

APPENDIX A. Terms and variables

ΔL	<ul style="list-style-type: none"> - length increment; or - width of length class in grouped data; or - difference between two successive mean lengths
$\Delta L/\Delta t$	<ul style="list-style-type: none"> - growth rate expressed as difference
Δt	<ul style="list-style-type: none"> - time difference, e.g., the time needed by an average fish to grow from the lower to the upper limit of a length class
$\Delta \delta$	<ul style="list-style-type: none"> - difference between two successive standard deviations
δ	<ul style="list-style-type: none"> - standard deviation of variates, used as a measure of their dispersion
δ^2	<ul style="list-style-type: none"> - variance; the square of δ
\$	<ul style="list-style-type: none"> - US dollars, or any other monetary unit
Σ	<ul style="list-style-type: none"> - summation sign
π	<ul style="list-style-type: none"> - pi = 3.1415...
ϕ	<ul style="list-style-type: none"> - phi, i.e. a weight-based index of growth performance ($\phi = \log_{10}(K) + 2/3 \log_{10}(W_\infty)$)
ϕ'	<ul style="list-style-type: none"> - phi-prime, i.e. a length-based index of growth performance ($\phi' = \log_{10}(K) + 2\log_{10}(L_\infty)$)
a	<ul style="list-style-type: none"> - Y-intercept in a Type I, or AM linear regression, or - multiplicative term in a length/weight relationship
a'	<ul style="list-style-type: none"> - Y-intercept in a Type II, or GM linear regression
AM	<ul style="list-style-type: none"> - arithmetic mean; used to characterize "Type I" regressions
ASP	<ul style="list-style-type: none"> - "Available Sum of Peaks"; the sum of available "points" in a file restructured for analysis with the ELEFAN I routine
B	<ul style="list-style-type: none"> - biomass, or stock size in weight

b	- exponent of a length-weight relationship, or
b'	- slope of Type I (AM) linear regression
B/R	- slope of a Type II (GM) linear regression
B'/R	- biomass per recruit
	- relative biomass per recruit
C	- refers to fields that will accept alpha-numeric entries when used to describe the characteristics of a field, or
	- catch in numbers, or
	- parameter expressing the amplitude of seasonal growth oscillation in the VBGF, or
	- a constant
c	- the fraction L_c/L_∞
C.V.	- coefficient of variation, i.e. C.V. = δ/X (also expressed in %, i.e. C.V. = $\delta \cdot 100/X$)
C/f	- catch per unit of effort (also: CPUE)
c1, c2	- multipliers for estimating Z and its standard error using one of Hoenig's methods
CGA	- Colour Graphic Adapter
Ch	- refers to limited choice fields (i.e. users have to choose from a list).
$C_{Li,\infty}$	- cumulative catch in numbers from length i to L_∞
$C_{i,A}$	- cumulative catch in numbers for mesh size m_A
$C_{i,B}$	- cumulative catch in numbers for mesh size m_B
cm	- centimetre
C_t	- terminal catch, as used in VPA
D	- Fraunhofer diffraction function in Shepherd's method, or
	- dimension, as in "2D", "3D"
DD	- two digit number denoting the day of a month, or
	- degrees latitude
DDD	- three digit number denoting the degrees longitude

d.f.	- degrees of freedom, i.e. the "real" number of cases available for testing a statistical hypothesis
e	- base of the natural (or Napierian) logarithms; $e = 2.71828\dots$
E	- exploitation rate; $E = F/Z$
$E_{0.1}$	- level of exploitation at which the marginal increase in yield per recruit reaches 1/10 of the marginal increase computed at a very low value of E
$E_{0.5}$	- exploitation level which will result in a reduction of the unexploited biomass by 50%
E_{\max}	- exploitation level which maximizes Y/R or Y'/R
EGA	- Enhanced Graphic Adapter
EPSON	- registered trademark of Seiko Epson Corp., Japan
ESP	- "Explained Sum of Peaks"; the points "explained" (or hit) by a growth curve traced by the ELEFAN I routine
EXP	- exponent
F	- instantaneous rate of fishing mortality
f	- fishing effort
f-factor	- factor used as a multiplier to simulate a change in effort level, for a defined fishing regime
f_l	- index for fleet
F_t	- terminal fishing mortality, as used in VPA and cohort analysis
g	- gram
GM	- geometric mean, used in Type II regression
HD disk	- High-density disk with a capacity of 1.44MBytes for 3½" disk and of 1.2MBytes for 5¼" floppy disk.

HERCULES	- Hercules graphic adapter for monochrome screens, with a resolution of 729 by 348 pixels.
HP	- registered trademark of Hewlett-Packard Co., USA
i	- symbol or subscript used for counting items (samples, means, etc.)
IBM	- Registered trade mark of International Business Machines, Corp., USA
K	- curvature parameter of the VBGF
k	- the number of parameters estimated by a given procedure
L	- "length" of a fish, shrimp, etc. (length itself is defined differently, depending on what is measured, see TL, SL, FL, etc.)
\bar{L}	- mean length of fish, computed from L' upward, or - mean of two or more lengths, e.g., mean of length at tagging and at recapture
L'	- a length not smaller than the smallest length of fish fully represented in catch samples; used to compute \bar{L}
L^*	- largest observed specimen in a sample
L/F	- length-frequencies or length-frequency sample
L_{25}	- length at which 25% of the fish will be vulnerable to the gear (left-hand selection)
L_{50}	- length at which 50% of the fish will be vulnerable to the gear (left-hand selection)
L_{75}	- length at which 75% of the fish will be vulnerable to the gear (left-hand selection)
LAN	- Local Area Network
L_c	- mean length of fish at first capture; equivalent to L_{50}
L_m	- length at tagging or marking
L_{mass}	- mean length at first maturity (or "massive maturation")

L_{\max}	- maximum length reached by the fish of a given stock; may also be predicted from the largest specimens of several samples using the extreme value theorem
L_{\min}	- smallest length represented in one or several samples
\ln	- \log_e , logarithm of base e
\log	- \log_{10} , logarithm of base 10
L_r	- length at recapture, or
L'_r	- mean length at first recruitment
L_r'	- computed length at recapture given growth parameters (L_∞ and K) and length at marking
L_A	- optimum length for mesh size m_A
L_B	- optimum length for mesh size m_B
L_t	- (mean) length at age t
L_∞	- asymptotic length, i.e. the (mean) length the fish of a given stock would reach if they were to grow forever
M	- instantaneous rate of natural mortality, i.e. due to all causes except fishing
m	- mesh size, or
	- metre
m_A	- gillnet mesh size
m_B	- another gillnet mesh size, with $m_B > m_A$
ML	- "mid-length" or length class midpoint
MM	- two digit number denoting the month of a year, or
	- minutes in latitude and longitude
MPA	- modal class progression analysis
$MS\ DOS$	- disk operating system for IBM PCs or its compatibles, or
	- registered trademark of Microsoft Corp., USA
n	- number of items in a sample, number of cases investigated, etc.
N	- number of fish in a given size class of a catch sample, or

N_t	<ul style="list-style-type: none"> - refers to numeric fields, i.e. indicates that only numbers can be entered; - number of fish in the oldest age group of a cohort or population ("terminal population")
P	<ul style="list-style-type: none"> - probability of capture or occurrence on the fishing ground
P_L	<ul style="list-style-type: none"> - probability of capture for length (or mid-length) L
P_1	<ul style="list-style-type: none"> - first point of a length-converted catch curve included in the computation of Z; this point is by definition the first where the probability of capture is 1
PC	<ul style="list-style-type: none"> - Personal Computer; also microcomputers
Prompt	<ul style="list-style-type: none"> - a software message or signal inviting the user to enter data, or to perform an operation
r	<ul style="list-style-type: none"> - product-moment correlation coefficient
r^2	<ul style="list-style-type: none"> - coefficient of determination
R_{50}	<ul style="list-style-type: none"> - length at which 50% of the fish will no longer be vulnerable to the gear (right-hand selection, or deselection)
R_{75}	<ul style="list-style-type: none"> - length at which 75% of the fish will no longer be vulnerable to the gear (right-hand selection, or deselection)
RAM	<ul style="list-style-type: none"> - Random Access Memory; a part of the memory of the computer where the program and the data are loaded.
R_n	<ul style="list-style-type: none"> - "goodness-of-fit" index of the ELEFAN I routine ($=10^{ESP/ASP}/10$)
S	<ul style="list-style-type: none"> - score function in Shepherd's method
SF	<ul style="list-style-type: none"> - selection factor
SI	<ul style="list-style-type: none"> - separation index
SL	<ul style="list-style-type: none"> - starting length; one of the two coordinates used to locate a growth curve in the ELEFAN I routine
SS	<ul style="list-style-type: none"> - starting sample; the other coordinate used to locate a growth curve in the ELEFAN I routine. Jointly, SL and SS define the

	location of a pre-selected point of a growth curve, or
s.e.	- seconds in latitude and longitude
S_1, S_2, S_3, S_4	- standard error of a statistic
S_{\max}	- variables used for estimating the probability of capture under the logistic model
SSE	- maximum score in Shepherd's method for a range of L_{∞} and K parameters
	- sum of squared errors; a measure of dispersal from the mean
t	- a given time or age (normally expressed in years), or
	- absolute age of a fish, e.g., as estimated from daily otolith rings, or
	- age corresponding to L_t
T	- mean annual habitat temperature, in $^{\circ}\text{C}$
t'	- relative age of a fish, defined as $t' = t - t_0$
t_c	- mean age at first capture, corresponding to L_c
t_i	- mean age at length i
t_m	- age at marking, corresponding to L_m
t_{mass}	- mean age at massive (\approx first) maturity
t_{\max}	- longevity (in the wild)
t_0	- the "age" fish would have had at length zero if they had always grown according to the VBGF; t_0 generally has a negative value, but does not usually express "prenatal growth"
t_r	- mean age at recruitment
t_s	- parameter of the seasonally oscillating version of the VBGF (see WP)
t_z	- in Shepherd's method: origin of the VBGF in calendar time, (expressed as fraction of a year); here replaced (without affecting other results) by a starting point, defined by SS and SL
v_i	- total of estimated value at length i
VBGF	- von Bertalanffy Growth Function, either in original or seasonally oscillating form
VGA	- Virtual Graphic Array

VPA	- Virtual Population Analysis
W	- mean weight of fish in catch samples, computed from W' upward
w	- mean weight of fish within a given length class
WF	- weighting factor assigned to an observation
WP	- "Winter Point"; in the seasonalized VBGF, the time of the year when growth rate is slowest; equivalent to $t_s + 0.5$ year
WC	- total weight of the catch
WS	- total weight of the sample
W_∞	- asymptotic weight, i.e. the (mean) weight the fish of a given stock would reach if they were to grow forever
x	- any variable (often used for the abscissa in 2-dimensional plots)
x^2	- chi-square statistics
Y	- yield, catch in weight
Y_i	- yield at length i
y	- any variable (often used for the ordinate in 2-dimensional plots)
YY	- two-digit number denoting the year
Y/R	- yield per recruit
Y'/R	- relative yield per recruit
Y/R_{\max}	- maximum yield per recruit achievable under a given fishing regime
Z	- instantaneous rate of total mortality

APPENDIX B. References

Abrahamson, N.J. 1971. Computer programs for fish stock assessment. FAO. Fish. Tech. Pap. 101. pag. var.

Appeldoorn, R. 1987. Modification of a seasonally oscillating growth function for use with mark-recapture data. *J. Cons. CIEM*, 43: 194-198.

Ault, J.S. & Ehrhardt, N.M. 1991. Correction to the Beverton and Holt Z-estimator for truncated catch length-frequency distributions. *ICLARM Fishbyte*, 9(1): 37-39.

Beverton, R.J.H. & Holt, S.J. 1956. A review of methods for estimating mortality rates in exploited fish populations, with special reference to sources of bias in catch sampling. *Rapp.P.-V.Réun. CIEM*, 140:67-83.

Beverton, R.J.H. & Holt, S.J. 1966. Manual of methods for fish stock assessment. Part II. Tables of yield function. *FAO Fish. Biol. Tech. Pap.*, (38) 10 + 67 pp. (ver. 1).

Beyer, J.E. 1987. On length-weight relationships: Part I: Computing the mean weight of the fish in a given length class. *ICLARM Fishbyte*, 5(1): 11-13.

Bhattacharya, C.G. 1967. A simple method of resolution of a distribution into Gaussian components. *Biometrics*, 23: 115-135.

Del Norte, A.G.C. & Pauly, D. 1990. Virtual population estimates of monthly recruitment and biomass of rabbitfish, *Siganus fuscescens* from Bolinao, Northern Philippines, p. 851-854. In R. Hirano and I. Hanyu (eds.). The Second Asian Fisheries Forum, Asian Fisheries Society, Manila, Philippines, 991 p.

Ehrhardt, N.M. & Ault, J.S. 1992. Analysis of two length-based mortality models applied to bounded catch length frequencies. *Trans. Amer. Fish. Soc.* 121(1):115-122.

Fabens, A.J. 1965. Properties and fitting of the von Bertalanffy growth curve. *Growth*, 29: 265-289.

Formacion, S.P., Rongo, J.M. & Sambilay, V.C. 1991. Extreme value theory applied to the statistical distribution of the largest lengths of fish. *Asian Fisheries Science*, 4 (1992): 123-135.

Gayanilo, F.C. Jr. & Pauly, D. (eds.) 1997. FAO-ICLARM stock assessment tools (FiSAT). Reference manual. *FAO Computerized Information Series (Fisheries)*. No. 8, Rome, FAO. 262 p.

Gayanilo, F.C. Jr., Soriano, M. & Pauly, D. 1989. A draft guide to the Compleat ELEFAN. *ICLARM Software 2*. 70p.

Gayanilo, F.C. Jr., Sparre, P. & Pauly, D. 1996. FAO-ICLARM stock assessment tools (FiSAT). User's guide. *FAO Computerized Information Series (Fisheries)*. No. 8, Rome, FAO. 126 p.

Gulland, J.A. 1965. Estimation of mortality rates. Annex to Arctic fisheries working group report ICES C.M./1965/D:3. (mimeo). Reprinted as p. 231-241. In P.H. Cushing (ed). Key papers on fish populations. Oxford. *IRL Press*. 1983.

Gulland, J.A. & Holt, S.J. 1959. Estimation of growth parameters for data at unequal time intervals. *J. Cons. CIEM*, 25(1): 47-49.

Gumbel, E.J. 1954. Statistical theory of extreme values and some practical applications, a series of lectures. National Bureau of Standards, Applied Mathematics Series, 33. US Govt. Printing Office, Washington. USA.

Hasselblad, V. 1966. Estimation of parameters for a mixture of normal distributions. *Technometrics*, 8:431-444.

Hoenig, J.M. 1982. Estimating mortality rate from the maximum observed age. ICES. C.M./1982/D:5 10p. (mimeo).

Hoenig, J.M. & Lawing, W.D. 1982. Estimating the total mortality rate using the maximum-order statistic for age. ICES C.M./1982/D: 7. 13p. (mimeo).

Isaac, V.J. 1990. The accuracy of some length-based methods for fish population studies. *ICLARM Tech. Rep.* (27):81p.

Jones, R. 1984. Assessing the effects of changes in exploitation pattern using length composition data (with notes on VPA and cohort analysis). *FAO Fish.Tech.Pap.* (256): 118p.

Jones, R. & van Zalinge, N.P. 1981. Estimations of mortality rate and population size for shrimp in Kuwait waters. *Kuwait Bull. Mar. Sci.*, 2: 273-288.

Kvalseth, T.O. 1985. Cautionary note about r^2 . *American Statistician*, 39: 279-285.

Laurec, A. & Mesnil, B. 1987. Analytical investigations of errors in mortality rates estimated from length distributions of catches. p.239-282. In D. Pauly and G.R. Morgan (eds.). Length-based methods in fisheries research. *ICLARM Conf. Proc.* 13.

Mesnil, B. 1985. Computer programs for fish stock assessment. ANACO: Software for the analysis of catch data by age group on IBM-PC and compatibles. *FAO Fish. Tech. Pap.*, 101 (Suppl. 3): 78p. + 2 diskettes.

Moreau, J. 1988. Estimation of natural mortality from selection, and catch length-frequency data: a modification of Munro's method and application example. *ICLARM Fishbyte*, 6(2): 10-12.

Moreau, J. & Cuende, F.X. 1991. On improving the resolution of the recruitment patterns of fishes. *ICLARM Fishbyte*, 9(1): 45-46.

Munro, J.L. 1982. Estimation of the parameters of the von Bertalanffy growth equation from recapture data at variable time intervals. *J.Cons. CIEM*, 40: 199-200.

Munro, J.L. 1984. Estimation of natural mortality rates from selectivity and catch length-frequency data. *ICLARM Fishbyte*, 2(1): 11-14.

Munro, J.L. & Pauly, D. 1983. A simple method for comparing the growth of fishes and invertebrates. *Fishbyte*. 1(1):5-6.

Pauly, D. 1979. Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy's growth formula. *Berichte des Instituts für Meereskunde an der Univ. Kiel*. No. 63, xv + 156 p.

Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. *J.Cons. CIEM*, 39(3):175-192.

Pauly, D. 1981. The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy's theory of growth. *Meeresforsch.*, 28(4): 251-282.

Pauly, D. 1982. Studying single-species dynamics in a tropical multi-species context, p. 33-70. In D. Pauly and G.I. Murphy (eds.). Theory and management of tropical fisheries. *ICLARM Conf. Proc.* 9.

Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. *FAO Fish. Tech. Pap.* (234): 52 p.

Pauly, D. 1984a. Fish population dynamics in tropical waters: a manual for use with programmable calculators. *ICLARM Stud. Rev.* (8):325p.

Pauly, D. 1984b. Length-converted catch curves: a powerful tool for fisheries research in the tropics (Part II). *ICLARM Fishbyte*, 2(1): 17-19.

Pauly, D. 1986. On improving operation and use of the ELEFAN programs. Part II. Improving the estimation of L. *ICLARM Fishbyte*, 4(1):18-20.

Pauly, D. 1990. Length-converted catch curves and the seasonal growth of fishes. *ICLARM Fishbyte*, 8(3): 33-38.

Pauly, D. & David, N. 1981. ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequencies data. *Meeresforsch.*, 28(4):205-211.

Pauly, D. & Munro, J.L. 1984. Once more on the comparison of growth in fish and invertebrates. *Fishbyte*. 2(1):21.

Pauly, D. & Caddy, J.F. 1985. A modification of Bhattacharya's method for the analysis of mixtures of normal distributions. *FAO Fish. Circ.* (781): 16p.

Pauly, D. & Morgan G.R. (eds.), 1987. Length-based methods in fisheries research. *ICLARM Conf. Proc.* (13): 468p.

Pauly, D., Palomares, M.L. & Gayanilo, F.C. Jr. 1987. VPA estimates of the monthly population length composition, recruitment, mortality, biomass and related statistics of Peruvian anchoveta, 1951 to 1981, p. 142-166. In D. Pauly and I. Tsukayama (eds) *ICLARM Stud. Rev.* 15.

Pauly, D. & Soriano, M.L. 1986. Some practical extensions to Beverton and Holt's relative yield-per-recruit model, p. 491-496. In J.L. Maclean, L.B. Dizon and L.V. Hosillo (eds.). The First Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines.

Pauly, D., Soriano-Bartz, M., Moreau, J. & Jarre, A. 1992. A new model accounting for seasonal cessation of growth in fishes. *Austr. J. Mar. Freshwat. Res.*, 43:1151-1156.

Pope, J.G. 1972. An investigation of the accuracy of virtual population analysis using cohort analysis. *ICNAF Res. Bull.*, (9): 65-74.

Powell, D.G. 1979. Estimation of mortality and growth parameters from the length-frequency in the catch. *Rapp. P.-V. Réun. CIEM*, 175: 167-169.

Rikhter, V.A. & Efanov, V.N. 1976. On one of the approaches to estimation of natural mortality of fish populations. *ICNAF Res.Doc.*, 79/VI/8, 12p.

Saila, S.B., Recksiek, C.W. & Prager, M.H. 1988. Basic fishery science programs: a compendium of microcomputer programs and manual of operation. Elsevier Science Publishing Co. New York, USA. 230p.

Sainsbury, K.J. 1980. Effect of individual variability on the von Bertalanffy growth equation. *Can. J. Fish. Aquat. Sci.*, 37: 241-247.

Seber, G.A.F. 1982. The estimation of animal abundance and related parameters, 2nd ed. MacMillan, New York, USA.

Shepherd, J.G. 1987. A weakly parametric method for estimating growth parameters from length composition data, p. 113-119. In D. Pauly and G.R. Morgan (eds). Length-based methods in fisheries research. *ICLARM Conf. Proc.* 13.

Silvestre, G.T., Soriano, M.L. & Pauly, D. 1991. Sigmoid selection and the Beverton and Holt yield equation. *Asian Fisheries Science* 4(1):85-98.

Soriano, M.L. & Jarre, A. 1988. On fitting Somers' equation for seasonally oscillating growth, with emphasis on t-subzero. *ICLARM Fishbyte*, 7(2): 13-14.

Soriano, M.L. & Pauly, D. 1989. A method for estimating the parameters of a seasonally oscillating growth curve from growth increment data. *ICLARM Fishbyte*, 7(1): 18-21.

Sparre, P. 1987. Computer programs for fish stock assessment. Length-based fish stock assessment for Apple II computers. *FAO Fish Tech. Pap.*, (101) Suppl. 2: 218 p. (+3 diskettes).

Sparre, P. & Venema, S.C. 1993. Introduction to tropical fish stock assessment. Part 1-manual. *FAO Fish. Tech. Pap.* (306.1) Rev. 1: 376 p.

Sparre, P.J. & Willmann, R. 1992. Software for bio-economic analysis of fisheries. BEAM 4. Analytical bio-economic simulation of space structured multi-species and multi-fleet fisheries. Volume 1: Description of model. *FAO Computerized Information Series (Fisheries)*. No. 3. Vol. 1. Rome, FAO. 186 p.

Sparre, P.J. & Willmann, R. 1993. Software for bio-economic analysis of fisheries. BEAM 4. Analytical bio-economic simulation of space structured multi-species and multi-fleet fisheries. Volume 2: User's manual. *FAO Computerized Information Series (Fisheries)*. No. 3. Vol. 2. Rome, FAO. 46 p.

Strømme, T. 1992. NAN-SIS: Software for fishery survey data logging and analysis. User's manual. *FAO Computerized Information Series (Fisheries)*, No. 4, Rome, FAO. 103 p. (+ 1 diskette).

Thompson, W.F. & Bell, F.H. 1934. Biological statistics of the Pacific halibut fishery. 2. Effect of changes in intensity upon total yield and yield per unit of gear. *Rep. Int. Fish. (Pacific Halibut) Comm.*, (8):49p.

Wetherall, J.A. 1986. A new method for estimating growth and mortality parameters from length-frequency data. *ICLARM Fishbyte* 4(1): 12-14.

FAO
COMPUTERIZED INFORMATION SERIES
fisheries

1

BEAM 1 and BEAM 2:

Simple bio-economic analytical simulation models
for sequential fisheries on tropical shrimp (E)

2

(Issue number originally assigned to BEAM 3, subsequently cancelled)

3

BEAM 4: Analytical bio-economic simulation of space-structured multispecies
and multifleet fisheries (E, F)

4

NAN-SIS: Software for fishery survey data logging and analysis (E)

5

CLIMPROD: Experimental interactive software for choosing and fitting surplus
production models including environmental variables (E)

6

SPATIAL: Space-time dynamics in marine fisheries – A software package
for sedentary species (E)

7

POPDYN: Population dynamic database (E)

8

FiSAT: FAO-ICLARM stock assessment tools

8 (Revised version)

FiSAT II: FAO-ICLARM stock assessment tools II (E, F)

9

SPECIESDAB: Global species database for fishery purposes (E)

10

BIODYN: Biomass dynamic models (E)

11

VIT: Software for fishery analysis (E)

12

BAYES-SA: Bayesian stock assessment methods in fisheries (E)

FISAT II

FAO-ICLARM stock assessment tools II

Revised version

The revised version of FiSAT (FiSAT II) is a program package consisting of methodologies for use with computers, enabling users to formulate some management options for fisheries, especially in data-sparse, tropical contexts.

The FiSAT II was developed for computers running on Microsoft Windows® operating system. The new version utilizes the standard Windows graphic user interface.

FiSAT II was developed mainly for the analysis of length-frequency data, but also enables related analyses, of size-at-age, catch-at-age, selection and other data typically collected for tropical fish stock assessment.

ISBN 92-5-105300-6

ISSN 1020-3249

TC/C/Y5997E/1/12.05/2000