchability coefficient (lagoon seine)	$\mathrm{q}=$	0.00000176		$0.0096 \mathrm{q}=$	0.00000224		0.0122
Catchability coefficient (brush pile)	$\mathrm{q}=$	0.00000399		$0.0270 \mathrm{q}=$	0.00000538		0.0363
Catchability coefficient (cast net)	$\mathrm{q}=$	0.00005966		$0.9362 \mathrm{q}=$	0.00005688		0.8927
Catchability coefficient (trammel net)	$\mathrm{q}=$	0.00001956		$4.4752 \mathrm{q}=$	0.00002165		4.9526
Catchability coefficient (fyke net)	$\mathrm{q}=$	0.00000019		$0.0007 \mathrm{q}=$	0.00000032		0.0012
Catchability coefficient (stake net)	$\mathrm{q}=$	0.00001145		$0.1274 \mathrm{q}=$	0.00001576		0.1753
Catchability coefficient (non-mech.trawl)	$\mathrm{q}=$	0.00000787		$0.1355 \mathrm{q}=$	0.00000018		0.0032
Catchability coefficient (mech. trawl)	$\mathrm{q}=$	0.00003537		$0.2637 \mathrm{q}=$	0.00000156		0.0116
Optimum selection length (lagoon seine)	$\mathrm{Ls}=$	2.7284	cm	Ls =	2.8283	cm	
Std. dev. of selection length (lagoon seine)	$\mathrm{s}=$	0.5492	cm	$\mathrm{s}=$	0.4403	cm	
Optimum selection length (brush pile)	$\mathrm{Ls}=$	2.8617	cm	$\mathrm{Ls}=$	2.8714	cm	
Std. dev. of selection length (brush pile)	$\mathrm{s}=$	0.4149	cm	$\mathrm{s}=$	0.3580	cm	
Optimum selection length (cast net)	$\mathrm{Ls}=$	4.4795	cm	Ls $=$	4.5799	cm	
Std. dev. of selection length (cast net)	$\mathrm{s}=$	0.5629	cm	$\mathrm{s}=$	0.5853	cm	
Optimum selection length (trammel net)	$\mathrm{Ls}=$	4.5307	cm	Ls =	4.5397	cm	
Std. dev. of selection length (trammel net)	$\mathrm{s}=$	0.4651	cm	$\mathrm{s}=$	0.4534	cm	
Optimum selection length (fyke net)	$\mathrm{Ls}=$	4.7737	cm	$\mathrm{Ls}=$	5.4240	cm	
Std. dev. of selection length (fyke net)	$\mathrm{s}=$	0.9098	cm	$\mathrm{s}=$	1.1485	cm	
Optimum selection length (stake net)	$\mathrm{Ls}=$	4.1447	cm	$\mathrm{Ls}=$	3.6799	cm	
Std. dev. of selection length (stake net)	$\mathrm{s}=$	0.8643	cm	$\mathrm{S}=$	0.5626	cm	
Selection constants (non-mech. trawl)	S1 =	19.2330		S1 =	19.1994		
(when 1 in cm)	S2 $=$	3.5617		S2 =	6.4352		
Selection constants (mech. trawl)	S1 =	46.5660		S1 =	44.3493		
(when 1 in cm)	S2 =	8.9927		S2 =	10.8788		

Table 29: Biological inputs to the model for P. semisulcatus.

		Male				Female		
No. of zero length recruits	$\mathrm{R}=$	2179741	000000		$\mathrm{R}=$	1905088	000000	
Asymptotic carapace length	L $\infty=$	5.50	cm		L $\infty=$	6.02	cm	
Curvature coefficient	$\mathrm{K}=$	1.47	/yr		$\mathrm{K}=$	1.42	/yr	
Total weight/carapace length constants	$\mathrm{a}=$	0.0000574			$\mathrm{a}=$	0.0000704		
(when w in gm and 1 in mm .)	$\mathrm{b}=$	3.2968			$\mathrm{b}=$	3.239		
Natural mortality at age constants	$\mathrm{A}=$	1.7448			$\mathrm{A}=$	1.7448		
(when age in yr)	$\mathrm{B}=$	0.9497		$\mathrm{F}(/ \mathrm{yr})=$	$\mathrm{B}=$	0.9497		$\mathrm{F}(/ \mathrm{yr})=$
Catchability coefficient (lagoon seine)	$\mathrm{q}=$	0.00006127		0.3332	$\mathrm{q}=$	0.00006611		0.3595
Catchability coefficient (brush pile)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (cast net)	$\mathrm{q}=$	0.00000462		0.0725	$\mathrm{q}=$	0.00000307		0.0482
Catchability coefficient (trammel net)	$\mathrm{q}=$	0.00000469		1.0725	$\mathrm{q}=$	0.00000356		0.8152
Catchability coefficient (fyke net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (stake net)	$\mathrm{q}=$	0.00002329		0.2590	$\mathrm{q}=$	0.00002796		0.3110
Catchability coefficient (non-mech.trawl)	$\mathrm{q}=$	0.00000001		0.0001	$\mathrm{q}=$	0.00000008		0.0014
Catchability coefficient (mech. trawl)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Optimum selection length (lagoon seine)	$\mathrm{Ls}=$	2.4481	cm		$\mathrm{Ls}=$	2.4400	cm	
Std. dev. of selection length (lagoon seine)	$\mathrm{s}=$	0.3064	cm		$\mathrm{s}=$	0.3318	cm	
Optimum selection length (brush pile)	$\mathrm{Ls}=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (brush pile)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (cast net)	$\mathrm{Ls}=$	3.6028	cm		$\mathrm{Ls}=$	3.7220	cm	
Std. dev. of selection length (cast net)	$\mathrm{s}=$	0.3025	cm		$\mathrm{s}=$	0.5265	cm	
Optimum selection length (trammel net)	$\mathrm{Ls}=$	3.6445	cm		$\mathrm{Ls}=$	3.7572	cm	
Std. dev. of selection length (trammel net)	$\mathrm{s}=$	0.3572	cm		s =	0.4723	cm	
Optimum selection length (fyke net)	Ls $=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (fyke net)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (stake net)	Ls $=$	2.5253	cm		$\mathrm{Ls}=$	2.6753	cm	
Std. dev. of selection length (stake net)	$\mathrm{s}=$	0.3914	cm		$\mathrm{s}=$	0.4664	cm	
Selection constants (non-mech. trawl)	S1 =	124.1333			S1 =	9.9000		
(when 1 in cm)	S2 =	57.4923			S2 =	2.0000		
Selection constants (mech. trawl)	S1 =	0.0000			S1 =	0.0000		
(when 1 in cm)	S2 $=$	0.0000			S2 =	0.0000		

Table 30: Biological inputs to the model for Pa. coromandelica.

		Male				Female		
No. of zero length recruits	$\mathrm{R}=$	1720767	000000		$\mathrm{R}=$	1577345	000000	
Asymptotic carapace length	L $\infty=$	3.90	cm		$\mathrm{L} \infty=$	4.91	m	
Curvature coefficient	$\mathrm{K}=$	1.41	/yr		$\mathrm{K}=$	1.51	/yr	
Total weight/carapace length constants	$\mathrm{a}=$	0.0000784			$\mathrm{a}=$	0.0000233		
(when w in gm and 1 in mm.)	$\mathrm{b}=$	2.9873			$\mathrm{b}=$	3.2780		
Natural mortality at age constants	$\mathrm{A}=$	2.3476			$\mathrm{A}=$	2.3476		
(when age in yr)	$\mathrm{B}=$	0.8536		$\mathrm{F}(\mathrm{lyr})=$	$\mathrm{B}=$	0.8536		$\mathrm{F}(/ \mathrm{yr})=$
Catchability coefficient (lagoon seine)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (brush pile)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (cast net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (trammel net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (fyke net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (stake net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (non-mech.trawl)	$\mathrm{q}=$	0.00018939		3.2583	$\mathrm{q}=$	0.00014614		2.5143
Catchability coefficient (mech. trawl)	$\mathrm{q}=$	0.00024540		1.8297	$\mathrm{q}=$	0.00013805		1.0293
Optimum selection length (lagoon seine)	$\mathrm{Ls}=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (lagoon seine)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (brush pile)	$\mathrm{Ls}=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (brush pile)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (cast net)	$\mathrm{Ls}=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (cast net)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (trammel net)	$\mathrm{Ls}=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (trammel net)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (fyke net)	$\mathrm{Ls}=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (fyke net)	$\mathrm{s}=$	0.0000	m		s =	0.0000	m	
Optimum selection length (stake net)	Ls $=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (stake net)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Selection constants (non-mech. trawl)	S1 =	20.5767			S1 =	10.1167		
(when 1 in cm)	S2 =	7.0913			S2 =	2.6484		
Selection constants (mech. trawl)	S1 =	20.2114			S1 =	8.8611		
(when 1 in cm)	S2 =	7.2666			S2 =	2.7336		

Table 31: Biological inputs to the model for M. dobsoni.

	Male			Female				
No. of zero length recruits	$\mathrm{R}=$	4406614	000000		$\mathrm{R}=$	2796931	000000	
Asymptotic carapace length	$\mathrm{L} \infty=$	3.76	cm		L $\infty=$	4.87	cm	
Curvature coefficient	$\mathrm{K}=$	1.43	/yr		$\mathrm{K}=$	1.52	/yr	
Total weight/carapace length constants	$\mathrm{a}=$	0.000363			$\mathrm{a}=$	0.000347		
(when w in gm and 1 in mm.)	$\mathrm{b}=$	2.6322			$\mathrm{b}=$	2.6399		
Natural mortality at age constants	$\mathrm{A}=$	2.2689			$\mathrm{A}=$	2.2689		
(when age in yr)	$\mathrm{B}=$	0.8606		$\mathrm{F}(\mathrm{lyr})=$	$\mathrm{B}=$	0.8606		$\mathrm{F}(/ \mathrm{yr})=$
Catchability coefficient (lagoon seine)	$\mathrm{q}=$	0.00000090		0.0049	$\mathrm{q}=$	0.00000155		0.0084
Catchability coefficient (brush pile)	$\mathrm{q}=$	0.00000002		0.0002	$\mathrm{q}=$	0.00000004		0.0003
Catchability coefficient (cast net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (trammel net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (fyke net)	$\mathrm{q}=$	0.00001515		0.0559	$\mathrm{q}=$	0.00002809		0.1036
Catchability coefficient (stake net)	$\mathrm{q}=$	0.00004417		0.4913	$\mathrm{q}=$	0.00008804		0.9793
Catchability coefficient (non-mech.trawl)	$\mathrm{q}=$	0.00022013		3.7871	$\mathrm{q}=$	0.00013222		2.2747
Catchability coefficient (mech. trawl)	$\mathrm{q}=$	0.00022474		1.6757	$\mathrm{q}=$	0.00043084		3.2123
Optimum selection length (lagoon seine)	$\mathrm{Ls}=$	1.5600	cm		Ls $=$	1.5769	cm	
Std. dev. of selection length (lagoon seine)	$\mathrm{s}=$	0.3351	cm		s =	0.3984	cm	
Optimum selection length (brush pile)	Ls $=$	1.7000	cm		Ls $=$	1.7309	cm	
Std. dev. of selection length (brush pile)	$\mathrm{s}=$	0.2045	cm		$\mathrm{s}=$	0.2585	cm	
Optimum selection length (cast net)	Ls $=$	0.0000	cm		Ls $=$	0.0000	cm	
Std. dev. of selection length (cast net)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (trammel net)	Ls $=$	0.0000	cm		Ls $=$	0.0000	cm	
Std. dev. of selection length (trammel net)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Optimum selection length (fyke net)	Ls $=$	1.7925	cm		Ls $=$	1.8412	cm	
Std. dev. of selection length (fyke net)	$\mathrm{s}=$	0.2266	cm		$\mathrm{s}=$	0.2708	cm	
Optimum selection length (stake net)	Ls $=$	1.6900	cm		Ls $=$	1.6993	cm	
Std. dev. of selection length (stake net)	$\mathrm{s}=$	0.3107	cm		$\mathrm{s}=$	0.3161	cm	
Selection constants (non-mech. trawl)	S1 =	12.7979			S1 =	9.0778		
(when 1 in cm)	S2 =	4.7574			S2 =	3.1624		
Selection constants (mech. trawl)	S1 =	24.6762			S1 =	37.9149		
(when 1 in cm)	S2 =	9.0010			S2 =	11.1721		

Table 32: Biological inputs to the model for M. elegans.

	Male			Female				
No. of zero length recruits	$\mathrm{R}=$	1155598	000000		$\mathrm{R}=$	913336	000000	
Asymptotic carapace length	L $\infty=$	3.46	cm		L $\infty=$	4.70	cm	
Curvature coefficient	$\mathrm{K}=$	1.39	/yr		$\mathrm{K}=$	1.50	/yr	
Total weight/carapace length constants	$\mathrm{a}=$	0.000222			$\mathrm{a}=$	0.0000465		
(when w in gm and 1 in mm.)	$\mathrm{b}=$	2.8295			$\mathrm{b}=$	3.3038		
Natural mortality at age constants	$\mathrm{A}=$	2.2586			$\mathrm{A}=$	2.2586		
(when age in yr)	$\mathrm{B}=$	0.8489		$\mathrm{F}(/ \mathrm{yr})=$	$\mathrm{B}=$	0.8489		$\mathrm{F}(/ \mathrm{yr})=$
Catchability coefficient (lagoon seine)	$\mathrm{q}=$	0.00000071		0.0039	$\mathrm{q}=$	0.00000188		0.0102
Catchability coefficient (brush pile)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (cast net)	$\mathrm{q}=$	0.00000334		0.0524	$\mathrm{q}=$	0.00000035		0.0055
Catchability coefficient (trammel net)	$\mathrm{q}=$	0.00000010		0.0229	$\mathrm{q}=$	0.00000145		0.3314
Catchability coefficient (fyke net)	$\mathrm{q}=$	0.00004904		0.1809	$\mathrm{q}=$	0.00004171		0.1538
Catchability coefficient (stake net)	$\mathrm{q}=$	0.00016910		1.8809	$\mathrm{q}=$	0.00014989		1.6672
Catchability coefficient (non-mech.trawl)	$\mathrm{q}=$	0.00000005		0.0009	$\mathrm{q}=$	0.00000002		0.0003
Catchability coefficient (mech. trawl)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Optimum selection length (lagoon seine)	$\mathrm{Ls}=$	2.2319	cm		$\mathrm{Ls}=$	2.1694	cm	
Std. dev. of selection length (lagoon seine)	$\mathrm{s}=$	0.2433	cm		$\mathrm{s}=$	0.1110	cm	
Optimum selection length (brush pile)	Ls $=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (brush pile)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	n	
Optimum selection length (cast net)	Ls $=$	3.2946	cm		$\mathrm{Ls}=$	3.8158	cm	
Std. dev. of selection length (cast net)	$\mathrm{s}=$	0.1677	cm		$\mathrm{s}=$	0.3054	cm	
Optimum selection length (trammel net)	$\mathrm{Ls}=$	2.7700	cm		$\mathrm{Ls}=$	4.1217	m	
Std. dev. of selection length (trammel net)	$\mathrm{s}=$	0.2000	cm		$\mathrm{s}=$	0.4586	cm	
Optimum selection length (fyke net)	$\mathrm{Ls}=$	3.1252	cm		$\mathrm{Ls}=$	4.0294	cm	
Std. dev. of selection length (fyke net)	$\mathrm{s}=$	0.1984	cm		$\mathrm{s}=$	0.2114	m	
Selection constants (stake net)	S1 =	41.0000	cm		S1 =	13.7201	m	
(when 1 in cm)	S2 =	15.4000	cm		S2 =	3.5906	cm	
Selection constants (non-mech. trawl)	S1 =	10.0000			S1 =	12.8075		
(when 1 in cm)	S2 =	4.0000			S2 =	7.0000		
Selection constants (mech. trawl)	S1 =	0.0000			S1 =	0.0000		
(when 1 in cm)	S2 =	0.0000			S2 =	0.0000		

Table 33: Biological inputs to the model for M. moyebi.

		Male				Female		
No. of zero length recruits	$\mathrm{R}=$	5002779	000000		$\mathrm{R}=$	4550555	000000	
Asymptotic carapace length	L $\infty=$	2.56	cm		L $\infty=$	3.50	m	
Curvature coefficient	$\mathrm{K}=$	1.43	/yr		$\mathrm{K}=$	1.40	/yr	
Total weight/carapace length constants	$\mathrm{a}=$	0.000301			$\mathrm{a}=$	0.000314		
	$\mathrm{b}=$	2.7691			$\mathrm{b}=$	2.7445		
Natural mortality at age constants	$\mathrm{A}=$	2.3648			$\mathrm{A}=$	2.3648		
(when age in yr)	$\mathrm{B}=$	0.8471		$\mathrm{F}(/ \mathrm{yr})=$	$\mathrm{B}=$	0.8471		$\mathrm{F}(/ \mathrm{yr})=$
Catchability coefficient (lagoon seine)	$\mathrm{q}=$	0.00001600		0.0870	$\mathrm{q}=$	0.00001835		0.0998
Catchability coefficient (brush pile)	$\mathrm{q}=$	0.00000054		0.0037	$\mathrm{q}=$	0.00000050		0.0034
Catchability coefficient (cast net)	$\mathrm{q}=$	0.00000012		0.0019	$\mathrm{q}=$	0.00000013		0.0020
Catchability coefficient (trammel net)	$\mathrm{q}=$	0.00000001		0.0023	$\mathrm{q}=$	0.00000060		0.1375
Catchability coefficient (fyke net)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Catchability coefficient (stake net)	$\mathrm{q}=$	0.00016039		1.7840	$\mathrm{q}=$	0.00013939		1.5504
Catchability coefficient (non-mech.trawl)	$\mathrm{q}=$	0.00000039		0.0067	$\mathrm{q}=$	0.00000029		0.0051
Catchability coefficient (mech. trawl)	$\mathrm{q}=$	0.00000000		0.0000	$\mathrm{q}=$	0.00000000		0.0000
Optimum selection length (lagoon seine)	$\mathrm{Ls}=$	2.1965	cm		$\mathrm{Ls}=$	2.9120	cm	
Std. dev. of selection length (lagoon seine)	$\mathrm{s}=$	0.3382	cm		$\mathrm{s}=$	0.5956	cm	
Optimum selection length (brush pile)	$\mathrm{Ls}=$	2.0148	cm		$\mathrm{Ls}=$	2.0142	cm	
Std. dev. of selection length (brush pile)	$\mathrm{s}=$	0.0266	cm		$\mathrm{s}=$	0.0266	cm	
Optimum selection length (cast net)	$\mathrm{Ls}=$	2.0345	cm		$\mathrm{Ls}=$	2.5000	cm	
Std. dev. of selection length (cast net)	$\mathrm{s}=$	0.0869	cm		$\mathrm{s}=$	0.1100	cm	
Optimum selection length (trammel net)	$\mathrm{Ls}=$	4.3988	cm		$\mathrm{Ls}=$	4.6068	cm	
Std. dev. of selection length (trammel net)	$\mathrm{s}=$	0.7518	cm		s =	0.8124	cm	
Optimum selection length (fyke net)	$\mathrm{Ls}=$	0.0000	cm		$\mathrm{Ls}=$	0.0000	cm	
Std. dev. of selection length (fyke net)	$\mathrm{s}=$	0.0000	cm		$\mathrm{s}=$	0.0000	cm	
Selection constants (stake net)	S1 =	21.7312	cm		S1 =	20.7040	m	
(when 1 in cm)	S2 =	10.5733	cm		S2 =	8.1649	cm	
Selection constants (non-mech. trawl)	S1 =	43.6193			S1 =	13.5196		
(when 1 in cm)	S2 =	20.1313			S2 =	4.4577		
Selection constants (mech. trawl)	S1 =	0.0000			S1 =	0.0000		
(when 1 in cm)	S2 =	0.0000			S2 =	0.0000		

Table 34: Estimated and observed catch numbers for male P. indicus.

Carapace Mid- Length	Catch Numbers (${ }^{\circ} 000$)															
	Lagoon Seine Obs.	Est.	Brush Pile Obs.	Est.	$\begin{aligned} & \quad \text { Cast } \\ & \text { Net } \\ & \text { Obs. } \end{aligned}$	Est.	Trammel Net		Fyke Net		Stake Net		Non-Mechanised Trawl		Mechanised Trawl	
							Obs.	Est.								
0.1																
0.3																
0.5																
0.7												1				
0.9												1				
1.1		1										2				
1.3		3										5				
1.5		5		1								8				
1.7		10		3							3	14				
1.9	20	16	3	10							6	23				
2.1	32	23	13	23		1					49	36				
2.3	33	29	42	44	3	2					20	53				
2.5	30	32	74	68	3	7		1	0.6	0.1	85	76				
2.7	22	32	88	83	8	21	69	6		0.2	65	104				
2.9	33	27	80	80	52	54	35	28		0.3	162	134	0.6	0.1		
3.1	22	20	46	61	74	125	93	106		0.3	179	164		0.1		
3.3	12	13	34	37	176	251	106	325	1.7	0.4	196	190	3.3	0.2		
3.5	11	8	37	18	661	441	921	822		0.6	333	206		0.3		
3.7	5	4	10	7	600	665	1415	1683	1.5	0.6	164	207	8.4	0.6	0.2	
3.9	1	2	8	2	854	844	3187	2733		0.7	144	187	1.7	1.0	0.7	
4.1	2	1	1		776	877	3385	3426		0.6	85	150	1.0	1.5	0.9	
4.3			1		719	734	2916	3263		0.5	135	103	1.8	2.2	1.2	0.1
4.5					675	498	2739	2375		0.4	142	62	2.1	2.8	2.6	0.3
4.7					259	284	1392	1370	1.5	0.2	74	34	1.3	3.4	3.9	1.2
4.9					117	143	627	660	1.5	0.1	11	18	5.2	3.9	3.6	4.0
5.1					25	67	232	277	1.5	0.1	17	9	2.7	4.5	9.2	11.5
5.3					22	29	69	103		0.1	12	5	4.1	5.1	22.5	18.0
5.5					1	12	40	34				2	11.4	5.0	10.6	16.6
5.7						4	13	9				1	3.8	4.2	10.9	12.9
5.9						1	1	2				1	2.4	3.1	14.6	9.6
6.1													1.9	1.7	13.6	6.5
6.3													1.2	0.2	1.7	3.5
6.5															1.8	0.3
Totals	224	227	439	436	5027	5060	17240	17225	8.3	5.4	1881	1818	52.9	45.2	97.9	84.4

Table 35: Estimated and observed catch numbers for female P. indicus.

Carapace Mid- Length	Catch Numbers ('000)															
	Lagoon Seine Obs.	Est.		Est.	$\begin{aligned} & \text { Cast } \\ & \text { Net } \\ & \text { Obs. } \end{aligned}$	Est.	Trammel Net		Fyke Net		Stake Net		Non-Mechanised Trawl		Mechanised Trawl	
							Obs.	Est.								
0.1																
0.3																
0.5																
0.7																
0.9																
1.1																
1.3																
1.5												1				
1.7	1	3		1								2				
1.9	17	7	2	5						0.1	1	6				
2.1	9	14	12	16		1				0.1	17	15				
2.3	21	24	33	41		2				0.1	73	35				
2.5	44	33	89	77	5	6		1	1.5	0.2	64	71	0.3	0.5		
2.7	34	38	107	106	7	17	10	4		0.2	125	126	0.6	1.4		
2.9	37	36	114	107	18	43	152	21	1.5	0.3	269	198	1.2	3.5		
3.1	26	27	58	79	66	98	172	86		0.4	293	275	1.2	5.8		
3.3	12	17	48	43	140	197	119	284		0.5	219	336	11.6	6.8		
3.5	12	8	38	17	431	351	1000	770	2.4	0.6	381	359	1.2	6.6	0.2	
3.7	7	3	16	5	588	544	1485	1681		0.7	397	330	16.4	5.9		
3.9	1	1	9	1	856	719	3329	2896		0.8	263	257	3.5	5.0	1.3	2.3
4.1	2		1		617	791	3710	3839	0.6	0.8	103	165	9.3	3.9	9.6	8.1
4.3	1				630	711	3475	3846		0.7	68	85	8.6	2.8	6.2	9.5
4.5	1				624	525	3177	2927	1.7	0.5	71	36	2.3	1.9	8.5	6.8
4.7					361	329	1525	1751	0.6	0.4	16	13	1.8	1.2	4.1	4.4
4.9					182	185	877	869		0.3	31	4	1.2	0.8	1.8	2.8
5.1					53	98	267	376	1.5	0.2	66	1	3.4	0.5	5.0	1.9
5.3					37	50	132	145	1.5	0.1	3		3.7	0.4	1.4	1.4
5.5					7	24	79	49		0.1	2		5.3	0.3	11.7	1.1
5.7					1	11	35	14		0.1	1		1.9	0.2	2.0	0.9
5.9						4	6	4		0.1			1.3	0.2	2.9	0.7
6.1						2	2	1		0.1			2.5	0.2	2.2	0.6
6.3													1.2	0.1	2.3	0.5
6.5														0.1	2.7	0.3
6.7													1.2		1.7	
Totals	226	211	527	498	4622	4707	19554	19564	11.4	7.4	2463	2316	79.7	48.1	63.6	41.8

Table 36: Estimated and observed catch numbers for male P. semisulcatus.

Carapace								Num	('000)							
Mid- Length	Lagoon Seine		Brush Pile		Cas Ne		Tram		Fyke Net				Non-Me Tr		Mecha Tra	
	Obs.	Est.														
0.1																
0.3																
0.5																
0.7																
0.9																
1.1												2				
1.3	31	2										11				
1.5	30	13									20	40				
1.7	46	69									96	114				
1.9	246	238									193	256				
2.1	482	537									307	441				
2.3	692	792			2			2			666	586	1.2	0.2		
2.5	930	760			3		28	15			617	598		0.2		
2.7	295	477			7	2	15	65			378	471		0.2		
2.9	194	197			11	9	344	214			293	287		0.2		
3.1	111	53			44	28	468	514			159	135	1.2	0.1		
3.3	83	9			33	58	843	889			83	48		0.1		
3.5	53	1			91	76	1151	1099			71	13		0.1		
3.7	18				61	63	895	972			49	3		0.1		
3.9	8				36	34	834	626			87	1		0.1		
4.1	2				3	12	101	298			86			0.1		
4.3					2	3	95	106			28					
4.5							15	28			13					
4.7								5			2					
4.9								1								
5.1																
5.3																
Totals	3220	3147			293	284	4788	4834			3147	3005	2.3	1.5		

Table 37: Estimated and observed catch numbers for female P. semisulcatus.

Carapace								Num	('000)							
MidLength	Lagoon Seine		Brush Pile		Cas Ne		Tran		Fyk Net		Sta		Non-Mec Tra		Mecha Tra	
	Obs.	Est.														
0.1																
0.3																
0.5																
0.7																
0.9												2				
1.1		1									2	6				
1.3	45	5									4	19				
1.5	55	26									25	52				
1.7	109	102									89	119				
1.9	333	282						1			259	231				
2.1	420	547				1		4			281	374				
2.3	737	737				2	5	16			483	504				
2.5	788	689			8	6	15	46			631	565				
2.7	339	448			8	12	85	113			483	526				
2.9	190	204			27	21	357	233			386	410	1.2			
3.1	100	64			25	31	353	401			283	266	1.2			
3.3	52	14			42	40	457	576			106	143		0.1		
3.5	53	2			44	43	781	687			85	64		0.1		
3.7	18				43	40	656	677			59	23		0.1		
3.9	13				30	32	675	555			27	7		0.1		
4.1	7				23	23	237	380			53	2		0.1		
4.3	2				10	14	147	219			32			0.1		
4.5	2				8	7	237	106			31			0.2		
4.7					15		93	43			2			0.2		
4.9						1	15	15			2			0.2		
5.1								4			4			0.2		
5.3								1			4			0.2		
5.5											1			0.2		
5.7														0.2		
5.9														0.1		
Totals	3263	3121			284	280	4113	4076			3331	3313	2.3	2.3		

Table 38: Estimated and observed catch numbers for male Pa. coromandelica.

Carapace Mid- Length	Catch Numbers ('000)															
	$\begin{aligned} & \text { Lagoon } \\ & \text { Seine } \\ & \text { Obs. } \end{aligned}$					Est.	Tramm Net Obs.	Est.	Fyke Net Obs.	Est.	$\begin{gathered} \text { Stake } \\ \text { Net } \end{gathered}$Obs.	Est.	Non-Mechanised Trawl		Mechanised Trawl	
		Est.		Est.									Obs.	Est.	Obs.	Est.
0.1																
0.3																
0.5																
0.7																
0.9																
1.1																
1.3																
1.5																
1.7																
1.9													48	18	3	21
2.1													43	62	18	72
2.3													134	207	193	246
2.5													699	650	1033	763
2.7													1663	1675	1437	1735
2.9													2590	2589	2363	2057
3.1													1819	1824	959	1161
3.3													630	625	165	363
3.5													180	111	77	63
3.7													15	7		4
3.9															14	
4.1																
totals													7829	7768	6262	6485

Table 39: Estimated and observed catch numbers for female Pa.coromandelica.

Carapace Mid- Length	Catch Numbers ('000)															
	Lagoon Seine Obs.		$\begin{aligned} & \text { Brush } \\ & \text { Pile } \\ & \text { Obs. } \\ & \hline \end{aligned}$		$\begin{array}{r} \text { Cast } \\ \text { Net } \end{array}$Obs.	Est.	Tramm Net Obs.	Est.	$\begin{aligned} & \text { Fyk } \\ & \text { Net } \\ & \text { Obs. } \end{aligned}$	Est.	$\begin{aligned} & \text { Stak } \\ & \text { Net } \end{aligned}$	Est.	Non-Mechanised Trawl		Mechanised Trawl	
		Est.		Est.									Obs.	Est.	Obs.	Est.
0.1																
0.3																
0.5																
0.7																
0.9																
1.1																
1.3																
1.5																
1.7																
1.9													1	92	24	152
2.1													13	133	166	221
2.3													92	193	317	318
2.5													285	277	650	448
2.7													402	392	563	608
2.9													917	542	812	778
3.1													586	716	899	917
3.3													632	887	648	973
3.5													1272	996	1344	912
3.7													780	988	656	747
3.9													946	828	454	526
4.1													525	563	267	310
4.3													296	293	140	146
4.5													183	103	44	48
4.7													25	17	19	8
4.9													6	1		
totals													6962	7021	7002	7110

Table 40: Estimated and observed catch numbers for male M. dobsoni.

Table 41: Estimated and observed catch numbers for female M. dobsoni.

Carapace Mid- Length	Catch Numbers (${ }^{(000 \text {) }}$																
			$\begin{gathered} \text { Brush } \\ \text { Pile } \end{gathered}$Obs.		$\begin{aligned} & \text { Cast } \\ & \text { Net } \\ & \text { Obs. } \end{aligned}$	Est.	$\begin{aligned} & \text { Trammel } \\ & \text { Net } \\ & \text { Obs. } \\ & \hline \end{aligned}$	Est.		Est.	Stake Net		Non-Mechanised Trawl		Mechanised Trawl		
		Est.		Est.							Obs.	Est.	Obs.	Est.	Obs.	Est.	
0.1																	
0.3		4										4					
0.5		10										34					
0.7	48	24							4		28	215					
0.9	64	50							9	4	1395	999					
1.1	57	82							25	49	3315	3232					
1.3	103	107		1					225	228	6454	7148	16	255			
1.5	116	110	4	3					557	621	11286	10638	43	390	8		
1.7	77	87	6	3					1013	978	10254	10587	499	592	15		
1.9	40	54	3	2					813	896	6142	7086	937	894	36		
2.1	36	26	1	1					378	482	3660	3219	1478	1343	158		
2.3	2	10							264	152	1330	993	2314	1983	150		
2.5		3							195	28	918	206	3703	2794	322	1	
2.7		1							8	3	128	28	3226	3619	277	6	
2.9									4		8	3	3302	4167	299	45	
3.1									2				2557	4182	656	317	$\stackrel{\infty}{\sim}$
3.3													2546	3572	1422	1648	
3.5													4477	2447	3201	3010	
3.7													1922	1320	1752	1936	
3.9													1014	586	582	856	
4.1													286	212	138	305	
4.3													94	57		81	
4.5													45	9		13	
4.7													5			1	
4.9																	
Totals	543	568	14	11					3496	3442	44920	44391	28462	28422	9018	8219	

Table 42: Estimated and observed catch numbers for male M.elegans.

Carapace Mid- Length	Catch Numbers ('000)															
	Lagoon Seine Obs.	Est.	Brush Pile Obs.	Est.	Cast Net Obs.	Est.	Trammel Net Obs.	Est.	FykeNet		Stake		Non-Mechanised		Mechanised	
													Tr		Tr	
									Obs.	Est.	Obs.	Est.	Obs.	Est.	Obs.	Est.
0.1																
0.3																
0.5																
0.7																
0.9																
1.1																
1.3																
1.5																
1.7		2							2		2					
1.9		8							2		6					
2.1	26	13							3		3	1		1		
2.3		12						5			67	22		1		
2.5	13	5						22	6	3	251	346		1		
2.7	5	1					69	35	25	29	1013	1951	3	1		
2.9	5				4	3	5	15	73	77	2000	1488	3	1		
3.1					8	7	5	2	55	50	1178	520	7			
3.3						2	6		28	6	107	84				
3.5									2		25	1				
3.7																
Totals	48	42			12	13	85	79	195	165	4653	4414	12	5		

Table 43: Estimated and observed catch numbers for female M.elegans.

Carapace Mid- Length	$\begin{aligned} & \text { Lagoon } \\ & \text { Seine } \\ & \text { Obs. } \end{aligned}$	Est.	$\begin{gathered} \text { Brush } \\ \text { Pile } \end{gathered}$Obs.	Est.	Cast Net Obs.	Est.	Catch Numbers ('000)				$\begin{aligned} & \text { Stake } \\ & \text { Net } \\ & \text { Obs. } \end{aligned}$	Est.	Non-MechanisedTrawl		Mechanised Trawl	
							Trammel Net		Fyke Net							
0.1																
0.3																
0.5																
0.7																
0.9																
1.1																
1.3														0.1		
1.5														0.2		
1.7														0.4		
1.9		2												0.8		
2.1	28	27							2		20	11		1.0		
2.3	14	14									37	20		0.9		
2.5	6							2			155	35		0.8		
2.7	3							6			123	61		0.7		
2.9	6							17			164	105		0.6		
3.1	2					1	54	42	2		91	175		0.5		
3.3						2	137	83			194	278		0.4		
3.5					5	3	59	132	4	7	517	400		0.3		
3.7					3	4	190	163	36	34	424	491	1	0.3		
3.9					3	3	152	148	62	64	496	479	5	0.2		
4.1					3	1	101	95	44	42	284	349		0.1		
4.3					1		15	39	7	9	80	179				
4.5							16	8	2		58	52				
4.7											5	2				
Totals	59	44			14	13	725	734	159	156	2646	2636	6	7		

Table 44: Estimated and observed catch numbers for male M.moyebi.

Carapace Mid- Length	Lagoon Seine Obs.	Est.	Brush Pile Obs.	Est.	$\begin{aligned} & \text { Cast } \\ & \text { Net } \\ & \text { Obs. } \end{aligned}$	Est.	Catch Numbers (${ }^{(000}$)						Non-Mechanised Trawl		Mechanised Trawl	
							Trammel Net		Fyke		Stake Net					
							Obs.	Est.								
0.1																
0.3																
0.5																
0.7	95	1														
0.9	86	4									1	1				
1.1	125	26									1	4				
1.3	105	111									25	26				
1.5	385	331									168	159				
1.7	581	679						0.1			753	937				
1.9	885	914			8	9		0.1			4664	4479	1	,		
2.1	738	689	0.2	0.2	12	12	1	0.2			8374	9081	12	12		
2.3	278	214			1			0.1			6226	4287	15	15		
2.5	33	13			2						1452	377	2	1		
2.7																
Totals	3313	2983	0.2	0.2	22	21	1	0.6			21664	19351	31	30		

Table 45: Estimated and observed catch numbers for female M.moyebi.

Carapace								Num	('000)							
Mid-	Lag		Brush		Cas		Tram		Fyk		Sta		Non-Mec		Mecha	
Length			Pile		Net		N		N		N		Tra		Tr	
	Obs.	Est.														
0.1		1														
0.3		1														
0.5		3														
0.7	95	8														
0.9	86	20														
1.1	119	45						1				1				
1.3	52	94						1			6	2				
1.5	332	176						3			29	10				
1.7	254	296	0.1					5			60	40				
1.9	498	444					6	10			192	162	2	1		
2.1	520	590	0.1	0.3	2		10	18			592	643		1		
2.3	723	682			3	4	49	28			2086	2286		2		
2.5	815	658			19	17	37	40			5782	5550	8	4		
2.7	357	497			6	2	62	46			5984	6517	4	5		
2.9	161	278			6		40	42			4405	4109	8	5		
3.1	28	107			1		28	28			1615	1723		3		
3.3	2	21					6	10			402	404		1		
3.5		1									105	14				
3.7																
Totals	4041	3923	0.3	0.3	36	24	237	233			21259	21460	23	23		

Table 46: Estimates of contemporary catch numbers, weights and values from the model.

	Annual Catch Number (‘000)	Annual Catch Weight (kg)	Annual Catch Value (Rs)	Annual Catch Number ('000)	Annual Catch Weight (kg)	Annual Catch Value (Rs)	Annual Catch Number (‘000)	Annual Catch Weight (kg)	Annual Catch Value (Rs)
	Lagoon Seine			Brush Pile			Cast Net		
P. indicus	439	659	58931	934	1587	142668	9767	54636	8336052
P. semisulcatus	6268	13296	1164807	--	--	--	564	4277	462312
Pa. coromandelica	--	--	--	--	--	--	--	--	--
M. dobsoni	1186	477	22762	17	11	493	--	--	--
M. elegans	85	109	9336	0	0	0	26	138	13512
M. moyebi	6945	10008	774494	0	1	58	46	77	6456
other shrimp	122	200	16531	2	4	360	15	86	12795
sub-total	15045	24749	2046860	954	1602	143579	10417	59213	8831128
others (mainly fish)		37929	1517164		37033	1481304		30012	750311
total		62678	3564024		38635	1624883		89226	9581439
	Trammel Net			Fyke Net			Stake Net		
P. indicus	36788	224500	36179962	13	66	7640	4135	14219	1684321
P. semisulcatus	8911	69848	7725972	--	--	--	6318	16041	1412425
Pa. coromandelica	--	--	--	--	--	--	--	--	--
M. dobsoni	--	--	--	6294	4435	178709	84364	47619	2361363
M. elegans	813	5504	630529	321	1864	166779	7049	31159	3368167
M. moyebi	234	591	52355	--	--	--	40810	82827	7168621
other shrimp	743	4774	708516	6	6	308	4038	9988	944041
sub-total	47489	305217	45297334	6634	6371	353436	146714	201853	16938937
others (mainly fish)		744498	33502399		5166	129158		92629	3242015
total		1049715	78799733		11537	482594		294482	20180952
	Non-mechanised Trawl			Mechanised Trawl			All Gears		
P. indicus	93	774	177086	126	1561	545868	52295	298001	47132528
P. semisulcatus	4	55	12621	--	--	--	22065	103516	10778138
Pa. coromandelica	14789	33239	4330656	13595	27132	3583242	28384	60371	7913899
M. dobsoni	63011	141505	15604054	16972	56510	6840121	171844	250557	25007502
M. elegans	13	30	3376	0	0	0	8307	38805	4191699
M. moyebi	53	110	11981	--	--	--	48088	93614	8013965
other shrimp	741	1695	224704	336	702	101045	6002	17454	2008300
sub-total	78703	177408	20364479	31029	85904	11070276	336986	862317	105046030
others (mainly fish)		127758	5749105		108147	4866602		1183172	51238057

Introduction

Despite its shortcomings (ie. the non-inclusion of 'spatial separation'), the model was used to investigate the possible consequences to annual catch weights, catch values, and CPUEs from applying more or less fishing effort. The values for all the inputs to the model, other than the fishing efforts, were kept constant as previously determined. Three hypothetical scenarios were examined. In the first scenario the fishing effort with stake nets was varied (from zero to twice the contemporary effort). In the second scenario the fishing effort with trammel nets was varied. In the third scenario the fishing effort in the trawl fisheries was varied. In respect to all scenarios, the efforts exerted with the other gears were kept constant. Plots of the results concerning Scenario 1 are given in Figure 26, those for Scenario 2 in Figure 27, and for Scenario 3 in Figure 28. In all of these the 'effort multiplier' applies to the gear(s) for which the fishing effort was varied. The contemporary fishing effort is indicated by an 'effort multiplier' of unity.

Changing the Stake Net Effort (Scenario 1)

The results show that increasing the effort with stake nets causes a near proportional increase in the catch from stake nets. The estimated catch increases from 294 to 486 t in the extreme case of doubling the present effort. Over the same range of efforts the reductions in the estimated trawl catches are minor, from 305 to 272 t in the case of non-mechanised trawlers, and from 194 to 176 t for mechanised trawlers. The CPUEs are reduced for each of the gears, although only to a modest extent, even from a large increase in the effort. In reality, however, there is very little scope for increased effort from stake nets. This is because the suitable sites at the entrance of the lagoon are already fully utilised. Reducing the stake net effort gives only a minor increase in the catches from trawlers, compared to the substantial loss of catch from stake nets. The associated increase in the CPUEs of the trawlers is minor. The findings as such provide no justification for a reduction in the stake net effort.

Changing the Trammel Net Effort (Scenario 2)

The results suggest that the catch from trammel nets could be increased, for example, from 1050 to 1448 t in the extreme case of doubling the trammel net effort. The associated decline in the estimated CPUEs is substantial, however, from the already low value of 4.6 $\mathrm{kg} /$ landing to $3.2 \mathrm{~kg} / \mathrm{landing}$. The estimated decrease in the catches for the other gears are from 294 to 288 t for stake nets, from 89 to 61 t from cast nets, and almost no change in the catches from trawl nets. The lack of 'spatial separation' has a serious biasing affect on the estimated outcomes from reduced trammel net effort. The increase in the catches from stake net effort would be more than projected, although probably not to the extent of compensating for the lower trammel net catches. Overall, the findings provide no compelling evidence to support a deliberate change in the trammel net effort.

Changing the Trawl Effort (Scenario 3)

In this scenario both the non-mechanised and mechanised trawler efforts were changed simultaneously (ie. the 'effort multiplier' was applied to both). This was necessary to minimise the biasing from not including 'spatial separation'. The results indicate that the potential to increase the catches from the mechanised trawl fishery is negligible. In the extreme case of doubling the contemporary effort (in both fisheries), for example, the estimated increase in catch is from 194 to 204 t . The associated decline in CPUEs is from
26.0 to $13.7 \mathrm{~kg} /$ landing. The scope to increase the catch from the non-mechanised trawl fishery appears greater. In this case the estimated increase in catch from doubling the contemporary effort is from 305 to 400 t . The associated decline in the CPUEs, however, is from 17.7 to $11.6 \mathrm{~kg} /$ landing. As the CPUEs being experienced are already quite low, any deliberate move to increase the effort in either the non-mechanised or mechanised trawl fisheries would lack justification.

Discussion

The implication from these findings is that the fisheries (collectively) are performing satisfactorily at present. This is in the sense that there appears to be very little opportunity to increase either catches or employment. The opportunities that do exist would be associated with reduced CPUEs, and hence remuneration levels (unless compensated by increased product prices). The reductions in CPUEs may in reality be greater than estimated. The model does not include a stock-recruitment relationship, and hence makes no allowance for the possibility of reduced annual recruitments of shrimp when parent stocks are depleted (as from very high fishing efforts). While reduced numbers of fishing units would result in improved CPUEs for those remaining in the fishery, there would be a serious negative impact, both from lowered catches and the loss of employment for those displaced. The latter would be particularly serious, with the present severe shortage of alternative employment opportunities.

Figure 26: Model outputs from change in stake net effort (scenario1).

Figure 27: Model outputs from change in trammel net effort (scenario2).

Figure 28: Model outputs from change in trawl effort (scenario3).

CONCLUDING COMMENTS

The study has clarified many important features of the lagoon fisheries. They are characterised, for example, by low costs of fishing. This is highly important in preserving acceptable remuneration levels. Attempts to introduce new technologies that might ultimately lead to increased costs and hence reduced remunerations must be avoided. Another feature is the remarkable integration of the fisheries. This is in the sense of there being a multitude of gears targeted at different species and sizes of shrimp. It seems that all the available niches for exploiting shrimp stocks have been identified, and are being successfully utilised. A further feature is the ability of fishermen to shift operations, from one fishery to another (other than the stake net fishery). This is reflected by remuneration levels being generally the same across fisheries, and confers additional stability to the performance of the fisheries (collectively).

The estimated remuneration levels are generally low to modest. They would be reduced in the event of an increase in the number of fishing units. The latter could occur, for example, from a downturn in the non-fisheries component of the local economy, with displaced persons then seeking to engage in fishing. While such an influx is not believed to be imminent, there is nevertheless good justification for establishing a management regime that allows for the number of fishing units to be controlled. A useful initial step would be to confine participation in the fisheries to the number of units presently engaged. Whether this number were reduced or increased in the future, could then be judged on prevailing circumstances. This is in large part the view adopted by the Committee established in early 1996 by the Director of Fisheries to advise on management of the lagoon fisheries.

In its draft management plan (which is now in the early stages of implementation) the Committee proposed that the fishing units able to be operated within the lagoon should initially be restricted to the number presently engaged. It also proposed that the fishing communities establish a network of management committees, as provided for under the Fisheries and Aquatic Resources Act No. 2 of 1996. The purpose of these management committees includes providing advice to the Minister, formulating management plans, and directly assisting with management measures. The latter are expected to include the monitoring of fishing activity, the resolution of disputes, the administration of loans, and social welfare activities. The highly successful 'community-based management' applying to the stake net fishery has been cited as an example upon which the management of the other lagoon fisheries could be based.

There are about 500 fishermen belonging to the five stake net societies. The number is strictly controlled, with the allocation of fishing sites amongst member fishermen involving both an annual ballot and auction procedure (WCP, 1994). As there are more fishermen than sites, three fishermen are given entitlement to each site. These fishermen utilise the sites on alternative days, and hence exercise their entitlement during 10 days per month. The societies also control the size and design of the stake nets used, settle disputes between and on behalf of members, and administer loans and scholarships. They are closely linked to the local community structures (particularly the Catholic Church), and engage in a range of welfare functions on behalf of members and their families. The entitlement to become a member of a society is hereditary. It may only be passed on to a male member of the immediate family. No more than one member of a family may have the entitlement. New entitlements are sometimes issued, although only to married male descendants of stake net fishermen, who can demonstrate they have the necessary equipment and knowledge in fishing.

Although not investigated during this study, the future performance of the fisheries is highly vulnerable to changes in the environment within the lagoon. The lagoon is a shallow,
largely enclosed water body, surrounded by urban development, and industrial encroachment. There are already many instances of degradation, including siltation, loss of sea grass beds, removal of mangroves, water pollution, and land reclamation. In 1991 the Cabinet of Ministers approved implementation of the Master Plan for Muthurajawela Marsh and Negombo Lagoon, based on the findings of an ecological survey. Subsequently, a Conservation Management Plan was prepared (WCP, 1994). The implementation of both plans is continuing. Notwithstanding, the future health of the lagoon remains under substantial threat, and must continue to be safeguarded.

Concerning future research, there is a need for additional studies both to confirm and improve on the present findings. A further sampling of catches and examination of the reproductive stages, for the main shrimp species, would be useful in confirming the seasonality of spawning. More importantly, there needs to be better understanding of the migration patterns. Future studies should seek to determine, for example, the extent of migration between the two trawling grounds, the proportions of the shrimp leaving the lagoon which migrate to each ground, and the proportions which delay leaving the lagoon (eg. until the next rainy season). The most direct way to achieve this knowledge is to undertake a substantial shrimp tagging (marking) exercise. Large numbers of small shrimp would need to be tagged and released inside the lagoon, and also on the trawl grounds. This in turn would need to be associated with substantial publicity and rewards, to encourage the return of information (from the fishermen) in the event of recapturing tagged shrimp.

REFERENCES

Caddy, J.F., 1991. Death rates and time intervals: Is there an alternative to the constant natural mortality axiom? Rev. Fish Biol. Fish., 1: 109-138.

Caddy, J.F., 1996. Modelling natural mortality with age in short-lived invertebrate populations: definition of a strategy of gnomonic time division. Aquat. Living Resourc., 9: 1-11.

Dall, W., B.J. Hill., P.C. Rothlisberg and D.J. Staples. 1990. The biology of the Penaeidae. In: Blaxter, J.H.S. and A.J. Southward (1990). Advances in Marine Biology, Volume 27. Academic Press, London: 489p.

De Bruin, G.H.P., Russell, B.C. and Bogusch, A. 1994. FAO species identification field guide for fishery purposes. The marine fishery resources of Sri Lanka. Rome, FAO. 400 p., 32 colour plates

DFAR, 1995. Fishing Craft and Gear of Sri Lanka. Department of Fisheries and Aquatic Resources., UNDP/FAO/SRL/91/022 Marine Fisheries Management Project. Colombo, Sri Lanka. 216 p.

Gayanilo, Jnr., P. Sparre and D. Pauly, 1994. The FAO-ICLARM Stock Assessment Tools (FISAT) User's Guide. FAO Computerised Information Series (Fisheries), No. 6, FAO, Rome, 186 p.

Pauly, D. and Munro, J.L. 1984. Once more on the comparison of growth in fish and invertebrates. Fishbyte, 2(1): 21.

WCP, 1994. Conservation Management Plan: Muthurajawela Marsh and Negombo Lagoon. Wetland Conservation Project., Central Environmental Authority (Sri Lanka)/EUROCONSULT (Netherlands)., Ministry of Transport, Environment and Women's Affairs. 129 p.

[^0]: Note: \quad The respective relationships are $T W=a \cdot C L^{b}, T W=a \cdot L^{b}, T L=a+b \cdot C L$, and $C L=a+b . T L$, with the weights measured in grams and the lengths in millimetres

