
Provisional edition

**IRRIGATION
WATER MANAGEMENT
Training manual no. 7**

CANALS

FOOD AND AGRICULTURE
ORGANIZATION
OF THE UNITED NATIONS

**IRRIGATION
WATER MANAGEMENT
Training manual no. 7**

CANALS

A manual based on the joint work of
B.E. van den Bosch, Consultant
J. Hoevenaars
C. Brouwer

International Institute for Land Reclamation and Improvement

and of
N. Hatcho
FAO Land and Water Development Division

Provisional Edition
FAO, Rome, October 1992

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy.

© FAO 1993

PREFACE

This is one in a series of training manuals on subjects related to irrigation, issued in the period from 1985 to 1993.

The papers are intended for use by field assistants in agricultural extension services and irrigation technicians at the village and district levels who want to increase their ability to deal with farm-level irrigation issues.

The papers contain material that is intended to provide support for irrigation training courses and to facilitate their conduct. Thus, taken together, they do not present a complete course in themselves, but instructors may find it helpful to use those papers or sections that are relevant to the specific irrigation conditions under discussion. The material may also be useful to individual students who want to review a particular subject without a teacher.

Following an introductory discussion of various aspects of irrigation in the first paper, subsequent subjects discussed are:

- topographic surveying
- crop water needs
- irrigation scheduling
- irrigation methods
- scheme irrigation water needs and supply
- canals.

A further three subjects to be covered are:

- structures
- drainage
- scheme irrigation management.

At this stage, all the papers are marked provisional because experience with the preparation of irrigation material for use at the village level is limited. After a trial period of a few years, once enough time has elapsed to evaluate the information and the methods outlined in the draft papers, a definitive version of the series can be issued.

In addition some complementary manuals are planned, the first of which, *Small-scale pumped irrigation - energy and cost*, is being published simultaneously with this volume.

For further information and any comments you may wish to make please write to:

Water Resources, Development and Management Service
Land and Water Development Division
FAO
Via delle Terme di Caracalla
I-00100 Rome
Italy

ABOUT THIS PAPER

CANALS is the seventh in a series of training manuals on irrigation. The manual explains the functioning of a canal network and describes the basic principles of water flow in small canals. It considers the elements that affect canal capacity.

Furthermore, this manual deals with maintenance aspects of a canal network and describes in detail some important technical problems that commonly arise in connection with small canals, and provides practical guidance in dealing with them.

Three annexes are included to provide the reader with additional information on how to increase a canal's capacity, on how to construct an irrigation canal, and on how to measure the slope of a proposed canal alignment.

ACKNOWLEDGEMENTS

Much appreciation is expressed to the various specialists in irrigation for their valuable comments and suggestions: Mrs M. Heibloem and Messrs W. Genet, M. Jurriens, M. Kay, M. Smith and P. van Steekelenburg. Particular thanks are due to Mr Thorgeir Lawrence and Ms C.D. Smith-Redfern for the editing, typing and finalization of the manual for printing.

CONTENTS

	Page
1. Introduction	1
2. Canal network and irrigation plan	3
2.1 Introduction	3
2.2 Function and performance	3
2.3 Irrigation plan	5
3. Discharge	7
3.1 Introduction	7
3.1.1 What is discharge?	7
3.1.2 Discharge and demand	7
3.1.3 Discharge control	8
3.2 Estimating the discharge	9
3.2.1 Average flow velocity	9
3.2.2 Area of the wetted cross-section	11
3.2.3 Flow estimation procedure	16
3.3 Factors affecting the maximum discharge	18
3.3.1 Area of the maximum wetted cross-section	18
3.3.2 Roughness of the canal bed and sides	18
3.3.3 The longitudinal slope	19
3.4 Canal dimensions	20
4. Main problems in a canal network	21
4.1 Introduction	21
4.2 Technical problems	21
4.2.1 Water losses	22
4.2.2 Overtopping	23
4.2.3 Canal erosion	24
4.3 Inspecting the canal system	26
5. Maintenance and repair works	29
5.1 Introduction	29
5.2 Canal maintenance	29
5.3 Reduction of seepage losses	30
5.4 Repair of a leak	33
5.5 How to avoid overtopping	34
5.6 Canal repair and preventing erosion	36
5.6.1 Repair	36
5.6.2 Preventing erosion	37
6. Canal lining	41
6.1 Introduction	41
6.2 Advantages and costs of lining	41

6.2.1	Water conservation	41
6.2.2	No seepage of water to adjacent land or roads	42
6.2.3	Reduced canal dimensions	42
6.2.4	Reduced maintenance	42
6.2.5	Costs of lining	42
6.3	Selecting the type of lining	42
6.4	Implementation	43
6.4.1	Preparation	43
6.4.2	Concrete lining	44
6.4.3	Concrete block, brick or stone masonry lining	47
6.4.4	Compacted clay or plastic lining	47
7.	Minor scheme extension and design	51
7.1	Introduction	51
7.1.1	Minor scheme extension	51
7.1.2	New scheme planning	51
7.2	Topography of the area considered	52
7.3	Water requirements	52
7.4	Water conveyance to the new area	53
7.5	Minor scheme extension , an example	53
Annex 1.	How to enlarge the capacity of an existing canal	59
A1.1	Introduction	59
A1.2	Estimating canal capacity	59
A1.3	Enlarging canal capacity	62
A1.3.1	Enlarging canal capacity by increasing the water depth	63
A1.3.2	Enlarging canal capacity by increasing the bed width	65
Annex 2.	How to construct a canal	67
A2.1	Introduction	67
A2.2	Canal alignment	67
A2.2.1	Layout	67
A2.2.2	Bed slope	67
A2.2.3	Bed elevation	68
A2.3	Design and construction of a canal embankment	69
A2.3.1	Design of an embankment	69
A2.3.2	Construction of an embankment	71
A2.4	Construction of a canal	74
A2.5	Enlarging the capacity of an existing canal	76
A2.5.1	Enlarging canal capacity by raising the canal banks	77
A2.5.2	Enlarging canal capacity by deepening the bed	78
A2.5.3	Enlarging canal capacity by enlarging the bed width	78
Annex 3.	How to determine the slope of a canal alignment	79

Figures

	Page
1. An irrigation canal network compared to a tree	3
2. Part of a small irrigation canal system	4
3. Tertiary canal serving a field	4
4. Longitudinal section	5
5. Cross-section	5
6. Irrigation plan	5
7. Schematic irrigation plan	6
8. Discharge in a canal	7
9. Water level and discharge	8
10. Measuring the surface velocity	10
11. Rectangular canal	11
12. Trapezoidal canal	11
13. Side slope	12
14. Trapezoidal cross-section	13
15. Rectangular cross-section	13
16-A. Measuring the bed width	14
16-B. Measuring the surface water width	14
16-C. Measuring the water depth	14
17. Cross-section of an irregular canal	15
18-A. Measuring the bed width	15
18-B. Measuring the surface water width	15
18-C. Measuring the water depth	15
19. Rough, poorly maintained canal	18
20. Smooth, well maintained canal	19
21. Longitudinal slope and velocity	20
22. Canal with seepage water at the toe of the canal embankment	22
23. A crack in a canal bank is repaired soon after it has been observed	23
24. Delayed repair of a leakage	24
25. Overtopping of a canal bank	25
26. Eroded canal	25
27. Heavy plant growth makes inspection difficult	27
28. Clean canal embankments are conditional for rapid inspection	28
29. Weeding, cleaning and de-silting	30
30. Fully covered canal bed	31
31. Canal maintenance	31
32-A. Preparation for core compaction	32
32-B. Excavation of a narrow trench	32
32-C. Refilling the trench and compacting each layer	32
32-D. Canal bank with compacted core	32
33-A. Indication of the leak	33
33-B. Excavation of the canal bank below and beside the leak	33
33-C. Filling each layer and compacting the moist soil	33
34-A. Lowered section of a canal bank	34
34-B. Stair-like excavation of the bank	34
34-C. Refilling and compaction of each layer in a wet condition	35

Figures (continued)

	Page
34-D. Finishing the bank and laying grass sods once the top is reached	35
35. Emergency outlet	35
36-A. Template for (a) original cross-section; (b) cross-section with flatter side slopes	36
36-B. Using the template to set the profile for the rebuilt cross-section	36
36-C. Building up in layers compacted when moist	36
36-D. Check the repaired cross-section and level using the template and reference pegs	36
37-A. Identification of cracks and gullies to be repaired	37
37-B. Excavating the weakened areas	37
37-C. Repairing with compacted layers of moist soil	37
38-A. Steep canal to be modified	38
38-B. Reducing canal slope by fill	38
38-C. Reducing slope in a canal by use of a drop structure	38
39. Series of checks in a steeply sloping canal	39
40. Different types of canal lining	43
41. Hand plastered canal lining	44
42-A. Installation of guide forms	45
42-B. Pouring the concrete	45
42-C. Compacting, forming and smoothing with a screed	46
42-D. Alternately lined canal sections	46
43. Prefabricated concrete canal elements	47
44-A. Destroying the old canal bed	48
44-B. Laying the concrete block floor	48
44-C. Making the walls	48
44-D. Earthen support banks are added	48
45. Plastic lining	49
46. Extension of an irrigation scheme	52
47. Existing irrigation scheme and location of possible extension	54
48. Block with tertiary canal and farm ditches	54
49. Determining the surface area of the extension	54
50. Proposed alignments of new irrigation canals	55
51. Extended scheme and required discharges	56
A1.1. Discharge in a canal is less than canal capacity	60
A1.2. Increasing canal capacity by increasing the water depth	62
A1.3. Increasing canal capacity by increasing the bed width	62
A1.4. Increased canal capacity, higher banks	63
A1.5. Increase canal capacity by lowering canal bed	65
A1.6. Increased canal capacity	66
A2.1. Cross-section of a canal in fill	68
A2.2. Cross-section of a canal in cut	68
A2.3. Cross-section of a canal with balance between cut and fill	68
A2.4. Canal in fill	69

Figures (continued)

	Page	
A2.5.	Elevation and width of a canal embankment	70
A2.6.	Determination of elevation and width of an embankment	71
A2.7-A.	Ploughing the field as preparation for embankment construction	71
A2.7-B.	Staking out the centre of the embankment	72
A2.7-C.	Marking of the embankment to fill	72
A2.7-D.	Construction of the embankment	73
A2.8.	Embankment under construction	73
A2.9-A.	Placing the pegs	74
A2.9-B.	Excavation is started	75
A2.9-C.	Excavation nearly completed	75
A2.9-D.	Bed level and side slopes are checked	76
A2.10.	Canal construction at Step 3	76
A2.11.	Cross-section before and after enlargement	77
A2.12-A.	Template for canal cross-section	77
A2.12-B.	Template with bars	77
A2.12-C.	Template gives the size of the new cross-section of the canal	77
A2.12-D.	Partially excavated embankments	78
A2.12-E.	Filling the new embankment and checking the cross-section	78
A2.13.	Actual and deepened canal	78
A2.14.	Actual and widened canal	78
A3.1.	Marking of canal alignments	79

Tables

	Page	
1.	Indicative values for canal dimensions	20
2.	Limiting side slopes and flow velocities for canals	26
A1.	Factors for estimating canal capacity	60
A2.	Factors for determination of new bed width	65

Chapter 1

Introduction

Manuals 1 to 3 in the Water Management Training Series introduce the reader to basic irrigation principles. Manual 1, *Introduction to irrigation*, describes soil, plant, climate and water relationships; Manual 2, *Elements of topographic surveying*, deals with simple topographic measuring techniques; and Manual 3, *Irrigation water needs*, makes the reader familiar with irrigation water needs at crop level.

Manual 4 provides an introduction to *Irrigation scheduling*, and Manual 5 describes various *Irrigation methods*.

Manual 6, *Scheme irrigation water needs and supply*, describes methods of calculating scheme water needs as a function of cropping pattern.

Manuals 7 and 8 deal with the system by which irrigation water is transported from the water source to the farmers fields. This manual, number 7, describes the canals, and Manual 8, *Structures*, deals with the structures, which are important elements in an irrigation canal system.

A problem that is frequently observed in irrigation schemes is the inefficient way in which farmers use and maintain their canal network. Irrigation extension officers can be of great assistance to farmers by helping them to make better and more durable use of the irrigation canal system. It is the aim of this volume to assist the extension officers in their efforts to improve the exploitation of the canal system.

To achieve this goal, the functioning of a canal system is explained, as well as some basic concepts involved, such as discharge, capacity, friction and slope. Attention is paid to the usefulness of canal maintenance, and how to achieve this. The manual looks at some problems that occur frequently in irrigation systems, and provides a guide to avoiding or overcoming these problems. The final part describes how a minor extension of an existing scheme can be carried out and how a small new scheme can be constructed.

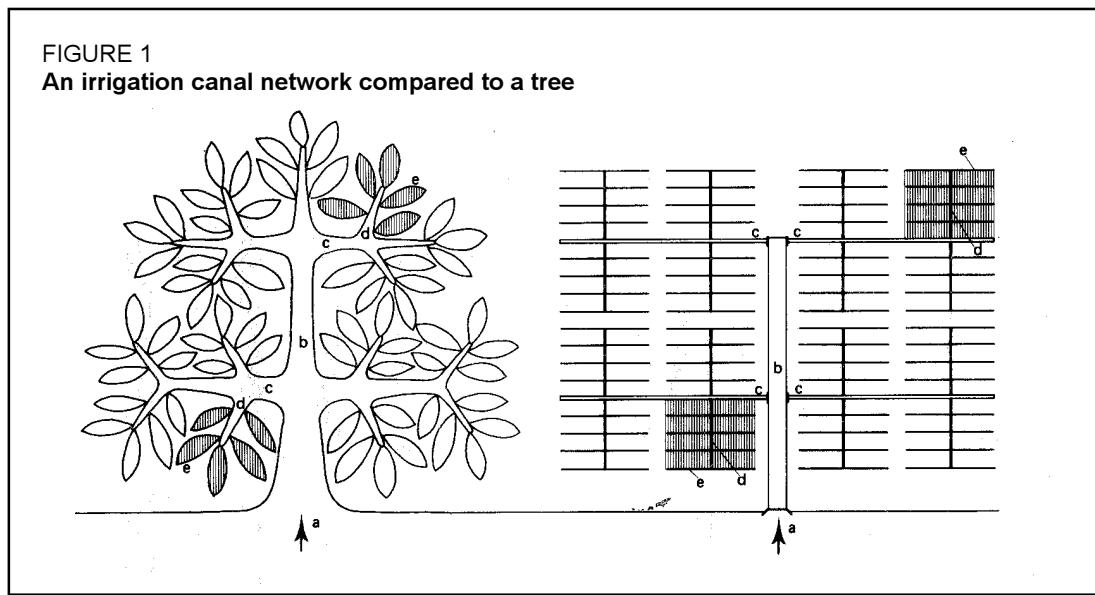
The manual is limited to open canal systems, which worldwide are the most commonly used systems.

The irrigated areas dealt with in this manual may be independent or they may be part of larger schemes. The areas are limited in size, 200 ha or less, and the extensions or the new construction schemes are for areas of less than 50 ha.

It is not the aim of this manual to teach the reader how to make complicated hydraulic calculations, nor to educate her or him in making complicated designs for new irrigation schemes. The manual's object is to provide support to irrigation extension officers in their efforts to improve the exploitation of minor irrigation schemes or small sub-units within large schemes.

Whenever a problem arises for which a solution is not given in the manual, the reader is requested to contact an irrigation engineer for help.

Chapter 2


Canal network and irrigation plan

2.1 INTRODUCTION

This chapter introduces the functioning of an irrigation canal network and the use of an irrigation plan.

2.2 FUNCTION AND PERFORMANCE

A system of irrigation canals, also known as a ‘canal network’, transports water from its source to the fields, and is made up of many canals. To illustrate the functioning of an irrigation canal network, it can be compared to a tree, as in Figure 1.

The main stem of a tree taps water from the soil and transports it to the branches. The branches supply the twigs with water and finally it enters into the leaves, where it will either be used for growth or will evaporate.

The same can be seen in an irrigation scheme: the main or primary canal (the stem) taps water from the water source. This may be a river, a lake, a reservoir or groundwater. Water is then distributed by the smaller secondary canals (the branches) to the tertiary canals (the twigs) which are even smaller. From these tertiary canals the water finally enters the fields (the leaves), where it will be used to irrigate a crop, and evaporate or soak away.

The canals are positioned in the field so that use is made of the natural slope, and water flows downhill through the canals and enters the fields by gravity. See also Figure 2, which shows part of a small irrigation canal system.

FIGURE 2
Part of a small irrigation canal system

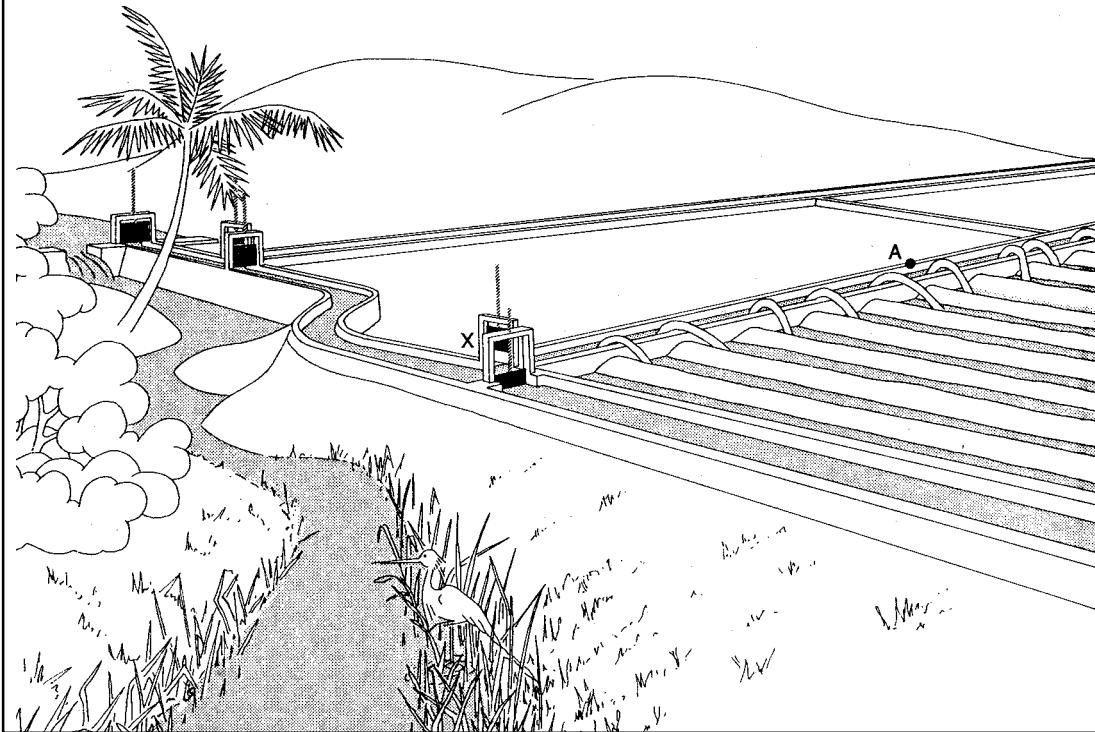
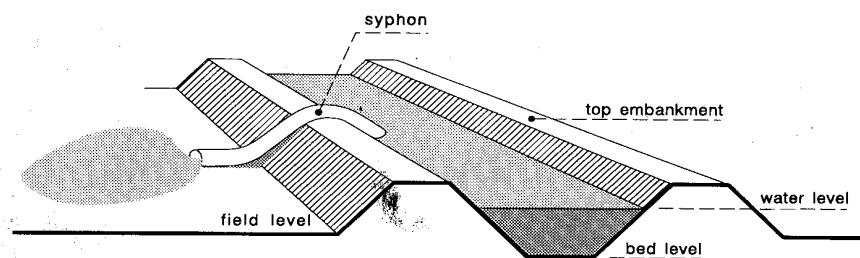



Figure 2 shows a dam on a river, from which water is tapped and passes into the main canal. The water then passes into two smaller canals, and finally enters the fields through siphons.

The smallest canals in a system serve the fields. Water in these canals should therefore be at a higher level than the fields. This can be seen in the following figures. Figure 3 shows a tertiary canal from which a field is irrigated by siphons. Figure 4 shows a longitudinal section of this canal and Figure 5 shows its cross-section.

FIGURE 3
Tertiary canal serving a field

It is best if the canal bed is lower than the field, as shown in the figures, but if a canal crosses a depression in the field, the canal bed may have to be partly raised above the field.

FIGURE 4
Longitudinal section

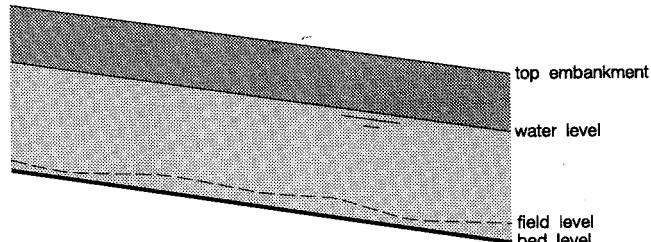
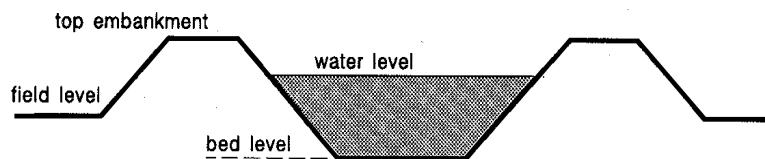
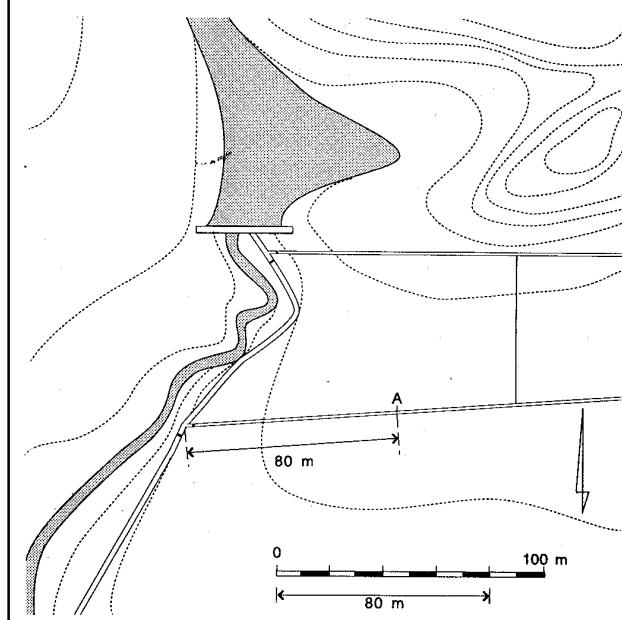



FIGURE 5
Cross-section


2.3 IRRIGATION PLAN

Before designing a canal network, a topographical survey of the area should be done and a topographical map of the area drawn. On this map the layout of the canal system is planned so that water delivery will be as efficient as possible. This map is called the irrigation plan. Figure 6 shows an example of such an irrigation plan, which corresponds to the canal system in Figure 2.

Figure 6 shows how the irrigation network is positioned in the field. The main canal and the field canals can clearly be seen in the plan. The correspondence between the plan and the canal system is made clear in Exercise 1.

An irrigation canal network can be drawn as a schematic lay out

FIGURE 6
Irrigation plan

EXERCISE 1

Question: Which point in the field corresponds to point A on the irrigation plan?
Point A is situated along a field canal.

Solution:

Step 1 Look for a point on the map that is close to point A and which is easy to find in the field; in this case it is the offtake of the field canal concerned.

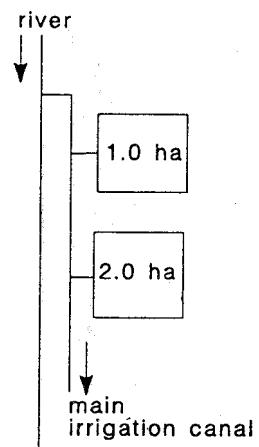
Step 2 Measure the distance on the map from this reference point to A.

Step 3 If the map has a line scale, then measure the distance found in Step 1 along it and read off the true distance.
If the scale is given in figures, then multiply the measured distance (in centimetres) by the scale figure, and convert to metres. E.g., if the scale of the map is 1:2 000, then 1 cm on the map is equivalent to 2 000 cm [= 20 m] on the ground.

Step 4 Go into the field and find the reference point used, the field canal offtake marked 'X' in Figure 2. Measure downstream along the bank of the field canal for the distance determined in Step 3.
That is point A on the map and in Figure 2.

as well as as a topographically correct map. Such a schematic irrigation plan shows the main and secondary canals, and the off-takes and the areas served by each. Figure 7 shows the schematic irrigation plan of the scheme which is given in Figures 2 and 6. The irrigation units are symbolized by small squares in which, in this case, the area served by each offtake is written.

EXERCISE 2


Question: Which offtake in the schematic layout in Figure 7 corresponds to the tertiary offtake which is marked X in the field in Figure 2?

Solution:

Step 1 Offtake X is offtake number 2 along the main canal.

Step 2 Find offtake number 2 along the main canal in Figure 7.

FIGURE 7
Schematic irrigation plan

