CODEX ALIMENTARIUS COMMISSION



Food and Agriculture Organization of the United Nations



CRD02

Viale delle Terme di Caracalla, 00153 Rome, Italy - Tel: (+39) 06 57051 - E-mail: codex@fao.org - www.codexalimentarius.org

Agenda Item 2, 3 and 4

ORIGINAL LANGUAGE ONLY

### JOINT FAO/WHO FOOD STANDARDS PROGRAMME

### CODEX COMMITTEE ON METHODS OF ANALYSIS AND SAMPLING

42nd Session Budapest, Hungary

### 13 – 16 June 2023 with report adoption on 20 June 2023 (virtual)

### REPORT OF PHYSICAL WORKING GROUP ON ENDORSEMENT

Agenda Item 2 - Matters Referred to the Committee by the Codex Alimentarius Commission and Other Subsidiary Bodies (CX/MAS 21/42/2 and CX/MAS 21/42/2 Add.1)

### MATTERS ARISING FROM OTHER SUBSIDIARY BODIES

### MATTERS FOR ACTION OR INFORMATION

### Codex Committee on Contaminants in Foods (CCCF15, 2022)

### Methylmercury in fish: Sampling plans

The PWG noted the CCCF agreement to consider CCMAS recommendation on sampling plans at CCCF17 (2024).

### Review of methods of analysis for contaminants

The PWG reviewed the performance criteria for lead and cadmium referred by CCCF (CCCF REP22/CF15, Appendix VIII: Part I) for inclusion in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999).

After some discussion about the appropriate number of digits after the decimal place, the PWG agreed to make minor changes to the numeric criteria referred by CCCF (Appendix I, Table I). This agreement to advance numeric criteria resulted in the need to remove the methods (Appendix I, Table II) from CXS 234.

The PWG was not able to review and determine if the methods (REP22/CF15, Appendix VIII, Part II) were appropriate as examples of available methods that meet the criteria. Additionally, other methods were not submitted as examples of available methods that meet the criteria.

The PWG recommended

Endorsement of the numeric criteria (Appendix I, Table I)

Removal of the methods from CXS 234 (Appendix I, Table III)

Further work to review the methods (Appendix I, Table II) and other methods to identify "examples of available methods that meet the criteria".

### Codex Committee on Food Hygiene (CCFH53, 2022)

<u>Review of the methods of analysis for irradiated foods in the General Standard for Methods for the</u> <u>Detection of Irradiated Foods (CXS 231-2001) and their incorporation into the Recommended Methods of</u> <u>Analysis and Sampling (CXS 234-1999)</u>

The PWG considered the list of methods from CXS 230 with the additional text further describing the commodity and precision (Appendix II). The PWG noted that there was little information on the methods

and how they are applied to the provisions. It was noted that while specific method steps are not required, some information about the methods would be useful in understanding the typing and the appropriateness to the specific matrices.

The PWG recommended

The methods listed in CXS 230 (Appendix II) not be endorsed at this time

Additional information on the methods be gathered and the information and methods be submitted for additional review at CCMAS43.

### Codex Committee on Food Additives (CCFA53, 2023)

### Testing methods related to nitrates and nitrites

The PWG considered the request by CCFA to (i) establish criteria for the detection of nitrate and nitrite ions in a variety of food matrices (CX/FA 21/52/7 Appendix 5, Annex 2), and (ii) provide information on available methods for detection t(CX/FA 21/52/7 Appendix 5, Annex 1).

Based on the amount of information needed to fulfill CCFA request the PWG recommended:

The establishment of an electronic Working Groups (eWG) chaired by USA, working in English to assist in the response to the request from CCFA (CX/MA 23/42/2 para 31, to create a report for consideration at CCMAS43 which will address the following items:

- establish numeric performance criteria for the detection of nitrate and nitrite ions in the food matrices listed in CX/FA 21/52/7 Appendix 5, Annex 2.
- review the methods in CX/FA 21/52/7 Appendix 5, Annex 1 and determine if these methods meet the numeric performance criteria establish for the matrices in CX/FA 21/52/7 Appendix 5, Annex 2
- discuss if the methods detect both nitrate and nitrite ions and if so, whether the method
  detects each ion separately or only in combination
- discuss if the different detection schemes (i.e., separate or combined) could have an impact on the precision and accuracy of the methods

### Codex Committee on Food Labelling (CCFL47, 2023)

### Food allergen labelling – precautionary allergen labelling

The Committee noted the request from CCFL (CX/MAS 23/42/2 Add. 1) to recommend suitable analytical methods and guidance on their validation and applications including sampling plans for determining allergenic proteins in foods. CCMAS noted that the detection and quantification of allergenic proteins in foods is an important but challenging food safety area and that CCMAS was not in position to answer the request from CCFL during the physical working group on method endorsement (PWG). CCMAS would like to support CCFL efforts to revise the *General Standard for the Labelling of Pre-packaged Foods* (CXS 1-198) and the developing guidance on precautionary allergen labelling.

The PWG recommended

The establishment of an electronic working, chaired by the United States and Co-Chaired by the United Kingdom to develop a discussion paper which would discuss best practices for the selection of validated analytical methods, and for the validation of such methods. The discussion paper should consider the following for the allergens listed in Table 11 of FAO/WHO report "*Risk Assessment of Food Allergens Part 2: Review and Establish Threshold Levels in Foods for the Priority Allergens*":

- define standardized and harmonized terminology and definitions for allergen testing methods
- currently available test methods and validation status for the priority allergenic proteins listed in CX/FL 23/47/5 appendix I and noting the validated scope (food matrices, processed food) of these method

- required information for method evaluation and validation, including antibodies used (if ELISA), cross-reactivity, assay applicability, selectivity, stability (ruggedness), calibration procedures, sensitivity, range of quantification, LOD/LOQ, accuracy/trueness, extraction efficiency, precision, robustness, applicability, recovery and practicability, and whether it reports total protein. Validation requirements for the testing of allergenic proteins in foods including accuracy/trueness, extraction efficiency, precision, robustness, applicability, recovery and practicability.
- confirmatory methods for cases of potential analytical cross reactivity, and examples of such possibly including second ELISA confirmation, DNA based detection, and/or mass spectrometry techniques
- reference to other 'best practice' guidance documents, including SDO validation procedures and relevant Codex texts

The EWG will not address the second question from CCFL on sampling plans as sampling plans are covered by Revision of the General Guidelines on Sampling (CXG 50-2004).

## Agenda Item 3 - ENDORSEMENT OF METHODS OF ANALYSIS AND SAMPLING PLANS FOR PROVISIONS IN CODEX STANDARDS (CX/MAS 21/42/3 and CX/MAS 21/42/3 Add.1)

## CODEX COMMITTEE ON NUTRITION AND FOODS FOR SPECIAL DIETARY USES (CCNFSDU43, 2023)

### Methods of analysis for provisions in the Standard for Follow-Up Formula (CXS 156-1987)

# Methods for vitamin B12; total amino acids (excluding taurine and tryptophan), and tryptophan in the Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants (CXS 72-1981)

The PWG reviewed the methods referred by CCNFSDU (Appendix III)

### The PWG recommends

endorsement of AOAC 2014.02 for vitamin B12 as a type III, and

endorsement of AOAC 2018.06 / ISO 4214 | IDF 254 /AACC 07-50.01 for total amino acids (excluding taurine and tryptophan) as a Type II, and

endorsement of AOAC 2017.03 the for Tryptophan as a Type II.

### CODEX COMMITTEE ON SPICES AND CULINARY HERBS (CCSCH5<sup>1</sup>, CCSCH6<sup>2</sup>)

Methods of analysis for provisions in the Standard for Dried Roots, Rhizomes and Bulbs – Dried or Dehydrated ginger (CXS 343-2021), Standard for Dried Floral Parts-Cloves (CXS 344-2021), Standard for Dried Leaves - Dried Basil (CXS 345-2021), Standard for Dried Floral Parts – Saffron (CXS 351-2021), Standards for Dried Seeds – Nutmeg (CXS 352-2022), Standard for Dried or Dehydrated Chilli Pepper and Paprika (CXS 353-2022), draft Standard for Dried Small Cardamom, draft Standard for Spices Derived from Dried Fruits and Berries (Part A - Allspice, Juniper berry and Star anise)

The PWG reviewed the methods referred by CCSCH (Appendix IV) and had questions about the choice list of provisions, the choice of methods and the typing.

The PWG recommends

not endorsing the methods

returning the following questions to CCSCH

<sup>&</sup>lt;sup>1</sup> REP21/SCH05 paras 36, 65, 81, 115, 149 and Appendices II, III, IV, V, VI

<sup>&</sup>lt;sup>2</sup> REP22/SCH06 paras 39, 59, 80, 107, 121(i) and Appendices III, IV, V, VI, VII Part A

CCMAS has noted that the same method (e.g. ISO 927) will have different typing in different tables, was there a compelling reason for this change in typing?

CCMAS noted that 2 different methods will be used in conjunction, one as type I and one as type IV (e.g. ISO 927 and MPM V8) is there a reason for this mixing of Type I and Type IV methods?

Different methods are used across different commodities that appear to have similar characteristics, are there compelling reasons for these changes?

May standards appear to contain redundant provisions (e.g. insects, excreta) is this intentional and should the methods be consistent?

### FAO/WHO COORDINATING COMMITTEE FOR AFRICA (CCAFRICA24)<sup>3</sup>

### Methods of analysis for provisions in the Standard for Dried Meat (CXS 350-2022)

The PWG recommended

Endorsement of the methods and at the Type indicated (Appendix V).

The sampling plan not be endorsed and a new plan developed once the changes to GL 50 are complete.

Refer a question to CCAFRICA regarding the removal AOAC 935.47 and 937.09b and if this removal was deliberate or if the methods should have been retained as Type III?

### FAO/WHO COORDINATING COMMITTEE FOR ASIA (CCASIA22)<sup>4</sup>

Methods of analysis and sampling for provisions in the draft Regional Standard for Soybean Products Fermented with Bacillus Species,

The PWG recommended

Endorsement of the methods as shown Appendix VI Table I.

### Regional Standard for Cooked Rice Wrapped in Plant Leaves

The PWG discussed the extraction procedure and the methods of analysis methods ISO 3960 or AOCS Cd 8b-90 and confirmed the methods are identical. There was no validation data establishing the performance (e.g., recovery, precision) of the rice extraction step.

SDO expressed concern in the efficiency of the extraction process given the long conditions and the application of the peroxide value determination to this matrix. Given these concerns, the PWG recommended

The method be endorsed as a Type IV (Appendix VI Table II)

That CCMAS suggest the validation of the method should be undertaken expeditiously and the data presented to CCMAS for review.

## FAO/WHO COORDINATING COMMITTEE FOR NORTH AMERICA AND SOUTHWEST PACIFIC (CCNASWP16)<sup>5</sup>

#### Methods of analysis for provisions in the draft Regional Standard for Fermented Noni Fruit Juice

The PWG reviewed the method validation data for scopoletin and deacetylasperulosidic acid and determined they met the requirements for a successful validation. The PWG also reviewed the updated method. The PWG also noted that the methods for pH and ethanol has previously been endorsed. Finally the PWG noted that a validation of an IFU method for Brix value (soluble solids) was still underway

The PWG recommended

<sup>&</sup>lt;sup>3</sup> REP22/AFRICA24, para. 40 (i) and Appendix IIIV

<sup>&</sup>lt;sup>4</sup> REP23/ASIA22, para. 50 (ii) 83 (ii) and Appendix V, VII

<sup>&</sup>lt;sup>5</sup> REP23/NASWP16, para. 28 (iii) 73 (i) and Appendix III, VII Part A

Endorsement of the methods for scopoletin as a Type IV

Endorsement of the method for deacetylasperulosidic acid as a Type IV

Wait for the completion of the IFU led study before endorsing a method for Brix value (soluble solids)

### Revised SOP for the Identification of Kavalactones and Flavokavains in Fresh and Dried Kava Products by HPTLC in the Regional Standard for Kava Products for Use as a Beverage when Mixed with Water (CXS 336R-2020)

The PWG reviewed the revised SOP and noted some deficiencies in the description of how the final determination should be made.

The PWG recommended

Not endorsing the SOP and asking for further edits to address the lack of instruction on the final determination steps,

### CODEX COMMITTEE ON CONTAMINANTS IN FOODS (CCCF16)

### Sampling Plans Provisions in the General Standard for Contaminants in Food and Feed (CXS 193-1995)

The PWG reviewed the sampling plans for aflatoxin and the numeric performance Criteria. It was noted that the sampling plan was consistent with the plans established for other mycotoxins.

The PWG recommended;

Endorsement of the sampling plan

Clarification to CCCF, that upon the completion off the revisions of the General Guidelines on Sampling, the plan should be evaluated to determine if it was still within the guidlelines.

In general, the PWG agreed with the sum of components approach, but it was noted that the use of a footnote in the table referred by CCCF, led to the creation of multiple numeric criteria for each commodity. In an attempt to remedy that situation and develop a single set of criteria for each commodity some edits were made to the table provided by CCCF. A number of interested delegations have reviewed the table, but the PWG has not. The table is presented in Appendix VIII for review and potential endorsement by the committee.

Additionally, if the numeric criteria are endorsed, it has been recommended by some delegations that there be a change to the Information Document on Sum of Components, in order to reflect this new example. The PWG was generally in favor of the idea, but has not reviewed the new text.

The PWG recommends

Review of the numeric criteria table in Appendix VIII

Review by the committee of the following text and consideration to add it to the end of the Information Document on Sum of Components if the table in Appendix VIII is endorsed.

"If the components included in the ML definition are not present in constant ratios and where the inclusion of weighting factors of the individual components results in LOD/LOQ values or minimum applicable range that cannot be validated, ML/n should be used to determine the criterion for LOD.(e.g. 1/5\*ML/n) and for LOQ (e.g. 2/5\*ML/n) or for the minimum applicable range (e.g.  $ML/n \pm 2s_R$ ), with n being the number of components included in the ML definition."

### URUGUAY, ARGENTINA, AND BRAZIL

The PWG reviewed the method (Annex 2) and method data presented by Uruguay, Argentina and Brazil and considered the endorsement of the method as a Type I and replacement of method ISO 5537 | IDF 26. Delegations supported the endorsement citing concerns about the cost and availability of equipment for ISO 5527 | IDF 26. Other delegations did not support endorsement as a Type I, noting that ISO 5537 | IDF

26 was developed after concerns about and poor performance of method IDF 26A, which used a identical drying temperature at Annex 2.

After extensive discussion a consensus on the endorsement of Annex 2 as Type I method could not be reached in the PWG.

### Determination of lactose and fat content in the Recommended Methods of Analysis and Sampling (CXS 234-1999)

The PWG considered the new scope of ISO 22662 | IDF 198 which has been revised to broaden the scope of matrices to include dairy permeate liquid and dairy permeate powder in light of the recently published Codex standard on Dairy Permeates (CXS 331). A new entry line for CXS 234 is therefore proposed.

The PWG recommended

Endorsement of ISO 22662 | IDF 198 as Type II method for the determination of lactose in dairy permeate powders.

The PWG considered the information from ISO and IDF that standards for the determination of fat in various dairy matrices have been reorganized and revised. The revision of 10 IDF/ISO standards for various dairy matrices led to the combination into 2 standards. The first of them is focused on matrices requiring the use of the Schmid-Bondzynski-Raztlaff principle, while the second one is based on the Röse-Gottlieb principle. The merger of these standards into 2 aims at a full editorial alignment in the description for the concerned matrices and facilitating their utilization by the users of the standards.

The PWG recommended

Endorsement/approval of the change to CXS 234 to reflect the new ISO, IDF standard (Appendix IX).

### **CODEX OBSERVERS**

### Dietary Fibre Provisions in the Recommended Methods of Analysis and Sampling (CXS 234-1999)

The PWG did not consider the dietary fiber method, as the Observer decided to withdraw the submission and present to the CCNFSDU for review and potential referral to CCMAS43.

### **REVIEW OF METHODS OF ANALYSIS IN CXS 234 FATS AND OILS WORKABLE PACKAGE**

The PWG considered the work and comments of the electronic working group on the Fats and Oils workable package (Appendix X).

The PWG recommends

Endorsement of the table (appendix X) including the footnote related to AOCS Cc 12-59 and its listing as a Type IV, even when aType I exists for the same commodity and provision,

## REVIEW OF METHODS OF ANALYSIS IN CXS 234 CEREALS, PULSES AND LEGUMES WORKABLE PACKAGE

The PWG considered the work and comments of the electronic working group on the Cereal Pulses and Legumes workable package (Appendix XI, Group 1, Group 2, Group 3).

Review of the work left the PWG with 2 groups of methods. Group 1 first where final recommendations have been made. Group 2 which require additional follow-up and review. There are also a 3 group of methods which were not reviewed by the PWG. These are methods which have been recommended for consideration for endorsement. These methods maybe suitable replacements for method currently in CXS 234, but as was the procedure with the Dairy Workable Package, these will need to be submitted to the endorsement working group at a future CCMAS.

The PWG recommends

Endorsement of the methods in Group 1

Further review of the methods in Group 2, either through a re-established EWG or through PWG at CCMAS43

Communication to interested parties that the method submission process, including the method template should be used to submit a method for review and potential endorsement by the working group on endorsement.

## REVIEW OF METHODS OF ANALYSIS IN CXS 234 PROCESSED FRUIT AND VEGETABLE WORKABLE PACKAGE

The PWG considered the work and comments of the electronic working group on the Processed Fruit and Vegetable workable package (Appendix XII, Group 1, Group 2).

Group I contains the results of the EWG and revisions endorsed by the PWG.

- a. There are several provisions for which numeric performance criteria can be created, and this was recommended by some member countries. These criteria can be developed over the next year to be considered at a future CCMAS. In the meantime, the revised entries should stay in CXS 234.
- b. Some CAC/RM methods and some methods included in the related commodity standards are listed in the revised table. These CAC/RM methods and methods in commodity standards are to be moved into CXS 234.

Group 2 II contains two items for further consideration:

c. The provision for tin (Sn), which has a ML of 250 mg/kg (CXS 193) and applies to Canned foods (other than beverages). The PWG agreed to keep the entry as is for the time being and develop numeric performance criteria to be endorsed at a future CCMAS, as well as considered the commodity name since there is a different ML for canned beverages which may be confusing.

The method for mineral oil in raisins (CAC/RM 51) cannot be found in the STANDARD FOR RAISINS CXS 67-1981\*. Once that method is found, it should be moved into CXS 234

### The PWG recommended

Endorsement of Group I methods and movement of CAC/RM standards to CXS 234

Consideration and development of numeric criteria for provisions in Group 1 methods

Development of numeric criteria for Tin

Other items for consideration

There were a number of overarching issues which arose during the EWG on the workable packages and in the PWG discussion. Although the PWG did not recommend any specific action, it was agreed that the topics would be presented to the Committee for consider on future work by CCMAS. These items included:

- A discussion and decision on the names and format used for the principles identified in CXS 234. The same principle is often identified in different ways, and there is not consistency in what information should be captured in the principle. For example, if the specific detector used should be identified.
- 2. The incorporation and placement of nitrogen conversion factors in CXS 234. It is agreed that CCMAS should not set the conversion factor, but there are different opinions on if the conversation factor should appear in CXS 234 or remain solely in the commodity standard.
- 3. Equivalency of Type I methods.
- 4. The listing of Type IV methods in CXS 234, when a Type I method is listed for the same commodity and provision. At CCMAS42 we have taken the approach that to have both a Type I and Type IV, there should be a justifiable and motivating reason. If this approach is supported by the committee, changes should be made to the CCMAS information document to describe this

situation. If there is a decision to not have Type I and Type IV for the same commodity and provision, changes to the Procedural Manual and CCMAS information document should be made.

## Table I: Numeric performance criteria for lead and cadmium for endorsement and inclusion in the *Recommended Methods of Analysis* and Sampling (CXS 234-1999)

Numeric performance criteria for lead and cadmium in foods

|                                                                                                             |           |               |                                           |                                           | Method per                                     | formance crit                                           | teria           |                                                                  |           |
|-------------------------------------------------------------------------------------------------------------|-----------|---------------|-------------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------------|-----------------|------------------------------------------------------------------|-----------|
| Commodity                                                                                                   | Provision | ML<br>(mg/kg) | Minimum<br>applicable<br>range<br>(mg/kg) | Limit of<br>Detection<br>(LOD)<br>(mg/kg) | Limit of<br>Quantification<br>(LOQ)<br>(mg/kg) | Precision<br>(RSD <sub>R</sub> ) (%)<br>No more<br>than | Recovery<br>(%) | Example of<br>applicable<br>methods<br>that meet<br>the criteria | Principle |
| Natural mineral waters                                                                                      | lead      | 0.01          | 0.006 - 0.014                             | 0.002                                     | 0.004                                          | 44                                                      | 60-115%         |                                                                  |           |
| Infant formula, formula<br>for special medical<br>purposes intended for<br>infants and follow-up<br>formula | lead      | 0.01          | 0.006 - 0.014                             | 0.002                                     | 0.004                                          | 44                                                      | 60-115%         |                                                                  |           |
| Milk                                                                                                        | lead      | 0.02          | 0.011 - 0.029                             | 0.004                                     | 0.008                                          | 44                                                      | 60-115%         |                                                                  |           |
| Secondary milk<br>products                                                                                  | lead      | 0.02          | 0.011 - 0.029                             | 0.004                                     | 0.008                                          | 44                                                      | 60-115%         |                                                                  |           |
| Fruit juices, except<br>juices exclusively from<br>berries and other small<br>fruits                        | lead      | 0.03          | 0.017 - 0.043                             | 0.006                                     | 0.012                                          | 44                                                      | 60-115%         |                                                                  |           |
| Fat spreads and<br>blended spreads                                                                          | lead      | 0.04          | 0.022 - 0.058                             | 0.008                                     | 0.016                                          | 44                                                      | 60-115%         |                                                                  |           |
| Grape juice                                                                                                 | lead      | 0.04          | 0.022 - 0.058                             | 0.008                                     | 0.016                                          | 44                                                      | 60-115%         |                                                                  |           |
| Canned chestnuts and canned chestnuts puree                                                                 | lead      | 0.05          | 0.028 - 0.072                             | 0.010                                     | 0.020                                          | 44                                                      | 60-115%         |                                                                  |           |

9

Appendix I

| Fruit juices obtained<br>exclusively from berries<br>and other small fruits,<br>except grape juice | lead | 0.05 | 0.028 - 0.072 | 0.010 | 0.020 | 44 | 60-115% |  |
|----------------------------------------------------------------------------------------------------|------|------|---------------|-------|-------|----|---------|--|
| Fruiting vegetables,<br>except fungi and<br>mushrooms                                              | lead | 0.05 | 0.028 - 0.072 | 0.010 | 0.020 | 44 | 60-115% |  |
| Preserved tomatoes                                                                                 | lead | 0.05 | 0.028 - 0.072 | 0.010 | 0.020 | 44 | 60-115% |  |
| Edible fats and oils                                                                               | lead | 0.08 | 0.045 - 0.115 | 0.016 | 0.032 | 44 | 60-115% |  |
| Berries and other small<br>fruits, except cranberry,<br>currant, and elderberry                    | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Brassica vegetables,<br>except kale and leafy<br>Brassica vegetables                               | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Bulb vegetables                                                                                    | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Canned fruits                                                                                      | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Canned vegetables                                                                                  | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Fruits, except cranberry, currants, and elderberry                                                 | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Legume vegetables                                                                                  | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Meat and fat of poultry                                                                            | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Meat of cattle, pigs and sheep                                                                     | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Pickled cucumbers<br>(cucumber pickles)                                                            | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Poultry, edible offal of                                                                           | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |
| Pulses                                                                                             | lead | 0.1  | 0.03 - 0.17   | 0.01  | 0.02  | 44 | 80-110% |  |

| Root and tuber<br>vegetables                                                                                                                                                                                           | lead | 0.1  | 0.03 - 0.17        | 0.01  | 0.02  | 44 | 80-110% |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------------------|-------|-------|----|---------|--|
| Wine from grapes<br>harvested after July<br>2019                                                                                                                                                                       | lead | 0.1  | 0.03 - 0.17        | 0.01  | 0.02  | 44 | 80-110% |  |
| Fortified / Liqueur wine<br>from grapes harvested<br>after 2019                                                                                                                                                        | lead | 0.15 | 0.05 - 0.25        | 0.015 | 0.03  | 43 | 80-110% |  |
| Pig, edible offal of                                                                                                                                                                                                   | lead | 0.15 | 0.05 - 0.25        | 0.015 | 0.03  | 43 | 80-110% |  |
| Cattle, edible offal of                                                                                                                                                                                                | lead | 0.2  | 0.08 - 0.32        | 0.02  | 0.04  | 41 | 80-110% |  |
| Cereal grains, except<br>buckwheat, cañihua and<br>quinoa                                                                                                                                                              | lead | 0.2  | 0.08 - 0.32        | 0.02  | 0.04  | 41 | 80-110% |  |
| Cranberry                                                                                                                                                                                                              | lead | 0.2  | 0.08 - 0.32        | 0.02  | 0.04  | 41 | 80-110% |  |
| Currants                                                                                                                                                                                                               | lead | 0.2  | 0.08 - 0.32        | 0.02  | 0.04  | 41 | 80-110% |  |
| Elderberry                                                                                                                                                                                                             | lead | 0.2  | 0.08 - 0.32        | 0.02  | 0.04  | 41 | 80-110% |  |
| Wine (wine and fortified<br>/ liqueur wine) made<br>from grapes harvested<br>before July 2019                                                                                                                          | lead | 0.2  | 0.08 - 0.32        | 0.02  | 0.040 | 41 | 80-110% |  |
| Fish                                                                                                                                                                                                                   | lead | 0.3  | 0.13 <u>-</u> 0.47 | 0.03  | 0.06  | 38 | 80-110% |  |
| Fresh farmed<br>mushrooms (common<br>mushrooms ( <i>Agaricus</i><br><i>bisporous</i> ), shiitake<br>mushrooms ( <i>Lentinula</i><br><i>edodes</i> ), and oyster<br>mushrooms ( <i>Pleurotus</i><br><i>ostreatus</i> )) | lead | 0.3  | 0.13 - 0.47        | 0.03  | 0.06  | 38 | 80-110% |  |
| Leafy vegetables,<br>except spinach                                                                                                                                                                                    | lead | 0.3  | 0.13 - 0.47        | 0.03  | 0.06  | 38 | 80-110% |  |

11

| Jams, jellies, and marmalades                                          | lead    | 0.4   | 0.18 - 0.62        | 0.04   | 0.08   | 37 | 80-110% |  |
|------------------------------------------------------------------------|---------|-------|--------------------|--------|--------|----|---------|--|
| Mango chutney                                                          | lead    | 0.4   | 0.18 - 0.62        | 0.04   | 0.08   | 37 | 80-110% |  |
| Table olives                                                           | lead    | 0.4   | 0.18 - 0.62        | 0.04   | 0.08   | 37 | 80-110% |  |
| Salt, food grade                                                       | lead    | 1     | 0.5 - 1.5          | 0.1    | 0.2    | 32 | 80-110% |  |
| Natural mineral waters                                                 | cadmium | 0.003 | 0.0017 -<br>0.0043 | 0.0006 | 0.0012 | 44 | 40-120% |  |
| Brassica vegetables,<br>except Brassica leafy<br>vegetables            | cadmium | 0.05  | 0.03 - 0.07        | 0.01   | 0.02   | 44 | 60-115% |  |
| Bulb vegetables                                                        | cadmium | 0.05  | 0.03 - 0.07        | 0.01   | 0.02   | 44 | 60-115% |  |
| Fruiting vegetables,<br>except tomatoes and<br>edible fungi            | cadmium | 0.05  | 0.03 - 0.07        | 0.01   | 0.02   | 44 | 60-115% |  |
| Cereal grains, except<br>buckwheat, cañihua,<br>quinoa, wheat and rice | cadmium | 0.1   | 0.03 - 0.17        | 0.01   | 0.02   | 44 | 80-110% |  |
| Legume vegetables                                                      | cadmium | 0.1   | 0.03 - 0.17        | 0.01   | 0.02   | 44 | 80-110% |  |
| Pulses, except soya<br>bean (dry)                                      | cadmium | 0.1   | 0.03 - 0.17        | 0.01   | 0.02   | 44 | 80-110% |  |
| Root and tuber<br>vegetables, except<br>celeriac                       | cadmium | 0.1   | 0.03 - 0.17        | 0.01   | 0.02   | 44 | 80-110% |  |
| Stalk and stem vegetables                                              | cadmium | 0.1   | 0.03 - 0.17        | 0.01   | 0.02   | 44 | 80-110% |  |
| Leafy vegetables                                                       | cadmium | 0.2   | 0.08 - 0.32        | 0.02   | 0.04   | 41 | 80-110% |  |
| Wheat (common wheat,<br>durum wheat, spelt and<br>emmer)               | cadmium | 0.2   | 0.08 - 0.32        | 0.02   | 0.04   | 41 | 80-110% |  |

12

| Chocolate containing or<br>declaring < 30% total<br>cocoa solids on a dry<br>matter basis                                                                                                                                                                                  | cadmium | 0.3 | 0.13 - 0.47 | 0.03 | 0.06 | 38 | 80-110% |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-------------|------|------|----|---------|--|
| Rice, polished                                                                                                                                                                                                                                                             | cadmium | 0.4 | 0.18 - 0.62 | 0.04 | 0.08 | 37 | 80-110% |  |
| Salt, food grade                                                                                                                                                                                                                                                           | cadmium | 0.5 | 0.23 - 0.77 | 0.05 | 0.10 | 36 | 80-110% |  |
| Chocolate containing or<br>declaring <u>&gt;</u> 30% to<br><50% total cocoa solids<br>on a dry matter basis                                                                                                                                                                | cadmium | 0.7 | 0.35 - 1.05 | 0.07 | 0.14 | 34 | 80-110% |  |
| Chocolate containing or<br>declaring ≥ 50% to <<br>70% total cocoa solids<br>on a dry matter basis,<br>including sweet<br>chocolate, Gianduja<br>chocolate, semi – bitter<br>table chocolate,<br>Vermicelli chocolate /<br>chocolate flakes, and<br>bitter table chocolate | cadmium | 0.8 | 0.40 - 1.20 | 0.08 | 0.16 | 33 | 80-110% |  |
| Chocolate containing or<br>declaring ≥ 70% total<br>cocoa solids on a dry<br>matter basis, including<br>sweet chocolate,<br>Gianduja chocolate,<br>semi – bitter table<br>chocolate, Vermicelli<br>chocolate / chocolate<br>flakes, and bitter table                       | cadmium | 0.9 | 0.46 - 1.34 | 0.09 | 0.18 | 33 | 80-110% |  |
| Cephalopods                                                                                                                                                                                                                                                                | cadmium | 2   | 1.1 - 2.9   | 0.2  | 0.4  | 29 | 80-110% |  |
| Marine bivalve mollusks<br>(clams, cockles and                                                                                                                                                                                                                             | cadmium | 2   | 1.1 - 2.9   | 0.2  | 0.4  | 29 | 80-110% |  |

13

| mussels), except<br>oysters and scallops |  |  |  |  |  |
|------------------------------------------|--|--|--|--|--|
|                                          |  |  |  |  |  |

Table II: Removal of analytical methods for lead from CXS 234 and transfer to the column of "example of applicable methods that meet the criteria", if they meet the performance criteria

| Commodity                          | Provision | Method                                           | Principle                                                           | Туре |
|------------------------------------|-----------|--------------------------------------------------|---------------------------------------------------------------------|------|
| Fats and Oils and Related Products |           |                                                  |                                                                     |      |
| Fats and Oils (all)                | Lead      | AOAC 994.02 / ISO 12193 / AOCS Ca 18c-91         | Atomic absorption<br>spectrophotometry (direct<br>graphite furnace) | II   |
| Named Vegetable Oils               | Lead      | AOAC 994.02 / ISO 12193 / AOCS Ca 18c-91         | Atomic absorption<br>spectrophotometry (direct<br>graphite furnace) | II   |
| Olive Oils and Olive Pomace Oils   | Lead      | AOAC 994.02 or ISO 12193 or AOCS Ca 18c-91       | AAS                                                                 |      |
| Butter                             | Lead      | AOAC 972.25 (Codex general method)               | Atomic absorption spectrophotometry                                 | IV   |
| Edible casein products             | Lead      | NMKL 139 (Codex general method)<br>AOAC 999.11   | Atomic absorption spectrophotometry                                 | IV   |
| Edible casein products             | Lead      | NMKL 161 /<br>AOAC 999.10                        | Atomic absorption spectrophotometry                                 | IV   |
| Edible casein products             | Lead      | ISO/TS 6733   IDF/RM 133                         | Spectrophotometry (1,5-<br>diphenylthiocarbazone)                   | IV   |
| Processed Fruits and Vegetables    |           |                                                  |                                                                     |      |
| Table olives                       | Lead      | AOAC 999.11   NMKL 139 (Codex general<br>method) | AAS (Flame absorption)                                              | II   |
| Miscellaneous Products             |           |                                                  |                                                                     |      |
| Food grade salt                    | Lead      | EuSalt/AS 015                                    | ICP-OES                                                             |      |
| Food grade salt                    | Lead      | EuSalt/AS 013                                    | Atomic absorption spectrophotometry                                 | IV   |

Appendix I

### Appendix II

New texts added are shown in **bold/underlined** font. Texts proposed for deletion are shown in strikethrough.

| Commodity                                                                                                                   | Provision                                                                                                                                                                                                           | Method                                  | Principle                                                                           | Туре     |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------|----------|
| Food containing fat<br>(e.g., raw meat and<br>chicken, cheese,<br>fruits)                                                   | Detection of irradiated<br>food <u>- Detection of</u><br><u>radiation-induced</u><br><u>hydrocarbons</u>                                                                                                            | EN 1784 <del>: 1996</del>               | Gas chromatographic<br>analysis of<br>hydrocarbons                                  | Type II  |
| Food containing fat<br>(e.g., raw meat and<br>chicken, liquid whole<br>egg)                                                 | Detection of irradiated<br>food <u>- Detection of</u><br><u>radiation-induced 2-</u><br><u>alkylcyclobutanones</u>                                                                                                  | EN 1785 <sup>1</sup> <del>: 1996</del>  | Gas chromatographic/<br>mass spectrometric<br>analysis of 2-<br>alkylcyclobutanones | Type III |
| Food containing bone                                                                                                        | Detection of irradiated<br>food - <u>Radiation</u><br><u>induced Electron</u><br><u>Spin Resonance</u><br>(ESR) signal<br><u>attributed to</u><br><u>hydroxyapatite</u><br>(principal component<br><u>of bones)</u> | EN 1786 <del>: 1996</del>               | ESR spectroscopy                                                                    | Type II  |
| Food containing<br>cellulose <u>(e.g., nuts</u><br><u>and spices)</u>                                                       | Detection of irradiated<br>food <u>- Radiation</u><br><u>induced Electron</u><br><u>Spin Resonance</u><br>(ESR) <u>signal</u><br><u>attributed to</u><br><u>crystalline cellulose</u>                               | EN 1787 <del>: 2000</del>               | ESR spectroscopy                                                                    | Type II  |
| Food containing<br>silicate minerals <u>(e.g.,</u><br><u>herbs, spices, their</u><br><u>mixtures and</u><br><u>shrimps)</u> | Detection of irradiated<br>food -<br><u>Thermoluminescence</u><br>glow ratio used to<br>indicate the<br>irradiation treatment<br>of the food                                                                        | EN 1788 <del>: 2001</del>               | Thermoluminescence                                                                  | Type II  |
| Food containing<br>silicate minerals <u>(e.g.,</u><br><u>shellfish, herbs,</u><br>spices, seasonings)                       | Detection of irradiated<br>food <u>- Measurement</u><br>of photostimulated<br>luminescence<br>intensity                                                                                                             | EN 13751 <sup>2</sup> <del>: 2002</del> | Photostimulated<br>luminescence                                                     | Type III |
| Food containing<br>crystalline sugar <u>(e.g.,</u><br><u>dried fruits and</u><br><u>raisins)</u>                            | Detection of irradiated<br>food <u>- Radiation</u><br><u>induced Electron</u><br><u>Spin Resonance</u><br>(ESR) signal<br><u>attributed to</u><br><u>crystalline sugar</u>                                          | EN 13708 <del>: 2001</del>              | ESR spectroscopy                                                                    | Type II  |

| Commodity                                                                                                                                          | Provision                                                                                                                                                    | Method                                                   | Principle                                                                                               | Туре     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------|
| Herb <u><b>s and</b> spices <del>and</del><br/><del>raw minced meat <sup>3</sup></del></u>                                                         | Detection of irradiated<br>food <u>- Difference</u><br><u>between total</u><br><u>microorganism count</u><br><u>and viable</u><br><u>microorganism count</u> | EN 13783 <del>: 2001</del><br>NMKL 231 <del>(2002)</del> | Direct Epifluorescent<br>Filter<br>Technique/Aerobic<br>Plate Count<br>(DEFT/APC)<br>(screening method) | Type III |
| Food containing DNA<br>(e.g., food products,<br>both of animal and<br>plant origin such as<br>various meats, seeds,<br>dried fruits and<br>spices) | Detection of irradiated<br>food <u>- Detection of</u><br><u>DNA fragmentation</u><br><u>presumptive to</u><br><u>irradiation treatment</u> .                 | EN 13784 <del>:2001</del>                                | DNA comet assay<br>(screening method)                                                                   | Type III |

Notes

<sup>1</sup> One Member noted that 2-alkylcyclobutanone was also present in some non-irradiated foods and hence EN1785 may need further consideration as a method for detection of irradiated foods.

<sup>2</sup> Consideration should be given to whether EN13751 should be specified as a screening method.

<sup>3</sup>No information was found on validation of the method for this commodity.

### Appendix III

### CODEX COMMITTEE ON NUTRITION AND FOODS FOR SPECIAL DIETARY USES (CCNFSDU43)

Methods of analysis for provisions in the Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants (CXS 72-1981)

| Commodity         | Provision                                                                                                                             | Method                                              | Principle                  | Туре |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|------|
|                   | Vitamin B12                                                                                                                           | AOAC 2014.02                                        | LC-UV                      | ш    |
| Infant<br>Formula | Total amino acids (excluding taurine<br>and tryptophan)<br>For use according to Section 3.1.3 (a)<br>footnotes 3 and 4 of CXS 72-1981 | AOAC 2018.06 / ISO 4214  <br>IDF 254 /AACC 07-50.01 | <u>uhplc-</u><br><u>uv</u> | Ш    |
|                   | <u>Tryptophan</u><br>For use according to Section 3.1.3 (a)<br>footnotes 3 and 4 of CXS 72-1981                                       | <u>AOAC 2017.03</u>                                 | HPLC                       | Ш    |

### CODEX COMMITTEE ON SPICES AND CULINARY HERBS (CCSCH5)

## Methods of analysis for provisions in the Standard for Dried Roots, Rhizomes and Bulbs – Dried or Dehydrated Ginger (CXS 343-2021)

| Parameter                                                  | Method                                                                                                                                                | Principle                                                                                    | Type <sup>1</sup> |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|
| Moisture                                                   | ISO 939                                                                                                                                               | Distillation                                                                                 | I                 |
| Total Ash <del>-on</del><br><u>(</u> dry basis <u>)</u>    | ISO 939 and ISO 928                                                                                                                                   | <u>Calculation from</u><br><u>moisture and ash</u><br>Distillation and Gravimetry            | I                 |
| Acid Insoluble Ash<br><del>on </del> (dry basis <u>)</u>   | ISO 939 and ISO 930                                                                                                                                   | <u>Calculation from</u><br><u>moisture and ash</u><br>Distillation and Gravimetry            | I                 |
| Volatile Oil <del>-on</del><br><u>(</u> dry basis <u>)</u> | ISO 939 and ISO 6571                                                                                                                                  | <u>Calculation from</u><br><u>moisture and volatile oil</u><br>Distillation and distillation | I                 |
| Extraneous Matter                                          | ISO 927                                                                                                                                               | Visual Examination<br>followed byand Gravimetry                                              | I                 |
| Foreign Matter                                             | ISO 927                                                                                                                                               | Visual Examination<br>followed by <u>and</u> Gravimetry                                      | I                 |
| Insect Damage                                              | Method V-8 Spices, Condiments,<br>Flavours and Crude Drugs<br>(Macroanalytical Procedure Manual)<br><u>MPM: V-8. Spices</u> ISO 927                   | Visual Examination                                                                           | ŀ₩Į               |
| Whole dead insect                                          | ISO 927                                                                                                                                               | Visual examination <u>and</u><br><u>Gravimetry</u>                                           | I                 |
| Mammalian/ Other<br>Excreta                                | MPM V 8 Spices, Condiments,<br>Flavours and Crude Drugs<br>(Macroanalytical Procedure Manual)<br><u>MPM: V-8. Spices (For whole)ISO</u><br><u>927</u> | Visual Examination<br>followed by <u>and</u> Gravimetry                                      | IV                |
| Mould visible                                              | Method V-8 Spices, Condiments,<br>Flavours and Crude Drugs<br>(Macroanalytical Procedure Manual)<br><u>MPM: V-8, Spices</u> ISO 927                   | Visual examination                                                                           | IV                |
| Live Incent                                                | ISO 927                                                                                                                                               | Visual Examination                                                                           | IV                |
| Live Insect                                                | AOAC 960.51                                                                                                                                           | Visual Examination                                                                           | ₩                 |
| Calcium (as oxide)<br><del>on (</del> dry basis <u>)</u>   | ISO 1003, Annex A                                                                                                                                     | Chemical reaction followed by gravimetry                                                     | IV                |
| SO <sub>2</sub>                                            | AOAC 963.20                                                                                                                                           | Colorimeter                                                                                  | Ш                 |

<sup>1</sup> According to the definition of "types of method of analysis" as per Codex Procedural Manual Section II

| Parameter                           | Method                                                                                       | Principle                                                                                | Type <sup>1</sup> |
|-------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|
| Moisture                            | ASTA 2.0                                                                                     | Distillation                                                                             | I                 |
| Volatile oil<br><u>(dry basis)</u>  | ASTA 2.0 and ISO 6571                                                                        | Calculation from moisture<br>and ash<br>Distillation and Distillation<br>Volumetry       | I                 |
| Total ash (dry basis)               | ASTA 2.0 and ISO 928                                                                         | <u>Calculation from moisture</u><br><u>and ash</u><br><u>Distillation and</u> Gravimetry | I                 |
| Acid Insoluble Ash<br>(dry basis)   | ASTA 2.0 and ISO 930                                                                         | <u>Calculation from moisture</u><br><u>and ash</u><br><u>Distillation and</u> Gravimetry | 1                 |
| Extraneous matter                   | ISO 927                                                                                      | Visual <u>examination and</u><br>Gravimetry                                              | 1                 |
| Foreign matter                      | ISO 927                                                                                      | Visual <u>examination and</u><br>Gravimetry                                              | I                 |
| Insect damage                       | ISO 927<br><u>Method V-8 Spices,</u><br><u>Condiments, Flavors and</u><br><u>Crude Drugs</u> | Visual Examination<br>Visual Examination                                                 | I¥                |
| Insects/Excreta/Insect<br>fragments | ISO 927                                                                                      | Visual Examination <u>and</u><br><u>Gravimetry</u>                                       | I¥                |
| Crude fibre                         | ISO 5498                                                                                     | Gravimetry                                                                               | I                 |
| Mould visible                       | Method V-8 Spices,<br>Condiments, Flavours and<br>Crude DrugsISO 927                         | Visual Examination                                                                       | I¥                |
| Mould visible                       | <u>Method V-8 Spices,</u><br><u>Condiments, Flavours and</u><br><u>Crude Drugs</u>           | Visual Examination                                                                       | <u>IV</u>         |
| Live insect                         | ISO 927                                                                                      | Visual Examination                                                                       | I¥                |
| Mammalian or/and Other<br>excreta   | <u>Method V-8 Spices,</u><br><u>Condiments, Flavours and</u><br><u>Crude Drugs</u> ISO 927   | Visual Examination                                                                       | ₩Į                |

<sup>1</sup> According to the definition of "types of method of analysis" as per Codex Procedural Manual Section II

\*Latest edition or version of the approved method should be used

Methods of analysis for provisions in the Standard for Dried Leaves - Dried Basil (CXS 345-2021)

| Parameter                                                                                                                                                                                  | Method                                                                                                                                                                | Principle                                                                                   | Туре        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|
| Moisture                                                                                                                                                                                   | ISO 939                                                                                                                                                               | Distillation                                                                                | I           |
| Total Ash <u> (dry</u><br><u>basis)</u>                                                                                                                                                    |                                                                                                                                                                       |                                                                                             | I           |
| Acid Insoluble<br>Ash <u>(dry basis)</u>                                                                                                                                                   | ISO <u>928 939</u> and ISO 930                                                                                                                                        | <u>Calculation from</u><br><u>moisture and ash</u><br><u>Distillation and</u><br>Gravimetry | I           |
| Volatile Oil <u>(dry</u><br><u>basis)</u>                                                                                                                                                  |                                                                                                                                                                       |                                                                                             | I           |
| Extraneous<br>Matter                                                                                                                                                                       | ISO 927                                                                                                                                                               |                                                                                             | I           |
| Foreign Matter                                                                                                                                                                             | Foreign Matter ISO 927                                                                                                                                                |                                                                                             | I           |
| Insect Damage (Macroanalytical Procedure Manual<br>FDA Technical Bulletin Number<br>5)ISO 927                                                                                              |                                                                                                                                                                       | Visual Examination                                                                          | IV          |
| Insects/Excreta/I<br>nsect Fragments                                                                                                                                                       | Method appropriate for particular<br>spice from AOAC Chapter 16,<br>subchapter 14 <u>ISO 927</u>                                                                      | Visual Examination <u>and</u><br><u>Gravimetry</u>                                          | ŀ₩ <u>I</u> |
| Mould damage<br><u>Method V-8 Spices, Condiments,</u><br><u>Flavours and Crude Drugs</u><br>(Macroanalytical Procedure Manual,<br><u>FDA Technical Bulletin Number</u><br><u>5)ISO 927</u> |                                                                                                                                                                       | Visual examination (for<br>whole)                                                           | I¥ <u>?</u> |
| Mammalian<br>Excreta,<br>And Other<br>Excreta                                                                                                                                              | ISOMethod V-8 Spices, Condiments,<br>Flavours and Crude Drugs<br>(Macroanalytical Procedure Manual,<br>USFDA, Technical Bulletin V.39 B)<br><u>927</u><br>(For whole) | Visual Examination <u>and</u><br><u>Gravimetry</u>                                          | I           |

\*Latest edition or version of the approved method should be used.

<sup>2</sup> According to the definition of "types of method of analysis" as per Codex Procedural Manual Section II.

### CODEX COMMITTEE ON SPICES AND CULINARY HERBS (CCSCH6)

### Methods of analysis for provisions in the Standard for Dried Floral Parts – Saffron (CXS 351-2021)

| Provision                                                            | Method                                                                                                                                                                                                                                     | Principle                                                                                                   | Тур                   |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------|
| Moisture                                                             | ISO 3632-2                                                                                                                                                                                                                                 | Gravimetry                                                                                                  | Ι                     |
| Total Ash <u> (dry basis)</u>                                        | ISO 3632-2 and ISO 928                                                                                                                                                                                                                     | <u>Calculation from</u><br><u>moisture and ash</u><br>Gravimetry <u>and</u><br><u>Gravimetry</u>            | I                     |
| Acid Insoluble Ash <u>(dry basis)</u>                                | ISO 3632-2 and ISO 930                                                                                                                                                                                                                     | <u>Calculation from</u><br><u>moisture and ash</u><br>Gravimetry <u>and</u><br><u>Gravimetry</u>            | I                     |
| Water soluble solidsSoluble<br>extract in cold water? (dry<br>basis) | ISO 3632-2 and ISO 941                                                                                                                                                                                                                     | <u>Calculation from</u><br><u>moisture and ash</u><br><u>Gravimetry and</u><br><u>Gravimetry</u> Extraction | I <u>V?</u>           |
| Taste strength (expressed as picrocrocin) $A_{1cm}^{1\%}$ 257 nm     | ISO 3632-2                                                                                                                                                                                                                                 | Absorbance                                                                                                  | I <u>V</u> ¥ <u>?</u> |
| Aroma strength (expressed as safranal) $A_{1cm}^{1\%}$ 330 nm        | ISO 3632-2                                                                                                                                                                                                                                 | Absorbance                                                                                                  | I <u>V?</u> ¥         |
| Coloring strength (expressed as crocin) $A_{1cm}^{1\%}$ 440 nm       | ISO 3632-2                                                                                                                                                                                                                                 | Absorbance                                                                                                  | I <u>V?</u> ¥         |
| Extraneous Matter                                                    | ISO 3632-2                                                                                                                                                                                                                                 | Visual Examination followed by Gravimetry                                                                   | I                     |
| Foreign Matter                                                       | ISO 3632-2                                                                                                                                                                                                                                 | Visual Examination followed by Gravimetry                                                                   | I                     |
| Insect Damage                                                        | ISO 927                                                                                                                                                                                                                                    | Visual Examination followed by Gravimetry                                                                   | I                     |
| Whole dead Insects /Insect<br>Fragments                              | ISO 927                                                                                                                                                                                                                                    | Visual Examination<br>followed by Gravimetry                                                                | I                     |
| Visible mould                                                        | ISO 927Method V-8 Spices,<br>Condiments, Flavors and Crude<br>Drugs (Macro analytical<br>Procedure Manual, FDA<br>Technical Bulletin Number 5)<br>http://www.fda.gov/Food/FoodScie<br>nceResearch/Laoratory<br>Methods/ucm084394.htm#/v-32 | Visual Examination<br>followed by <u>and</u><br>Gravimetry                                                  | I                     |
| Mammalian Excreta                                                    | Macro analytical Procedure<br>Manual, USFDA, Technical<br>Bulletin V.39 B (For whole)ISO<br><u>927</u>                                                                                                                                     | Visual Examination<br>followed byand<br>Gravimetry                                                          | I                     |
| Other Excreta                                                        | AOAC 993.27 (For Ground)                                                                                                                                                                                                                   | Enzymatic Detection                                                                                         | IV                    |

|              |         | Method             |   |
|--------------|---------|--------------------|---|
| Rodent filth | ISO 927 | Visual Examination | I |

<sup>1</sup>Latest edition or version of the approved method should be used

<sup>2</sup> The methods of analysis will be included in CXS 234-1999 after endorsement by CCMAS and the following text replace the Table

"For checking the compliance with this standard, the methods of analysis and sampling contained in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999) relevant to the provisions in this standard, shall be used."

### Methods of analysis for provisions in the Standard for Dried Seeds - Nutmeg (CXS 352-2022)

For checking the compliance with this standard, the methods of analysis and sampling contained in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999) relevant to the provisions in this standard, shall be used.

| Provision                                           | Method <sup>1</sup>                                                                                                                         | Principle                                                                            | Туре |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------|
| Moisture content                                    | ISO 939                                                                                                                                     | Distillation                                                                         | I    |
| Total ash <u>(dry basis)</u>                        | ISO 939 and ISO 928                                                                                                                         | Calculation from<br>moisture and ash<br>Distillation <u>and</u><br>Gravimetry        | I    |
| Acid-insoluble ash <u>(dry basis)</u>               | ISO 939 and ISO 930                                                                                                                         | Calculation from<br>moisture and ash<br>Distillation <u>and</u><br>Gravimetry        | I    |
| Water-insoluble ash <u>(dry basis)</u>              | ISO 939 and ISO 929                                                                                                                         | Calculation from<br>moisture and ash<br>Distillation <u>and</u><br>Gravimetry        | I    |
| Volatile oil content <u>(dry basis)</u>             | ISO 939 and<br>ISO 6571                                                                                                                     | Calculation from<br>moisture and<br>volatile oil<br>Distillation and<br>Distillation | I    |
| Extraneous matter                                   | ISO 927                                                                                                                                     | Visual examination<br>followed by <u>and</u><br><u>G</u> gravimetry                  | I    |
| Foreign matter                                      | ISO 927                                                                                                                                     | Visual examination<br>followed byand<br>g <u>G</u> ravimetry                         | I    |
| Visible mould?                                      | ISO 927                                                                                                                                     | Visual examination<br>f <u>andollowed by</u><br>g <u>G</u> ravimetry                 | I    |
| Insect defiled/infested                             | MPM V-8 Spices,<br>Condiments, Flavours and<br>Crude Drugs A. General<br>methods for spices herbs<br>and botanicals (V-32)ISO<br><u>927</u> | Visual Examination<br>followed byand<br>g <u>G</u> ravimetry                         | I    |
| Dead insect, insect fragments, rodent contamination | ISO 927                                                                                                                                     | Visual examination                                                                   | I    |
| Live insect                                         | ISO 927                                                                                                                                     | Visual examination                                                                   | I    |
| Mammalian and or other excreta                      | ISO 927Macroanalytical<br>Procedure Manual (MPM)<br>USFDA technical bulletin<br>V.41                                                        | Visual examination<br><del>followed by<u>and</u><br/><u>gG</u>ravimetry</del>        | I    |

| Piece of mace | ISO 927 | Visual examination<br>followed byand<br>gGravimetry | I |
|---------------|---------|-----------------------------------------------------|---|
|---------------|---------|-----------------------------------------------------|---|

The methods of analysis will be included in CXS 234-1999 after endorsement by CCMAS

For checking the compliance with this standard, the methods of analysis and sampling contained in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999) relevant to the provisions in this standard, shall be used.

<sup>1</sup> Latest edition or version of the approved methods should be used.

Methods of analysis for the provisions off size, when sized and broken/damaged among the whole to be developed.

| Provision                              | Method <sup>1</sup>                                                                                                                                 | Principles                                                                    | Type <sup>2</sup> |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|
| Moisture                               | ISO 939                                                                                                                                             | Distillation                                                                  | I                 |
| Total Ash <u>(dry</u><br><u>basis)</u> | ISO 939 and<br>ISO 928                                                                                                                              | Calculation from moisture<br>and ash<br>Distillation <u>and</u><br>Gravimetry | Ι                 |
| Acid-insoluble ash<br>(dry basis)      | ISO 939 and<br>ISO 930                                                                                                                              | Calculation from moisture<br>and ash<br>Distillation <u>and</u><br>Gravimetry | Ι                 |
| Pungency<br>Scoville Heat units        | ASTA 21.3                                                                                                                                           | Chromatography                                                                | IV                |
| <u>Pungency</u><br>Scoville Heat units | ISO 3513                                                                                                                                            | Sensory evaluation                                                            | I                 |
| Colour value                           | ISO 7541                                                                                                                                            | Spectrophotometry                                                             | I¥ <u>?</u>       |
| Mammalian<br>excreta                   | ISO 927                                                                                                                                             | Visual examination<br>followed by <u>and</u> Gravimetry<br>(whole)            | I                 |
| Mould damage                           | MPM V-8 Spices,<br>Condiments, Flavours and<br>Crude Drugs A. General<br>methods for spices herbs<br>and botanicals (V-32)ISO<br>927 (for whole)    | Visual Examination <del>(for</del><br><del>whole)</del>                       | I                 |
|                                        | AOAC 945.94 (for Ground)                                                                                                                            | Visual Examination <del>(for</del><br><del>Ground)</del>                      | I                 |
| Insect Damage                          | MPM V-8 Spices,<br>Condiments, Flavours and<br>Crude Drugs A. General<br>methods for spices herbs<br>and botanicals (V-32) <u>ISO</u><br><u>927</u> | Visual Examination<br>followed-by <u>and</u> -Gravimetry                      | I                 |
| Extraneous matter <sup>3</sup>         | ISO 927                                                                                                                                             | Visual Examination<br>followed byand Gravimetry                               | I                 |
| Foreign matter <sup>4</sup>            | ISO 927                                                                                                                                             | Visual Examination<br>followed byand Gravimetry                               | I                 |
| Live insect                            | ISO 927 / <u>?</u><br>AOAC 960.51                                                                                                                   | Visual Examination                                                            | Ι                 |
| Insect filth                           | ISO 927                                                                                                                                             | Visual Examination                                                            | I                 |
| Insect fragments                       | ISO 927                                                                                                                                             | Visual examination counting                                                   | I                 |
| Rodent hair                            | AOAC 978.22 (Ground<br>chilli)<br><del>AOAC 977.25 B (Ground<br/>paprika)</del>                                                                     | Microscopic examination<br>Microscopic examination                            | l<br>t            |
| Rodent hair                            | AOAC 977.25 B (Ground<br>paprika)                                                                                                                   | Microscopic examination                                                       | 1                 |

<sup>1</sup>Latest edition or version of the approved method should be used.

<sup>2</sup>According to the definition of "types of method of analysis" as per Codex Procedural Manual Section II

<sup>3</sup> Vegetative matter associated with the plant from which the product originates but not accepted as part of the final product.

<sup>4</sup> Any visible/detectable objectionable foreign matter or material not usually associated with the natural components of the spice plant, such as sticks, stones, burlap bagging, metal, etc.

The methods of analysis will be included in CXS 234-1999 after endorsement by CCMAS and the following text shall replace the Table

"For checking the compliance with this standard, the methods of analysis and sampling contained in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999) relevant to the provisions in this standard, shall be used

### Methods of analysis for provisions in the draft Standard for Dried Small Cardamom

| Provision                         | Method <sup>1</sup>                                                                                                                                | Principle                                                                                              | Type <sup>2</sup> |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------|
| Moisture                          | ISO 939                                                                                                                                            | Distillation                                                                                           | I                 |
| Total Ash <u>(dry basis)</u>      | ISO 939 and ISO 928                                                                                                                                | Calculation from<br>moisture and ash<br>Distillation and<br>Gravimetry                                 | I                 |
| Acid Insoluble Ash<br>(dry basis) | ISO 939 and ISO 930                                                                                                                                | Calculation from<br>moisture and ash<br>Distillation and<br>Gravimetry                                 | I                 |
| Volatile Oil <u>(dry basis)</u>   | ISO 939 and ISO 6571                                                                                                                               | Calculation from<br>moisture and volatile<br>oil<br>Distillation followed by<br>Distillation Volumetry | I                 |
| Extraneous Matter                 | ISO 927                                                                                                                                            | Visual Examination<br>followed by <u>and</u><br>Gravimetry                                             | I                 |
| Foreign Matter                    | ISO 927                                                                                                                                            | Visual Examination<br>followed by <u>and</u><br>Gravimetry                                             | I                 |
| Insect defiled/infested           | Method V-8 Spices,<br>Condiments, Flavors<br>and Crude Drugs<br>(Macroanalytical<br>Procedure Manual)<br>MPM: V-8. Spices <u>ISO</u><br><u>927</u> | Visual Examination<br>followed by Gravimetry                                                           | I                 |
| Immature and shrivelled capsules  | ISO 927                                                                                                                                            | Visual Examination followed by Gravimetry                                                              | I                 |
| Mammalian or/and<br>other excreta | Method V-8 Spices,<br>Condiments, Flavors<br>and Crude Drugs<br>(Macroanalytical<br>Procedure Manual)<br>MPM: V-8. SpicesISO<br><u>927</u>         | Visual Examination<br>followed by Gravimetry                                                           | I                 |
| Mould visible                     | Method V-8 Spices,<br>Condiments, Flavors<br>and Crude Drugs<br>(Macroanalytical<br>Procedure Manual)<br>MPM: V-8. SpicesISO<br><u>927</u>         | Visual Examination<br>followed by Gravimetry                                                           | I                 |
| Empty and malformed capsules      | IS <u>1907</u> <del>1907:1984</del>                                                                                                                | Visual Examination followed by Gravimetry                                                              | I                 |
| Whole insect<br>Live/dead         | ISO 927                                                                                                                                            | Visual examination followed by Gravimetry                                                              | I                 |

| Light seeds | ISO 927 | Visual examination followed by Gravimetry | I |
|-------------|---------|-------------------------------------------|---|
|-------------|---------|-------------------------------------------|---|

<sup>1</sup>Latest edition or version of the approved method should be used

<sup>2</sup> According to the definition of "types of method of analysis" as per Codex Procedural Manual Section II

\* The methods of analysis will be included in CXS 234-1999 after endorsement by CCMAS and the following text replace the Table

"For checking the compliance with this standard, the methods of analysis and sampling contained in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999) relevant to the provisions in this standard, shall be used"

| SI. No | Spices                                                 | Provision                                    | Method <sup>1,2</sup>                                                                                                                            | Principles                                              | Туре        |
|--------|--------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|
|        |                                                        | Moisture                                     | ISO 939                                                                                                                                          | Distillation                                            | Ι           |
|        |                                                        | Total ash <u>(dry basis)</u>                 | ISO 939 and ISO 928                                                                                                                              | Calculation from moisture and ash                       | I           |
|        |                                                        | Acid- insoluble <u>(dry</u><br><u>basis)</u> | ISO 939 and ISO 930                                                                                                                              | Calculation from<br>moisture and ash                    | I           |
|        |                                                        | Volatile oils <u>(dry basis)</u>             | ISO 939 and ISO 6571                                                                                                                             | Calculation from<br>moisture and volatile oil           | Ι           |
|        |                                                        | Extraneous matter                            | ISO 927                                                                                                                                          | Visual examination<br>followed byand                    | Ι           |
|        |                                                        | Foreign matter                               | ISO 927                                                                                                                                          | Visual examination<br>followed byand                    | I           |
|        | Mould visible<br>Dried<br>Allspice<br>Dried<br>Juniper | Mould visible                                | ISO 927                                                                                                                                          | Visual examination<br>followed byand                    | Ι           |
| 1      |                                                        |                                              | MPM V-8 Spices,<br>Condiments, Flavors<br>and Crude Drugs                                                                                        |                                                         |             |
|        | Berries<br>Dried Star<br>Anise                         | Berries<br>Dried Star                        | A. General methods<br>for spices herbs<br>and botanicals<br>( <del>V 32)</del>                                                                   |                                                         |             |
|        |                                                        | Mammalian excreta                            | https://www.f<br>da.gov/food/l<br>laboratory-methods-<br>food/mpm-v-8-spices-<br>condiments-flavors-<br>and-crude-drugs <u>ISO</u><br><u>927</u> | Visual examination<br>followed by <u>and</u> gravimetry | I           |
|        |                                                        |                                              | (Applicable to whole form of the spices)                                                                                                         |                                                         |             |
|        |                                                        | Whole dead insect                            | ISO 927                                                                                                                                          | Visual examination                                      | l <u>?</u>  |
|        |                                                        |                                              | AOAC 969.44                                                                                                                                      | Flotation method                                        | IV <u>?</u> |
|        |                                                        | Insect fragments                             | ISO 927                                                                                                                                          | Visual examination counting                             | I <u>?</u>  |
|        |                                                        |                                              | AOAC 975.49                                                                                                                                      | Flotation method                                        | IV <u>?</u> |

Methods of analysis for provisions in the draft Standard for Spices Derived From Dried Fruits and Berries (Part A - Allspice, Juniper berry And Star anise)

| SI. No | Spices                                                                     | Provision                                                                               | Method <sup>1,2</sup>                                                                                                                                                                         | Principles                                                                             | Туре |
|--------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|
|        |                                                                            | Insect damage                                                                           | MPM-V-8<br>Spices, Condiments,<br>Flavours and Crude<br>Drugs<br>General methods for<br>spices herbs and<br>botanicals (V-32)ISO<br><u>927</u><br>(Applicable to whole<br>form of the spices) | Visual examination<br>followed byand<br>gGravimetry or counting                        | I    |
|        |                                                                            | Mould damage                                                                            | MPM-V-8<br>Spices, Condiments,<br>Flavours and Crude<br>Drugs<br>General methods for<br>spices herbs and<br>botanicals (V-32)ISO<br>927<br>(Applicable to whole<br>form of the spices)        | Visual examination<br><del>followed byand</del><br><del>gG</del> ravimetry or counting | I    |
|        | Allspice<br>(whole,<br>cracked/<br>pieces)                                 | Filth (list all the filth<br>here-for example -<br>mammalian excreta <u>?</u> )         | AOAC 965.40                                                                                                                                                                                   | Flotation                                                                              | I    |
| 2      | Allspice<br>(Ground/<br>powdered)                                          | Light filth (list all the<br>filth here-for<br>example- mammalian<br>excreta <u>?</u> ) | AOAC 981.21                                                                                                                                                                                   | Flotation                                                                              | I    |
| 3      | Juniper<br>Berries,<br>Star Anise,<br>(cut/broken,<br>ground/<br>powdered) | Light filth (list all the<br>filth here-for<br>example- mammalian<br>excreta)           | AOAC 975.49 <u>?</u>                                                                                                                                                                          | Flotation                                                                              | I    |

<sup>1</sup>Latest edition or version of the approved method should be used

<sup>2</sup> The methods of analysis will be included in CXS 234-1999 after endorsement by CCMAS and the following text replace the Table

"For checking the compliance with this standard, the methods of analysis and sampling contained in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999) relevant to the provisions in this standard, shall be used."

### APPENDIX V

### FAO/WHO COORDINATING COMMITTEE FOR AFRICA (CCAFRICA24)

Methods of analysis and sampling for provisions in the Regional Standard for Dried Meat (CXS 350-2022)

### 1. METHODS OF ANALYSIS AND SAMPLING

### 8.1 Methods of Analysis<sup>6</sup>

| Provision                                                             | Method       | Principles                           | Туре |  |  |
|-----------------------------------------------------------------------|--------------|--------------------------------------|------|--|--|
| Moisture Content                                                      | AOAC 950.46B | Gravimetry                           | I    |  |  |
| Total Fat                                                             | ISO 1443     | Gravimetry                           | I    |  |  |
| Nitrogen Protein*<br>*nitrogen-to-protein conversion<br>factor = 6.25 | ISO 937*     | <u>Calculation and</u><br>Titrimetry | I    |  |  |
| Chloride as Sodium Chloride (≥ 1.0%)                                  | ISO 1841-1   | <u>Titrimetry</u> (Volhard method)   | 111  |  |  |
| Chloride as Sodium Chloride (≥ 0.25%)                                 | ISO 1841-2   | <u>Titrimetry</u><br>(Potentiometry) | II   |  |  |
| Ash                                                                   | ISO 936      | Gravimetry                           | I    |  |  |
| Water Activity                                                        | ISO 18787    | Electrometry                         | П    |  |  |
| *nitrogen-to-protein conversion factor = 6.25                         |              |                                      |      |  |  |

<sup>&</sup>lt;sup>6</sup> After adoption, the table containing the Methods of Analysis will be removed and replaced with the following Text, as per the requirements of the Procedural Manual:

<sup>&</sup>quot;For checking the compliance with this standard, the methods of analysis and sampling contained in the Recommended Methods of Analysis and Sampling (CXS 234-1999) relevant to the provisions in this standard, shall be used."

### APPENDIX VI

### FAO/WHO COORDINATING COMMITTEE FOR ASIA (CCASIA22)

Methods of analysis and sampling for provisions in the draft Regional Standard for Soybean Products Fermented with Bacillus Species

| Commodity            | Provision       | Method             | Principles                       | Туре     |
|----------------------|-----------------|--------------------|----------------------------------|----------|
| <u>Natto</u>         | <u>Moisture</u> | <u>AOAC 925.09</u> | <u>Gravimetry</u>                | <u>I</u> |
| <u>Natto</u>         | <u>Protein</u>  | <u>AOAC 988.05</u> | <u>Titrimetry.</u><br>(Kjeldahl) | Ī        |
| <u>Natto</u>         | Lipid Content   | <u>AOAC 963.15</u> | <u>Gravimetry</u><br>(Soxhlet)   | Ī        |
| <u>Cheonggukjang</u> | <u>Moisture</u> | <u>AOAC 934.01</u> | <u>Gravimetry</u>                | <u>I</u> |
| <u>Cheonggukjang</u> | Protein         | <u>AOAC 988.05</u> | <u>Titrimetry.</u><br>(Kjeldahl) | Ī        |
| <u>Cheonggukjang</u> | Lipid Content   | <u>AOAC 963.15</u> | <u>Gravimetry</u><br>(Soxhlet)   | Ī        |
| Thua Nao             | <u>Moisture</u> | <u>AOAC 925.09</u> | <u>Gravimetry</u>                | <u>l</u> |
| <u>Thua Nao</u>      | Protein         | <u>AOAC 988.05</u> | <u>Titrimetry.</u><br>(Kjeldahl) |          |

### Sampling plan not recommended for endorsement

### Methods of analysis and sampling for provisions in the draft Regional Standard for Cooked Rice Wrapped in Plant Leaves

### 10. METHODS OF ANALYSIS AND SAMPLING<sup>7</sup>

For checking the compliance with this standard, the methods of analysis and sampling contained in the *Recommended Methods of Analysis and Sampling* (CXS 234-1999) relevant to the provisions in this standard, shall be used.

### 10.1. Determination of Peroxide Value

### **10.1.1. Extraction of Oils from the Product**

### 10.1.1.1. Apparatus

- (a) Rotary evaporator
- (b) Water bath

### 10.1.1.2. Extraction

Remove the product package and plant leaves, etc., take out the edible part of the representative sample, crush it and put it in a homogenizer or glass mortar, and grind it continuously to make the sample fully mashed and mixed well, and then put it in the wide-mouth bottle, and add 2 to 3 times the sample volume of petroleum ether (boiling range: 30°C-60°C). After fully mixing, stopper the bottle and leave for more than 12 hours. Filter all the solution with a funnel filled with anhydrous sodium sulphate into a round-bottom flask. Rinse the residue in the wide-mouth bottle with petroleum ether. Repeat the filtration once with a new anhydrous sodium sulphate funnel, if the filtrate is not clear enough. Evaporate the petroleum ether in the round-bottom flask under reduced pressure on a rotary evaporator at below 40°C, and the residue is the test sample. A sufficient number of

<sup>&</sup>lt;sup>7</sup> The analytical methods will be removed when the standard is adopted by CAC and included in CXS 234-1999.

representative samples should be selected to ensure that not less than 8 grams of the test sample can be obtained. The test sample should be tested as soon as possible.

### 10.1.2. Determination

Table II

| Commodity                              | Provision      | Method                                    | Principles        | Туре |
|----------------------------------------|----------------|-------------------------------------------|-------------------|------|
| Cooked rice wrapped<br>in plant leaves | Peroxide Value | <u>ISO 3960 / AOCS</u><br><u>Cd 8b-90</u> | <u>Titrimetry</u> | IV   |

### Appendix VII

## FAO/WHO COORDINATING COMMITTEE FOR NORTH AMERICA AND SOUTHWEST PACIFIC (CCNASWP16)

Methods of analysis and sampling for provisions in the draft Regional Standard for Fermented Noni Fruit Juice

| Provision                                          | Method                                         | Principle                                                     | Туре      | Notes                                      |
|----------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|-----------|--------------------------------------------|
| Brix value (Soluble solids)                        | AOAC 983.17<br>EN 12143<br>IFUMA 8<br>ISO 2173 | Refractometry                                                 | ł         | Adopted for fruit<br>juices and<br>nectars |
| Identification of scopoletin                       | <u>Annex A*</u>                                | Solid phase<br>extraction and thin<br>layer<br>chromatography | IV        |                                            |
| Identification of<br>deacetylasperulosidic<br>acid | <u>Annex B*</u>                                | <u>Thin layer</u><br>chromatography                           | <u>IV</u> |                                            |

### IDENTIFICATION OF SCOPOLETIN

### 1. PREPARATION OF SAMPLES

Noni fruit juice is filtered through a 0.45 µm membrane filter and then purified by solid-phase extraction (SPE) with Waters OASIS® HLB 6cc 200 mg extraction cartridges (or similar solid-phase extraction cartridge), after first equilibrating with methanol (5 mL) followed by deionized water (5 mL). The filtered juice samples (3 mL) are then loaded onto the equilibrated cartridge and washed with 5% methanol (MeOH) in deionized water (5 mL). The cartridges are allowed to dry under flow of air for 5 mins and then, eluted with MeOH (3mL). The MeOH eluate is retained for TLC analysis. The SPE flow rates of equilibration, wash and elution solvents through the cartridge is approximately 1 drop per second.

### 2. PREPARATION OF REFERENCE STANDARD

- **2.1** A reference standard is prepared by dissolving 0.1 mg Scopoletin in 1 milliliter of methanol.
- **2.2** Alternately, certified *Morinda citrifolia* reference plant material may be prepared in the same manner as the samples to be analyzed. The certified *Morinda citrifolia* reference material should be from the same part of the plant as the samples to be analyzed.

### 3. IDENTIFICATION

### 3.1 THIN LAYER CHROMATOGRAPHY

Spot 5 microliters of sample solutions and reference standard solution on a silica gel 60 F254 thin layer chromatography (TLC) plate. After spotting the plates are dried at 110°C for 15 minutes in a drying oven. Develop the plate with a mobile phase of dichloromethane:methanol (19:1, v/v). View bright fluorescent blue colours on developed plate under UV lamp, 365 nm. Identify Scopoletin in samples by comparing Rf values and colours to the standard.

### REFERENCES

- 1. Deng S, West BJ, Jensen J. A Quantitative Comparison of Phytochemical Components in Global Noni Fruits and Their Commercial Products. Food Chemistry 2010, 122 (1): 267-270.
- Potterat O, et al. Identification of TLC markers and quantification by HPLC-MS of various constituents in noni fruit powder and commercial noni-derived products. Journal of Agricultural and Food Chemistry 2007, 55(18):7489–7494.
- Basar S, Westendorf J. Identification of (2E, 4Z, 7Z)-Decatrienoic Acid in Noni Fruit and Its Use in Quality Screening of Commercial Noni Products. Food Analytical Methods 2011, 4(1):57-65. DOI: 10.1007/s12161- 010-9125-9.
- 4. Chan-Blanco Y, et al. The ripening and aging of noni fruits (*Morinda citrifolia* L.): microbiological flora and antioxidant compounds. Journal of the Science of Food and Agriculture 2007, 87:1710 1716.
- 5. West BJ, Deng S. Thin layer chromatography methods for rapid identity testing of *Morinda citrifolia* L. (noni) fruit and leaf. Advance Journal of Food Science and Technology 2010, 2(5):298-302.

#### IDENTIFICATION OF DEACETYLASPERULOSIDIC ACID

#### 1. PREPARATION OF SAMPLES

Noni fruit juice is filtered through a 0.45 µm membrane filter and diluted 1:1 with MeOH and then purified by solid-phase extraction (SPE) with Waters OASISS® extraction cartridges, or similar solid-phase extraction cartridge. [SPE cartridges is first equilibrated with water, followed by methanol. The samples are then loaded onto the cartridge and washed with 5% MeOH, followed by 100% MeOH. The MeOH eluate is retained for TLC analysis.].

#### 2. PREPARATION OF REFERENCE STANDARD

- 2.1 A reference standard is prepared by dissolving 1 mg deacetylasperulosidic acid in 1 milliliter of methanol.
- **2.2** Alternately, certified *Morinda citrifolia* reference plant material may be prepared in the same manner as the samples to be analyzed. The certified *Morinda citrifolia* reference material should be from the same part of the plant as the samples to be analyzed.

#### 3. **PREPARATION OF p-ANISALDEHYDE SOLUTION**

Anisaldehyde solution was prepared by dissolving 2g of p-anisaldehyde in 96 mL of ethanol with stirring. The solution was then acidified through dropwise addition of concentrated sulfuric acid (4 mL).

#### 4. IDENTIFICATION

#### 4.1 THIN LAYER CHROMATOGRAPHY

Spot 5 microliters of sample solutions and reference standard solution on a silica gel 60 F254 thin layer chromatography (TLC) plate, previously dried at 110 °C for 15 minutes in a drying oven. After spotting samples are again dried at 110°C or through application of heat via a heat gun for a period of 8-10 seconds. The TLC plates are developed with a mobile phase of dichloromethane: methanol: water (13:6:1, v/v/v). Upon completion of elution, the plate is air dried and developed by spraying with 2% anisaldehyde /4% sulfuric acid in ethanol (EtOH) solution and then heat in oven at 110 °C for 1-5 minutes to reveal and maximise the blue colour. Identify deacetylasperulosidic in samples by comparing spot Rf values and colour with reference standard solution on same TLC plate.

#### REFERENCES

- 1. Potterat O, et al. Identification of TLC markers and quantification by HPLC-MS of various constituents in noni fruit powder and commercial noni-derived products. Journal of Agricultural and Food Chemistry 2007, 55(18):7489–7494.
- 2. Deng S, et al. Determination and comparative analysis of major iridoids in different parts and cultivation sources of *Morinda citrifolia*. Phytochemical Analysis 2011, 22(1):26-30.
- 3. West BJ, Deng S. Thin layer chromatography methods for rapid identity testing of *Morinda citrifolia* L. (noni) fruit and leaf. Advance Journal of Food Science and Technology 2010, 2(5):298-302

#### ANNEX C

# SINGLE LABORATORY VERIFICATION / VALIDATION FOR IDENTIFICATION OF SCOPOLETIN AND DEACETYASPERULOSIDIC ACID IN FERMENTED NONI JUICE

The performance characteristics validation for an 'Identification test' is usually limited to 'Selectivity'. Where the capability of an analytical procedure to identify an analyte can be confirmed by obtaining positive results comparable to a known reference material with samples containing the analyte, along with negative results from samples which do not contain the analyte. In addition, the identification test can be applied to materials structurally similar to or closely related to the analyte to confirm that an undesired positive response is not obtained. Specificity/selectivity can be verified by demonstrating that the measured result of an analyte is comparable to the measured result of a second, well characterized analytical procedure (e.g., an orthogonal procedure).

Thus,

- a) the colour response with the TLC visualization technique with standards, and a relative response for increasing standard concentration tested was confirmed,
- b) the coloured TLC spot with samples with a Rf similar to the standard was confirmed for different Fermented Noni juices from a range of pacific island locations (supplied by Scientific Research Organisation of Samoa (SROS)-Apia),
- c) various juices observed mixed in commercial Noni products were tested along with a Noni Juice by TLC to confirm a negative result for other juices.
- an orthogonal HPLC technique based on Choi et al (2022)<sup>11</sup> was used to measure concentrations or absence of the identity analytes for selected samples, and PDA spectra along with Rt used to confirm HPLC peak identity.

#### For Scopoletin Identification

a) Colour response under UV@365nm and relative intensity/response for Scopoletin TLC standards at 0.001, 0.01, 0.1 and 1.0 mg/mL in MeOH. We thus suggest that a 0.10 mg/mL Scopoletin standard may be more appropriate in the Scopoletin TLC identification.



Figure 1 TLC for Scopoletin standards at 1.0, 0.1, 0.01 and 0.001 mg/mL in MeOH at 365nm.

b) Colour response under UV@365nm and R<sub>f</sub> relative to standard Scopoletin for various Pacific Island samples.

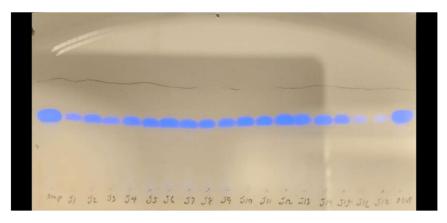



Figure 2. Scopoletin standard plus SPE extraction & TLC with UV@365nm visualization of fermented Noni juice samples, with left to right, standard; fermented Noni juice samples J1-17; standard.

Standard and Pacific Island samples J18-J19.

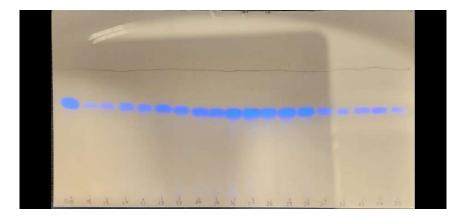



Figure 3. Scopoletin standard plus SPE extraction & TLC with UV@365nm visualization of fermented Noni juice samples, with left to right, standard; fermented Noni juice samples 18-35.

c) Following is the Scopoletin TLC Identification test applied to various juices observed mixed in commercial Noni products, including commercial pineapple juice, apple and blackcurrant juice, grape juice, pear juice, and coconut juice.

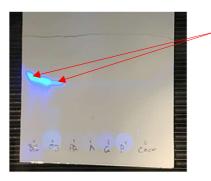



Figure 4. Scopoletin ID TLC for a Noni juice plus various other juices; from left to right, Scopoletin (0.1mg/mL), Noni Juice#3(J3), Pineapple juice (PA), Apple and Blackcurrant juice(A), Grape juice(G), Pear juice(P), and Coconut juice (Coco). Scopoletin band for standard and Noni Juice#3 indicated by red arrows, where the absence of similar band for the other samples gives a negative Scopoletin Identification.

a) An orthogonal HPLC technique based on Choi et al (2022)<sup>11</sup> used to confirm 'presence' or 'absence' of the identity analytes for selected samples, and PDA spectra along with peak at Rt=22.8min(approx.) used to confirm HPLC peak identity.

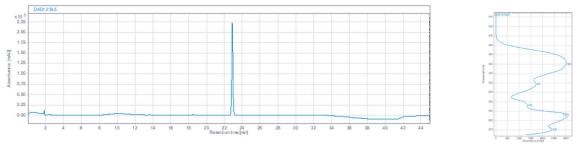



Figure 5. Scopoletin standard, HPLC-DAD chromatogram, 10µL injection, @ 239.5nm and peak UV spectra.

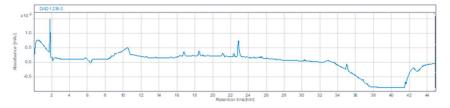
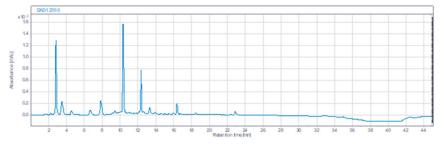




Figure 6. Juice#3, filtered, HLB-SPE 100% MeOH elution solution and injected 10µL on HPLC-DAD @ 239.5nm



*Figure 7. Juice#3, filtered 0.45um, no SPE, and direct injected 10µL on HPLC-DAD* @ 239.5*nm.* See section f) for HPLC-DAD conditions.

#### For Deacetylasperulosidic acid Identification

 a) Colour response with 2% anisaldehyde / 10% sulfuric acid-ethanol (EtOH) solution then heating for visualisation, and relative intensity/response at 1.0, 0.5, 0.25 and 0.1 mg/mL Deacetylasperulosidic acid.



Figure 8. TLC standard solutions spots 1.0 mg/mL, 0.5 mg/mL, 0.25 mg/mL, 0.1 mg/mL; Juice 1; Juice 8.

b) Colour response with 2% anisaldehyde / 10% sulfuric acid-ethanol (EtOH) solution then heating for visualisation, and R<sub>f</sub> relative to standard Deacetylasperulosidic acid for various Pacific Island samples.

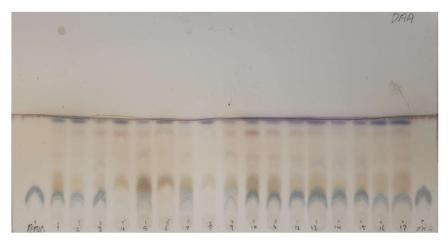



Figure 9. From left to right, DAA standard; fermented Noni juice samples 1-17; DAA standard; with TLC visualised with 2% anisaldehyde / 4% sulfuric acid-ethanol (EtOH) solution then heating.




Figure 10. From left to right, DAA standard, fermented Noni juice samples 18-35; with TLC visualisation with 2% anisaldehyde / 4% sulfuric acid-ethanol (EtOH) solution then heating.

**Note:** Samples sourced from SROS-Apia for purpose of verification of TLC method for Scopoletin and DAA. Samples may have been subjected to adverse conditions during transport or pre-sampling prior to shipment to Australia. No conclusion can be inferred for Juices, 4, 6, 8, 21, 22 other than HPLC-DAD and TLC are in alignment in the absence or scarcity of DAA analyte. Further investigation would be required on non-compliant sample to determine the reason behind these atypical or non-compliant findings.

c) Following is the Deacetylasperulosidic acid TLC Identification test applied to various juices observed mixed in commercial Noni products, including commercial pineapple juice, apple and blackcurrant juice, grape juice, pear juice, and coconut juice.

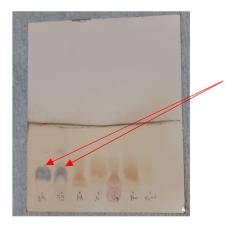



Figure 11. Deacetylasperulosidic acid ID TLC for a Noni juice plus various other fruit juices; from left to right, Deacetylasperulosidic acid (0.5mg/mL DA), Noni Juice#3(J3), Pineapple juice (PA), Apple and Blackcurrant juice(A), Grape juice (Gp), Pear juice (Pear), and coconut juice (Co). Deacetylasperulosidic acid blue band indicated by red arrow in standard and Juice#3, where the absence of similar blue bands for the other samples gives a 'negative' identification.

d) An orthogonal HPLC technique based on Choi et al (2022)<sup>11</sup> used to confirm 'presence' or 'absence' of the identity analytes for selected samples, and PDA spectra along with Rt used to confirm HPLC peak identity.

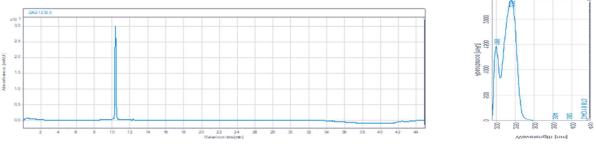



Figure 12. Deacetylasperulosidic acid 2 mg/mL; HPLC-DAD chromatogram, 10µL injection, @ 239.5nm; and peak UV spectra.

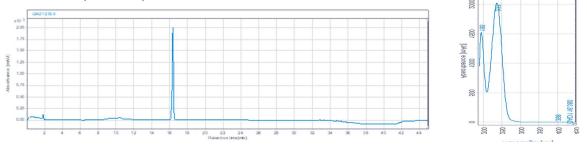
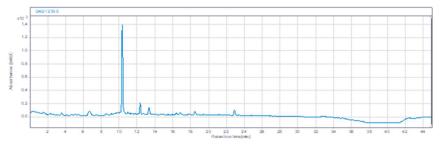




Figure 13. Asperulosidic acid; HPLC-DAD chromatogram, 10µL injection, @ 239.5nm; and peak UV spectra.



*Figure 14. Juice 1, 0.45um filtered & no SPE, direct injected 10µL on HPLC-DAD @ 239.5nm* See section f) for HPLC-DAD conditions.

e) HPLC confirmation of the Deacetylasperulosidic acid ID by TLC for selected Pacific Island Noni Juice samples where 'negative' and 'positive' DAA IDs were observed.



Figure 15 Cropped section of Fig 10, highlighting Deacetylasperulosidic acid ID by TLC for a selection of various Pacific Island Noni Juice samples where 'negative' and 'positive' DAA IDs were observed.

The juices in the following chromatograms were  $0.45\mu$ m filtered and injected directly onto the HPLC-DAD with  $10\mu$ L injection. The specific pattern to note is that according to the TLC, juices 4, 6 and 8 show a 'negative' DAA identification; while juice 5, 7, 9 show a 'positive' DAA identification. As observed in the following the HPLC-DAD chromatograms confirm the TLC results, with 'presence' or 'absence' of a sharp DAA peak at approximately 9.9 min, with 10uL injection, using 239.5 nm wavelength detection. Note, all these juices have a peak at Rt=22.8mins, thus positive ID for Scopoletin. Note the 10x reduction in absorbance scale for the negative results for DAA.

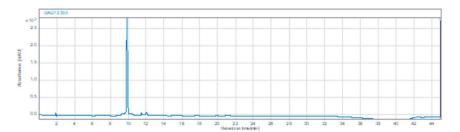



Figure 16. HPLC of DAA standard 2mg/mL with peak at 9.9mins.

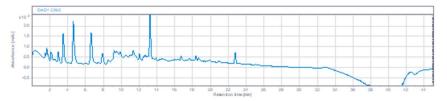



Figure 17. HPLC injection of Pacific Island juice#4, confirming 'negative' result for DAA.

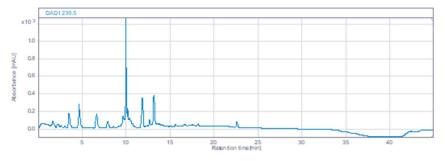



Figure 18. HPLC injection of Pacific Island juice#5, confirming 'positive' result for DAA.

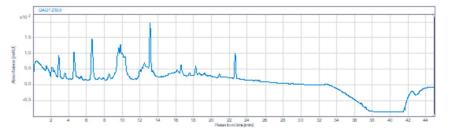
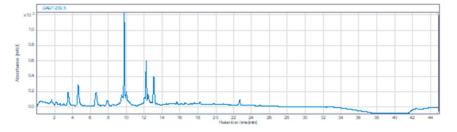




Figure 19. HPLC injection of Pacific Island juice#6, confirming 'negative' result for DAA.






Figure 20. HPLC injection of Pacific Island juice#7, confirming 'positive' result for DAA.

Figure 21. HPLC injection of Pacific Island juice#8, confirming 'negative' result for DAA.

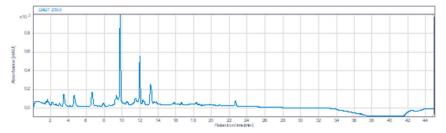



Figure 22. HPLC injection of Pacific Island juice#9, confirming 'positive' result for DAA.

#### f) Conditions for HPLC-DAD

HPLC-DAD was performed on an Agilent 1260 Infinity HPLC

| Instrument:               | Agilent 1260 Infir         | nity                                                        |                       |
|---------------------------|----------------------------|-------------------------------------------------------------|-----------------------|
| Gradient:                 | Time(min)                  | 0.1% Formic acid in deionised water                         | Acetonitrile          |
|                           | 0                          | 100                                                         | 0                     |
|                           | 5                          | 100                                                         | 0                     |
|                           | 30                         | 65                                                          | 35                    |
|                           | 35                         | 0                                                           | 100                   |
|                           | 39                         | 0                                                           | 100                   |
|                           | 40                         | 100                                                         | 0                     |
|                           | 45                         | 100                                                         | 0                     |
| Run time:                 | 45 minutes                 |                                                             |                       |
| Wavelengths<br>monitored: | 239.5 nm (D                | eacetylasperulosidic Acid); 344 nm (S                       | copoletin),           |
| Peak width:               | >0.2 min (4s               | response time) 1.25Hz                                       |                       |
| Injection volume          | : 10µL                     |                                                             |                       |
| Mobile phase flo<br>rate: | w<br>1.0 mLs/min           | ute                                                         |                       |
| Column<br>temperature:    | 25 °C                      |                                                             |                       |
| Column:                   |                            | bax Eclipse Plus C18. 5um, 4.6 x 150 r<br>20707, LN:B20104) | mm, (PN:959993-902,   |
| Guard Column:             | Agilent, Zorb<br>USEDP0346 | ax Eclipse Plus C18 2.1 x5, 1.8 micro<br>4)                 | n (PN:821725-901, SN: |

# Standard Operating Procedure for the Identification of Kavalactones and Flavokavains in Fresh and Dried Kava Products by High Performance Thin Layer Chromatography in the Regional Standard for Kava Products for Use as a Beverage when Mixed with Water (CXS 336R-2020)

#### 1.0 Introduction

*Piper methysticum G. Forst. (Piperaceae*) rhizomes and roots are peeled, grinded, macerated in cold water, and pressed through a cloth strainer to prepare kava, a non-alcoholic beverage. The composition and quality of kava can be highly variable, depending on the age of the plant, the variety, and the part used to prepare the beverage: roots, rhizomes, or basal stems. The six major kavalactones (KLs: yangonin = Y, dihydrokavain = DHK, desmethoxyyangonin = DMY, kavain = K, dihydromethysticin = DHM and methysticin = M) are responsible for the physiological effect and are usually quantified with HPLC. There is a second group of molecules is flavokavins (FKs: A, B, C). The chemical composition of the kava extract is strongly influenced by the extraction solvent and extraction technique. This procedure is based on analytical procedure using High Performance Thin Layer Chromatography (HPTLC). The HPTLC is a validated procedure for 174 varieties of kava.

Scope: Identification of Kavolactones and Flavokavins by High Performance Thin Layer Chromatography

- 2.0 Materials and methodology
- 2.1 Preparation of Samples
  - Wash by hand under cold running water the kava roots and peeled rhizomes.
  - Cut into small pieces the kava organs with a knife.
  - Sun-dry the kava pieces for 3 days (similar to traditional practises).
  - Ground the dried kava matter into powder using a Forplex F00 1218 hammer mill to achieve <2 mm particle size and pack into labelled zip-log plastic bags.
  - Further ground the kava powder to very fine kava flour texture using a coffee grinder.
  - Weigh the kava flour sample then dry in an oven at 60°C for 6 hours.
- 2.2 Preparation of Reference Standard
  - Make available Six kavalactone and three flavokavain standards of analytical grade possibly available from Sigma-Aldrich including standards of:

Six kavalactones:

- o methysticin (M),
- o dihydromethysticin (DHM),
- o kavain (KAV),
- o dihydrokavain (DHK),
- o yangonin (Y),
- o desmethoyyangonin (DMY),

Three flavokavain:

- o flavokavain A (FKA),
- o flavokavain B (FKB) and
- o flavokavain C (FKC).
- Accurately weigh 1.0mg individually the pure kava standard powder into 1ml acetone
- store in dark at 4°C if analysed later.

Checking Purity of Standards:

- Conduct peak purity tests for the kava standards using the UV Vis spectrophotometer and compare the UV spectra.

- 2.3 Sample extraction
  - Weigh 10g of kava powder,
  - Transfer to a clean 50ml polypropylene centrifuge tube and add 30ml acetone.
  - Sonicate the tubes in a water bath for 30min
  - Transfer to a centrifuge instrument and set at4500 rpm for 10min.
  - Transfer the supernatant to a 9mm wide opening screw thread vial of 2ml amber glass.
  - Store vials in refrigerator at 4°C in dark till required for analysis.
- 2.4 Identification by High Performance Thin Layer Chromatography (HPTLC)
- 2.4.1 Chemicals and reagents for HPTLC analysis
  - Analytical grade solvent (acetone, dioxane, hexane and methanol).
  - Silica gel 60 F254 plates (dimension; 20 x 10cm) using Camag HPTLC system with an automatic TLC sampler (ATS 4) coupled to an automatic developing chamber (ADC 2) and a visualizer as well as a TLC Scanner 4 controlled with winCATS software.
- 2.4.2 Check standards and prepare Sample Run
  - Prepare standards and sample solutions at bands(length of 8 mm, 250 nL/s delivery speed, track distance 8.0 mm and distance from the edge of 15 mm).
  - Conduct standard linearity curve check by using the HPTLC plates. Apply different stock solutions (0.1, 0.2, 0.4, 0.6, 0.8, 1.0 μL) of the six KLs and three FKs scan at 240nm (for M, DHM, K, DHK) and scan at 355nm (for Y, DMY, FKA, FKB, FKC).
  - Add 10 mL mobile phaseto develop the plates using hexane:dioxane (8:2 v/v) with a migration distance of 80 mm at room temperature after 30 s of pre-drying and no tank saturation.
  - Visual documentation of the plates is carried out at 254 nm and 366 nm.
  - Scan the plates in reflectance mode at 240 nm (for M, DHM, K and DHK) and at 355 nm (for Y, DMY, FKA, FKB, FKC) with D2 and W lamp slit dimension 8.00 mm × 0.20 mm, scanning speed 20 mm/s, and data resolution 100 μm/step.
  - Identify the Peak area measurements (in area units, AU).
  - Ensure that the total analytical time is 50 min for 20 samples and 10 mL of mobile phase (corresponding to 2.5 min and 0.5 mL per sample).

#### 3.0 References

Lebot, V., Michalet, S., Legendre, L. (2019). Kavalctone and Flavokavins Profile Conttribute to Quality Assessment of Kava (Piper methysticum G. Forst), the Traditional Beverage of the Pacific. *Beverages*. 2019, 1-14.

#### CODEX COMMITTEE ON CONTAMINANTS IN FOODS (CCCF16)

### Appendix VIII

Sampling Plans Provisions in the General Standard for Contaminants in Food and Feed (CXS 193-1995)

| Commodity                                                                                                                                                                          | Analyte        | ML<br>(µg/kg) | LOD<br>(µg/kg)                   | LOQ<br>(µg/kg)                   | Precision<br>(%) | Minimal<br>applicable<br>range (µg/kg)    | Recovery<br>(%)         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------|----------------------------------|----------------------------------|------------------|-------------------------------------------|-------------------------|
| Maize grain                                                                                                                                                                        | AF B1+B2+G1+G2 | 15            | ≤ 3                              | ≤ 6                              | <u>&lt;</u> 44   | 8.4 - 21.6                                | 60-115                  |
|                                                                                                                                                                                    | AFB1           | -             | ≤ <u>0.75</u><br><del>1.5</del>  | <u>≤ 1.5 </u> 3.0                | <u>&lt;</u> 44   | <b>2.1 – 5.4</b><br>4.2 - 10.8            | <u>40-120</u><br>60-115 |
|                                                                                                                                                                                    | AFB2           | -             | ≤ <u>0.75</u><br>0.5*            | ≤ <u>1.5</u> 1*                  | <u>&lt;</u> 44   | <b>2.1 – 5.4</b><br><del>1.4 – 3.6</del>  | 40-120                  |
|                                                                                                                                                                                    | AFG1           | -             | ≤ <u>0.75</u><br>0.5*            | ≤ <u>1.5</u> 1*                  | <u>&lt;</u> 44   | <b>2.1 – 5.4</b><br><del>1.4 – 3.6</del>  | 40-120                  |
|                                                                                                                                                                                    | AFG2           | -             | ≤ <u>0.75</u><br><del>0.5*</del> | ≤ <u>1.5</u> <del>1</del> *      | <u>&lt;</u> 44   | <b>2.1 – 5.4</b><br><del>1.4 – 3.6</del>  | 40-120                  |
|                                                                                                                                                                                    |                |               |                                  |                                  |                  |                                           |                         |
| Maize flour,<br>meal, semolina<br>and flakes<br>derived from<br>maize;<br>Sorghum grain;<br>cereal-based<br>foods for<br>infants and<br>young children<br>for food aid<br>programs | AF B1+B2+G1+G2 | 10            | ≤2                               | ≤4                               | <u>&lt;</u> 44   | 5.6 - 14.4                                | 60-115                  |
|                                                                                                                                                                                    | AFB1           | -             | ≤ <u>0.5</u> <del>1.0</del>      | ≤ <u>1.0</u> <del>2.0</del>      | <u>&lt;</u> 44   | <b>1.4 - 3.6</b><br><del>2.8 - 7.2</del>  | <u>40-120</u><br>60-115 |
|                                                                                                                                                                                    | AFB2           | -             | ≤ <u>0.5</u><br><del>0.33*</del> | ≤ <u>1.0</u><br><del>0.67*</del> | <u>&lt;</u> 44   | <b>1.4 - 3.6</b><br><del>0.9 - 2.4</del>  | 40-120                  |
|                                                                                                                                                                                    | AFG1           | -             | ≤ <u>0.5</u><br>0.33*            | ≤ <u>1.0</u><br><del>0.67*</del> | <u>&lt;</u> 44   | <b>1.4 - 3.6</b><br>0.9 - 2.4             | 40-120                  |
|                                                                                                                                                                                    | AFG2           | -             | ≤ <u>0.5</u><br><del>0.33*</del> | ≤ <u>1.0</u><br><del>0.67*</del> | <u>&lt;</u> 44   | <b>1.4 - 3.6</b><br><del>0.9 - 2.4</del>  | 40-120                  |
|                                                                                                                                                                                    |                |               |                                  |                                  |                  |                                           |                         |
| Husked Rice                                                                                                                                                                        | AF B1+B2+G1+G2 | 20            | ≤4                               | ≤8                               | <u>&lt;</u> 44   | 11.2 - 28.8                               | 60-115                  |
|                                                                                                                                                                                    | AFB1           | -             | ≤ <u>1.0</u> <del>2.0</del>      | ≤ <u><b>2.0</b></u> 4.0          | <u>&lt;</u> 44   | <u>2.8 – 7.2</u><br><del>5.6 – 14.4</del> | <u>40-120</u><br>60-115 |
|                                                                                                                                                                                    | AFB2           | -             | ≤ <u>1.0</u><br>0.67*            | ≤ <u>2.0</u><br>1.33*            | <u>&lt;</u> 44   | <u>2.8 – 7.2</u><br><u>1.9 – 4.8</u>      | 60-115                  |
|                                                                                                                                                                                    | AFG1           | -             | ≤ <u>1.0</u><br>0.67*            | ≤ <u>2.0</u><br>1.33*            | <u>&lt;</u> 44   | <u>2.8 – 7.2</u><br><u>1.9 – 4.8</u>      | 60-115                  |
|                                                                                                                                                                                    | AFG2           | -             | ≤ <u>1.0</u><br>0.67*            | ≤ <u>2.0</u><br><del>1.33*</del> | <u>&lt;</u> 44   | <u>2.8 – 7.2</u><br><u>1.9 - 4.8</u>      | 60-115                  |
|                                                                                                                                                                                    |                |               |                                  |                                  |                  |                                           |                         |
| Polished Rice;<br>Cereal-based<br>food for infants<br>and young<br>children                                                                                                        | AF B1+B2+G1+G2 | 5             | ≤1                               | ≤2                               | <u>&lt;</u> 44   | 2.8 - 7.2                                 | 40-120                  |
|                                                                                                                                                                                    | AFB1           | -             | ≤ <u>0.25</u><br>0.5             | ≤ <u>0.5</u> 1                   | <u>&lt;</u> 44   | <u>0.7 – 1.8</u><br>1.4 – 3.6             | 40-120                  |
|                                                                                                                                                                                    | AFB2           | -             | ≤ <u>0.25</u><br>0.17*           | ≤ <u>0.5</u><br>0.33*            | <u>&lt;</u> 44   | <u>0.7 – 1.8</u><br>0.5 - 1.2             | 40-120                  |
|                                                                                                                                                                                    | AFG1           | -             | ≤ <u>0.25</u><br>0.17*           | ≤ <u>0.5</u><br>0.33*            | <u>&lt;</u> 44   | <u>0.7 – 1.8</u><br>0.5 - 1.2             | 40-120                  |
|                                                                                                                                                                                    | AFG2           | -             | ≤ <u>0.25</u><br>0.17*           | ≤ <u>0.5</u><br>0.33*            | <u>&lt;</u> 44   | <u>0.7 – 1.8</u><br>0.5 – 1.2             | 40-120                  |

Appendix IX

# Summary of proposed changes in CXS 234, including update to references of existing methods and recommendations to CCMAS

Table 1. Recommended Methods of Analysis and Sampling (CXS 234-1999)

| Commodity                                                               | Provision                                   | Method                                                                                         | Principle                                                                                                                                                               | Codex STAN | Proposed Type |
|-------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Blend of evaporated<br>skimmed milk and<br>vegetable fat                | Total fat                                   | <del>ISO 1737   IDF 13</del> ISO<br>23318   IDF 249                                            | Gravimetry (Röse-Gottlieb)                                                                                                                                              | 250        | 1             |
| Blend of evaporated<br>skimmed milk and<br>vegetable fat                | Milk solids-not-fat <sup>13</sup><br>(MSNF) | ISO 6731   IDF 21 and<br><del>ISO 1737   IDF 13</del> <b>ISO</b><br>23318   IDF 249            | Calculation from total solids content and fat<br>content<br>Gravimetry, drying at 102°C and<br>Gravimetry (Röse-Gottlieb)                                               | 250        | 1             |
| Blend of evaporated<br>skimmed milk and<br>vegetable fat                | Milk protein in<br>MSNF <sup>13</sup>       | ISO 6731   IDF 21 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 8968-1   IDF 20-1 | Calculation from total solids content, fat content<br>and protein content<br>Gravimetry, drying at 102°C and Gravimetry<br>(Röse-Gottlieb) and<br>Titrimetry (Kjeldahl) | 250        | IV            |
| Blend of evaporated<br>skimmed milk and<br>vegetable fat                | Milk protein in<br>MSNF <sup>13</sup>       | ISO 6731   IDF 21 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>AOAC 991.20           | Calculation from total solids content, fat content<br>and protein content<br>Gravimetry, drying at 102°C and<br>Gravimetry (Röse-Gottlieb) and<br>Titrimetry (Kjeldahl) | 250        | IV            |
| Reduced fat blend of<br>evaporated skimmed<br>milk and vegetable<br>fat | Total fat                                   | <del>ISO 1737  IDF 13</del> ISO<br>23318   IDF 249                                             | Gravimetry (Röse-Gottlieb)                                                                                                                                              | 250        | 1             |
| Reduced fat blend of<br>evaporated skimmed<br>milk and vegetable<br>fat | Milk solids-not-fat<br>(MSNF) <sup>13</sup> | ISO 6731   IDF 21 and<br><del>ISO 1737   IDF 13</del> <b>ISO<br/>23318   IDF 249</b>           | Calculation from total solids content and fat<br>content<br>Gravimetry, drying at 102°C and<br>Gravimetry (Röse-Gottlieb)                                               | 250        | 1             |

| Commodity                                                                               | Provision                             | Method                                                                                                            | Principle                                                                                                                                                               | Codex STAN | Proposed Type |
|-----------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Reduced fat blend of<br>evaporated skimmed<br>milk and vegetable<br>fat                 | Milk protein in<br>MSNF <sup>13</sup> | ISO 6731   IDF 21 and<br>I <del>SO 1737   IDF 13</del> <b>ISO</b><br>23318   IDF 249 and<br>ISO 8968-1   IDF 20-1 | Calculation from total solids content, fat content<br>and protein content<br>Gravimetry, drying at 102°C and<br>Gravimetry (Röse-Gottlieb) and<br>Titrimetry (Kjeldahl) | 250        | IV            |
| Reduced fat blend of<br>evaporated skimmed<br>milk and vegetable<br>fat                 | Milk protein in<br>MSNF <sup>13</sup> | ISO 6731   IDF 21 and<br>I <del>SO 1737   IDF 13</del> ISO<br>23318   IDF 249 and<br>AOAC 991.20                  | Calculation from total solids content, fat content<br>and protein content<br>Gravimetry, drying at 102°C and<br>Gravimetry (Röse-Gottlieb) and<br>Titrimetry (Kjeldahl) | 250        | IV            |
| Blend of skimmed<br>milk and vegetable<br>fat in powdered form                          | Total fat                             | I <del>SO 1736   IDF 9</del> ISO<br>23318   IDF 249                                                               | Gravimetry (Röse-Gottlieb)                                                                                                                                              | 251        | 1             |
| Blend of skimmed<br>milk and vegetable<br>fat in powdered form                          | Milk protein in<br>MSNF <sup>13</sup> | ISO 5537   IDF 26 and<br>ISO 1736   IDF 9 ISO<br>23318   IDF 249 and<br>ISO 8968-1   IDF 20-1                     | Calculation from total solids content,<br>fat content and protein content<br>Gravimetry, drying at 87°C and<br>Gravimetry (Röse-Gottlieb) and<br>Titrimetry (Kjeldahl)  | 251        | IV            |
| Blend of skimmed<br>milk and vegetable<br>fat in powdered form                          | Milk protein in<br>MSNF <sup>8</sup>  | ISO 5537   IDF 26 and<br>I <del>SO 1736   IDF 9</del> <b>ISO</b><br>23318   IDF 249and<br>AOAC 991.20             | Calculation from total solids content,<br>fat content and protein content<br>Gravimetry, drying at 87°C and<br>Gravimetry (Röse-Gottlieb) and<br>Titrimetry (Kjeldahl)  | 251        | IV            |
| Reduced fat blend of<br>skimmed milk<br>powder and<br>vegetable fat in<br>powdered form | Total fat                             | ISO 1736   IDF 9- ISO<br>23318   IDF 249                                                                          | Gravimetry (Röse -Gottlieb) I                                                                                                                                           | 251        | 1             |

<sup>&</sup>lt;sup>8</sup> Milk total solids and Milk solids-not-fat (MSNF) content include water of crystallization of lactose

| Commodity                                                                                                             | Provision                                      | Method                                                                                                                   | Principle                                                                                                                                                                                                     | Codex STAN | Proposed Type |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Reduced fat blend of<br>skimmed milk<br>powder and<br>vegetable fat in<br>powdered form                               | Milk protein in<br>MSNF <sup>13</sup>          | ISO 5537   IDF 26 and<br>I <del>SO 1736   IDF 9</del> I <b>SO</b><br>23318   IDF 249 and<br>ISO 8968 - 1   IDF 20 - 1    | Calculation from total solids content,<br>fat content and protein content<br>Gravimetry, drying at 87 °C and<br>Gravimetry (Röse -Gottlieb) and<br>Titrimetry (Kjeldahl)                                      |            | IV            |
| Reduced fat blend of<br>skimmed milk<br>powder and<br>vegetable fat in<br>powdered form                               | Milk protein in<br>MSNF <sup>13</sup>          | ISO 5537   IDF 26 and<br>ISO 1736   IDF 9 ISO<br>23318   IDF 249 and<br>AOAC 991.20                                      | Calculation from total solids content,<br>fat content and protein content<br>Gravimetry, drying at 87 °C and<br>Gravimetry (Röse -Gottlieb) and<br>Titrimetry (Kjeldahl)                                      | 251        | IV            |
| Blend of sweetened<br>condensed skimmed<br>milk and vegetable<br>fat                                                  | Total fat                                      | <del>ISO 1737   IDF 13</del> ISO<br>23318   IDF 249                                                                      | Gravimetry (Röse -Gottlieb)                                                                                                                                                                                   | 252        | 1             |
| Blend of sweetened<br>condensed skimmed<br>milk and vegetable<br>fat (for products<br>sweetened with<br>sucrose only) | Milk solids -not -<br>fat <sup>13</sup> (MSNF) | ISO 6734   IDF 15 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 2911   IDF 35 <del>and</del>                | Calculation from total solids content, fat content<br>and sucrose content<br>Gravimetry, drying at 102 °C and Gravimetry<br>(Röse -Gottlieb) and<br>Polarimetry                                               | 252        | IV            |
| Blend of sweetened<br>condensed skimmed<br>milk and vegetable<br>fat (for products<br>sweetened with<br>sucrose only) | Milk protein in<br>MSNF <sup>13</sup>          | ISO 6734   IDF 15 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 2911   IDF 35 and<br>ISO 8968 -1 IDF 20 - 1 | Calculation from total solids content, fat content,<br>sucrose content and protein content<br>Gravimetry, drying at 102 °C and Gravimetry<br>(Röse -Gottlieb) and<br>Polarimetry and<br>Titrimetry (Kjeldahl) | 252        | IV            |

| Commodity                                                                                                                            | Provision                                      | Method                                                                                                                   | Principle                                                                                                                                                                                                     | Codex STAN | Proposed Type |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Blend of sweetened<br>condensed skimmed<br>milk and vegetable<br>fat (for products<br>sweetened with<br>sucrose only)                | Milk protein in<br>MSNF <sup>13</sup>          | ISO 6734   IDF 15 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 2911   IDF 35 and<br>AOAC 991.20            | Calculation from total solids content, fat content,<br>sucrose content and protein content<br>Gravimetry, drying at 102 °C and Gravimetry<br>(Röse-Gottlieb) and<br>Polarimetry and<br>Titrimetry (Kjeldahl)  | 252        | IV            |
| Reduced fat blend of<br>sweetened<br>condensed skimmed<br>milk and vegetable<br>fat                                                  | Total fat                                      | ISO 1737   IDF 13 ISO<br>23318   IDF 249                                                                                 | Gravimetry (Röse -Gottlieb)                                                                                                                                                                                   | 252        | 1             |
| Reduced fat blend of<br>sweetened<br>condensed skimmed<br>milk and vegetable<br>fat (for products<br>sweetened with<br>sucrose only) | Milk solids -not -<br>fat <sup>13</sup> (MSNF) | ISO 6734   IDF 15 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 2911   IDF 35                               | Calculation from total solids content, fat content<br>and sucrose content<br>Gravimetry, drying at 102 °C and Gravimetry<br>(Röse -Gottlieb) and<br>Polarimetry                                               | 252        | IV            |
| Reduced fat blend of<br>sweetened<br>condensed skimmed<br>milk and vegetable<br>fat (for products<br>sweetened with<br>sucrose only) | Milk protein in<br>MSNF <sup>13</sup>          | ISO 6734   IDF 15 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 2911   IDF 35 and<br>ISO 8968 -1 IDF 20 - 1 | Calculation from total solids content, fat content,<br>sucrose content and protein content<br>Gravimetry, drying at 102 °C and Gravimetry<br>(Röse -Gottlieb) and<br>Polarimetry and<br>Titrimetry (Kjeldahl) | 252        | IV            |

| Commodity                                                                                                                            | Provision                             | Method                                                                                                        | Principle                                                                                                                                                                                                    | Codex STAN | Proposed Type |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Reduced fat blend of<br>sweetened<br>condensed skimmed<br>milk and vegetable<br>fat (for products<br>sweetened with<br>sucrose only) | Milk protein in<br>MSNF <sup>13</sup> | ISO 6734   IDF 15 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 2911   IDF 35 and<br>AOAC 991.20 | Calculation from total solids content, fat content,<br>sucrose content and protein content<br>Gravimetry, drying at 102 °C and Gravimetry<br>(Röse-Gottlieb) and<br>Polarimetry and<br>Titrimetry (Kjeldahl) | 252        | IV            |
| Cheese                                                                                                                               | Milkfat                               | <del>ISO 1735   IDF 5</del> ISO<br>23319   IDF 250                                                            | Gravimetry (Schmid-Bondzynski - Ratzlaff)                                                                                                                                                                    | 283        | 1             |
| Cheeses, individual                                                                                                                  | Milkfat in dry matter                 | ISO 5534   IDF 4<br><del>ISO 1735   IDF 5</del> <b>ISO</b><br>23319   IDF 250                                 | Calculation from dry matter content and fat<br>content<br>Gravimetry, drying at 102°C and<br>Gravimetry                                                                                                      | 263 to 278 | 1             |
| Cheeses in brine                                                                                                                     | Milkfat in dry matter<br>(FDM)        | ISO 5534   IDF 4<br>ISO 1735   IDF 5 ISO<br>23319   IDF 250                                                   | Calculation from dry matter content and fat<br>content<br>Gravimetry, drying at 102°C and<br>Gravimetry (Schmid- BondzynskiRatzlaff)                                                                         | 208        | 1             |
| Cottage cheese                                                                                                                       | Fat-free dry matter                   | ISO 5534   IDF 4 and<br>ISO 1735   IDF 5 ISO<br>23319   IDF 250                                               | Calculation from dry matter content and fat<br>content<br>Gravimetry, drying at 102 °C<br>Gravimetry (Schmid-Bondzynski-Ratzlaff)                                                                            | 273        | 1             |
| Cottage cheese (for<br>samples containing<br>lactose up to 5%)                                                                       | Milkfat in dry matter                 | ISO 5534   IDF 4 and<br><del>ISO 1735   IDF 5</del> <b>ISO</b><br>23319   IDF 250                             | Calculation from dry matter content and fat<br>content<br>Gravimetry, drying at 102 °C and<br>Gravimetry (Schmid-Bondzynski-Ratzlaff)                                                                        | 273        | 1             |

| Commodity                                                      | Provision                                        | Method                                                                     | Principle                                                                                                                                       | Codex STAN | Proposed Type |
|----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Cottage cheese (for<br>samples containing<br>lactose up to 5%) | Milkfat                                          | ISO 1735   IDF 5 ISO<br>23319   IDF 250                                    | Gravimetry (Schmid-Bondzynski-Ratzlaff)                                                                                                         | 273        | 1             |
| Cream cheese                                                   | Moisture on fat-free<br>basis                    | ISO 5534   IDF 4<br><del>ISO 1735   IDF 5</del> ISO<br>23319   IDF 250     | Calculation from fat content and moisture<br>content<br>Gravimetry drying at 102°C (forced air oven)<br>Gravimetry (Schmid-Bondzynski-Ratzlaff) | 275        | 1             |
| Dairy permeate<br>powders                                      | Milkfat                                          | <del>ISO 1736   IDF 9</del> ISO<br>23318   IDF 249                         | Gravimetry (Röse-Gottlieb)                                                                                                                      | 331        | 1             |
| Dairy permeate<br>powders                                      | Lactose                                          | ISO 22662   IDF 198                                                        | High performance liquid chromatography                                                                                                          | 331        |               |
| Edible casein<br>products                                      | Milkfat (Total fat)                              | ISO 5543   IDF 127 ISO<br>23318   IDF 249                                  | Gravimetry (Schmid-Bondzynski-Ratzlaff)                                                                                                         | 290        | 1             |
| Mik powders and cream powders                                  | Milkfat                                          | I <del>SO 1736   IDF 9-</del> ISO<br>23318   IDF 249                       | Gravimetry (Röse-Gottlieb)                                                                                                                      | 207        | 1             |
| Mozzarella                                                     | Milkfat in dry matter<br>– with high<br>moisture | ISO 5534   IDF 4 and<br><del>ISO 1735   IDF 5</del> ISO<br>23319   IDF 250 | Calculation from dry matter content and fat<br>content<br>Gravimetry, drying at 102oC and<br>Gravimetry (Schmid-Bondzynski-Ratzlaff)            | 262        | 1             |

| Commodity                                                                     | Provision                                    | Method                                                                                                                  | Principle                                                                                                                                                                                 | Codex STAN | Proposed Type |
|-------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Mozzarella                                                                    | Milkfat in dry matter<br>– with low moisture | ISO 5534   IDF 4 and<br>ISO 1735   IDF 5 - ISO<br>23319   IDF 250                                                       | Calculation from dry matter content and fat<br>content<br>Gravimetry, drying at 102°C and<br>Gravimetry (Schmid-Bondzynski-Ratzlaff)                                                      | 262        | 1             |
| Whey cheeses by<br>coagulation                                                | Milkfat                                      | ISO 1735   IDF 5 ISO<br>23319   IDF 250                                                                                 | Gravimetry (Schmid-Bondzynski-Ratzlaff)                                                                                                                                                   | 284        | 1             |
| Whey cheeses by<br>coagulation                                                | Milkfat in dry matter                        | ISO 1735   IDF 5 ISO<br>23319   IDF 250 and<br>ISO 5534   IDF 4                                                         | Calculation from fat content and dry matter<br>content<br>Gravimetry (Schmid-Bondzynski-Ratzlaff)<br>Gravimetry, drying at 102°C                                                          | 284        | I             |
| Fermented milks                                                               | Milkfat                                      | ISO 1211   IDF 1-ISO<br>23318   IDF 249                                                                                 | Gravimetry (Röse-Gottlieb)                                                                                                                                                                | 243        | 1             |
| Cream                                                                         | Milkfat                                      | <del>ISO 2450   IDF 16</del> ISO<br>23318   IDF 249                                                                     | Gravimetry (Röse-Gottlieb)                                                                                                                                                                | 288        | 1             |
| Creams lowered in milkfat content                                             | Milkfat                                      | ISO 2450   IDF 16 ISO<br>23318   IDF 249 / AOAC<br>995.19                                                               | Gravimetry (Röse-Gottlieb)                                                                                                                                                                | 288        | 1             |
| Evaporated milks                                                              | Milkfat                                      | ISO 1737   IDF 13 ISO<br>23318   IDF 249                                                                                | Gravimetry (Röse-Gottlieb)                                                                                                                                                                | 281        | I             |
| Evaporated milks                                                              | Milk Protein in MSNF <sup>13</sup>           | <del>ISO 1737   IDF 13</del> ISO<br>23318   IDF 249                                                                     | Gravimetry (Röse-Gottlieb)                                                                                                                                                                | 281        | I             |
| Sweetened condensed milk                                                      | Milkfat                                      | ISO 1737   IDF 13 ISO<br>23318   IDF 249                                                                                | Gravimetry (Röse-Gottlieb)                                                                                                                                                                | 282        | I             |
| Sweetened<br>condensed milks (for<br>products sweetened<br>with sucrose only) | Milk Protein in<br>MNSF <sup>13</sup>        | ISO 6734   IDF 15 and<br>ISO 1737   IDF 13 ISO<br>23318   IDF 249 and<br>ISO 2911   IDF 35 and<br>ISO 8968-1   IDF 20-1 | Calculation from total solids content,<br>fat content, sucrose and protein content<br>Gravimetry, drying at 102 °C and Polarimetry<br>Gravimetry (Röse-Gottlieb)<br>Titrimetry (Kjeldahl) | 282        | 1             |

56

| Commodity                                                                  | Provision                                             | Method                                                            | Principle                                                                                                           | Codex STAN | Proposed Type |
|----------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------|---------------|
| Whey cheeses by<br>concentration<br>(carbohydrate<br>contents below 5%)    | Milkfat (Total fat)                                   | ISO 1854   IDF 59 ISO<br>23318   IDF 249                          | Gravimetry (Röse Gottlieb)                                                                                          | 284        | 1             |
| Whey cheeses by<br>concentration (for<br>carbohydrate content<br>under 5%) | Milkfat in dry matter<br>(total fat in dry<br>matter) | ISO 1854   IDF 59 ISO<br>23318   IDF 249 and<br>ISO 2920   IDF 58 | Calculation from fat content and dry matter<br>content<br>Gravimetry (Röse Gottlieb)<br>Gravimetry, drying at 88 °C | 284        | 1             |
| Whey powders                                                               | Milkfat                                               | <del>ISO 1736   IDF 9-</del> ISO<br>23318   IDF 249               | Gravimetry (Röse-Gottlieb)                                                                                          | 289        | 1             |
| Infant formula                                                             | Total fat                                             | AOAC 989.05<br>ISO 8381 IDF 123 ISO<br>23318   IDF 249            | Gravimetry (Röse-Gottlieb)                                                                                          | 72         | 1             |

#### Other updates necessary in CXS 234 to be considered

- 2 lines for aqueous coconut products refer to ISO 1211 | IDF 1, and shall need to be updated to ISO 23318 | IDF 249
- 2 lines on page 56 of the 2021 version of CXS 234 \* DETERMINATION OF WATER CAPACITY OF CONTAINERS (CAC/RM 46)

# Appendix X

# Section A – Matters agreed by CCFO27

| Commodity            | Provision                                                                         | Method                                                                   | Principle                                              | Туре        | Comment                |
|----------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|-------------|------------------------|
| Fats and oils        | Butylhydroxyanisole,<br>butylhydroxytoluene, tert-<br>butylhydroquinone, & propyl | AOAC 983.15; or AOCS Ce 6-86                                             | Liquid chromatography                                  | #           |                        |
| Fats and oils        | gallate<br>Synthetic phenolic<br>antioxidants                                     | AOCS Ce 6-86 AOCS Ce 6a-2021                                             | Liquid chromatography                                  |             |                        |
| Fats and oils        | Synthetic phenolic<br>antioxidants                                                | AOAC 983.15                                                              | Liquid chromatography                                  | Ш           |                        |
|                      |                                                                                   |                                                                          |                                                        |             |                        |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 1a-13                                                            | Capillary GLC                                          |             |                        |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 2-66                                                             | Preparation of methyl esters by<br>fatty acids         | ##          |                        |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 2b-11                                                            | Alkali hydrolysis                                      | ##          |                        |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 2b-11 and AOCS Ce 1j-<br>07                                      | Gas Chromatography of methyl esters                    | ##          |                        |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 1 <u>i</u> -07                                                   | Capillary GLC                                          | HH III      |                        |
| Fish oils            | Fatty acid composition                                                            | <del>ISO 12966-2</del>                                                   | Gas chromatography                                     | ##          |                        |
| Fish oils            | Fatty acid composition                                                            | <del>ISO 5508</del>                                                      | Gas chromatography                                     | ##          |                        |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 2-66 and AOCS Ce 1i-<br>07                                       | Preparation of methyl esters<br>and Gas Chromatography | +# <u>1</u> |                        |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 2-66 and AOCS Ce 1a-<br>13                                       | Gas Chromatography of methyl esters                    | 111         | Remove from<br>CXS 234 |
| Fish oils            | Fatty acid composition                                                            | AOCS Ce 2b-11 Ce 2c-66 and<br>AOCS Ce 1i-07 / AOCS Ce 1j-07              | Preparation of methyl esters<br>and Gas Chromatography | 111         |                        |
| Fish oils            | Fatty acid composition                                                            | ISO 12966-2 and ISO 12966-4                                              | Preparation of methyl esters<br>and Gas Chromatography | 111         |                        |
| <del>Fish oils</del> | Fatty acid composition                                                            | AOCS Ce 1b 89                                                            | GLC                                                    | #           | Remove from<br>CXS 234 |
| Newsed               |                                                                                   |                                                                          |                                                        |             |                        |
| Named<br>Animal Fats | GLC ranges of fatty acid<br>composition                                           | ISO 5508 and ISO 12966-2; or<br>AOCS Ce 2-66 and Ce 1e-91 or Ce<br>1f-96 | Gas chromatography of methyl esters                    | #           |                        |

| Named                      | Fatty acid composition | ISO 12966-2 and ISO 12966-4 /               | Gas Chromatography of methyl                                                                                                                                                                     | #            |                        |
|----------------------------|------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|
| Animal Fats                |                        | AOCS Ce 2-66 and Ce 1f-96-1j-07             | esters                                                                                                                                                                                           |              |                        |
| Named<br>Animal Fats       | Fatty acid composition | AOCS Ce 2-66 and Ce 1j-07                   | Preparation of methyl esters<br>and Gas Chromatography                                                                                                                                           | I            |                        |
| Named<br>Animal Fats       | Fatty acid composition | AOCS Ce 2-66 and Ce 1f-96                   | Gas Chromatography of methyl esters                                                                                                                                                              | H            | Remove from<br>CXS 234 |
| Named<br>Animal Fats       | Fatty acid composition | ISO 12966-2 and ISO 12966-4                 | Preparation of methyl esters<br>and Gas Chromatography                                                                                                                                           | # <u>III</u> |                        |
|                            |                        |                                             |                                                                                                                                                                                                  |              |                        |
| Named<br>Animal Fats       | Titre                  | ISO 935; or AOCS Cc 12-59                   | Thermometry                                                                                                                                                                                      | ł            |                        |
| Named<br>Animal Fats       | Titre                  | <u>ISO 935</u>                              | Thermometry                                                                                                                                                                                      | I            |                        |
| Named<br>Animal Fats       | Titre                  | AOCS Cc 12-59ª                              | Thermometry                                                                                                                                                                                      | ∔ <u>IV</u>  |                        |
|                            |                        |                                             |                                                                                                                                                                                                  |              |                        |
| Named<br>/egetable<br>Dils | Crismer value          | AOCS Cb 4-35 and AOCS Ca 5a-<br>40          | Calculation from individual fatty<br>acid composition (gas<br>chromatography of methyl esters)<br>and turbidity                                                                                  |              |                        |
| Named<br>/egetable<br>Dils | Halphen test           | AOCS Cb 1-25                                | Colorimetry                                                                                                                                                                                      | I            |                        |
|                            |                        |                                             |                                                                                                                                                                                                  |              |                        |
| Named<br>∕egetable<br>⊃ils | Unsaponifiable matter  | ISO 3596; or ISO 18609; or AOCS<br>Ca 6b 53 | Gravimetry                                                                                                                                                                                       | ł            |                        |
| Named<br>Vegetable<br>Oils | Unsaponifiable matter  | ISO 3596 / AOCS Ca 6b-53                    | Diethyl ether extraction and<br>gravimetry, drying at 103 °C and<br>titrimetry (colorimetry) <u>and</u><br><u>correction for free fatty acids</u><br><u>titrimetry (colorimetry)<sup>c</sup></u> | 1            |                        |
| Named<br>Vegetable<br>Oils | Unsaponifiable matter  | <u>ISO 18609<sup>b</sup></u>                | Hexane extraction and<br>Gravimetry, drying at 103 °C and<br>titrimetry (colorimetry) <u>and</u><br><u>correction for free fatty acids</u><br>titrimetry (colorimetry) <sup>c</sup>              | ‡ <u>IV</u>  |                        |

<sup>b</sup> Results obtained from ISO 18609 are systematically lower. In case of limitations due to climate or regulations that prohibit the use of diethyl ether, ISO 18609 can be used instead of the Type I method.

<sup>c</sup> The technique according to ISO is gravimetric. The correction by titration and colorimetry is only when it is necessary to correct for free fatty acids.

#### Section B – Fish oil - Vitamin A and Vitamin D review

| Comm     | Provisi       | Method                                                                                                | Principle             | Ту        |
|----------|---------------|-------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| odity    | on            |                                                                                                       |                       | ре        |
|          |               |                                                                                                       |                       |           |
| Fish Oil | <u>Vitami</u> | European Parharmcopeia Monograph on Cod Liver Oil (Type A), monograph 01/2005:1192, with LC end-point | LC Liquid             |           |
|          | <u>n A</u> ª  | 2.2.29                                                                                                | <b>Chromatography</b> |           |
| Fish Oil | Vitami        | EN 12823-1 (Determination of vitamin A by high performance liquid chromatograph – Part 1:             | LC-Liquid             | Ħ         |
|          | <u>n A</u> ª  | Measurement of all-E-retinol and 13-Z-retinol)                                                        | <b>Chromatography</b> | <u>II</u> |
| Fish Oil | Vitamin       | NMKL 167 / EN 12821 (Determination of vitamin D by high performance liquid chromatography -           | LC Liquid             | ŦĦ        |
|          | Dp            | Measurement of cholecalciferol (D3) or ergocalciferol (D2))                                           | Chromatograpy         | <u>II</u> |

<sup>a</sup> The respective standard on fish oils CXS 329-2017 states that Vitamin A is expressed as 'Retinol equivalents' (RE) where RE takes into account the fact that different vitamers of vitamin A differ in activity. ISO/TR 23304:2021 "Food products – Guidance on how to express vitamins and their vitamers" may give clarity on this matter, for example for the relevant activities of the all-E-retinol levels and 13-Z-retinol levels.

**b** The provision accounts for Vitamin D2 and D3.

# Appendix XII

# Group 1. Methods reviewed by CPL EWG with decisions

# Cereals, Pulses and Legumes and Derived Products

| Commodity                                               | Provision                      | Codex Standard      | Method                                                                            | Principle                                                                                  | Туре | Committee | Comments        |
|---------------------------------------------------------|--------------------------------|---------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|-----------|-----------------|
| Certain pulses                                          | Moisture                       | CXS 171-1989 (2019) | ISO 665                                                                           | Gravimetry <u>(oven</u><br>drying at 103°C                                                 | I    | CCCPL     | soybeans        |
| Certain pulses                                          | Moisture                       | CXS 171-1989 (2019) | <u>ISO 24557 / AACC 44-</u><br><u>17.01</u>                                       | Gravimetry <u>(oven</u><br>drying at 130°C)                                                | I    | CCCPL     | except soybeans |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Ash                            | CXS 155-1985 (2019) | AOAC 923.03 <u>/</u> ISO 2171<br>and ICC 110/1<br>I <del>CC Method No 104/1</del> | Calculation from<br>moisture and<br>Gravimetry<br><u>(incineration at</u><br><u>550°C)</u> | Ι    | CCCPL     |                 |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Fat, crude                     | CXS 155-1985 (2019) | AOAC 945.38F; <u>and</u><br>920.39C and ICC 110/1                                 | Calculation from<br>moisture and<br>Gravimetry (ether<br>extraction)                       | Ι    | CCCPL     |                 |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Moisture                       | CXS 155-1985 (2019) | ISO 712<br>ICC Method No 110/1<br>ICC 110/1                                       | Gravimetry <u>(oven</u><br><u>drying at 130 –</u><br><u>133°C)</u>                         | I    | CCCPL     |                 |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Particle size<br>(granularity) | CXS 155-1985 (2019) | AOAC 965.221 and ISO<br>3310-1                                                    | Sieving                                                                                    | I    | CCCPL     |                 |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Protein                        | CXS 155-1985 (2019) | ICC Method No 105/1<br>ICC 105/2 and ICC 110/1                                    | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion)                     | I    | CCCPL     |                 |
| Durum wheat semolina<br>and durum wheat flour           | Ash <del>(semolina)</del>      | CXS 178-1991 (2019) | AOAC 923.03 <u>/</u> ISO 2171<br>and ISO 712 <u>/</u> ICC 110/1                   | Calculation from<br>moisture and<br>Gravimetry                                             | I    | CCCPL     |                 |

# Cereals, Pulses and Legumes and Derived Products

| Cereals, Pulses and Le                        | gumes and Derive                                                      | a Products                                            |                                                       |                                                                               |            |                |
|-----------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|------------|----------------|
|                                               |                                                                       |                                                       |                                                       | <u>(incineration at</u><br><u>550°C)</u>                                      |            |                |
| Durum wheat semolina<br>and durum wheat flour | Moisture                                                              | CXS 178-1991 (2019)                                   | ISO 712 <u>/</u> ICC 110/1                            | Gravimetry <u> (oven</u><br><u>drying at 130 –</u><br>133°C)                  | I          | CCCPL          |
| Durum wheat semolina<br>and durum wheat flour | Protein <del>(N x 5.7)</del>                                          | CXS 178-1991 (2019)                                   | ICC 105/4 <u>2</u> and ISO 712<br><u>/</u> ICC 110/1  | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion)        | Ι          | CCCPL          |
| Instant Noodles                               | Extraction of oil<br>from instant<br>noodles                          | CXS 249-2006 (2019)                                   | described in the standard                             | Gravimetry (ether<br>extraction)                                              | ł          | CCCPL          |
| Instant Noodles                               | Acid Value                                                            | CXS 249-2006 (2019)                                   | described in the<br>standard, will be moved<br>to 234 | Titrimetry (ether extraction)                                                 | I          | CCCPL          |
| Instant Noodles                               | Moisture                                                              | CXS 249-2006 (2019)                                   | described in the<br>standard, will be moved<br>to 234 | Gravimetry <u>(oven</u><br>drying at 105°C)                                   | Ι          | CCCPL          |
| Maize (corn)                                  | Moisture                                                              | CXS 153-1985 (2019)                                   | ISO 6540 <u>/ <b>ICC 110/1</b></u>                    | Gravimetry <u>(oven</u><br><u>drying at 130 –</u><br><u>133°C)</u>            | I          | CCCPL          |
| Aflatoxin methods to b                        | e replaced with pe                                                    | rformance criteria once                               | e correct criteria are estab                          | lished                                                                        |            |                |
| <del>Peanuts (raw)</del>                      | Aflatoxins, total                                                     | <del>CXS 200-1995 (2019)</del><br>CXS 193-1995 (2019) | AOAC 991.31 <u>(A – G)</u>                            | Immunoaffinity<br>column (IAC),<br>(Aflatest),<br>fluorometry                 | # <u>#</u> | CCCPL/CC<br>CF |
| <del>Peanuts (raw)</del>                      | Aflatoxins, total<br><u>as Σ of</u><br>aflatoxins, B1<br>B2 G1 and G2 | CXS 200-1995 (2019)<br>CXS 193-1995 (2019)            | AOAC 991.31 <u>(A – F, H)</u>                         | Immunoaffinity<br>column (Aflatest)<br>IAC (Aflatest) and<br>HPLC-Post column | H          | CCCPL/CC<br>CF |

# Cereals, Pulses and Legumes and Derived Products

|                                                                       |                                                                                   |                                                          |                                                                                              | derivatization<br>(PCD)                                                                    |              |                |                                                                                                                                                                  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peanuts (raw)<br>(intended for further<br>processing)                 | <u>Aflatoxins, total</u>                                                          | <u>CXS 200-1995 (2019)</u><br><u>CXS 193-1995 (2019)</u> | AOAC 993.17                                                                                  | Thin layer<br>chromatography                                                               | ₩ <u>₩</u>   | CCCPL<br>/CCCF | Method uses hazardous<br>reagents<br>(benzene/chloroform) not all<br>aflatoxins captured by<br>method, recommend<br>removal                                      |
| Peanuts (intended for<br>further processing)                          | Aflatoxins, total                                                                 | <del>CXS 200-1995 (2019)</del><br>CXS 193-1995 (2019)    | AOAC 975.36                                                                                  | IAC (Romer<br>minicolumn)                                                                  | ₩ <u>₩</u>   | CCCPL/CC<br>CF | Qualitative/ semi-<br>quantitative screening<br>method; does not meet<br>performance criteria in<br>Procedural Manual;<br><b>recommend removal</b>               |
| Peanuts                                                               | Sum of                                                                            | CXS-200-1995 (2019)                                      | <del>EN 12955 /</del>                                                                        | IAC, HPLC-PCD                                                                              | ##           | CCCPL          | EN 12955 withdrawn                                                                                                                                               |
| (Cereals, shell-fruits<br>and derived products<br>(including peanuts) | aflatoxins B <sub>1</sub> , B <sub>2</sub> ,<br>G <sub>1</sub> and G <sub>2</sub> | <u>CXS 193-1995 (2019)</u>                               | ISO 16050                                                                                    |                                                                                            |              |                |                                                                                                                                                                  |
| Peanuts (intended for<br>further processing)                          | Aflatoxins, total                                                                 | CXS 200 1995 (2019)<br>CXS 193-1995 (2019)               | AOAC 979.18                                                                                  | IAC (Holaday-<br>Velasco<br>minicolumn)                                                    | ## <u>#¥</u> | CCCPL/CC<br>CF | Qualitative/ semi-<br>quantitative screening<br>method; does not meet<br>performance criteria in<br>Procedural Manual;<br>recommend removal also<br>uses benzene |
| Pearl millet flour                                                    | Ash                                                                               | CXS 170-1989 (2019)                                      | AOAC 923.03 <u>/ ISO 2171</u><br>and ISO 712 <u>/</u> ICC 110/1                              | Calculation from<br>moisture and<br>Gravimetry<br><u>(incineration at</u><br><u>550°C)</u> | I            | CCCPL          |                                                                                                                                                                  |
| Pearl millet flour                                                    | Colour                                                                            | <del>CXS 170-1989 (2019)</del>                           | Modern Cereal<br>Chemistry, 6th Ed., D.W.<br>Kent Jones and A.J.<br>Amos (Ed.), pp. 605-612, | Colorimetry using<br>(specific colour<br>grader)                                           | ł¥           | CCCPL          | Colour-grading equipment<br>used in method is no longer<br>available, possible use of<br>other item capable of results<br>of the <i>style</i> of the original;   |

Group 1. Methods reviewed by CPL EWG with decisions

Cereals, Pulses and Legumes and Derived Products Food Trade Press Ltd. sample is affected by bleach London, 1969. and method requires benzene: there does not appear to be a conversion factor from Kent-Jones units to the more commonly used CIELab color space, making it difficult to determine whether or not the products comply with the limit/range listed in the Standard. reconsideration of provision/method suggested by reviewers Pearl millet flour CXS 170-1989 (2019) AOAC 945.38F; and Calculation from CCCPL Fat, crude 920.39C and ISO 712 / moisture and ICC 110/1 Gravimetry (ether extraction) Pearl millet flour CXS 170-1989 (2019) ISO 5498 (B.5 CCCPL Fibre, crude Calculation from Т Separation) and ISO 712 moisture and / ICC 110/1 Gravimetry (extraction and filtration) Pearl millet flour CXS 170-1989 (2019) ISO 712 ;/ ICC 110/1 CCCPL Moisture Gravimetry (oven drying at 130 -133°C) CCCPL Pearl millet flour CXS 170-1989 (2019) AOAC 920.87 ISO 20483 Calculation from Protein Т and ISO 712 / ICC 110/1 moisture and Titrimetry (Kjeldahl digestion) Quinoa Moisture content CXS 333-2019 (2020) ISO 712/ Gravimetry (oven T CCCPL Moved to Appendix II, for drying at 130 further consideration AACCI 44-15.02

133°C)

| Quinoa        | Protein (N x 6.25                              | CXS 333-2019 (2020) | ISO 20483                                                                                                                              | Calculation from                                                                           | ₩  | CCCPL | Moved to Appendix II, for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------|------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | i <del>n dry weight</del><br><del>basis)</del> |                     | ISO 1871 and ISO 712                                                                                                                   | moisture and<br>Titrimetry (Kjeldahl<br>digestion)                                         | Ŧ  |       | further consideration<br>Suggest that N factor be<br>prescribed in commodity<br>standards if internationally<br>agreed, but not in CXS 234.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sorghum flour | Ash                                            | CXS 173-1989 (2019) | AOAC 923.03 <u>/</u> ISO 2171<br><del>ICC 104/1</del><br>and ISO 712 / ICC 110/1                                                       | Calculation from<br>moisture and<br>Gravimetry<br><u>(incineration at</u><br><u>550°C)</u> | Ι  | CCCPL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sorghum flour | Colour                                         | CXS 173-1989 (2019) | Modern Cereal<br>Chemistry, 6th Ed., D.W.<br>Kent Jones and A.J.<br>Amos (Ed.), pp. 605-612,<br>Food Trade Press Ltd,<br>London, 1969. | Colorimetry using<br>( <del>specific colour</del><br>grader)                               | ŀΎ | CCCPL | Colour-grading equipment<br>used in method is no longer<br>available, possible use of<br>other item capable of results<br>of the <i>style</i> of the original;<br>sample is affected by bleach<br>and method requires<br>benzene; there does not<br>appear to be a conversion<br>factor from Kent-Jones units<br>to the more commonly used<br>CIELab color space, making<br>it difficult to determine<br>whether or not the products<br>comply with the limit/range<br>listed in the Standard.<br>reconsideration of<br>provision/method<br>suggested by reviewers |
| Sorghum flour | Fat, crude                                     | CXS 173-1989 (2019) | AOAC 945.38F; <u>and</u><br>920.39C and ISO 712 <u>/</u><br>ICC 110/1                                                                  | Calculation from<br>moisture and<br>Gravimetry (ether<br>extraction)                       | Ι  | CCCPL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sorghum flour | Fibre, crude                                   | CXS 173-1989 (2019) | ICC 113 <u>/</u> ISO 6541 and<br>ISO 712 <u>/</u> ICC 110/1                                                                            | Calculation from moisture and                                                              | Ι  | CCCPL |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Cereals, Pulses and | d Legumes and Deriv                              | ved Products                   |                                                                    |                                                                                            |   |       |                                                                                                                    |
|---------------------|--------------------------------------------------|--------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---|-------|--------------------------------------------------------------------------------------------------------------------|
|                     |                                                  |                                |                                                                    | Gravimetry<br>(separation,<br>incineration)                                                |   |       |                                                                                                                    |
| Sorghum flour       | Moisture                                         | CXS 173-1989 (2019)            | ISO 712 <u>/</u> ICC 110/1                                         | Gravimetry <u>(oven</u><br><u>drying at 130 –</u><br><u>133°C)</u>                         | I | CCCPL |                                                                                                                    |
| Sorghum flour       | Particle size<br>(granularity)                   | CXS 173-1989 (2019)            | AOAC 965.22 <sup>1</sup> and ISO<br>3310-1                         | Sieving                                                                                    | I | CCCPL |                                                                                                                    |
| Sorghum flour       | Protein                                          | CXS 173-1989 (2019)            | ICC 105/4 <b>2</b> and ISO 712<br><u>/</u> ICC 110/1               | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion)                     | I | CCCPL |                                                                                                                    |
| Sorghum flour       | <del>Protein⁴ <u>(N x</u><br/><u>6.25)</u></del> | <del>CXS 173-1989 (2019)</del> | I <del>SO 1871</del>                                               | Titrimetry (Kjeldahl<br>digestion)                                                         | ł | CCCPL | ISO 1871 Type IV listed in<br>CXS-173, not CXS 234,<br>review of ICC 105/2<br>completed in 2021/22 and<br>accepted |
| Sorghum flour       | Tannins                                          | CXS 173-1989 (2019)            | ISO 9648 and ISO 712 <u>/</u><br>ICC 110/1                         | Calculation from<br>moisture and<br>Spectrophotometry                                      | I | CCCPL | Method established for<br>sorghum grains, samples to<br>be crushed, not milled as<br>occurs for flour              |
| Sorghum grains      | Ash                                              | CXS 172-1989 (2019)            | AOAC 923.03 <u>/</u> ISO 2171<br><del>ICC 104/1</del> and ISO 6540 | Calculation from<br>moisture and<br>Gravimetry<br><u>(incineration at</u><br><u>550°C)</u> | I | CCCPL |                                                                                                                    |
| Sorghum grains      | Fat, crude                                       | CXS 172-1989 (2019)            | AOAC 945.38F <del>, <u>and</u><br/>920.39C and ISO 6540</del>      | Calculation from<br>moisture and<br>Gravimetry (ether<br>extraction)                       | I | CCCPL |                                                                                                                    |
| Sorghum grains      | Moisture                                         | CXS 172-1989 (2019)            | ISO 6540                                                           | Gravimetry <u>(oven</u><br><u>drying at 130 –</u><br><u>133°C)</u>                         | I | CCCPL |                                                                                                                    |

| Cereals, Pulses and L         | •                                                       |                     |                                                                             |                                                                                                                           |   | 0000  |                                                                                                                    |
|-------------------------------|---------------------------------------------------------|---------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---|-------|--------------------------------------------------------------------------------------------------------------------|
| Sorghum grains                | Protein                                                 | CXS 172-1989 (2019) | ICC 105/4 <b>2</b> and ISO<br>6540                                          | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion)                                                    | Ι | CCCPL |                                                                                                                    |
| Sorghum grains                | <del>Protein<sup>±</sup> (N x</del><br><del>6.25)</del> | CXS 172-1989 (2019) | ISO 1871                                                                    | Titrimetry, Kjeldahl<br>digestion                                                                                         | ł | CCCPL | ISO 1871 Type IV listed in<br>CXS-172, not CXS 234,<br>review of ICC 105/2<br>completed in 2021/22 and<br>accepted |
| Sorghum grains                | Tannins                                                 | CXS 172-1989 (2019) | ISO 9648 and ISO 6540                                                       | Calculation from<br>moisture and<br>Spectrophotometry                                                                     | I | CCCPL |                                                                                                                    |
| Soy protein products          | Ash                                                     | CXS 175-1989 (2019) | AOAC 923.03 <u>/</u> ISO<br>2171 <del>: (Method B)</del> and<br>AOAC 925.09 | Calculation from<br>moisture and<br>Gravimetry<br><u>(incineration at</u><br><u>550°C)</u>                                | I | CCVP  |                                                                                                                    |
| Soy protein products          | Fibre, crude                                            | CXS 175-1989 (2019) | ISO 5498 and AOAC<br>925.09                                                 | Calculation from<br>moisture and<br>Gravimetry<br><del>(separation)</del><br><u>(extraction and</u><br><u>filtration)</u> | I | CCVP  |                                                                                                                    |
| Soy protein products          | Moisture                                                | CXS 175-1989 (2019) | AOAC 925.09                                                                 | Gravimetry (vacuum<br>oven <b>at 98 – 100°C</b> )                                                                         | I | CCVP  |                                                                                                                    |
| Vegetable protein<br>products | Ash                                                     | CXS 174-1989 (2019) | AOAC 923.03 <u>/</u> ISO 2171<br><del>(Method B)</del> and AOAC<br>925.09   | Calculation from<br>moisture and<br>Gravimetry<br><u>(incineration at</u><br><u>550°C)</u>                                | I | CCVP  |                                                                                                                    |
| Vegetable protein<br>products | Fibre, crude                                            | CXS 174-1989 (2019) | AACC <del>32-17</del> 32-10.01<br>and AOAC 925.09                           | Calculation from<br>moisture and<br><b>Gravimetry</b>                                                                     | Ι | CCVP  |                                                                                                                    |

| Cereals, Pulses and Le                        | gumes and Derive                      | d Products                     |                                                               |                                                                                                          |   |       |                                                                                                                    |
|-----------------------------------------------|---------------------------------------|--------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---|-------|--------------------------------------------------------------------------------------------------------------------|
|                                               |                                       |                                |                                                               | (Ceramic filter filtration)                                                                              |   |       |                                                                                                                    |
| Vegetable protein<br>products                 | Moisture                              | CXS 174-1989 (2019)            | AOAC 925.09                                                   | Gravimetry (vacuum<br>oven <b>at 98 – 100°C</b> )                                                        | I | CCVP  |                                                                                                                    |
| Wheat flour                                   | Ash                                   | CXS 152-1985 (2019)            | AOAC 923.03 <u>/</u> ISO 2171<br>ICC 104/1                    | Gravimetry<br>(incineration at<br>550°C)                                                                 | Ι | CCCPL |                                                                                                                    |
| Wheat flour                                   | Fat acidity                           | CXS 152-1985 (2019)            | AOAC 939.05 <b>ISO 7305</b><br>and ISO 712 <u>/</u> ICC 110/1 | Calculation from<br>moisture and<br>Titrimetry<br><u>(extraction)</u>                                    | I | CCCPL |                                                                                                                    |
| Wheat flour                                   | Moisture                              | CXS 152-1985 (2019)            | ISO 712 <u>/</u> ICC 110/1                                    | Gravimetry <u>(oven</u><br><u>drying at 130 –</u><br><u>133°C)</u>                                       | I | CCCPL |                                                                                                                    |
| Wheat flour                                   | Particle size<br>(granularity)        | CXS 152-1985 (2019)            | AOAC 965.221 and ISO<br>3310-1                                | Sieving                                                                                                  | Ι | CCCPL |                                                                                                                    |
| Wheat flour                                   | Protein                               | CXS 152-1985 (2019)            | ICC 105/4 <u>2</u> and ISO 712 <del>:</del><br>/ ICC 110/1    | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion)                                   | Ι | CCCPL |                                                                                                                    |
| Wheat flour                                   | Protein <sup>±</sup> <u>(N x 5.7)</u> | <del>CXS 152-1985 (2019)</del> | <del>ISO 1871</del>                                           | Titrimetry (Kjeldahl<br>digestion)                                                                       | ţ | CCCPL | ISO 1871 Type IV listed in<br>CXS-152, not CXS 234,<br>review of ICC 105/2<br>completed in 2021/22 and<br>accepted |
| Wheat protein products including wheat gluten | Fibre, crude <sup>4</sup>             | CXS 163-1987 (2001)            | AOAC 962.09<br>and AOAC 925.09                                | Calculation from<br>moisture and<br>Gravimetry<br>Ceramic fibre<br>( <u>ceramic fibre</u><br>filtration) | I | CCVP  |                                                                                                                    |

| Cereals, Pulses and Le                                     | gumes and Derive                                      | d Products                 |                                                                                   |                                                                                                             |   |             |                                                         |
|------------------------------------------------------------|-------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---|-------------|---------------------------------------------------------|
| <u>Wheat protein</u><br>products including<br>wheat gluten | <u>Moisture</u>                                       | <u>CXS 163-1987 (2001)</u> | AOAC 925.09                                                                       | <u>Gravimetry</u><br><u>(vacuum oven at</u><br>98 – 100°C <u>)</u>                                          | Ī | <u>CCVP</u> |                                                         |
| Wheat protein products including wheat gluten              | Crude Protein <u><sup>1</sup>;</u><br>excluding added | CXS 163-1987 (2001)        | Vital wheat gluten and devitalized wheat gluten                                   | Calculation from moisture and                                                                               | I | CCVP        | Suggest that N factor be prescribed in commodity        |
|                                                            | vitamins,<br>minerals, amino<br>acids and             |                            | AOAC 979.09 (wheat<br>protein in grain N x 5.7)                                   | Titrimetry (Kjeldahl<br>digestion)                                                                          |   |             | standards if internationally agreed, but not in CXS 234 |
|                                                            | optional<br>ingredients                               | optional <u>Is</u>         | ISO 20483 and AOAC<br>925.09                                                      |                                                                                                             |   |             |                                                         |
|                                                            |                                                       |                            | Solubilized wheat protein                                                         | Calculation from                                                                                            | I | CCVP        |                                                         |
|                                                            |                                                       |                            | AOAC 920.87                                                                       | moisture and<br><del>Kjeldahl</del>                                                                         |   |             |                                                         |
|                                                            |                                                       |                            | <del>(wheat protein in flour N</del><br><del>x 5.7)</del>                         | Titrimetry (Kjeldahl<br>digestion) ( <del>wheat</del><br><del>protein in flour N x</del><br><del>5.7)</del> |   |             |                                                         |
|                                                            |                                                       |                            | ISO 20483 and AOAC<br>925.09                                                      |                                                                                                             |   |             |                                                         |
| Wheat protein products including wheat gluten              | Ash                                                   | CXS 163-1987 (2001)        | AOAC 923.03 <u>/</u> ISO<br>2171 <del>: method B</del> and<br>AOAC 925.09         | Calculation from<br>moisture and<br>Gravimetry<br>(incineration at<br>550°C)                                | I | CCVP        |                                                         |
| Whole and decorticated pearl millet grains                 | Ash                                                   | CXS 169-1989 (2019)        | AOAC 923.03 / ISO 2171<br>and ISO 712 / ICC 110/1                                 | Calculation from<br>moisture and<br>Gravimetry<br>(incineration at<br>550°C)                                | I | CCCPL       |                                                         |
| Whole and decorticated pearl millet grains                 | Fat, crude                                            | CXS 169-1989 (2019)        | AOAC 945.38F <del>;</del> <u>and</u><br>920.39C and ISO 712 <u>/</u><br>ICC 110/1 | Calculation from moisture and                                                                               | I | CCCPL       |                                                         |

| Cereals, Pulses and Le                        | gumes and Derive               | d Products          |                                                                                      |                                                                                                      |   |       |                                                          |
|-----------------------------------------------|--------------------------------|---------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|-------|----------------------------------------------------------|
|                                               |                                |                     |                                                                                      | Gravimetry (ether extraction)                                                                        |   |       |                                                          |
| Whole and decorticated<br>pearl millet grains | Fibre, crude                   | CXS 169-1989 (2019) | ISO 5498 <del>(B.5</del><br><del>separation)</del> and ISO 712<br><u>/</u> ICC 110/1 | Calculation from<br>moisture and<br>Gravimetry<br><u>(filtration through</u><br><u>filter paper)</u> | Ι | CCCPL |                                                          |
| Whole and decorticated pearl millet grains    | Moisture                       | CXS 169-1989 (2019) | ISO 712 <u>/</u> ICC 110/1                                                           | Gravimetry <u>(oven</u><br><u>drying 130 –</u><br><u>133°C)</u>                                      | I | CCCPL |                                                          |
| Whole and decorticated pearl millet grains    | Protein                        | CXS 169-1989 (2019) | AOAC 920.87 <u>ISO 20483</u><br>and ISO 712 <u>/</u> ICC 110/1                       | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion)                               | I | CCCPL |                                                          |
| Whole maize (corn)<br>meal                    | Ash                            | CXS 154-1985 (2019) | AOAC 923.03 <u>/</u> ISO 2171<br><del>ICC 104/1</del> and ICC 110/1                  | Calculation from<br>moisture and<br>Gravimetry<br><u>(incineration at</u><br><u>550°C)</u>           | I | CCCPL |                                                          |
| Whole maize (corn)<br>meal                    | <del>Crude </del> Fat, crude   | CXS 154-1985 (2019) | AOAC 945.38F; <u>and</u><br>920.39C and ICC 110/1                                    | Calculation from<br>moisture and<br>Gravimetry (ether<br>extraction)                                 | I | CCCPL |                                                          |
| Whole maize (corn)<br>meal                    | Moisture                       | CXS 154-1985 (2019) | <del>ISO 712</del> ICC 110/1 <u>/ ISO</u><br>6540                                    | Gravimetry <u>(oven</u><br><u>drying 130 –</u><br><u>133°C)</u>                                      | I | CCCPL |                                                          |
| Whole maize (corn)<br>meal                    | Particle size<br>(granularity) | CXS 154-1985 (2019) | AOAC 965.22 <sup>1</sup> and ISO<br>3310-1                                           | Sieving                                                                                              | I | CCCPL | AACC 66-20.01 not<br>identical, different sample<br>size |
| Whole maize (corn)<br>meal                    | Protein                        | CXS 154-1985 (2019) | ICC 105/4 <u>2</u> and ICC<br>110/1                                                  | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion)                               | Ι | CCCPL |                                                          |

70

| Cereals, Pulses and L | egumes and Deriv     | ved Products               |                                                                                               |                                                                                      |   |              |                                                                                                                                                                                                                                                                         |
|-----------------------|----------------------|----------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Gari</u>           | <u>Total acidity</u> | <u>CXS 151-1989 (2019)</u> | <u>ISO/DP 7305</u><br><u>AOAC 1975 14.064 –</u><br><u>14.065 (AOAC 939.05)</u><br>and ISO 712 | <u>Titrimetry (ethanol</u><br><u>extraction)</u>                                     | Ī | <u>CCCPL</u> | Reviewer supported 7305;<br>AOAC 1975 14.064 –<br>14.065 is AOAC 939.05,<br>using an earlier<br>numbering system. AOAC<br>939.05 reviewed 2021/2022<br>and proposed for wheat<br>flour, but was<br>recommended for<br>replacement due to<br>hazardous chemical<br>usage |
| Gari                  | Crude fibre          | CXS 151-1989 (2019)        | ISO 5498 and ISO 712                                                                          | Gravimetry<br>(separation)                                                           | I | CCCPL        | General method                                                                                                                                                                                                                                                          |
| Gari                  | Ash                  | CXS 151-1989 (2019)        | ISO 2171 and ISO 712                                                                          | Calculation from<br>moisture Gravimetry<br>(incineration <u>at</u><br><u>550°C</u> ) | I | CCCPL        |                                                                                                                                                                                                                                                                         |
| Gari                  | Moisture             | CXS 151-1989 (2019)        | <del>ICC 109/1</del> ISO 712                                                                  | Gravimetry <u>(oven</u><br><u>drying 130 –</u><br><u>133°C)</u>                      | Ι | CCCPL        | No method given in CXS<br>151, listed in CXS 234: ISO<br>712 accepted for other<br>commodities, ICC 109/1<br>states not to be used for<br>commercial disputes                                                                                                           |
| Edible Cassava flour  | Moisture             | CXS 176-1989 (2019)        | ISO 712                                                                                       | Gravimetry <u>(oven</u><br><u>drying</u> at 98 –<br>100°C <u>)</u>                   | Ī | CCCPL        | No method given in CXS<br>176, listed in CXS 234: ISO<br>712 accepted for other<br>commodities                                                                                                                                                                          |
| Edible Cassava flour  | Crude fibre          | CXS 176-1989 (2019)        | ISO 5498 <del>(B.5</del><br><del>separation)</del>                                            | Gravimetry<br>(separation)                                                           | Ι | CCCPL        | General method                                                                                                                                                                                                                                                          |
| Edible Cassava flour  | Ash                  | CXS 176-1989 (2019)        | ISO 2171 and ISO 712                                                                          | Calculation from<br>moisture Gravimetry<br>(incineration <u>at</u>                   | I | CCCPL        |                                                                                                                                                                                                                                                                         |

<u>550°C</u>)

# Group 2. Methods requiring additional follow up action

| 0 "                  | -<br>-                                                              |                     |                                                                                                                                                       | <b>D</b> · · · ·                                                       | -             | 0         | <b>2</b> <i>i</i>                                                                                                                                                                                                                         |
|----------------------|---------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commodity            | Provision                                                           | Codex Standard      | Method                                                                                                                                                | Principle                                                              | Туре          | Committee | Comments                                                                                                                                                                                                                                  |
| Pearl millet flour   | Colour                                                              | CXS 170-1989 (2019) | Modern Cereal<br>Chemistry, 6th Ed., D.W.<br>Kent-Jones and A.J.<br>Amos (Ed.), pp. 605-612,<br>Food Trade Press Ltd,<br>London, 1969.                | Colorimetry <del>using</del><br>(specific colour<br>grader)            | IV            | CCCPL     | Colour-grading equipment<br>used in method is no longer<br>available, reconsideration of<br>provision/method suggested<br>by reviewers.                                                                                                   |
| Quinoa               | Moisture <del>content</del>                                         | CXS 333-2019 (2020) | ISO 712 /<br>AACCI 44-15.02                                                                                                                           | Gravimetry <u>(oven</u><br><u>drying at 130 –</u><br><u>133°C)</u>     | I             | CCCPL     | Methods are not identical,<br>both methods endorsed by<br>CCMAS as identical in a<br>previous meeting. Further<br>consideration may be<br>needed, given the larger<br>sample size with AACCI 44-<br>15.02                                 |
| Quinoa               | Protein <del>(N x 6.25</del><br>in dry weight<br><del>basis</del> ) | CXS 333-2019 (2020) | ISO 20483<br>ISO 1871 and ISO 712                                                                                                                     | Calculation from<br>moisture and<br>Titrimetry (Kjeldahl<br>digestion) | ₩<br><u>I</u> | CCCPL     | Validation information for<br>ISO 1871 required, data ae<br>available and anticipated to<br>be shared for review. While<br>ISO 20483 is acceptable for<br>cereals, quinoa is a<br>pseudocereal and it is not<br>considered as a good fit. |
| Sorghum flour        | Colour                                                              | CXS 173-1989 (2019) | <i>Modern Cereal</i><br><i>Chemistry</i> , 6th Ed., D.W.<br>Kent-Jones and A.J.<br>Amos (Ed.), pp. 605-612,<br>Food Trade Press Ltd,<br>London, 1969. | Colorimetry <del>using</del><br>(specific colour<br>grader)            | IV            | CCCPL     | Colour-grading equipment<br>used in method is no longer<br>available, reconsideration of<br>provision/method suggested<br>by reviewers.                                                                                                   |
| Soy protein products | Fat                                                                 | CXS 175-1989 (2019) | CAC/RM 55 - Method 1                                                                                                                                  | Gravimetry<br>(extraction)                                             | I             | CCVP      | Method is not available                                                                                                                                                                                                                   |

72

# Group 2. Methods requiring additional follow up action

| Cereals, Pulses and Legumes and Derived Products |                                                                                               |                     |                      |                                    |    |       |                                                                                                                                                                                        |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|----------------------|------------------------------------|----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                               |                     |                      |                                    |    |       | Replacement requested, none identified to date                                                                                                                                         |
| Soy protein products                             | Protein;<br><u>excluding added</u><br><u>vitamins,</u><br>minerals, amino                     | CXS 175-1989 (2019) | AOAC 955.04D         | Titrimetry (Kjeldahl<br>digestion) | Ι  | CCVP  | Recommend revoke method<br>and replace – mercury used                                                                                                                                  |
|                                                  | acids and food<br>additives (N x<br>6.25)                                                     |                     |                      |                                    |    |       | Replacement requested, none identified to date                                                                                                                                         |
| Vegetable protein<br>products                    | Fat                                                                                           | CXS 174-1989 (2019) | CAC/RM 55 - Method 1 | Gravimetry<br>(extraction)         | Ι  | CCVP  | Method is not available<br>Replacement requested,<br>none identified to date                                                                                                           |
| Vegetable protein<br>products                    | <u>Crude</u> Protein;<br><u>excluding added</u><br><u>vitamins,</u><br><u>minerals, amino</u> | CXS 174-1989 (2019) | AOAC 955.04D         | Titrimetry (Kjeldahl<br>digestion) | #1 | CCVP  | Recommend revoke method<br>and replace – mercury used<br>Replacement requested,                                                                                                        |
|                                                  | acids and food<br>additives                                                                   |                     |                      |                                    |    |       | none identified to date                                                                                                                                                                |
| Gari                                             | Particle size<br>(classification)                                                             | CXS 151-1989 (2019) | ISO 2591-1           | Sieving                            | I  | CCCPL | Recommended for removal,<br>however, classification<br>determined by sieve size<br>used. ISO 2591 provides<br>general guidance on sieving<br>protocols, but is not specific<br>to CPL. |
| Edible Cassava flour                             | Particle size                                                                                 | CXS 176-1989 (2019) | ISO 2591-1           | Sieving                            | I  | CCCPL | Recommended for removal,<br>however, classification<br>determined by sieve size<br>used. ISO 2591 provides<br>general guidance on sieving<br>protocols, but is not specific<br>to CPL. |

73

# Group 3: Methods proposed by SDOs as updates and/or replacements for methods currently in CXS 234

| Commodity                                               | Provision                                 | Codex Standard      | Original Method entry                       | Original Principle                        | Туре | Committee | Comments                                                                                                                |
|---------------------------------------------------------|-------------------------------------------|---------------------|---------------------------------------------|-------------------------------------------|------|-----------|-------------------------------------------------------------------------------------------------------------------------|
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Ash <sup>1</sup>                          | CXS 155-1985 (2019) | AOAC 923.03 <u>/</u> ISO 2171               | Gravimetry<br>(incineration)              | I    | CCCPL     | C&G recommends<br>addition of AACC 08-<br>01.01                                                                         |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Fat, crude <u>1</u>                       | CXS 155-1985 (2019) | AOAC 945.38F; <u>and</u><br>920.39C         | Gravimetry (ether extraction)             | I    | CCCPL     | ISO recommends<br>addition of ISO 11085<br>C&G recommends<br>addition of AACC 30-                                       |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Moisture                                  | CXS 155-1985 (2019) | ISO 712<br>ICC Method No 110/1<br>ICC 110/1 | Gravimetry <u>(oven</u><br><u>drying)</u> | I    | CCCPL     | 25.01<br>ISO recommends<br>addition of ISO 6540                                                                         |
| Degermed maize (corn)<br>meal and maize (corn)<br>grits | Protein <u>1</u>                          | CXS 155-1985 (2019) | ICC 105/4 <u>2</u>                          | Titrimetry (Kjeldahl<br>digestion)        | I    | CCCPL     | ISO recommends<br>addition of ISO 20483<br>C&G recommends<br>addition of AACC 46-<br>16.01 (copper sulfate<br>catalyst) |
| Durum wheat semolina<br>and durum wheat flour           | Ash <u>1 (semolina)</u>                   | CXS 178-1991 (2019) | AOAC 923.03 <u>/</u> ISO 2171               | Gravimetry<br>(incineration)              | I    | CCCPL     | C&G recommends<br>addition of AACC 08-<br>12.01 (semolina)                                                              |
| Durum wheat semolina<br>and durum wheat flour           | Protein <sup>1</sup> <del>(N x 5.7)</del> | CXS 178-1991 (2019) | ICC 105/4 <u>2</u>                          | Titrimetry (Kjeldahl<br>digestion)        | I    | CCCPL     | ISO recommends<br>addition of ISO 20483<br>C&G recommends<br>addition of AACC 46-<br>16.01 (copper sulfate<br>catalyst) |
| Pearl millet flour                                      | Ash <u>1</u>                              | CXS 170-1989 (2019) | AOAC 923.03 <u>/</u> ISO 2171               | Gravimetry<br>(incineration)              | I    | CCCPL     | C&G recommends<br>addition of AACC 08-<br>01.01                                                                         |
| Pearl millet flour                                      | Fat <u>1</u>                              | CXS 170-1989 (2019) | AOAC 945.38F <del>;</del> and<br>920.39C    | Gravimetry (ether extraction)             | Ι    | CCCPL     | ISO recommends<br>addition of ISO 11085                                                                                 |

| Sorghum flour                 | Ash <u>1</u>                                         | CXS 173-1989 (2019) | AOAC 923.03 <u>/</u> ISO 2171                           | Gravimetry<br>(incineration)        | I | CCCPL | C&G recommends<br>addition of AACC 08-<br>01.01                                                                        |
|-------------------------------|------------------------------------------------------|---------------------|---------------------------------------------------------|-------------------------------------|---|-------|------------------------------------------------------------------------------------------------------------------------|
| Sorghum flour                 | Fat, crude <u>1</u>                                  | CXS 173-1989 (2019) | AOAC 945.38F <del>,</del> <u>and</u><br>920.39C         | Gravimetry (ether extraction)       | I | CCCPL | ISO recommends<br>addition of ISO 11085                                                                                |
| Sorghum flour                 | Protein <sup>1</sup> <u>(N x</u><br><u>6.25)</u>     | CXS 173-1989 (2019) | ICC 105/4 <u>2</u>                                      | Titrimetry (Kjeldahl<br>digestion)  | I | CCCPL | ISO recommends<br>addition of ISO 20483                                                                                |
|                               |                                                      |                     |                                                         |                                     |   |       | C&G recommends<br>addition of AACC 46-<br>16.01 (copper sulfate<br>catalyst)                                           |
| Sorghum grains                | Ash <u>1</u>                                         | CXS 172-1989 (2019) | AOAC 923.03 <u>/</u> ISO 2171<br><del>ICC 104/1</del>   | Gravimetry<br>(incineration)        | Ι | CCCPL | C&G recommends<br>addition of AACC 08-<br>01.01                                                                        |
| Sorghum grains                | Fat, crude <u>1</u>                                  | CXS 172-1989 (2019) | AOAC 945.38F <del>,</del> <u>and</u><br>920.39C         | Gravimetry (ether<br>extraction)    | Ι | CCCPL | ISO recommends<br>addition of ISO 11085<br>C&G recommends<br>addition of AACC 30-<br>25.01                             |
| Sorghum grains                | Protein <u>1</u> <del>(N-x</del><br><del>6.25)</del> | CXS 172-1989 (2019) | ICC 105/4 <u>2</u>                                      | Titrimetry (Kjeldahl<br>digestion)  | Ι | CCCPL | ISO recommends<br>addition of ISO 20483<br>C&G recommends<br>addition of AACC 46-<br>16.01(copper sulfate<br>catalyst) |
| Soy protein products          | Ash <sup>1</sup>                                     | CXS 175-1989 (2019) | AOAC 923.03 <u>/</u> ISO 2171÷<br><del>(Method B)</del> | Gravimetry<br><u>(incineration)</u> | I | CCVP  | C&G recommends<br>addition of AACC 08-<br>01.01                                                                        |
| Soy protein products          | Moisture                                             | CXS 175-1989 (2019) | AOAC 925.09                                             | Gravimetry (vacuum<br>oven)         | I | CCVP  | ISO recommends addition of ISO 771                                                                                     |
|                               |                                                      |                     |                                                         |                                     |   |       | AACC recommends addition of 44-40.01                                                                                   |
| Vegetable protein<br>products | Moisture                                             | CXS 174-1989 (2019) | AOAC 925.09                                             | Gravimetry (vacuum<br>oven)         | Ι | CCVP  | AACC recommends addition of 44-40.01                                                                                   |

| Wheat flour                                      | Ash                       | CXS 152-1985 (2019) | AOAC 923.03 <u>/</u> ISO 2171<br>I <del>CC 104/1</del> | Gravimetry<br><u>(incineration)</u>       | Ι | CCCPL | C&G recommends<br>addition of AACC 08-<br>01.01                                                                        |
|--------------------------------------------------|---------------------------|---------------------|--------------------------------------------------------|-------------------------------------------|---|-------|------------------------------------------------------------------------------------------------------------------------|
| Wheat flour                                      | Protein¹ <u>(N x 5.7)</u> | CXS 152-1985 (2019) | ICC 105/ <u>1<b>2</b></u>                              | Titrimetry (Kjeldahl<br>digestion)        | I | CCCPL | ISO recommends<br>addition of ISO 20483<br>C&G recommends<br>addition of AACC 46-<br>16.01(copper sulfate<br>catalyst) |
| Wheat protein products<br>including wheat gluten | Ash <u>1</u>              | CXS 163-1987 (2001) | AOAC 923.03 <u>/</u> ISO 2171                          | Gravimetry<br>(incineration)              | I | CCVP  | C&G recommends<br>addition of AACC 08-<br>01.01                                                                        |
| Wheat protein products<br>including wheat gluten | Moisture                  | CXS 163-1987 (2001) | AOAC 925.09                                            | Gravimetry <u>(vacuum</u><br><u>oven)</u> | Ι | CCVP  | C&G recommends<br>addition of AACC 44-<br>40.01                                                                        |
| Whole and decorticated pearl millet grains       | Ash <sup>1</sup>          | CXS 169-1989 (2019) | AOAC 923.03 <u>/</u> ISO 2171                          | Gravimetry<br><u>(incineration)</u>       | Ι | CCCPL | C&G recommends<br>addition of AACC 08-<br>01.01                                                                        |
| Whole and decorticated pearl millet grains       | Fat <u>1</u>              | CXS 169-1989 (2019) | AOAC 945.38F <del>;</del> and<br>920.39C               | Gravimetry (ether extraction)             | I | CCCPL | ISO recommends<br>addition of ISO 11085                                                                                |
| Whole maize (corn)<br>meal                       | Ash <u>1</u>              | CXS 154-1985 (2019) | AOAC 923.03 <u>/</u> ISO 2171                          | Gravimetry<br>(incineration)              | Ι | CCCPL | C&G recommends<br>addition of AACC 08-<br>01.01                                                                        |
| Whole maize (corn)<br>meal                       | Crude fat <u>1</u>        | CXS 154-1985 (2019) | AOAC 945.38F <u>;</u> and<br>920.39C                   | Gravimetry (ether<br>extraction)          | I | CCCPL | ISO recommends<br>addition of ISO 11085<br>C&G recommends<br>addition of AACC 30-<br>25.01                             |
| Whole maize (corn)<br>meal                       | Moisture                  | CXS 154-1985 (2019) | ICC 110/1                                              | Gravimetry (oven<br>drying)               | Ι | CCCPL | ISO recommends<br>addition of ISO 6540                                                                                 |

| MAS42/CRD02                | <u>\S42/CRD02</u>                                        |                     |                    |                                                    |   | 76    |                                                                             |
|----------------------------|----------------------------------------------------------|---------------------|--------------------|----------------------------------------------------|---|-------|-----------------------------------------------------------------------------|
| Cereals, Pulses and L      | Legumes and Deriv                                        | ved Products        |                    |                                                    |   |       |                                                                             |
| Whole maize (corn)<br>meal | Protein <sup>1</sup> <del>(N x</del><br><del>6.25)</del> | CXS 154-1985 (2019) | ICC 105/ <b>+2</b> | Titrimetry, ( <del>I)</del> Kjeldahl<br>digestion) | I | CCCPL | ISO recommends<br>addition of ISO 20483                                     |
|                            |                                                          |                     |                    |                                                    |   |       | C&G recommends<br>addition of AACC 46-<br>16.01(copper sulfate<br>catalyst) |

<sup>1</sup> A correction for moisture content is frequently required for reporting results of the proximate methods (i.e., ash, protein and fat). No moisture methods have been identified to correspond with the proximate methods in the current version of CXS 234. Moisture methods should correspond to those endorsed for the matrices being tested.

# Appendix XI Methods of Analysis for "Processed Fruits and Vegetables" commodity Processed Fruits and Vegetables – Group 1

|                                                                                                                                                                             | Pressie in a                       | Blackbard                                                                                                                                                 | Drineinle                                | True | Otenderst                                                    | O a man a m ta                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Commodity                                                                                                                                                                   | Provision                          | Method                                                                                                                                                    | Principle                                | Туре | Standard                                                     | Comments                                                                                                                                                       |
| Processed fruits and<br>vegetables*<br>(Jams, Jellies,<br>Marmalades, pickled<br>cucumbers, mango<br>chutney, Coconut Milk<br>and Coconut Cream)                            | Benzoic acid                       | NMKL 124                                                                                                                                                  | Liquid Chromatography<br>(UV)            | II   | CXS 192                                                      | Benzoic acid falls under CXS 192<br>– Food Additives.<br>Numeric performance criteria<br>developed 2024: these changes<br>remain until then.                   |
| Processed fruits and<br>vegetables <u>*</u><br>(Jams, Jellies,<br>Marmalades, pickled<br>cucumbers, mango<br>chutney, Coconut Milk<br>and Coconut Cream)                    | Benzoic acid                       | NMKL 103; or<br>AOAC 983.16                                                                                                                               | Gas Chromatography<br>(Flame ionization) | III  | CXS 192                                                      | NMKL 103 withdrawn because of the use of hazardous solvent                                                                                                     |
| Processed fruits and<br>vegetables <u>*</u><br>(Canned strawberries,<br>pickled cucumbers,<br>preserved tomatoes,<br>canned citrus fruits,<br>certain canned<br>vegetables) | Calcium                            | AOAC 968.31                                                                                                                                               | Complexometry /<br>Titrimetry            | 11   | CXS 192<br>CXS 62<br>CXS 115<br>CXS 13<br>CXS 254<br>CXS 297 | Calcium firming agents listed in<br>CXS 192 – food additives.<br>Numeric performance criteria to<br>be developed for 2024: these<br>changes remain until then. |
| Processed fruits and vegetables                                                                                                                                             | Drained Weight                     | AOAC 968.30<br>(Codex General Method)                                                                                                                     | Sieving Gravimetry<br>(Sieving)          | Ι    |                                                              |                                                                                                                                                                |
| Processed fruits and vegetables                                                                                                                                             | Fill of <u>glass</u><br>containers | CAC/RM 46 (reference to<br>"metal containers" deleted<br>and refer to ISO 90-1 for<br>determination of water<br>capacity in metal containers)<br>ISO 8106 | Weighing<br>Gravimetry                   | 1    |                                                              | CCMAS36 (2015) agreed to<br>replace CAC/RM 46 with ISO<br>8106                                                                                                 |
| Processed fruits and vegetables                                                                                                                                             | Fill of metal<br>containers        | <u>ISO 90-1</u>                                                                                                                                           | Weighing<br>Gravimetry                   | I    |                                                              |                                                                                                                                                                |

| Commodity                                                                                                                                                                                  | Provision                                                                 | Method                                | Principle                                                                   | Туре      | Standard                     | Comments                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------|-----------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processed fruits and<br>vegetables*<br>(Canned Fruits, Jams,<br>Jellies and Marmalades,<br>Mango Chutney, Canned<br>Vegetables, Preserved<br>Tomatoes, Table Olives,<br>Pickled Cucumbers) | Lead                                                                      | AOAC 972.25 (Codex<br>general method) | AAS (Flame absorption)<br>Atomic Absorption<br>Spectrophotometry<br>(Flame) | ш<br>Ц    | CXS 193                      | Codex general method type II for<br>other commodities. All PFV<br>commodities are covered in CXS<br>193. Numeric performance<br>criteria were developed at<br>CCMAS42 (2023); this row to be<br>struck and replaced with the<br>criteria. |
| Processed fruits and<br>vegetables                                                                                                                                                         | Packing<br>medium<br>Canned berry<br>fruits<br>(raspberry,<br>strawberry) | AOAC 932.12<br>ISO 2173               | Refractometry                                                               | ł         |                              | AOAC 932.12 and ISO 2173 both<br>determine soluble solids which is<br>already listed below.<br>Recommend striking this row.                                                                                                               |
| Processed fruits and<br>Vegetables*<br>(Pickled cucumbers,<br>table olives, processed                                                                                                      | рН                                                                        | ISO 1842                              | Potentiometry                                                               | IV        | CXS 115<br>CXS 66<br>CXS 57  |                                                                                                                                                                                                                                           |
| tomato concentrates,<br>preserved tomatoes,<br>mango chutney, and<br>aqueous coconut<br>products) except canned<br>bamboo shoots, pH<br>determined by AOAC<br>981.12)                      |                                                                           |                                       |                                                                             |           | CXS 13<br>CXS 160<br>CXS 240 |                                                                                                                                                                                                                                           |
| Canned bamboo shoots                                                                                                                                                                       | <u>Hq</u>                                                                 | AOAC 981.12                           | Potentiometry                                                               | <u>IV</u> | CXS 24                       | Validated in pimientos, marinate<br>pimientos, 2 pH buffer solutions,<br>chocolate syrup                                                                                                                                                  |

cucumbers)

<u>(Jams, Jellies,</u> Marmalades, pickled

| Processed Fruits and Vege                                 | etables – Group 1   |             |                    |       |                   |                                                                       |
|-----------------------------------------------------------|---------------------|-------------|--------------------|-------|-------------------|-----------------------------------------------------------------------|
| Commodity                                                 | Provision           | Method      | Principle          | Туре  | Standard          | Comments                                                              |
| Processed fruits and<br>vegetables*                       | рН                  | AOAC 981.12 | Potentiometry      |       | CXS 115<br>CXS 66 |                                                                       |
| (Pickled cucumbers,                                       |                     |             |                    |       | CXS 57            |                                                                       |
| <u>table olives, processed</u><br>tomato concentrates,    |                     |             |                    |       | CXS 13            |                                                                       |
| <u>preserved tomatoes.</u><br>mango chutney, and          |                     |             |                    |       | CXS 160           |                                                                       |
| <u>aqueous coconut</u><br>products)                       |                     |             |                    |       | CXS 240           |                                                                       |
| Processed fruits and<br>vegetables*                       | pН                  | NMKL 179    | Potentiometry      | II    | CXS 115           |                                                                       |
| (Pickled cucumbers,                                       |                     |             |                    |       | CXS 66            |                                                                       |
| table olives, processed                                   |                     |             |                    |       | CXS 57            |                                                                       |
| tomato concentrates.<br>preserved tomatoes.               |                     |             |                    |       | CXS 13<br>CXS 160 |                                                                       |
| <u>mango chutney, and</u><br>aqueous coconut              |                     |             |                    |       | CXS 160           |                                                                       |
| products)                                                 |                     |             |                    |       | 0,10 210          |                                                                       |
| Processed fruits and                                      | Soluble solids      | ISO 2173    | Refractometry      | I     | CXS 115           | These methods are not identical.                                      |
| vegetables*                                               | (packing<br>medium) | AOAC 932.12 |                    |       | CXS 57            | Suggest retaining ISO method which contains more detailed procedures. |
| (Pickled cucumbers,<br>processed tomato                   |                     |             |                    |       | CXS 13            |                                                                       |
| concentrates, preserved                                   |                     |             |                    |       | CXS 17            |                                                                       |
| <u>tomatoes, canned</u><br>applesauce, jams,              |                     | CXS         | CXS 296            |       |                   |                                                                       |
| jellies and marmalades,                                   |                     |             |                    |       | CXS 160           |                                                                       |
| <u>mango chutney, and</u><br><u>certain canned fruit)</u> |                     |             |                    |       | CXS 319           |                                                                       |
| Processed fruits and                                      | Sorbates            | NMKL 103 /  | Gas Chromatography | - 111 | CXS 192           | NMKL 103 withdrawn because of                                         |
| vegetables*                                               |                     | AOAC 983.16 | (Flame ionization) |       |                   | the use of hazardous solvent.                                         |

79

Numeric performance criteria to be developed for 2024: these changes remain until then.

| Commodity                                                                                                  | Provision    | Method                                  | Principle                                                | Туре | Standard | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|----------------------------------------------------------|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processed fruits and<br>vegetables <u>*</u><br>(Jams, Jellies,<br><u>Marmalades, pickled</u><br>cucumbers) | Sorbates     | NMKL 124                                | Liquid Chromatography<br>(UV)                            | 11   | CXS 192  | Sorbate falls under CXS 192 –<br>Food Additives. Numeric<br>performance criteria to be<br>developed for 2024: these<br>changes remain until then.                                                                                                                                                                                                                                                                                                                                                   |
| Processed fruits and<br>vegetables                                                                         | Tin          | AOAC 980.19 (Codex<br>general method)   | AAS<br>Atomic Absorption<br>Spectrophotometry<br>(Flame) | 11   | CXS 193  | Relevant Codex commodity<br>standards include CXS 62-1981,<br>CXS 254-2007, CXS 296-2009,<br>CXS 242-2003, CXS 297-2009,<br>CXS 78-1981, CXS 159-1987,<br>CXS 42-1981, CXS 60-1981,<br>CXS 99-1981, CXS 160-1987,<br>CXS 66-1981, CXS 160-1987,<br>CXS 66-1981, CXS 13-1981,<br>CXS 115-1981, CXS 57-1981,<br>CXS 145-1981, CXS 98-1981,<br>CXS 88-1981, CXS 89-1981,<br>CXS 88-1981, CXS 89-1981.<br>Numeric performance criteria to<br>be developed for 2024: these<br>changes remain until then. |
| Processed fruits and vegetables                                                                            | Total solids | AOAC 920.151                            | Gravimetry                                               | 1    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aqueous Coconut<br>Products                                                                                | Total Fats   | ISO 1211   IDF 1<br>ISO 23318   IDF 249 | Gravimetry (Röse-<br>Gottlieb)                           | 1    | CXS 240  | 2009 CCMAS report: "Standard for<br>Aqueous Coconut Products: The<br>Committee considered the<br>information on the validation studie.<br>carried out on ISO 1211:1999 for<br>total fats and ISO 6731:1989 for<br>total solids in coconut milk and<br>agreed to endorse both methods as<br>Type I."                                                                                                                                                                                                 |
| Aqueous Coconut<br>Products                                                                                | Total solids | ISO 6731   IDF 21                       | Gravimetry                                               |      | CXS 240  | Validated on milk, cream, and evaporated milk                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Commodity                        | Provision                             | Method                                                                                                                                                                                                                                        | Principle                                                 | Туре | Standard | Comments                                                                                                                                                                                                                                                                                            |
|----------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aqueous Coconut<br>Products      | Non-fat solids                        | ISO 1211   IDF 1<br>ISO 23318   IDF 249<br>and<br>ISO 6731   IDF 21                                                                                                                                                                           | Calculation:<br>Gravimetry (Röse-<br>Gottlieb) Gravimetry | 1    | CXS 240  | 2009 CCMAS report: "Standard for<br>Aqueous Coconut Products: The<br>Committee considered the<br>information on the validation studies<br>carried out on ISO 1211:1999 for<br>total fats and ISO 6731:1989 for<br>total solids in coconut milk and<br>agreed to endorse both methods as<br>Type I." |
| Aqueous Coconut<br>Products      | Moisture                              | ISO 6731   IDF 21                                                                                                                                                                                                                             | Calculation: Gravimetry                                   | I    | CXS 240  | Validated on milk, cream, and evaporated milk                                                                                                                                                                                                                                                       |
| Canned Apple Sauce               | Fill of <u>glass</u><br>containers    | CAC/RM 46 <sup>*</sup> (for glass<br>containers) (Codex general<br>method for processed fruits<br>and vegetables) and ISO 90-<br>1 (for metal containers)<br>(Codex general method for<br>processed fruits and<br>vegetables) <u>ISO 8106</u> | Weighing<br>Gravimetry                                    | 1    | CXS 17   | CAC/RM 46 resides in the<br>Standard for certain canned<br>vegetables (CXS 297). CCMAS<br>36 (2015) agreed to replace<br>CAC/RM 46 with ISO 8106                                                                                                                                                    |
| Canned Apple Sauce               | Fill of metal<br>containers           | <u>ISO 90-1</u>                                                                                                                                                                                                                               | Weighing<br>Gravimetry                                    | I    | CXS 17   |                                                                                                                                                                                                                                                                                                     |
| Canned Apple Sauce               | Soluble solids<br>(packing<br>medium) | AOAC 932.12<br>ISO 2173 (Codex general<br>method for processed fruits<br>and vegetables)                                                                                                                                                      | Refractometry                                             | I    | CXS 17   | These methods are not identical.<br>Suggest retaining ISO method<br>which contains more detailed<br>procedures                                                                                                                                                                                      |
| Canned green beans and wax beans | Tough Strings                         | CAC/RM 39                                                                                                                                                                                                                                     | Stretching                                                | I    | CXS 297  | CAC/RM 39 currently in CXS 297<br>– will be moved to CXS 234. This<br>row to be struck after method is<br>moved.                                                                                                                                                                                    |
| Canned green peas                | Fill of glass<br>containers           | <u>ISO 8106</u>                                                                                                                                                                                                                               | Weighing                                                  | I    | CXS 297  | CCPFV 24 (2008) agreed to revoke CAC/RM 45                                                                                                                                                                                                                                                          |

| Commodity           | Provision                                      | Method                           | Principle                              | Туре | Standard | Comments                                                                                                                                                                                                                                |
|---------------------|------------------------------------------------|----------------------------------|----------------------------------------|------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canned green peas   | Proper fill (in<br>lieu of drained<br>weight)  | CAC/RM 45<br>ISO 90-1            | Pouring and measuring<br>Gravimetry    | I    | CXS 297  | CCPFV 24 (2008) agreed to revoke CAC/RM 45                                                                                                                                                                                              |
|                     | <u>Fill of metal</u><br>containers             |                                  |                                        |      |          |                                                                                                                                                                                                                                         |
| Canned green peas   | Types of peas,<br>distinguishing               | CAC/RM 48                        | Visual inspection<br>examination       | I    | CXS 297  | CAC/RM 48 currently in CXS 297<br>– will be moved to CXS 234. This<br>row to be struck after method is<br>moved.                                                                                                                        |
| Canned mangoes      | Syrup<br>Soluble Solids<br>(packing<br>medium) | AOAC 932.14C                     | Brix spindle method<br>(refractometry) | I    | CXS 319  | Method is "solids in syrups"                                                                                                                                                                                                            |
| Canned mushrooms    | Washed<br>Drained weight                       | CAC/RM 44<br>AOAC 968.30         | Gravimetry (Sieving)                   | 1    | CXS 297  | CCPFV25 (2010) revoked CXS 55<br>(Standard for canned mushrooms)<br>containing CAC/RM 44. Annex on<br>mushrooms now included in CXS<br>297, containing provision for<br>drained weight. Suggest replacing<br>CAC/RM 44 with AOAC 968.30 |
| Canned palmito      | Mineral<br>impurities                          | ISO 762                          | Gravimetry                             | I    | CXS 297  |                                                                                                                                                                                                                                         |
| Canned Stone Fruits | Drained weight                                 | AOAC 968.30 I <del>SO:2173</del> | Gravimetry <u>(sieving)</u>            | I    | CXS 242  | ISO 2173 is a method for soluble solids, not drained weight. Wrong provision                                                                                                                                                            |
| Canned Stone Fruits | Soluble solids<br>(packing<br>medium)          | AOAC 932.14C<br>ISO 2173         | Refractometry                          | I    | CXS 242  | Methods are not identical. Suggest<br>retaining ISO method which<br>contains more detailed procedures                                                                                                                                   |

| Commodity                              | Provision                       | Method                                                 | Principle                                         | Туре | Standard | Comments                                                                                                                                                       |
|----------------------------------------|---------------------------------|--------------------------------------------------------|---------------------------------------------------|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canned strawberries                    | Calcium                         | AOAC 968.31                                            | Complexometric titrimetry                         | II   | CXS 62   | Validated for canned tomatoes, lima<br>beans, potatoes. Numeric<br>performance criteria to be<br>developed for 2024: these changes<br>remain until then.       |
| Canned strawberries                    | Mineral<br>impurities           | AOAC 971.33<br>ISO 762                                 | Gravimetry                                        | 1    | CXS 62   | AOAC 971.33 is acid-insoluble<br>residue. Recommend replacing with<br>ISO 762                                                                                  |
| Certain canned citrus fruits           | Calcium                         | NMKL 153                                               | Atomic Absorption<br>Spectrophotometry<br>(Flame) | II   | CXS 254  | Calcium firming agents listed in CXS<br>192 – food additives. Numeric<br>performance criteria to be<br>developed for 2024: these changes<br>remain until then. |
| Certain canned citrus<br>fruits        | Calcium                         | AOAC 968.31                                            | Complexometry Titrimetry                          | III  | CXS 254  | Calcium firming agents listed in CXS<br>192 – food additives. Numeric<br>performance criteria to be<br>developed for 2024: these changes<br>remain until then. |
| Certain Canned<br>Vegetables (palmito) | Mineral<br>impurities<br>(sand) | AOAC 971.33<br>ISO 762                                 | Gravimetry                                        | I    |          | Methods are not identical and AOAC<br>971.33 is acid-insoluble residue.<br>Mineral impurities in canned<br>palmito already listed above.                       |
| Citrus marmalade                       | Calcium                         | AOAC 968.31                                            | Complexometric titrimetry                         | 11   | CXS 296  | Calcium firming agents listed in CXS<br>192 – food additives. Numeric<br>performance criteria to be<br>developed for 2024: these changes<br>remain until then. |
| Dates                                  | Identification of defects       | Described in <del>the Standard</del><br><u>CXS 143</u> | Visual inspection<br>examination                  | 1    | CXS 143  | Method in CXS143 will be moved to CXS 234                                                                                                                      |
| Dates                                  | Moisture                        | AOAC 934.06                                            | Gravimetry (vacuum oven)                          | 1    | CXS 143  |                                                                                                                                                                |

| Commodity                                                                 | Provision                          | Method                                                 | Principle                                             | Туре | Standard | Comments                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Desiccated coconut                                                        | Total acidity of the extracted oil | ISO 660 or AOCS Cd 3d-63<br>ISO 660 / AOCS Cd 3d-63    | Potenciometry / Titrimetry                            | 1    | CXS 177  | Changed method format to maintain<br>consistency with previous decisions,<br>e.g. named vegetable oils                                                                                                                                                         |
| Desiccated coconut                                                        | Ash                                | AOAC 950.49                                            | Gravimetry (Ashing)                                   | I    | CXS 177  |                                                                                                                                                                                                                                                                |
| Desiccated coconut                                                        | Extraneous<br>vegetable<br>matter  | Described in <del>the Standard</del><br><u>CXS 177</u> | Counting extraneous<br>material with the naked<br>eye | IV   | CXS 177  | Method in CXS177 will be moved to CXS 234                                                                                                                                                                                                                      |
| Desiccated coconut                                                        | Moisture                           | AOAC 925.40                                            | Gravimery (loss on drying)                            | 1    | CXS 177  |                                                                                                                                                                                                                                                                |
| Desiccated coconut                                                        | Oil content                        | AOAC 948.22                                            | Gravimetry                                            | Ι    | CXS 177  | Titled "Fat (Crude)" in method title                                                                                                                                                                                                                           |
| Dried apricots                                                            | Identification of defects          | Described in the Standard                              | Visual inspection<br>(weighing)                       | I    | CXS 130  | n.b. CCPFV29 (2020) forwarded<br>proposed draft standard for dried<br>fruits to CAC43 at Step 5/8. CAC43<br>adopted this Standard, pending<br>certain endorsements. This Standard<br>once published will supersede CXS<br>130. Method to be moved to<br>CXS234 |
| Dried apricots                                                            | Moisture                           | AOAC 934.06                                            | Gravimetry (vacuum oven)                              | I    | CXS 130  |                                                                                                                                                                                                                                                                |
| Dried apricots                                                            | Sulphur dioxide                    | AOAC 963.20                                            | Colorimetry                                           | II   | CXS 130  |                                                                                                                                                                                                                                                                |
| Jams (fruit preserves) and<br>jellies<br>Jams, Jellies, and<br>Marmalades | Fill of <u>Glass</u><br>Containers | CAC/RM 46<br>ISO 8106                                  | Weighing<br>Gravimetry                                | I    | CXS 296  | CCMAS 36 (2015) agreed to replace<br>CAC/RM 46 with ISO 8106                                                                                                                                                                                                   |
| Jams (fruit preserves) and<br>jellies<br>Jams, Jellies, and<br>Marmalades | Soluble solids                     | ISO 2173<br>AOAC 932.12                                | Refractometry                                         | 1    | CXS 296  | Methods are not identical. Suggest<br>retaining ISO method which<br>contains more detailed procedures                                                                                                                                                          |
| Mango chutney                                                             | Ash insoluble in<br>HCl            | ISO 763                                                | Gravimetry                                            | I    | CXS 160  |                                                                                                                                                                                                                                                                |

| MAS42/CRD02                               |                                           |                                    |                           |      |          | 85                                                                                                                                       |  |
|-------------------------------------------|-------------------------------------------|------------------------------------|---------------------------|------|----------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Processed Fruits and Vegetables – Group 1 |                                           |                                    |                           |      |          |                                                                                                                                          |  |
| Commodity                                 | Provision                                 | Method                             | Principle                 | Туре | Standard | Comments                                                                                                                                 |  |
| Pickled cucumbers                         | Acidity, total                            | AOAC 942.15                        | Titrimetry                | I    | CXS 115  |                                                                                                                                          |  |
| Pickled cucumbers                         | Drained weight                            | AOAC 968.30                        | Gravimetry                | I    | CXS 115  |                                                                                                                                          |  |
| Pickled cucumbers                         | Mineral<br>impurities                     | AOAC 971.33<br>ISO 762             | Gravimetry                | I    | CXS 115  | AOAC 971.33 is acid-insoluble<br>residue. Recommend replacing with<br>ISO 762                                                            |  |
| Pickled cucumbers                         | Salt <del>in brine</del><br><u>(NaCl)</u> | AOAC 971.27 (Codex general method) | Potentiometry             | 11   | CXS 115  |                                                                                                                                          |  |
| Pickled cucumbers                         | Volume fill by<br>displacement            | Described in the Standard          | Displacement              | I    | CXS 115  |                                                                                                                                          |  |
| Preserved tomatoes                        | Calcium                                   | AOAC 968.31                        | Complexometric titrimetry | III  | CXS 13   | Calcium firming agents listed in CXS<br>192 – food additives. Numeric<br>performance criteria to be<br>developed for 2024: these changes |  |

|                                  | (NaCl)                         | general method)           | rotondomotry                                                                       |     |         |                                                                                                                                                                |
|----------------------------------|--------------------------------|---------------------------|------------------------------------------------------------------------------------|-----|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pickled cucumbers                | Volume fill by<br>displacement | Described in the Standard | Displacement                                                                       | I   | CXS 115 |                                                                                                                                                                |
| Preserved tomatoes               | Calcium                        | AOAC 968.31               | Complexometric titrimetry                                                          | 111 | CXS 13  | Calcium firming agents listed in CXS<br>192 – food additives. Numeric<br>performance criteria to be<br>developed for 2024: these changes<br>remain until then. |
| Preserved tomatoes               | Calcium                        | NMKL 153                  | Atomic Absorption<br>Spectrophotometry<br>(Flame)                                  | II  |         | Calcium firming agents listed in CXS<br>192 – food additives. Numeric<br>performance criteria to be<br>developed for 2024: these changes<br>remain until then. |
| Preserved tomatoes               | Minimum<br>Drained Weight      | AOAC 968.30               | Gravimetry (sieving)<br>note: Use a No. 14<br>screen instead of '7/16'<br>or No. 8 | I   | CXS 13  |                                                                                                                                                                |
| Preserved tomatoes               | Mould count                    | AOAC 965.41               | Howard mould count                                                                 | I   | CXS 13  | Mould count for preserved<br>tomatoes to be set according to the<br>legislation of the country of retail<br>sale                                               |
| Processed tomato<br>concentrates | Lactic acid                    | EN 2631<br>EN 12631       | Spectrometry<br>(Enzymatic<br>determination)                                       | II  | CXS 57  | Should be EN 12631. EN 2631 is<br>"Evaluation of human exposure to<br>whole-body vibration"                                                                    |

| Commodity                        | Provision                        | Method                             | Principle                                | Туре          | Standard | Comments                                                                                                                                                                                                                                                   |
|----------------------------------|----------------------------------|------------------------------------|------------------------------------------|---------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processed tomato concentrates    | Mineral<br>impurities<br>(sand)  | AOAC 971.33<br>ISO 762             | Gravimetry                               | ₩<br><u>I</u> | CXS 57   | AOAC 971.33 is acid-insoluble<br>residue. Recommend replacing with<br>ISO 762                                                                                                                                                                              |
| Processed tomato<br>concentrates | Mould count                      | AOAC 965.41                        | Howard mould count                       | I             | CXS 57   | Mould count for processed tomato<br>concentrates to be set according to<br>the legislation of the country of<br>retail sale.                                                                                                                               |
| Processed tomato<br>concentrates | Natural tomato<br>soluble solids | AOAC 970.59                        | Refractometry                            | Ŧ             |          | Redundant of "Tomato soluble solids" below                                                                                                                                                                                                                 |
| Processed tomato<br>concentrates | Sodium chloride                  | AOAC 971.27 (Codex general method) | Potentiometry                            | 11            | CXS 57   |                                                                                                                                                                                                                                                            |
| Processed tomato concentrates    | Tomato soluble solids            | AOAC 970.59                        | Refractometry                            | I             | CXS 57   |                                                                                                                                                                                                                                                            |
| Raisins                          | Mineral<br>impurities            | CAC/RM 51<br>ISO 762               | <u>Gravimetry</u> (Ashing)               | 1             | CXS 67   | CCPFV29 (2020) forwarded<br>proposed draft Standard for dried<br>fruits to CAC43 at Step 5/8. CAC43<br>adopted the Standard, pending<br>certain endorsements. This Standar<br>once published will supersede CXS<br>67. Recommend replacing with ISO<br>762 |
| Raisins                          | Mineral oil                      | CAC/RM 52                          | Extraction and separation on alumina     | II            | CXS 67   | Cannot find CAC/RM 51 or 52 in CXS<br>67. CXS 67 will be superseded by th<br>Standard for dried fruits once it is<br>published. Retain until new standar<br>is published?                                                                                  |
| Raisins                          | Moisture                         | AOAC 972.20                        | Electrical conductance                   | I             | CXS 67   |                                                                                                                                                                                                                                                            |
| Raisins                          | Sorbitol                         | AOAC 973.28                        | Gas chromatography<br>(flame ionization) | II            | CXS 67   | Numeric performance criteria to be developed for 2024: these changes remain until then.                                                                                                                                                                    |
| Raisins                          | Sulphur dioxide                  | AOAC 963.20                        | Colorimetry                              | П             | CXS 67   |                                                                                                                                                                                                                                                            |

| INIA042/ONDUZ                             |                                    |                                                                                                                                                                                        |                                                   |      |          | 07                                          |  |
|-------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|----------|---------------------------------------------|--|
| Processed Fruits and Vegetables – Group 1 |                                    |                                                                                                                                                                                        |                                                   |      |          |                                             |  |
| Commodity                                 | Provision                          | Method                                                                                                                                                                                 | Principle                                         | Туре | Standard | Comments                                    |  |
| Table olives                              | Drained weight                     | AOAC 968.30 (Codex general method for processed fruits and vegetables)                                                                                                                 | <del>Sieving</del> Gravimetry<br><u>(sieving)</u> | I    | CXS 66   |                                             |  |
| Table olives                              | Fill of <u>glass</u><br>containers | CAC/RM 46 <sup>*</sup> (for glass<br>containers) (Codex general<br>method for processed fruits<br>and vegetables) and ISO 90-<br>1 (for metal containers)<br>(Codex general method for | Weighing<br><u>Gravimetry</u>                     | 1    | CXS 66   | CCMAS 36 (2015) agr<br>CAC/RM 46 with ISO 8 |  |

| Table olives        | Fill of <u>glass</u><br>containers | CAC/RM 46 <sup>*</sup> (for glass<br>containers) (Codex general<br>method for processed fruits<br>and vegetables) and ISO 90-<br>1 (for metal containers)<br>(Codex general method for<br>processed fruits and<br>vegetables)<br>ISO 8106 | Weighing<br>Gravimetry                   | Ι  | CXS 66 | CCMAS 36 (2015) agreed to replace<br>CAC/RM 46 with ISO 8106 |
|---------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----|--------|--------------------------------------------------------------|
| <u>Table olives</u> | Fill of metal<br>containers        | ISO 90-1 (for metal<br>containers) (Codex<br>general method for<br>processed fruits and<br>vegetables)                                                                                                                                    | <del>Weighing</del><br><u>Gravimetry</u> | 1  | CXS 66 |                                                              |
| Table olives        | pH of brine                        | NMKL 179 (Codex<br>general method for<br>processed fruits and<br>vegetables)                                                                                                                                                              | Potentiometry                            | 11 | CXS 66 |                                                              |
| Table olives        | pH of brine                        | AOAC 981.12 (Codex<br>general method for<br>processed fruits and<br>vegetables)                                                                                                                                                           | Potentiometry                            |    | CXS 66 |                                                              |
| Table olives        | pH of brine                        | ISO 1842                                                                                                                                                                                                                                  | Potentiometry                            | IV | CXS 66 |                                                              |
| Table olives        | Salt in brine                      | AOAC 971.27   NMKL<br>178 (Codex general<br>method)                                                                                                                                                                                       | Potentiometry                            | 11 | CXS 66 |                                                              |

| Processed Fruits and Vegetables – Group 1 |           |                                                     |                                                          |      |          |                                                                                                                                                      |  |
|-------------------------------------------|-----------|-----------------------------------------------------|----------------------------------------------------------|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Commodity                                 | Provision | Method                                              | Principle                                                | Туре | Standard | Comments                                                                                                                                             |  |
| Table olives                              | Lead      | AOAC 999.11   NMKL<br>139 (Codex general<br>method) | Atomic Absorption<br>Spectrophotometry<br>(Flame)        | II   | CXS 66   | Pb in table olives is covered in CXS<br>193. Numeric performance criteria<br>were developed at CCMAS42 (2023);<br>this row to be struck and replaced |  |
|                                           |           |                                                     | AAS (Flame<br>absorption)                                |      |          | with the numeric criteria.                                                                                                                           |  |
| Table olives                              | Tin       | NMKL 190   EN 15764                                 | Atomic Absorption<br>Spectrophotometry<br>(Flame)<br>AAS | II   | CXS 66   | Numeric performance criteria to be<br>developed for 2024: these changes<br>remain until then.                                                        |  |

## \*FOOTNOTE:

The processed fruit & vegetable commodities listed in parenthesis suggests those where the relevant provision is either an allowed food additive, or 'applies to' by a commodity standard. This is not an exhaustive list; and does not necessarily represent specific commodities included in method validation.

## Appendix XII: Group 2 Items for future consideration

| Commodity                             | Provision   | Method                                | Principle                                                           | Туре | Standard | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------|-------------|---------------------------------------|---------------------------------------------------------------------|------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Processed<br>fruits and<br>vegetables | Tin         | AOAC 980.19 (Codex<br>general method) | AAS<br><u>Atomic Absorption</u><br><u>Spectrophotometry (Flame)</u> | 11   | CXS 193  | Relevant Codex commodity standards include<br>CXS 62-1981, CXS 254-2007, CXS 296-2009,<br>CXS 242-2003, CXS 297-2009, CXS 78-1981,<br>CXS 159-1987, CXS 42-1981, CXS 60-1981, CXS<br>99-1981, CXS 160-1987, CXS 66-1981, CXS 13-<br>1981, CXS 115-1981, CXS 57-1981, CXS 145-<br>1981, CXS 98-1981, CXS 96-1981, CXS 97-1981<br>CXS 88-1981, CXS 89-1981.<br>Numeric performance criteria to be developed for<br>2024: these changes remain until then. |
| Raisins                               | Mineral oil | CAC/RM 52                             | Extraction and separation on alumina                                | II   | CXS 67   | Cannot find CAC/RM 51 or 52 in CXS 67. CXS 67 will be<br>superseded by the Standard for dried fruits once it is<br>published. Retain until new standard is published?                                                                                                                                                                                                                                                                                   |