Appendix I: 1999 Africa Regional Aquaculture Review -- Executive Summary[§]:

INTRODUCTION

Twenty-four years ago FAO organized the *First [Africa] Workshop on Aquaculture Planning* in Accra, Ghana, with the objective of promoting aquaculture development in the Region. The Workshop elaborated recommendations which underscored, among others: the importance of having national aquaculture development plans; the need for a regional training and research centre; the necessity for suitable systems for the collection and dissemination of information; the requirement for additional training at the country level; and the need for coordination of development programmes (FAO, 1975).

In the ensuing period nearly every country in the Region^{**} developed some form of aquaculture. Aquaculture seems to fit naturally within African farming systems. Yet, in spite of the Region's apparent underutilized resources of land and water, available labour and high demand for fish, aquaculture has not fulfilled its expectations and the Africa Region remains the lowest aquaculture producer in the world.

The FAO Regional Office for Africa organized the present *Africa Regional Aquaculture Review* to assess past aquaculture development efforts, establish a list of lessons learned and to propose a strategy for the way forward – the way to achieve enhanced aquaculture development across the Region.

The Review is based on the premise that there are common denominators affecting aquaculture development regionwide. Hence, it is possible to form a regional strategy that can serve as a template at national and local levels.

The foundation of the Review is provided by individual reports assessing aquaculture development in ten African countries: Cameroon, Central African Republic, Côte d'Ivoire, Kenya, Madagascar, Malawi, Mali, Nigeria, the United Republic of Tanzania and Zambia. The Review was organized around Working Groups, each dealing with one of four major themes of aquaculture development:

- > public sector support to aquaculture development (excluding extension);
- ➤ aquaculture extension;
- small-scale integrated aquaculture systems;
- medium and large-scale aquaculture systems.

PRESENT SITUATION

For the ten countries assessed, the following elements describe the present situation for at least 80 percent of the national aquaculture programmes:

- □ little government support for aquaculture;
- □ government stations and hatcheries abandoned;
- □ private fish ponds abandoned;
- □ feed and seed shortages;
- □ reduced aquaculture extension activity;
- □ shortage of field staff;
- □ loss of institutional memory;
- □ lack of access to available aquaculture information; and
- □ lack of reliable aquaculture statistics.

Most countries are focusing on small-scale integrated systems producing tilapia and/or catfish (*Clarias* or *Heterobranchus*). As effective extension becomes more difficult, there is an orientation to rely

[§] Executive Summary of CIFA Occasional Paper No. 24: Africa Regional Aquaculture Review, Proceedings of a Workshop held in Accra Ghana, 22-24 September 1999

^{**} FAO figures indicate some aquaculture production for every African country except Eritrea, Somalia, Western Sahara, Chad, Mauritania, Djibouti, Equatorial Guinea and Guinea Bissau (FAO/FIDI, 1999).

increasingly on farmer groups (fish farmer associations). There is also a growing interest in commercial production and greater involvement of the private sector.

The Review concluded that: (a) aquaculture is now known throughout Africa as a result of previous extension efforts and (b) adoption/acceptance, even if on a modest scale, has been noted in most countries.

LESSONS LEARNED

policies and plans

- 1) an aquaculture development plan should help focus development geographically and facilitate control and evaluation (monitoring) of the programme;
- 2) a lack of government policy and support has led to donor-driven interventions which usually cannot be sustained at the end of projects;
- 3) field activities should be decentralized on the basis of agro-ecological zones;
- 4) the frequent transfer of personnel has greatly hampered development plans and affected sustainability;
- 5) major government fish culture stations should be given financial autonomy and put under good management;
- 6) public infrastructure should ultimately be self-supporting;
- 7) farming inputs should not be distributed free to farmers but should have at least a subsidized price;
- 8) credit is not necessary and hence should not be provided to small-scale integrated farmers;
- 9) there has been a lack of coordination in development assistance;
- 10) commercial aquaculture should be promoted whenever possible;
- 11) farmer participation in development programmes, which has been lacking, should be encouraged;
- 12) access to land is an important issue that needs careful analysis;
- 13) marketing is also another issue that is often overlooked but can be critical to the establishment of aquaculture operations;

seed

- 14) centralized and subsidized fingerling production and supply is a disincentive to private sector involvement and creates shortage of seed;
- 15) fish seed should be produced locally, in rural units involving small-scale farmers;
- 16) the age of stocking material (fingerlings) must be known if good results are to be obtained;

extension

- 17) extension duties should not be combined with law enforcement;
- 18) extension efforts should be focused on small-scale model farmers operating under favourable conditions (water and soil, interest and dynamism, experience with other resources, etc.);
- 19) from such model farmers, the farmer to farmer extension approach should be developed through group demonstrations, field days, advice, fingerling production/sale, etc.;

<u>research</u>

- 20) on-station research to support small-scale aquaculture development should be based on inputs commonly available to small-scale farmers and it should be farmer-driven through joint activities;
- 21) sociocultural surveys should be conducted before introducing a new technology to a region;

aquaculture technology

- 22) technology should not be based on imported commodities (e.g., hormones, feeds, etc.);
- 23) selected culture species should be able to be reproduced by farmers themselves;
- 24) the integration of animal husbandry with small-scale aquaculture is often inappropriate for smallholder farmers;
- 25) there have been frequent pond site selection errors;
- 26) there has been a lack of technological flexibility; and
- 27) there have been inappropriate methods of technology transfer.

In addition to those items listed above, the Review made the following remarks:

(a) **Government stations**: stations often serve one or more of five common purposes: fingerling production, foodfish production, demonstration centres for extension activities, training and/or research. The first three purposes should gradually be disengaged from government. During the

period of disengagement, training should be provided to private sector units such as fish farmer associations and entrepreneurs, for taking over such stations in a sustainable way. Government should maintain its support for training and research.

- (b) **Regional centres of excellence**: where a centre has capacity to combine both research and training, it should carry out both functions because research activities can greatly complement training. An evaluation of existing centres should be undertaken with a view to determining their respective roles in the proposed new setting
- (c) **Advisory committees**: national committees composed of both potential and existing stakeholders should be established to guide aquaculture development. These could be decision-makers, policy-makers, academics (socio-economists, policy analysts, agriculture scientists, biologists), entrepreneurs, fish farmers and representatives of their associations, women's groups or their representatives, bankers, fishers, non-governmental organizations (NGOs), etc
- (d) **Database**: it is important nationally to identify an institution, university, etc., as a focal point for analysis and custody of statistics in a database. The database will input into the subregional database and in turn this will input into a regional database. Information technology hardware and peripherals must be considered as paramount when selecting the national focal point.
- (e) **Information**: there is a strong need for the promotion of information exchange throughout the region, in research, development, training and extension. This could be best done through networking. It would also contribute to reinforcing linkages between research and development at both national and regional levels.

THE WAY FORWARD – A STRATEGY FOR AQUACULTURE DEVELOPMENT

Within the context of the lessons learned, the Review prepared a 37-point aquaculture development strategy to be implemented over a period of five years (Box 2, page 34). The strategy included elements that could be initiated immediately with existing resources as well as others that would require changes or revisions of policies and additional funding. The eight points below encompass the principal issues:

- 1. establish national development policies and an aquaculture development plan in consultation with stakeholders;
- 2. reduce expensive and unsustainable aquaculture infrastructure, specifically with a reduction of at least 50 percent of government fish stations within five years;
- *3. promote and facilitate the private sector production of feed and seed;*
- 4. encourage credit for medium- and large-scale producers;
- 5. revise aquaculture extension, establishing a flexible and efficient structure that can meet producers' needs;
- 6. advocate farmer-friendly existing technologies that use readily available culture species and local materials;
- 7. promote collaboration, coordination and information exchange between national and regional aquaculture institutions and agencies; and
- 8. facilitate the formation of farmers' associations.

The first step in the strategy is the elaboration of national aquaculture policies and development plans. This was a key recommendation of the Workshop 24 years ago. Yet, of the ten background country reports, eight indicated the lack of aquaculture policy as a recurrent problem while six stated there was also a lack of aquaculture planning.

To a great extent, policies and planning are a question of *political will*. If there is the political will, formulation of appropriate policies and plans is within the capacity of nearly all countries in the Region.

For decades aquaculture in Africa has been vacillating between crests and troughs of various waves of development with the same constraints identified time and again: lack of seed, feed, credit and extension support. All of these constraints relate to the underlying lack of policy. If there is political will to establish workable policies, solutions to these other issues will be forthcoming.

Appendix II: Limbé Declaration^{††}:

A consensus statement by delegates to the FAO/WorldFish Workshop on Small-scale Aquaculture, 23-26 March 2004, Limbe, Cameroon

Aquaculture development in sub-Saharan Africa is at a crossroads. Burgeoning population growth and declining natural sources of fish make it imperative that aquaculture make as substantial contribution to continental fish supply as possible. The region is the only one in the world where per capita fish consumption is declining and is projected to decline further. Reasons for this situation include: civil conflict, weak management structures, low levels of investment in rural economies, and lack of economic growth. At the same time, however, new opportunities exist that brighten the prospects for aquaculture development.

In many countries, policies of privatisation and decentralization provide incentives for increased investments in the sector from private and public sources as domestic markets, especially in urban areas, become more accessible and trade expands. At the global level, the ever-growing demand for fish has created opportunities for export-oriented aquaculture production. The challenge today is to make use of these opportunities for the sustainable development of aquaculture in the region. There is a need for a type of development that contributes to national food security and poverty reduction objectives and pays attention to the scope for expansion that the nature resource base allows.

Sub-Saharan Africa must, therefore, make a choice, either for "business as usual" and things continue as they are, and people live with the dire consequences, or it is "time to make hard choices", institute relevant policies and strategies, bring aquaculture into the formal cash economy and stem the tide that is undermining aquaculture's future. To this effect, many governments, cooperating partners as well as bilateral and multilateral development agencies are developing a new strategy for aquaculture development in sub-Saharan Africa.

The meeting recognized a number of constraints to the development of aquaculture, which include seed and feed production, as well as inefficient extension and outreach. The delegates to the workshop further acknowledge that:

- Support to a knowledge development and delivery structure to provide essential assistance for aquaculture from government and those providing external aide requires convincing demonstrations of impact on national development priorities such as poverty reduction, food security, nutrition, HIV/AIDS and sustainable environmental management;
- Institutional stability and durability will be achieved through structures that rely first and foremost on private sector investments as well as on output-orientated and accountable use of public revenue which aims at enhancing sustainable development of aquaculture; and
- Public/private partnerships between investors and knowledge delivery structures can facilitate sectoral growth by making available to farmers the highest quality technological, managerial and marketing information while public/civil society connections in such structures can help ensure the optimisation of public goods from the perspective of producers at all levels.

While appreciating the need to address the three major constraints identified (seed, feed, extension), the meeting called upon the governments and cooperating partners as well as research agencies to focus on the likely development impact of investment in these areas. In order to ensure optimum impact of the three development strategies, there is a need to examine other areas, such as market development, access to capital and other policy issues that might be deemed relevant and equally important.

^{††} As published in CIFA Occasional Paper No. 25: Report of the FAO-WorldFish Center Workshop on Small-Scale Aquaculture in Sub-Saharan Africa: Revisiting the Aquaculture Target Group Paradigm, Limbé, Cameroon, 23-26 March 2004.

Furthermore, participants propose that SSA governments should seek to develop public/private partnerships within the growing number of aquaculture enterprises, by creating cost-effective financial and institutional arrangements that can compliment government and donor resources to deliver a limited number of critical research, advisory and technological services to high potential farmers.

Participants further pronounced that the approach to national aquaculture development, based upon the Cameroonian Strategic Framework for Aquaculture development addresses the major constraints to expansion of the sub-sector in the region, facilitates the necessary public/private and public/civil society linkages as well as proposes mechanisms to maximize returns to the investment of both public and private sector resources.

While endorsing this approach as an appropriate tool to foster aquaculture development, participants noted that such strategic approaches can only achieve their expected goals when efforts make use of existing national strategies, master plans and investment plans for aquaculture development in order to harmonize, building synergies and eliminating redundancies. These efforts involve national partners and stakeholders, but also aquaculture producers, support services, local authorities and investors from the public and civil society sectors, cooperating partners (donors), international and multilateral organizations.

The meeting envisages that aquaculture in SSA will grow into an important pillar of development in many areas in the region. It will be able to provide high quality food for rural and urban consumers, generate employment and general commercial activities in otherwise impoverished local economies, and contribute to national wealth through increased revenue from markets and trade. In order to achieve this vision, the countries in the region need to work together to increase their knowledge base, exchange best practice experiences and speak with one voice in the global marketplace.

Appendix III: Elements of the Cameroon Strategic Framework and the Role of Public and Private Sectors^{‡‡}

Sustainable aquaculture development relies on a number of conditions that must be met and addressed in any strategy in a flexible way. The most prominent of these are: (1) suitable production systems; (2) availability and access to inputs (feeds, seed, capital, etc.); (3) outreach; (4) research; (5) education and training; (6) marketing; (7) producer organisations; (8) regulation; (9) control, monitoring and evaluation.

For each of the two types of aquaculture defined in this document (commercial and non-commercial), the following sections define the role of the public^{§§} and private^{***} sectors in meeting each condition. Unless otherwise specified, the role discussed applies to both commercial and non-commercial aquaculture.

In light of limited human and financial resources, Government is, in general, shifting, and should shift, from its role as a direct investor and development promoter to one as a facilitator of an independent and commercially viable aquaculture sub-sector. The private sector is composed of two general groups of actors: direct investors, including producers along with service providers, and partners, principally producer organisations and Civil Society Organisations.

1. Suitable production systems

Government should:

- identify general production technologies appropriate to relevant aquaculture zones;
- inform investors in regard to these technologies; and,
- concentrated its outreach activities in these zones.

The private sector should:

• be aware of the Government strategy regarding different production systems within aquaculture zones.

2. Availability and access to inputs

a) <u>Feeds</u>^{$\dagger\dagger\dagger$}:

Government should:

- stimulate domestic feed industries by reducing or removing taxes on imported feed milling machinery and basic feed ingredients;
- make information on feed and feed materials, especially prices, regularly available to producers through all means of information transmission;
- within its means, ensure feed quality through inspections and feed certification;
- promote the adoption of appropriate feed manufacturing guidelines such as the FAO Technical Guidelines for Good Aquaculture Feed Manufacturing Practice; and,
- encourage commercial farmers and millers to facilitate access to quality feed for the entire subsector.

Direct investors (feed mills) should:

- produce and market necessary feedstuffs to growers;
- provide a uniform quality products at a fair price;
- find mechanisms to facilitate access to high quality feed throughout the sub-sector;
- make proximate analyses available to clients;
- provide information on feed availability and efficacy to the public sector;

^{‡‡} Strategic elements as adopted by a National Stakeholders Seminar in December 2003.

⁸⁸ Includes the ministry in charge of aquaculture, the national research institute, and the government extension service.

^{***} Includes producers, investors (in both fish farming and related sectors), non-governmental organizations (NGOs), commercial banks, universities and development agencies.

^{****} Including commercial and tradable feeds, feed materials and other nutrient inputs.

- as appropriate, assist outreach programme in promoting good feeding practices/fish management; and,
- monitor results.

Producer organisations should:

- serve as a forum for information sharing among stakeholders;
- lobby for collective bargaining and appropriate public sector intervention; and,
- link with research organisations.
- b) <u>Seed:</u>

Government should restrict itself to:

- providing regular information on sources and prices of good quality seed to producers;
- providing guidelines in producing/ensuring good quality seed through such measures as seed certification;
- maintaining broodstock of selected culture organisms corresponding to the identified production systems; and,
- encourage commercial farmers and hatcheries to facilitate access to quality seed for the entire sub-sector.

Direct investors (seed producers) should:

- produce and distribute quality seed;
- sell products at a fair price;
- find mechanisms to facilitate access to high quality seed throughout the sub-sector;
- as appropriate, assist outreach programme in promoting good management practices favouring improved yields; and
- monitor results.

Producer organisations should:

- serve as a forum for information sharing among stakeholders;
- lobby for collective bargaining and appropriate public sector intervention; and,
- link with research organisations
- c) <u>Capital</u>:

Providing and managing credit by the Government often leads to conflicts. Thus, in terms of investment capital for commercial aquaculture^{‡‡‡}, Government should restrict itself to creating an enabling environment, through, for example:

- the provision of information to lending agencies on the profitability of aquaculture^{\$§§};
- evaluating the technical merits of investment proposals submitted to lending agencies for funding;
- advising farmers on where and how to access funding from specialised institutions; and.
- interacting with these funding institutions to negotiate preferential interest rates for aquaculture development as appropriate.

The private sector should:

- in addition to their own equity, commercial producers should rely on private sector funding institutions for capital;
- lending institutions should consider preferential interest rates for aquaculture enterprises when applicable;
- investors requesting credit support should prepare clear and precise business plans;
- formal lending institutions should finance viable aquaculture businesses;

^{###} Credit is not generally considered appropriate for non-commercial aquaculture (FAO 1999).

^{§§§} Relevant information from a variety of sources should be collated by research agencies for this purpose.

- small investors should ensure that they have appropriate business and financial management skills before requesting external financial support; and,
- NGOs should work with non-commercial producers to develop financing options;
- collect information on other funding mechanisms and make it available to farmers;
- sensitise farmers on the savings and solidarity funds for use in aquaculture development;
- examine the possibility of creating an aquaculture guarantee fund;
- examine the possibility of providing temporary direct assistance to aquaculture producer organisations.

3. Outreach

Government should:

- provide quality technical assistance through an efficient aquaculture outreach program;
- seek partners as necessary to meet information shortfalls that cannot be met with public resources;
- establish national and international aquaculture information networks which are accessible at local hubs;
- play a co-ordinating role in the outreach programme;
- put emphasis on participatory approaches when providing services to farmers;
- encourage group formation for purposes of rationalising marketing and purchase of inputs, as well as increasing outreach-farmer contact;
- encourage commercial investors to provide outreach support to smaller operators;
- facilitate the creation of discussion channels amongst different aquaculture stakeholders; and
- require larger investors to pay for the technical assistance on a contract basis, negotiated with the institution providing assistance.

The private sector should:

- assist and reinforce public sector outreach programmes, particularly with regard to outreach contributions by feed and/or seed suppliers;
- evaluate outreach efficacy and advise as to outreach needs;
- feedback to public sector as to available information sources;
- commercial producers should pay for technical assistance; and,
- commercial producers should assess their opportunities in serving as information providers.

4. Research

For commercial aquaculture, Government should:

- support applied and farmer-participatory research directed at small and medium scale commercial farmers;
- ensure that research is responsive to the needs of farmers^{*****}; and,
- develop methods whereby farmers at the upper limit of the spectrum (i.e., large-scale, capital intensive systems) have access to Government research facilities and scientists on a contract basis. For non-commercial aquaculture, Government should:

• fully fund research for systems operated by low-income farmers.

The private sector should:

- fund research;
- disseminate research results, as appropriate; and,
- evaluate research results and inputting into research agendas.

5. Education and training

Government should:

• develop specific curricula for practical training of entry-level farm managers and aquaculture technicians;

^{****} Researches' merit increases should be linked to on-farm results rather than publication record.

- arrange and/or conduct on demand at regular intervals, short courses for in-service training and human resource enhancement;
- establish a continuing training plan for its staff and assist in linking candidates with local, regional or international agencies providing training, education and/or financial assistance, including distance learning options;
- provide information on career development in aquaculture; and,

• introduce longer term, professional training in aquaculture sciences to universities.

The private sector should:

- pay for training of those technicians necessary for the development of a commercial aquaculture sector;
- facilitate training opportunities on their farms; and,
- feedback to the public sector regarding the efficacy of training; materials/curricula, advising on training needs as necessary.

6. Marketing

Government should:

- make information on fish retail prices, conservation and traitment available to producers and consumers through, for example, newspapers, newsletters, rural radio or other media;
- protect local producers against unfair foreign competition (imports) provided that protective measures used fit within the international trade conventions/agreements;
- provide basic marketing infrastructure, such as roads and communication channels;
- assist producers in promoting aquaculture products (in order to stimulate demand) through agricultural fairs and other such opportunities;
- encourage commercial producers to develop market channels which can be accessed by smaller producers; and,
- prepare, publish and regularly monitor guidelines on the implementation of quality standards of aquatic products to protect the public health as well as improve acceptability of aquaculture products.

Commercial producers should:

- provide uniform quality products according to market requirements; and,
- look for mechanisms to provide market guarantees for smaller producers (e.g., satellite production systems).

7. Producer organisations

Government should:

- promote and facilitate the formation of producer organisations with legal status as appropriate by, for example, advertising their advantages in collective bargaining, streamlining administrative the registration process, etc.; and,
- advise interested farmers, feed and seed producers on where and how to get assistance in group formation and function.

The private sector should:

- producers should organising themselves to defend their mutual interests, facilitate access to inputs and markets, etc.;
- NGOs should play a catalytic role in establishing producer organisations; and,
- organisations should consider establishing a national producer organisation assembling the local organisations.

8. Regulation

Government should:

- establish clear and secure user rights to land and water favourable to aquaculture investment;
- avoid unnecessary costs on applicants in acquiring necessary rights to land and water and the right to undertake aquaculture operations;

- regulate the movement of aquatic organisms between watersheds and the provision of discharge and outfall standards (e.g., *Biological Oxygen Demand-BOD* limits or alien species to receiving water bodies, etc.);
- regulate the use of alien and genetically modified aquatic organisms;
- for commercial aquaculture farmers, require permits which specify their rights and obligations;
- waive such permits for non-commercial aquaculture as long as Government regulatory thresholds are not exceeded;
- adopt a one-stop shop for obtaining permits and information relevant to aquaculture development;
- collect and publish reliable and up-to-date statistics; and,
- apply and enforce appropriate international codes to which Government subscribes (e.g., *Code of Conduct for Responsible Fisheries* CCRF);
- determine criteria for requiring environmental impact assessment studies ;
- regulate seed production ;
- regulate the production of commercial feed production;
- define a regulation on quality control of aquaculture products.

The private sector should:

- be aware of relevant regulations;
- self regulate to ensure good farm management practices with the goal of sustainable resource use;
- self regulate to ensure a safe-to-consume product is provided to all consumers; and,
- provide complete and correct data for monitoring by the public sector.

Control, monitoring and evaluation

Government should:

9.

- control the movement of aquatic organisms between watersheds and the provision of discharge and outfall standards (e.g., *Biological Oxygen Demand-BOD* limits and alien species to receiving water bodies, etc.);
- control the use of alien and genetically modified aquatic organisms;
- for commercial aquaculture farmers, require permits which specify their rights and obligations;
- apply and enforce appropriate international codes to which Government subscribes (e.g., Code of Conduct for Responsible Fisheries – CCRF);
- define a standard system for statistics/data collection and treatment;
- collect and publish reliable and up-to-date statistics;
- control whether or not, where necessary, environmental impact assessment studies are properly conducted;
- control seed quality;
- control the quality of commercial feeds;
- enforce the regulation on quality control of aquaculture products.
- regularly evaluate the sector development level.

The private sector should:

- respect regulations on the movement of aquatic organisms between watersheds and the provision of discharge and outfall standards;
- respect regulations on the use of alien and genetically modified aquatic organisms;
- seek permits before establishing a commercial aquaculture farm;
- apply appropriate international codes to which Government subscribes;

- regularly provide reliable and up-to-date statistics;
- have self-regulatory, self-control mechanisms to ensure seed quality, the quality of commercial feeds and the quality of aquaculture products.

SPECIFIC ISSUES

1. Government Stations

One or more government stations should be maintained for training, fish genetic management, and research. The criteria for maintain a station should include, inter-alia, its economic viability, the needs for genetic conservation, research and training as well as zones with high aquaculture potential. Following the existing (draft) government master plan for aquaculture, other economically viable government infrastructure should progressively be sold or leased long-term <u>as is</u> to a well chosen private sector according to existing laws and procedures on the sale or lease of public property. Non-viable infrastructure, or those stations for which no buyer or lesser can be found, can be donated to such public institutions as schools, prisons or orphanages. Public sector technical services should be able to assist potential buyers or lesser in determining the economic potential of these facilities.

2. *Marine and Coastal Aquaculture*

Mariculture and other coastal production systems are strategically no different from inland systems and the same processes should be applied. However, it should be recalled that coastal regions comprise critical ecosystems which are highly productive though fragile, requiring careful environmental considerations. Also, these areas are complex socio-economic zones where the potential for conflict over use is high and whose economic contribution to livelihoods is highly significant. The existing body of knowledge for best practices for integrated coastal management should be applied^{††††}.

3. Non-conventional aquaculture systems

The culture of ornamental species should, as well, be considered among the multiple aquaculture systems practised in the country. Organically certified aquaculture, growing aquatic plants, etc. are also examples of non-conventional systems.

4. Unexplored Culture Species, Introductions and Genetically Modified Organisms

Mainstream aquaculture species are tilapias, catfish, carp and *Heterotis* along with a few minor cichlids. The establishment of presently unexplored culture species may have a high economic cost to be able to develop the required seed multiplication and distribution networks. Thus, the promotion of new culture organisms must take these costs into consideration.

Introductions of alien species need to adhere to international conventions and covenants.

Control of genetic integrity of aquatic organisms is an important issue, which is frequently addressed under the rubric of aquaculture. Reference has been made above to precautionary procedures that are advised, however is it noteworthy that the overall pond management needs to be significantly enhanced before any benefits of genetically modified organisms can become apparent.

^{††††} (GESAMP 2001).

Appendix IV: The NEPAD Action Plan for the Development of African Fisheries and Aquaculture^{‡‡‡‡}

Executive Summary

NEPAD recognises the vital contributions by African inland and marine fisheries to food security and income of many millions of Africans and to poverty reduction and economic development in the continent. It further recognises the growing opportunities and emerging successes of aquaculture development in the region. Within the framework of the Comprehensive Africa Agriculture Development Program (CAADP), a series of regional technical consultations were held that identified the primary areas for investment to safeguard and further increase these benefits, together with a first set of priority actions in each. The NEPAD Action Plan for Fisheries and Aquaculture Development in Africa describes these investment areas for inland fisheries, coastal and marine fisheries, and aquaculture:

For Aquaculture:

- Developing sector-wide strategies at national level for expansion and intensification of aquaculture
- Supporting priority aquaculture zones
- Encouraging private sector investment across the sector
- Applying proven technologies to increase production
- Maintaining the competitive advantage that Africa's environment provides for aquaculture production
- Harnessing the opportunities for small and medium enterprise development provided by expanding domestic markets for fish, including growing urban demand
- Supporting the emerging regional trade in aquaculture products
- Harnessing the opportunity of expanding export markets for high-value products to increase investment in African aquaculture production and processing
- Expanding the adoption of integrated small-scale aquaculture as a means of increasing rural productivity and food security
- Exploiting the potential of aquaculture production to contribute to food security programs

If investments are made across these areas it is projected that the stagnating or declining fishery production in the region can be stabilized and in a few cases expanded. By improving processing and access to regional and global markets through improved policies and public-private partnership investments in quality control capacity, market information systems, and sector management, it is expected that their contributions to socio-economic development can be enhanced and diversified. In the case of aquaculture, substantial growth in sustainable production can be achieved.

To guide these investments and enhance sustainability of impact, several cross-cutting areas need to be supported. These include the development of sector-wide strategies for fisheries and aquaculture using economic planning approaches and a comprehensive value-chain perspective. Regional capacity for research and development needs to be strengthened; and technical expertise in the region needs to be supported through networking and improved communications.

It is proposed that implementation of this Action Plan should follow a 'piloting' approach with Fast-track Programs to be identified for immediate action. These should focus on areas of strategic regional importance and current growth and will provide a learning process for subsequent expansion of activities. In addition, it is essential that pertinent lessons and experiences from other regions and sector are effectively applied to accelerate the development of African fisheries and aquaculture.

This Action Plan serves as an Africa-wide framework for developing specific interventions by stakeholders at Regional Economic Community and national levels, taking into account their on-going initiatives and development priorities. This will enable these stakeholders to draw on NEPAD – CAADP for expanding the scope of their successful initiatives, addressing critical capacity and strategy needs, and linking with relevant knowledge and technologies in other regions of Africa.

African Fisheries and Aquaculture

Africa currently produces 7.31 million tons of fish each year. Of this 4.81 million tons is from marine fisheries, and 2.5 million tons from inland fisheries. While capture fisheries rose steadily throughout the 1980s and 1990s they have stagnated since then, reaching about 6.85 million tons in 2002. Aquaculture on the other hand has risen, but slowly, and only in Egypt has growth achieved rates of increase seen in other parts of the world, rising

^{‡‡‡‡‡} NEPAD-*Fish for All* Summit, Abuja, Nigeria, 22-25 August 2005

from 85,000 tons in 1997 to over 400,000 tons in 2004. These trends combined with population growth mean that per capita consumption of fish in Africa is low and stagnating, and in sub-Saharan Africa specifically per capita consumption has fallen in the past twenty years. In a recent study by IFPRI and the WorldFish Center analysis of future demand and supply of fish suggested that if per capita consumption is to be maintained at present levels up to the year 2020, capture fisheries will need to be sustained and where possible enhanced, and aquaculture developed rapidly, with an increase of over 260% in sub-Saharan Africa alone over the course of the next 16 years.

While these trends underline the enormous internal demand for fish in Africa, they also highlight both the importance of managing capture fisheries more effectively so that their full development potential can be achieved and sustained, and the urgent need to foster more rapid development of aquaculture. For capture fisheries there is growing recognition that improved governance systems for fisheries resources and better management of the resource base upon which they depend are needed for sustainable use, while carefully targeted investments in infrastructure and marketing are needed if the full value of these resources is to be realised by the local, national and regional economies.

In addition studies by FAO have shown that there is considerable physical potential to respond to the growing demand for fish by improving aquaculture production. For SSA alone it is estimated that 9.2 million km², or 31 per cent of the land area, is suitable for smallholder fish farming. If yields from recent smallholder development projects can be replicated elsewhere, only 0.5 per cent of this area would be required to produce 35 per cent of the region's increased fish requirements up to the year 2010. At present however this potential for aquaculture remains largely untapped. By 2002 total aquaculture production in SSA was only 79,500 t, 0.15 per cent of world production, yields in most countries remain low, commercial operations have yet to develop in many areas, and fish farmers are relatively few in number. However, the main economic parameters are starting to change and opportunities for aquaculture are opening up. With growing urbanisation, improved market integration and the concurrent supply crisis from capture fisheries, small and large scale investors are gaining interest in aquaculture production. There is urgent need to develop guidelines and policies that create a conducive aquaculture investment climate and at the same time provide safeguards against environmental and social risks.

Trade in fish products has increased substantially over the past two decades and African fish exports were valued at US\$ 2.7 billion in 2001, from a total global value of US\$ 56 billion. Much more can be done to foster markets for African fish products, both within the region and globally. In several countries, fish exports to European and other overseas markets are now contributing significantly to national economies. In a relatively short time, the fish processing and exporting industry has acquired access to tightly regulated markets by meeting international HACCP and SPS standards. There is great potential to learn from these success stories and build the capacity of a wider spectrum of small and medium-sized enterprises to participate in these growth opportunities.

At the same time, trade relations with importing countries need to develop further to stimulate the growth of value-adding industries in Africa. In marine fisheries, arrangements that regulate the access of foreign fleets to African fish stocks need to be considered from a long-term perspective on fish supply and economic development opportunities. Though the export of fish from Africa is an important economic activity for many countries, marketing fish locally needs to be encouraged as this will contribute significantly towards the reduction of hunger and malnutrition as highlighted in the Millennium Development Goals. Clearly, the implications of accelerated fish trade for poverty and food security need to be fully understood so that the potential of trade as a stimulus to fisheries development can be effectively harnessed. Importantly, this will include increased attention to domestic and regional markets in addition to exports to industrialised countries. Trade of fish between African countries is an important if often unreported sector that provides affordable fish products to millions of consumers across the continent. It is estimated to absorb up to 50% of fish catches in some inland fisheries and it is widely acknowledged that better processing, improved transport and marketing, and more conducive regional trade relations could increase the contribution of this trade to the regional economy and food security. Gaining a wider and more balanced perspective on opportunities for trade at all levels will be an important step towards maximising the development impact of fish exports to regional and global markets.

Fisheries and Aquaculture in the Nepad Process

The NEPAD process prioritises key areas of agricultural and commercial development for accelerated implementation. Several among them intersect with fisheries and aquaculture development. In the agriculture pillar, the *Comprehensive African Agriculture Development Programme (CAADP)* has identified four strategic thrusts:

- (i) extending the area under sustainable land management and reliable water control systems;
- (ii) improving rural infrastructure and trade-related capacities for market access;
- (iii) increasing food supply and reducing hunger; and
- (iv) agricultural research, technology dissemination and adoption.

In all four areas, fisheries and aquaculture have achieved successes at local and national levels that can be scaled up regionally. Aquaculture has proven to improve water management practices at community and farm level, thus increasing returns from crop production in drought prone regions in southern Africa. Marketing of fish products, especially from small-scale capture fisheries, has opened many remote areas to wider markets, in the process enhancing market involvement of rural producers. Fish also contributes substantially and cost-effectively to nutrition security by supplying protein and other vital nutrients to the diets of 200 million Africans. Finally, aquaculture research, technology development and transfer are making a growing contribution to increasing fish supply and have the potential to widen their impact substantially in future. The recent success of commercial aquaculture in Egypt, which today contributes 50% of domestic fish supply, exemplifies opportunities for transferring such technologies within Africa.

With growing demand for fish and stagnating supply figures, there is an urgent need to now build on these success stories in developing a regional approach to fisheries development. In its efforts to identify opportunities arising from particular sectors and initiatives, the CAADP Action Plan has recognised the importance of fisheries in the region and the potential for development of aquaculture. There is considerable potential to include a plan for Fisheries and Aquaculture Development amongst the "flagship programmes" of the Action Plan to further guide the fisheries sector's key contributions to the CAADP priorities.

In doing so fisheries development can also contribute to objectives and programs in other NEPAD pillars. The *NEPAD Market Access Initiative* emphasizes the competitiveness of African economies in global markets and the enhancement of intra-African trade. In both areas, fish has become a leading commodity, with an export value of US\$ 2.7bn annually for Africa as a whole. The full potential for a vibrant fish trade in and beyond Africa has, however, not yet been realized. With fish demand projected to rise substantially on the continent as well as globally, the long-term prospects for African fish products are very promising. Building on the successes of fish processors and exporters in several countries, the private sector is now presented with tremendous opportunities in capture fisheries as well as the aquaculture sector. Further investments need to be directed towards assessing fish supply and demand trends, developing conducive fish trade policies, improving market infrastructure, and building capacity among fish producers and processors for continued technical innovation, market exploration and self-regulation. These investments should include public-private partnerships that will support business development across the continent while also safeguarding wider poverty reduction objectives through involvement of small-scale entrepreneurs and attention to regional markets.

Further, the *NEPAD Environment Action Plan* has prioritised the 'conservation and sustainable use of marine, coastal and freshwater resources' as well as 'cross-border conservation or management of natural resources'. Both objectives are of critical importance to the future of fisheries and aquaculture. Investments into developing environmental safeguards for the expansion of aquaculture and improving management of wild fisheries resources will be key contributions by the fisheries sector to overall environmentally sound management of aquatic resources.

The Action Plan

The overall technical objectives of the Action Plan are:

1. To support, and where possible increase, the long-term productivity of African fisheries and aquaculture through sustainable use of aquatic resources and application of environmentally sound technologies;

2. To strengthen food security and trade benefits for Africa's socio-economic development through improved access of African fish products to domestic, regional and international markets.

Context

Aquaculture has grown strongly in most regions of the world where the potential exists. This has not happened in sub-Saharan Africa, and Egypt is the only African country to have achieved the scale of change observed elsewhere. However there is now growing recognition that aquaculture in Africa can develop under specific conditions and contexts, and that the prospect of market-led growth and broader regional integration, together with more realistic understanding of the technical potential, provides substantial opportunities for growth.

This realisation has promoted considerable development investment and sectoral promotion at both regional and national levels. The availability of natural resources and the opportunities for entering valuable export markets have also led to private investment initiatives, often with external capital, in wholly owned enterprises, or joint ventures. In many circumstances, local private investment has also been considerable, often by artisanal farmers, community development association and local businesses, with expectations of meeting local demand and diversifying household income. The challenge being addressed now in many countries is how best to foster this growth.

Improved Productivity

Investment Area 1. Developing sector-wide strategies at national level for expansion and intensification of aquaculture

The importance of having a viable sector strategy at national level is increasingly realised. Based on a better understanding of the structure of the sector, this involves targeting support to the different needs and strengths of small, medium and large scale aquaculture enterprises. The role of private sector investments in pursuing such a strategy is a key issue that will decide on the level of growth and sustainability of support services. In doing so it is essential that available experience and lessons from other regions are being utilized to drive the development of aquaculture in Africa. This applies in particular to other developing country experience in areas of production, environmental management, trade relations, market development and public private partnerships. One of the limitations of past approaches in Africa has been the neglect or ineffective use of this knowledge base. On the basis of regional cooperation through RECs and NEPAD, African countries and aquaculture stakeholders can strengthen their international linkages in these areas and use available expertise to build up their own capacity.

Action points:

- Develop national aquaculture sector strategies based on economic planning and value-chain approaches, including targeted strategies for small and medium scale, as well as large scale industry
- Review international lessons on aquaculture sector, in particular from Asia, and their implications for Africa
- Agree among stakeholders on a phased approach to sector development, with immediate action taken up over the next months
- Adopt current standards of valuation and investment planning for the sector at national level
- Establish a regional network of aquaculture policy practitioners, supported by other leading government planning sectors, to accelerate the development of aquaculture strategies and their integration into wider economic strategies at national level

Investment Area 2. Supporting priority aquaculture zones

Aquaculture is not developing evenly across the continent; instead, priority areas with high natural, economic and social potential are beginning to emerge. These include priority resource systems (such as particular lakes or coastal areas), peri-urban zones, areas with existing processing capacity, and clusters of rural aquaculture. These need to be further assessed within the context of regional and ecosystem planning, and immediate support needs to be focused on these areas. Links and synergies with commercial agriculture development need to be pursued, for example for supplying crop-based feeds in large quantities. A process will need to be established for addressing governance issues around competing resources uses and access rights, and monitoring of longer-term impact of such priority zones.

Action points:

- Immediately identify priority zones through rapid assessments, taking into account natural, economic and social factors of growth and innovation
- Supplement this through GIS based surveys of further potential growth areas
- Assess current and future demand for raw materials for feed and fertilizers and pursue linkages with agriculture development for establishing supply-chains for aquaculture
- Review governance and resource access implications of priority zones

Investment Area 3. Encouraging private sector investment across the sector

In response to growing demand for fish products, private sector investment interest has substantially increased in the region. This interest needs to be supported and private investments guided towards sustainable growth. Public private partnerships offer a variety of options to deliver support services and management functions that are critical for sector development, including information, R&D, monitoring, regulatory and financial support. Strategic public investments are justified to improve the policy and legal framework and facilitate exchange and lesson learning across the continent. In advancing and expanding aquaculture, however, the private sector needs to take the leading role, and this needs to be recognised in strategy development and investment planning.

Action points:

- Link aquaculture investors at all levels to national and regional enterprise development programs.
- Review lessons and experiences of public-private partnerships from other sectors and regions.
- Review policy, regulatory and legal frameworks with a view to support private sector opportunities, in particular for small and medium-scale enterprises
- Encourage private-public partnerships in support of research, training and technology development

Investment Area 4. Applying proven technologies to increase production

Technologies for increasing productivity at different levels of investment, expanding aquaculture zones and improving product quality are available from many regions, including Africa itself. Constraints exist in access and application, including purchasing and operating costs, technical skills, disease and other risks in intensive systems, and biosafety concerns in the case of new species. Support is needed to improve information,

dissemination, application and risk management capacity in the region. This support area offers significant opportunities for private sector investments.

Action points:

- Immediately identify technologies available in the region with potential for wider dissemination and application, including advances in commercial production in Egypt and in integrated smallholder systems in Malawi.
- Establish and support private sector led technology dissemination and application services.
- Support regional networks of aquaculture service providers, including research and technology dissemination, for scaling-up local and national successes
- Support private sector capacity to deliver advanced monitoring and risk management services.
- Strengthen the capacity of tertiary and research institutions in Africa to provide science and training services required for longer-term technology development, and strengthen their linkages with private sector initiatives

Environmental Sustainability

Investment Area 5. Maintaining the competitive advantage that Africa's environment provides for aquaculture production

The relatively intact natural environment in most African countries offers a comparative international advantage for Africa as an aquaculture production region. This advantage needs to be fully assessed in terms of resource value, production options and marketing strategies for African aquaculture products. It is important that this 'capital' is further supported through good governance of aquatic and land resources, and that lessons from other regions in the developing world (in particular Asia) are effectively applied to avoid mistakes and achieve sustainable growth.

Action points:

- Assess competitive advantage of different African environments and product ranges.
- Review lessons and experiences of aquaculture resource degradation from other regions, in particular Asia.
- Identify policy needs and institutional linkages with environmental, water and related sectors at national level.

Market Development and Trade

Investment Area 6. Harnessing the opportunities for small and medium enterprise development provided by expanding domestic markets for fish, including growing urban demand

The widening supply and demand gap for fish in most domestic markets in Africa offers growing opportunities for aquaculture production. There is immediate need to assess the range of products, seasonality and price elasticity and substitution effects in these markets and to target aquaculture production, harvesting and marketing strategies accordingly. In many cases, aquaculture products are not differentiated from capture fisheries products and may therefore miss out marketing advantages and price premiums. Market information, marketing skills and logistics need to improve significantly for aquaculture enterprises to fully utilise this area of opportunity.

Africa is the most rapidly urbanising region in the world, and urban populations have an increased demand for fish. To meet this demand, small and medium-scale aquaculture enterprises are emerging in peri-urban zones, and rural producers are marketing their products increasingly in urban markets. There is growing need, therefore, to assess the full potential and structure of urban fish and food markets and accordingly support peri-urban zones as priority aquaculture areas. Enterprise development in production, support services and marketing, regulatory framework, market infrastructure development are key constraints at this time. Correspondingly, market access for rural producers needs to improve. As urban demand becomes more differentiated, it will become increasingly important to see what segment of the market aquaculture – and fish supply more generally - can target effectively.

Action points:

- Assess the longer-term trends and current structure of domestic supply and demand, including urban demand, product range and price elasticity
- Support the development of practical market information mechanisms
- Support small and medium scale enterprises through technical advice and financial services to access local, urban and wider domestic markets with a targeted product range Provide enterprise development support to small and medium scale operators to further develop their businesses towards market integration
- Review policy, regulatory and legal frameworks with a view to support further opportunities for small and medium-scale enterprises in production and service industries

Investment Area 7. Supporting the emerging regional trade in aquaculture products

There is immediate need to assess the current structure, volume and economics of fish trade between countries in the region, addressing in particular the 'informal' trade of low-value fish that appears to be a substantial sector supplying food to millions of people and providing very strong business opportunities for women entrepreneurs. Aquaculture products are increasingly entering these trade routes as processed or fresh products, in some cases to be further processed and re-exported in the region and beyond. These market opportunities need to be supported through better cross-border information systems, conducive regulatory and policy frameworks, and enterprise development support targeting women in particular. The RECs will play an important role as coordinating agencies.

Action points:

- Assess and document the current structure, volume and economics of intra-regional trade of low-value food fish
- Support women entrepreneurs in this sector through technical advice and financial services to further invest in post-harvest and trade of aquaculture products in regional markets
- Review policy, regulatory and legal frameworks with a view to further strengthen opportunities for women in small and medium-scale enterprises

Investment Area 8. Harnessing the opportunity of expanding export markets for high-value aquaculture products to increase investment in African aquaculture production and processing

The emerging success of African aquaculture exports needs to be further supported through investments in policy, legal frameworks and support services. In particular, capacity has to be strengthened in the region for quality control to meet changing food safety and traceablity requirements of import markets. Public private partnerships provide viable options for financing such investments. There are opportunities emerging for small and medium-scale enterprises to participate in aquaculture export trade at various stages in the production and marketing chain, and these need to be supported through enterprise development and linking into niche markets. Options for labelling and certification schemes – including 'organic' production - need to be assessed and experience form other sectors and regions utilised in order to gain a realistic and workable perspective on these instruments. Links with existing export marketing of capture fisheries products are being pursued by individual enterprises and investors in the region.

Action points:

- Assess options for public-private partnerships for management and financing of this sector, using experiences from other export sectors and regions
- Where possible, support associations of small and medium-scale enterprises to participate in this sector, based on lessons from other regions and sectors
- Establish a regional aquaculture industry association to facilitate coordination, R&D and market development
- Encourage investments in value-added industries through conducive trade and market access conditions for value-added products from Africa

Food Security and Nutrition

Investment Area 9. Expanding the adoption of integrated small-scale aquaculture as a means of increasing rural productivity and food security

Successful examples of Integrated Aquaculture Agriculture, raising farm productivity and incomes by combining fish farming with crop, livestock and small-scale irrigation, are available from Southern Africa and need to be scaled up and adapted for the region. This will be a significant contribution to food security among smallholder farmers. To achieve this, scaling-up tools and approaches need to be improved and linked with rural development agencies outside the aquaculture sector, such as NGOs. At a commercial level, options for further intensification of such integrated systems, in particular in combination with irrigation, need to be explored. In addition, opportunities and viability of stocking of dams and small water bodies, in particular in food insecure dry regions, need to be assessed and workable approaches developed.

Action points:

- Immediately identify and apply approaches for scaling-up successful integrated aquaculture practices from Malawi in other countries in Southern Africa
- Support further research and development to intensify these integrated systems and adapt them to new water and land environments
- Support integration of aquaculture and agriculture research and planning in the context of growing investments in irrigation schemes

• Assess the viability of stocking and stock enhancements of dams and small water bodies in food insecure regions

Investment Area 10. Exploiting the potential of aquaculture production to contribute to food security programs

The nutrition benefits from aquaculture - and fish consumption more generally - need to be fully documented and promoted through education and health programs focusing in particular on women as key decision makers. Benefits for vulnerable populations, including children, women and people affected by HIV and AIDS, need to be targeted and small-scale aquaculture production and marketing strategies adjusted accordingly. To spread food security benefits more widely, aquaculture needs to be linked better with food security and school feeding programs at national or regional level, including NEPAD's programs. Strategically, aquaculture development may be viewed as a long-term investment in food security by increasing levels of control and management of fish and aquatic resources.

Action points:

- Assess and document the nutrition benefits of common fish consumption among vulnerable populations, including women, children and people affected by HIV and AIDS
- Support health and rural development agencies to include promotion of fish consumption into their community programs
- Link small and medium-scale aquaculture enterprises as suppliers with national school feeding programs to improve child health and nutrition

Appendix V: Case in Point – Aquaculture Development in the Lake Basin Area of Kenya^{§§§§}

PROJECT HISTORY

In 1982, a UNDP/FAO Preparatory Assistance Mission concluded that there was an immediate need for more rapid and intense assistance for the development of small-scale fish farming in the Lake Basin Region. However, due to limitations on UNDP's financial resources at that time, the Government of Kenya requested and was granted assistance under project TCP/KEN/2303 to initiate a training programme for Lake Basin Development Authority (LBDA) fish farming extensionists.

In the course of the subsequent projects KEN/80/006 and KEN/86/027 ("Development of Small-Scale Fish Farming in the Lake Basin Area"), supported initially by UNDP and FAO and later joined by the Belgian Survival Fund (BSF), executed from 1985 to 1994 by FAO and implemented by LBDA, fish culture was introduced in the rural zones in order to combat protein deficiency in the area.

During the implementation of these projects thousands of fish farmers constructed ponds which were supplied with fingerlings from eight Government Fry Production Centres (FPC's) and from several private fingerling producers in the area. First trials with formulated feeds were promising. The latter project also introduced Clarias rearing as a more profitable activity. However, after ten years of assistance, fish farming still seems to be partially established in Western Kenya.

Before a decision was taken of a third and last intervention in order to insure the viability and sustainability of the action, a Technical Review Mission (TRM) was mandated to evaluate the past activities and formulate, if necessary, a new document for a third phase. This was carried out in 1995. Among its conclusions, the TRM noted that most of the fish farmers appear to be dependent on external assistance, particularly from the project and from LBDA. However, a few fish farmers were not only growing fish as a source of protein, but were beginning to show interest in profits and increased income from this activity.

BSF on one hand and UNDP on the other hand agreed that the project was not yet sustainable enough and therefore a last final intervention should be made in order to attain its objectives. Fish culture has to be successfully introduced as a rural economic activity, with a critical mass of well-trained, advanced commercial fish farmers, who can provide a reservoir of skills and services to fellow grass-root small-scale fish farmers – the target beneficiaries – so that sustainability may be assured even without major continuous institutional/governmental assistance and inputs.

After the completion of the project KEN/86/027, the Government of Kenya (GOK) requested assistance from FAO's Technical Cooperation Programme and the project TCP/KEN/45551 "Support to Small-Scale Rural Aquaculture in Kenya" was approved by FAO in February 1995 to further support the initiatives made and to reinforce progress towards sustainability of rural fish culture production while the third phase was being formulated. This TCP project was initiated in April 1995 for a period of nine months, later extended to 12 months, and subsequently to 21 months (December 1996).

In March 1998, following a request from the GOK, a third and last phase of assistance started under the form of the project GCP/KEN/060/BEL "Consolidation of Sustainable Small-Scale Fish Farming Enterprises", executed by FAO in the framework of its agreement with the Belgian Government, the donor [Belgium Survival Fund; BSF]. The project was designed as a two-stage exercise: the initial phase of 12 months – the Preparatory Stage – was intended to concentrate on socio-economic and marketing issues through implementation of a set of studies (socio-economic survey, PRA, marketing, cost-benefit analysis and nutritional studies) to allow the analysis of the impact of the project and assess present and future trends, and to generate a revised project document for the second phase – the Implementation Stage - which corresponds to the consolidation of past achievements.

GCP/KEN/060/BEL has been concurrently executed with the UNDP capacity building component of the Preparatory Stage, KEN/97/004 project (under National Execution up to June 1999) whose emphasis is placed on sustainable human resources development through training. The component related to the cost-benefit analysis studies was handled as a joint exercise contributing to both project components.

^{§§§§} **Excerpts from:** Report on Project GCP/KEN/060/BEL,May 5 – June , 2000, Dr. Les Torrans, FAO Consultant USDA/ARS/CGRU, P.O. Box 38, Stoneville, MS 38776 (USA)

In November 1999 the 12-month preparatory phase of the final term of BSF support was completed – this phase was to lead into a terminal 24-month Implementation Phase after which the BSF would consider the project completed. A review mission was held in December 1999 between the Preparatory Phase and the Implementation Phase to assess the design of the Implementation Phase and recommend whether or not this phase should be funded by BSF.

The review concluded that an additional terminal phase was necessary and even accepted that this could be in the neighborhood of 48 rather than 24 months, but identified a number of areas needing attention including enlarging the target group to include those marginalized groups such as women and children.

At the same time UNDP decided to end their support to the national agency implementing their aquaculture project – the LBDA – and indicated that the balance of the project budget could be used by FAO (with GOK approval) to provide some sort of "bridge" between the present state and the upcoming terminal phase of the BSF project, at the same time providing some continuity for those activities previously supported by the UNDP. It was hoped that the Implementation (terminal) Phase of the BSF project would start during the third quarter of this year.

CURRENT STATUS

I am tremendously impressed with the conclusions for the Implementation Phase of the Project itself. A lot of progress has been made in the past 16 years, but I agree with the conclusions [of the 1995 Technical Review Mission, the 1999 Tripartite Technical Evaluation Mission and with the draft Formulation Framework] that there is a great degree of farmer dependence on external assistance, and that the project is not yet at a point where sustainability and continued expansion could be expected. The terminal phase of this Project represents a major change in both direction and attitude. While it represents an exit strategy for the BSF, something I have rarely seen with aquaculture development projects (usually funding is simply not renewed), I sincerely believe that many of the goals are achievable, and in my opinion the most important goal – farmer self-sufficiency and independence – has a high chance of success. A great debt of gratitude is due to the BSF who have steadily supported the cause of aquaculture development in western Kenya for what will be nearly 20 years at the end of this project.

Farmer dependence.

In 1986 I saw many farmers that were totally dependent on the government. Their ponds were initially sited and surveyed by LBDA or DOF personnel. Construction was supervised by the government and in many cases the ponds were built with fund received from a government-supported loan (actually grant) program. Many groups were in fact first formed to capitalize on this program. The fish seed (tilapia only at that time) were produced at government FPC's and were brought to them by the government agent, who returned at intervals to advise on management. At some point the agent returned with a net to assist with the harvest, and the cycle was repeated. It was felt by many that if you do this often enough, farmers would "catch on"; if fish farming didn't spread on its own, you simply needed more inputs for a longer time.

Unfortunately, much has not changed in the past 14 years. On this trip I saw some of the worst examples of farmer dependence that I have seen anywhere in Africa. One farmer had not harvested his pond in the past three years, and was pleading for a loan (he had actually received one several years ago from the LBDA which he did not repay) so he could turn his pond into a "money-maker". When we tried to explain that if he harvested his pond now, he could sell some fish, and with the money buy new seed, both tilapia and clarias, and some feed for the next cycle. If he fed that feed for the next four or five months, he would be able to harvest again, only this time his cash sales would be even greater. From this harvest he could probably afford to build another pond. The farmer rejected all of this, insisting that a loan was the only way.

Another farmer who had not harvested his pond for an extended period was waiting for the agent to set a date and bring the net so he could harvest. The farmer called the pond "his" (the agent's) project. Waiting on the government for either a net to harvest or seed for stocking has become almost a way of life for many small farmers accustomed to government direction and support.

Probably the classic case was a group pond that had been in operation for several years. The water was clear, water was flowing through the pond, and there was no sign of anything in the crib (a.k.a. "magic fence"****,"). I asked the group leader why he didn't put any manure in the compost, and he replied that he was waiting for the agent to come back and "show him how" to do it <u>again</u>. I agree that some things in aquaculture are a bit tricky and take a bit of study, but dropping cow manure in a crib is not one of them.

^{*****} I have come to call the crib (the stakes surrounding the compost) a "magic fence" because so many farmers apparently think that putting that ring of stakes in the pond, sometimes elaborately woven into a mesh wall, will in itself magically grow fish. I say this because you see so many ponds with a completely empty crib.

In many ways we have built dependency into the project. We have done this unintentionally most likely, but we have done it nonetheless. To help farmers get "quality seed" we have discouraged private hatcheries and build a series of government FPC's. To help the disadvantaged farmers, we encouraged them to form "self-help" groups, then gave them money to get started (I guess I really don't understand the meaning of "self-help"). We want them to learn how to do it right, so we make a huge effort to try to visit each pond individually, to advise on management, and to even help them with the harvest. The result generally is not farmers who successfully adapt the technology, but farmers who consider the pond to be "our" project, and who grudgingly follow our advice or admonitions. This usually means fairly basic management, a compost with little in it, water flushing through the pond, and a pond full of eight or ten months' worth of reproduction. We feel like we are pulling teeth to get them to do what is in their own best interest all along.

None of this is really a reflection on the effort that has gone into teaching farmers about aquaculture. There has been a tremendous effort by scores of dedicated staff over the history of the project. The problem is that this approach to aquaculture development just doesn't work, and I do think it's safe to say that more of the same can't be expected to produce any major changes in trends. Many of these farmers simply "cycle through" the program, with abandoned ponds replaced by new ponds in the survey sheets. If the staff is increased in an area, you would expect a slight surge in new construction and active ponds; with cuts there is major slippage of the program. What we need is less "technical assistance", where we repeatedly visit farmers and tell them what to do, thereby training them to wait for us for instructions. We need to shift to "extension education", where the emphasis is on really transferring an understanding of the principles and practices of aquaculture, so the farmers can make their own decisions on a daily basis.

Advanced Fish Farmers.

When I was here in 1986 I didn't see anyone that I considered to be a "model" farmer, someone with several ponds who was practicing good management, harvesting on a regular schedule, and re-stocking with his own fingerlings. Not only did I see some of these individuals in every HCA I visited (and outside the HCA'a as well), several of them had been trained in clarias spawning by the LBDA, and they were spawning these fish and selling fingerlings as well. Granted, in all cases, the survival from fry to fingerling stage was low, but they had the facilities, interest, and skill to do this on their own. This was amazing to me.

Before this trip to western Kenya, I was very pessimistic about the near-term potential for clarias in African aquaculture. My basic advice to farmers (as recently as six months ago) was if you can manage to get a few fingerlings from someplace, toss them in your pond. But do not count on clarias, and don't expect them to be a big part of your future because the source of fingerlings is unreliable.

Well, much of this is still true, but the farmers here have shown that technology doesn't stop at the LBDA FPC property line. In addition to spawning clarias, many have developed regular sources of supplemental feed, and some even act as small-scale feed distributors to their neighboring farmers, buying rice bran in lorry-loads, and retailing a bag at a time. They also are seeing aquaculture as a real income-generating activity, and are harvesting their ponds on a regular basis, restocking their own seed and selling extra seed to neighboring farmers, who have in many cases joined together because of a common interest, not just to get a government grant. These farmers are called "Advanced Fish Farmers" (AFF's), and many of those that I saw truly are advanced.

Everyone wants to help the poorest of the poor. If you could come up with a scheme to turn the landless poor into fish farmers you could probably find a donor somewhere to fund the project. This project talks of the marginalized farmers as being a target, and that is noble, but experience has shown that it is impossible to reach thousands of these one-pond farmers directly. That is basically what the project has been doing here for sixteen years, and all of these farmers are still totally dependent for nearly everything. We can, however, effect a fundamental change in their situation. Instead of having them dependent on the government for fingerlings, equipment and advice, and be doomed to disappointment and failure, they can rely instead on the advanced fish farmers and their associations.

Unlike a government FPC, where fingerling orders are sometimes considered a big inconvenience, an AFF has a vested interest in selling seed – that is his income, and his customers are his friends, relatives and neighbors. I always like to say that the biggest difference between a government hatchery and a private hatchery is that the primary concern of the government manager is his budget^{†††††}, the primary concern of the private manager is his sales. Once the AFF's are not only allowed to sell seed to their neighbors, but are actually encouraged to do so and are given the technical training to do so efficiently, liberation begins.

^{†††††} The cost-benefit analysis done during the preparatory phase of the project determined the cost-benefit ratios of the LBDA FPC's ranged from a low of 1% (Lugari FPC) to a high of 9% (Chwele FPC). This means that for every KSh100 spent at the facility, there were total sales of between KSh 1 and KSh 9. These figures are probably even somewhat biased toward the facility.

Without much fanfare, the AFF's have already largely taken over this role with respect to tilapia seed. One fish association I visited with even made a trip to Lake Victoria for tilapia broodstock to replace what they felt was inferior LBDA stock. As soon as they began to spawn, they were distributed within the association. I am not saying that this was entirely necessary (see APPENDIX 7, QUALITY SEED), but just imagine if this type of independent action and cooperation is encouraged and promoted, which is exactly the main point of the terminal phase of the project.

These AFF's can (and in many cases already have) taken over other roles of the government as well. We list "demonstration" as one of the purposes of government or other institutional (i.e. school) ponds. The reality is that these are rarely good demonstrations for a variety of reasons. Even if we manage to get a good harvest from a "demonstration" pond, the results aren't believed by most of the farmers. However, the AFF's <u>by definition</u> are good demonstrations (they are classified based on their management, not just the number of ponds they have), and most are quite willing to share the knowledge with their neighbors, especially since they are customers for his fingerlings. That is what you call "servicing what you sell".

One goal of the Terminal Phase of the Project is to have one AFF in each HCA, selling fingerlings and providing a resource and an example to their neighbors. To really assure the security of the marginalized and other onepond farmers, they need to have access to <u>more than one AFF</u> in the area. This not only gives them an option if they have any problems with a fingerling producer (not every AFF will be totally honest), but (God forbid) if the only AFF in an area should die, the whole area may also if everyone is depending on him for seed, demonstrations, and advice. I would suggest revising the project goal upward to three AFF's in or near each HCA.

Accepting the decision that private fish farmers can assume many of the government's responsibilities is a big step, and will require a big change in thinking here. With the exception of a few side trips into the private sector, I have been a lifelong public servant. I know that we have come to accept that a lot of things should be done by the government, but that thinking needs to change, if for no other reason than the budgets in the future will simply not be large enough to continue.

Privatizing seed production.

The privatization of both tilapia and clarias seed production is the cornerstone of the project. It's a pretty basic concept that if fingerlings are not available, farmers will not harvest their ponds, much less invest in new pond construction. It is conceded that the old system of LBDA and DOF FPC's does not work well, and that the private sector is capable of taking over that mission. According to the reports and plans I received, there are only two LBDA FPC's still in operation (Alupe and Chwele), and these will only be operated temporarily^{#####}. Eventually all of the existing FPC's will be turned over to the private sector, to either individuals or to groups, and all of the seed production will be in private hands.

Well, that is easier said than done. It will be very difficult for the GOK to totally free itself of the burden of these stations, even if they will serve no significant purpose in the very near future. It will take a specific commitment, with a clearly stated time frame for individual facilities (DOF as well as LBDA), and a determination to stick to it. As long as they remain open (whether for "emergency" seed, or for use as training centers), they will remain a drain on the DOF budget and will send a mixed signal to the fish farmers of Kenya. If we really intend to put the farmers in a position where they will be self-reliant, we need to commit to the process.

As hard as closing the facilities will be, actually transferring them to private ownership may take a miracle. Should these facilities be transferred to individuals or to groups? Should they be sold (and for how much, or to the highest bidder?) or given away? Can the GOK really "walk away" or will they be transferred with strings attached? Should they be transferred to someone who has demonstrated management ability, such as an AFF or one of the current FPC staff, or should we let political influence carry the day? Do we want them to be productive, or do we want to use them to uplift a disadvantaged group? Once you actually get ready to turn one over there will be numerous questions raised and roadblocks thrown up by a lot of people. I have my own preferences, none of which will really matter. I do recommend that the DOF be in a position to make those decisions when the project formally begins later this year. If the procedure has already been determined by the GOK, excellent. If it will require a committee's recommendation, set up the committee now and give them their charge. If it will require an act of Parliament, better get started.

Regardless of the status of privatization of GOK facilities, the development of the private sector seed production capacity is and should be a top priority. On-farm trainings on the topics of clarias spawning and fry survival,

^{******} In my final meeting, the DOF expressed an interest in keeping the Chwele FPC open. By the cost-benefit analysis, this was the most efficient of the LBDA FPC's, and would be the best choice. However, I would suggest at least an annual reassessment of this decision. If the project really works as planned, within a year or two it may be evident that even one public-sector FPC is no longer necessary.

tilapia seed production, and intensive pond management all are priorities. There are farmers in place now ready to spawn clarias, and they are already waiting for the technicians to arrive and train them. While spawning *per se* will not be difficult (see APPENDIX 9, CLARIAS SPAWNING), poor fry survival is a major problem and will require a very specialized training of managers. However, applying known technology to this problem (see APPENDIX 10, CLARIAS FRY SURVIVAL) can produce some very dramatic results and will provide "instant credibility" to the program and the technicians involved.

Organizational framework.

In the past, there has been fragmentation of the Government units responsible for aquaculture development in Kenya, including the LBDA, the Department of Fisheries and the Ministry of Agriculture. To rectify this situation, since July, 1999, the DOF, the Agriculture Department and LBDA have been brought together under the same umbrella, the Ministry of Agriculture and Rural Development (MOARD). Along with the reorganization it was determined that if something was a "core Function" of an agency, that responsibility should not be duplicated by another agency. Since aquaculture is a core function of the DOF, they will co-ordinate the implementation of this project for the MOARD, drawing personnel resources from the LBDA and MOARD as necessary. The Nation Project Coordinator will be provided by the DOF and the Project Headquarters will be located in the DOF offices in Kisumu.

I was very impressed with personnel at all levels of the DOF that I met on this trip. The DOF definitely has the historical perspective on aquaculture necessary to appreciate the importance of this radical change in approach. I believe that the DOF leadership is sincere in their desire for this project to succeed, and will provide the best field staff at their disposal to see that it happens. I believe the field staff will perform very well under this new program direction, especially if it is seen that the most competent individuals are put in responsible positions and that hard work and dedication is rewarded.

As the project itself winds down, the number of staff earmarked for aquaculture will decrease, and those remaining will have increased responsibilities that will require greater technical and communication skills. After the Project ends, there may only be one Aquaculture Specialist per province. These individuals need to be carefully selected based on their demonstrated performance on the Project. Their new roles may require some continuing education in specialized areas.

As the role of government decreases, and the farmers actually become independent, the GOK could have a "panic attack". After decades of being totally in control, it will be difficult for many to accept the new order. For the "good" of the farmers, or the consumers, or the environment, or something or somebody, there will be an urge to increase regulation and control of this budding industry. This should be resisted by any means possible. Rather than actually having the intended result of assuring quality fingerlings for farmers, or healthy fish for consumers, or pollution-free discharge to the environment, or whatever else may be intended, the actual result may likely be an opportunity for some civil servant to exert undue influence over individual farmers.

Technical Materials.

If there is much good technical aquaculture information written for either the private farmers or the FFE's it is not widely available. This has been recognized in the project plan and the production of quality technical information by the IEC Officers is a priority. The credibility of the individuals and the Project as a whole, and certainly the ultimate success of the farmers, will depend largely on the accuracy, availability and applicability of the information produced. There is currently a lot of information and recommendations out there that are simply wrong, and this needs to be corrected.

As we move into this next level of aquaculture, the type of information needed by farmers will become much more technical. It will no longer be enough to tell a clarias seed producer to fertilize his fry pond until it "turns green"; he will have to know different types of zooplankton, which are needed, at what time in the cycle, at what densities, and how to grow them. It will therefore be necessary for a farmer to have the tools (plankton net and at least a low-power magnifier) to actually see what he is doing.

Fortunately, it is becoming much easier to produce information locally (not necessarily good information, though). With digital cameras, desktop publishing software, and color laser printers, a talented individual will be able to produce very professional material from Kakamega, or wherever the computer is located. Also with the internet, an IEC Officer in western Kenya can be in near-instant communication with resources all over the world. This will greatly facilitate the editing and proofing of any materials produced, which I highly recommend.

Sometimes simple is better. A whole series of one- or two-page "Fact Sheets", each covering a fairly specific topic, can be produced over time. They can be distributed to the industry as they come out (through e-mail to those that have it), and collected by the users in a notebook. Each of these Fact Sheets (or a couple of related ones) could serve as the technical basis for specific Project Staff, AFF, and/or group trainings. While at Sagana Fish Station I was given copies of several such handouts that were produced there. The format of these was

excellent: they were limited to a fairly specific topic; they were easy to read, with information in "bullet" format; they contained fairly specific information.

I would suggest that publications aimed directly at the fish farming industry be issued from the Extension Service^{§§§§§§}. This branch of the Department should be in the best position to evaluate which publications are necessary, what information is appropriate for the industry, and what level of detail they should contain. These will probably be written by an aquaculture supervisor or the IEC officer^{******}, but in some cases the author of a specific paper may be a specialist not even in the Extension Service, but a scientist, facility manager or university professor that has the greatest knowledge and/or experience in a given area. However, even in these cases, the publication should go through the Extension Service review process and be "published" by the Extension Service.

At the risk of slowing down the publication process, a rigorous review of extension materials should be performed. All of the materials I have seen here contain at least some of what I would consider to be factual errors or inappropriate recommendations. Nobody is right all of the time (myself included), which is why every publication should be reviewed by a cross-section of DOF staff and AFF's before publication. Reviewers should not be afraid to question statements or pertinence of anything in the draft stage. Not everyone is a good reviewer, and the IECO will quickly learn who is capable of performing a useful review. The worst reviews I get are the ones with no corrections and a "good paper" comment on them – this does not improve the quality of a paper. Not every question raised in a review will result in a change – but we shouldn't be afraid to question any "sacred cows" of aquaculture or to ask the source (and verification) of any particular information or statements.

It is essential that the information and advice we offer the farmers is accurate. I will give an example of some current technical recommendations, based upon what I believe to be inaccurate information, which has a profound (negative) effect on the profitability of the industry. I will stick my neck way out on this, but what the heck!

Fish Marketing.

People in the Lake Victoria basin are accustomed to big tilapia. Tilapia from the Lake weighing several kilograms are not that unusual, and there is actually a 250 gram (approximately) minimum size limit imposed on the Lake fishermen. Tilapia have numerous small bones, so the bigger the fish, the easier it is to separate meat from bone, and this is especially important for small children. Many people, if they have the money, will buy a bigger fish for these reasons. If you talk to farmers and GOK staff just about anywhere in western Kenya they will tell you there is a real "consumer preference" for larger fish, and to get the "best price" they need to produce a table fish of at least 400-500 grams. Fish approaching 1 kilogram are the real gold, fetching by far the best prices. While smaller fish, in the 100-250 gram range can usually all be sold at the pond bank, they are often sold at "give away" prices.

To produce these larger fish, a longer growing period is obviously required, and the LBDA generally recommends (I base this not on their written recommendations, which I haven't seen, but on what farmers working with their program say their harvest cycle should be) a production period of 8-10 months. The problem with tilapia is that they begin to breed at 4-5 months old, and the reproduction interferes with the growth of the original stock. To reduce this problem, clarias are also stocked in the ponds.

Another solution that has been proposed and promoted is the culture of all-male tilapia. By stocking only male fingerlings, you can basically grow them forever without reproduction, and produce a crop comprised of only high-value large table fish. Males can be selected from mixed-sex fingerlings by a trained person; alternatively, tilapia fry can be fed a hormone for a short period which will result in the production of all males once they mature.

I'll bet that 90% of the people who have read these last few paragraphs have been nodding their heads - yup, yup, that's exactly right! Well, none of this is right, because it's based on faulty data, and it is costing most farmers at least 50% of their potential profits. That's a big statement but here goes.

Big fish sell for more than little fish. That doesn't mean that they are "preferred" by the consumers. Just because a cow sells for more than a chicken, doesn't mean that Kenyans prefer beef to poultry. The confusion comes in our case from the fact that nearly all fish in Kenya are sold "by the fish", not by the kilogram. When a pond is harvested the larger fish (in the 500-1000 gram range) may sell for as much as KSh 150 each, while

^{§§§§§§} Manuscripts intended for submission to scientific journals or other outlets should go through the normal channels for such publications. These may later be modified and re-published for Extension Service release if appropriate.

^{*******} Under the "new" Extension Service, specialists way be required to produce newsletter articles or extension materials. However, standards for all of these materials should be high – in many cases the ability to write well does not correlate with rank, seniority or title.

those in the 100-250 grams size range may only fetch KSh 10-15 each^{††††††}. The higher value and preference for the larger fish is obvious, or is it?

On the next page (Table 1), I summarized data presented in the Marketing Study, and performed an additional calculation as well. To summarize the data I averaged the "pond site" market prices for tilapia and clarias in each of the three size ranges given for the twelve study sites in western Kenya visited during the PRA/Marketing study (since clarias is not raised everywhere, data were averaged for those sites given). The prices were given in the report for the size ranges of 100-250 grams, 250-500 grams, and 500-1000 grams. In order to calculate a "price per kilogram" I used the mid-weight of these three ranges; 175 grams, 375 grams, and 750 grams, respectively.

The main point to be made from this data is that while fish are sold "by the each", and large fish sell for more individually than small fish, the actual value of the smaller fish is much greater. The small tilapia, sold at supposedly "give away prices" are worth KSh 83.4/kg, the medium fish are worth KSh 71.2/kg, and the large "Premium Price" fish are only worth KSh 66.7/kg^{‡‡‡‡‡‡}. Couple this with the fact that a crop of 100-250 gram tilapia can easily be raised in four months, and by stocking more fingerlings the same total yield (in kg/ha) can be achieved as with the ten-month culture period, the "actual facts" show that the average farmer could double or triple his money by growing a crop of smaller fish every four months, even considering the extra fingerling costs.

This example was probably much too long-winded, but it is the basis of our technical recommendations to the industry. I believe that it is quite important. Our challenge clearly is to rise above pride, emotion, gut feelings, and appearances, and to present clear economic data to the farmers upon which they can base the management of their aquaculture business.

All that aside, marketing in the traditional sense has not, and probably never will be, a problem with pond-raised fish in Kenya. The population density is so high, and the demand for fish so great, that it is unlikely that efforts beyond present pond-bank sales will ever be necessary. Farmers may opt for other alternatives, such as wholesaling a pond of fish to a middleman, for the sake of convenience, but it is unlikely that with the current pond areas the volume of fish produced will ever exceed the ability to sell them on the spot.

Farmers may well work on consumer education to increase demand for clarias or for smaller tilapia, and coordinate harvests with other farmers to avoid short-term supply gluts, but major changes in marketing channels will not be required. In an extreme case of short-term over-supply of fish (which would really be great), the only infrastructure necessary would be a 48-quart Igloo cooler with some ice to hold the fish overnight, or for transport to a more urban center.

Feed cost and availability.

Feed cost and availability has been identified as a serious constraint to both intensifying production in existing ponds and expanding the industry in the future. While reasonable production can be achieved with manure-based systems, to really capitalize on the potential of aquaculture feeding is necessary.

Rice bran is the basis of the supplemental feeding at this time, with dried fish (omena) and dried fresh-water shrimp sometimes used to increase the protein. In some cases farmers are already buying in lorry-loads, and retailing 70 kg bags to individual farmers. This type of cooperation should definitely be encouraged, and expanded to other areas when possible through associations and/or AFF's. There are larger companies involved in manufacturing specialized animals feeds for the dairy and poultry industries. Although it is cost-prohibited at this time, apparently even fish food pellets are available in Nairobi. If blended or pelleted feeds become or are shown to be cost-effective, these channels will probably become the major ones for manufacture and distribution.

^{††††††} This is actually the extreme price ranges reported pond-raised tilapia in western Kenya on page 19, Marketing Study on Sustainable Small Scale Fish Farming Enterprises in LBDA/BSF/FAO Project Areas GCP/KEN/060/BEL, by Major Step Consultants, Kisumu.

⁺⁺⁺⁺⁺⁺⁺ It may be that small fish actually costing more per kg than larger fish is an "artifact" of selling fish "by the fish". A buyer wanting a fish for dinner can buy one small fish for KSh 15, while a bigger one, which he may really prefer, would cost KSh 50, out of his price range. The small one cost KSh 84/kg, and the big one only KSh 67/kg, but he only had to spend KSh 15 to have one small fish for dinner. That is why when we buy a single piece of fruit in the supermarket (at least in some supermarkets) it costs more per kg than if we buy a whole bag of them – it's called "discount pricing". If a buyer was faced with the real facts (what we call "unit pricing, or price/kg for everything he/she buys), this probably would change. Faced with three piles of fish (small, medium and large fish), all weighing exactly one kg, it is doubtful that the average Kenyan consumer would pay more for the smaller fish – but that is exactly what they are now doing.

There has been some fairly specific information presented with respect to food conversions and profit margins with feeding various compounded feeds^{§§§§§§§}. I don't mean to question this data as it would be quite valuable to farmers contemplating supplemental feeding. However, determining food conversion efficiency is a bit tricky when dealing with planktivorous fish such as tilapia (and even clarias). The original source of this data should be located and evaluated by the project management.

Mixed plankton is quite high in protein. When you start a feeding program for filter-feeding fish all you have to add is energy (carbohydrate such as rice bran) to see some pretty significant increases in growth and production. Once you increase feed to the point that the overall protein level of the diet is inadequate, increased feeding of rice bran alone will less efficient. To maintain efficiency at higher feeding rates, you will have to increase the protein in the total diet somewhat. You can either do this by adding a high-priced protein source to the rice bran, or increase the bloom. Since manure is cheaper than omena, and most ponds I saw did not have really good blooms, I think I would opt for this strategy first. Some research has already been conducted on this subject in Kenya^{†††††††}. This may be a good area for continued research in the future.

My opinion is that greater immediate gains might be made through improvement in product form or feeding methods than through formulation. Rice bran is eagerly consumed by both tilapia and clarias, but probably a small percentage of that fed actually goes down a throat; much spreads out to the pond to act as a high-cost organic fertilizer. While I am not necessarily suggesting a manufactured rice bran pellet, developing alternative feed forms or feeding strategies (such as a "feeding ring" to contain the rice bran presented to the fish; forming rice bran "clumps" with animal blood; cooking rice bran to make an ugali-like consistency that the fish can pick at) that will result in more food consumed directly would probably provide a more cost effective action than adding high-cost protein to the diet.

The whole dried omena and shrimp by themselves would be a great high-protein supplement for clarias broodstock in preparation for the spawning season. They eagerly search for and consume these when fed whole along with rice bran. These dried fish and shrimp, when finely-ground, would be great "starter diets" for clarias fry for the first week or two, when greater proportions of rice bran can be mixed in. Since clarias fingerlings may sell for KSh 1000/kg (a 2-gram fingerling selling for KSh 2), the cost of feed is almost insignificant.

Recommended technologies.

In general the technology being promoted and used is appropriate: mixed-sex culture of tilapia; polyculture with clarias when seed is available; heavy fertilization with organic manures; feeding with rice bran. In the appendices I discuss at length some of these practices and some ways that I feel may improve profitability. My basic philosophy is K.I.S.S. (keep it simple, stupid – no offense intended). Simplicity is the key to success. Don't use a pump is you can use gravity flow; don't use hormones if you can stimulate natural spawning; don't strip fish if they can spawn themselves; don't use monosex culture if you can grow fish to market size through mixed-sex culture. Just because we can do something, doesn't mean that we necessarily should.

One thing that I would focus some more attention on is the maintenance of good blooms. If manures are lacking, use inorganic fertilizer. The second thing to be addressed is the long harvest cycles, and the fallow period between crops. Producing smaller fish in a shorter time period (more harvests per year), and refilling ponds and putting them back into production immediately, will have a major impact on profitability.

Groups and Associations.

The formation, development and use of groups, co-operatives and associations is such an important part of the Project plan that I want to repeat some definitions as I will use them in this report.

Group. This is defined as a number of individuals who have come together for the purpose of fish farming, and they jointly own a fish pond or fish ponds.

^{§§§§§§§} Pp 42-47 in the Marketing Study on Sustainable Small Scale Fish Farm Enterprises in LBDA/BSF/FAO Project Areas GCP/KEN/060/BEL.

^{*******} FAO. 1987. Feed and feeding of fish and shrimp: a manual on the preparation and presentation of compounded feeds for shrimp and fish in aquaculture. FAO, Rome. Micheal Bew (FAO and UNEP) pp 275. ******** Wilson Maina Gichuri, Fisheries Officer I at the Sagana Fish Farm, has completed a MS Degree on the economics of feeding and fertilizing tilapia ponds. This and other similar original research should be located and evaluated.

Association. This is defined as a conglomeration of individual farmers and/or fish farming groups joined for the purpose of more effective coordination of activities, and for established capacities to address several constraints and limitations faced by members. They are primarily social organizations. Members of an association do not own joint fish ponds under the umbrella of the association. Members of an association are drawn by a common interest in fish farming, and are registered under the Ministry of Social Services. An individual can join as many associations as he/she wishes.

Co-operative Society. Farmers' co-operatives are primarily established for the purpose of providing credit to farmers, accessing inputs, and establishing marketing networks. Co-operatives play a major role in the marketing of fish from Lake Victoria itself, but may not play that major a role with aquaculture. Co-operative societies are registered under the Commissioner of Co-operatives and are generally business oriented, declaring dividends based on share holdings by each member. Unlike associations, law allows no member of one registered co-operative society to join any other co-operative society.

It is unlikely that group ponds will ever make a significant contribution to the total pond fish production of western Kenya. Pardon my cynicism, but most groups in Kenya were formed not from a desire to join together on a fish production project, but to join together to get a loan or something else substantial from the government. Since this project will thankfully not be offering money to anyone, and I hope that they make that <u>absolutely clear</u> at the onset of the project, I doubt that there will be a flurry of group ponds being built in the next four years.

That aside, I did see a few group ponds that had potential. Although management of these ponds under the former extension approach was pretty dismal (everyone just kept waiting for the agent to come by and advise them on "his" project), participation by these groups or representatives of the group in various on-farm training programs will be both open and encouraged. This will allow the agents to work with a large number of individuals that really <u>are</u> interested in learning aquaculture, without wasting their time on repeated visits to individual ponds with little visible improvement in management.

Functional groupings of fish farmers is a different matter altogether. They can serve some tremendously valuable purposes, and may be critical to the expansion of aquaculture in the long-term (after the next four years). Before I get to their role here I would like to give two examples (neither from Kenya) of how groups "saved" fish farming. In the first case, a crooked civil servant decided that if some individual fish farmers didn't bribe him, their ponds would be declared "health hazards". The area fish farmers joined together in an association, discussed the problem, and went as a group to the DC. The problem ended immediately. It is doubtful that any one fish farmer acting alone could have done this.

In the second case, farmers were discouraged from working hard on pond management because of their extended family obligations. At harvest everyone claiming any kinship came to the pond asking for "their" fish. The farmers wanted to fulfill their family obligations, but they also wanted to show a little profit on the deal. So the association came to the rescue. On harvest day the owner stayed at his house with instructions to the other association members as to how many kg of fish they wanted. At the start of the harvest, which was conducted by the other members, those fish were sent to the owner and the rest of the crop was sold at the pond by the association. Family members (of the owner) coming to the pond and begging for fish were told to go to the house for their free fish, or they could buy whatever they wanted at the pond for cash. At the house, the farmer expressed sympathy, but displayed the pile of fish he had available for his entire extended family, and offered one or two fish to each. Everybody got some fish, and the farmer got a profit for his labors. He reciprocated the effort at the next harvest.

These two anecdotes are perhaps a little off the mark as to the main purpose for an association but they do serve to illustrate how farmers joining together for the right reasons can be very beneficial for everyone, if <u>they</u> see the need and <u>decide to do it for their own reasons</u>. I feel very strongly that we (the government) should never go into an area and tell the farmers they should form an association. This is more of the same failed approach of us telling them what to do, and it won't work any better.

I saw some powerful examples of farmers helping farmers in (Lurambi Division), and I am sure there are functional associations in place elsewhere. These should be supported both because they represent active fish farmers who are trying to get ahead, and also because working with these associations will speed the transfer of technology to and throughout the industry. Farmers associated for no other reason than to facilitate the distribution of seed among the members, or to allow retail users of feed to purchase at wholesale prices, will serve as a functional entry point for the program to the community, especially if the association contains at least one AFF.

CONCLUSIONS AND RECOMMENDATIONS

The Project Plan is sound, should achieve the most important goals, and should be started as soon as feasibly possible.

Designation of the DOF as the implement agency for this project was a good decision. They have aquaculture as a statutory core function, they have a large number of trained staff from which to select the personnel needed for this project, and at every level I felt a true interest and commitment to the success of the project. Following are some of the immediate actions that could be taken by the DOF prior to the formal start of the Project.

Generate a mailing list of AFF's, groups/associations, and NGO's that will be or potentially could be involved in the project.

Issue a letter from the DOF or MOARD to everyone on the list informing them of the upcoming project, the goals of the project, and both what will and <u>will not</u> be done (such as provision of loans or equipment) under the project.

Assemble copies of all available technical information available in western Kenya. The bulk of this may now be in the hands of the LBDA, which until last year was the implementing agency for the Project. This should include handouts and posters developed for farmers, as well as more technical resources and training outlines intended for government staff. Assembling this information will probably take several months; doing it now will save a great deal of time when the IECO's for the Terminal Phase are on board. Reviewing existing information will be a first step to the production of new information.

Tentatively select staff that will be involved in the project. I realize that commitments cannot be made until the project is official, but the DOF should be in a position to move quickly on this when necessary.

Locate in-country sources of "mosquito" seines, microscopes, stereo dissecting scopes, and affordable hand lenses. One person could be detailed for one day each in Nairobi, Kisumu, Kisii and Kakamega to search the market local for availability of these items, location of vendors, and costs.

Identify the most experienced technical staff with expertise in clarias spawning. Discuss current LBDA procedures, suggestions given here in appendices, and other advice available from FAO, and implement trials of new procedures for increasing fry survival ASAP on all government FPC's still operating. If fry survival increases significantly, begin extending technology to farmers, if only by invitation of any interested AFF's to assist with on-going spawning on the FPC's. We do not really need to wait for anything/anyone before we help existing farmers with existing personnel.

There should be no give-aways to fish farmers, even with other MOARD programs for which ponds are eligib

Technical materials developed for this last phase must be accurate, appropriate, sound, and produced in large enough quantities to be readily available to anyone that wants them. The first step will be a review of materials currently being used or on file.

Many of the "Advanced Fish Farmers" I met really were technically advanced, some to the point of successfully hormone spawning clarias on their farms. The identification and further technical development of these farmers will be critical to the main goal of farmer independence. Many are already community leaders acting as fry production centers, feed wholesalers, demonstration farms, and unpaid extension agents. These roles should be developed and strengthened through advanced technical training conducted on their farms, both for them and for their less-advanced neighbors. The DOF should resist the urge to regulate these farmers in their role as FPC's; rather they should be trained to increase both their seed volume and quality. The first immediate need is for advanced training of AFF's in clarias fry survival. Subsequent/concurrent trainings will address tilapia seed production methods (as more people practice polyculture, there will be fewer tilapia fingerlings available), and economic intensification of production. Those AFF's who are the first to realize (or already have) that their expanded service to the community will ultimately pay off in increased fingerling sales will be the first recipients of on-farm training, and the first to benefit from the intervention. Those acting as feed wholesalers should be further developed, perhaps through the assistance of NGO's.

As the role of government decreases, and the farmers actually become independent, the GOK could have a "panic attack". After decades of being totally in control, it will be difficult for many to accept the new order. For the "good" of the farmers, or the consumers, or the environment, or something or somebody, there will be an urge to increase regulation and control of this budding industry. This should be resisted by any means possible. Rather than actually having the intended result of assuring quality fingerlings for farmers, or healthy fish for consumers, or pollution-free discharge to the environment, or whatever else may be intended, the actual result may likely be an opportunity for some civil servant to exert undue influence over individual farmers.

If residual funds can be redirected, initial AFF trainings in clarias spawning/fry survival could begin well before the project as a whole is officially started.

Research and demonstrations (both on-farm and off-farm) can be most helpful to the industry if done properly and if the research/demonstration addresses questions of interest to our customers. The initial request for the information to be developed should come from the farmers themselves. On-farm trials should be coordinated through the extension service. Both the DOF Sagana Fish Station and KMFRI could play valuable research support roles.

The focus of the technical packages extended to the industry should be on basic, proven, economic management practices. Simplicity is the key - integration doesn't mean the chicken house must be physically over the pond.

The major theme of the Project "sales pitch" should be economic intensification and self-reliance.

The concept of HCA's is sound. The failure of many programs has been dilution of efforts. However, if there is not at least one AFF (and preferable two or three) in an HCA there should be adjustments immediately. This plan will not work if there are not already AFF's in place.

The government FPC's should be closed within a year. The planned transfer of these facilities to private ownership may be extremely complicated, and therefore the development of a plan should begin now. It would be ideal if these stations ended up in private ownership by an AFF (or someone who could turn into one after taking possession) who could operate them as efficient FPC's, but this is not essential to the success of the project – it would just provide for one more resource for the industry. In any case, the government should not maintain any financial obligation to these facilities after transfer, even (or perhaps especially) if they are transferred to a group of marginalized farmers rather than to an individual. I would rather consider transfer to a current or former employee of the facility who could operate it successfully and make a good business from it.

The plan to use groups and associations to reach out to the marginalized farmers is sound, and should be effective. Realize that most of these individuals are now extremely dependent and will continue to be dependent. We are merely shifting their dependence to someone (an AFF in their village) who has a greater chance of meeting their long-term needs for continued assistance than does the government. Everyone needs to accept early on that membership in anything is not a pipeline to a free lunch, just knowledge that can set them free. Let farmers themselves determine how they will or should be organized.

<u>Note</u>: The anticipated funding for a final phase of the project never materialised – this ultimate cessation of support taking effect slowly while activities at field level gradually atrophied.

Appendix VI: Review of Aquaculture Extension in the Africa Region^{#######}

This document reviews the principles and methods used, in particular in the African region, in agricultural extension and aquaculture extension. It evaluates the different systems and assesses their sustainability. The document also comes with recommendations on how to change the extension services to make them more sustainable and effective in disseminating information to smallholder farmers.

The most important conclusions and recommendations are:

Although there have been quite some developments in the agriculture extension, most of the aquaculture extension programmes were based on the principle that it was necessary to introduce externally generated technology. This was caused by the fact that aquaculture is relatively new in Africa, but also by the fact that aquaculture projects were always executed by aquaculture technicians. The technicians focused on production increase only, and were prepared to manipulate local conditions if these were not favourable for the adoption of the advocated technology. The technology promoted by these projects proved not sustainable for most farmers.

Extension was in most cases simply interpreted as teaching farmers how to apply the developed technology. Only in the nineties some projects tried to really integrate aquaculture into the farming system, and new approaches for extension were used.

A real analysis of why aquaculture did not develop as hoped for was never made, and the question remains whether it can be developed under the present conditions. This question not only applies to aquaculture but also is relevant for rural development in a general sense.

Most successes in agriculture development are still only on a relatively small scale. This is largely because an enabling policy environment is missing in almost every African country. Extension and research operate within a national political and economic environment and have to ensure that the developed systems are adaptable for farmers who operate their enterprise within this environment.

Aquaculture should not be conceptualised as a purely technical activity. Instead, these local conditions need to be analysed and conclusions drawn as to the possibilities of aquaculture within those conditions. If aquaculture is to be integrated into farming systems one must also understand its interactions with the surrounding physical, socio-cultural and institutional environment. This analysis as well as the planning of improvements should involve farm families and rural communities.

This report concludes that in order to create sustainable development of aquaculture, a complete modification of the extension service is required. Presently the **objective** of extension should change to an improvement of the living standards through improvement of the overall farming activities. This requires an extension **approach** that is not specialised for certain crops, able to deal with agricultural problems, and able to take local possibilities, wishes and knowledge of farmers into consideration. This requires a much more participatory approach, and hence requires a change of the extension **system**.

The system requires **staff** who are willing to listen, and are able to assist farmers in analysing their situation and in making decisions on how to solve problems, and provide a service to farmers instead of following instructions from supervisors. Most of their work should be to respond to requests from the farming communities. Reacting to the requests of farmers opens good possibilities for the improvement of the linkage between extension and research and for conducting on farm research. It also opens the possibility to request contributions of the farmers to the extension service.

The financial requirements for such an extension service will vary between countries. It will however be more expensive in countries with poor infrastructure and with an unstable political and economic environment. The dilemma is that these countries are in most cases the poorer countries.

The process of developing good extension material takes a long time and requires expertise. Efforts should be made to develop standard sets of materials that have been properly tested for their effectiveness and that can easily be modified to the local situation. These basic sets can be developed for a whole region with comparable conditions.

Financial constraints may restrict changes in the extension service, but more than money; changes that effectively improve the extension services need people who are genuinely interested to learn the lessons from past failures. Hence, it needs professionals who are open for change who look beyond technologies only and who are focused on learning from farmers rather than teaching. This requirement is probably the most difficult to fulfil.

^{********} This Appendix is a summary of the paper prepared by Henk van der Mheen as a background document for the 1999 Africa Regional Aquaculture Review (CIFA/OP24)

THE	GENERAL AGRICULTURAL EXTENSION APPROACH						
Assumption of Problem.	Better technology and information exists, but is not available to the farmer. If						
I	communicated to the farmer, the production will increase.						
Purpose.	Help the farmer increase his production.						
Management.	Controlled by government, and decisions are usually made at national level.						
Field staff.	Large in number.						
Required resources.	High, and governments bearing the cost.						
Implementation.	Through a large governmental field staff, no specific target group.						
Evaluation.	Success is measured in terms of rate of adoption of introduced techniques.						
	THE COMMODITY SPECIALISED APPROACH						
Assumption of Problem.	The increase in production of a certain crop is realised through an approach that						
	covers all aspects, including extension, credit, marketing, input supply etc.						
Purpose.	Increased production of a certain crop.						
Management.	Controlled by a commodity organisation.						
Field staff.	Supplied by the organisation.						
Required resources.	Supplied by the commodity organisation, which considers the crop a good investmen						
Implementation.	The organisation often targets specific farmers and areas with high potential of						
	adoption.						
Evaluation.	Success is measured in the production increase of a certain crop.						
	THE TRAINING AND VISIT SYSTEM						
Assumption of Problem.	The extension staff is poorly trained, lacks supervision and logistical support, and has						
	too little contact with the farmers.						
Purpose.	Increased production of certain crops through more effective extension organisation.						
Management.	Centrally controlled, with rigid planning.						
Field staff.	Large in number.						
Required resources.	Because of the large number of staff and the logistic support the costs are high.						
Implementation.	Rigid pattern of visits and dissemination of standard packages.						
Evaluation.	Success is measured in production increase, and in some cases in the number of						
	extension visits and training.						
	THE FARMING SYSTEM APPROACH						
Assumption of Problem.	The external, modern technology does not fit the needs of the farmers. Suitable						
	technology needs to be generated locally and take the whole farming system into						
	account.						
Purpose.	Provided extension staff with research results tailored to meet the needs and interests						
	of local farming systems conditions.						
Management.	Evolves slowly as results become available.						
Field staff.	Highly specialised, and relatively expensive.						
Required resources.	Carries out field trials in farmers fields and homes, that form the basis of extension						
	message.						
Implementation.	Research and extension staff together.						
Evaluation.	Adoption of the technology developed by the Programme, and its continued use.						
Assumption of Problem.	THE COST SHARING APPROACH Farmers not always interested in services extension provides, but which is more likel						
a soumption of 1 1001cm.	to fit the local situation and serve the people if part of the costs is paid locally.						
Purnosa	Farmers acquire techniques to improve their agriculture enterprises.						
Purpose. Management	Shared by various levels, responsive to local interests.						
Management. Field staff.	Locally recruited.						
	Locally recruited.						
Required resources.	Linnea.						
Implementation. Evaluation.	Success is manufad by formers willingness and shility to provide some share of the						
Evaluation.	Success is measured by farmers willingness and ability to provide some share of the cost.						

THE EDUCATIONAL INSTITUTION APPROACH					
Assumption or Problem.	Agricultural colleges have technical knowledge relevant for rural people, but this				
	information is not shared with the farmers.				
Purpose.	To expose rural people to information on latest technologies.				
Management.	Controlled by those who determine the curriculum of the education institutions.				
Field staff.	Both extension and education staff.				
Required resources.	Considerable, but since they are shared between education programmes and				
	extension, the approach can be cost effective.				
Implementation.	Through non-formal instruction in groups, to individuals, or through agricultural				
	extension personnel.				
Evaluation.	Attendance and extend of farmers' participation.				

Table 1: Characteristics of various extension approaches

	Programme characteristics											
	Scope		Information		Goals		Message		Feed-back		Focus	
	Natio	Area	Out	In side	Produ	Consu	Stan	Flexi	Resp	Not	Far	Quali
	nal		side		ction	mption	dar	ble	onsi		ming	ty of
						-	dized		ve		_	Live
General Agricultural	XX			XX	XX		XX			XX	XX	
Extension Approach												
Commodity Specialised		XX		XX	XX		XX			XX	XX	
Approach												
Training and Visit	Χ	Х		XX	XX		XX			XX	XX	
Approach												
Participatory Approach	Х	Х	XX	X	X	X		XX	XX		Χ	XX
Project Approach		XX	Χ	X	X	X	Х	X	X	Χ	XX	Х
Farming Systems		XX	XX		XX			XX	XX		XX	
Development Approach												
Cost Sharing Approach	Х	Х	Χ	Х	Х	X		XX	XX		X	XX
Education Institution		Х	Χ	X	X	X	Х	X	X	Χ	Χ	Х
Approach												

 $\mathbf{X} =$ applicable, $\mathbf{X}\mathbf{X} =$ strongly applicable

(after: Axinn, G.H. 1988)

	Institutional Extension	Farmer to Farmer Extension
Benefits	 Enables gathering of data Easier to monitor effectiveness of technology transfer Appropriate for high technology level 	 Sustainable Low cost Rejection of the message is low Wide coverage and depending on need and interest Empowers farmers as they become responsible for their own destiny
Drawbacks	 Expensive Coverage depends on resources Message may be inappropriate Centralised planning subject to rigid policies Extension service can be influenced by politics Dependent on personality and motivation of extension agent Certain groups my be ignored Not very stable, transfer of staff 	 Higher rejection if external institution is involved in selection of motivator Motivators might try to prevent other farmers from obtaining information Loss of information of distortion of message Loss of knowledge when not practised Gender barrier
Suitable	 When introducing aquaculture When introducing new aspects, techniques, information When establishing links with other institutions 	 When institutions are incapable of implementing extension When knowledge already resides with farmers When trying to increase the adoption rate

Extension Requirements

From the previous chapters it follows that in order to create sustainable development of aquaculture, a complete modification of the extension service is required. Presently the **objective** of extension has been focussed too much on the production increase of a single commodity, in this case aquaculture. This should change into an improvement of the living standards through improvement of the overall farming activities. This requires an extension **approach** that is not specialized for certain crops, able to deal with agricultural problems, and able to take local possibilities, wishes and knowledge of farmers into consideration. This requires a much more participatory approach, and hence requires a change of the extension **system**.

Extension services are up to now characterised by a centralised hierarchical authority, specialised disciplinary departments and standardised procedures. Institutions that respond better to open learning environments and participatory methods must be decentralised, with multidisciplinary, flexible teams, and outputs responding to the demands of farmers (Pretty and Chambers 1994). This has profound implications. It needs a transformation of institutions and of learning approaches.

Management within extension services tends to be inward looking rather than directed toward servicing staff in the field, or providing necessary support, encouragement, or supervision. Field staff are typically not involved in the planning of resource allocation or policy priorities. They tend to be regarded solely as the executive arm of decision-makers located elsewhere or at a higher level. Priorities and financial allocations are thus handed down to the districts for implementation, however well or ill they suit the particular needs of farmers in the area. Such centralisation parallels the attempt to extend packages across the board, disregarding both geo-climatic and socio-economic variation within the locality. Under the present set up farmers themselves have no influence at all on how the extension service is operating. They are only seen as recipients.

An extension service that aims to deal with the problems of farmers will have to listen to farmers and requires an interactive system, whereby farmers inform the service what assistance is required and what information they need. Apart from a change in the approach and the system it requires **staff** who are willing to listen, and are able to assist farmers in analysing their situation and in making decisions on how to solve problems, and provide a service to farmers instead of following instructions from supervisors.

This requires a **set up** whereby extension workers operate in the field as **facilitators** who work directly with the farming community and who have the possibilities to request specific assistance from a **support team** when needed.

For professionals to act as facilitators and trainers they should show a willingness and ability to learn from and work with people and thus a major reversal in the attitudes of professionals.

Facilitator

The main role of the facilitator will be to organise the communities, discuss their problems, assist in analysing these problems and identify possible solutions and need for additional information. The facilitator should be well acquainted with the farmers, must be able to facilitate and stimulate discussions. He/she should preferably be based at community level, but at least be in regular contact with the community and easy approachable for all categories of farmers. The facilitator should be aware of what technical information/assistance is available elsewhere that can be requested, he/she is the person who will provide the link between farmers and support staff for specific technical assistance if so required.

This implies that field workers are expected to cope with a range of farm level problems, though most often they have been taught only a narrow package of technical advice and inputs. Moreover, they were taught to take a known technology to rural communities and transfer this knowledge and enlist their co-operation. Their limited, mainly theoretical, training in extension combined with their uncertainty regarding technical matters and their assumed authority in the field led to a rigid attitude.

To implement a participatory approach successfully, the field workers should have considerable communication and motivation skills, in addition to some technical understanding of agriculture and aquaculture. They need to be supported by a network of specialists. They also need training to help rural people to organise themselves; to formulate priorities, and to 'pull down' required assistance from a network of specialists and local experimental stations. This requires more knowledge and skills of an extension agent than simply transferring a technical package to farmers; more skills than many extension workers possess at present.

Support Staff

Support staff should ideally consists of technical staff, based for instance at district or provincial level who can support the facilitators with information upon request. This team should be made up of agricultural specialists, and also of marketing and financial advisors who form a link between farmers and credit suppliers. Even the inclusion of health, nutrition and other advisors should be considered. It is apparent that only information for crops with real potential in the area should be made available. This means that aquaculture extension will be limited to those areas with sufficient water resources and with suitable soil and topographic conditions. The support teams should have access to up-to-date information, be informed about the developments elsewhere in the country and region, and must have the means, materials and skills to provide the information requested. This means that they should be able to come up with innovative solutions that may divert from textbook solutions.

The support staff should give introductions on the specific topics and new developments, and explain to farmers what support can be provided. This could be seen as an awareness campaign in which case the support team operates more on their own initiative. Most of their work however will be to respond to requests from the farming communities.

Reacting to the requests of farmers opens good possibilities for the linkage between extension and research and for conducting on farm research. It will always be necessary to have a few small research stations to conduct experiments, but most of the more applied research should be conducted at farm level by the farmers themselves, supported and guided by researchers.

Traditionally, field staff were controlled and their performance evaluated by measuring the measurable (i.e. number of visits made, total pond area, fingerlings distributed). However, these are not very useful measures of either effort or impact, but were easily registered and analysed by supervisors. When technical staff operate upon request by farmers, the usefulness and appreciation of the service becomes much more apparent. These opens the possibility to evaluate the service and make changes where required. If services of certain specialists are never requested then the conclusion should be drawn that either the specialist him/herself is not functioning properly, or the topic is not required for that region. Appropriate action can then be taken.

Required Resources

In any organisation, staff is the most important resource. Staff needs to be well trained and equipped to perform the assigned duties. The successful use of a more participatory extension approach relies heavily on the motivation and ingenuity of the field workers. To bring about the desired change in attitude and extension methods by extension staff, a thorough training and restructuring of the extension organisation is needed. This staff will have to use the local social network of the farmers to further disseminate the extension messages, and will need extension material adapted for such an approach.

The education system thus needs transformation in the style of teaching and learning. Training courses should not be lectures; instead institutions will need to provide creative learning environments, conditions in which learning can take place through experience, and through personal exploration and experimentation. Training and capacity building in the use of community development and participatory methods should occur in the field because field tasks require staff whose experience and competence are practical rather than academic.

Staff will need the means to perform their duties efficiently. The facilitator requires the means to contact farmers and to be in easy and efficient contact with the support teams. The support teams have to be able to visit farmers and provide assistance and information to the farmers. They also need access to up-to-date information on local and regional developments, market and price developments, policy changes, regulations, etc.

The financial requirements for such an extension service will vary between countries. In countries with high a population density and good infrastructure a facilitator can operate with a bicycle for transport to contact farmers, and telephone and email facilities for the contacts with the support teams. The support teams will require transport, extension material, and means to produce specific extension materials; good access to email and telephone. The process of developing good extension material is takes a long time and requires expertise. Efforts should be made to develop standard sets of materials that have been properly tested for their effectiveness and that can easily be modified to the local situation. These standard sets can be developed for a whole region with comparable conditions.

In countries with scattered farms, poor infrastructure, unreliable telephone services and no electricity in rural areas, other equipment is required. A facilitator may have to travel to the support teams in order to contact them and may require a motorbike for visiting farmers.

The size of the support teams also depends on the local situation. In a stable political and economic environment with good infrastructure and reliable markets, farmers may focus on cash crops and may want to specialise. The support team will thus only need expertise in a few disciplines. While under unstable conditions, and unreliable market situation farmers may focus much more on diversification and risk avoidance. Under those circumstances extension has to take the local situation and the specifics of farming households into consideration, and extension becomes much more complicated.

The set up whereby the extension service operates much more upon request of farmers opens the possibilities that farmers will contribute to these services. This can be an option when the service has proven its effectiveness and usefulness to the farmers.

This re-organised extension structure requires a smaller but much better qualified and better-equipped staff than is currently the case. It is obvious that there is a general lack of commitment to change, or even a lack of acknowledgement for the need for change. Financial constraints may also restrict change, but more than money, these changes need people who are genuinely interested to learn the lessons from past failures. Hence, it needs professionals who are open for change who look beyond technologies only and who are focused on learning from farmers rather than teaching. This requirement is probably the most difficult to fulfil. A great obstacle for change is the service itself. Most people are afraid of changes and may resist anything that influences their own position. The present hierarchy goes from national level to provincial and district level and then to extension workers and farmers. The extension workers are in most cases the lowest trained and lowest remunerated staff in the extension service. They are seen as the ones executing orders from above and farmers are simply seen as recipients. In the proposed set up the farmer and facilitator are the key elements of the system. They analyse the situation and will initiate the process of information flow. The proposed extension service is designed as a system that supports the farmers with information that is wanted and needed by the farmers. The facilitator has to be well trained and equipped and will have an important role in deciding what is expected of the whole service. This means a complete change of the present hierarchy, something that is difficult to accept by those who control the system at this moment.

REFERENCES

Axinn, G.H. Guide on Alternative Extension Approaches. FAO. Rome. 1988. 148 pp.

Bainville, S. 1998. *Les Interrelations entre Changement Techiques et Changement Institutionnels*. Paper presented at the 15th International Symposium. 29 Nov. – 4 Dec. 1998 Pretoria South Africa, Association for Farming Systems Research Extension. p 572-586.

Binali, W. 1996. *Aquaculture Extension in Zimbabwe*. In: Report of the Technical Consultation on Extension Methods for Smallholder Fish Farming in Southern Africa. H.W. van der Mheen (1996) FAO ALCOM Report 21. p 32-34. Brummet, R. and B. Haight. 1996. *Research Development Linkages*. In: Expert Consultation on Small-Scale Rural Aquaculture by M. Martinez-Espinoza, FAO, FIRI R548. p 145-170.

Bweupe, C. and A. Woynorovich, 1996. *Aquaculture Extension Systems and Methods used in the Northern Province of Zambia*. In Report of the technical Consultation on Extension Methods for Smallholder Fish Farming in Southern Africa. H.W. van der Mheen (1996) FAO ALCOM Report 21. p 35-36.

Chambers, R., 1993. Challenging the Professions – Frontiers for Rural Development. (Intermediate Technology Publications) London.

Chimitz, P., 1955. Tilapia and its Culture. A preliminary bibliography. FAO Fish Bull. 8 (1): p 1-33.

Coche, A.G., Vincke, M. and B.A. Haight, 1994. Aquaculture Development and Research in Sub-Saharan Africa: Synthesis of national reviews and indicative action plan for research. *Committee for Inland Fisheries of Africa, Technical paper, No. 23. Rome, FAO 1994. 151 pp.*

Cochroan, W.W. 1958. Farm Prices, Myths and Reality. Minneapolis: Univ. of Minnesota Press.

FAO. 1975. *Aquaculture Planning in Africa*. Report of the First Regional Workshop on Aquaculture Planning in Africa, Accra, Ghana, 2-17 July 1975. FAO ADCP Rep 75/1, 114 p.

Galbreath, F. and A.D. Ziehi. 1992. *Practique de l'élévage de Tilapia Nilotica en Milieu Rural en Côte d'Ivoire*. In Aquaculture Systems research in Africa. proceedings of a Workshop in Bouake, Côte d'Ivoire14-17 Nov. 1988. G.M Bernacseck and H. Powles. IDRC. p 337-357.

ICLARM/GTZ, 1991. The context of Small-scale Integrated Agriculture-Aquaculture Systems in Africa: a case study of Malawi. ICLARM Stud. Rev. 18: 302 pp.

Jiggins, J.L.S. 1998. The Feminization of Agriculture (IN PRESS IN WORLD AFFAIRS)

Leeuwis, C., N. Röling and G. Bruin. 1998. *Can the Farmers Filed School Replace the T&V System of Extension in Sub-Saharan Africa?* Paper presented at the 15th International Symposium. 29 Nov. – 4 Dec. 1998 Pretoria South Africa, Association for Farming Systems Research Extension.

Murnyak, D. and G. Mafwenga. 1996. *Extension Methodology Practised in Fish Farming Projects in Tanzania*. In: Report of the technical Consultation on Extension Methods for Smallholder Fish Farming in Southern Africa. H.W. van der Mheen (1996) FAO ALCOM Report 21. p 29-32.

Mwakubo, S.M. and H.K. Maritim. 1998. *Commercialization of Smallholder Agriculture: the Case of Nakuru District, Kenya.* Paper presented at the 15th International Symposium. 29 Nov. – 4 Dec. 1998 Pretoria South Africa, Association for Farming Systems Research Extension. pp. 822-829

Peterson J.S. and M. Kalende. 1999. The Role of Cooperatives and Other Forms of Associations in Managing Aquaculture Resources: The Case of Bandundu, Democratic Republic of Congo.

Pretty, J.N. and R. Chambers, 1994. Towards a Learning Paradigm: New Professionalism and Institutions for Agriculture. In: Scoones, I. and J. Thompson. Beyond Farmer First – Rural people's knowledge, agricultural research and extension practice. (Intermediate Technology Publications) London, pp. 182-202.

Röling, N., J. Jiggins and C. Leeuwis. 1998. *Treadmill Success and Failure: the Challenge for FSR/E*. Paper presented at the 15th International Symposium. 29 Nov. – 4 Dec. 1998 Pretoria South Africa, Association for Farming Systems Research Extension.

Röling, N. and E. Van de Fliert, 1994. *Transforming Extension for Sustainable Agriculture: the Case of Integrated Pest Management in Rice in Indonesia*. In: Agriculture and Human Values, Vol. 11, No. 2/3, pp. 96-108.

Satia, B., 1989. A Regional Survey of the Aquaculture Sector in Africa South of the Sahara. Rome, UNDP/FAO, ADCP/REP/89/36.

Scholz, U and S. Chimatiro. 1996. *The Promotion of Small Scale aquaculture in Southern Region of Malawi; A reflection of extension approaches and technology packages used by the Maliwi-German fisheries and aquaculture development project.* In: Report of the technical Consultation on Extension Methods for Smallholder Fish Farming in Southern Africa. H.W. van der Mheen (1996) FAO ALCOM Report 21. p 28-29.

Scott, J.C., 1976. The Moral Economy of the Peasant. (Yale University Press) New Haven and London.

Smith, L.J. and S. Peterson (eds.), 1982. Aquaculture Development in Less Developed Countries: Social, Economic and Political Problems. (Westview Press) Boulder, Colorado.

Van der Mheen, H.W. 1996. Report of the Technical Consultation on Extension Methods for Smallholder Fish Farming in Southern Africa. FAO ALCOM Report 21. 46 pp.

Van der Mheen, H.W. 1999. Compendium of the results of the ALCOM aquaculture Programme for Smallholder Farmers in Southern Africa. FAO ALCOM Report. 37 pp.

Van der Mheen-Sluijer, J., 1989. The Human Side of Fish Farming. Report of a study tour to Bangui, Central African Republic. *FAO, Chipata, Zambia. Unpublished Report, 24 pp.*

Veverica, K. 1996. *Aquaculture Extension in Rwanda*. In: Report of the technical Consultation on Extension Methods for Smallholder Fish Farming in Southern Africa. H.W. van der Mheen (1996) FAO ALCOM Report 21. p 44-46.

APPENDIX VII: FIELD NOTES FOR AFRICAN FRESHWATER AQUACULTURE^{\$\$\$\$\$\$\$}

ABBREVIATIONS

AA	. Amino Acid
AI	. Active Ingredient
BHC BH Carp	. Big Head Carp (Aristichthys nobilis)
BOD	
BS	
BW	. Body Weight
CAE	
CC or C Carp	•
C/N	
COD	. Chemical Oxygen Demand
СР	
DAP	. Diammonimum Phosphate
DM	
DO	. Dissolved Oxygen
ELEV	
FCR	. Food Conversion Ratio
FS	. Fore Sight
FW	. Freshwater
GC or G Carp	. Grass Carp (Ctenopharyngodon idella)
HI	
MAP	. Monoammonium Phosphate
ME	. Metabolizable Energy
MW	. Molecular Weight
OA	. Oreochromis aureus
OM	. Oreochromis mossambicus
ON	
Prawn	. Macrobrachium rosenbergii
SC or S Carp	. Silver Carp (<i>Hypophthalmichthys molitrix</i>)
SGR	. Specific Growth Rate
SP	. Super Phosphate
SS	. Standing Stock (at harvest)
STA	. Station
Т	
ТА	•
TLW	. Total Live Weight
TSP	. Triple Super Phosphate

^{\$\$\$\$\$\$\$} Prepared by Randall E. Brummett, International Center for Living Aquatic Resources Management, B.P. 2008 (Messa), Yaoundé, Cameroun, 1999.

A series of eight manuals have been produced between 1981 and 1998, presenting the background knowledge necessary for applying the technical data given below. These manuals, also available in French and in Spanish, have been recently made available by FAO on a CD-ROM.

Coche, A.G. and Van der Wal, H. 1981. Simple methods for aquaculture. Water for freshwater fish culture. FAO Training Series, (4):: 111p.

Coche, A.G. 1985. Simple methods for aquaculture. Soil and freshwater fish culture. FAO Training Series, (6): 174p.

Coche, A.G. 1988. Simple methods for aquaculture. Topography. Topographical tools for fish culture.FAO Training Series, (16/1): 330p.

Coche, A.G. 1989. Simple methods for aquaculture. Topography. Making topographical surveys for fish culture. FAO Training Series, (16/2): 262p.

Coche, A.G.and Muir, J.F. 1992. Pond construction for freshwater fish culture. Pond-farm structures and layouts. FAO Training Series, (20/2): 214 p.

Coche, A.G., Muir, J.F. and Laughlin, T. 1995. Pond construction for freshwater fish culture. Building earthen ponds. FAO Training Series, (20/1): 355p.

Coche, A.G., Muir, J.F. and Laughlin, T. 1996. Management for freshwater fish culture. Ponds and water practices. FAO Training Series, (21/1): 233p.

Coche, A.G. and Muir, J.F. 1998. Management for freshwater fish culture. Farms and fish stocks. FAO Training Series, (21/2): 341p.

1. FACILITY DESIGN AND CONSTRUCTION

A. Design Criteria

- Optimum slope of site = 0.5-1 %.
- Maximum slope of site = 2.5% for economical dam construction (<3 m high).
- Bottom slopes on ponds = 0.1-0.2 %.
- Minimum pond depth 80 cm (with 40 cm drop-off at water-line).
- Deeper ponds (> 2 m) might allow better fish growth.
- 0.5 m freeboard in dug ponds, 1.0 m in dams and 1.5 m in flood areas.

Spillways:	1 m drop to prevent fish coming up.
	3 cm max depth to prevent fish going down.
	Width in SE U.S.: (ft) = watershed area (acres) + 15 ft

2

Dike slopes:	Ponds <1000 m ²	2.0:1
	Ponds >1000 m ²	2.5:1
	Sandier soils	3.0:1
	Outside wall	1.5:1

- Sump: Appx. 1 m below pond bottom. Walled with gaps to prevent silting. Able to hold all fish in pond. Not too big to seine.
- **Drains:** Drain slope = 1%Inlet best at drain end (into sump is best). Pond should drain in 1-3 days.
- Drain pipe: 4-10 ha......12-24" Smaller......8-10"
- Monk is best with >6" drain pipes.
- 6167 m^3 drained in 2.5 days with 1.8 m head + 6" drain pipe.
- Drain pipe should drop 30 cm into drainage canal to allow complete draining.

Tanks: Rectangular tanks should be L:W:D = 30:3:1 in order to maximize flushing efficiency. If water is limiting, reduce L.

B. Water Quantity

To estimate the amount of water available due to storm runoff from watersheds:

- 1. Determine hydrologic soil group for the watershed area of concern.
- 2. Obtain runoff curve number from table.
- 3. Measure rainfall.
- 4. Extrapolate between runoff curve numbers to determine storm runoff depth.
- 5. Multiply runoff depth by area of watershed to estimate water volume.

Runoff Curve Numbers:

	Hydrologic Soil Group:	A	В	С	D
Cultivated Watershed					
W/O Conservation Treatment		72	81	88	91
W/Conservation Treatment		62	71	78	81
Pasture or Range					
Poor Cover		68	79	86	89
Good Cover		39	61	74	80
Meadow		30	59	71	78
Woods, Shrubs or Forest					
Thin Stand, Poor Cover, No Mulch		45	66	77	83
Good Cover		25	55	70	77
Farmsteads		59	74	82	86
Roads		74	84	90	92

Storm Runoff Depth (cm):							
Runoff Curve Number (from above)	60	65	70	75	80	85	90
Rainfall							
2.54 cm	0	0	0	0.08	0.20	0.43	0.81
3.05 cm	0	0	0.08	0.18	0.38	0.71	1.17
3.56 cm	0	0.05	0.15	0.33	0.61	0.99	1.55
4.06 cm	0.03	0.13	0.28	0.51	0.86	1.32	1.93
4.57 cm	0.08	0.23	0.43	0.74	1.12	1.65	2.36
5.08 cm	0.15	0.36	0.61	0.97	1.42	2.03	2.77
6.35 cm	0.43	0.76	1.17	1.65	2.26	3.00	3.89
7.62 cm	0.84	1.30	1.83	2.44	3.18	4.04	5.03
10.16 cm	1.93	2.62	3.38	4.24	5.18	6.25	7.42
12.70 cm	3.30	4.19	5.18	6.22	7.34	8.56	9.86
15.25 cm	4.88	5.97	7.29	8.33	9.60	10.94	12.32
17.78 cm	6.60	7.87	9.19	10.52	11.91	13.36	12.24
20.32 cm	8.46	9.91	11.35	12.80	14.27	15.80	17.30
22.86 cm	10.41	11.99	13.56	15.11	16.69	18.26	19.02
25.40 cm	12.45	14.15	15.82	17.48	19.10	20.73	22.30
27.94 cm	14.53	16.36	18.11	19.86	21.54	23.22	24.82
30.48 cm	15.90	18.59	20.45	22.25	24.00	25.70	27.33

Discharge from horizontal pipe flowing full:

 $Q = A \times D$

Q = discharge in gpm

A = internal area of pipe opening

D = distance from opening to a point

12" above water fall.

 Area of Pipe Openings:
 2".......3.1 in²

 3".......7.1 in²

 4"......12.6 in²

 6"......28.3 in²

 8"......50.3 in²

 Weir Formulae:
 Q = discharge of stream in cfs

H = head on weir in feet (measured upstream) L = length of notch in rectangular weir

> Rectangular Weir: Q = $3.33 \text{ H}^{3/2}$ (L – 0.2 H) 90° V-notch Weir: Q = $2.54 \text{ H}^{5/2}$

Embody's Formula: (discharge of a stream measured by timing a partially submerged float over a known distance)

R = WDAL	$R = m^3$ /sec stream
Т	W = avg. width of stream (m)
	D = avg. depth of stream (m)
	L = length of tested section (m)
	A = bottom roughness constant $(0.9 = \text{smooth}, 0.8 = \text{rough})$
	T = time for a float to traverse L (secs)

Evaporation:

- 1. Measured in a Class A Pan (25 cm deep x 122 cm diameter), loss from Pan X 0.75 approximates loss from a pond surface.
- 2. Evaporation per month = -9.94+5.039T; r²=0.94 (T = average temp over the month)

C. Soils

- Soil samples should be taken at 50-100 m intervals in a grid pattern; test holes should be at least 2 m deep.
- Minimum of 20% clay.
- Acceptable seepage and evaporation = 1-2 cm/day (10 cm from a 15 cm diameter hole in wet soil in 24 hrs.).
- If your pond bottom is > 60% clay, do not let it dry or cracks will increase seepage.

Soil Classification:	Percentage of Dry Weight				
	Sand	Silt Clay	Hydrolo	gic	
	(0.05-2mm)	(0.002-0.05mm)	(<0.002mm)	Group	
Sand	86-100	0-14	0-10	А	
Loamy Sand	70-86	0-30	0-15	A-B	
Sandy Loam	50-70	0-50	0-20	В	
Loam	23-52	28-50	7-27	В	
Silty Loam	20-50	74-88	0-27	В	
Silt	0-20	88-100	0-12	B-C	
Clay Loam *	20-45	15-52	27-40	B-C	
Sandy Clay Loam *	45-80	0-28	20-35	С	
Silty Clay Loam *	0-20	40-73	27-40	С	
Sandy Clay *	45-65	0-20	35-55	С	
Silty Clay	0-20	40-60	40-60	C-D	
Clay	0-45	0-40	40-100	D	

* Best for pond construction.

Average Permeability:	Sand 5.0 cm/hr
	Sandy Loam 2.5 cm/hr
	Loam 1.3 cm/hr
	Clay Loam 0.8 cm/hr
	Silty Clay 0.25 cm/hr
	Clay0.05 cm/hr

Plasticity Index: (PI) = Liquid Limit (LL) - Plastic Limit (PL) For diles w/o clay core: 20.70% of particles < 0.1 p

For dikes w/o clay core:	20-70% of particles < 0.1 mm
	10-40% of particles < 0.05 mm
	PI = 8-20%
	LL = 35% is best for compaction
For dikes w/clay core:	LL < 60%
	PL < 20%
	PI > 30%
For clay cores:	PI > 30%
	LL < 60%
	PL < 20%

- Compressibility is generally proportional to PI.
- For best compaction, PI should be as close to 16% as possible.
- In fine soils: low compressibility LL < 30
 - med compressibility LL 30-50 high compressibility LL > 50

pH: mix 20g dry, powdered mud + 20 ml distilled water, stir intermittently for 1 hour, measure pH.

6.5-8.5.....Best 5.5-6.5, 8.5-9.5Marginal 4.0-5.5, 9.5-11.0Requires Special Management (Lime, etc.) <4.0, >11.0.....No Good

D. Soil Compaction

- Packing coefficient (amount excavated soil compresses when packed to form dikes): 20-50% depending upon soil and packing equipment (i.e. for 1 m³ of dike you need 1.2-1.5 m³ of fill.
- Core trench: 0.5 m below pond bottom into at least 1 m thick clay

- For compaction soil should be slightly crumbly, very crumbly is too dry. It is too wet if it can be rolled out pencil-thick.
- Do not try to compact soil layers of more than 4-10" (4-6" for heavy clay). Compact in repetitive passes until the sheep's foot roller "walks out".
- With a bulldozer add 10% to dam height for settling, with a rubber-tired scraper, add 5%.

E. Cement

Materials per cubic meter of concrete (includes 10% wastage):

			centen	it Sui	ia Giuve	1
			<u>m</u> ³	kg	m ³	kg
2	2101		0.40	705	0.55	000
2 cm gravel	318 kg		0.48	705	0.55	886
2.5 cm gravel	250 kg		0.44	636	0.59	955
4 cm gravel	239 kg		0.47	682	0.65	1045
4 cm gravel (alt.) 205 kg		0.47	682	0.62	1000	

F. Water Heating

Cubic	Kilow	atts to Hea	at Static W	ater in 24 h	ours
Meters	3°C	6°C	8°C	11°C	14°C
18.93	3.0	6.1	9.2	12.2	15.3
15.14	2.4	4.9	7.3	9.8	12.2
11.36	1.8	3.7	5.5	7.3	9.2
9.46	1.5	3.0	4.6	6.1	7.6
7.57	1.2	2.4	3.7	4.9	6.1
5.68	0.9	1.8	2.8	3.7	4.6
3.79	0.6	1.2	1.8	2.4	3.1
2.84	0.5	0.9	1.4	1.8	2.3
1.89	0.3	0.6	0.9	1.2	1.5
0.95	0.2	0.3	0.5	0.6	0.8

G. Pumping

P = V Q H /E	P = pump power (kw)
	$V = spec grav water (9.81 kN/m^3)$
	$Q = discharge (m^3/sec)$
	H = head(m)
	E = pump efficiency (0.6 for centrifugal pumps)

H. Wind Shear Fences

- 40-50% permeability is best (low trees, shrubs and hedges are good).
- Two rows separated by twice the height works best.
- Can reduce heat loss by 3°C and evaporation by 20% within 30X height of fence downwind.
- Solid fences increase evaporation by increasing turbulence.

I. Pond Rehabilitation

Problem Possible Solutions

Excessive Water	A. Diversion ditch.B. Raise dam (enlarge pond).C. Add pond uphill.
Turbidity	A. Settling pond uphill. B. Diversion ditch.

C. Plant watershed.

Excessive Seepage	B. As above C. Clay bland D. Sodium p E. Core dikes F. Water-pro G. Puddling:	followed ket 12" thi oolyphosp s. of linings Satur	by bentonite m ck on bottom. hates if suitabl	
Fish	A. Reduce de	epth of spi	llway to 3 cm	l.
Escaping	B. Large mes	sh screen (clean often!).	
Fish	A. (from abo	ve) Screet	n incoming wa	ater.
Entering	B. (from belo	ow) Vertic	al drop of 1 m	n on spillway.
Shallow	A. Raise dan	1.		
Edges	B. Excavate.	Earth can	be stored in p	piers.
Insufficient	A. Divert wa	ter from a	djacent waters	shed.
Water	B. Reduce ar	-	1.	
	C. Reduce se			
	D. Dig a well E. Wind-shea			
***	4 D'			
Waves	A. Rip-rap. B. Wind-shea			
Damaging Dikes			lin nond	
DIKES	C. Break-wat	ei upwind	i ili poliu.	
J. Recording Le	velling Data			
STA	BS	HI	FS	ELEV

STA	BS	HI	FS	ELEV
BM	5.23	105.23		100.00
1			4.56	100.67
2			3.00	102.23
TP	6.20	108.43		102.23
3			4.50	103.93

٠ add the BS to ELEV of BM to get HI

subtract FS to STA 1 from HI to get ELEV of STA 1 •

•

subtract FS to STA 2 from HI to get ELEV of STA 2 TP is a BS to STA 2; add BS to ELEV of STA 2 to get HI ٠

٠ subtract FS to STA 3 from new HI to get ELEV of STA 3

2. WATER QUALITY

A. Oxygen

- < 3.0 mg/l can effect growth, FCR, disease resistance.
- ON growth is not improved by DO>10% of saturation.
- 0.1-0.5 kg/m³ of Silver Carp in unfed cages can reduce net plankton, but increases nanoplankton.

Solubility of Oxygen in Pure Water at Sea Level:*

<u>°C</u>	mg/l	<u>°C</u>	<u>mg/l</u>	<u>°C</u>	mg/l
15	9.76	21	8.68	27	7.86
16	9.56	22	8.53	28	7.75
17	9.37	23	8.38	29	7.64
18	9.18	24	8.25	30	7.53
19	9.01	25	8.11	31	7.42
20	8.84	26	7.99	32	7.32

* Saturation concentration is decreased by approx. 0.55 mg/l for each 300 m increase in elevation.

Theoretical tilapia O₂ Consumption: $Y = w^{0.82}$

 $Y = mg O_2$ per fish per hour W = average weight per fish (g)

10 g O₂/100 kg fish/hr at rest

Measured Tilapia O₂ consumption:

≥30 g O₂/100 kg fish/hr active/feeding

Aerators:

Oxygen Transfer Rate *

Diffusers	(fine bubbles)	1.2-2.4 kg/kwh
	(med. bubbles)	1.0-1.6 kg/kwh
	(big bubbles)	0.6-1.2 kg/kwh
Paddlewheels		1.2-2.4 kg/kwh
Agitators (surfac	e)	1.2-2.4 kg/kwh
Gravity (pump u	p)	1.2-2.8 kg/kwh
Venturi	-	1.2-2.4 kg/kwh
U-Tube		

* Theoretical values for pure water, 20°C, 0 mg/l D.O. Measured OTR for a medium-bubble diffuser system at 220-352 g/kwh.

B. Ammonia

- NH_3/NH_4^+ are in equilibrium in water. TAN (total ammonia nitrogen) includes both.
- <0.1 mg/l is generally OK.
- 0.5-1.0 mg/l total ammonia not uncommon in ponds at end of summer.
- 0.2 mg/l NH₃ can be dangerous.
- more dangerous when pH and temperature are high.
- less dangerous when [Ca⁺⁺] is high.
- 96 hr $LC_{50} = 0.3-0.6$ for Striped Bass in FW at pH 7.0, $[Ca^{++}] = 5$ mg/l.
- Tilapia LC_{50} for $NH_3 = 2 \text{ mg/l in FW}$.
- Tilapia in tanks produce an average of $22g \text{ NH}_2/100 \text{kg fish/day}$ (range = 9-46)

Percentage of total ammonia in NH₃ form at different temps and pH's:

pН	20	22	24	26	28	30
7.0	0.4	0.5	0.5	0.6	0.7	0.8
7.2	0.6	0.7	0.8	1.0	1.1	1.3
7.4	1.0	1.1	1.3	1.5	1.7	2.0
7.6	1.6	1.8	2.0	2.4	2.7	3.1
7.8	2.5	2.8	3.2	3.7	4.2	4.9
8.0	3.8	4.4	5.0	5.7	6.6	7.5
8.2	5.9	6.8	7.7	8.8	10.0	11.4
8.4	9.1	10.3	11.7	13.2	15.0	17.0
8.6	13.7	15.4	17.3	19.4	21.8	24.5
8.8	20.1	22.4	24.9	27.6	30.7	33.9
9.0	28.5	31.4	34.4	37.7	41.2	44.8
9.2	38.7	42.0	45.4	49.0	52.7	56.3
9.4	50.0	53.5	56.9	60.3	63.8	67.1
9.6	61.3	64.5	67.6	70.7	73.6	76.4
9.8	71.5	74.3	76.8	79.3	81.6	83.7
10.0	79.9	82.1	84.0	85.8	87.5	89.1

C. Nitrite

- 96 hr $LC_{50} = 0.4$ mg/l for channel catfish fingerlings, 4.2 mg/l for adults at 22°.
- 1.0 mg/l has killed catfish.
- Toxicity reduced by high pH, alkalinity, hardness, chloride.
- Toxicity increased at higher CO₂ and temperatures.
- 5-10 mg/l NaCl counteracts 1 mg/l NO₂ = 3-6 mg/Cl (NaCl = 60% Cl⁻)
- 96 hr LC₅₀ for Striped Bass = 13 mg/l in FW
- <0.5 mg/l generally OK for tilapia.
- 35 mg/l at 1 PPT Salinity
- 100 mg/l at 8 PPT Salinity

D. Denitrification

- Denitrification and ammonia volitilization removed 55% of added N in ponds (17). NH₃ removal by biofilters = 0.02-0.1 g/ft² of media surface/day.
- Nitrification destroys 7 mg/l TA/mg/l NH₃ oxidized.

E. Carbon Dioxide

- Can fluctuate 0-10 mg/l over 24 hour cycle in ponds.
- Up to 60 mg/l is O.K. with good oxygen.
- 50 mg/l is high in surface waters, 80-90 mg/l in ground water.
- 50-100 mg/l can stress and kill fish.

F. Alkalinity

- >20 mg/l TA to provide carbon for photosynthesis and buffer pH; 50-200 mg/l is best.
- 175 mg/l can form a calcareous fur and affect gills (4).
- Very high TA has been associated with opaque corneas in Tilapia (4).

Forms of Alkalinity in Water:

pH <5.5.....mineral acidity (H⁺ is present) pH 4.5-5.0.....all CO₂ except mineral acidity pH 4.5-8.3....HCO₃⁻ increasing, CO₂ decreasing pH 8.3-9.0.....almost all HCO₃⁻ pH >8.3....CO₃⁻² increasing, HCO₃⁻ decreasing pH 11.5-12 +....measurable OH⁻

G. Temperature

For O. niloticus, no spawning below 20°C.

• *O. niloticus* can stand 8°C for a few hours.

Maximum Swimming Performance:	24°C for Tilapia sparmanii
	28°C for T. zillii & S. macrochir
	28-32°C for O. niloticus
	32°C for O. mossambicus & S. galilaeus

H. Turbidity

- 20,000 mg/l can affect behaviour.
- 175,000 mg/l can lead to appreciable mortalities.
- Effective concentration is determined in test containers. Choose lowest dosage that settles flock in 1 hour.

Treatments:*	Ca(OH) ₂ >200 mg/l
	Barnyard Manure2000 kg/ha
	Cottonseed or Soybean Meal75 kg/ha
	Single or Triple Super Phosphate25 kg/ha
	Gypsum (CaSO ₄) *100-200 mg/l
	Alum (Al(SO ₄) ₃) ***25-30 mg/l

* apply total dose all at once, may require several treatments ** gypsum has some residual effect *** each mg/l Alum destroys 0.5 mg/l TA

I. Electrical Conductivity

- Proportional to mineral content.
- Increases in response to certain pollutants: road salt, sewage and manure containing large amounts of nitrates and phosphates, inorganic fertilizers, run-off from mining operations, brines from drilling, leaky landfills.
- Reduced in response to: snow melt, rainfall, non-ionic particulate matter.
- Changes approximately 2% for every degree deviation from 25°C:

$$C_{25} = C_m \div 1 + 0.02 (t_m - 25)$$

20-150	mho/cm common in FW:	Distilled Water	0.5-2.0 mho/cm
		Rain, Snow	2.0-50 mho/cm
		Most Drinking Water	50-1,500 mho/cm
		Saline Waters	1,500-5,000 mho/cm
		Seawater	2,000 mho/cm
		Brine	100,000 mho/cm
I Atom	in Waights of Salastad Flamonts		

J. Atomic Weights of Selected Elements

C 12	O 16	Cl 35.5
S 32	P31	Si28
Al 27	Mg 24	Na23
K 39	Ca 40	Fe 56

K. Misc. Constituents

pH: 6.5-9.0 at dawn tollerable for most species.

Iron (7): More than 0.5 mg/l can clog pipes.

Silica (7): More than 100 mg/l can clog pipes.

Copper (7): 0.1 mg/l will prevent a phytoplankton bloom.

Total Dissolved Solids: 50-500 mg/l in FW is safe.

Off-Flavor: Mixing and/or aeration between 3:00-5:00 pm reduced NH₃, algae and off-flavor in catfish ponds.

3. NUTRITION AND FEEDING

A. Feeding

- Fry should increase their weight by 50% every three days at 30°C.
- Max feed rate to keep DO>1.0 mg/l at dawn = 100 kg dm/ha/day or 4.0 kg N/ha/day.
- Pelleting can double production.
- Hard pellets give better FCR than floating pellets.

Feeding Rates for Tilapia in Ponds:	Size (g) 18-21	22-25	26-32
	0.01-1.0 10%	15%	25%
	1.0-20 7.5%	10%	15%
	20-100	6%	7.5%
	100-300 1%	2.5%	3%

Feeding Tilapia in Tanks at 30°C:

Average Weight(g)	% BW/Day	Comments
0.02-0.5 to 1 *	20 - 15	40% CP, Continuous w/Auto-feeders
0.50-1.0 to 5	15 - 10	32-36% CP, Continous w/Auto-feeders
5 to 20	10 - 73	2-36% CP, Continous w/Auto-feeders
20 to 50	7 - 43	2-36% CP, Continous w/Auto-feeders
50 to 100	4 - 3.5	28-32% CP, Divided into 3-6 feedings
100 to 250	3.5 - 1.5	28-32% CP, Divided into 3-6 feedings
250 to 450	1.5 - 1.0	28-32% CP, Divided into 3-6 feedings

Food Conversion Ratios: Tilag Colo

Tilapia at 10,000/ha w/25% CP	1.60
Colossoma at 10,000/ha w/25% CP	
Tilapia at 2,500/ha w/25% CP	1.28
Colossoma at 2,500/ha w/25% CP	1.29
Grass Carp w/Eichornia	
Grass Carp w/Sudan Grass	
Grass Carp with Barley	3

B. Nutrition

- Protein for tilapia diets can be almost exclusively from plant sources.
- N X 6.25 = Crude Protein.
- Natural pond food organisms contain approximately 55% of DM as CP.
- 50-70% of tilapia growth in fed ponds is due to natural food web.
- Cottonseed meal can replace some soybean meal (up to 20% of the diet) in catfish diets. Higher might be OK with lysine supplementation. ≤ 900 mg/l of gossypol seems to be OK.
- In a 24% CP tilapia diet, up to 67% of fishmeal can be replaced by hexane-extracted soybean meal.
- Catfish growth was not reduced on an all-vegetable diet with 60% of protein coming from soy-bean meal.
- Carp growth was not affected by a 55% replacement of fishmeal with soy-bean meal.
- Colossoma growth was not reduced in an all-vegetable diet containing 27% CP from soy-bean meal.
- In tilapia diets, 50% replacement of grain with spirulina reduces growth.
- < 20% Azolla is probably OK for tilapia.
- Mixed feeds generally provide a better balance of amino acids.
- Too much or too little protein can reduce protein absorption and retention. 40% CP giving 90% absorption is best for *Clarias*.

Basic Tilapia Diet:	Dry Matter	>90%
-	Crude Protein	
	Lipid	<10%
	CH ₂ O	
	Crude Fiber	<1%
	Ash	<17%
	Total Energy:Protein	6-10 kcal/g
	Vitamin and Mineral Premixes	U

Essential Amino Acids:	AA % of CP
	ARG
	HIS1.25
	ILU3.11
	LEU2.79
	LYS4.64
	MET+CYS3.21 [44% CYS (35)]
	PHE+TYR5.00
	THR3.57
	TRY0.57
	VAL2.29
Metabolizable Energy:	Avg. Fat
	Avg. Protein 5.65 kcal/g X 0.80 digestible = 4.5 kcal/g

Digestibility:

- 1. Crude protein digestibility can usually be estimated accurately in mixed feeds by averaging the digestibility of the components.
- 2. CH₂O digestibility will usually be under-estimated using the above method.
- 3. Extrusion does not seem to affect digestibility for tilapias.
- Lipids: Warmwater fish seem to need n6 (less unsaturated) fatty acids (as do land animals) while coldwater fish seem to need n3 fatty acids.

Simple Formulations for CP and ME:

% Nutrient in Source I - Desired % Nutrient in Mix = Factor A % Nutrient in Source II - Desired % Nutrient in Mix = Factor B

 $\frac{Factor A}{Factor A + Factor B} = \% \text{ of Source I in Mix}$

 $\frac{\text{Factor B}}{\text{Factor A} + \text{Factor B}} = \% \text{ of Source II in Mix}$

Note: Be sure to determine least costs (i.e., \$/kg protein, \$/kcal ME).

Proximate Composition of Common Feedstuffs:

Feedstuff	%	%	%	%	%	%	%	%	
	DM	CP	Dig.	Lipid	Dig.	CH ₂ O	Dig.	Fiber	DE
			(tilap)		(tilap)		(tilap)		(kcal/kg)
Alfalfa Meal	2	17-22	66	3-4	51	37-43	12	18-22	667
Dried Blood	92	75	3	2		9		1	
Cereals (avg)	88	11	84	3	85-90	7	41	4	2507
Oil Seed (mech extd)	92	43		7		27	59	8	
(solv extd)	91	46	79	2	81	28	17	10	3340
Rice Bran (w/germ)	91	13	71	14		41		12	
Wheat Bran (w/o germ)	89	50	71	4		53		10	2484
Meat-Bone Meal	93	51	68-78	10	77	2		2	3470

Vitamin	Deficiency Signs:	Rec. Level (mg/kg diet)
Thiamin (B ₁)	Poor growth; loss of appetite; loss of color; cloudy cornea; loss of equilibrium; weakness; terminal convulsions; some fin degeneration.	60
Riboflavin (B ₂)	Loss of appetite; darkened skin; cloudy cataract/lens; disorientation; skin, heart, eye haemorrages; photophobia; mortalities.	60
Pyridoxine (B ₆)	Poor growth; loss of appetite; loss of balance; exopthalmia; mortalities.	20
Pantothenic Acid	Poor growth; loss of appetite; clubbed gills; flared operculae; exopthalmia; haemorrages.	40
Inositol	Poor growth; loss of appetite; skin lesions; haemorrages; bloated stomach.	400
Biotin	Poor growth; loss of appetite; dark coloration; convulsions; muscle wasting; blue slimy mucus.	10
Folic Acid	Poor growth; loss of appetite; dark coloration; exopthalmia; pale gills.	10
Choline	Poor growth; haemorrage in kidney, intestine.	2000
Nicotinic Acid (Niacin)	Poor growth; loss of appetite; skin haemorrage; erratic swimming; photophobia; high mortalities.	150
Cyanocobalamin (B ₁₂)	Loss of appetite; anaemia.	0.05
Retinol (A)	Loss of appetite; loss of weight; loss of color; fin, skin haemorrages; exopthalmia.	2000
-tocopherol (E)	Poor growth; muscular wasting; exopthalmia; curved backs; mortalities.	100
Menadione (K)	Anaemia.	40
Ascorbic Acid (C)	Loss of Appetite; curved backs; poor growth.	200

Mineral Deficier	ncy Signs:	Rec. Level (mg/kg diet)
Calcium	Loss of appetite; reduced growth.	3.0
Phosphorus	Loss of appetite; reduced growth; soft bones; head deformities; fatty viscera.	6.0
Magnesium	Loss of appetite; reduced growth; high mortalities; convulsions; soft bones; bent backs; calcium deposits in muscle, kidney.	0.5
Iron	Anaemia.	0.15
Zinc	Loss of appetite; reduced growth; high mortalities; skin, fin erosion; cataracts.	0.3
Copper	Reduced growth.	0.003
Manganese	Reduced growth; short body.	0.013
Selenium	Poor growth; muscular wasting; exopthalmia; curved backs; mortalities.	0.0004
Iodine	Thyroid hyperplasia.	0.001

NB: Although levels have not been determined, a pre-mix should contain some cobalt, sodium, potassium, chromium and chloride.

4. FERTILIZATION

A. Primary Productivity

- In tropical and sub-tropical climates, system should fix a maximum of 10g C/m²/day depending upon intensity of sunlight.
- In Israel, $2-5g \text{ C/m}^2/\text{day}$ (avg = 4) from manure only gave 20-30 kg/ha/day fish yield.
- Hourly gross primary productivity = 4.1-11.5 (avg = 7.6) mg C fixed/mg chlorophyll a.

Chlorophyll a: 2.9-115.5 $\upsilon g/l$ (avg = 33.65) for unfertilized ponds 62.7-212.3 $\upsilon g/l$ (avg = 107.22) for fertilized ponds

Oreochromis aureus Production Relative to Phytoplankton:

kg/ha = $-1.43 + 24.48x - 0.15x^2$ (r = 0.94) [vg/l chlorophyll *a*] kg/ha = $-166.64 + 354.60x - 18.06x^2$ (r = 0.89) [vg C/m²/day] kg/ha = $2362 - 2927x + 967x^2$ (r = -0.84) [SDV (m)] vg/l Cholorophyll *a* = 19.14(SDV^{-1.976}) (r = -0.79)

C/N Ratios:	C: N = 6.0 is best; can be adjusted with NPK fertilizer
	C: N > 15; bacteria will remove N from solution
	Wide (sawdust, etc.) 40% C : 0.5% N
	Narrow (meat, etc.) 40% C : 5% N
	Microbes are appx. 50% C : 10% N

Carbon Assimilation Efficiency (CAE):

CAE for Bacteria = 5-10% (extra becomes CO₂)

N-P-0-K-O

% C in food fixed in microbe tissue

BOD/COD (54):BOD = COD (BOD is a good indicator of total O_2 demand)BOD < COD (material will take longer to decompose completely)BOD > COD (material broke down prior to end of BOD period)BOD declines by appx 50% for each 5° C decline in temperature.

B. Inorganic Fertilizers

- Fertilizers will not work when temperature < 18-20° C.
- Need: 0.5 mg/l P (equivalent to 8 kg/ha P₂O₅) and 1.4 mg/l N.
- Apply chemicals in slurry or on platform. Do not let fertilizers contact the pond bottom.
- Apply at least every two weeks at a rate sufficient to meet N,P needs, or if SDV >30 cm.
- CRSP reccommends 30 kg/ha N and 8 kg/ha P
- Do not exceep 4 kg N to keep NH_3 in safe range.
- For sufish ponds in Alabama: 13-26 kg/ha of ammonium polyphosphate (10-34-0) liquid or 20 kg/ha diammonium phosphate or 20 kg/ha TSP every two weeks or if SDV>30cm.
- Boyd: 9 kg/ha N, 9 kg/ha P₂O₅, 2.2 kg/ha K₂O per application.
- N:P of 1:1.5 best in FW; higher in salt/brackish water.

Nutrient content of common inorganic fertilizers:

and fertilizers.	1 1 -1 205-1 1 20
UREA	
$DAP ((NH_4)_2 HPO_4) \dots$	
$MAP \left(NH_4H_2PO_4 \right)$	11-46-0 **
Ca(NO ₃) ₂	
NH ₄ NO ₃	
(NH ₄) ₂ SO ₄	1-0-0
NaNO ₃	
Super PO ₄	0-20-0
TSP	
KCl	0-0-60
* most available N source	

can result in ammonia toxicity if pH is high
explosive
will burn

CRSP Recommendations for NPK/Bran input system:

Month	Size of Fish (g)	Feed/ha/day (kg)	% Body Weight
0	30	22.5	2.5
1	60	39.6	2.2
2	90	54.0	2.0
3	120	64.8	1.8
4	150	81.0	1.8
5	180	81.0	1.5
6	220	99.0	1.5
7	260	100	1.5
8	300	100	1.2

NB: 10 of total fish population are Clarias.

Fertilization rate: 20 kg N + 8 kg P per ha per week dissolved in a bucket and broadcast. Measure P prior to application of fertilizer. If orthophosphate (soluable P) >0.1 mg/l, don't add P.

C. Manures

- Maximum rate: 120 kg/ha/day of dry organic matter; usually = 2.5-4% fish biomass/day. •
- Max rate should produce 3000 kg/ha of tilapia. •
- Use as fine a particle as possible (powdered or slurried) •
- Distribute evenly over pond •
- Apply daily in mid-morning ٠
- Use fresh -Do Not Compost-
- In Israel: 46% replacement of pellets w/cow manure did not reduce carp or tilapia growth.
- 100% replacement reduced growth by 47% (carp were much more affected than tilapia)
- Variability increased as manure replacement rate increased.
- Chicken litter is as good as feed for 1st 2-3 months of tilapia grow-out. •
- For all initial applications of chicken manure, put in a thin layer over the entire pond bottom and flood with ٠ 10-20 cm of water. Let this sit 1 week and then fill the pond.

Wohlfarth's Reccommendations:	Standing Crop (kg/ha)	Dry Matter (kg/ha/day)
	500	50
	1000	80
	1500	
	2000	
	2500	
	3000	140
	3500	170
	4000	190
Composition of Common Manures:		

%	Pig	Chicken	Duck	Goose	Milk Cow	Beef	Sheep
Water	71	56	57	77	85	85	77
Org Matter	25	26	26	14	17		
Nitrogen	0.5	1.6	1.0	0.6	0.5	0.7	1.4
P_2O_5	0.4	1.5	1.4	0.5	0.2	0.5	0.5
К ₂ О	0.3	0.9	0.6	1.0	0.5	0.5	1.2
Calcium	0.09	2.4	1.8	0.9			
BOD/COD	3.3	4.3				5.7	7.2

D. LIME

- Beware of impurities!
- One month or so is usually required to see effects.
- Do not lime during a fertilization program as lime will precipitate all PO₄ in solution.
- Liming is best done prior to filling or during winter.
- Ag Lime is usually a mixture of dolomitic and calcitic limestones.
- Do not exceed 250 kg/ha with CaO or Ca(OH)₂.
- Liming must usually be repeated after 10 water changes or 2-4 years.

Liming Rate = <u>Lime Requirement</u> NV X ER

Lime Requirement Estimation (kg/ha):	Mud pH*	Heavy Loams or Clays	Sandy Loams	Sand
	<4.0	14300	7200	4500
	4.0-4.5	10800	5400	4500
	4.6-5.0	9000	4500	3600
	5.1-5.5	5400	3600	1800
	5.6-6.	3600	1800	900
	6.1-6.5	1800	1800	0
	>6.5	0	0	0

NB: In ponds with such high water flows that liming only lasts one year, use $Ca(OH)_2$: $Ca(OH)_2$ (mg/l) = required TA (mg/l) - TA initial (mg/l) X 0.74

Neutralizing Value (NV) is related to CaCO:	NV =	MW of Liming Material
		X 100
		MW of $CaCO_3 = 100$
Quicklime, unslaked (CaO)	179%	
Slaked, hydrated lime (Ca(OH) ₂)	135%	
Dolomitic (CaMg(CO ₃) ₂)	108.5%	,
Calcitic (CaCO ₃)	100%	
Basic Slag	50-79%	*

* Do not use silicate slags!

Efficiency Rating (ER) is calculated with the use of sieves:

% through No. 60 (0.25mm) X 100% = _____ % through No. 20 (0.85mm) X 60% = _____ % through No. 8 (2.36mm) X 20% = _____

Sum = ER

5. GROWTH AND PRODUCTION

A. Growth Parameters

- Up to 350 g, SR = 10,000 /ha should be considered a minimum for tilapia or colossoma fed 25% CP pellets. • Up to this density, GR is not affected by SR.
- Q_{10} for Fish ~ 2.5
- CC for small fish > for large fish •

Length/Weights of Tilapia:	Length (cm)	Weight (g)
	10	20-25
	12.5	30-45
	15	50-60
	17.5	80-110
	20	115-145

Predator/Prey Ratios for Tilapia Production:

w/Cichla ocellaris1:15 (21,59)	
w/Clarias lazera1:10 (21) [5-10% in Kenya (4)]
w/Lates niloticus	
w/Cichlasoma managuens1:4 - 1:8 (19)	
w/Hemichromis fasciatus 1:48 (5) [2% in Kenya (4)]	

Single Crop Growth Predictors: $W_t = W_0 e^{gt}$ where $g = \ln W_t / W_0$

$$W_t = W_0 e^{kt}$$
 where $k = \frac{\% BW Fed per Day}{FCR}$

Raceway Production of Tilapia:

- 1. mix sizes to maximize space utilization
- 2. grade out slowest-growing 10%
- 3. expect appx 2% mortality

4. carrying capacity: recirculation system = $50 \text{ kg/m}^3 = 40 \text{ kg/l/sec H}_2\text{O}$ flow

flow-through system = 100 kg/m^3 = $120 \text{ kg/l/sec H}_2\text{O}$ flow or 8-10 m³ water/hr/ton of fish

Stocking rate and production in tanks at 30°C:

Stock Rate	Wt _i	Wt _f	Time	AGR		
$(\text{per }\text{m}^3)$	(g)	(g)	(days)	(g/day)		
8000	0.02	0.5-1	30	-		
3200	0.5-1	5	30	-		
1600	5	20	30	0.5		
1000	20	50	30	1.0		
500	50	100	30	1.5		
200	100	250	50	2.5		
100	250	450	70	3.0 (~ 1% bw/day RGR at 450 g)		
 B. Reported Yields Tilapia fed 25% CP at 10,000/ha						
10,000 fish/ha 20,000 fish/ha 30,000 fish/ha				kg N & 1.2 kg P/ha/day): 6562 kg/ha/yr @ 335g 		

ON fed 50 kg/ha/day DM Bagasse + 2.0 kg N and 0.2 kg P4000 kg/ha ٠

• 30,000 fish/ha, dissolved inorganic carbon = 20-30 g/m², 1 g dm chicken poop/m²/day + Urea and TSP to give total N:total fertilizer ration of 4:1

75 day grow-out	50 kg/ha/day
50 day grow-out	32 kg/ha/day

Macrobrachium:

- Need 30% cp pellets (extruded is best)
- 8 per m² is too many
- Large variation in size by the time they reach >35 g; not too much at 17 g.

Closed system w/5-10% water exchange; dry feed of egg, milk pwdr w/binder gave 35% survival, 30% metamorphosed; hvstd 30 pl/l

• Open system w/ 50% exchange per day gave 60-80% survival; at 3.5 per m² grow-out; 72% survival

C. Specific Growth Rates $(\underline{ln \ final \ wt - ln \ initial \ wt})$ $T_2 - T_1$

$T_2 - T_1$				
SGR :		$\Delta wt(g)$	T(d)	SGR
O aureus (9120/ha) w/1750 mullet,	Tilapia	13- 100	98	0.021
1400 SC, 4540 CC; total production	Mullet	156- 500	244	0.005
= 9267 kg/ha POND	Silver Carp	29-1106	245	0.015
e	Common Carp	195-2268	245	0.010
TN X TA (male) (2000/ha)	Tilapia	148- 487	123	0.010
w/1720 SC, 3444 CC(s), 3000 CC(b)	Silver Carp	200-1311	143	0.013
Total Production = 5990 kg/ha POND	C. Carp (sm)	15-230	122	0.022
C C	C. Carp (lg)	50-942	143	0.021
ON X OA (male) (2850/ha)	Tilapia	48- 288	99	0.018
w/3120 CC(s), 3230 CC(b), 1600 SC,	C. Ĉarp (sm)	10-235	96	0.033
1180 mullet; Total Production	C. Carp (lg)	387-1018	99	0.010
= 4670 kg/ha POND	Silver Carp	416-1000	85	0.010
	Mullet	160- 430	85	0.012
O.N (178000/ha), feed rate 11 kg to 60 kg/ha PC	OND	1- 27	63	0.052
O. aureus (5000/ha) supp to 500 kg,	Tilapia	25-354	112	0.024
then 25% cp pellets. W/2500 CC,	Com Carp	31-821	112	0.029
1120 SC; Total Prod. = 4900 kg/ha POND	Silver Carp	600-1443	112	0.008
O aureus (5000/ha) as just above	Tilapia	21-295	114	0.023
W/3580 CC, 1500 SC, 30 GC	C. Carp	16- 694	114	0.033
Total Production = 4000 kg/ha POND	Silver Carp	3- 500	114	0.045
	Grass Carp	20-138	114	0.017
Common Carp (2590/ha) as just	C. Carp	68-829	193	0.013
above W/30 BHC, 710 SC, 1290 GC	Big Hd Carp	1800-2500	193	0.002
Total Production = 3500 kg/ha POND	Silver Carp	710-1700	193	0.005
	Grass Carp	16- 140	193	0.011
Silver Carp (4244/ha) fed by	S. Carp	39- 580	175	0.015
61 Pigs/ha. W/844 CC, 261 BHC,	Com. Carp	18-360	175	0.017
67GC ; Total Production = 3000 kg/ha	Big Hd Carp	46-1520	175	0.020
POND	Grass Carp	313-1750	175	0.010
<i>ON</i> (10000/ha) fed 32% cp + 35,000	Tilapia	0.14-39	70	0.080
prawns (65% survival); $SS = 394$ kg/ha POND	Prawn	0.02- 6.5	70	0.083
ON + Prawns as above	Tilapia	30- 64	70	0.011
(79% prawn survival); SS = 713 kg/ha POND	Prawn	0.02- 4.5	70	0.077

<i>O niloticus</i> (5000 or 10000/h) w/36% CP		5-14	104	0.032
Colossoma (10000/ha) w/25% CP		33- 426	129	0.020
O aureus, no feed, 600 fish/m ³ CAGE	mod phytopl dense phytopl	2.9-29 2.9- 73.8	70 70	0.033 0.046
All-male ON, 25% cp, 4-6% bw/day, 300/m ³ , D	O <5 mg/l CAGE	49- 271	122	0.014
<i>OA</i> 500/m ³ ,40% cp pellets CAGE	floating feed sinking feed	25- 127 25- 172	87 70	0.019 0.022
Taiwan Red Tilapia, 125/m ³ , in prawn ponds, 90% male CAGE	fed not-fed	8.7-22.7 9.1- 14	56 56	0.017 0.008
Taiwan Red Tilapia, 125/m ³ in shrimp ponds, 90% male CAGE	fed not-fed	9- 32.4 8- 22.4	56 56	0.023 0.018
Florida Reds, 400/m ³ , 36% cp ad lib., all male CAGE	no aeration 24 hr aeration	46- 361 52- 354	145 145	0.014 0.013
Florida Reds, 600/m ³ 36% cp ad lib., all male CAGE	no aeration 24 hr aeration	54-321 47-341	145 145	0.012 0.014
OA salt water, 400/m ³ , fed 36% cp, 6% bw/day	CAGE	24-68	90	0.012
Florida Reds, 300/m ³ , salt water CAGE	fed ad lib. fed 50% of sat	9-150 13-94	84 84	0.033 0.024
<i>O niloticus</i> , fed 32% cp, 13,000 fish/ha, mixed sex CAGE	250 fish/cage 500 fish/cage 750 fish/cage 1000 fish/cage	14-221 14-186 14-170 14-171	169 169 169 169	0.016 0.015 0.014 0.015
<i>O niloticus</i> , 35 fish/m ³ , 5% bw/daypellets (20% cp) CAGE	no feed feed weeds	13-72 3.5-109 17- 71	153 153 153	0.011 0.014 0.009
<i>O niloticus</i> , 20% cp, 3% bw six times/day CAGE	400 fish/m ³ 600 fish/m ³ 1000 fish/m ³ 1200 fish/m ³	61.5-244 89.5-330 163-382 155-346	150 150 150 150	0.009 0.009 0.006 0.005
45 fish/m ³ , 28 % cp diet fed 5% twice/day CAGE	O. mossossambicus C. carpio P. javanicus Trichogaster spp.			0.014 0.014 0.013 0.028
Channel catfish, 600 fish/m ³ 32% cp, 3% bw/day CAGE		7.3- 108 16.2- 133 51- 269.5 93-380	126 126 126 126	0.021 0.017 0.013 0.011
<i>O niloticus</i> and <i>O aureus</i> (30 kg/m ³) recirculating RACEWAY		29- 167	137	0.013
<i>O aureus</i> at 78 fish/m3 recirculating/hydroponic RACEWAY		20- 400	183	0.016

6. INTEGRATION

 <i>A.Plants</i> FCR for leaves and veg waste = 30-40:1 w/rice in China10% more rice + 450 kg/ha fish 					
<i>B. Anim</i> Pigs:	100 pigs/ha w/20 5.1% TLW man 5% bw pig feed	ure production			
		50 up to 100 kg in 2/animal floor spac			
Ducks: 1	n Asia (for egg p		8000 ducks/ha w/20,000 tilapia 5.7% TLW manure production feed ducks 140 g duck feed/day/duck house ducks at 10 per m ² 60% of ducks in eggs per day 4-6% conversion of waste into fish fish grow about 1.22 g/day		
	In Europe (for m	neat production):	300 ducks/ha w/500 carp 9.6% TLW manure production ducks grow to 2.5 kg in 50 days house ducks at $10/m^2$ waste conversion = 4-6% fish grow about 5.8 g/day		
Geese (f	attening):	geese grow from feed geese 40 kg			
Chicken	s (broilers):	2 kg dm per 100 feed ad libidum	a w/16,000 tilapia 10 birds per day manure production o 1.2 kg in 50 days		
Cattle:	250 cattle per 0.89% TLW d FCR = 3.1	hectare aily manure produ	uction		
Sheep a	nd Goats:	10 kg grass per a goat supplement	y manure production animal per day plus: t: 5 kg rice bran + 5 kg cottonseed meal nt: 4 kg soy bean cake		
C. Fish	Silage	0.1			
Basic St	Basic Steps in Production:				
	zing of primary i cing.	ngredients at -5 se	eems to enhance feed efficiency.		

- mincing.
 liquifaction via in situ enzymes in an acid environment: pH always between 4.0-4.5

2% $H_2SO_4 + 0.75\%$ Proprionic acid (pH 4.0) OR 0.75% Formic + 0.75% Proprionic OR 2.5% $H_2SO_4 + 1.2\%$ Proprionic OR 1.5% H_2SO_4 + 1.5% Formic OR 3% Formic acid alone

- 4. de-oiling or addition of anti-oxidants (ethoxyquin).
- de-oning of addition of anti-oxidants (ethoxyquin).
 water removal.
 incorporation into feed (50:50 w/commercial feed + vits + binder)
 extrude through perforated plate and
 use as moist pellets

Note: 5 and 6 are most easily done by co-drying (i.e., mixing dry ingredients with silage and then sun or oven drying).

7. PARASITES AND DISEASES

	7. PAKASI I ES AND DISEASES
<i>A. Prophylaxis</i> NaCl*:	10-20 mins in 10 g/l solution 30-60 secs in 30 g/l solution 1-3 g/l in transport water
Delta Blue:	1 kg/m ³ for 1 hour
Acriflavin:	10 mg/l for 1 hour 2 mg/l indefinite
Terramycin*:	in feed (5.5 g/100 kg fish) for 12 days
<i>B. Bacterial Infections</i> Terramycin:*	in feed (5.5g/100 kg fish) for 12-14 days 20 mg/l in solution single 44 mg/kg intramusc./peritoneal injection
Nitrofurazone:	in feed 18-22 g/100 kg fish for 12-14 days 20 mg/l indefinite in water (repeat every 4 days)
Furacin:	20-100 mg/l (15 mg/l A.I.) for 1-2 hours
Furanace:	0.05-0.1 mg/l indefinite 0.6 mg/l for 1 hour 1 mg/l for 5-10 mins for 2-3 days
Furazolidone:	in feed 30-100 mg/kg of fish for 3 days
Acriflavin:	2 mg/l in solution (indefinite) 10 mg/l for 1 hour bath
KmnO ₄ :*	2-4 mg/l effective [] (depends on organic matter in the water). Can lead to DO depletion.
Erythromycin: single 4	4 mg/kg intramusc./peritoneal injection
Sulfamerazine:* in feed	(18-22 g/100 kg fish/day) 10-14 days
Roccal/Hyamin 35:	2 mg/l A.I. for 1 hour for 3 days
Kanamycin:	in feed 50 mg/kg fish for 7 days
• Approved for use on	foodfish by USFDA.
Preparation of Medicated	Feeds: Dissolve chemical in 1 pt of $\frac{1}{25}$ kg of fee

Preparation of Medicated Feeds: Dissolve chemical in 1 pt of oil/25 kg of feed.

C. Parasitic Inf	ections
CuSO ₄ :*	< 20 mg/l T.A.; do not use
	20-50 mg/l T.A.; 0.25-0.5 mg/l
	50-100 mg/l T.A.; 0.5-0.75 mg/l
	100-150 mg/l T.A.; 0.75-1 mg/l
	150-200 mg/l T.A.; 1-2 mg/l
	Can cause DO depletions.
	20-60 sec dip 4 ml CuSO ₄ solution + 50 g NaCl/l
	$CuSO_4$ solution = 120 g $CuSO_4$ + 1.5 ml HOAc + 11 H_2O
KmnO4:*	5 mg/l for 20 mins (clear water)
	2 mg/l indefinite (clear water)
	Can cause DO depletions.

Formalin:*	15-25 mg/l indefinite	
(37% Formaldehyde)	250 mg/l dip when temp. $<16^{\circ}$	
	170 mg/l dip when temp. $>16^{\circ}$	
	Can cause DO depletions.	

Dylox: 0.25-0.5 mg/l (80% A.I.) indefinite (temp 10-27) once each week for 4 weeks (do not use if pH>8.5) (aka: Dipterex, Masoten, Proxol, chlorofos, foschlor, trichlorofon, Malathion)

Malachite Green (Zn free): 0.1 mg/l indefinite (0.14 mg/l can kill)

NaCl*: 10-30 g/l for 5-10 mins; 1-5 ppt for ICH

Acetic Acid*: 2 g/l for 30 secs

Di-N-Butyl Tin Oxide: 1% in feed

Yomesan: in feed 50 mg/kg fish for 3 days (0.05% the weight of the food)

D. Fungal Infections

Malachite Green 60 mg/l for 15 minutes (may kill fish)

CuSO₄ * (see parasitic infections)

Approved for use on foodfish by USFDA.

E. Prophylaxis and Therapy of Egg Infections

F. Shipment of Specimens for Diagnosis

Preservation	ParasitesBacteria Virus		Histopathology	
Live	+++	+++	+++	+++
Iced	+	++	+++	+/-
Frozen	-	++/+	++/+	-
Formalin*	+/-	-	-	+++

10% formalin at a 10:1 solution to fish ratio.

8. WEEDS

A. Prevention

- •
- minimum pond depth = 60 cm maintain maximum SDV of 30cm •

B. Control

- Grass Carp at 50-150 per hectare. (filamentous algae, submerged weeds, duckweed) ٠
- Periodic draw-down of pond to dry weeds on pond edge (do not use on Hydrilla) ٠

Chemical Control:

Weed	Chemical	Rate	Comments
Planktonic Algae	CuSO ₄ -5H ₂ O Simazine	0.25-1 mg/l 0.5-1 mg/l	Depends upon T.A. Apply as slurry.
Filamentous Algae	CuSO ₄ -5H ₂ O Simazine	0.5-2 mg/l 1.25 mg/l	Depends upon T.A. Apply as slurry.
Chara/Nitella	CuSO ₄ -5H ₂ O Simazine	1-3 mg/l 1.25 mg/l	Depends upon T.A. Apply as slurry.
Pondweed, Naiad Ceratophyllum, Elodea, Utricularia, Cabo	Diquat mba	0.25-2 mg/l	Inject below surface. Do not use in muddy water.
Pondweed, Naiad Ceratophyllum	Endothol	2-5 mg/l	Inject below surface or broadcast.
Pondweed, Naiad Cabomba	Simazine	1-3 mg/l	Apply as slurry.
Myriophyllum	2,4-D (granules)	25 kg/ha	Broadcast when weeds are growing.
Duckweed	Diquat	0.25-1 mg/l	As above.
Duckweed, Eichornia	2,4-D (liquid)	5 kg/ha	Spray on foliage.
Waterlily, Lotus Spatterdock	Dichlobenil 2,4-D (granules)	7.5-10 kg/ha 35-50 kg/ha	Broadcast pellets. Broadcast.
Cattails, Rushes Grasses	Dalapon Roundup/ Rodeo	6-25 kg/ha 3-5 kg/ha	Spray on foliage. Apply to foliage, not to water.

Days between Treatment and Water Use:

Chemical	Drinking	Swimming	Consume Fish	Animals Irrigation	
Copper	0	0	0	0	0
Dalapon	*	*	*	*	*
Dichlobenil	*	*	90	*	*
2,4-D	*	1	3	*	*
Diquat	14	10	10	10	10
Endothol	7-25	1	3	7-25	14
Simazine	365	0	0	365	365

* No specific regulations. Use caution.

9. HATCHERY MANAGEMENT

- Larvae develop faster in warm water, but larvae grown in cooler water are larger at end of yolk absorption as they are less active during absorption and therefore put more energy into growth.
- Yolk-conversion efficiency is lower at higher temperatures yielding smaller fry.
- Filling ponds at night can minimize *Xenopus* infestation.
- To remove bacteria from in-coming water use Chloramine-T hydrate at 1 g/l at pH 7.5 (more toxic at lower pH, less effective at higher pH).
- Female tilapia can produce a batch of eggs every 4-6 weeks.
- Egg production increases approximately in relation to the square of body length in *Oreochromis* and *Sarotherodon* and the cube of the body length in *Tilapia*.
- In O. niloticus at 8 weeks of age (2-4 g), no difference between sexes in average weight.

Grading Tilapia:	Ra	kocy	Armit	tage et al.
	Weight (g)	Gap Width (cm)	Weight (g)	Gap Width (cm)
	5	1.00	10	1.0
	10	1.30	20	1.2
	25	1.75	30	1.6
	250	3.50	50	2.0

Hapa Spawning of Tilapia:

- 1. Stock brooders at 0.5-1 fish/ft² (2 females/male)
- 2. Feed at 2% BW/day
- 3. Hapa L:W:D = 10.4:4 with 1/16'' delta style mesh
- 4. Collect all fry in 10-20 days (w/in a few days of first sighting)
- 5. Collect eggs and sac-fry for incubation
- 6. Production should be 3 fry + 3 eggs/sac-fry per ft^2 per day
- 7. Expect 20% predation mortality on fry and small fingerlings in ponds

Fry Pond Preparation:

Stocking rate = 1.5 million per ha

Consider green manure, lime, supplemental feeds after 2-3 days.

Fertilization:

- 1. Cattle Manure @ 10-15 Tons/ha 2 wks prior to stocking; 5 Tons/ha/wk after stocking
- 2. Chicken Manure @ 1/3 of above rates
- 3. Compost @ 5 tons/ha 2 wks prior to stocking; 5 tons/ha/wk after stocking

Predator Control: Dylox @ 0.25 mg/l A.I. just prior to stocking or diesel oil with soap

Egg Diets for Larvae:

- 1. Break egg into heat resistant container.
- 2. Beat or blend
- 3. While stirring constantly, rapidly pour in boiling water (150 ml/egg).
- 4. OR. Pour blended egg directly into boiling water; amount of stirring determines particle size.
- 5. OR. Hard boiled egg yolks can be used directly.

Carp Pituitaries:

- 1. Store fresh in absolute alcohol; replace alcohol after 24 hrs; OK at room temp for 1 year, in frigo for 2-3 years.
- 2. Actone dried: use 10X gland volume of acetone. Replace acetone after 12 hrs. Replace again after 6-8 hrs. Dry and store for up to 3 years.

Spawning Induction:

- 1. Priming Dose: 2-4 mg/kg of female
- 2. Resolving Dose: 8-12 mg/kg of female after 6-12 hrs
- 3. For Males: 2-4 mg/kg of male at time of resolving females

NB: Injections should not exceed 1 ml including saline (pH 7.4).

Hormone Feed Formulation:

- 1. Ingredients: 5 kg feed (35-40% cp), 0.25 g -methyltestosterone (50 mg/kg feed), 41 alcohol (dentured O.K.)
- 2. Mix feed to pass a 1 mm sieve.
- 3. Stir hormone into alcohol until completely dissolved.
- 4. Mix alcohol/hormone into feed.
- 5. Place feed on plastic sheet to dry.
- 6. Keep away from direct light or heat.
- 7. Stir frequently while drying.
- 8. Store in sealed container in freezer.

Hormone Sex-Reversal of Tilapias:

- 1. Fry size = 9-11 mm (2 wks old at 25)
- 2. Stocking density = $2500 \text{ fry/m}^3 \text{ maximum}$
- 3. H_2O exchange = 10 l/min/m³
- A. Feed Rate = 20% bw daily divided into 8 feedings
 Temperature = 25° C
 Duration of treatment = 28 days

10. TRANSPORT

Species	g fish/l H ₂ O	Hours	Temp (°C)
Tilapia	100-200	24	8-28
Silver Carp	90		5
Silver Carp	25		25
C and BH Carp	280		5
C and BH Carp	50		30

NB: Use 1-3 g/l NaCl or 1 ml/l Benzocaine (stock sol'n = 100 g/l EtOH) to reduced stress.

Starve fish before transport:	Weight	Starvation Time
	0.1 g 3.0 g >3.0 g	24 hrs 48 hrs 72 hrs
Plastic Bags w/ Oxygen: g Fish/L H w	$I_2O = 38 X w$ v = avg wt of fish (g)	

	w = avg wt of fish (g) put in 3 times as much O_2 as fish.					
Tanks w/ Oxygen:	kg of fish/ $2 1 H_2O$ (< 3 hrs) kg of fish/ $3 1 H_2O$ (> 3 hrs)					
Tanks w/o Oxygen:For 250 g Common Carp at 15:			Tran 4		ne (hr 10	<i>′</i>
	$1 \text{ H}_2\text{O/kg}$ of fish	4	5			

Estimating Fish Weight via Water Displacement:

 $[(ft^{3} H_{2}O + Fish) - (ft^{3} H_{2}O)] x 62.43 lbs/ft^{3} H_{2}O x 1.02 lbs Fish/lb H_{2}O$

11. CONVERSION FACTORS AND FORMULAE

A Com				TACIONS AND	TORMULAE			
A. Conversion Factors								
Length	1:							
			= 30.48 cm					
		•	= 91.44 cm					
		1 statut	e mile = 5280 ft = 1.61 kn	n				
Weight	t:	1 avoir.	ounce = 28.35 g					
		1 avoir.	pound = 16 oz = 454 g					
		1 long t	$ton = 2000 \ lb = 1.02 \ metri$	c tons				
		1 short	$ton = 2240 \ lb = 0.91 \ metr$	ic tons				
Volum	e:	1 U.S. o	quart = 32 oz = 946.3 ml					
			quart = 40 oz = 1.1361					
			gallon = 4 quarts = 231 in^3	$^{3} = 0.1337 \text{ ft}^{3} = 3.7$	851			
			gallon = 4.5461	= 0.1557 It = 5.7	051			
			fluid ounce = $1.804 \text{ in}^3 = 6$	5 035 ten – 29 57 n	1			
			$= 8 \text{ oz} = 14.43 \text{ in}^3$	5.055 csp = 27.57 m	11			
			= 2 cups					
			Foot = $43560 \text{ ft}^3 = 325872.$	$4 \text{ col} = 1220 \text{ m}^3$				
		I acre-i	1001 = 43300 ft = 323872.	4 gal = 1230 m				
Area:		1 acre =	$= 43560 \text{ ft}^2 = 4840 \text{ yd}^2 = 4$	047 m^2				
1 square foot = 929.1 cm ²								
	1 square inch = 6.452 cm^2							
	1 square mile = $640 \text{ acres} = 1 \text{ section}$							
		1						
Tempe	rature:	C = 5	C = 5/9 (F - 32)					
- •p+			= 9/5 (C + 32)					
		- /						
Miscell	laneous:	1 pound	d per acre = 1.12 kg/ha					
			1 pound per square inch = 70.31 g/cm^2					
			$\sin = 0.00223 \text{ ft}^3/\text{sec} = 0.0023 $		³ /dav			
		-	0.7457 kw	001 #000 0.12 m	, au j			
		i np						
B. Geor	metric F	ormulae						
Area:	parallel		A = bh	Volume:	cylinder	V = bh		
1 11 cu	triangle	-	A = 1/2bh	(oranie)	circular cylinder	$V = \pi r^2 h$		
	-				•	V = 1/3bh		
	trapezo circle	iu	$A = 1/2h (b_1 + b_2)$ πr^2		pyramid	$V = 1/3 \pi r^2 h$		
					cone			
	cube		$6e^2$		sphere	$V = 4/3 \pi r^3$		
Perime	eter:	circle	$C = \pi d = 2\pi r$					

BIBLIOGRAPHY

Facility Design and Construction

- Boyd, C.E. 1985. Hydrology and pond construction. In: C.S. Tucker (ed). Channel Catfish Culture. Elsevier. Amsterdam.
- Coche, A.G. 1985. Soil and freshwater fish culture. FAO Training Series: 6. Food and Agriculture Organization of the United Nations, Rome.
- Coche, A.G. and H. Van der Wal. 1981. Water for freshwater aquaculture. Simple Methods for Aquaculture: 4. Food and Agriculture Organization of the United Nations, Rome.
- Klemetson, S.L. and G.L. Rogers. 1983. Reduction of aquaculture pond heat losses. In: G.L. Rogers, R. Day and A. Lim (eds). Proceedings of the First International Conference on Warmwater Aquaculture Crustacea. Brigham Young University Hawaii Campus. Laie, Hawaii, USA.
- Lawrence, J.M. 1949. Construction of Farm Fish Ponds. Agriculture Experiment Station, Auburn University, Alabama, USA.
- USDA (United States Department of Agriculture). 1982. Ponds: planning, Design and Construction. Soil Conservation Service Agriculture Handbook: 590. United States Department of Agriculture.

Water Quality

- Boyd, C.E. 1979. Water Quality in Warmwater Fish Ponds. Agriculture Experiment Station, Auburn University. Auburn, Alabama, USA.
- Boyd, C.E. 1990. Water Quality in Ponds for Aquaculture. Alabama Agricultural Experiment Station, Auburn University, Alabama, USA.
- Daniels, H.V. 1989. Water quality studies in brackishwater ponds. Ph.D. Dissertation. Auburn University. Auburn, Alabama, USA.
- Delincé, G. 1992. The ecology of the fish pond ecosystem with special reference to Africa. Kluwer Academic, Dordrecht, The Netherlands.
- Paessun, M.A. and R. Allison. 1984. Maximizing tilapia production in recirculating systems by sequential rearing. Aquaculture 42:185-189.
- Philippart, J-Cl. and J-Cl. Ruwet. 1988. Ecology and distribution of tilapias. In: R.S.V. Pullin and R.H. Lowe-McConnell (eds). The Biology and Culture of Tilapias. ICLARM Conference Proceedings: 7. International Center for Living Aquatic Resources Management. Manila, Philippines.
- Rakocy, J. E. 1990. A recirculating system for tilapia culture and vegetable hydroponics. In: R. Oneal Smitherman and D. Tave (eds). Proceedings of the Auburn Symposium on Fisheries and Aquaculture. Auburn University. Auburn, Alabama, U.S.A.
- Russo, R.C. and R.V. Thurston. 1991. Toxicity of ammonia, nitrite and nitrate to fishes. In: D.R. Brune and J.R. Tomasso (eds). Aquaculture and Water Quality. Advances in World Aquaculture: 3. World Aquaculture Society, Louisiana State University, Baton Rouge, Louisiana, USA.

Nutrition and Feeding

- Akiyama, D.M. 1991. The use of soybean meal based feeds for high density cage culture of common carp in Indonesia and the People's Republic of China. World Aquaculture Society Annual Meeting: 22. World Aquaculture Society. Baton Rouge, Louisiana, USA.
- Carneiro, A.R.X. and R. Roubach. 1991. Experiments in the nutrition of *Colossoma macropomum* (Characidae). I. Feeding efficiency of vegetable and animal proteins. World Aquaculture Society Annual Meeting: 22. World Aquaculture Society. Baton Rouge, Louisiana, USA.

Hepher, B. 1988. Nutrition of Pond Fishes. Cambridge University Press. Cambridge, England.

- Jauncey, K. and B. Ross. 1982. A Guide to Tilapia Feeds and Feeding. Institute of Aquaculture. Stirling, Scotland.
- Liou, C-H and E.H. Robinson. 1991. Lysine and sulfur amino acid requirement of juvenile blue tilapia, Oreochromis aureus. World Aquaculture Society Annual Meeting: 22. World Aquaculture Society. Baton Rouge, Louisiana, USA.
- Lovell, T. 1988. Nutrition and Feeding of Fish. AVI. New York, USA.
- Naegel, L.C.A. 1991. *Azolla microphylla* as a feed ingredient for tilapias. World Aquaculture Society Annual Meeting: 22. World Aquaculture Society. Baton Rouge, Louisiana, USA.
- NRC (National Research Council). 1977. Nutrient Requirements of Warmwater Fishes. National Academy of Sciences, Washington DC, USA.

Fertilization

- Boyd, C.E. 1979. Water Quality in Warmwater Fish Ponds. Agriculture Experiment Station, Auburn University. Auburn, Alabama, USA.
- Boyd, C.E. 1982. Liming fish ponds. J. Soil and Water Conservation 37(2):86-88.
- Boyd, C.E. 1990. Water Quality in Ponds for Aquaculture. Alabama Agricultural Experiment Station, Auburn University, Alabama, USA.
- Knud-Hanson, C.F. 1998. Pond fertilization: ecological approach and practical applications. Pond Dynamics/Aquaculture Collaborative Research Support Program, Oregon State University, Corvallis, Oregon, USA.
- Schroeder, G.L. 1980. Fish farming in manure-loaded ponds. In: R.S.V. Pullin and Z.H. Shehadeh (eds). Integrated Agriculture-Aquaculture Farming Systems. ICLARM Conference Proceedings: 4. International Center for Living Aquatic Resources Management. Manila, Philippines.

Growth and Production

- Balarin, J.D. and J.P. Hatton. 1979. Tilapia: A Guide to Their Biology and Culture in Africa. University of Stirling. Stirling, Scotland.
- Bardach, J.E., J.H. Ryther and W.O. McLarney. 1972. Aquaculture: The Farming and Husbandry of Freshwater and Marine Organisms. Wiley-Interscience. New York, USA.
- Carro-Anzalotta, A.E. and A.S. McGinty. 1986. Effects of stocking density on growth of *Tilapia nilotica* cultured in cages in ponds. J.World Aquaculture Society 17:52-57.
- Chiayvareeesajja, S. B. Sirikul, P. Sirimontraporn, S. Rakkeaw, R. Tansakul and A. Sornprasit. 1988. Comparison between natural feeding alone and supplemental feeding with pellets containing locally available ingredients for cage culture of *Oreochromis niloticus* in Thale Noi, Thailand. In: R.S.V. Pullin, T. Bhukaswan, K. Tonguthai and J.L. Maclean (eds). The Second International Symposium on Tilapia in Aquaculture. ICLARM Conference Proceedintgs: 15. International Center for Living Aquatic Resources Management, Manila Philippines.
- Clark, J.H., W. O. Watanabe, D.H. Ernst, R.I. Wicklund and B.L. Olla. 1990. Effect of feeding rate on growth and feed conversion of Florida red tilapia reared in floating marine cages. J. World Aquaculture Society 21:16-24.
- Dunseth, D.R. and D.R. Bayne. 1978. Recruitment control and producction *Tilapia aurea* (Steindachner) with the predator, *Cichlasoma managuense*(Günther). Aquaculture 14:383-390.

- Guerrero, R.D., III. 1982. Control of tilapia reproduction. In: R.S.V. Pullin and R.H. Lowe-McConnell (eds) The Biology and Culture of Tilapias. ICLARM Conference Proceedings: 7. International Center for Living Aquatic Resources Management. Manila, Philippines.
- Hargreaves, J. A., J.E. Rakocy and D.S. Bailey. 1991. Effects of diffused aeration and stocking density on growth, feed conversion and production of Florida red tilapia in cages. J. World Aquaculture Society 22:24-29.
- Hepher, B. and Y. Pruginin. 1982. Tilapia culture in ponds under controlled conditions. In: R.S.V. Pullin and R.H. Lowe-McConnell (eds). The Biology and Culture of Tilapias. ICLARM Conference Proceedings: 7. International Center for Living Aquatic Resources Management. Manila, Philippines.
- Knud-Hanson, C.F. and C.K. Lin. 1991. Strategies for stocking Nile tilapia (*Oreochromis niloticus*) in fertilized ponds. World Aquaculture Society Annual Meeting: 22. World Aquaculture Society. Baton Rouge, Louisiana, USA.
- Korstad, J., R. Mangual and R. Couch. 1991. Performance of hybrid tilapia fed a commercial ration vs algae. World Aquaculture Society Annual Meeting: 22. World Aquaculture Society. Baton Rouge, Louisiana, USA.
- Lester, L.J., T.A. Abella, M.S. Palada and H.J. Keus. 1988. Genetic variation in size and sexual maturation of *Oreochromis niloticus* under hapa and cage culture conditions. In: R.S.V. Pullin, T. Bhukaswan, K. Tonguthai and J.L. Maclean (eds). The Second International Symposium on Tilapia in Aquaculture. ICLARM Conference Proceedintgs: 15. International Center for Living Aquatic Resources Management. Manila, Philippines.
- McGreachin, R.B., R.I. Wicklund, B.L. Olla and J.R. Winton. 1987. Growth of *Tilapia aurea* in seawater cages. J. World Aquaculture Society 18:31-34.
- McNabb, C.D., C.F. Knud-Hansen, T.R. Batterson and K. Jayen. 1991. A systematic approach to maximizing nutrient efficiency and growth of Nile tilapia (*Oreochromis niloticus*) under semi-intensive pond culture. World Aqauculture Society Annual Meeting: 22. World Aquaculture Society. Baton Rouge, Louisiana, USA.
- Meriwether, F.H. II, E.D. Scura and W.Y. Okamura. 1984. Cage culture of red tilapia in prawn and shrimp ponds. Journal of the World Mariculture Society 15:254-265.
- Muthukumarana, G. and D.E.M. Weerakoon. 1986. Stocking density and diet of *Oreochromis niloticus* in cages in manmade lakes in Sri Lanka. In: J.L. Maclean, L.B. Dizon and L.V. Hosillos (eds). The First Asian Fisheries Forum. Asian Fisheries Society. Manila, Philippines.
- Ofori, J.K. 1988. The effect of predation by *Lates niloticus* on over-population and stunting in mixed sex culture of tilapia species in ponds. In: R.S.V. Pullin, T. Bhukaswan, K. Tonguthai and J.L. Maclean (eds). The Second International Symposium on Tilapia in Aquaculture. ICLARM Conference Proceedintgs: 15. International Center for Living Aquatic Resources Management. Manila, Philippines.
- Paessun, M.A. and R. Allison. 1984. Maximizing tilapia production in recirculating systems by sequential rearing. Aquaculture 42:185-189.
- Peralta, M. and D.R. Teichert-Coddington. 1989. Comparative production of *Colossoma macropomum* and *Tilapia nilotica* in Panama. Journal of the World Aquaculture Society 20:236-239.
- Rakocy, J.E. 1989. Tank Culture of Tilapia. SRAC Publication: 282. Southern Regional Aquaculture Center. USA.
- Rakocy, J. E. 1990. A recirculating system for tilapia culture and vegetable hydroponics. In: R. Oneal Smitherman and D. Tave (eds). Proceedings of the Auburn Symposium on Fisheries and Aquaculture. Auburn University. Auburn, Alabama, U.S.A.
- Rouse, D.B., G.O. El Naggar and M.A. Mulla. 1987. Effects of stocking size and density of tilapia on *Macrobrachium rosenbergii* in polyculture. Journal of the World Aquaculture Society 18:57-60.

Stickney, R.R. 1979. Principles of Warmwater Aquaculture. Wiley-Interscience. New York, USA.

- Stickney, R.R. 1985. Production of caged channel catfish in an Illinois surface mine lake. Journal of the World Mariculture Society 16:32-39.
- Verani, J.R., M. de A. Marins, S.B. Da Silva and A.C. Sobrinho. 1983. Populational control in intensive fish culture associating *Oreochromis (Sarotherodon) niloticus* with the natural predator *Cichla ocellaris*: quantitative analysis. In: L. Fishelson and Z. Yaron (compilers). International Symposium on Tilapia in Aquaculture. Tel Aviv University, Israel.
- Whitis, G.N. 1989. Growing Caged Tilapia Without Feed in Catfish Ponds. Alabama Cooperative Extension Service Timely Information: March, 1989. Alabama Cooperative Extension Service. Auburn, Alabama, USA.

Integration

Little, D. and J. Muir. 1987. Integrated Warmwater Aquaculture. Institute of Aquaculture. Stirling, Scotland.

- Mathias, J.A., A.T. Charles and H. Baotong (eds). Integrated fish farming. CRC Press, Boca Raton, Florida, USA.
- Pullin, R.S.V. and Z. Shehadeh (eds). 1980. Integrated agriculture-aquaculture farming systems. ICLARM Conference Proceedings 4, International Center for Living Aquatic Resources Management, Manila, Philippines.
- Sedgwick, S.D. 1985. Trout Farming Handbook. Fishing News Books, Ltd. Farnham, Surrey, UK.
- Symoens, J.-J. and J.-C. Micha. 1995. The management of integrated freshwater agro-piscicultural ecosystems in tropical areas. Technical Center for Agricultural and Rural Cooperation, Wageningen, The Netherlands.

Parasites and Diseases

Amlacher, E. 1970. Textbook of fish diseases. TFH Publications, Neptune City, New Jersey, USA.

Bowser, P.R. and J.K. Buttner. 1991. General Fish Health Management. NRAC Bulletin: 111. Northeast Regional Aquaculture Center. University of Massachusetts at Dartmouth. North Dartmouth, Massachusetts, USA.

Kabata, Z. 1985. Parasites and diseases of fish cultured in the tropics. Taylor & Francis, London, UK.

Weeds

- Applied Biochemists, Inc. 1979. How to Identify and Control Water Weeds and Algae. Applied Biochemists, Inc. Mequon, Wisconsin, USA.
- Whitwell, T. and D.R. Bayne. No Date. Weed Control in Lakes and Farm Ponds. Alabama Cooperative Extension Service Circular: ANR-48. Alabama Cooperative Extension Service. Auburn, Alabama, USA.

Hatchery Management

- Armitage, A.T.C., J.D. Balarin and R.D. Haller. 1988. The design of a tilapia grader for intensive tank systems. International Symposium on Tilapia in Aquaculture: 2 (abstracts). International Center for Living Aquatic Resources Management. Manila, Philippines.
- Balarin, J.D. and J.P. Hatton. 1979. Tilapia: A Guide to Their Biology and Culture in Africa. University of Stirling. Stirling, Scotland.
- Dexter, P.A. and R.G. Werner. 1992. Energetics of larval rainbow smelt. NYAFS Annual Meeting: 1992. New York State Chapter/American Fisheries Society.

- Guerrero, R.D., III. 1982. Control of tilapia reproduction. In: R.S.V. Pullin and R.H. Lowe-McConnell (eds) The Biology and Culture of Tilapias. ICLARM Conference Proceedings: 7. International Center for Living Aquatic Resources Management. Manila, Philippines.
- Hepher, B. and Y. Pruginin. 1981. Commercial Fish Farming with Special Reference to Fish Culture in Israel. Wiley-Interscience. New York, USA.
- Hutabarat, J., L. Syarani and M.A.K. Smith. 1986. The use of freshwater hyacinth *Eichhornia crassipes* in cage culture in Lake Rawa Pening, Central Java. In: J.L. Maclean, L.B. Dizon and L.V. Hosillos (eds). The First Asian Fisheries Forum. Asian Fisheries Society. Manila, Philippines.
- Jalabert, B. and Y. Zohar. 1988. Reproductive physiology in Cichlid fishes, with particular reference to *Tilapia* and *Sarotherodon*. In: R.S.V. Pullin and R.H. Lowe-McConnell (eds). The Biology and Culture of Tilapias. ICLARM Conference Proceedings: 7. International Center for Living Aquatic Resources Management. Manila, Philippines.
- Jhingran, V.G. and R.S.V. Pullin. 1985. A Hatchery Manual for the Common, Chinese and Indian major carps. ICLARM Studies and Reviews: 11. International Center for Living Aquatic Resources Management, Manila, Philippines.
- Munro, A.D. 1990. Tropical freshwater fish. In: Munro, A.D., A.P. Scott and T.J. Lam (eds). Reproductive Seasonality in Teleosts: Environmental Influences. CRC Press. Boca Raton, Florida, USA.
- Shelton, W.L., K. D. Hopkins and G.L. Jensen. 1978. Use of hormones to produce monosex tilapia for aquaculture. In: R.O. Smitherman, W.L. Shelton and J.H. Grover (eds.). Symposium on Culture of Exotic Fishes. American Fisheries Society.

Transport

Brown, E.E. and J.B. Gratzek. 1980. Fish farming handbook. AVI Publishing, Westport, Connecticut, USA.

Frose, R. 1985. Improved fish transport in plastic bags. ICLARM Newsletter Oct, 1985:8-9.

McLarney, W. 1984. The freshwater aquaculture bok\ok. Hartley & Marks, Point Roberts, Washington, USA.