JOINT FAO/WHO FOOD STANDARDS PROGRAMME
CODEX ALIMENTARIUS COMMISSION
Forty-fifth Session
TBC

REPORT OF THE FORTY-SECOND SESSION OF THE
CODEX COMMITTEE ON NUTRITION AND FOODS FOR SPECIAL DIETARY USES
Virtual
19 – 25 November and 1 December 2021
TABLE OF CONTENTS

Summary and Status of Work .. page ii

List of Abbreviations .. page iii

List of CRDs .. page iv

Report of the Forty-second Session of the Codex Committee on Nutrition and Foods for Special Dietary Uses .. page 1

Paragraphs

Introduction ..1

Opening of the Session ...2 - 4

Adoption of the Agenda (Agenda item 1) ..5

Matters Referred to the Committee by the Codex Alimentarius Commission and/or Other Subsidiary Bodies (Agenda item 2) ..6

Matters of Interest Arising from FAO and WHO (Agenda item 3) ...7 - 11

Review of the Standard for Follow-up Formula (Agenda item 4) ..12 – 99

Proposed Draft Revised Standard for Follow-up Formula for Older Infants and Drink/Product for Young Children with Added Nutrients or Drink for Young Children: Remaining Sections (Agenda item 4a)13 - 53

Draft Scope, Description and Labelling for Drink/Product for Young Children with Added Nutrients or Drink for Young Children (Agenda item 4b) .. 54 - 70

Draft Scope, Description and Labelling for Follow-up Formula for Older Infants (Agenda item 4c)71 - 72

Essential Composition Requirements for Follow-up Formula for Older Infants and Drink/Product for Young Children with Added Nutrients or Drink for Young Children (Agenda item 4d) 73 99

Draft Guideline for Ready-to-Use Therapeutic Foods (Agenda item 5) .. 100 - 126

General Principles for the Establishment of NRVs-R for Persons Aged 6 – 36 Months (Agenda item 6)... 127 - 171

Other business (Agenda item 7)

Prioritization Mechanism to Better Manage the Work of CCNFSDU ..172 - 175

Date and place of next session (Agenda item 8) ... 176

Appendices

Appendix I - List of Participants ...22

Appendix II – Guidelines for Ready-to-Use Therapeutic Foods (RUTF) .. 45

Appendix III – Review of the Standard for follow-up Formula: scope, description, essential composition and quality factors, and labelling: Sections A and B ... 53

Appendix IV – Review of the Standard for follow-up Formula: remaining sections: Sections A and B66
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CCEXEC 81/82</td>
<td>Adoption</td>
<td>Guidelines for Ready-to-Use Therapeutic Foods (RUTF)</td>
<td>-</td>
<td>8</td>
<td>126</td>
</tr>
<tr>
<td>CAC45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCNFSDU43</td>
<td>Hold</td>
<td>Review of the Standard for Follow-up Formula: Section A: scope, description, essential composition and labelling; and remaining sections and Section B: scope, description, essential composition and labelling; and remaining sections</td>
<td>CXS 156-1987</td>
<td>7 / 4</td>
<td>53 (i), 70 (i), 72, and 73</td>
</tr>
<tr>
<td>NZ / CCNFSDU43</td>
<td>Discussion</td>
<td>Methods for measuring sweetness of carbohydrate sources</td>
<td>-</td>
<td>4</td>
<td>99 (i)</td>
</tr>
<tr>
<td>CCNFSDU43</td>
<td></td>
<td>Review of the Standard for Follow-up Formula: preamble and structure</td>
<td></td>
<td></td>
<td>99 (ii)</td>
</tr>
<tr>
<td>CCNFSDU43</td>
<td></td>
<td>Reply from CCFL46: nutrient profiles</td>
<td>-</td>
<td>-</td>
<td>6(ii)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Request from CCMAS: methods for fructans, beta-carotene and lycopene in infant formula</td>
<td>CXS 72-1981 / CXS 234-1999</td>
<td>-</td>
<td>6(ii)</td>
</tr>
<tr>
<td>CCFL47</td>
<td>Information</td>
<td>Review of the Standard for Follow-up Formula: Section B – Section 9.1.2 labelling</td>
<td>CXS 156-1987</td>
<td>7</td>
<td>70 (ii)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guidelines for RUTF: Section 12: labelling</td>
<td>-</td>
<td>8</td>
<td>126 (ii)</td>
</tr>
<tr>
<td>EWG / PWG</td>
<td>Redrafting</td>
<td>General Principles for the establishment of NRVs-R for persons aged 6 – 36 months / pilot NRVs-R</td>
<td>CXG 2-1985</td>
<td>2/3</td>
<td>170 - 171</td>
</tr>
<tr>
<td>(Ireland, Costa Rica and United States of America) CCNFSDU43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EWG / PWG</td>
<td>Redrafting / reviewing</td>
<td>Prioritization mechanism / emerging issues or new work proposals</td>
<td>-</td>
<td>-</td>
<td>175</td>
</tr>
<tr>
<td>(Germany and Canada) CCNFSDU43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Adequate intake</td>
</tr>
<tr>
<td>ALA</td>
<td>Alpha Linolenic Acid</td>
</tr>
<tr>
<td>AOAC</td>
<td>AOAC International (formerly the Association of Official Agricultural Chemists)</td>
</tr>
<tr>
<td>CAC</td>
<td>Codex Alimentarius Commission</td>
</tr>
<tr>
<td>CCEXEC</td>
<td>Executive Committee of the Codex Alimentarius Commission</td>
</tr>
<tr>
<td>CCFA</td>
<td>Codex Committee on Food Additives</td>
</tr>
<tr>
<td>CCFL</td>
<td>Codex Committee on Food Labelling</td>
</tr>
<tr>
<td>CCFO</td>
<td>Codex Committee on Fats and Oils</td>
</tr>
<tr>
<td>CCMAS</td>
<td>Codex Committee on Methods of Analysis and Sampling</td>
</tr>
<tr>
<td>CCNFSDU</td>
<td>Codex Committee on Nutrition and Foods for Special Dietary Uses</td>
</tr>
<tr>
<td>CRD</td>
<td>Conference Room Document</td>
</tr>
<tr>
<td>CL</td>
<td>Circular Letter</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DIRV</td>
<td>Dietary Intake Reference Values</td>
</tr>
<tr>
<td>EFA</td>
<td>Essential Fatty Acids</td>
</tr>
<tr>
<td>EWG</td>
<td>Electronic Working Group</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FSMP</td>
<td>Foods for Special Medical Purposes</td>
</tr>
<tr>
<td>GSFA</td>
<td>General Standard for Food Additives</td>
</tr>
<tr>
<td>IDF</td>
<td>International Dairy Federation</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>JECFA</td>
<td>Joint FAO/WHO Expert Committee on Food Additives</td>
</tr>
<tr>
<td>JEMNU</td>
<td>Joint FAO/WHO Expert Meetings on Nutrition</td>
</tr>
<tr>
<td>LA</td>
<td>Linoleic acid</td>
</tr>
<tr>
<td>MHLW</td>
<td>Ministry of Health, Labour and Welfare of Japan</td>
</tr>
<tr>
<td>NCF</td>
<td>Nitrogen to protein conversion factor</td>
</tr>
<tr>
<td>NUGAG</td>
<td>WHO Nutrition Guidance Expert Advisory Group</td>
</tr>
<tr>
<td>NRV-NCD</td>
<td>Nutrient reference values – non-communicable disease</td>
</tr>
<tr>
<td>NRV-R</td>
<td>Nutrient reference values-requirements</td>
</tr>
<tr>
<td>PDCAAS</td>
<td>Protein digestibility-corrected amino acid score</td>
</tr>
<tr>
<td>PWG</td>
<td>Physical Working Group</td>
</tr>
<tr>
<td>RASB</td>
<td>Recognized Authoritative Scientific Body</td>
</tr>
<tr>
<td>RUTF</td>
<td>Ready-to-use therapeutic foods</td>
</tr>
<tr>
<td>SAM</td>
<td>Severe acute malnutrition</td>
</tr>
<tr>
<td>TFA</td>
<td>Trans fatty acid</td>
</tr>
<tr>
<td>UNICEF</td>
<td>The United Nations Children Fund</td>
</tr>
<tr>
<td>UNSCN</td>
<td>United Nations System Standing Committee on Nutrition</td>
</tr>
<tr>
<td>WFP</td>
<td>World Food Programme</td>
</tr>
<tr>
<td>WHA</td>
<td>World Health Assembly</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>CRD No.</td>
<td>Agenda Item</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Division of Competence between EU and its Member States</td>
</tr>
<tr>
<td>2</td>
<td>4 (Review of the Standard for Follow-Up Formula: Consideration of relevant</td>
</tr>
<tr>
<td></td>
<td>concepts and technical guidance in WHO/WHA documents for the labelling and</td>
</tr>
<tr>
<td></td>
<td>other provisions in the draft standard for follow-up formula)</td>
</tr>
<tr>
<td>3</td>
<td>5 (Proposal for a revised preamble of the proposed draft guidelines for</td>
</tr>
<tr>
<td></td>
<td>ready to use therapeutic foods (RUTF))</td>
</tr>
<tr>
<td>4</td>
<td>4a</td>
</tr>
<tr>
<td>5</td>
<td>4b</td>
</tr>
<tr>
<td>6</td>
<td>4d</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>4a, 4b and 5</td>
</tr>
<tr>
<td>10</td>
<td>2, 4a, 4b, 4c, 4d and 6</td>
</tr>
<tr>
<td>11</td>
<td>4a, 4b, 4c, 4d, 5 and 6</td>
</tr>
<tr>
<td>12</td>
<td>6 (Updated draft general principles for the establishment of NRVs-R for</td>
</tr>
<tr>
<td></td>
<td>persons aged 6 - 36 months)</td>
</tr>
<tr>
<td>13</td>
<td>4b and 6</td>
</tr>
<tr>
<td>14</td>
<td>4a, 4b, 4c, 4d and 5</td>
</tr>
<tr>
<td>15</td>
<td>4a and 4b</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>4a, 4b and 6</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>4a, 4b, 5 and 6</td>
</tr>
<tr>
<td>20</td>
<td>1, 2, 3, 4, 4a, 4b, 5 and 6</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>22</td>
<td>4d</td>
</tr>
<tr>
<td>23</td>
<td>4a and 6</td>
</tr>
</tbody>
</table>
INTRODUCTION

1. The Codex Committee on Nutrition and Foods for Special Dietary Uses (CCNFSDU) held its forty-second session virtually from 19 – 25 November and 1 December 2021 at the kind invitation of the Federal Government of Germany. Ms Hilke Thordsen-Böhm and Dr Anja Brönstrup, both from the Federal Ministry of Food and Agriculture of Germany, served as Chair and Co-Chair of the Session, respectively. The Session was attended by 99 Member countries, one Member Organisation and 35 Observer Organisations. A list of participants is given in Appendix I.

OPENING OF THE SESSION

2. Ms Julia Klöckner, Federal Minister of Food and Agriculture, Germany, welcomed delegates and opened the meeting. She mentioned that it was important to resume the work of CCNFSDU virtually due to the need to promote healthy diets, and stressed that deliberations within CCNFSDU contribute immensely to consumer protection worldwide and in the fight against hunger and malnutrition. She called for mutual exchange, understanding and compromise during the deliberations with a view to advance and complete pertinent work.

3. Mr Steve Wearne, speaking as the newly elected Chairperson and on behalf of the three newly elected vice Chairpersons of the Codex Alimentarius Commission (CAC) and Mr Tom Heilandt, Codex Secretary, also addressed the meeting. Both speakers stressed the need for compromise in order to progress work and hoped that the same spirit of compromise demonstrated at other sessions of the Committee would prevail also at this Session.

Division of competence

4. CCNFSDU noted the division of competence between the European Union and its Member States, according to paragraph 5, Rule II of the Rules of Procedure of CAC.

ADOPTION OF THE AGENDA (Agenda Item 1)

5. CCNFSDU adopted the Provisional Agenda as the Agenda for the session with the addition of discussion on the prioritization mechanism for emerging issues or new work proposals under Agenda Item 7 – other business and future work.

MATTERS REFERRED TO THE COMMITTEE BY THE CODEX ALIMENTARIUS COMMISSION AND/OR OTHER SUBSIDIARY BODIES (Agenda Item 2)

6. CCNFSDU:

 i. noted that some matters were for information only, and that certain matters as outlined in paragraph 28 of CX/NFSDU 21/42/2 would be considered under the relevant agenda items as follows:

 • Reply from CCMAS41 on methods to measure sweetness of carbohydrate sources (Agenda item 4d); and
 • Endorsements by CCFA52 and CCFL46 and related comments (Agenda items 4b, 4c and 5)

 ii. agreed to consider at CCNFSDU43 the following:

 • The reply from CCLF46 relating to nutrient profiles; and
 • The request from CCMAS41 relating to the methods for fructans, beta-carotene and lycopene in infant formula.

 iii. noted that the Codex Secretariat would continue working closely with the Chairpersons of CCNFSDU, Chairs of electronic working groups (EWGs) and the host country Secretariat on ways to improve work management of the Committee to ensure continued timeliness of working

1 CRD1 (Annotated Agenda – Division of competence between the European Union and its Member States)
2 CX/NFSDU 21/42/1
3 CX/NFSDU 21/42/2
7. The Representative of FAO drew the attention of the Committee to the following issues to be considered under relevant Agenda items: (i) The Joint FAO/WHO scientific advice provided by JEMNU in 2019 for establishing nitrogen to protein conversion factors for soy-based and milk-based ingredients used in infant and follow-up formula; (ii) the Supplementary guidance provided by FAO on computing PDCAAS for follow-up formula for young children that has been made available on the CCNFSDU42 meeting webpage; iii) the report that was commissioned by FAO providing scientific advice to develop general principles for the establishment of NRVs-R for older infants and young children; and (iv) ongoing work by FAO/WHO to update nutrient requirements for infants and young children, 0 to 4 years of age.

8. The Representative further noted other activities in the report that could be of interest to the Committee including the updated FAO Nutrition Strategy, the UN Food Systems Summit and subsequent collaborative coalitions led by UN agencies and member countries and the upcoming Nutrition for Growth Summit to be hosted by the Government of Japan in December 2021.

9. With reference to the document CX/FNFSDU 21/42/3, in addition to the joint FAO/WHO activities reported by FAO on behalf of FAO and WHO, the Representative of WHO highlighted the WHO activities of interest to the on-going work of the Committee and various other Codex Committees. These included the WHO guideline development process to review the efficacy, safety, and effectiveness of ready-to-use therapeutic foods (RUTF) and also the recently undertaken systematic evidence reviews regarding the contents of essential fatty acids and iron which would contribute to the discussions on Agenda Item 5; the accelerated actions to eliminate industrially produced trans fatty acids (TFAs) and planned high-level launching of the 3rd annual progress report on 7 December 2021 as the need for relevant risk management actions by Codex to support Member States’ efforts to eliminate TFAs is being discussed at CCFL and CCFO; and the launching of the WHO Global Sodium Benchmarks for different food categories in May 2021 as this work and increasing country actions might have implications for various existing Codex standards and guidelines possibly requiring reviews and updates to promote the health of consumers.

10. The Representative also informed the Committee of two additional activities which were not reported in the document CX/FNFSDU 21/42/3. These were the planned joint WHO/MHLW Japan Nutrition for Growth Summit (N4G) side event on sodium reduction on 8 December 2021, and the reconvening of the Global Network of Institutions for Scientific Advice on Nutrition. This network was created to strengthen the collaboration, harmonization of methods and sharing of information and experiences among institutions which are developing national and/or regional guidelines on diet and nutrition. These institutions include some of the Codex’s Recognized Authoritative Scientific Bodies (RASBs).

11. CCNFSDU thanked FAO and WHO for the information provided and noted that certain parts of the information provided would be considered under the relevant Agenda Items. One Observer thanked WHO for their important role in providing timely updated science-based recommendations for breastfeeding during the pandemic.

REVIEW OF THE STANDARD FOR FOLLOW-UP FORMULA (CXS 156 – 1987) (Agenda Item 4)

12. The Chairperson recalled that the work on the review of the Standard for Follow-up Formula was being undertaken in stages and that there were various parts that would be addressed under Agenda items 4a – 4d, and provided an overview of the issues to be discussed under each of the items. She reminded the Committee that the structure of the Standard and the preamble would be considered after completion of all other parts of the Standard as previously agreed by CCNFSDU.
The Chairperson recalled that at CCNFSDU41, recommendations 1 and 2 contained in CX/NFSDU 19/41/5 had already been addressed. Due to time constraints, recommendations 3 – 15 contained in CX/NFSDU 19/41/5 had to be deferred for discussion at this session.

New Zealand, as Chair of the EWG, speaking also on behalf of the Co-Chairs France and Indonesia, introduced the item. The EWG Chair explained that the EWG had made reference to four standards (i.e. Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants (CXS 72-1981), Canned Baby Foods (CXS 73-1981), Processed Cereal-Based Foods for Infants and Young Children (CXS 74-1981) and the current Standard for Follow-up Formula (CXS 156-1987)) and considered whether applicable provisions in these Standards were suitable for adoption or should be modified for the revised Standard. It was further explained that there were some minor amendments that needed to be made in order to ensure that the provisions contained the most up-to-date references and to accommodate advancements in the Food Additive section.

CCNFSDU considered the recommendations 3 - 15 of the EWG for both Sections A and B and made the following comments and decisions in addition to editorial corrections.

Recommendation 3 (Purity requirements)

16. One delegation proposed to include the requirements on extraneous and foreign matters in the provision. However, CCNFSDU did not agree to this proposal. CCNFSDU endorsed the recommendations for both Sections A and B.

Recommendation 4 (Vitamin Compounds and Mineral Salts)

17. CCNFSDU endorsed the recommendation to retain the current provisions in CXS 156-1987 for Section A, noting that (i) the correct sections in the recommendation should be sections 3.1.3 (d) and (e) and 3.2.1 instead of sections 3.3.1 and 3.3.2; and (ii) the title of CXG 10-1979 should be precisely quoted (i.e. Advisory Lists of Nutrient Compounds for Use in Foods for Special Dietary Uses intended for Infants and Young Children (CXG 10-1979)).

18. Regarding the corresponding provision in Section B, in addition to the amendments as described above, CCNFSDU endorsed the recommendation to retain only provision 3.4.2.1 in CXS 156-1987, and deleted the provision 3.4.2.2 as a maximum level for sodium had not been set for this product.

Recommendation 5 (Consistency and Particle Size)

19. One delegation proposed to insert the wording “and suitable for adequate feeding of older infants” at the end of the provision in Section A; and “and suitable for adequate feeding of young children” at the end of Section B in order to be consistent with the provision in CXS 72-1981 which had been recently revised.

20. Other delegations were not in favour of the proposed changes to the provision reiterating that the provision was an existing requirement in the current Standard and the proposed amendment could lead to different interpretations.

21. In response to the suggestions to include: (i) the word “label” before “directions of use” for consistency with the Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants (CXS 72-1981); and (ii) other quality specifications e.g. “insolubility index”, “scorched particles” and “dispersibility and wettability”, noting there were corresponding testing methods available; the EWG Chair explained that (i) the word “label” might limit future development in terms of communicating directions of use; and (ii) the proposal to include other quality specifications had not been considered by the EWG and it was inappropriate to include them at the current stage.

22. CCNFSDU agreed with the recommendation i.e. to retain the current provision in CXS 156-1987 for both Sections A and B.
Recommendation 6 (Specific prohibitions)

23. A proposal was made to prohibit GMO-derived ingredients or components but CCNFSDU did not consider this proposal.

24. CCNFSDU endorsed the recommendation to retain the current provision for both Sections A and B.

Recommendation 7 (Food additives – permissions for food additives)

Recommendation 8 (Food additives - administrative changes)

25. CCNFSDU42 recalled that CCNFSDU41 had agreed to forward the alignment document (CX/NFSDU 19/41/9) to CCFA and that CCFA was conducting the alignment exercises for all CCFNSDU standards, including CXS156-1987. It was further noted that the two packaging gases (i.e. carbon dioxide and nitrogen) were included in the table for food additives forwarded to CCFA for alignment, and that once the alignment exercise is completed the list of food additives in CCNFSDU standards would be replaced by a reference to the corresponding sections of the General Standard for Food Additives (GSFA, CXS 192-1995).

26. CCNFSDU42 agreed to:
 - align the table of food additives for Sections A and B with the text in CX/NFSDU 19/41/5 part D; and
 - inform CCFA that an accompanying note stating "within the limits for sodium in Section 3.1" associated with sodium ascorbate (INS 301) should be included in the table for Section A and the accompanying note should not be included in the table of food additives for Section B as there were no maximum levels for sodium for that product.

Recommendation 9 (Carry-over principle)

27. CCNFSDU42 endorsed Option 2 of the recommendation, i.e. to adopt the text from the Standard for Infant Formula and Formulas for Special Medical Purposes (CXS 72-1981), and the Standard for Processed Cereal-Based Foods for Infants and Young Children (CXS 74-1981) for the carry-over of food additives and nutrient carriers, for both Sections A and B. This option was consistent with the text in both standards and would provide clarity.

28. CCNFSDU noted that CCFA would examine the food additive sections including the carry-over principle when aligning the food additive provisions between the GSFA and the commodity standards.

Recommendation 10 (Flavourings)

29. CCNFSDU noted divergent views expressed by delegations on the provision for flavourings.

30. Those delegations objecting to the addition of flavourings to the products covered by both Sections A and B indicated that:
 - these products are considered as breastmilk substitutes in their countries and by WHO; therefore, the provision on flavourings should be aligned to that in CXS 72-1981;
 - flavourings could cause infants to develop a preference for sweet-tasting foods, which could have a negative effect on food choices and could cause negative consequences throughout a child's life and into adulthood;
 - WHA resolution 69.9 provided guidance on ending the inappropriate promotion of foods for infants and young children. The addition of flavorings would increase the sweetness of the product, which would increase children's demand for these products and encourage care-givers to use these products; and
 - there is no technological justification for the use of flavourings in these products targeted at the vulnerable group.

31. Delegations supporting permitting the use of flavourings in products described under Section B only were of the view that:
 - the product in Section B is not considered as a breastmilk substitute;
the product in Section B was consumed by children who were being exposed to many different flavourings and tastes as they are moving to family foods and therefore there was no need to limit the use of flavourings for that age group;

the currently permitted flavourings are not sweeteners and do not add sweet taste and are used for reasons of palatability; and

there was no scientific evidence to support the restriction of the use of flavourings.

32. One delegation suggested that the provision for flavourings in both Sections A and B should be determined by national or regional authorities.

33. The Representative of WHO highlighted their concern on inclusion of the provision for flavouring in both Sections A and B as WHO considered these products as breastmilk substitutes and there was no technological justification for their addition.

34. Safety concerns were raised for the listed category of natural fruit extracts. Questions on whether vanilla was a natural or synthetic flavouring, whether natural fruit extracts were too broad to be included and whether all the listed flavourings had been evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) were raised.

35. The Codex Secretariat clarified that the listed flavourings were currently included in CXS 156-1987 which indicated that these flavourings had been endorsed by CCFA. When endorsing these provisions, CCFA would have taken JECFA’s evaluation into account and there should be no safety concerns.

36. CCNFSDU agreed with the Chairperson’s proposal to concentrate on the discussion of flavourings in Section A followed by Section B.

Discussion on Recommendation 10a (Flavourings in Section A)

37. The Codex secretariat clarified that normally commodity standards are elaborated to provide what is allowed in a standard. In the case of the Standard for Infant formula and formulas for special medical purposes (CXS 72-1981), there was no provision for flavourings which could be interpreted that flavourings are prohibited.

38. In view of the wide support on prohibiting the use of flavourings in Section A since the products covered by this Section function as breastmilk substitutes, the Chairperson proposed to follow the approach in CXS 72-1981 i.e. not including the flavouring provision in the Standard.

39. Some delegations supported the Chairperson’s proposal as it was a normal practice in Codex standards while others were of the view that a prohibition statement should be included under the provision for flavourings in order to avoid confusion and furthermore, the same statement should consequently also be inserted in CXS 72-1981.

Conclusion on recommendation 10a (Flavourings in Section A)

40. CCNFSDU agreed to delete the provisions for flavourings and to indicate that no flavourings are permitted in this product.

41. CCNFSDU noted that the consequential amendments to CXS 72-1981 could be considered in future.

Discussion on Recommendation 10b (Flavourings in Section B)

42. Taking into account the divergent views on this provision, a proposal was made to add a footnote to explain whether flavourings were allowed or not should be determined at national or regional level as this would allow the relevant authorities who considered the product a breastmilk substitute or who had other concerns, to prohibit or restrict the use of flavourings.

43. There continued to be opposing views on the use of flavourings with delegations reiterating their objection on the use of flavourings in the product and stressing that they were not in agreement with the proposal and while other delegations stating that they could accept the footnote in the spirit of compromise, noting that similar footnotes had been utilized in other parts of the Standard.
One Observer highlighted that it was not necessary to insert the footnote, and indicated that CCFA had been making efforts to remove a similar note (i.e. Note 161) in the GSFA and these provisions should be considered by CCFA.

Conclusion on Recommendation 10b (Flavourings in Section B)

45. CCNFSDU endorsed the recommendation proposed by the EWG with the insertion of a footnote as follows:

 “National and/or regional authorities may restrict or prohibit the use of the listed flavourings.”

46. CCNFSDU noted the reservation of Mexico and the concern of some observers on permitting the use of flavourings in the product.

Recommendation 11 (Contaminants)

47. CCNFSDU endorsed the recommendation as proposed for both Sections A and B.

Recommendation 12 (Hygiene)

48. CCNFSDU agreed to:
 - the recommendation as proposed for both Sections A and B; and
 - the inclusion of the two additional Codex codes of practice (i.e. the Code of Hygienic Practice for Aseptically Processed and Packaged Low-acid Foods (CXC 40-1993) and the Code of Hygienic Practice for Low and Acidified Low-acid Canned Foods (CXC 23-1979)) in both Sections A and B since there were products available in liquid form and commercially sterilized.

Recommendation 13 (Packaging)

49. CCNFSDU agreed to remove the section on packaging from the Standard noting that (i) the provision on packaging was not necessary as per the Format for Codex Commodity Standards in the Codex Procedural Manual; (ii) the two packaging gases (i.e. carbon dioxide and nitrogen) had been covered under the food additive sections; and (iii) the General Principles of Food Hygiene (CXC 1-1969) and other relevant Codes of Hygienic Practice sufficiently addressed requirements for packaging.

Recommendation 14 (Fill of containers)

50. CCNFSDU endorsed the recommendation for both Sections A and B.

Recommendation 15 (Method of analysis and sampling)

51. In response to some questions raised by delegations, the Codex Secretariat clarified that: (i) the provision was the standard wording in accordance with the Codex Procedural Manual; (ii) CCNFSDU could submit testing methods for consideration by CCMAS; and (iii) CCMAS was in the process of reviewing all methods of analysis in CXS 234 and if needed, CCMAS might make recommendations on methods of analysis to CCNFSDU.

52. CCNFSDU agreed with the recommendation for both Sections A and B.

Conclusion

53. CCNFSDU agreed:
 i. that the provisions were ready for adoption at Step 5/8 but in order to advance the entire Standard to CAC for adoption, the provisions would be held at Step 4 on the understanding that all issues on the remaining sections of Sections A and B had been addressed and no further discussion was needed (Appendix IV);
 ii. to inform CCFA:
 o that the Standard for Follow-up Formula was currently split into two Sections i.e. Section A follow-up formula for older infants and Section B: drink for young children with added nutrients or products for young children with added nutrients or drink for young children or product for young children;
 o of the accompanying note relating to limits to sodium (see para. 26); and
The Chairperson introduced the item and recalled that CCNFSDU41 had advanced the scope, description and labelling for drink/product for young children with added nutrients or drink for young children to CAC43 for adoption at Step 5; that CAC43 had adopted the text and advanced it to Step 6 for comments and further consideration at Step 7 by CCNFSDU42. The Chairperson further recalled that the aforementioned text was a result of constructive discussion at CCNFSDU41 and that the only part that remained for further discussion was Section 2.1.1. CCNFSDU41 had agreed that an EWG chaired by New Zealand and co-chaired by France and Indonesia would finalise the definition of drink/product for young children with added nutrients or drink for young children and provide proposals for consideration by this session. She also noted that CCFL had endorsed the labelling provisions and had requested CCNFSDU to consider whether exclusion of the term “product” in the name for “drink for young children” was an omission (see CX/NFSDU 21/42/2).

In addition to editorial corrections, the following comments and decisions were made.

Product Definition: Section 2.1.1

New Zealand, as Chair of the EWG, introduced the report of the EWG and its recommendations for the definition. She recalled that there had been considerable discussion on the definition over several rounds in the course of the discussions in the various EWGs and that numerous options had been considered over the years. She reported that the EWG had not agreed upon a single option but had proposed 2 options for consideration by the session. She further reminded the Committee that while there might be several name options for countries to choose from, there would only be one definition for the Standard.

The Chairperson noted that there were diverse views on the definition as reflected by the comments received to CL 2021/54-NFSDU and in order to progress, one option would need to be decided upon. She proposed that the Committee consider whether the text in square brackets provided any meaningful addition to defining the product. She further reminded the Committee that the definition was to describe the product covered by the Standard and was not to be confused with the information on the label or information to be provided in any other way to consumers.

Discussion

There was general support for option 2 (deletion of the following text in square brackets “which may contribute to the nutritional needs of young children”).

Those delegations in favour of this option expressed the view that:

- the additional text was not a meaningful addition and that the purpose and target population was already covered in the text of the definition;
- option 2 could be supported because when taken in context with the introduction to the section on composition (i.e. Section 3.1.1) more clarity about the nature of the product is provided.

A proposal to further amend Section 2.1.1 to distinguish the product in question from other products used as drinks by this age group by the addition of a phrase “which has been produced according to the compositional requirements laid down in this Standard” was not agreed to. The Chairperson noted that it was self-evident that all requirements within the Standard, including the compositional requirements should be complied with.

Those delegations in favour of option 1 (acceptance of the text in square brackets "which may contribute to the nutritional needs of young children"), expressed the following views:

- dietary guidelines recommend the consumption of milk by children of all age groups; and therefore, nutritious milk should be made available. A clear definition was important to serve as information

6 REP20/NFSDU, Appendix IV, CX/NFSDU 21/42/5; CX/NFSDU 21/42/5 Add.1; CX/NFSDU 21/42/5 Add.2
to consumers as well as to emphasize to manufacturers that nutritive milk products should be made available;

- the product can contribute to the nutritional needs of young children when they make the transition to the family diet. A clear definition would help to clarify the meaning of the Standard.

62. Two Observers further noted that while their preference was for option 2, they were of the view that these products were not necessary and this should be reflected in the definition. Furthermore, in their view, the addition of nutrients was often used for the promotion of these products.

Conclusion

63. Noting the general support for option 2 and the willingness of those who originally supported option 1 to go along with option 2, CCNFSDU42 agreed to delete the text in square brackets.

Labelling: Section 9.1.2

64. CCNFSDU recalled that CCNFSDU41 had agreed on the names as presented in Section 9.1.2 and the only matter for consideration was the question from CCFL on whether the term "product" was an omission.

65. The Chairperson noted that, in addition, a question had come up on the interpretation of the slash (/) in the name option i.e. Drink/Product for young children with added nutrients

66. The Codex Secretariat clarified that normally the use of a slash (/) between terms means “or” and that such terms could be used interchangeably thus giving different options. In order to avoid ambiguity, the Codex Secretariat proposed to remove the slash (/) and to refer to “Drink for young children with added nutrients” and “Product for young children with added nutrients”.

67. CCNFSDU42 therefore agreed to write out all the name options for purposes of clarity and to avoid ambiguity and in addition, agreed to include also an additional name option: “product for young children”, for consistency with the other name option “product for young children with added nutrients”. CCNFSDU also noted that if the name options provided were not deemed satisfactory by a country or region, any other more appropriate designation indicating the true nature of the product could be used as described in this provision.

68. In response to a proposal to include a statement that countries and regions can allow only one of the names to be used on their territory, it was clarified that the Standard should be read in conjunction with the General Standard for the Labelling of Prepackaged Foods (CXS 1-1985) and that Section 4.1.1.1 of CXS 1-1985 addressed this issue. CCNFSDU therefore did not take up this proposal.

Conclusion

69. CCNFSDU42 agreed to amend Section 9.1.2 as stated in para. 67, and as presented in Appendix III.

General Conclusion

70. CCNFSDU42 agreed:

i. that all outstanding points had been addressed, and to hold the scope, description and labelling of Section B at Step 7 (Appendix III) until all other sections of the Standard were completed in order to advance the entire Standard to CAC for adoption; and

ii. to inform CCFL of the decision on Section 9.1.2.

DRAFT SCOPE, DESCRIPTION AND LABELLING FOR FOLLOW-UP FORMULA FOR OLDER INFANTS (Agenda Item 4c)

71. CCNSDU recalled that CCNFSDU41 had agreed on the text for the scope, description and labelling for follow-up formula for older infants and to hold it at Step 7, and to send the labelling provision in Section 9.6.5 to CCFL46 for endorsement. Noting that CCFL46 had endorsed the provision, and an editorial change

7 Labelling section has been renumbered as Section 8 (see Appendix III)
8 REP20/NFSDU, Appendix II
to Section 9.1.2 made in session, all issues related to this item were addressed and no further discussion was necessary.

Conclusion

72. CCNFSDU agreed to hold the scope, description and labelling provisions of Section A as amended at Step 7 (Appendix III) until all other sections of the Standard were complete in order to advance the entire Standard to CAC for adoption.

ESSENTIAL COMPOSITION REQUIREMENTS FOR FOLLOW-UP FORMULA FOR OLDER INFANTS AND DRINK/PRODUCT FOR YOUNG CHILDREN WITH ADDED NUTRIENTS OR DRINK FOR YOUNG CHILDREN (Agenda Item 4d)

73. CCNFSDU recalled that the essential composition requirements for both Sections A and B had been agreed and were held at Step 7, but that two outstanding issues remained, namely, the nitrogen to protein conversion factor (NCF) that was addressed by the EWG led by New Zealand and co-chaired by France and Indonesia, and the reply from CCMAS on the availability of methods to measure sweetness of carbohydrate sources.

Nitrogen to protein conversion factors (Protein: Footnote 2): Sections A and B

74. New Zealand, as chair of the EWG, introduced the discussions in the EWG and its recommendations. She recalled that the EWG had been tasked to take into account the work and recommendations of The Joint FAO/WHO Expert Meetings on Nutrition (JEMNU): Nitrogen to protein conversion factors for soy-based and milk-based ingredients used in infant formula and follow-up formula (Report of the meeting of the expert panel, Geneva, Switzerland, 16 – 17 July 2019).

75. She informed CCNFSDU that the EWG had noted that the NCF for these products could not be considered in isolation from infant formula and that a change in NCF would have implications for the minimum and maximum protein levels and other composition requirements for the products covered by the Standard. Also prior to any consideration to change the NCF, a decision was needed on the primary aim of determining protein content, i.e. delivery of amino acid or of total protein. The recommendation of the EWG was to maintain the current NCF of 6.25.

76. The Chairperson noted that JEMNU had judged that the application of an NCF of 6.25 to a wide variety of proteins was inappropriate, but that it was important to note that a potential change of the NCF could have a major impact on the evaluation of the products in question as well as on product formulation and product labelling. Further questions needed to be addressed first, such as whether the recommended ranges of protein provided in the relevant Codex standards intended to ensure adequate deliver of amino acids or of total protein as raised by JEMNU. In addition, there were different degrees of certainty associated with the NCF for soy-based and milk-based ingredients proposed by JEMNU and as a risk management body, it was important for the Committee to consider what degree of certainty was needed for accepting a certain NCF.

77. She proposed that CCNFSDU consider endorsing the recommendation of the EWG.

Conclusion

78. Noting the recommendation of the EWG and implications as mentioned above in para. 75, CCNFSDU42:

- agreed to maintain the NCF of 6.25; and
- noted that there was no immediate need to pursue the matter further and to try to find answers to some of the questions raised in relation to the most appropriate NCF.

Section B: Footnote 5 (Available Carbohydrates)

79. CCNFSDU recalled that at CCNFSDU41, the following compromise text was agreed "for products based on non-milk protein, carbohydrate sources that have no contribution to sweet taste should be preferred and in no case be sweeter than lactose."

9 REP20/NFSDU, Appendix III (Parts A and B); CX/NFSDU 21/42/5
80. CCNFSDU had also agreed to ask CCMAS whether there were internationally validated methods to measure sweetness of carbohydrate sources for these products.

81. CCMAS had considered this question and had replied that there were no known validated methods to measure sweetness of carbohydrate sources and therefore no way to determine compliance for such a provision.

82. CCNFSDU was therefore requested to consider the implications of this reply from CCMAS.

83. New Zealand, as chair of the EWG, informed CCNFSDU that the need to limit the sweetness of products for young children had been discussed since CCNFSDU and there was clear agreement that it was important to limit the sweetness of these products. As a result, CCNFSDU had agreed to several provisions for carbohydrates: a maximum limit for available carbohydrates; that lactose should be the preferred carbohydrate for products based on milk protein; that a maximum limit of total mono- and disaccharides other than lactose was provided; and that sucrose and fructose should not be added.

84. She further explained that in previous discussions of the EWG, consideration was given to numerous options as to how and whether it was necessary to further limit the sweetness of products not based on milk protein and the enforceability of such a requirement.

85. She further noted that CCNFSDU had agreed to include the statement as mentioned in para. 79 above, and following the reply from CCMAS, consideration should be given whether to retain the statement in footnote 5 noting that there were other provisions already in place to limit the sweetness of products based on non-milk protein.

86. CCNFSDU was requested to consider the option of either: i) deleting the provision from footnote 5 or ii) retaining the provision in footnote 5, but to note in the report that there were currently no validated methods to measure sweetness of carbohydrate sources. CCNFSDU was reminded that the content of the provision itself was not for discussion.

Discussion

87. The following views were expressed in favour of retaining the footnote:

- it was important to limit additional sweet tasting ingredients in the product as taste preferences were strongly influenced during the life stage of the targeted age group and might lead to overweight, obesity and non-communicable diseases later in life. Even though there were no current validated methods, this could change in future;
- CCMAS could be asked again on a validated method to assess relative sweetness of carbohydrate sources as compared to lactose in order to enforce the provision, as this provision concerns an ingredient; such methods are already available; Provisions on ingredients are also contained in Section 3.2.1.
- the paired-comparison sensory test, ISO 5495, could be applied and would allow manufacturers to exclude carbohydrate sources (ingredients) that are sweeter than lactose;
- that each country could decide to use their own method(s) for enforcement of the provision until an internationally validated method became available. This decision did not lie with CCMAS, but with CCNFSDU;

88. The following views were expressed in favour of deletion of the provision:

- there were already sufficient safeguards to limit the sweetness since the footnote limited mono- and disaccharides other than lactose to no more than 2.5g/100kcal and addition of fructose and sucrose was not allowed;
- there were no validated methods and it would be difficult to apply the standard and adopt it into national standards or national legislation;

10 Renumbered as footnote 6 in Section B of Appendix III
even if methods were available, they were not internationally validated and would not produce any reliability or reproducibility which was a requirement for methods of analysis in Codex and therefore from an enforceability point of view, it was not feasible to retain the provision;

there were no known validated methods for evaluation of sweetness of finished products or ingredients that would apply to enforcement of the provision. Sensory methods were highly variable and subjective and would not meet the specific requirements for validating methods. Standards development organisations had already invested a great deal of research in this area.

89. The Observer from ISO, referring to CRD 6 (written jointly by AOAC, IDF and ISO), noted that there were no known validated methods to measure sweetness of carbohydrate sources in the product in question and to compare it to the sweetness of a product with lactose only and therefore there was no way to determine compliance for such a provision.

90. As there was no direct method, the idea proposed in CRD 22 by Switzerland would be to make a comparison of the sweetness between 2 ingredients (lactose and other carbohydrate sources), however the question to CCMAS was not raised like that.

91. The Observer also noted that there were some ISO methods to do a comparison (although the quoted method ISO 5495 may not be the most appropriate).

92. The Observer further clarified that it was possible to compare the sweetness of lactose with the sweetness of another carbohydrate source, but only if this carbohydrate source is alone, diluted in water. If this carbohydrate source is in a finished product (e.g. follow-up formula), the sweetness would be modified by the other ingredients and it would not be possible to measure it anymore nor to compare it to the sweetness of lactose.

93. Noting the reply from ISO that on an ingredient level there might be methods that could be used to measure sweetness of a given ingredient, the Chairperson proposed that the provision be retained and that at the next session, further consideration should be given to identifying appropriate methods for possible submission to CCMAS. She further noted that it was preferable, but not a requirement, that a method(s) should be endorsed by CCMAS and included in CXS 234-1999 so that a common method can be used to enforce the provision.

94. Those delegations in favour of the removal of the provision continued to support its deletion and questioned whether the proposal of the Chairperson would affect the advancement of the Standard.

95. The Codex Secretariat clarified that as also mentioned at CCNFSDU41 generally questions on methods of analysis should not prevent the progress of a Standard nor its adoption. The Codex Secretariat also clarified that although methods recommended by Codex normally refer to the finished product, they could also refer to ingredients.

Conclusion

96. CCNFSDU agreed to retain the provision and to consider appropriate methods for assessing conformity to the provision and possible endorsement by CCMAS at its next session.

Other matters

97. CCNFSDU noted that the structure and preamble were the other outstanding issues for consideration by the Committee and considered a proposal by New Zealand to prepare a discussion paper based on previous discussions and recommendations in the earlier EWG (2018) and the background information to support discussions on a preamble presented in CRD5 (2019) and CRD2 (2021) for consideration by CCNFSDU43.

Conclusion

98. CCNFSDU agreed to the offer by New Zealand to prepare a discussion paper on structure and preamble and to circulate the paper for comments through a CL well in advance of the next session. CCNFSDU also accepted New Zealand’s offer to analyse the responses to the CL and provide a CRD to CCNFSDU43.
Conclusion

CCNFSDU agreed that:

i. All matters related to this item had been addressed; and that the question of appropriate methods for assessing sweetness of carbohydrate sources in the footnote of the respective section associated with available carbohydrates of Section B would be considered by CCNFSDU43; and

ii. CCNFSDU43 would consider the preamble and structure of the Standard based on a discussion paper to be prepared by New Zealand.

DRAFT GUIDELINES FOR READY-TO-USE THERAPEUTIC FOODS (Agenda Item 5)11

The Chairperson recalled that CCNFSDU41 agreed to forward the Guidelines for Ready-to-Use Therapeutic Foods (RUTF) to Step 5 for adoption by CAC43, and that the following issues remained unresolved i.e. the preamble, and the compositional requirements for the essential fatty acids and magnesium. Besides these issues, CCFL had also requested CCNFSDU to consider whether the Guidelines for Use of Nutrition and Health Claims (CXG 23-1997) were relevant to the labelling of RUTF as pointed out under Agenda item 2. She invited the Committee to consider the aforementioned issues with a view to submit the Guidelines to CAC for adoption at Step 8.

CCNFSDU noted that at its previous session, there was no electronic working group (EWG) established to do further work on guidelines for RUTF. Following the rescheduling of CCNFSDU42 in 2020, the previous EWG Chair and Co-Chair (South Africa and Uganda, respectively) undertook informal consultations with members and observers on outstanding issues as well as the comments submitted at Step 6.

Preamble

South Africa, speaking as the former EWG Chair, introduced CRD3 and explained that the Chair and Co-Chair of the EWG together with FAO, WHO and the Codex Secretariat had revised the preamble taking into account the previous decision of CCNFSDU41 to keep it simple, yet understandable and to cover the following important aspects: the basic composition of the product; target age group; that RUTF is a recommended option for dietary management of children aged 6 – 59 months with severe acute malnutrition (SAM) without medical complications; the latter concept recognizes that RUTF is one of the dietary management options thus allowing for the use of RUTF in conjunction with other local family foods.

In addition, the advice of CCEXEC75 on referencing WHO/WHA documents; and CCEXEC78 on references to other standards setting organisations was taken into account, it was therefore proposed to omit the footnote and refer to the actual text of the Joint Statement of WHO, WFP UNSCN12 and UNICEF as this sets the framework for the guidelines on RUTF. This would ensure a minimum number of references that would require life-long monitoring.

Furthermore, CRD3 also recognized the inclusion of provisions related to the promotion of breastfeeding in Section 12.4 (labelling) of the draft guidelines on RUTF. It was also explained that RUTF is quoted as a food for special medical purposes (FSMP) in the general part of the guidelines and as such, the product is prohibited from being advertised.

The Chairperson clarified that the preamble sets the scene by providing the overall context of the Guidelines and does not specify any product requirements, which are found within the main body of the Guidelines.

The Codex Secretariat further clarified that the preamble should not address matters outside the scope of Codex and the Guidelines, and that discussion on the preamble should be guided by the General Principles of the Codex Alimentarius and in particular, drew the attention of the Committee to Section 3 of the Principles: Nature of Codex Standards: that stated that Codex standards and related texts were not a substitute for, or alternative to national legislation and as such, every country's laws and administrative procedures contain provisions with which it is essential to comply. Thus issues not addressed in the Guidelines were still subject to countries’ laws and requirements.

11 REP20/NFSDU, Appendix VI; CX/CCNFSDU 21/42/6.

12 In 2020, the United Nations System Standing Committee on Nutrition (UNSCN) and the UN Network for SUN (UNN) merged to form a new entity, called UN Nutrition.
Discussion

107. CCNFSDU held a brief discussion and noted the following proposals/issues put forward by delegations that the preamble should clearly cover:

- RUTF is one of the options for the dietary management of children with uncomplicated SAM from 6-59 months without medical complications; and these are therapeutic products that should be used for a short period, before transitioning back to local foods. The efficacy of RUTF should be demonstrated by scientific evidence.

- Use of local foods to address SAM should be promoted and should be the preferred option over the use of commercially manufactured RUTF. The use of RUTF should be in specific situations of food insecurity when local food production is insufficient or under emergency situations. If water supply is inadequate or inaccessible, water should also be provided to SAM children.

- The use of RUTF should not undermine national nutrition programmes, for example continuation of breastfeeding; psychosocial support for recovery among others. As such, the product should neither be advertised/promoted nor be for direct retail sale.

- The footnote referencing the WHO International Code of Marketing of Breast-milk Substitutes (1981) and the relevant WHA resolutions' especially on ending the inappropriate promotion of food for infants and young children should be retained. Similarly, reference to national nutritional policies should be included in the preamble.

- Support for re-lactation.

108. CCNFSDU supported the revised and simplified preamble and agreed:

- To its further revision to clearly take into account concepts such as: the promotion of continuation of breastfeeding, transition to nutritious family food; psycho-social support for recovery; the use of locally based foods; RUTF is not for general retail sale.

- To the proposal to omit the footnote and instead make direct reference to the actual text in the 2007 Joint Statement of WHO, WFP, UNSCN, and UNICEF which essentially sets the framework for the Guidelines on RUTF. This approach was considered consistent with the advice of CCEXEC75 and CCEXEC78.

- That the concepts and technical information in other reference documents, previously stated in the footnote had already been incorporated into the text of the Guidelines and there was a need to keep the references to a minimum as advised by CCEXEC.

Conclusion

109. CCNFSDU agreed with a revised preamble as presented in Appendix II to this report.

Section 6.3 Lipids

110. CCNFSDU agreed to delete the sentences in square brackets noting that this information was already contained in the annex of the Guidelines.

Essential fatty acids (EFA)

111. The former EWG Chair informed the Committee that informal consultations that were undertaken to progress the discussions on the values for the draft provisions for essential fatty acids (i.e. n-3 and n-6 fatty acids), were not conclusive due to a limited number of responses received. However, from the consultations, a number of concerns were raised including: limited available scientific data on quality of raw materials; the need for product stability shelf-life tests due to change in formulation; and cost implications due to changes in the formulation. She mentioned that an analysis of the comments in reply to the Circular Letter (CL 2019/78-NFSDU) had also been undertaken, and the majority of the responses were in favour of retaining the values stated in the 2007 Joint Statement of WHO, WFP, UNSCN, and UNICEF. There was also a proposal that favoured the maximum value for n-6 fatty acids being set at 780 mg/100kcal, with the minimum value for n-3 fatty acids being set at 110 mg/100 kcal.
112. The Representative of WHO stated that WHO had commissioned a systematic review to assess if the provision of RUTF with fatty acid profiles that are different from specifications in the Joint Statement improve outcomes such as neurodevelopment in children aged 6 months or older recovering from severe wasting with a view to contribute to progressing the discussions on the EFA values, and highlighted the outcomes which indicated that: 1) adding DHA or using oleic acid to increase ALA and reduce LA content may confer some benefits to neurodevelopment, but the evidence is not strong enough to suggest that this change will have substantial benefits or harms, and 2) the evidence also does not allow for determination of definite amounts of ALA and LA in RUTF was based on.

113. The Representative further noted that the systematic review outcomes were those of the evidence review conducted based on the most recently available evidence to date, and not WHO recommendations as such. WHO was aware of some concerns expressed regarding the specifications of RUTF which are based on the 2007 Joint Statement and therefore, WHO was discussing about possibly undertaking WHO’s internal guideline development process to review further the specifications of RUTF including EFA content, also taking into consideration of on-going WHO guideline development on PUFA intake. The Representative stated that WHO would inform the Committee when and as WHO recommendations became available so that the Committee could consider the updating of the values of the Guidelines as required.

114. An Observer highlighted the importance of n-6 and n-3 polyunsaturated fatty acids in cognitive recovery, and rapid growth that ensues during and after treatment in infants and children have been affected by severe wasting. The proposed maximum values of 1111 mg/100 kcal for n-6 fatty acids and the minimum values of 33 mg/100 kcal for n-3 fatty acids derived from the 2007 Joint Statement were not based on scientific evidence but rather on an expert review. Since 2007, there had been advances in science on RUTF and the most recent findings of a trial conducted in Malawi that demonstrated developmental improvement and cognitive benefits in children with SAM six months after treatment with an adjusted formula RUTF containing lower n-6 fatty acids, higher n-3 fatty acids and added DHA, when compared to children who received standard RUTF. Based on the outcome of this trial, the Observer recommended that CCNFSDU consider reducing the maximum values for n-6 fatty acids to 780 mg/100kcal or 800 mg/100kcal and increasing the minimum values of n-3 fatty acids to 110 mg /100 kcal to enable endogenous production of n-3 fatty acids which are important for the brain and the eye.

115. CCNFSDU noted the general support for the levels proposed by the Observer.

Conclusion

116. CCNFSDU agreed to decrease the maximum value for n-6 fatty acids to 780 mg/100 kcal and increase the minimum value for n-3 fatty acids to 110 mg/100 kcal.

Magnesium

117. The former EWG Chair, reported that in the informal discussions there was no consensus on both the minimum and maximum values for magnesium; however, from an analysis of the comments in reply to CL 2019/78-NFSDU, there seemed to be majority support for the retention of the current minimum and maximum values of 15 mg/100 kcal and 45 mg/100 kcal, respectively.

118. A delegation supported an increase of both the minimum and maximum values for magnesium to 30 mg/100 kcal and 90 mg/100 kcal respectively, noting that this corresponding increase would allow for a favourable ratio between calcium, phosphorous and magnesium and lead to better absorption of both calcium and phosphorous to support catch-up bone growth.

119. An Observer reiterated their concern expressed at CCNFSDU41 over the high ratio of calcium to magnesium as well as over the generally low minimum and maximum levels being set for magnesium, noting that extensive science supporting higher levels exists and had been previously submitted to the Committee.

Conclusion

120. CCNFSDU42 agreed to maintain the proposed values of the minimum and maximum values for magnesium of 15 mg/100 kcal and 45 mg/100 kcal respectively.
Section 12-Labelling reference to Claims

121. CCNFSDU considered the recommendation from CCFL and agreed to include a statement in Section 12 to indicate that nutrition and health claims shall not be permitted for RUTF, rather than a reference to the Guidelines for Use of Nutrition and Health Claims (CXG 23-1997) to avoid any misinterpretation about the application of the provision. This prohibition would re-enforce that nutrition and health claims for foods for RUTF should not be allowed.

Others

122. The Representative of WHO stated that WHO had commissioned a systematic review to assess if the provision of RUTF with higher iron content compared with standard RUTF improves outcomes such as blood haemoglobin, and iron deficiency, and highlighted the outcomes which indicated that: 1) there is rationale to increase the content of iron in RUTF to prevent iron deficiency; and 2) the available evidence is not adequate to determine the optimal content of iron in RUTF.

123. An Observer expressed concern about increasing the content of iron in RUTF noting that the absorption and utilization of added iron in food products was rather low. The impact of the high content of iron are unclear especially on the microbiome of older infants and young children in regard to the immunological development and immunological capacity.

124. The Representative of WHO explained that when setting up the systematic reviews, one of the focus areas was to assess adverse effects of high iron levels in RUTF on children, but the studies used in the systematic review did not report on any of these outcomes. Future studies should look into adverse effects of iron dosages in RUTF.

125. CCNFSDU noted that all the remaining issues had been addressed and that there were no further comments on other parts of the Guidelines, CCNFSDU agreed to the entire text and noted that the Guidelines were therefore ready to be advanced to Step 8.

General Conclusion

126. CCNFSDU agreed to:

i. forward the Guidelines for Ready-to-Use Therapeutic Foods to CAC45 for adoption at Step 8 (Appendix II); and

ii. inform CCFL on the proposed change to Section 12 Labelling in relation to the inclusion of a statement to indicate that nutrition and health claims shall not be permitted for RUTF.

GENERAL PRINCIPLES FOR THE ESTABLISHMENT OF NRVs-R FOR PERSONS AGED 6-36 MONTHS (Agenda Item 6)\(^{13}\)

127. Ireland, as Chair of the EWG, and speaking also on behalf of the Co-Chairs, USA and Costa Rica, introduced the item and provided a summary of the work of the EWG as presented in CX/NFSDU 21/42/7.

128. The EWG Chair recalled that the development of the General Principles for the establishment of NRVs-R required the assessment of the most appropriate approach to derive NRVs-R for the age group of 6 to 36 months. This involved the analysis of dietary intake reference values (DIRVs) from FAO, WHO and the 6 RASBs for which the EWG had sought scientific advice to assist with this particular task as agreed to by CCNFSDU. To assist in this regard, FAO commissioned a review of derivation methods for DIRVS for older infants and young children. The EWG Chair briefly introduced the FAO final draft scientific report on the Review of derivation methods for dietary intake reference values for older infants and young children as available on the CCNFSDU42 meeting webpage and indicated that this would greatly assist the EWG in the further development of the General Principles and in particular the establishment of NRVs-R. She further noted that the report identified 25 nutrients for this age group, including sodium, and that the addition of this particular nutrient would need further consideration by CCNFSDU. As the report became available in July 2021, the EWG could not consider its findings, but the findings were considered by the Chairs of the EWG to develop the proposal for the General Principles in CX/NFSDU 21/42/7. The EWG Chair drew the

\(^{13}\) CX/NFSDU 21/42/7; CL 2021/56-NFSDU, CX/NFSDU 21/42/7-Add.1
attention of CCNFSDU to CRD12 which assessed comments submitted in reply to CL 2021/56-NFSDU and proposed revised General Principles for consideration by CCNFSDU.

129. The Chairperson, supported by the EWG Chair, advised to take CRD12 as the basis for discussion to aid progress in the EWG. CCNFSDU agreed with this recommendation and proceeded with the consideration of the General Principles as laid down in Appendix I to CRD12. The Chairperson clarified that comments submitted would be forwarded to the EWG for further consideration in reviewing the General Principles for this age group and that no specific changes would be made to the text at the Session.

General comments

130. A delegation noted that the Annex on General Principles for the Establishment of NRVs for the General Population in the Guidelines on Nutrition Labelling (CXG 2-1985) should be retained to the extent possible and, only when necessary, be adjusted to include specific requirements for other population groups such as persons aged 6-36 months.

131. This delegation supported the approach that NRVs-R should be based on DIRVs derived using the most rigorous scientific method available, however, the ranking of such methods should not only be based on scientific rigour but should consider other relevant factors such as data quality, strength of evidence as well as the most recent and independent review of the scientific evidence when deciding on the most suitable method for the derivation of NRVs-R. The current text seemed to place more weight on the scientific rigour as opposed to a combined consideration of this and other relevant factors that might determine the final selection of the most suitable DIRVs for the derivation of NRVs-R for this age group.

132. The delegation further noted that such ranking should not apply to FAO and WHO DIRVs, as FAO/WHO were the primary source of scientific advice to CCNFSDU and their values should be taken without comment. Only when there were no values or no recent values available from FAO and WHO, data and information from RASBs should be considered for the establishment of NRVs-R. This should be reflected in the General Principles.

Specific comments

Section 1 - Preamble

133. The Chairperson noted that the deletion of point 3 was proposed based on feedback received in reply to CL 2021/56-NFSDU as the purpose of the General Principles was to establish NRVs-R for nutrient declaration for labelling purposes only and not guiding the composition of certain Codex commodities for infants and young children.

134. As to the proposed text that “governments may also consider whether to establish separate NRVs-R for labelling for specific segments of the age group from 6 to 36 months”, a Delegation reiterated its previous comments on the need to keep consistency with the General Principles for the general population (see paragraph 130) where a similar provision provided flexibility for governments to derive values for sub-populations, in addition to a combined value for the whole age group, according to their needs and regulatory frameworks. The proposed text would thus allow such flexibility while keeping the title inclusive to the broader age group covered by these Principles (see also Section 3.2.1.2).

135. A delegation recalled that CCNFSDU had not yet decided on whether the NRVs-R would be derived for the entire age group only or whether a further breakdown of this category would be needed and that the statement might not be necessary. It was noted that this was already a specific group as opposed to the broader category of the general population where such breakdown might be needed (i.e. products targeted to specific population groups such as pregnant women) and thus the need to provide flexibility for government to identify segments within the general population group.

136. CCNFSDU noted that the proposal could be further considered by the EWG.

Section 2 - Definitions

137. The Chairperson noted that this section was drafted in such a way to complement the corresponding section in the General Principles for the general population and, in this regard, consideration could be given to include the definition for Adequate Intake (AI) in the General Principles for the general population as it could be relevant for both population groups.
138. A delegation noted it would be advisable to keep the General Principles for the general population unchanged since the General Principles for the general population and the values derived according to these principles for this population group were interrelated and had been already agreed. If any future review were undertaken, there would be scope to look into the General Principles and its values and at that point to adapt and revise them.

139. Another delegation noted that the definition for AI was only used in the table with the ranking of the derivation methods and questioned whether there was a need to have this level of detail in the General Principles. It was further noted that if provisions in Section 3 were simplified, this definition might not be required.

Section 3 – General Principles for the Establishment of NRVs-R

140. CCNFSDU noted the proposal to delete the chapeau and that this would be further considered by the EWG.

Section 3.1 – Selection of suitable data sources to establish NRVs-R

141. The Chairperson noted that the first two paragraphs had been aligned with the corresponding provisions in the General Principles for the general population and that a reference was added to “persons aged 6 to 36 months” in the last paragraph to improve clarity.

Section 3.2 – Appropriate Basis for the Establishment of NRVs-R

Sections 3.2.1 – Selection and Priority of Derivation of Methods for the Establishment of NRVs-R

142. The Chairperson invited the EWG Chair to provide background and rationale for the table in this Section.

143. The EWG Chair introduced Section 3.2.1 and confirmed that the proposed table provided a ranking of derivation methods to establish NRVs-R which were applicable to all values that might be available, i.e. FAO, WHO and the 6 RASBs, with the primary source being FAO and WHO followed by the RASBs.

144. The EWG Chair further explained that, based on the feedback in reply to CL 2021/56-NFSDU, there was general support for the proposed 3 ranking categories, and this was also consistent with the FAO scientific report. However, following concerns were expressed by respondents to the CL:

- The limited available time to consider the findings of the FAO Scientific Report taking into account how such findings related to the different nutrients. The EWG chair indicated that, when choosing the values for NRVs-R, each nutrient would be examined on a case-by-case basis, and this approach would provide time to consider the issues in the scientific report relevant to each nutrient.
- The inclusion of the ranking of methods which were not included in the General Principles for the general population although the same methods were used to derive the NRVs-R for this population group. The EWG noted that such inclusion was necessary to establish NRVs-R for the population aged from 6 to 36 months in view of the limited scientific evidence available for this age group. There was more diversity and evidence in approaches used to establish DIRVs for this age group which required a more detailed categorization and ranking of derivation methods as described in the FAO scientific report.

145. The EWG Chair also indicated that the EWG Co-Chairs would work closely with FAO and WHO to avoid duplication of efforts in establishing NRVs-R for the population aged from 6 to 36 months considering the ongoing FAO/WHO review of nutrients requirements for this age group.

146. In addition, the EWG Chair noted that NRVs-R for many nutrients for this age group would be extrapolated down from older age groups (general population). She stressed the need to ensure that the values reflected relative differences in nutrient requirements to keep consistency between the two population group (i.e. general population and persons aged from 6 to 36 months) and that the FAO scientific report would assist in this endeavour.

147. The EWG Chair therefore supported the inclusion of the table at this stage as providing relevant guidance for the establishment the NRVs-R for persons aged from 6 to 36 months; that the basis for the selection of NRVs-R should be scientific rigour with the aim to identify the most suitable method from the ranked methods; and that the concerns expressed above could be further addressed in the EWG in the further development of the General Principles.
CCNFSDU noted the following comments with regard to this Section:

A delegation reiterated its view that the relevant DIRVs provided by FAO/WHO that were based on a recent review of the science should be taken into account as primary sources to establish NRVs-R. She further stated that relevant DIRVs reflecting independent recent review of the science from RASBs could also be taken into account but only when such data were not available from the parent organizations as the body providing global DIRVs that should not be ranked against national or regional values which was consistent with the Section 3.1 and the principles for the general population. This delegation further noted that CCNFSDU should not decide whether FAO or WHO DIRVs had less scientific rigour than those from national or regional RASBs and Section 3.2 should be amended accordingly to reflect that the selection and priority of derivation methods for the establishment of NRVs-R should only apply to values available from RASBs. This view was supported by an Observer who further proposed that wording should also be inserted in Section 3.2.1.1 regarding ensuring no conflict of interest.

Following on this intervention, the EWG Co-Chair indicated that the FAO/WHO values might not be the most recent ones to establish NRVs-R for the population group aged from 6 to 36 months and that FAO/WHO was undertaking an evidence-based review of their DIRVs to update them which would take some time to complete. He further noted that there were DIRVs based on a more recent assessment of the scientific evidence available from the RASBs and therefore, it might be necessary to apply the same scientific rigour to both FAO/WHO and RASBs datasets to determine the most suitable values that could be taken by CCNFSDU to derive the NRVs-R for this age group. Having this set of principles would thus allow CCNFSDU to set science-based reference values until updated DIRVs become available from FAO/WHO which was critical for CCNFSDU to provide timely guidance to Codex members.

Based on the explanation provided by the EWG Co-chair, other delegations indicated that Section 3.2.1 should be clarified to match the concept in Section 3.1 i.e. that the ranking method was based on scientific rigour and was used only where there was no recent DIRVs from the WHO/FAO so that CCNFSDU could default to the recommendation in Section 3.2.1 when considering the establishment of NRVs-R for the population aged from 6 to 36 months. It was further noted that to this aim, the word “recent” was instrumental in delivering this concept.

The Representative of WHO noted that the ranking could be misleading as it might be difficult to determine in practice whether the DIRVs had been derived according to one of the 3 ranking categories defined in the tables. Moreover, in some cases, they might have been derived through combined methods currently ranked in different order of defined proposed scientific rigour. Although the intended aim of the proposed ranking was understood, it would be better not to be described as ranking as the selection of the most appropriate data would vary depending on various elements and conditions of the nature of each nutrient of concern.

The EWG Chairs confirmed that the situation varied for the different nutrients and that there would be instances where more than one method could apply to the DIRVs available for these nutrients. However, guidance on methods as shown in the table were needed in order to proceed with work on establishing NRVs-R for persons aged from 6 to 36 months. They further drew the attention of CCNFSDU to Section 3.2.1.1 where additional elements were included to complement the selection of the most suitable method besides the scientific rigour. They emphasized that the ranking of the methods was an attempt to ranking the quality of the data and total science in terms of evidence that would be considered stronger vs evidence that would be considered less strong and stressed the need to work collaboratively with FAO/WHO when addressing nutrients and DIRVs to establish NRVs-R for this age group.

Section 3.2.1.1

A delegation while supporting the assessment of the scientific rigour as outlined in Section 3.2.1, noted that other elements such as data quality, strength of the evidence and recent independent review of the science should also be considered on a case-by-case basis when deciding on the most suitable DIRVs for the establishment of NRVs-R by CCNFSDU. This proposal received support from members and observers including FAO and WHO.

Based on the above support another paragraph was proposed to for inclusion to this section for further consideration by the EWG:
“The NRVs-R should be reviewed on a case-by-case basis. They should be based on evidence derived using Rank 1, 2, or 3 methods, preferably in that order. Equally important as the ranking are the underlying data quality, strength of evidence and being based on a more recent independent review of science which may be taken into account when deriving NRVs-R.”

156. The Chairperson noted that Section 3.2.1 should be revised to clarify that in the absence of recent FAO/WHO DIRVs the selection and prioritization of derivation methods to establish NRVs-R only applies to values available from RASBs. For selecting the most rigorous scientific method that support DIRVs for the setting of NRVs, it might be useful to keep the ranking approach of such methods and to also consider with the additional elements identified in Section 3.2.1.1.

Section 3.2.1.2

157. The Chairperson noted support for the deletion of this section.

158. A delegation re-emphasized the need to consider NRVs for age subgroups on top of the whole age group, and therefore the principles should allow the establishment of NRVs to address either or both situations in recognition of the different policies and regulations in Codex member countries. A statement should be included to clarify that NRVs-R for persons aged 6 – 36 months can be derived by combining data from different sources, differently ranked methods, different underlying data quality, from different strength of evidence and based on various recent independent reviews of the science.

159. The Chairperson noted that the approach for the establishment of NRVs-R for the age group of 6 to 36 months, e.g. either to establish three sets of values or a single set of combined values, could be further discussed in the EWG to enable CCNFSDU to make a decision on this at a later stage.

Section 3.2.2 – Selection and Priority of Derivation Methods for the Establishment of NRVs-NCD

160. The Chairperson noted support for the deletion of this section consistent with the project document and the terms of reference for this work.

Section 3.3 – Consideration of Upper Levels of Intake

161. A delegation noted that the provision still needed alignment with the General Principles for the general population and that in order to be consistent with Section 3.1 under which FAO and WHO are the primary sources for the establishment of NRVs-R by CCNFSDU, the word “other” be deleted so that the parent organizations clearly stood apart from RASBs.

Other matters

Structure of the General Principles for establishing nutrient reference values for persons aged 6 to 36 months

162. The Chairperson drew the attention of CCNFSDU to the proposal in CRD12 which tried to find compromise between those Codex members supporting the approach to integrate the General Principles into the principles for the general population and those supporting a separate annex in the Guidelines on Nutrition Labelling.

163. The Chairperson noted general support for this proposal.

164. A delegation proposed that Section B should be followed by a title “draft general principles for establishing nutrient reference values for persons aged 6 to 36 months”.

List of nutrients - inclusion of sodium in the list of nutrients for the establishments of NRVs and the type of NRV for sodium

165. The Chairperson recalled that CCNFSDU had already agreed the list of nutrients including 13 vitamins (Vitamins A, D, C, K and E, thiamine, riboflavin, niacin, vitamins B6 and B12, folate, pantothenic acid and biotin); 10 minerals (calcium, magnesium, iron, zinc, iodine, copper, selenium, manganese, phosphorus and potassium, and protein (but with low priority). She noted a proposal by the EWG Chair to include sodium in the list of nutrients to be covered in the ongoing work.

166. The EWG Chair informed CCNFSDU that sodium was included in the FAO scientific review report as part of the scientific advice on DIRVs as an important mineral for nutrient declaration especially for processed
167. The Chairperson advised that the scope of the project document agreed by the Commission was on the derivation of NRV-R for persons aged 6-36 months and that sodium could be addressed at a later stage and this could envisage considerations for the establishment of NRVs-NCD that were excluded from the current work on the General Principles for this age group. This proposal received support from the Committee.

Development of NRVs-R

168. CCNFSDU considered whether the EWG should already consider development of NRVs-R for certain vitamins and minerals. CCNFSDU noted concerns with proceeding with NRVs-R prior to agreement on the General Principles, however, the EWG chair explained that working on NRVs-R in tandem with the finalization of the Principles would help to understand the usefulness of the principles and guide its further elaboration.

169. CCNFSDU therefore agreed that the draft General Principles could be piloted for NRVs-R for certain nutrients.

Conclusion

170. CCNFSDU agreed to continue its work on NRVs-R for persons aged 6 – 36 months and to re-establish the EWG, chaired by Ireland, and co-chaired by Costa Rica and the United States of America, working in English and Spanish to:

i. finalize the General Principles for establishing NRVs-R for persons aged 6 to 36 months including presenting the new structure for Annex 1 in CXG 2-1985, taking account of discussion at the session and any written comments submitted, for circulation for comments and consideration by CCNFSDU43; and

ii. pilot the draft General Principles on the following nutrients: vitamin B12, iodine, vitamin B6, riboflavin and, if time permits, thiamine, niacin and vitamin C.

171. CCNFSDU agreed to keep open the possibility of a Physical Working Group (PWG), chaired by Ireland and co-chaired by Costa Rica and the United States of America to meet prior to the next session to consider written comments submitted and prepare a revised proposal for consideration by CCNFSDU43.

OTHER BUSINESS AND FUTURE WORK (Agenda item 7)

Prioritization mechanism to better manage the work of CCNFSDU

172. The Chairperson recalled that the Host Secretariat had prepared an approach for a prioritization mechanism including possible criteria which had been discussed at CCNFSDU41. CCNFSDU41 agreed to the prioritization mechanism, to start using it on a pilot basis as well as to adjust the framework for the prioritization system as necessary and to conduct a case-by-case review of the proposals submitted by Members in response to CL 2020/30-NFSDU.

173. CCNFSDU considered the proposal to establish an EWG to continue developing a framework for the prioritization mechanism and its application to the proposals for new work.

Conclusion

174. CCNFSDU agreed to establish an EWG chaired by Germany and co-chaired by Canada, working in English, with the following terms of reference:

- revise the draft guideline for the preliminary assessment and identification of work priorities for CCNFSDU (REP20/NFSDU Appendix IX) as well as the proposed criteria taking into account the written comments received by the CCNFSDU Secretariat (Germany) as well as the comments and decision made at CCNFSDU41 for the development of a long term work prioritization mechanism; and

- prepare a revised proposed prioritization mechanism for use on a trial basis for consideration by
CCNFSDU43.

175. CCNFSDU42 further agreed to:

- request the Codex Secretariat to extend the deadline of the Circular Letter, CL 2020/30-NFSDU, requesting proposals for new work and emerging issues. All new work proposals already received would remain valid and would not need to be re-submitted.

- reserve the possibility of holding a PWG chaired by Germany and co-chaired by Canada, to meet immediately prior to CCNFSDU43 and conduct a case-by-case review of the emerging issues and proposals for new work submitted by members in response to the Circular Letter.

DATE AND PLACE OF THE NEXT SESSION (Agenda item 8)

176. CCNFSDU42 was informed that its 43rd Session was tentatively scheduled to take place within the next 12-18 months, with the location to be confirmed and the final arrangements being subject to confirmation by the Host Country in consultation with the Codex Secretariat.
APPENDIX I

LIST OF PARTICIPANTS
LISTE DES PARTICIPANTS
LISTA DE PARTICIPANTES

CHAIRPERSONS – PRÉSIDENTES – PRESIDENTAS

Mrs Hilke Thordsen
Federal Ministry of Food and Agriculture
Berlin

Dr Anja Brönstrup
Federal Ministry of Food and Agriculture
Bonn

ASSISTANT TO THE CHAIRPERSONS - ASSISTANT DES PRÉSIDENTES - ASISTENTE DE LAS PRESIDENTAS

Dr Tobias Fischer
Federal Ministry of Food and Agriculture
Bonn

MEMBERS NATIONS AND MEMBER ORGANIZATIONS
ÉTATS MEMBRES ET ORGANISATIONS MEMBRES
ESTADOS MIEMBROS Y ORGANIZACIONES MIEMBROS

ARGENTINA - ARGENTINE

Ms Andrea Moser
Jefa del Servicio de Evaluación y Registro de Alimentos, Establecimientos y Materiales en Contacto con Alimentos
Instituto Nacional de Alimentos

Ms Silvina Campos
Asesora
Asociación de Empresas de Nutrición Infantil

Ms Mariana Casaliba
Asistente Técnica
Instituto Nacional de Alimentos

Ms Analía Castellani
Asesora
Centro de la Industria Lechera
Buenos Aires

Ms Debora Cedro
Asesora
Asociación de Empresas de Nutrición Infantil

Ms Soledad Echarri
Asistente Técnica
Instituto Nacional de Alimentos

Ms María Belén García
Asesora
Asociación de Empresas de Nutrición Infantil

Ms María Alejandra Larre
Asesora
Ministerio de Agricultura, Ganadería y Pesca
Buenos Aires

Ms Sandra Matiz
Directora Técnica
Ethical Nutrition

Ms Celina Moreno
Responsable del área de Nutrición
Ministerio de Agricultura, Ganadería y Pesca

AUSTRALIA - AUSTRALIE

Ms Jenny Hazelton
Director - Labelling and Information Standards
Australian Government

Mrs Emma Breen
A/g Director, Public Health Nutrition Standards
Australian Government

Ms Jane Broughton
Regulatory Affairs and I & R Manager
Nestle Nutrition Oceania

Ms Gillian Duffy
A/g Director - Food and Nutrition Policy Section, Preventive Health Policy Branch, Population Health Division
Australian Government

Ms Lorna Munro
Nutritionist
Australian Government

Ms Lira Yoon
Regulatory and Corporate Affairs Manager
Sanulac Nutritionals
AUSTRIA - AUTRICHE
Dr Karin Gromann
Head of Unit
Federal Ministry Social Affairs, Health, Care and Consumer Protection
Vienna

Mrs Judith Benedics
Senior Expert
Federal Ministry of Social Affairs, Health Care and Consumer Protection
Vienna

BARBADOS - BARBADE
Mrs Cheryl Lewis
Technical Officer
Barbados National Standards Institution
Bridgetown

BELGIUM - BELGIQUE - BÉLGICA
Ms Isabelle Laquière
Regulatory Expert
FPS public health.
Brussels

Mr Jean Pottier
Regulatory Expert Food Labelling, Nutrition and Health Claims
FPS Health, Food Chain Safety and Environment Animal, Plant and Food Directorate
Brussels

BENIN - BÉNIN
Mr E. Jacques Hougbenou Houngla
Secrétaire Permanent du Comité National du Codex Alimentarius
Ministère de l'Agriculture, de l'Elevage et de la Pêche
Porto-Novo

BRAZIL - BRÉSIL - BRASIL
Mrs Ana Claudia Marquim Firme De Araújo
Health Regulation Expert
National Health Surveillance Agency
Brasília-DF

Mrs Tabatha Lauriana Chaves Germano Roman
Regulatory affairs
ABIAD – Brazilian Association of the Food Industry for Special Purposes

Mrs Flavia Cozzolino Goldfinger
Executive Director
International Life Sciences Institute – ILSI Brazil

Mrs Ana Paula De Rezende Peretti Giometti
Health Regulation Expert
Brazilian Health Surveillance Agency – Anvisa
Brasilia

Mr Rodrigo De Toledo Vianna
IBFAN/Brazil member
IBFAN/Brazil
São Paulo

Mrs Renata Delavy
Regulatory Affairs Manager
Brazilian Food Industry Association

Mr Eduardo Augusto Fernandes Nilson
Technical Consultant
Ministry of Health of Brazil

Mrs Patricia Ferrari Andreotti
Health Regulation Expert
Brazilian Health Regulatory Agency – Anvisa

Mrs Fabiola Figueiredo Nejar
IBFAN/Brazil member
IBFAN/Brazil

Mr Henrique Moreira
Regulatory Affairs Manager
Brazilian National Confederation of Industry

Mr Alexandre Novachi
Regulatory and Scientific Affairs Director
Brazilian Food Industry Association
São Paulo

Mrs Fernanda Oliveira
PhD in Pediatric – UNIFESP
Brazilian Society of Pediatrics/UNIFESP
São Paulo

Mrs Fabiana Queiroz
Regulatory Affairs Director
Brazilian National Confederation of Industry

Dr Virgínia Resende S. Weffort
President of the scientific department of nutrology at Brazilian Society of Pediatrics
Federal University of the Triângulo Mineiro
Uberaba - MG

Mrs Olga Maria Silverio Amancio
Senior Professor
Federal University of Sao Paulo

BURKINA FASO
Mr Dominique Ouedraogo
Ingénieur Agronome
Ministère en charge de l'Agriculture
Ouagadougou

Mr Abdoulaye Gueye
Responsable de la sécurité sanitaire des aliments
Ministère de la Santé Publique
Ouagadougou

CAMBODIA - CAMBODGE - CAMBOYA
Mr Theng Dim
Deputy Director General
Ministry of Commerce
Phnom Penh

Mr Aing Hoksrun
Chief
Food Safety Bureau, Ministry of Health
Phnom Penh

Mr Kroeuon Hou
Deputy Director
Helen Keller International Cambodia Office
Phnom Penh

CANADA - CANADÁ
Ms Maya Villeneuve
Associate Director
Health Canada
Ottawa

Ms Nancy Ing
Regulatory Policy and Risk Management Specialist
Health Canada
Ottawa
Mrs Chantal Martineau
Manager, Regulatory Projects
Health Canada
Ottawa

Mrs Annie Morvan
National Manager
Canadian Food Inspection Agency
Ottawa

CHILE - CHILI

Mr Cristian Cofré
Asesor Técnico
Departamento de Alimentos
División de Políticas Públicas Saludables y Promoción (DIPOL)
Ministerio de Salud
Santiago

Ms Karla Carmona Araya
Asesor Técnico
Agencia Chilena para la Calidad e Inocuidad Alimentaria (ACHIPIA)
Ministerio de Agricultura
Santiago

Mrs Gabriela Carrasco Navarro
Académica
Universidad de Chile
Santiago

Mr Héctor Cori Traverso
Nutrition Science Director LatAm, DSM Nutritional Products
DMS Nutritional Products Chile S.A.
Santiago

Mrs Maria Loreto Díez-Valdés
Coordinadora de Asuntos Regulatorios y Aseguramiento de Calidad SANUAC
Santiago

Mrs Luisa Kipreos
Asesora Técnica
Departamento de Alimentos
División de Políticas Públicas Saludables y Promoción (DIPOL)
Ministerio de Salud
Santiago

Mr Diego Orellana
Regulatory Affairs Manager Chile-Paraguay-Uruguay
Abbott Laboratories
Santiago

Mr Diego Varela
Coordinador Asuntos Internacionales.
Ministerio de Agricultura.
Santiago

Mrs Gloria Vera
Consultora en Alimentos, Nutrición y Asuntos Regulatorios
Universidad de Chile
Santiago

CHINA - CHINE

Mr Aidong Liu
Researcher
China National Center for Food Safety Risk Assessment
Beijing

Mrs Hanyang Lyu
Assistant Researcher
China National Center for Food Safety Risk Assessment
Beijing

Mrs Taotao Deng
Associate Professor
China National Center for Food Safety Risk Assessment
Beijing

Mrs Hao Ding
Assistant Researcher
China National Center For Food Safety Risk Assessment
Beijing

Mrs Jie Dong
Senior Engineer
GuangZhou Customs District Technology Center, P.R.C
Guangzhou

Mrs Haiqin Fang
Researcher
China National Center for Food Safety Risk Assessment
Beijing

Mr Yang Jiao
Senior Engineer
International Inspection and Quarantine Standards and Technical Regulations Research Center of General Administration of Customs
Beijing

Mrs Dong Liang
Associate Professor
China National Center for Food Safety Risk Assessment
Beijing

Dr Fu Po Violette Lin
Scientific Officer (Nutrition Labelling)
Centre for Food Safety, Food and Environmental Hygiene Department, HKSAR Government
Hong Kong

Ms Pui Shan Liu
Scientific Officer (Chemical)
Centre for Food Safety, Food and Environmental Hygiene Department, HKSAR Government
Hong Kong

Ms Hoi Lam Alam Ng
Scientific Officer (Health and Nutrition Claims)
Centre for Food Safety, Food and Environmental Hygiene Department, HKSAR Government
Hong Kong

Mr Gensheng Shi
Investigator
Department of Food Safety Standards, Risk Surveillance and Assessment, National Health Commission of the People’s Republic of China
Beijing

Mrs Jing Tian
Researcher
China National Center for Food Safety Risk Assessment
Beijing
Mr Fengqi Wu
Senior Engineer
Food Inspection & Quarantine Center, Shenzhen Customs District, P.R.C, Shenzhen

Mr Jianbo Zhang
Researcher
China National Center for Food Safety Risk Assessment, Beijing

Dr Jiangege Zheng
Research Assistant
China National Center for Food Safety Risk Assessment, Beijing

COLOMBIA - COLOMBIE
Prof Ochoa Luz Angela
Profesional especializada
Ministerio de Salud y Protección Social, Bogotá

Prof Maria Dioselina Fonseca Fonseca
Profesional
Instituto Colombiano de Bienestar Familiar ICBF, Bogotá

Prof Jenny Alexandra Hernández Montoya
Profesional
Ministerio de Salud y Protección Social, Bogotá

Prof Alba Rocío Jimenez Tovar
Profesional Especializada
Instituto Nacional de Vigilancia de Medicamentos y Alimentos - INVIMA, Bogotá

COSTA RICA
Mrs Alejandra Chaverri Esquivel
Nutricionista
Ministerio de Salud, San José

Mrs Mónica Elizondo Andrade
Directora Asuntos Científicos y Regulatorios Cámara Costarricense de la Industria Alimentaria (CACIA), San José

Mrs Amanda Lasso Cruz
Asesora Codex
Ministerio de Economía, Industria y Comercio, San José

Mrs Erika Ramírez Brenes
Nutricionista
Ministerio de Salud, San José

CÔTE D’IVOIRE
Dr Akoua Assunta Adayé
Enseignant-chercheur, Maître de conférence
Université Félix Houphouët Boigny, Abidjan

Prof N’guessan Georges Amani
Chercheur
Université Nangui Abrogoua, Abidjan

Dr Melecony Célestin Ble
Chef de Département
Centre de Recherches Océanologiques, Abidjan

Mrs Adeline Galé
Sous-directeur
Ministère d’État, Ministère de l’Agriculture et du Développement Rural, Abidjan

Mrs Florence Kacou
Regulatory and scientific affairs manager
NESTLE CÔTE D’IVOIRE, Abidjan

Mr Kouassi N’guessan
Sous-Directeur de l'Inspection Phytosanitaire
Ministère d’Etat, Ministère de l’Agriculture et du Développement Rural, Abidjan

Mr Oka René Kouame
Director
National Nutrition Programme

Dr Gopeyue Maurice Yeo
Chercheur
Centre de Recherches Océanologiques, Abidjan

CROATIA - CROATIE - CROACIA
Ms Marija Pašalić
Senior Expert Advisor
Ministry of Health, Zagreb

CUBA
Mrs Yarisa Domínguez Ayllón
Jefa Departamento de Nutrición Comunitaria
Instituto de Higiene, Epidemiología y Microbiología, INHEM, La Habana

CZECH REPUBLIC - RÉPUBLIQUE TCHÈQUE - REPÚBLICA CHECA
Dr Dana Triska
Head of Food Chain Unit
Ministry of Agriculture of the Czech Republic, Prague 1

DENMARK - DANEMARK - DINAMARCA
Ms Sandra Fisker Tomczyk
Academic Officer
Danish Veterinary and Food Administration, Glostrup

Mrs Selma Reguez
Academic Officer
Danish Veterinary and Food Administration, Glostrup

Ms Louise Myhre Utzen
Industry Observer
SEDAN, Copenhagen
Mrs Anne With Mikkelsen
Academic Officer
Danish Veterinary and Food Administration
Glostrup

DOMINICAN REPUBLIC –
RÉPUBLIQUE DOMINICAINE –
REPÚBLICA DOMINICANA

Dr Luis Martínez
Encargado Departamento de Alimentos
Dirección General Medicamentos, Alimentos y
Productos Sanitarios, en Ministerio de Salud Pública
Santo Domingo, D.N.

Dr Carmen Cruz
Coordinadora Programa Vigilancia Nutricional
Ministerio de Salud Pública y Asistencia Social
SANTO DOMINGO

ECUADOR - ÉQUATEUR

Mrs Pamela Baez
Especialista de Promoción de la Nutrición, Seguridad y
Soberanía Alimentaria
Ministerio de Salud Pública

Mrs Tatiana Gallegos
Analista
Ministerio de Salud Pública

Mr Israel Vaca Jiménez
Analista de certificación de producción primaria y
buenas prácticas
Agencia de Regulación y Control Fito y Zoosanitaria -
AGROCALIDAD
Quito

Ms Daniela Vivero
Analista de certificación de producción primaria y
buenas prácticas
Agencia de Regulación y Control Fito y Zoosanitario -
AGROCALIDAD
Quito

EGYPT - ÉGYPTE - EGIPTO

Eng Mohamed Naser
Technical Secretariat for Foods for Special Dietary
Uses Committee
Egyptian Organization for Standardization and Quality
(EOS)
CAIRO

Dr Haidy Mohyeldin Hamdy Abdelkarim
Regulatory Affairs External Engagement Manager -
North Africa & Levant
PepsiCo International_Egypt
Cairo

Dr Adel Saadedin Ismail Abdin
Research and Development Director
Hero Middle East & Africa
New Cairo

Dr Laila Ahmed Kamal Alsayed
Quality Consultant
Riri Baby Food Co.
Cairo

Dr Mostafa Diab
Head of Regulatory and Scientific Affairs
Juhayna Food Industries
Giza

Dr Mahmoud Elsadek
Deputy Director of Technical Affairs Department
Chamber of Food Industries – Federation of Egyptian
Industries – Ministry of Trade and Industry
Cairo

Dr Rasha Salaheldin Kamel Galal
Head of the Department
Egyptian National Food Safety Authority
Cairo

Prof Mervat Ahmed Fouad Nasr
Consultant of Special Food and Pharmacognosy
National Nutrition Institute (NNI)
Giza

Prof Mahmoud Saleh
Emeritus Prof. Dr. Special Food and Nutrition
Food Technology Research Institute (FTRI)
Giza

Dr Shaimaa Sarhan
Regulatory Affairs Manager
Nestle-Egypt
New Cairo

Eng Yasser Mansour Khalil Shazly
Regulatory & Scientific Manager
Nestle Waters
Cairo

ESTONIA - ESTONIE

Mrs Evelin Kivima
Chief Specialist
Ministry of Rural Affairs
Tallinn

ESWATINI

Ms Glorious Hloniphile Dlamini
Programme Officer
Ministry of Health
Mbabane

Dr Sakhile Masuku
Lecturer
University of Eswatini
Mbabane

Ms Milargrosa Mondlane
Standard Development Officer
Eswatini Standard Authority
Matsapha

Mrs Georgina Shabangu
Senior Quality Systems Officer (Technical Regulations)
Ministry of Commerce, Industry and Trade
Manzini

Mrs Lindiwe Tsabedze-sibanyoni
Programme Manager
Ministry of Health
Mbabane

EUROPEAN UNION - UNION EUROPÉENNE –
UNIÓN EUROPEA

Mr Sebastian Goux
Deputy Head of Unit
European Commission
Brussels
Ms Stephanie Bodenbach
Administrator
European Commission
Brussels

Ms Judit Krommer
Administrator
European Commission
Brussels

Ms Fruzsina Nyemecz
Administrator
European Commission
Brussels

FINLAND - FINLANDE - FINLANDIA
Ms Anna Lemström
Senior Officer, Food Policy
Ministry of Agriculture and Forestry

FRANCE - FRANCIA
Ms Alice Stengel
Responsable du secteur de l'alimentation particulière
Ministère de l'économie, de l'industrie et du numérique
Paris

Mrs Louise Dangy
Point de contact national
SGAE
Paris

GAMBIA - GAMBIE
Ms Lalia Jawara
Codec Contact Point
Food Safety & Quality Authority of the Gambia
Banjul

GERMANY - ALLEMAGNE - ALEMANIA
Dr Anke Weissenborn
German Federal Institute of Risk Assessment (BfR)
Berlin

Mrs Tatjana Drewitz
Federal Office of Consumer Protection and Food Safety (BVL)
Berlin

Dr Britta Nagl
Federal Ministry of Food and Agriculture (BMEL)
Berlin

Mrs Jana Steindl
Max Rubner-Institut, Federal Research Institute of Nutrition and Food
Karlsruhe

GHANA
Ms Maria Aba Lovelace-johnson
Chief Regulatory Officer
Food and Drugs Authority
Accra

Prof Seth Adu-afarwuah
Professor
University of Ghana
Accra

Ms Lilian Kabukuor Manor
Scientific Officer
Ghana Standards Authority
Accra

Mrs Margaret Mary Tohouenou
Regulatory & Scientific Affairs Manager
Nestlé Ghana
Accra

GREECE - GRÈCE - GRECIA
Ms Afrodite Voulgari
Head of Particular Nutrition, Food Supplements & Biocides
National Organization for Medicines
Athens

GRENADA - GRENADE - GRANADA
Mrs Lydia Browne
Executive Secretary
Grenada Food & Nutrition Council
St. Georges

Mr Sidoni Frank
Administrative Officer
Grenada Food & Nutrition Council
St. Georges

GUATEMALA
Mrs Cristina Del Rosario Aguilar Guillén
Asesora en Asuntos Científicos Nutricionales
Gremial de Alimentos y Bebidas Cámaras de Industria
Guatemala

Mrs Sonia Pamela Castillo De Martínez
Asesora Asuntos Técnicos Regulatorios
Gremial de Alimentos y Bebidas
Cámara de Industria, Guatemala

Mrs Andrea Pereira Medrano
Especialista Asuntos Regulatorios y Científicos
Cámara de Industria de Guatemala
Guatemala

Mrs Úrsula Ixmucané Quintana Chavarría
Asesora Técnica
CACIF
Guatemala

GUYANA
Mr Robert Ross
Quality Manager
Guyana Manufacturers and Services Association

HONDURAS
Ms Elsa Barrientos
Expert
Universidad Pedagógica Nacional Francisco Morazán
Tegucigalpa

Ms Andrea Jhoana Rivera
Expert
Agencia de Regulación Sanitaria
Tegucigalpa

HUNGARY - HONGRIE - HUNGRÍA
Ms Ilidikó Bálint
Registration Referent
National Institute of Pharmacy and Nutrition
Budapest

Dr Judit Beczéné Kiss
Registration Referent
National Institute of Pharmacy and Nutrition
Budapest
Dr Mártá Horacsek
Head of Department
National Institute of Pharmacy and Nutrition
Budapest

Ms Judit Lippainé Fekete
Registration Referent
National Institute of Pharmacy and Nutrition
Budapest

Ms Judit Susán
Registration Referent
National Institute of Pharmacy and Nutrition
Budapest

INDIA - INDE
Ms Aditi Das Rout
Joint Secretary & Chair CCG-7
Ministry of Women and Child Development

Mr Ganesh Vishweshwar Bhat
Technical Officer
Food Safety and Standards Authority of India
New Delhi

Dr Anantha Narayana Db
Expert Member
Indian Pharmacopeia Commission, Bengaluru

Ms Shalini Gupta
Assistant Technical Adviser
Ministry of Women and Child Development

Dr B. Santosh Kumar
Scientist-C
ICMR-National Institute of Nutrition

Dr Sutapa S Mukherjee
Joint Technical Adviser
Ministry of Women and Child Development

Dr Bhaskar N
Advisor
FSSAI

Dr Prabashankar P
Senior Principal Scientist & Head
CSIR-Central Food Technological Research Institute

Dr G Bhanuprakash Reddy
Scientist-G and Head, Biochemistry Division
ICMR-National Institute of Nutrition, Hyderabad

Dr Jasvir Singh
Representative Federation of Indian Chambers of Commerce & Industries
New Delhi

Ms Dhanya Suresh
Technical Officer
Food Safety and Standards Authority of India
New Delhi

Dr Dhanesh V
Technical Officer
Food Safety and Standards Authority of India
Delhi

INDONESIA - INDONÉSIE
Mrs Yusra Egayanti
Coordinator for certain food standardization
Indonesian Food and Drug Authority
Jakarta

Mrs Bety Wahyu Hapsari
Secretariat of the Codex Contact Point of Indonesia
National Standardization Agency of Indonesia
Jakarta

Mrs Pratiwi Yuniarti Martoyo
Sub Coordinator for Standardization of Foods for Special Nutritional Uses
Indonesian Food and Drug Authority
Central Jakarta

Dr Hera Nurlita
Sub Coord Quality of Nutrition
Ministry of Health Indonesia
Jakarta

Mrs Ati Widya Perana
Sub Coordinator for Standardization of Claim and Nutrition Information
Indonesian Food and Drug Authority
Central Jakarta

Ms Destriani Sanjaya Pinem
Food Standardization Officer
Indonesian Food and Drug Authority
Central Jakarta

Mrs Yeni Restiani
Coordinator of Raw Material, Food Category, Food Labelling, and Food Standard Harmonization
Indonesian Food and Drug Authority
Central Jakarta

Mrs Fenta Yanuwati Sandiko
Indonesia Position
Asosiasi Perusahaan Produk berNutrisi untuk Ibu dan Anak (APPNIA)
South Jakarta

Dr Prima Sehanputri
Committe
The Indonesian Food and Beverages Association
South Jakarta

Mrs Dyah Setyowati
Sub Coordinator for Standardization of Food Product Information and Food Standard Harmonization
Indonesian Food and Drug Authority
Central Jakarta

Ms Tetty H. Sihombing
Indonesia FDA

Prof Damayanti Rusli Sjarif
Professor in Pediatrics Nutrition and Metabolic Diseases
Faculty of Medicine Universitas Indonesia
Jakarta Selatan

Dr Klara Yuliarti
Lecturer in Pediatric Nutrition and Metabolic Disease
Department of Pediatrics Cipto Mangunkusumo National General Hospital/Faculty of Medicine
University of Indonesia
Central Jakarta
IRAN (Islamic Republic of) –
IRAN (République islamique d’) –
IRÁN (República Islámica del)

Mrs Farahnaz Ghollasi Moud
Codex Contact Point
Iranian National Standardization Organization (INSO)
Tehran

Mr Kianoush Rezaei
Member National Committee of CCNFSDU
Private sector

Mrs Samaneh Eghtedari
Expert of Codex Group in Iran
Iranian National Standards Organization (INSO)
Tehran

Mr Nader Karimian Khosroshahi
Member National Committee of CCNFSDU
Food & Drug Organization of MoH

Mrs Nastaran Miri
Member National Committee of CCNFSDU
Food & Drug Organization of MoH

Mrs Parinaz Parsa
Member National Committee of CCFL
Private sector

Mrs Samireh Sabah
Member Committee
Food & Drug Organization of MoH

Mr Hany Tahvilzade
Expert
Private sector
Teheran

IRAQ

Dr Hadi Hashem Hussein
Supplying Department Manager
Ministry of Agriculture
Baghdad

Ms Borooj Mohammed
Director of Women Empowerment department
Ministry of Agriculture
Baghdad

IRELAND - IRLANDE - IRLANDA

Dr Mary Flynn
Chief Specialist Public Health Nutrition
Food Safety Authority of Ireland
Dublin

Ms Orla Curtis-davis
Placement Student
Food Safety Authority of Ireland
Dublin

Ms Oonagh Lyons
Technical Executive
Food Safety Authority of Ireland
Dublin

Ms Grace Mcgovern
Placement Student
Food Safety Authority of Ireland
Dublin

JAPAN - JAPON - JAPÓN

Mr Tsuyoshi Arai
Deputy Director
Consumer Affairs Agency
Tokyo

Dr Tsuyoshi Chiba
Chief of Department
National Institute of Health and Nutrition,
National Institutes of Biomedical Innovation, Health and
Nutrition
Tokyo

Ms Ai Hoshikawa
Assistant Manager
Consumer Affairs Agency
Tokyo

Ms Manami Igata
Technical Officer
Consumer Affairs Agency
Tokyo

Ms Mitsuko Imai
Deputy Director, Office of International Food Safety
Ministry of Health, Labour and Welfare
Tokyo

Mr Manato Ebina
Technical Officer, Office of International Food Safety
Ministry of Health, Labour and Welfare
Tokyo

Dr Rin Ogiya
Director, Office of International Food Safety
Ministry of Health, Labour and Welfare
Tokyo

Ms Aya Orito-nozawa
Associate Director
Ministry of Agriculture, Forestry and Fisheries
Tokyo

Dr Masafumi Saito
Deputy Director
Consumer Affairs Agency
Tokyo

Dr Kaori Yamamoto
Assistant Manager
Consumer Affairs Agency
Tokyo

JORDAN - JORDANIE - JORDANIA

Eng Adnan Azaizeh
Head of Special Food and Athletes Food Department
JFDA
Amman

Eng Rana Mandoob Obeidat
Nutritionist at Athletes and Special Foods Division
Jordan Food and Drug Administration/ Jordan
Amman

Eng Adma Khalid Waqfi
Head of Food for Special Use Division
JFDA
Amman
KAZAKHSTAN - KAZAJSTÁN
Ms Zhanar Tolysbayeva
expert on hygiene of nutrition
Ministry of Healthcare the Republic of Kazakhstan
Nur-Sultan

KENYA
Mr Peter Mutua
Manager, Food Standards
Kenya Bureau of Standards
Nairobi
Dr George Abong
Senior Lecturer
University of Nairobi
Nairobi
Mr Leonard Kimtai
Food Safety Officer
Ministry of Health
Ms Maryann Kindiki
Manager, National Codex Contact Point
Kenya Bureau of Standards
Nairobi
Mr Danset Moranga
Senior Standards Officer
Kenya Bureau of Standards
Nairobi
Ms Brendah Obura
Head of Food Safety Unit
Ministry of Health
Mr James Ojiambo Olumbe
Manager, Regulatory and Scientific Affairs
Nestle Kenya
Nairobi
Ms Alice Tumbo
Senior Trade Officer
Ministry of Industrialization and Enterprise Development

LAO PEOPLE’S DEMOCRATIC REPUBLIC – RÉPUBLIQUE DÉMOCRATIQUE POPULAIRE LAO - REPÚBLICA DEMOCRÁTICA POPULAR LAO
Dr Khamseg Philavong
Deputy Director
Ministry of Health, Lao PDR
Vientiane

MRs Viengxay Vansilalom
Deputy Director General
Ministry of Public Health
Vientiane capital

LATVIA - LETTONIE - LETONIA
Dr Khamseng Philavong
Deputy Director
Ministry of Health, Lao PDR
Vientiane

Dr Mona Alsumaie
Director Community Nutrition, Promotion Administration
Public Authority for Food and Nutrition
Mubarak Alkabeer
Mrs Elaf Ashraf
Nutritionist
Public Authority of Food and Nutrition

LEBANON - LIBAN - LÍBANO
Ms Inara Cine
Senior Officer
Ministry of Agriculture of Latvia
Riga

Lebanon
Ms Rita El Murr
Danone Lebanon
Beirut

Ms Maya Makhou
Agro Food Department
Ministry of Agriculture
Beirut

Ms Cecile Obeid
Head of Division
The Lebanese Standards Institution-LIBNOR
Beirut

Ms Christelle Oueijan
St Georges Hospital
Beirut

LITHUANIA - LITUANIE - LITUANIA
Mrs Ieva Gudanaviciene
Chief expert of Health Promotion Division
Ministry of Health of Lithuania
Vilnius

MALAGASY
Dr Vonihinaingo Ramaroson Rakotosamimanana
Spécialiste en Evaluation Sensorielle
Centre National de la Recherche Appliquée au Développement Rural
Antananarivo

MALAWI
Mr Fred Sikwese
Director of Standards Development
Malawi Bureau of Standards
Blantyre

Ms Mercy Mfune
Standards Officer
Malawi Bureau of Standards
Blantyre

Mr Justin Onani
Senior Standards Officer
Malawi Bureau of Standards
Blantyre

Mrs Hanan Abbas
Nutritionist
Public Authority of Food and Nutrition

Mrs Latifa Al-ghanim
Nutritionist
Public Authority of Food and Nutrition

Mrs Maryam Al-najjar
Nutrition Technician
Public Authority for Food and Nutrition
Kuwait

Dr Mona Alsamaa
Director Community Nutrition, Promotion Administration
Public Authority of Food and Nutrition
Mubarak Alkaaber
Mrs Elaf Ashraf
Nutritionist
Public Authority of Food and Nutrition

Mrs Viengxay Vansilalom
Deputy Director General
Ministry of Public Health
Vientiane capital

Mr Leonard Kimtai
Food Safety Officer
Ministry of Health
Ms Maryann Kindiki
Manager, National Codex Contact Point
Kenya Bureau of Standards
Nairobi
MALAYSIA - MALAISIE - MALASIA

Ms Norrani Eksan
Director of Compliance and Industrial Development
Ministry of Health Malaysia
Wilayah Persekutuan Putrajaya

Ms Zalina Abdul Majid
Deputy Director
Ministry of Health Malaysia
Wilayah Persekutuan Putrajaya

Ms Zalma Abdul Razak
Director
Ministry of Health Malaysia
Putrajaya

Mr Ali Muzammil Abdullah
Regulatory Affairs and Policy Director
Mead Johnson Nutrition (Malaysia) Sdn Bhd
Kuala Lumpur

Ms Siti Dinie Syazwani Azlam
Assistant Director
Ministry of Health Malaysia
Putrajaya

Ms Sarathana Dollah
Senior Executive
Malaysian Palm Oil Council
Selangor

Ms Keh Yun, Katherine Khoo
Manager
FMM MAFMAG
Selangor

Ms Nurul Hidayati Mohd Nasir
Senior Assistant Director
Ministry of Health Malaysia
Putrajaya

Ms Noor Ul-aziha Muhammad
Senior Assistant Director
Ministry of Health Malaysia
Wilayah Persekutuan Putrajaya

Dr Kanga Rani Selvaduray
Head Of Unit
Product Development and Advisory Services Division,
Malaysian Palm Oil Board (MPOB)
Selangor

Ms Fatimah Sulong
Senior Principal Assistant Director
Ministry of Health Malaysia
Wilayah Persekutuan Putrajaya

Ms Megawati Suzari
Npd, Scientific & Reg. Affairs Director
FMM MAFMAG
Selangor

Dr E Siong Tee
Nutrition Consultant
TES Nutrihealth Strategic Consultancy
Selangor

Dr Phooi Tee Voon
Group Leader, Lipid Nutrition
Malaysian Palm Oil Board
Selangor

Ms Norazlinda Zainal Abidin
Assistant Director
Ministry of Health Malaysia
Wilayah Persekutuan Putrajaya

Ms Norlida Zulkafy
Principal Assistant Director
Ministry of Health Malaysia
Wilayah Persekutuan Putrajaya

Ms Noraisyah Zulkawi
Manager
Malaysian Palm Oil Council
Selangor

MALI - MALÍ

Mr Mahmoud Camara
Chargé du Service Central de Liaison du Codex pour le Mali
Département Nutrition et Sécurité Sanitaire des Aliments/Institut National de Santé Publique
Bamako

MEXICO - MEXIQUE - MÉXICO

Mrs Maria Guadalupe Arizmendi Ramírez
Verificador/ Dictaminador Especializado
COFEPRIS
CDMX

Mrs María Elena Palafox López
Verificador/ Dictaminador Sanitario
COFEPRIS, Secretaría de Salud
CDMX

Mrs Ivonne Ramírez - Silva
Investigador en Ciencias Médicas
Instituto Nacional de Salud Pública
CDMX

Mrs Isela Núñez Barrera
Jefe del servicio de Nutrición y Nutrición Parenteral
Hospital Infantil de México Federico Gomez, Secretaría de Salud
CDMX

Mrs Magda Cristina García Domínguez
Representante
CANILEC (Cámara Nacional de Industriales de la leche)
CDMX

Mr Esteban Manrique De Lara
Representante
Cámara Nacional de Industriales de la Leche (CANILEC)
CDMX

Mr Alfonso Moncada Jiménez
Representante
Cámara Nacional de Industriales de la leche
CDMX

Mrs Xochitl Morales Macedo
Representante de Codex CANILEC-CFFI
CANILEC Cámara Nacional de Industriales de la Leche
CDMX

Mr Rafael Ponce De León Barajas
Vice-Presidente de la Comisión de Fabricantes y distribuidores de Fórmulas Infantiles
Cámara Nacional de Industriales de la Leche/CFFI
CDMX
Mr Ernesto Octavio Salinas Gómezroel
Vicepresidente Comisión de Alimentos y Bebidas
CONCAMIN – Confederación de Cámaras Industriales
de México
CDMX

MOROCCO - MAROC - MARRUECOS

Pr. Mouane Nezha
Head of Gastroenterology Nutrition Department
Academic Children Hospital-Mohammed V University
President of Gastroenterosociety SMGENP
Rabat

Prof Youssef Aboussaleh
Professor and Researcher / General Secretary of the
Moroccan Nutrition Society
Ibn Tofail University / Moroccan Nutrition Society
Kenitra

Dr Nawal Bentahila
Presidente
Association marocaine de nutrition infantile
Casablanca

Prof Abdellatif Bour
President of Moroccan Society of Nutrition (SMN)
Moroccan Society of Nutrition (SMN)
Rabat

Ms Khadija Kadiri
PCC Maroc
ONSSA
Rabat

Eng Bouchra Messaoudi
Cadre au Service de la Normalisation et Codex
Alimentarius
Office national de la sécurité sanitaire des produits alimentaires
Rabat

Eng Tannaoui Mohamed
Chef de la Section Agricole
Laboratoire Officiel d’Analyses et de Recherches Chimiques
Casablanca

Eng Karom Mohamed El Mahdi
Ingénieur en Industrie Agro-alimentaire
ONSSA
Rabat

Dr Samah Tahri
Veterinarian
ONSSA
Rabat

NEPAL - NÉPAL

Dr Matina Joshi Vaidya
Director General
Department of Food Technology and Quality Control,
Ministry of Agriculture and Livestock Development
Kathmandu

Mr Sanjay Bhandari
Senior Food Research Officer
Ministry of Agriculture and Livestock Development
Kathmandu

Dr Huma Kumari Bokhkhim
Senior Food Research Officer
Ministry of Agriculture and Livestock Development
Kathmandu

Mr Suman Dhital
Senior Food Research Officer
Ministry of Agriculture and Livestock Development
Kathmandu

Mr Hemanta Gautam
Senior Food Research Officer
Ministry of Agriculture and Livestock Development
Kathmandu

Mr Kishor Khatri
Senior Food Research Officer
Department of Food Technology and Quality Control,
Ministry of Agriculture and Livestock Development
Kathmandu

Mr Mohan Krishna Maharjan
Senior Food Research Officer
Ministry of Agriculture and Livestock Development
Kathmandu

Ms Nisha Sharma
Research Manager
Helen Keller Intl
Lalitpur

Dr Atul Upadhyay
Chief Executive Officer
Balyo Nepal Nutrition Initiative
Kathmandu

NETHERLANDS - PAYS-BAS - PAÍSES BAJOS

Mrs Erika Smale
Senior Policy Advisor
Ministry of Health, Welfare and Sports
The Hague

NEW ZEALAND - NOUVELLE-ZÉLANDE – NUEVA ZELANDIA

Ms Jenny Reid
Manager, Market Access
Ministry for Primary Industries
Wellington

Mrs Charlotte Channer
Market Access Counsellor
Ministry for Primary Industries
Wellington

Ms Kati Laitinen
Specialist Adviser
Ministry for Primary Industries
Wellington

Ms Michelle Gibbs
Senior Adviser
Ministry for Primary Industries
Wellington

Mr Raj Rajasekar
Senior Programme Manager
Codex Coordinator and Contact Point for New Zealand
Wellington

Ms Lisa Ralph
Senior Policy Analyst
Ministry for Primary Industries

Ms Dianne Lowry
Regulatory and Technical Liaison Manager
Dairy Goat Co-operative (NZ) Ltd
Hamilton
Ms Jenny Campbell
Senior Regulatory Manager
Fonterra Co-operative Group Ltd
Auckland

Ms Carole Inkster
Policy & Regulatory Director
Food and Grocery Council

NIGERIA - NIGÉRIA

Mr Julius Adekunle Adanlawo
Assistant Chief Agricultural Officer
Federal Ministry of Agriculture and Rural Development
Abuja

Mrs Eva Obiageli Edwards
Deputy Director
National Agency for Food and Drug Administration and Control (NAFDAC)
Lagos

Mrs Igwe Lilian Onyinyechi
Chief Regulatory Officer
National Agency for Food and Drug Administration and Control (NAFDAC)
Minna

Ms Philomina Ngozi Nwobosi
Assistant Chief Scientific Officer
Federal Ministry of Health
Abuja

Mrs Sherifat Abidemi Olabode
Principal Scientific Officer
Federal Ministry of Science and Technology
Abuja

Dr Rasaq Oyinloye Oyeleke
Deputy Director
Federal Ministry of Agriculture and Rural Development
Abuja

Mrs Moradeke Toyosi Oyetola
Assistant Chief Scientific Officer
Federal Ministry of Science, Technology and Innovation
Abuja

NORTH MACEDONIA - MACÉDOINE DU NORD - MACEDONIA DEL NORTE

Mrs Sonja Kushhevskva
Head of Unit for Food supplements, additives, food for particular nutritional purposes and fortified food
Food and Veterinary Agency
Skopje

Mr Boshko Stojkoski
Associate in Unit for food supplements, additives, food for particular nutritional purposes and fortified food
Food and Veterinary Agency
Skopje

OMAN - OMÁN

Mrs Nawal Al-abri
Head of Section of Specification of Food and Agricultural Products
Ministry of Commerce and Industry & Investment Promotion
Muscat

PANAMA - PANAMÁ

Eng Joseph Gallardo
Ingeniero de Alimentos / Punto de Contacto Codex
Ministerio de Comercio e Industrias
Panamá

Mrs Leticia De Núñez
Jefa de la Sección de Análisis de Alimentos y Bebidas del Instituto Especializado de Análisis
Universidad de Panamá
Panamá

Ms Elka González
Nutricionista
OPS - Panamá
Panamá

Eng Rafael Gutierrez
Asuntos Regulatorios y Científicos
Sindicato de Industriales de Panamá
Panamá

Ms Nilka López
Nutricionista Dietista
Ministerio de Salud
Panamá

Eng Omaris Vergara
Directora de la Escuela de Ciencias y Tecnología de Alimentos
UP (Universidad de Panamá)
Panama

PARAGUAY

Mr Alberto Francisco Bareiro Arce
Coordinador de Asuntos Regulatorios
Instituto Nacional de Alimentación y Nutrición del Ministerio de Salud Pública y Bienestar Social
Asunción

Prof María Eugenia Alvarenga Torres
Técnica
INAN
Asunción

Mrs Librada Gamarra
Técnica
CEPALI
Asunción

Ms María Inés Ibarra Colmán
Codex Contact Point
Instituto Nacional de Tecnología, Normalización y Metrología - INTN
Asunción

Mr Carlos Insfran
Técnico
UIP
Asunción

Prof Marízela López Cattebeke
Técnica
INAN
Asunción

NORWAY - NORVÈGE - NORUEGA

Mrs Svanhild Vaskinn
Senior Adviser
Norwegian Food Safety Authority
Oslo

Mrs Gry Hay
Senior Adviser, Dr. Philos
Norwegian Directorate of Health
Oslo
Prof Zuny Mabel Zarza De Riquelme
Técnica
Instituto Nacional de Alimentación y Nutrición (INAN)
Asunción

PERU - PÉROU - PERÚ
Mr Jorge Torres Chocce
Coordinador Titular de la Comisión Técnica de Nutrición y Alimentos para Regímenes Especiales
INACAL
Lima
Q.F. Sara Arangúri Alcántara
Asesora en Asuntos Regulatorios
E&S Asesores Asociados S.A.C
Lima
Mr Iván Gómez Sánchez
Asesor Colegio Nutricionistas
Instituto Nacional de Salud
Lima
Mr Diana Rodríguez Castillo
Miembro
Abbot Laboratorios S.A.
Lima
Mrs Patricia Velarde Delgado
Secretaria de la Comisión Técnica de Nutrición y Alimentos para Regímenes Especiales del Codex
Centro Nacional de Alimentación y Nutrición - Instituto Nacional de Salud Perú
Lima

PHILIPPINES - FILIPINAS
Ms Helena S. Alcaraz
Chief, Licensing and Registration Division
Center for Food Regulation and Research
Food and Drug Administration
Ms Joan Marie Alcazar
Member, SCNFSUD
Food and Drug Administration-Department of Health
Ms Ria Badiola
Member, SCNFSUD
Philippine Chamber of Food Manufacturers, Inc.
Ms Geonna Marice Santos
Member, SCNFSUD
Food and Drug Administration-Department of Health

POLAND - POLOGNE - POLONIA
Dr Katarzyna Stos
Head of Unit
National Institute of Public Health - National Research Institute
Warsaw
Mrs Anna Janasik
Expert
Agricultural and Food Quality Inspection
Warsaw

PORTUGAL
Eng Cristina Gardner Marques
Senior Technician
Directorate-General for Food and Veterinary (DGAV)
Lisboa

REPUBLIC OF KOREA - RÉPUBLIQUE DE CORÉE - REPÚBLICA DE COREA
Ms Hyun-jung Kim
Deputy Director
Health Functional Food policy Division
Food Safety Policy Bureau
Ministry of Food and Drug Safety
ChungCheongBuk-Do
Ms Youngsin Kim
Codex Researcher
Ministry of Food and Drug Safety
ChungCheongBuk-Do
Prof Yoo Kyoung Park
Professor
Kyung Hee University
Yong-in
Ms Jin Hyang Suh
Scientific Officer
Food Safety Strategy Development TF
Food Safety Policy Bureau
Ministry of Food and Drug Safety
ChungCheongBuk-Do

RUSSIAN FEDERATION - FÉDÉRATION DE RUSSIE-FEDERACIÓN DE RUSIA
Ms Anna Koroleva
Consultant
Federal Service for Surveillance on Consumer Rights Protection and Human Well-being
Mr Dmitriy Miklin
Regulatory Affairs Expert
Consumer Market Participants Union
Moscow
Mr Alexey Petrenko
Expert
Consumer Market Participants Union
Moscow
Mrs Veronika Vysotskaya
Expert
Consumer Market Participants Union
Moscow

RWANDA
Ms Gaelle Ingabire
Product Development
Africa Improved Foods
Mr Justin Manzi Muhire
Analyst
Rwanda Food and Drugs Authority
Mr Paul Mbonyi
Manager
ADECOR
Kigali
Mr Peter Mugisha
Food Safety Team Leader
Radisson Blu and Convention Center
Mr Emmanuel Mwizerwa
Specialist
National Agricultural Export Development Board
Mr Jerome Ndahimana
Ag. Director of Food and Agriculture, Chemistry, Environment, Services Unit
Rwanda Standards Board

Mr Moses Ndayisenga
Production and Quality Manager
Minimex

Mr Diogene Ngezahayo
Specialist
Rwanda Food and Drug Authority

Dr Margueritte Niyibituronsa
Senior Researcher
Rwanda Agriculture and Animal Resources Development Board

Ms Rosine Niyonshuti
Codex Contact Point
Rwanda Standards Board

SAINT LUCIA - SAINTE LUCIE - SANTA LUCÍA

Mrs Tzarmallah Haynes-joseph
Head of Department
Saint Lucia Bureau of Standards
Castsres

Ms Lisa Hunt
Chief Nutritionist
Ministry of Health, Wellness and Elderly Affairs
Castsres

SAUDI ARABIA - ARABIE SAOUDITE – ARABIA SAUDITA

Ms Hind Alajaji
Standard and Regulation Specialist
Saudi Food and Drug Authority
Riyadh

Mr Abdulaziz Alangaree
Risk Assessment Expert
Saudi Food and Drug Authority
Riyadh

Mr Fahad Albadr
Senior Scientific Evaluation Specialist II
Saudi Food and Drug Authority
Riyadh

Mrs Tagreed Alfuraih
Senior Specifications and Regulations Specialist II
Saudi Food and Drug Authority
Riyadh

Mrs Rawan Alobaid
Senior Standards and Food Evaluation Specialist
Saudi Food and Drug Authority
Riyadh

SENEGAL - SÉNÉGAL

Dr Maty Diagne Camara
Chef de Division
Direction Générale de la Santé
Dakar

Dr Femi Mama Ba
Chef d’unité
Laboratoire de nutrition

Dr Nafissatou Ba
Spécialiste nutrition
Conseil national de développement de la nutrition

SINGAPORE - SINGAPOUR - SINGAPUR

Ms Peik Ching Seah
Deputy Director
Singapore Food Agency

Dr Iveta Trusková, Md
Head of Section
Public Health Authority of the Slovak Republic
Bratislava

SLOVENIA - SLOVÈNIE - ESLOVENIA

Mr Dušan Josar
Attaché for Public Health and Health Care
Ministry of foreign affairs
Brussels

SOLOMON ISLANDS - SALOMON, ILES - SALOMÓN, ISLAS

Mr Mark Arimalanga
CCP/Food Safety Officer
Ministry of Health and Medical Services
Honiara
SOUTH AFRICA - AFRIQUE DU SUD - SUDÁFRICA

Mrs Nolene Naicker
Assistant Director: Nutrition
Department of Health
Pretoria

Mrs Zandile Kubeka
Assistant Director: Nutrition
Department of Health
Pretoria

Mr Malose Daniel Matlala
Deputy Director: Inter-Agency Liaison and Regulatory Nutrition
Department of Health
Pretoria

SPAIN - ESPAGNE - ESPAÑA

Dr Álvaro Rol Rúa
Técnico Superior
Agencia Española de Seguridad Alimentaria y Nutrición (AESAN)-Ministerio de Consumo
Madrid

SRI LANKA

Dr Udari Mambulage
Consultant Community Physician
Ministry of Health
Colombo 10

Dr Vithanage Thilak Sisira Kumara Siriwardana
Director, Environmental & Occupational Health and Food safety
Ministry of Health
Colombo

LIBYA - LIBYE - LIBIA

Dr Emhemmed Khsheba
senior pharmacist
Medical supplier
Tripoli

SUDAN - Soudan - SUDÁN

Mr Isam Siddig
Food Chemist
Dae Savana company
Khartoum

SWEDEN - SUÈDE - SUECIA

Ms Cecilia Wanhainen
Principal Regulatory Officer
Swedish Food Agency
Uppsala

SWITZERLAND - SUISSE - SUIZA

Mr Didier Lusuardi
Scientific Officer
Federal Food Safety and Veterinary Office FSVO
Bern

THAILAND - THAÏLANDE - TAILANDIA

Dr Umaporn Suthutvoravut
Associate professor, Department of Pediatrics
Faculty of Medicine Ramathibodi Hospital, Mahidol University
Bangkok

Prof Nalinee Chongviriyaphan
President of Nutrition Association of Thailand
Nutrition Association of Thailand
Bangkok

Dr Saipin Chotivichien
Director, Bureau of Nutrition
Department of Health, Ministry of Public Health
Nonthaburi

Dr Songkhla Chulakasian
Veterinary Officer, Office of Standard Development
National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives
Bangkok

Ms Mayuree Ditmetharoj
Food and Drug Technical Officer, Senior Professional level
Food and Drug Administration, Thailand
Nonthaburi

Mr Thananant Hakkayananda
Member of Food Processing Industry Club
The Federation of Thai Industries
Bangkok

Dr Pichet Itkor
Vice Chairman, Food Processing Industry Club
The Federation of Thai Industries
Bangkok

Ms Nathaya Juengjamroenkij
Member of Food Processing Industry club
The Federation of Thai Industries
Bangkok

Ms Sanida Khoonpanich
Standards Officer, Professional Level, Office of Standard Development
National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives
Bangkok

Mrs Jintana Kitcharoenwong
Medical Scientist, Senior Profession Level
Ministry of Public Health
Nonthaburi

Ms Nongsuda Mongkolsmai
Member of Food Processing Industry Club
The Federation of Thai Industries
Bangkok

Ms Kittiporn Phuangskul
Standards Officer, Practitioner Level, Office of Standard Development
National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives
Bangkok

Ms Sirirat Preecha
Food and Drug Technical Officer, Practitioner Level
Food and Drug Administration, Thailand
Nonthaburi

Ms Chanikan Thanupitak
Trade and Technical Manager of Fisheries Products
Thai Food Processors' Association
Bangkok

Ms Kanlaya Thiangtrong
Member of Food Processing Industry club
The Federation of Thai Industries
Bangkok
Ms Kanlaya Thiangtrong
Member of Food Processing Industry club
The Federation of Thai Industries
Bangkok

TRINIDAD AND TOBAGO - TRINITÉ-ET-TOBAGO - TRINIDAD Y TABAGO
Ms Michelle Ash
Chief Nutritionist & Head of Department
Nutrition & Metabolism Division Ministry of Health
Trinidad

Ms Claudette Jordan-john
Director, Consumer Guidance & Protection (Ag.)
Ministry of Trade and Industry
Port-of-Spain

Mrs Adrienne Steward
Standard Officer II
Ministry of Trade
Macoya

TUNISIA - TUNISIE - TÚNEZ
Eng Narjes Maslah Hammar
Directrice Générale
Centre Technique de l’agro-alimentaire
Tunis

Mrs Monia Bouktif
Sous directrice
Ministère de la santé
Tunis

TURKEY - TURQUIE - TURQUÍA
Mr Dursun Kodaz
Food Engineer
The Ministry of Agriculture and Forestry
Ankara

Mrs M. Emel Molla
Working Group Manager
Ministry of Agriculture and Forestry
Ankara

UGANDA - OUGANDA
Mrs Irene Mwesigwa
Principal Food Safety Officer
National Drug Authority
Kampala Uganda

Ms Sarah Ngalombi
Senior Nutritionist
Ministry of Health
Kampala

Dr Jacent Asiimwe
Lecturer
Kyambogo University
Kampala

Ms Lucy Atim
Inspector
Uganda National Bureau of Standards
Kampala

Ms Ruth Awio
Standards Officer
Uganda National Bureau of Standards
Kampala

Mr Harish Bhuptani
Chairman
Maama Care Foundation
Kampala

Mrs Harriet Ddmbya
Quality Assurance Officer
Hariss International Limited
Kampala

Ms Rehema Meeme
Standards Officer
Uganda National Bureau of Standards
Kampala

Mr Hakim Baligeya Mufumbiro
Principal Standards Officer
Uganda National Bureau of Standards
Kampala

Dr Robert Mugabi
Lecturer
Makerere University
Kampala

Ms Mary Nakibuuka
Senior Analyst
Uganda National Bureau of Standards
Kampala

Ms Liliane Namirembe
Senior Analyst
Uganda National Bureau of Standards
Kampala

Mr Collins Wafula
Standards Officer
Uganda National Bureau of Standards
Kampala

Mr Brian Rwabwogo
Managing Director
RECO - Industries
Kampala

Ms Asma Mohamed
Microbial Analyst
ShjMun

UNITED ARAB EMIRATES – ÉMIRATS ARABES UNIS – EMIRATOS ÁRABES UNIDOS
Ms Sara Abdulla
Food Safety Department
Shjmun

Ms Alia Abu Ghoush
Abbott Laboratories

Mr Eyad Attari
Head of Regulatory and Scientific Affairs
Fonterra

Mr Hossam Kadry
Manager, Laboratories Section
Ras al Khaimah Municipality

Ms Asma Mohamed
Microbial Analyst
ShjMun

UNITED KINGDOM - ROYAUME-UNI - REINO UNIDO
Ms Chloe Dedryver
Policy Advisor
Department of Health and Social Care
Mr Ahmed Ghelle
Policy Advisor
Department for Environment, Food & Rural Affairs

Ms Bethany Knowles
Senior Policy Advisor
Department of Health and Social Care

Ms Hannah Koffman
Policy Advisor
Department of Health and Social Care

Mr Steve Wearne
Chairperson of Codex Alimentarius Commission
Food Standards Agency

Mrs Debby Webb
Head of Nutrition Legislation
Department of Health and Social Care
London

UNITED REPUBLIC OF TANZANIA –
RÉPUBLIQUE-UNIE DE TANZANIE –
REPÚBLICA UNIDA DE TANZANÍA

Mr Lawrence Chenge
Ag. Head Agriculture and Food Standards
Tanzania Bureau of Standards
Dar es Salaam

Dr Lilian Daniel
Lecturer
University of Dar es Salaam

Mr John Wanjala Faustine
Officer
Government Chemist Laboratory Authority
Dar es Salaam

Mrs Arabia Makame Haji
Standards Officer - Food
Zanzibar Bureau of Standards
Zanzibar

Ms Stephanie Silas Kaaya
Standards Officer
Tanzania Bureau of Standards
Dar es Salaam

Prof Joyce Kinabo
University Professor
Sokoine University of Agriculture (SUA)
Dar es Salaam

Ms Elizabeth Lyimo
Researcher
Tanzania Food and Nutrition Centre

Ms Nietiwe Peter
Officer
Cereals and other produce Board of Tanzania

UNITED STATES OF AMERICA –
ÉTATS-UNIS D'AMÉRIQUE –
ESTADOS UNIDOS DE AMÉRICA

Dr Douglas Balentine
Senior Science Advisor International Nutrition Policy
U.S. Food and Drug Administration
College Park, MD

Ms Erin Boyd
Nutrition Advisor
USAID
Walpole, MA

Ms Caitlyn Cackoski
Senior Trade Advisor
Foreign Agricultural Service
Washington, DC

Ms Judy Canahuati
Nutrition Advisor
USAID
Columbia, MD

Dr Carolyn Chung
Nutritionist
U.S. Food and Drug Administration
College Park, MD

Mr Ray Devirgilis
Global Regulatory Policy Manager
Reckitt
Washington, DC

Mr Nicholas Gardner
Vice President, Codex and International Regulatory Affairs
U.S. Dairy Export Council
Arlington, VA

Ms Kristen Hendricks
International Issues Analyst
U.S. Codex Office
Washington, DC

Dr Pamela Pehrsson
Research Leader
ARS-Nutrient Data Laboratory
Beltsville

Dr Rufino Perez
Senior Food Technology Advisor
USAID
Wheeling, IL

Dr Eric Stevens
International Policy Analyst
U.S. Food and Drug Administration
College Park, MD

Mr Richard White
Consultant
Corn Refiners Association
Bradenton, FL

URUGUAY

Mrs Ximena Moratorio
Ministerio de Salud Pública
Montevideo

VENEZUELA (BOLIVARIAN REPUBLIC OF) -
VENEZUELA (RÉPUBLIQUE BOLIVARIENNE DU) -
VENEZUELA (REPÚBLICA BOLIVARIANA DE)

Mrs Roxana Abreu
Directora
SENCAMER
Caracas

Mrs Joely Celis
Especialista en el área internacional
SENCAMER
Caracas

Mrs Ana Duque
Especialista
SENCAMER
Caracas
Ms Maybelyn Iglesias
Farmacéutico Jefe
Servicio Autónomo de Contraloría Sanitaria SACS

VIET NAM
Mrs Vu Thanh Ha
Officer
YAKULT VIET NAM Co., Ltd.
Hanoi

Mr Le Hoang Vinh
Regulatory Lead
Viet Nam Codex Committee
Ho Chi Minh City

Mr Viet Luu Le
Regulatory Affairs Manager
FrieslandCampina Viet Nam
Hanoi

Mrs Tran Lien
Officer
Mead Johnson Viet Nam
Hanoi

Mrs Thi Minh Ha Nguyen
Deputy Head
Viet Nam Codex Office
Hanoi

Mrs Vu Hoai Phuong Nguyen
Regulatory Affairs Manager
Nutrition & Biosciences Viet Nam
Ho Chi Minh

Mr Ha Quang Khoa
R&D Specialist
VINAMILK
Ho Chi Minh

Mr Ngo Thanh Nhan
R&D Manager
VINAMILK
Ho Chi Minh

Mrs Huynh Thi Ngoc Dung
R&D Manager
Viet Nam Dairy Products J. S. Co
Ho Chi Minh City

Mrs Nguyen Thi Thu Thuy
R&D Specialist
VINAMILK
Ho Chi Minh

Mrs Thi Bang Tuyet Tran
Regulatory Affairs Manager
Coca-Cola Southeast Asia Inc
Ho Chi Minh

Mrs Le Hoang Oanh Tran
Regulatory Affairs Manager
Nutrition & Biosciences Vietnam
Ho Chi Minh

Mr Tran Trong Nghia
R&D Specialist
YAKULT VIET NAM Co., Ltd.
Ho Chi Minh

Mr Masaya Watanabe
Director
YAKULT VIET NAM Co., Ltd.
Ho Chi Minh

ZAMBIA - ZAMBIE
Dr Maputa Kamulete
Veterinary Officer
Ministry of Fisheries and Livestock
Lusaka

Ms Andela Kangwa
Nutrition Expert
FAO
LUSAKA

Ms Chipo Masodzi Mwela
Nutrition Officer
WHO
Lusaka

ZIMBABWE
Mr Fredy Chinyavanhu
Deputy Director Food Control
Ministry of Health and Childcare

PALESTINE
Mr Mousa Alhalayqa
Director of Nutrition Department
Ministry of Health

Mr Saleem Jayyousi
Head of National Codex Committee
Palestine Standards Institution

AFRICAN UNION (AU)
Mr John Oppong-otoo
Food Safety Officer
African Union Interafrican Bureau for Animal Resources
Nairobi

INTER-AMERICAN INSTITUTE FOR COOPERATION ON AGRICULTURE (IICA)
Dr Horrys Friaca
Agricultural Health and Food Safety Specialist
Agricultural Health and Food Safety (AHFS/IICA)
Washington

ASSOCIATION INTERNATIONALE POUR LE
DÉVELOPPEMENT DES GOMMES NATURELLES
(AIDGUM)
Mr Olivier Bove
President
AIDGUM

ASSOCIATION FOR INTERNATIONAL PROMOTION
OF GUMS (AIPG)
Mr Francis Thevenet
Scientific Adviser
Association for International Promotion of Gums
Hamburg

AOAC INTERNATIONAL (AOAC)
Mr Erik Konings
Past President
AOAC International
Dr Palmer Orlandi
Deputy Executive Director
AOAC International
Rockville
Dr Dustin Starkey
Regulatory Affairs
AOAC International
Mr Darryl Sullivan
Liaison
AOAC International
Rockville

AMERICAN OIL CHEMISTS’ SOCIETY (AOCS)
Dr Scott Bloomer
Director
American Oil Chemists’ Society
Urbana

CALORIE CONTROL COUNCIL (CCC)
Ms Alexis Casselano
Senior Manager, Scientific & Regulatory Affairs
Calorie Control Council (CCC)

EUROPEAN NETWORK OF CHILDBIRTH
ASSOCIATIONS (ENCA)
Ms Patti Rundall
Global Advocacy Spokesperson
Baby Milk Action IBFAN Global Council

EUROPEAN SOCIETY FOR PAEDIATRIC
GASTROENTEROLOGY HEPATOLOGY AND
NUTRITION (ESPGHAN)
Prof Berthold Koletzko
Else Kröner Senior Professor of Paediatrics
LMU University Hospitals, Munich
Dr Veronica Luque
Serra Hunter Tenure Lecturer of Nutrition
Universitat Rovira i Virgili, Tarragona

FEDERATION OF EUROPEAN SPECIALTY FOOD
INGREDIENTS INDUSTRIES (EU SPECIALTY FOOD
INGREDIENTS)
Mrs Catherine Mignot
Member
EU Specialty Food Ingredients
Ms Caroline Bustandi
Member
EU Specialty Food Ingredients
Mr Petr Mensik
EU Affairs Manager
EU Specialty Food Ingredients
Dr Dirk Cremer
Senior Regulatory Affairs Manager
EU Specialty Food Ingredients
Kaiseraugst
Mr Stephane Pasteau
Member
EU Specialty Food Ingredients
Ms Christina Rudolph
Member
EU Specialty Food Ingredients
EUROPEAN VEGETABLE PROTEIN ASSOCIATION (EUVEPRO)
Ms Nuria Moreno
Secretary General
EUVEPRO - European Vegetable Protein Association
Brussels
Dr Huub Scheres
Scientific & Regulatory Advocacy, Director
IFF

FOODDRINKEUROPE
Mr Dirk Jacobs
Deputy Director General
FoodDrinkEurope
Bruxelles
Ms Katie Carson
Director Global Nutrition Policy & Government Relations
Royal DSM
Bruxelles
Ms Antje Preußker
Manager Scientific and Regulatory Affairs
Food Federation Germany
Berlin

GLOBAL ORGANIZATION FOR EPA AND DHA OMEGA-3S (GOED)
Dr Harry Rice
VP, Regulatory & Scientific Affairs
GOED - Global Organization for EPA and DHA Omega-3s
Salt Lake City
Dr J. Thomas Brenna
Member
GOED - Global Organization for EPA and DHA Omega-3s
Salt Lake City
Dr Andrea Hsieh
Member
GOED - Global Organization for EPA and DHA Omega-3s
Salt Lake City

HELEN KELLER INTERNATIONAL (HKI)
Ms Jane Badham
Codex Head of Delegation
Helen Keller International
Johannesburg
South Africa
Ms Kelley Khamphouxay
Head of Health and Nutrition
Save the Children
Vientiane
Lao People’s Democratic Republic
Dr Alissa Pries
Senior Research Advisor, ARCH Project
Helen Keller International
London
United Kingdom
Mrs Ndeye Yaga Sy
ARCH Project Manager Senegal
Helen Keller International
Dakar
Senegal

Mr Paul Zambrano
Regional Technical Specialist
Alive & Thrive fhi360
Manila
Philippines
Ms Elizabeth Zehner
Director, ARCH Project
Helen Keller International
Washington DC
United States of America

INTERNATIONAL ALLIANCE OF DIETARY/FOOD SUPPLEMENT ASSOCIATIONS (IADSA)
Ms Cynthia Rousselot
Dir. Regulatory and Technical Affairs
International Alliance of Dietary/Food Supplement Associations (IADSA)
London

INTERNATIONAL BABY FOOD ACTION NETWORK (IBFAN)
Ms Elisabeth Sterken
IBFAN Codex Working Group
International Baby Food Action Network (IBFAN)
Ms Nomajoni Ntombela
Director IBFAN Africa
IBFAN Africa

INTERNATIONAL CO-OPERATIVE ALLIANCE (ICA)
Mr Kazuo Onitake
Senior Scientist, Department of Quality Assurance
International Co-operative Alliance
Tokyo
Mr Yuji Gejo
Officer
International Co-operative Alliance
Tokyo

INTERNATIONAL CONFECTIONERY ASSOCIATION (ICA/IOCCC)
Ms Paige Smoyer
Senior Manager
National Confectioners Association
Washington

INTERNATIONAL COUNCIL ON AMINO ACID SCIENCE (ICAAS)
Mr Takasu Masaharu
R&D Div
Meiji Co., Ltd
Dr Kaori Ono
Member
Ajinomoto Europe SAS
Mr Keiji Takahashi
R&D Div
ICAAS Japan
Tokyo
Mr Keng Ngee Teoh
Manager
Ajinomoto
INTERNATIONAL COUNCIL OF BEVERAGES ASSOCIATIONS (ICBA)
Ms Joanna Skinner
Senior Manager, Regulatory Advocacy
The Coca-Cola Company
Atlanta
Ms Jacqueline Dillon
Senior Manager
PepsiCo
Chicago, IL
Dr Tatsuya Ehara
Senior Research Scientist
Morinaga Milk Industry Co., LTD
Zama city
Mr Hidekazu Hosono
Deputy Senior General Manager
Suntory MONOZUKURI expert limited
Tokyo
Dr Maia Jack
VP, Science & Regulatory Affairs
American Beverage Association
Washington, DC
Ms Paivi Julkunen
ICBA Codex Policy Advisor
International Council of Beverages Associations
Washington, DC
Ms Elizabeth Roark
Nutrition Science, Policy, Engagement and Sustainability
PepsiCo
Plano, TX

INTERNATIONAL CHEWING GUM ASSOCIATION (ICGA) (ICGA)
Mr Christophe Leprêtre
Executive Director
ICGA - International Chewing Gum Association
Brussels
Mrs Kirstie Canene-adams
Senior Principal Scientist
ICGA - International Chewing Gum Association
Chicago
Mrs Valentina Novelli
Group Regulatory Affairs Specialist
Perfetti Van Melle SpA
Lainate

INTERNATIONAL COUNCIL OF GROCERY MANUFACTURERS ASSOCIATIONS (ICGMA)
Dr Mark Nelson
Chair, ICGMA CCNFSDU Committee
MFN. FoodReg LLC
Easton, MD
Ms Audrae Erickson
VP Global External & Public Affairs
Reckitt
Washington, D.C.
Ms Anne-Marie Mackintosh
Policy Nutrition Manager – Nutrition and Regulation
Australian Food & Grocery Council
Griffith, ACT
Ms Teresa Mastrodicasa
Director, Nutrition Policy
Food, Health & Consumer Products of Canada
Mississauga, ON

INTERNATIONAL DAIRY FEDERATION (IDF/FIL)
Mrs Mélanie Grivier
Regulatory Affairs Officer
ATLA
Mrs Laurence Rycken
Science and Standards Program Manager
International Dairy Federation
Brussels
Mr Harrie Van Den Bijgaart
Operations Manager Laboratories
Qlip B.V.
Zutphen

INSTITUTE OF FOOD TECHNOLOGISTS (IFT)
Dr Rosemary Walzem
Professor
Texas A&M University
College Station
Ms Sasha Lazidu
Manager Regulatory Innovation & Operations
Reckitt Benckizer
Hoofddorp

INTERNATIONAL FRUIT AND VEGETABLE JUICE ASSOCIATION (IFU)
Mr John Collins
Executive Director
International Fruit and Vegetable Juice Association
Paris
Dr David Hammond
Chair Legislation Commission
International Fruit and Vegetable Juice Association (IFU)
Paris

INTERNATIONAL LACTATION CONSULTANT ASSOCIATION (ILCA)
Ms Maryse Arendt
ILCA Codex Liaison
International Lactation Consultant Association (ILCA)
Luxemburg
Mrs Lisa Mandell
ILCA Global Advocacy Adviser
International Lactation Consultant Association (ILCA)
Havertown

INTERNATIONAL ORGANIZATION OF THE FLAVOR INDUSTRY (IOFI)
Mr Sven Balischmiede
Executive Director
IOFI
Brussels
Mr Alessandro Delfino
Junior Science and Regulatory Affairs Manager
IOFI
Brussels
Dr Sean Taylor
Scientific Director
IOFI
Washington DC
INTERNATIONAL SPECIAL DIETARY FOODS INDUSTRIES (ISDI)

Mr Jean Christophe Kremer
Secretary General
International Special Dietary Foods Industries (ISDI)

Mrs Shefa Alhalah
Senior Regional Manager-Regulatory, Government &
Public Affairs - Danone
International Special Dietary Foods Industries (ISDI)

Mrs Joana Aranha
Regulatory Affairs Manager - Danone
International Special Dietary Foods Industries (ISDI)

Mrs Jan Carey
CEO - Infant Nutrition Council (INC)
International Special Dietary Foods Industries (ISDI)

Mr Shiraz Choudhary
Corporate Affairs Coordinator - Nestlé Nutrition
International Special Dietary Foods Industries (ISDI)

Ms Wioleta Dzieszuk-brzozowska
ELN Regulatory Director Specialized Nutrition - Danone
International Special Dietary Foods Industries (ISDI)

Mrs Audrae Erickson
Vice President Global External & Public Affairs - Reckitt
International Special Dietary Foods Industries (ISDI)

Ms Louise Gottsche
Medical Marketing & New Product Development
Manager - SANULAC Nutritional
International Special Dietary Foods Industries (ISDI)

Mr Kaushik Janakiraman
Head of Global Regulatory Policy, Nutrition - Reckitt
International Special Dietary Foods Industries (ISDI)

Ms Nynke Keestra
Manager Regulatory Affairs Infant Foods -
FrieslandCampina
International Special Dietary Foods Industries (ISDI)

Mr Xavier Lavigne
Director, Regulatory Policy & Intelligence - Abbott
Nutrition
International Special Dietary Foods Industries (ISDI)

Mrs Fanny Lebouc
Regulatory Affairs & Category Compliance Manager -
Danone
International Special Dietary Foods Industries (ISDI)

Ms Venetta Miranda
President
International Special Dietary Foods Industries (ISDI)

Mr Peter Van Dael
Senior Vice-President - DSM
International Special Dietary Foods Industries (ISDI)

Mrs Petra Wendorf-ams
Principle Scientist Nutritional Needs through Life &
Healthspan - Danone
International Special Dietary Foods Industries (ISDI)

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO)

Ms Sandrine Espeillac
ISO/TC 34 Committee Manager
ISO

Ms Lise Dreyfus
ISO/TC 34/SC 12 Chairperson
ISO

INTERNATIONAL READY TO USE FOODS ASSOCIATION (IRUFA)

Mrs Mathilde Bridier
Observer
IRUFA

Mrs Meghan Callaghan
Observer
IRUFA

Mr Thomas Couaillet
Observer
IRUFA

Mr Mark Manary
Observer
IRUFA

Mrs Patricia Wolf
Observer
IRUFA

MÉDECINS SANS FRONTIÈRES INTERNATIONAL
MSF (MSF)

Dr André Briend
Technical Expert
MSF International

Mrs Odile Caron
Specialised Food QA Coordinator
MSF International

NATIONAL HEALTH FEDERATION (NHF)

Mr Scott Tips
President and General Counsel
NHF

SPECIALISED NUTRITION EUROPE (SNE)

Ms Laure De Hauteclocque
Scientific & Regulatory Manager
Specialised Nutrition Europe
Brussels

Ms Silvia Campos
Senior Regulatory Policy and Intelligence Manager
Specialised Nutrition Europe
Brussels

Ms Sarah Methner
Scientific Advisor
Specialised Nutrition Europe
Brussels

Mr Kevin O’Brien
Director Regulatory Policy and Intelligence
Specialised Nutrition Europe
Brussels

Ms Marie-France Pagerey
Global Senior Regulatory and Scientific Manager
Specialised Nutrition Europe
Brussels
Ms Norbert Pahne
Director
Specialised Nutrition Europe
Brussels

Ms Miriam Ryan
Head of Specialised Nutrition & Food Policy
Specialised Nutrition Europe
Brussels

ASSOCIATION OF YOGHURTS & LIVE FERMENTED MILKS (YLFA)
Dr Kazuhito Hayakawa
Expert
YLFA International
Mr Toshimitsu Morita
Expert
YLFA International

UNITED NATIONS CHILDREN’S FUND (UNICEF) (UNICEF)
Mrs Alison Fleet
Technical Specialist
UNICEF
Copenhagen

Ms Katherine Shats
Legal Specialist
UNICEF

FAO
Ms Maria Xipsiti
Nutrition Officer
FAO

WHO
Dr Chizuru Nishida
Unit Head
Safe, Healthy and Sustainable Diet
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Dr Moez Sanaa
Unit Head
Standards and Scientific Advice on Food and Nutrition
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Dr Laurence Grummer-Strawn
Unit Head
Food and Nutrition Action in Health Systems
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Dr Jaden Bendabenda
Technical Officer
Food and Nutrition Action in Health Systems
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Dr Kiril De Polnay
Technical Officer
Food and Nutrition Action in Health Systems
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Ms Katrin Engelhardt
Scientist
Safe, Healthy and Sustainable Diet
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Dr Zita Weise-Prinzo
Technical Officer
Food and Nutrition Action in Health Systems
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Dr Rain Yamamoto
Scientist
Safe, Healthy and Sustainable Diet
Department of Nutrition and Food Safety (NFS)
World Health Organization (WHO)
Geneva

Dr Fabio Da Silva Gomes
Advisor, Nutrition and Physical Activity, Risk Factors and Nutrition Unit
Pan American Health Organization / WHO Regional Office for the Americas
Washington, DC

CCNFSDU SECRETARIAT
Ms Alina Steinert
Head of German CCNFSDU Secretariat
Federal Ministry of Food and Agriculture
Bonn

Ms Anne Beutling
Officer
Federal Ministry of Food and Agriculture
Berlin

Ms Josephine Schneider
Federal Ministry of Food and Agriculture
Berlin

CODEX SECRETARIAT
Ms Verna Carolissen
Food Standards Officer
Rome

Mr Tom Heilandt
Secretary, Codex Alimentarius Commission
Rome

Mr Patrick Sekitoleko
Food Standards Officer
Rome

Ms Lingping Zhang
Food Standards Officer
Rome

Ms Gracia Brisco
Food Standards Officer
Rome

Ms Ilaria Tarquinio
Programme Assistant
Rome

Ms Elaine Raher
Office Assistant
Rome

Mr Robert Damiano
IT Clerk
Rome
DRAFT GUIDELINES FOR READY TO USE THERAPEUTIC FOODS (RUTF)
(For adoption at Step 8)

1. PREAMBLE
Children affected by severe acute malnutrition (SAM) need efficacious and timely intervention including safe, palatable foods with a high energy content and adequate amounts of vitamins, minerals and other nutrients within an appropriately designed programme that promotes continuation of breastfeeding, appropriate transition to nutritious family food and psycho-social support for recovery. In accordance with the Joint Statement by the World Health Organization (WHO), the World Food Programme (WFP), the United Nations System Standing Committee on Nutrition (UNSCN) and the United Nations Children’s Fund (UNICEF) (2007) and taking note of other relevant documents by WHO and FAO, Ready-to-Use Therapeutic Food (RUTF) is a WHO recommended option for the dietary management of children aged 6 to 59 months with SAM without medical complications. However, this does not preclude other dietary options including the use of locally based foods. RUTF is not for general retail sale.

2. PURPOSE OF THE GUIDELINES
To provide guidance on technical and nutritional aspects of the production of RUTF for children from the age of 6 to 59 months with severe acute malnutrition, including

i. Nutritional Composition
ii. Raw Materials and Ingredients
iii. Good Manufacturing Practices
iv. Microbiological and Chemical Contaminant Criteria
v. Methods of Analysis and Sampling
vi. Provisions for Packaging and Labelling

3. SCOPE
The provisions of these guidelines apply to RUTF for children aged 6 to 59 months with severe acute malnutrition. Ready-to-Use Supplementary Foods (RUSF), micronutrient supplements\(^2\), processed cereal based foods\(^3\), formulated complementary foods for older infants and young children\(^4\), canned baby foods\(^5\) are not covered by these guidelines.

\(^2\)Guidelines for Vitamin and Mineral Food Supplements (CXG 55-2005)

\(^3\)Standard for Processed Cereal-Based Foods for Infants and Young Children (CXS 74-1981)

\(^4\)Guidelines on Formulated Complementary Foods for Older Infants and Young Children (CXG 8-1991)

4. DESCRIPTION
4.1 Ready-to-Use Therapeutic Foods (RUTF) are foods for special medical purposes and are high-energy and contain adequate protein and other essential nutrients for the dietary management of children from 6 to 59 months with severe acute malnutrition without medical complications with appetite. These foods should be soft or crushable and should be easy for children to eat without any prior preparation.

4.2 Severe Acute Malnutrition is defined by weight for height (or length) less than –3 Z-score of the median WHO growth standards, or by mid upper arm circumference (MUAC) <11.5 cm, or by the presence of bilateral oedema.

5. SUITABLE RAW MATERIALS AND INGREDIENTS
RUTF are made of ingredients embedded in a lipid-rich matrix e.g. paste or biscuit, resulting in an energy and nutrient-dense food. The following raw materials, many of which can be sourced locally, are suitable ingredients for the production of RUTF under the specified conditions given below. Any formulation of RUTF shall comply with Section 3 of the Standard for the Labelling of and Claims for Foods for Special Medical Purposes (CXS 180-1991) including the specification that their use should have been demonstrated, by scientific evidence, to be safe and beneficial in meeting the nutritional requirements of the persons for whom they are intended.
5.1 Basic Raw Materials and Ingredients

5.1.1 Milk and other Dairy Products

Milk and other dairy products used in the manufacturing of RUTF must comply with the Standard for Milk Powders and Cream Powder (CXS 207-1999) and the Standard for Whey Powders (CXS 289-1995), and other Codex milk and milk product standards as well as other guidelines and Codes of Practice recommended by Codex Alimentarius Commission, which are relevant to these products. Relevant codes of practice include the Code of Hygienic Practice for Milk and Milk Products (CXC 57-2004) and the Code of Hygienic Practices for Low-Moisture Foods (CXC 75-2015).

5.1.2 Legumes and Seeds

Legumes and seeds such as soybeans, lentils, chickpeas, cowpeas, beans, peanut, sesame and other types of legumes and seeds must comply with the relevant Codex Alimentarius texts when used in the manufacturing of RUTF.

Legumes and seeds must be appropriately processed to reduce, as much as possible, the anti-nutritional factors normally present, such as phytate, lectins (haemagglutinins), trypsin, chymotrypsin inhibitors and phytosterogens.

Field beans or Faba beans (Vicia faba L) should not be used in the formulation of RUTF because of the danger of favism.

5.1.3 Fats and Oils

Fats and oils used in the manufacturing of RUTF must comply with the relevant Codex Alimentarius texts. Fats and oils are incorporated as technologically feasible for the purpose of achieving the energy density and providing essential fatty acids. Care must be taken to avoid oxidized fat which will adversely affect nutrition, flavour and shelf life.

Partially hydrogenated fats and oils should not be used in RUTF.

5.1.4 Cereals, Roots and Tubers and their derived Products

All milled cereals, roots and tubers and their derived products suitable for human consumption may be used provided that they are processed in such a way that the fibre content is reduced, when necessary, and that the effects of anti-nutritional factors such as phytates, tannins or other phenolic materials, lectins, trypsin, and chymotrypsin inhibitors which can lower the protein quality and digestibility, amino acid bioavailability and mineral absorption are removed or reduced, whilst retaining maximum nutrient value.

5.1.5 Vitamins and Minerals

Vitamin and mineral forms used must be soluble and easily absorbed by patients with SAM. Children with SAM have low or absent gastric acid which means that they should not be given inorganic salts of minerals that are insoluble or requiring an acid gastric environment for absorption, in order to avoid metabolic acidosis. It is important that RUTF should have a mineral composition that leads to a moderate excess of non-metabolizable buffer base. The non-metabolizable buffer base can be approximated by the formula: estimated absorbed millimoles (sodium + potassium + calcium + magnesium) - (phosphorus + chloride).

All added vitamins and minerals must be in accordance with the Advisory Lists of Nutrient Compounds for Use in Foods for Special Dietary Uses Intended for Infants and Young Children (CXG 10-1979). Examples of mineral forms for RUTF formulation can be found in the WHO Management of severe malnutrition: A manual for physicians and other senior health workers (1999). The amount of vitamins and minerals added to achieve the target level must be adjusted based on the chemical form, interaction, and impaired absorption with other nutrients and non-nutrients and scientific evidence showing adequate stability and bioavailability in the finished product.

5.2 Other Ingredients

5.2.1 Carbohydrates

Carbohydrates are used to achieve energy requirements in balance with proteins and lipids. Plant starch, lactose, maltodextrin and sucrose are the preferred carbohydrates in RUTF. Free sugars should be limited and should not exceed 20% of total energy. Only precooked and/or gelatinized starches may be added. Glucose and fructose should not be used. Carbohydrates must adhere to the relevant Codex Alimentarius texts.

Honey should not be used in RUTF due to the risk of infant botulism from Clostridium botulinum.
5.2.2 Food Additives

Only the food additives listed in this Section (Table A: Food Additives in RUTF Formulation) or in the Advisory Lists of Nutrient Compounds for Use in Foods for Special Dietary Uses Intended for Infants and Young Children (CXG 10-1979) may be present in the foods described in Section 4.1 of these Guidelines. Other than by direct addition, an additive may be present in RUTF as a result of carry-over from a raw material or other ingredient (including food additive) used to produce the food, subject to the following conditions:

a) The additive is acceptable for use in the raw materials or other ingredients (including food additives) according to the General Standard for Food Additives (CXS 192-1995);

b) The amount of the additive in the raw materials or other ingredients (including food additives) does not exceed the maximum use level specified in the General Standard for Food Additives (CXS 192-1995);

c) The food into which the additive is carried over does not contain the additive in greater quantity than would be introduced by the use of the raw materials or ingredients under proper technological conditions or good manufacturing practice, consistent with the provisions on carry-over in the Preamble of the General Standard for Food Additives (CXS 192-1995).

Table A: Food Additives in RUTF Formulation

<table>
<thead>
<tr>
<th>Functional Class</th>
<th>Food Additive</th>
<th>International Numbering System (INS)</th>
<th>Maximum Use Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emulsifier</td>
<td>Mono- and di-glycerides of fatty acids</td>
<td>471</td>
<td>4000 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Citric and fatty acid esters of glycerol</td>
<td>472c</td>
<td>9000 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Lecithin</td>
<td>322(i)</td>
<td>5000 mg/kg</td>
</tr>
<tr>
<td>Antioxidant</td>
<td>Ascorbyl palmitate</td>
<td>304</td>
<td>10 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Tocopherol concentrate, mixed</td>
<td>307b</td>
<td>10 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Ascorbic acid, L</td>
<td>300</td>
<td>GMP</td>
</tr>
<tr>
<td>Acidity regulator</td>
<td>Citric acid</td>
<td>330</td>
<td>GMP</td>
</tr>
<tr>
<td>Packaging gas</td>
<td>Nitrogen</td>
<td>941</td>
<td>GMP</td>
</tr>
<tr>
<td></td>
<td>Carbon dioxide</td>
<td>290</td>
<td>GMP</td>
</tr>
<tr>
<td>Carrier</td>
<td>Silicon dioxide, amorphous</td>
<td>551</td>
<td>10 mg/kg</td>
</tr>
</tbody>
</table>

6. NUTRITIONAL COMPOSITION AND QUALITY FACTORS

The nutritional composition of RUTF shall comply with the requirements set out in the table in the Annex. Furthermore, the following requirements shall be complied with.

6.1 Energy

The energy density of the formulated RUTF should be between 5.2 - 5.5 kcal per gram. The energy density of RUTF can be achieved during manufacturing by the addition of energy containing ingredients (i.e. fats and oils and/or digestible carbohydrates) and/or processing the basic raw materials and ingredients as indicated in Section 8.

6.2 Proteins

Protein should provide 10% to 12% of the total energy.

Protein quality should be determined using Protein Digestibility Corrected Amino Acid Score (PDCAAS), calculated according to the reference amino acid requirement and scoring patterns related to catch-up growth of 10 g/kg per day in the target population for RUTF which is children with SAM aged 6 to 59 months.

For all RUTF formulations, the PDCAAS shall not be less than 0.9. The PDCAAS shall be calculated using appropriate digestibility values and the reference amino acid pattern as stipulated in the Report of the FAO Expert Working Group: Protein quality assessment in follow-up formula for young children and ready to use therapeutic foods (2018).

High quality protein will be achieved with RUTF formulations containing a minimum of 50% of protein from milk products.
In formulations with lower PDCAAS scores, the quality and/or quantity of protein should be adjusted to achieve the desired value. The addition of limiting amino acids, solely in the L-form, shall be permitted only in amounts necessary to improve the protein quality of the RUTF.

6.3 Lipids
Lipids should provide 45% to 60% of the total energy.

6.4 Vitamins and Minerals
RUTF should contain the vitamins and minerals presented in the Annex: Nutritional Composition of RUTF. RUTF should comply with the minimum and maximum or guidance upper levels in the Annex.

6.5 Water Activity
RUTF is a low-moisture food with a water activity of 0.6 or below.

7. CONTAMINANTS
It is recommended that the products covered by the provisions of these guidelines and the ingredients used in such products comply with the General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995), Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residues of Veterinary Drugs in Foods (CXM 2-2015) and Codex Maximum Residue Limits for Pesticides.

Further guidance is given by Codex Codes of practice and should be adhered to.

The product should not contain contaminants or other undesirable substances (e.g. biologically active substances, metal fragments) in amounts which may represent a risk to the health of children.

8. PROCESSING TECHNOLOGIES
Processing technologies used for RUTF and their ingredients shall be validated to prove that they do not alter the nutritional value of RUTF and that they allow the reduction of anti-nutritive factors. Milling or grinding, roasting, toasting are examples of processing technologies that can be used on ingredients.

Any technologies used should take into consideration the target group and any impact on the integrity of the nutrient content of the products. In addition to the practices described above, Good Hygiene Practices should be implemented for manufacturing of RUTF, according to the General Principles of Food Hygiene (CXC 1-1969) and Code of Hygienic Practices for Low Moisture Foods (CXC 75-2015) to avoid cross contamination during the storage of raw materials and the manufacturing process.

RUTF and/or their raw materials should be treated with a validated microbial reduction treatment in order to inactivate pathogens such as Salmonella, noting that some pathogens have increased heat resistance characteristics at reduced water activities in food matrices. Commonly used microbial reduction treatments that could be applied to RUTF and/or their raw materials include both thermal and non-thermal control measures.

For additional information on validation of control measures, refer to the Guidelines for the Validation of Food Safety Control Measures (CXG 69-2008). Additionally, refer to the Principles and Guidelines for the Conduct of Microbiological Risk Management (MRM) (CXG 63-2007).

9. GOOD MANUFACTURING PRACTICES AND GOOD HYGIENE PRACTICES
It is recommended that the products covered by the provisions of these guidelines be prepared and handled in accordance with the appropriate sections of the General Principles of Food Hygiene (CXC 1-1969), and Code of Hygienic Practice for Low-Moisture Foods (CXC 75-2015), and other relevant Codex texts.

The product should comply with any microbiological criteria established in accordance with the Principles and Guidelines for the Establishment and Application of Microbiological Criteria Related to Foods (CXG 21-1997).

The ingredients and final product should be prepared, packed and held under sanitary conditions and should comply with relevant Codex texts.

10. METHODS OF ANALYSIS AND SAMPLING
It is recommended that methods of analysis and sampling of RUTF be in accordance with the Recommended Methods of Analysis and Sampling (CXS 234-1999).

11. PACKAGING
It is recommended that RUTF be packaged in such a way to safeguard the hygienic and other qualities including nutritional properties of the food for the duration of its defined shelf-life.
The packaging materials shall be made only of substances which are safe and suitable for their intended uses. Where the Codex Alimentarius Commission has established a standard for any such substance used as packaging materials, that standard shall apply.

12. LABELLING

It is recommended that the labelling of RUTF for children from 6 to 59 months with SAM be in accordance with the Standard for the Labelling of and Claims for Foods for Special Medical Purposes (CXS 180-1991), the General Standard for the Labelling of and Claims for Pre-packaged Foods for Special Dietary Uses (CXS 146-1985), and the Guidelines on Nutrition Labelling (CXG 2-1985). Nutrition and health claims shall not be permitted for RUTF.

12.1 The Name of the Food

The name of the food to be declared on the label shall indicate that the food is a Ready-To-Use Therapeutic Food for Children from 6 to 59 months with SAM. The appropriate designation indicating the true nature of the food should be in accordance with national legislation. The age from which the product is recommended for use shall appear in close proximity to the name of the food.

12.2 List of Ingredients

The list of ingredients shall be declared in accordance with Section 4.2 of the General Standard for the Labelling of Prepackaged Foods (CXS 1-1985).

12.3 Additional Mandatory Labelling Requirements

Provisions of Section 4.4 and 4.5 of the Standard for the Labelling of and Claims for Food for Special Medical Purposes (CXS 180-1991) shall apply.

12.4 The following additional statements shall appear on the label of RUTF:

- The product is not to be used for Nasogastric Tube (NG tube) administration.
- The product should be used in conjunction with breastfeeding.
- Exclusive breastfeeding is recommended for the first 6 months of life, and continued breastfeeding is recommended for up to two years or beyond.

12.5 Instructions for use

- The label should indicate clearly from which age the product is recommended for use. This age shall not be less than six months for any product.
- Feeding instructions shall be given; preferably accompanied by graphical presentations.
- The time within which the product should be consumed after opening should be clearly indicated.
Table: Nutritional Composition of RUTF

<table>
<thead>
<tr>
<th>Energy</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>kcal/100 g</td>
<td>520</td>
<td>550</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protein</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/100 kcal</td>
<td>2.5</td>
<td>3.0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lipids</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/100 kcal</td>
<td>5</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n-6 Fatty acids</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/100 kcal</td>
<td>330</td>
<td>780</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n-3 Fatty acids</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/100 kcal</td>
<td>110</td>
<td>280</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitamin A</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 µg RE/100 kcal</td>
<td>145</td>
<td>308</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

2 1 µg RE = 3.33 IU Vitamin A = 1 µg trans retinol. Retinol contents shall be provided by preformed retinol, while any contents of carotenoids should not be included in the calculation and declaration of vitamin A activity.

<table>
<thead>
<tr>
<th>Vitamin D</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 µg/100 kcal</td>
<td>2.7</td>
<td>4.2</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

3 1 µg calciferol = 40 IU vitamin D.

Two forms of Vitamin D allowed in RUTF formulation are cholecalciferol (D3) and ergocalciferol (D2).

<table>
<thead>
<tr>
<th>Vitamin E</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mg α-TE /100 kcal</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

4 1 mg α-tocopherol = 1 mg RRR-α-tocopherol (d-α-tocopherol)

41 mg RRR-α-tocopherol =2.00 mg all-rac-α-tocopherol (dl- α-tocopherol)

<table>
<thead>
<tr>
<th>Vitamin K</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/100 kcal</td>
<td>2.7</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vitamin B1</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/100 kcal</td>
<td>0.09</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nutrient</td>
<td>Unit</td>
<td>Minimum</td>
<td>Maximum</td>
<td>GUL</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>-----</td>
</tr>
<tr>
<td>Vitamin B2</td>
<td>mg/100 kcal</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>mg/100 kcal</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>mg/100 kcal</td>
<td>0.11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>µg/100 kcal</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Folic Acid</td>
<td>µg/100 kcal</td>
<td>36 (5)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niacin</td>
<td>mg/100 kcal</td>
<td>0.91</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pantothenic Acid</td>
<td>mg/100 kcal</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Biotin</td>
<td>µg/100 kcal</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>mg/100 kcal</td>
<td>-</td>
<td>56</td>
<td>-</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg/100 kcal</td>
<td>200</td>
<td>308</td>
<td>-</td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/100 kcal</td>
<td>55</td>
<td>151</td>
<td>-</td>
</tr>
</tbody>
</table>

5 1 µg of folic acid = 1.7 µg of Dietary Folate Equivalents (DFE)
<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>mg/100 kcal</td>
<td>55</td>
<td>151</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium</td>
<td>mg/100 kcal</td>
<td>15</td>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>Iron</td>
<td>mg/100 kcal</td>
<td>1.8</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/100 kcal</td>
<td>2</td>
<td>2.7</td>
<td>-</td>
</tr>
<tr>
<td>Copper</td>
<td>mg/100 kcal</td>
<td>0.25</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>Selenium</td>
<td>µg/100 kcal</td>
<td>3.6</td>
<td>8</td>
<td>-</td>
</tr>
<tr>
<td>Iodine</td>
<td>µg/100 kcal</td>
<td>13</td>
<td>27</td>
<td>-</td>
</tr>
</tbody>
</table>
1 SCOPE

1.1 This section of the Standard applies to Follow-up formula for older infants, as defined in Section 2.1, in liquid or powdered form.

1.2 This section of the Standard contains compositional, quality, safety, labelling, analytical and sampling requirements for Follow-up formula for older infants.

1.3 Only products that comply with the criteria laid down in the provisions of this Section of this Standard shall be presented as Follow-up formula for older infants.

2 DESCRIPTION

2.1 Product Definition

2.1.1 Follow-up formula for older infants means a product, manufactured for use as a breastmilk-substitute, as a liquid part of a diet for older infants when progressively diversified complementary feeding is introduced.

2.1.2 Follow-up formula for older infants is so processed by physical means only and so packaged as to prevent spoilage and contamination under all normal conditions of handling, storage and distribution in the country where the product is sold.

2.2 Other Definitions

2.2.1 The term infant means a person of not more than 12 months of age.

2.2.2 The term older infant means a person from the age of 6 months and not more than 12 months of age.

3 ESSENTIAL COMPOSITION AND QUALITY FACTORS

3.1 Essential Composition

3.1.1 Follow-up formula for older infants is a product based on milk of cows or other animals or a mixture thereof and/or other ingredients which have been proven to be safe and suitable for the feeding of older infants. The nutritional safety and adequacy of follow-up formula for older infants shall be scientifically demonstrated to support growth and development of older infants.

3.1.2 When prepared ready for consumption in accordance with the instructions of the manufacturer, the products shall contain per 100 ml not less than 60 kcal (251 kJ) and not more than 70 kcal (293 kJ) of energy.

3.1.3 Follow-up formula for older infants prepared ready for consumption shall contain per 100 kcal (100 kJ) the following nutrients with the following minimum and maximum or guidance upper levels (GUL) 1) as appropriate.

a) Protein 2), 3), 4)

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/100 kcal</td>
<td>1.8</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>g/100 kJ</td>
<td>0.43</td>
<td>0.72</td>
<td>-</td>
</tr>
</tbody>
</table>

1) Guidance upper levels (GULs) are for nutrients without sufficient information for a science-based risk assessment. These levels are values derived on the basis of meeting nutritional requirements of older infants and an established history of apparent safe use. They may be adjusted based on relevant scientific or technological progress. The purpose of the GULs is to provide guidance to manufacturers and they should not be interpreted as goal values. Nutrient contents in follow-up formula for older infants should usually not exceed the GULs unless higher nutrient levels cannot be avoided due to high or variable contents in constituents of follow-up formula for older infants or due to technological reasons. When a product type or form has ordinarily contained lower levels than the GULs, manufacturers should not increase levels of nutrients to approach the GULs.
2) For the purpose of this standard the calculation of the protein content of the final product ready for consumption should be based on N x 6.25, unless a scientific justification is provided for the use of a different conversion factor for a particular product. The protein levels set in this standard are based on a nitrogen conversion factor of 6.25. For information the value of 6.38 is used as a specific factor appropriate for conversion of nitrogen to protein in other Codex standards for milk products.

3) For an equal energy value the formula must contain an available quantity of each essential and semi-essential amino acid at least equal to that contained in the reference protein (breastmilk as defined in Annex I of the Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants (CXS 72-1981)); nevertheless for calculation purposes the concentrations of tyrosine and phenylalanine may be added together and the concentrations of methionine and cysteine may be added together.

4) Isolated amino acids may be added to follow-up formula for older infants only to improve its nutritional value for infants. Essential and semi-essential amino acids may be added to improve protein quality, only in amounts necessary for that purpose. Only L-forms of amino acids shall be used.

5) The minimum value applies to cows’ and goats’ milk protein. For follow-up formula for older infants based on non-cows’ or non-goats’ milk protein, other minimum values may need to be applied. For follow-up formula for older infants based on soy protein isolate, a minimum value of 2.25 g/100 kcal (0.54 g/100 kJ) applies.

6) A lower minimum protein level between 1.6 and 1.8 g/100 kcal (0.38 and 0.43 g/100 kJ) in follow-up formula for older infants based on non-hydrolysed milk protein can be accepted. Such follow-up formula and follow-up formula for older infants based on hydrolysed milk protein should be evaluated for their safety and suitability and assessed by a competent national and/or regional authority based on clinical evidence.

b) Lipids

Total Fat

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/100 kcal</td>
<td>4.4</td>
<td>6.0</td>
<td>-</td>
</tr>
<tr>
<td>g/100 kJ</td>
<td>1.1</td>
<td>1.4</td>
<td>-</td>
</tr>
</tbody>
</table>

7) Partially hydrogenated oils and fats shall not be used in follow-up formula for older infants.

8) Lauric acid and myristic acid are constituents of fats, but combined shall not exceed 20% of total fatty acids. The content of trans fatty acids shall not exceed 3% of total fatty acids. Trans fatty acids are endogenous components of milk fat. The acceptance of up to 3% of trans fatty acids is intended to allow for the use of milk fat in follow-up formula for older infants. The erucic acid content shall not exceed 1% of total fatty acids. The total content of phospholipids should not exceed 300 mg/100 kcal (72 mg/100 kJ).

Linoleic acid

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/100 kcal</td>
<td>300</td>
<td>-</td>
<td>1400</td>
</tr>
<tr>
<td>mg/100 kJ</td>
<td>72</td>
<td>-</td>
<td>335</td>
</tr>
</tbody>
</table>

α-Linolenic acid

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/100 kcal</td>
<td>50</td>
<td>N.S.*</td>
<td>-</td>
</tr>
<tr>
<td>mg/100 kJ</td>
<td>12</td>
<td>N.S.</td>
<td>-</td>
</tr>
</tbody>
</table>

*N.S. = not specified

Ratio Linoleic acid/α-Linolenic acid

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:1</td>
<td>15:1</td>
</tr>
</tbody>
</table>

c) Carbohydrates

Available carbohydrates

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/100 kcal</td>
<td>9.0</td>
<td>14.0</td>
<td>-</td>
</tr>
<tr>
<td>g/100 kJ</td>
<td>2.2</td>
<td>3.3</td>
<td>-</td>
</tr>
</tbody>
</table>

9) Lactose and glucose polyomers should be the preferred carbohydrates in follow-up formula for older infants based on milk protein and hydrolysed protein. Only precooked and/or gelatinised starches gluten-free by nature may be added. Sucrose and/or fructose should not be added, unless needed as a carbohydrate source, and provided the sum of these does not exceed 20% of available carbohydrates.
d) Vitamins

Vitamin A

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg RE<sup>10</sup>/100 kcal</td>
<td>75</td>
<td>180</td>
<td>-</td>
</tr>
<tr>
<td>µg RE<sup>10</sup>/100 kJ</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

¹⁰ expressed as retinol equivalents (RE)

1 µg RE = 3.33 IU Vitamin A = 1 µg all-trans retinol. Retinol contents shall be provided by preformed retinol, while any contents of carotenoids should not be included in the calculation and declaration of vitamin A activity.

Vitamin D

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg<sup>11</sup>/100 kcal</td>
<td>1.0</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>µg<sup>11</sup>/100 kJ</td>
<td>0.24</td>
<td>0.72</td>
<td>-</td>
</tr>
</tbody>
</table>

¹¹ Calciferol. 1 µg calciferol = 40 IU Vitamin D.

Vitamin E

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg α-TE<sup>12</sup>/100 kcal</td>
<td>0.5<sup>13</sup></td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>mg α-TE<sup>12</sup>/100 kJ</td>
<td>0.12<sup>13</sup></td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>

¹² 1 mg α-TE (alpha-tocopherol equivalents) = 1 mg d-α-tocopherol

¹³ Vitamin E shall be at least 0.5 mg α-TE per g PUFA, using the following factors of equivalence to adapt the minimal vitamin E content to the number of fatty acid double bonds in the formula: 0.5 mg α-TE/g linoleic acid (18:2 n-6); 0.75 α-TE/g α-linolenic acid (18:3 n-3); 1.0 mg α-TE/g arachidonic acid (20:4 n-6); 1.25 mg α-TE/g eicosapentaenoic acid (20:5 n-3); 1.5 mg α-TE/g docosahexaenoic acid (22:6 n-3).

Vitamin K

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>4</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>0.96</td>
<td>-</td>
<td>6</td>
</tr>
</tbody>
</table>

Thiamin

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>60</td>
<td>-</td>
<td>300</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>14</td>
<td>-</td>
<td>72</td>
</tr>
</tbody>
</table>

Riboflavin

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>80</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>19</td>
<td>-</td>
<td>120</td>
</tr>
</tbody>
</table>

Niacin¹⁴

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>300</td>
<td>-</td>
<td>1500</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>72</td>
<td>-</td>
<td>359</td>
</tr>
</tbody>
</table>

¹⁴ Niacin refers to preformed niacin

Vitamin B₆

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>35</td>
<td>-</td>
<td>175</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>8</td>
<td>-</td>
<td>42</td>
</tr>
</tbody>
</table>

Vitamin B₁₂

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>0.1</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>0.02</td>
<td>-</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Pantothenic acid

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>400</td>
<td>-</td>
<td>2000</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>96</td>
<td>-</td>
<td>478</td>
</tr>
</tbody>
</table>
Folic acid

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>10</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>2.4</td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>

Vitamin C¹⁵

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>10</td>
<td>-</td>
<td>70<sup>16</sup></td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>2.4</td>
<td>-</td>
<td>17<sup>16</sup></td>
</tr>
</tbody>
</table>

¹⁵ expressed as L-ascorbic acid

¹⁶ This GUL has been set to account for possible high losses over shelf-life in liquid products; for powdered products lower upper levels should be aimed for.

Biotin

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>1.5</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>0.36</td>
<td>-</td>
<td>2.4</td>
</tr>
</tbody>
</table>

e) Minerals and Trace Elements

Iron¹⁷

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>1.0</td>
<td>2.0</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>0.24</td>
<td>0.48</td>
<td>-</td>
</tr>
</tbody>
</table>

¹⁷ For follow-up formula for older infants based on soy protein isolate a minimum value of 1.5 mg/100 kcal (0.36/100 kJ) and maximum of 2.5 mg/100 kcal (0.6 mg/100 kJ) applies.

Calcium

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>50</td>
<td>-</td>
<td>180</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>12</td>
<td>-</td>
<td>43</td>
</tr>
</tbody>
</table>

Phosphorus

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>25</td>
<td>-</td>
<td>100<sup>18</sup></td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>6</td>
<td>-</td>
<td>24<sup>18</sup></td>
</tr>
</tbody>
</table>

¹⁸ This GUL should accommodate higher needs with follow-up formula for older infants based on soy protein isolate.

Ratio Calcium/Phosphorus

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>2:1</td>
</tr>
</tbody>
</table>

Magnesium

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>5</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>1.2</td>
<td>-</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Sodium

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>20</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>4.8</td>
<td>14</td>
<td>-</td>
</tr>
</tbody>
</table>

Chloride

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>50</td>
<td>160</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>12</td>
<td>38</td>
<td>-</td>
</tr>
</tbody>
</table>
Potassium

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>60</td>
<td>180</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>14</td>
<td>43</td>
<td>-</td>
</tr>
</tbody>
</table>

Manganese

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>1.0</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>0.24</td>
<td>-</td>
<td>24</td>
</tr>
</tbody>
</table>

Iodine

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>10</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>2.4</td>
<td>-</td>
<td>14</td>
</tr>
</tbody>
</table>

Selenium

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>2</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>0.48</td>
<td>-</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Copper

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>35</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>8</td>
<td>-</td>
<td>29</td>
</tr>
</tbody>
</table>

19) Adjustment may be needed in these levels for follow-up formula for older infants made in regions with a high content of copper in the water supply.

Zinc

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>0.5</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>0.12</td>
<td>-</td>
<td>0.36</td>
</tr>
</tbody>
</table>

20) For follow-up formula for older infants based on soy protein isolate a minimum value of 0.75 mg/100 kcal (0.18 mg/100kJ) applies.

3.2 Optional Ingredients

3.2.1 In addition to the compositional requirements listed under 3.1.3 Section A, other ingredients or substances may be added to follow-up formula for older infants where the safety and suitability of the optional ingredient for particular nutritional purposes, at the level of use, is evaluated and demonstrated by generally accepted scientific evidence.

3.2.2 When any of these ingredients or substances is added the formula shall contain sufficient amounts to achieve the intended effect, taking into account levels in human milk.

3.2.3 The following substances may be added in conformity with national legislation, in which case their content per 100 kcal (100kJ) in the follow-up formula for older infants ready for consumption shall not exceed the levels listed below. This is not intended to be an exhaustive list, but provides a guide for competent national and/or regional authorities as to appropriate levels when these substances are added.

Taurine

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>-</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>-</td>
<td>2.9</td>
<td>-</td>
</tr>
</tbody>
</table>

Total nucleotides

Levels may need to be determined by national authorities.

Docosahexaenoic acid

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>-</td>
<td>-</td>
<td>7</td>
</tr>
</tbody>
</table>
21) If docosahexaenoic acid (22:6 n-3) is added to follow-up formula for older infants, a minimum level of 20 mg/100 kcal (4.8 mg/100 kJ) should be reached, and arachidonic acid (20:4 n-6) contents should reach at least the same concentration as DHA. The content of eicosapentaenoic acid (20:5 n-3), which can occur in sources of LC-PUFA, should not exceed the content of docosahexaenoic acid. Competent national and/or regional authorities may deviate from the above conditions, as appropriate for the nutritional needs of their population.

Choline

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>-</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>

Myo-inositol

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>-</td>
<td>-</td>
<td>10</td>
</tr>
</tbody>
</table>

L-carnitine

Levels may need to be determined by national authorities.

L (+) lactic acid-producing cultures

Only L (+) lactic acid-producing cultures may be used for the purpose of producing acidified follow-up formula for older infants. The acidified final product should not contain significant amounts of viable L (+) lactic acid-producing cultures, and residual amounts should not represent any health risk.

The safety and suitability of the addition of specific strains of L (+) lactic acid-producing cultures for particular beneficial physiological effects, at the level of use, must be demonstrated by clinical evaluation and generally accepted scientific evidence. When added for this purpose, the final product ready for consumption shall contain sufficient amounts of viable cultures to achieve the intended effect.

8. LABELLING

The requirements of the General Standard for the Labelling of Prepackaged Foods (CXS 1-1985), the Guidelines on Nutrition Labelling (CXG 2-1985) and the Guidelines for Use of Nutrition and Health Claims (CXG 23-1997) apply to Follow-up formula for older infants. These requirements include a prohibition on the use of nutrition and health claims for foods for infants except where specifically provided for in relevant Codex Standards or national legislation.

8.1 The Name of the Product

8.1.1 The text of the label and all other information accompanying the product shall be written in the appropriate language(s).

8.1.2 The name of the product as defined in Section 2.1 shall be Follow-up formula for older infants, or any appropriate designation indicating the true nature of the product, in accordance with national or regional usage.

8.1.3 The sources of protein in the product shall be clearly shown on the label.

a) If [name of animal] milk is the only source of protein*, the product may be labelled ‘Follow-up formula for older infants based on [name of animal] milk protein.

b) If [name of plant] is the only source of protein*, the product may be labelled ‘Follow-up formula for older infants based on [name of plant] protein.

c) If [name of animal] milk and [name of plant] are the sources of protein*, the product may be labelled ‘Follow-up formula for older infants based on [name of animal] milk protein and [name of plant] protein’ or ‘Follow-up formula for older infants based on [name of plant] protein and [name of animal] milk protein’.

* For clarity, addition of individual amino acids where needed to improve protein quality does not preclude use of the above labelling options.

8.1.4 A product which contains neither milk nor any milk derivative shall be labelled "contains no milk or milk products" or an equivalent phrase.
8.2 List of Ingredients

8.2.1 A complete list of ingredients shall be declared on the label in descending order of proportion except that in the case of added vitamins and minerals, these ingredients may be arranged as separate groups for vitamins and minerals. Within these groups the vitamins and minerals need not be listed in descending order of proportion.

8.2.2 The specific name shall be declared for ingredients of animal or plant origin and for food additives. In addition, appropriate functional classes for food additives shall be included on the label. The food additives INS number may also be optionally declared.

8.3 Declaration of Nutritive Value

The declaration of nutrition information for Follow-up formula for older infants shall contain the following information which should be in the following order:

a) the amount of energy, expressed in kilocalories (kcal) and/or kilojoules (kJ), and the number of grams of protein, carbohydrate and fat per 100 g or per 100 ml of the food as sold as well as per 100 ml of the food ready for use, when prepared according to the instructions on the label.

b) the total quantity of each vitamin and mineral as listed in paragraph 3.1.3 of Section A and any other ingredient as listed in paragraph 3.2 of Section A per 100 g or per 100 ml of the food as sold as well as per 100 ml of the food ready for use, when prepared according to the instructions on the label.

c) In addition, the declaration of nutrients in a) and b) per 100 kilocalories (kcal) or per 100 kilojoules (kJ) is permitted.

8.4 Date Marking and Storage Instructions

8.4.1 The date marking and storage instructions shall be in accordance with Section 4.7 of the General Standard for the Labelling of Prepackaged Foods (CXS 1-1985).

8.4.2 Where practicable, storage instructions shall be in close proximity to the date marking.

8.5 Information for Use

8.5.1 Ready to use products in liquid form should be used directly. Concentrated liquid products and powdered products must be prepared with potable water that is safe or has been rendered safe by previous boiling before feeding, according to directions for use. Adequate directions for the appropriate preparation and handling should be in accordance with Good Hygienic Practice.

8.5.2 Adequate directions for the appropriate preparation and use of the product, including its storage and disposal after preparation, i.e. that product remaining after feeding should be discarded, shall appear on the label.

8.5.3 The label shall carry clear graphic instructions illustrating the method of preparation of the product.

8.5.4 The directions should be accompanied by a warning about the health hazards of inappropriate preparation, storage and use.

8.5.5 Adequate directions regarding the storage of the product after the container has been opened, shall appear on the label.

8.5.6 The label of Follow-up formula for older infants shall include a statement that the product shall not be introduced before 6 months of age, is not to be used as a sole source of nutrition and that older infants should receive complementary foods in addition to the product.

8.6 Additional Labelling Requirements

8.6.1 Labels should not discourage breastfeeding. Each container label shall have a clear, conspicuous and easily readable message which includes the following points:

a) the words "important notice" or their equivalent;

b) the statement "Breastmilk is the best food for your baby" or a similar statement as to the superiority of breastfeeding or breastmilk;

c) a statement that the product should only be used on advice of a health worker as to the need for its use and the proper method of use.

d) the statement; ‘The use of this product should not lead to cessation of continued breastfeeding’.

8.6.2 The label shall have no pictures of infants, young children and women nor any other picture, text, or representation that might:
8.6.2.1 idealize the use of Follow-up formula for older infants;
8.6.2.2 suggest use for infants under the age of 6 months (including references to milestones and stages);
8.6.2.3 recommend or promote bottle feeding;
8.6.2.4 undermine or discourage breastfeeding; or that makes a comparison to breastmilk, or suggests that the product is similar, equivalent to or superior to breastmilk;
8.6.2.5 convey an endorsement or anything that may be construed as an endorsement by a professional or any other body, unless this has been specifically approved by relevant national or regional regulatory authorities.

8.6.3 The terms "humanized", "maternalized" or other similar terms shall not be used.

8.6.4 Follow-up formula for older infants shall be distinctly labelled in such a way as to avoid any risk of confusion with Infant formula, Drink for young children with added nutrients or Product for young children with added nutrients or Drink for young children or Product for young children, and Formula for special medical purposes intended for infants, in particular as to the text, images and colours used, to enable consumers to make a clear distinction between them.

8.6.5 The labelling of follow-up formula for older infants shall not refer to Infant formula, Drink for young children with added nutrients or Product for young children with added nutrients or Drink for young children or Product for young children, or Formula for special medical purposes intended for infants, including numbers, text, statements, or images of these products.
SECTION B: DRINK FOR YOUNG CHILDREN WITH ADDED NUTRIENTS OR PRODUCT FOR YOUNG CHILDREN WITH ADDED NUTRIENTS OR DRINK FOR YOUNG CHILDREN OR PRODUCT FOR YOUNG CHILDREN

1 SCOPE

1.1 This section of the Standard applies to the product as defined in Section 2.1, in liquid or powdered form.

1.2 This section of the Standard contains compositional, quality, safety, labelling, analytical and sampling requirements for the product as defined in Section 2.1.

1.3 Only products that comply with the criteria laid down in the provisions of this section of this Standard shall be presented as the product defined in Section 2.1.

2 DESCRIPTION

2.1 Product Definition

2.1.1 Drink for young children with added nutrients or Product for young children with added nutrients or Drink for young children or Product for young children means a product manufactured for use as a liquid part of the diversified diet of young children.

2.1.2 Drink for young children with added nutrients or Product for young children with added nutrients or Drink for young children or Product for young children is so processed by physical means only and so packaged as to prevent spoilage and contamination under all normal conditions of handling, storage and distribution in the country where the product is sold.

2.2 Other Definitions

2.2.1 The term young child means a person from the age of more than 12 months up to the age of three years (36 months).

3 ESSENTIAL COMPOSITION AND QUALITY FACTORS

3.1 Essential composition

3.1.1 The product as defined in Section 2.1 is a product based on milk of cows or other animals or a mixture thereof and/or other ingredients which have been proven to be safe and suitable for the feeding of young children. The nutritional safety and adequacy of the product as defined in Section 2.1 shall be scientifically demonstrated to support growth and development of young children.

3.1.2 When prepared ready for consumption in accordance with the instructions of the manufacturer, the products shall contain per 100 ml not less than 60 kcal (251 kJ) and not more than 70 kcal (293 kJ) of energy. National and/or regional authorities can deviate from the minimum energy content in line with national/regional dietary guidelines taking into account the nutritional needs of the local population.

3.1.3 The product as defined in Section 2.1 prepared ready for consumption shall contain per 100 kcal (100 kJ) the following nutrients with the following minimum and maximum or guidance upper levels (GUL), as appropriate. The general principles for establishing these levels are identified in Annex I of this Standard.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/100 kcal</td>
<td>1.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g/100 kJ</td>
<td>0.43</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1 In some countries these products are regulated as breastmilk substitutes

2) Guidance upper levels are for nutrients without sufficient information for a science-based risk assessment. These levels are values derived on the basis of meeting nutritional requirements of young children and an established history of apparent safe use. They may be adjusted based on relevant scientific or technological progress. The purpose of the GULs is to provide guidance to manufacturers and they should not be interpreted as goal values. Nutrient contents in the product as defined in Section 2.1 should usually not exceed the GULs unless higher nutrient levels cannot be avoided due to high or variable contents in constituents of the product as defined in Section 2.1 or due to technological reasons. When a product type or form has ordinarily contained lower levels than the GULs, manufacturers should not increase levels of nutrients to approach the GULs.
For the purpose of this Standard the calculation of the protein content of the final product ready for consumption should be based on N x 6.25, unless a scientific justification is provided for the use of a different conversion factor for a particular product. The protein levels set in this standard are based on a nitrogen conversion factor of 6.25. For information the value of 6.38 is used as a specific factor appropriate for conversion of nitrogen to protein in other Codex standards for milk products.

PDCAAS is the preferred method to determine protein quality. However, PER can continue to be used. DIAAS could also be considered should it be recognized by FAO in the future. When determined using PDCAAS methodology, appropriate Digestibility values and the reference amino acid pattern (see Table 5 of the Report of the FAO Expert Working Group: Protein quality assessment in follow-up formula for young children and ready to use therapeutic food), the PDCAAS shall be not less than 0.9. In formulations with lower scores the quality and/or quantity of protein should be adjusted to achieve the desired value. Detail on how to calculate the PDCAAS is listed in the Report of the FAO Expert Working Group: Protein quality assessment in follow-up formula for young children and ready to use therapeutic food.

When determined by PER methodology the protein quality shall not be less than 85% of that of casein.

b) Lipids

Total fat

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g /100 kcal</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>g /100 kJ</td>
<td>0.84</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Partially hydrogenated oils and fats shall not be used in the product as defined in Section 2.1.

α-Linolenic acid

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Linoleic acid

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>300</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>72</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

c) Carbohydrates

available carbohydrates

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>g /100 kcal</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
</tr>
<tr>
<td>g /100 kJ</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Lactose should be the preferred carbohydrate in the product as defined in Section 2.1 based on milk protein. For products based on non-milk protein, carbohydrate sources that have no contribution to sweet taste should be preferred and in no case be sweeter than lactose.

Mono- and disaccharides, other than lactose, should not exceed 2.5 g/100 kcal (0.60 g/100 kJ). National and/or regional authorities may limit this level to 1.25 g/100 kcal (0.30 g/100 kJ). Sucrose and/or fructose should not be added.

For the product as defined in Section 2.1 with a protein level below 3.0 g/100 kcal a maximum level of available carbohydrates up to 14 g/100 kcal (3.3 g/100 kJ) may be permitted by competent national and/or regional authorities.

d) Vitamins

Vitamin A

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg RE /100 kcal</td>
<td>60</td>
<td>180</td>
<td>-</td>
</tr>
<tr>
<td>µg RE /100 kJ</td>
<td>14</td>
<td>43</td>
<td>-</td>
</tr>
</tbody>
</table>

expressed as retinol equivalents (RE)

1 µg RE = 3.33 IU Vitamin A = 1 µg all-trans retinol. Retinol contents shall be provided by preformed retinol, while any contents of carotenoids should not be included in the calculation and declaration of Vitamin A activity.

Vitamin D

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>1.5</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>0.36</td>
<td>1.1</td>
<td>-</td>
</tr>
</tbody>
</table>

Competent national and/or regional authorities may deviate from the conditions as appropriate for the nutritional needs of their population.
Calciferol. 1 µg calciferol = 40 IU Vitamin D.

Riboflavin

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>80</td>
<td>-</td>
<td>650</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>19</td>
<td>-</td>
<td>155</td>
</tr>
</tbody>
</table>

Vitamin B₁₂

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg /100 kcal</td>
<td>0.1</td>
<td>-</td>
<td>2.0</td>
</tr>
<tr>
<td>µg /100 kJ</td>
<td>0.02</td>
<td>-</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Vitamin C

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>10</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>2.4</td>
<td>-</td>
<td>17</td>
</tr>
</tbody>
</table>

12) expressed as L-ascorbic acid

e) Minerals and Trace Elements

Iron

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>1.0</td>
<td>3.0</td>
<td>-</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>0.24</td>
<td>0.72</td>
<td>-</td>
</tr>
</tbody>
</table>

13) For the product as defined in Section 2.1 based on soy protein isolate a minimum value of 1.5 mg/100 kcal (0.36 mg/100 kJ) applies.

Calcium

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>90</td>
<td>-</td>
<td>280</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>22</td>
<td>-</td>
<td>67</td>
</tr>
</tbody>
</table>

Zinc

<table>
<thead>
<tr>
<th>Unit</th>
<th>Minimum</th>
<th>Maximum</th>
<th>GUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg /100 kcal</td>
<td>0.5</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>mg /100 kJ</td>
<td>0.12</td>
<td>-</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Sodium chloride should not be added to the product as defined in Section 2.1.

3.1.4 National and/or regional authorities may add mandatory requirements for essential nutrients listed under 3.1.3, Section B. Any additional mandatory nutrients should be chosen from the essential composition of Follow-up formula for older infants under 3.1.3 Section A. If additional mandatory nutrients are added, the nutrient levels must be based on the nutrient composition of follow-up formula for older infants (3.1.3 Section A) which is informed by the composition of breastmilk, and take into account the inherent levels of nutrients in cows’ milk.

All nutrient levels may be amended if the nutritional needs of the local population and scientific justification warrants such deviation.

3.2 Optional Ingredients

3.2.1 In addition to the compositional requirements listed under 3.1.3 Section B, other ingredients or substances may be added to the product as defined in Section 2.1 where the safety and suitability of the optional ingredient for particular nutritional purposes, at the level of use, is evaluated by national and/or regional authorities and demonstrated by generally accepted scientific evidence. Optional ingredients listed in 3.2.3 Section A are also permitted.

3.2.2 When any of these ingredients or substances is added the product as defined in Section 2.1 shall contain sufficient amounts to achieve the intended effect.
3.2.3 Additional nutrients may also be added to the product as defined in Section 2.1 provided these nutrients are chosen from the essential composition of Follow-up formula for older infants and levels are as per the minimum, maximum, GULs stipulated for follow-up formula for older infants (3.1.3 Section A) and take into account the inherent levels of nutrients in cows’ milk; or amended by national and/or regional authorities if the nutritional needs of the local population and scientific justification warrants such deviation.

3.2.4 Ingredients shall not be added with the purpose of imparting or enhancing a sweet taste of the product as defined in Section 2.1.

8. LABELLING

The requirements of the General Standard for the Labelling of Prepackaged Foods (CXS 1-1985), the Guidelines on Nutrition Labelling (CXG 2-1985) and the Guidelines for Use of Nutrition and Health Claims (CXG 23-1997) apply to the product as defined in Section 2.1. These requirements include a prohibition on the use of nutrition and health claims for foods for infants and young children except where specifically provided for in relevant Codex Standards or national legislation.

8.1 The Name of the Product

8.1.1 The text of the label and all other information accompanying the product shall be written in the appropriate language(s).

8.1.2 The name of the product as defined in Section 2.1 shall be “Drink for young children with added nutrients” or “Product for young children with added nutrients” or “Drink for young children” or “Product for young children”, or any appropriate designation indicating the true nature of the product, in accordance with national or regional usage.

8.1.3 The sources of protein in the product shall be clearly shown on the label.

a) If [name of animal] milk is the only source of protein*, the product may be labelled “Drink for young children with added nutrients based on [name of animal] milk protein” or “Product for young children with added nutrients based on [name of animal] milk protein” or “Drink for young children based on [name of animal] milk protein” or “Product for young children based on [name of animal] milk protein”.

b) If [name of plant] is the only source of protein*, the product may be labelled “Drink for young children with added nutrients based on [name of plant] protein” or “Product for young children with added nutrients based on [name of plant] protein” or “Drink for young children based on [name of plant] protein” or “Product for young children based on [name of plant] protein”.

c) If [name of animal] milk and [name of plant] are the sources of proteins*, the product may be labelled “Drink for young children with added nutrient based on [name of animal] milk protein and [name of plant] protein” or “Product for young children with added nutrients based on [name of animal] milk protein and [name of plant] protein” or “Drink for young children based on [name of animal] milk protein and [name of plant] protein” or “Product for young children based on [name of animal] milk protein and [name of plant] protein”.

* For clarity, addition of individual amino acids where needed to improve protein quality does not preclude use of the above labelling options.

8.1.4 A product which contains neither milk nor any milk derivative shall be labelled “contains no milk or milk products” or an equivalent phrase.

8.2 List of Ingredients

8.2.1 A complete list of ingredients shall be declared on the label in descending order of proportion except that in the case of added vitamins and minerals, these ingredients may be arranged as separate groups for vitamins and minerals. Within these groups the vitamins and minerals need not be listed in descending order of proportion.

8.2.2 The specific name shall be declared for ingredients of animal or plant origin and for food additives. In addition, appropriate functional classes for food additives shall be included on the label. The food additives’ INS number may also be optionally declared.

8.3 Declaration of Nutritive Value

The declaration of nutrition information for the product as defined in Section 2.1 shall contain the following information which should be in the following order:
a) the amount of energy, expressed in kilocalories (kcal) and/or kilojoules (kJ), and the number of grams of protein, carbohydrate and fat per 100 g or per 100 ml of the food as sold as well as per 100 ml of the food ready for use, when prepared according to the instructions on the label.

b) the total quantity of each vitamin and mineral as listed in paragraph 3.1.3 of Section B and any other ingredient as listed in paragraph 3.2 of Section B per 100 g or per 100 ml of the food as sold as well as per 100 ml of the food ready for use, when prepared according to the instructions on the label.

c) In addition, the declaration of nutrients in a) and b) per 100 kilocalories (kcal) or per 100 kilojoules (kJ) and/or per serving size, provided that the serving size is quantified on the label, is permitted.

8.4 Date Marking and Storage Instructions

8.4.1 The date marking and storage instructions shall be in accordance with Section 4.7 of the General Standard for the Labelling of Prepackaged Foods.

8.4.2 Where practicable, storage instructions shall be in close proximity to the date marking.

8.5 Information for use

8.5.1 Ready to use products in liquid form should be used directly. Concentrated liquid products and powdered products must be prepared with potable water that is safe or has been rendered safe by previous boiling before feeding, according to directions for use. Adequate directions for the appropriate preparation and handling should be in accordance with Good Hygienic Practice.

8.5.2 Adequate directions for the appropriate preparation and use of the product, including its storage and disposal after preparation, i.e. that product remaining after feeding should be discarded, shall appear on the label.

8.5.3 The label shall carry clear graphic instructions illustrating the method of preparation of the product.

8.5.4 The directions should be accompanied by a warning about the health hazards of inappropriate preparation, storage and use.

8.5.5 Adequate directions regarding the storage of the product after the container has been opened, shall appear on the label.

8.5.6 The label of the product as defined in Section 2.1 shall include a statement that the product shall not be introduced to infants 12 months of age or less, and is not to be used as a sole source of nutrition.

8.6 Additional Labelling Requirements

8.6.1 The label of the product as defined in Section 2.1 shall have no image, text or representation, including pictures of feeding bottles, that could undermine or discourage breastfeeding or which idealises the use of the product as defined in Section 2.1. The terms ‘humanized’, ‘maternalized’ or other similar terms must not be used on the label.

8.6.2 Labels should not discourage breastfeeding. Each container label shall have a clear, conspicuous and easily readable message which includes the following points:

a) the statement “Breastfeeding is recommended up to two years and beyond.”

b) a statement that the mother/caregiver should seek advice of a health worker on proper feeding of the young child.

8.6.3 The label shall have no pictures of infants, older infants, young children and women or any other picture, text, or representation that:

8.6.3.1 undermines or discourages breastfeeding; or that makes a comparison to breastmilk, or suggests that the product is similar, equivalent to or superior to breastmilk;

8.6.3.2 might convey an endorsement or anything that may be construed as an endorsement by a professional or any other body, unless this has been specifically approved by relevant national or regional regulatory authorities.

8.6.4 The product as defined in Section 2.1 shall be distinctly labelled in such a way as to avoid any risk of confusion with infant formula, follow-up formula for older infants, and formula for special medical purposes intended for infants, in particular as to the text, images and colours used, to enable consumers to make a clear distinction between them.

8.6.5 The labelling of the product as defined in Section 2.1 shall not refer to infant formula, follow-up formula for older infants, or formula for special medical purposes intended for infants, including numbers, text, statements, or images of these products.
APPENDIX IV

REVIEW OF THE STANDARD FOR FOLLOW-UP FORMULA

(remaining sections held at step 4 for advancement to step 5/8 as part of the entire standard)

SECTION A: FOLLOW-UP FORMULA FOR OLDER INFANTS

3.3 Purity Requirements

3.3.1 General

All ingredients shall be clean, of good quality, safe and suitable for ingestion by older infants. They shall conform with their normal quality requirements, such as colour, flavour and odour.

3.3.2 Vitamin Compounds and Mineral Salts

3.3.2.1 Vitamin compounds and mineral salts used in accordance with Sections 3.1.3 (d) and (e) and 3.2.1 should be selected from the Advisory Lists of Nutrient Compounds for Use in Foods for Special Dietary Uses intended for Infants and Young Children (CXG 10-1979).

3.3.2.2 The amounts of sodium derived from vitamin and mineral ingredients shall be within the limit for sodium in Section 3.1.3 (e).

3.4 Consistency and Particle Size

When prepared according to the directions of use, the product shall be free of lumps and of large, coarse particles.

3.5 Specific Prohibitions

The product and its components shall not have been treated by ionizing radiation.

4. Food Additives

The following additives are permitted1):

<table>
<thead>
<tr>
<th>INS</th>
<th>Additive</th>
<th>Maximum level in 100 mL of the product ready for consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>Guar gum</td>
<td>0.1 g</td>
</tr>
<tr>
<td>410</td>
<td>Carob bean gum</td>
<td>0.1 g</td>
</tr>
<tr>
<td>1412</td>
<td>Distarch phosphate</td>
<td>0.5 g singly or in combination in soy-based products only;</td>
</tr>
<tr>
<td>1414</td>
<td>Acetylated distarch phosphate</td>
<td>2.5 g singly or in combination in hydrolyzed protein and/or amino acid-based products only</td>
</tr>
<tr>
<td>1413</td>
<td>Phosphated distarch phosphate</td>
<td></td>
</tr>
<tr>
<td>1422</td>
<td>Acetylated distarch adipate</td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>Carrageenan</td>
<td>0.03 g singly or in combination in milk and soy-based products only;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 g singly or in combination in hydrolyzed protein and/or amino acid-based liquid products only</td>
</tr>
<tr>
<td>440</td>
<td>Pectins</td>
<td>1 g</td>
</tr>
</tbody>
</table>

4.1 Thickeners

4.2 Emulsifiers

4.3 Acidity Regulators

1) The table of food additive provisions is for information only. Following the completion of the alignment work for CXS 156-1987, the table will be replaced by a general reference to the GSFA as below:

“Acidity regulators, antioxidants, emulsifiers, thickeners, packaging gases used in accordance with Tables 1 and 2 of the General Standard for Food Additives (CXS 192-1995) in food category 13.1.2 (Follow-up formulae) are acceptable for use in foods conforming to this Standard.”
500(ii) Sodium hydrogen carbonate
500(i) Sodium carbonate
331(i) Sodium dihydrogen citrate
331(iii) Trisodium citrate
524 Sodium hydroxide
501(ii) Potassium hydrogen carbonate
501(i) Potassium carbonate
332(i) Potassium dihydrogen citrate
332(ii) Tripotassium citrate
525 Potassium hydroxide
526 Calcium hydroxide
270 Lactic acid, L-, D-, and DL-
330 Citric acid

4.4 Antioxidants
307b Tocopherols concentrate, mixed 3 mg singly or in combination
307a Tocopherol, d-alpha
307c Tocopherol, dl-alpha
304 Ascorbyl palmitate
300 Ascorbic acid, L-
301 Sodium ascorbate
302 Calcium ascorbate

4.5 Packaging Gases
290 Carbon dioxide GMP
941 Nitrogen GMP

4.6 Flavourings
No flavourings are permitted in this product.

4.7 Carry-Over Principle
Only the food additives listed in this Section or in the Advisory Lists of Nutrient Compounds for Use in Foods for Special Dietary Uses intended for Infants and Young Children (CXG 10-1979) may be present in the foods described in Section 2.1 of this Standard, as a result of carry-over from a raw material or other ingredient (including food additive) used to produce the food, subject to the following conditions:

a) The amount of the food additive in the raw materials or other ingredients (including food additives) does not exceed the maximum level specified; and

b) The food into which the food additive is carried over does not contain the food additive in greater quantity than would be introduced by the use of the raw materials or ingredients under good manufacturing practice, consistent with the provisions on carry-over in the Preamble of the General Standard for Food Additives (CXS 192-1995).

5. Contaminants
The products covered by this Standard shall comply with the Maximum levels of the General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995).

The products covered by this Standard shall comply with the maximum residue limits for pesticides established by the Codex Alimentarius Commission.

6. Hygiene
6.1 It is recommended that the product covered by the provisions of this standard be prepared and handled in accordance with the appropriate sections of the General Principles of Food Hygiene (CXC 1-1969), and other relevant Codex texts such as the Code of Hygienic Practice for Powdered Formulae for Infants and Young Children (CXC 66-2008), and in the case of liquid formula that has been commercially sterilised should also consider the appropriate sections of the Code of Hygienic Practice for Aseptically Processed and Packaged Low-acid Foods (CXC 40-1993) and the Code of Hygienic Practice for Low and Acidified Low-acid Canned Foods (CXC 23-1979), as applicable.
6.2 The products should comply with any microbiological criteria established in accordance with the Principles and Guidelines for the Establishment and Application of Microbiological Criteria Related to Foods (CXG 21-1997).

7. Fill of Containers

In the case of products in ready-to-eat form, the fill of container shall be:

(i) not less than 80% v/v for products weighing less than 150 g (5 oz.);
(ii) not less than 85% v/v for products in the weight range 150-250 g (5 - 9 oz.); and
(iii) not less than 90% v/v for products weighing more than 250 g (9 oz.) of the water capacity of the container. The water capacity of the container is the volume of distilled water at 20°C which the sealed container will hold when completely filled.

9. Methods of Analysis and Sampling

For checking the compliance with this Standard, the methods of analysis contained in the Recommended Methods of Analysis and Sampling (CXS 234-1999) relevant to the provisions in this standard, shall be used.
SECTION B: DRINK FOR YOUNG CHILDREN WITH ADDED NUTRIENTS OR PRODUCT FOR YOUNG CHILDREN WITH ADDED NUTRIENTS OR DRINK FOR YOUNG CHILDREN OR PRODUCT FOR YOUNG CHILDREN

3.3 Purity Requirements

3.3.1 General

All ingredients shall be clean, of good quality, safe and suitable for ingestion by young children. They shall conform with their normal quality requirements, such as colour, flavour and odour.

3.3.2 Vitamin Compounds and Mineral Salts

Vitamin compounds and mineral salts used in accordance with Sections 3.1.3 (d) and (e) and 3.2.1 should be selected from the Advisory Lists of Nutrient Compounds for Use in Foods for Special Dietary Uses intended for Infants and Young Children (CXG 10-1979).

3.4 Consistency and Particle Size

When prepared according to the directions of use, the product shall be free of lumps and of large, coarse particles.

3.5 Specific Prohibitions

The product and its components shall not have been treated by ionizing radiation.

4. Food Additives

The following additives are permitted:

<table>
<thead>
<tr>
<th>INS</th>
<th>Additive</th>
<th>Maximum level in 100 mL of the product ready for consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>Guar gum</td>
<td>0.1 g</td>
</tr>
<tr>
<td>410</td>
<td>Carob bean gum</td>
<td>0.1 g</td>
</tr>
<tr>
<td>1412</td>
<td>Distarch phosphate</td>
<td>0.5 g singly or in combination in soy-based products only;</td>
</tr>
<tr>
<td>1414</td>
<td>Acetylated distarch phosphate</td>
<td>2.5 g singly or in combination in hydrolyzed protein and/or</td>
</tr>
<tr>
<td>1413</td>
<td>Phosphated distarch phosphate</td>
<td>amino acid-based products only</td>
</tr>
<tr>
<td>1422</td>
<td>Acetylated distarch adipate</td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>Carrageenan</td>
<td>0.03 g singly or in combination in milk and soy-based products only; 0.1 g singly or in combination in hydrolyzed protein and/or amino acid-based liquid products only</td>
</tr>
<tr>
<td>440</td>
<td>Pectins</td>
<td>1 g</td>
</tr>
</tbody>
</table>

4.2 Emulsifiers

<table>
<thead>
<tr>
<th>INS</th>
<th>Additive</th>
<th>Maximum level in 100 mL of the product ready for consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>322(i)</td>
<td>Lecithin</td>
<td>0.5 g</td>
</tr>
<tr>
<td>471</td>
<td>Mono- and diglycerides of fatty acids</td>
<td>0.4 g</td>
</tr>
</tbody>
</table>

4.3 Acidity Regulators

<table>
<thead>
<tr>
<th>INS</th>
<th>Additive</th>
<th>Maximum level in 100 mL of the product ready for consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>500(ii)</td>
<td>Sodium hydrogen carbonate</td>
<td>Limited by GMP</td>
</tr>
<tr>
<td>500(i)</td>
<td>Sodium carbonate</td>
<td></td>
</tr>
<tr>
<td>331(i)</td>
<td>Sodium dihydrogen citrate</td>
<td></td>
</tr>
<tr>
<td>331(iii)</td>
<td>Trisodium citrate</td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>Sodium hydroxide</td>
<td></td>
</tr>
<tr>
<td>501(ii)</td>
<td>Potassium hydrogen carbonate</td>
<td>Limited by GMP</td>
</tr>
<tr>
<td>501(i)</td>
<td>Potassium carbonate</td>
<td></td>
</tr>
<tr>
<td>332(i)</td>
<td>Potassium dihydrogen citrate</td>
<td></td>
</tr>
<tr>
<td>332(ii)</td>
<td>Tripotassium citrate</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>Potassium hydroxide</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>Calcium hydroxide</td>
<td>Limited by GMP</td>
</tr>
<tr>
<td>270</td>
<td>Lactic acid, L-, D-, and DL-</td>
<td>Limited by GMP</td>
</tr>
</tbody>
</table>
4.4 Antioxidants

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>307b</td>
<td>Tocopherols concentrate, mixed</td>
<td>3 mg singly or in combination</td>
</tr>
<tr>
<td>307a</td>
<td>Tocopherol, d-alpha</td>
<td></td>
</tr>
<tr>
<td>307c</td>
<td>Tocopherol, dl-alpha</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>Ascorbyl palmitate</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>Ascorbic acid, L-</td>
<td>5 mg singly or in combination, expressed as ascorbic acid (INS 300, 301,302,304)</td>
</tr>
<tr>
<td>301</td>
<td>Sodium ascorbate</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>Calcium ascorbate</td>
<td></td>
</tr>
</tbody>
</table>

4.5 Packaging Gases

| Code | Description |限制
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>Carbon dioxide</td>
<td>GMP</td>
</tr>
<tr>
<td>941</td>
<td>Nitrogen</td>
<td>GMP</td>
</tr>
</tbody>
</table>

4.6 Flavourings 2)

Natural Fruit Extracts: GMP

Vanilla extract: GMP

Ethyl vanillin (JECFA no. 893): 5 mg/100 ml

Vanillin (JECFA no. 889): 5 mg/100 ml

The flavourings used in products covered by this Standard should comply with the Guidelines for the Use of Flavourings (CXG 66-2008).

2) National and/or regional authorities may restrict or prohibit the use of the listed flavourings.

4.7 Carry-Over Principle

Only the food additives listed in this Section or in the Advisory Lists of Nutrient Compounds for Use in Foods for Special Dietary Uses intended for Infants and Young Children (CXG 10-1979) may be present in the foods described in Section 2.1 of this Standard, as a result of carry-over from a raw material or other ingredient (including food additive) used to produce the food, subject to the following conditions:

a) The amount of the food additive in the raw materials or other ingredients (including food additives) does not exceed the maximum level specified; and

b) The food into which the food additive is carried over does not contain the food additive in greater quantity than would be introduced by the use of the raw materials or ingredients under good manufacturing practice, consistent with the provisions on carry-over in the Preamble of the General Standard for Food Additives (CXS 192-1995).

5. Contaminants

The products covered by this Standard shall comply with the Maximum levels of the General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995).

The products covered by this Standard shall comply with the maximum residue limits for pesticides established by the Codex Alimentarius Commission.

6. Hygiene

6.1 It is recommended that the product covered by the provisions of this Standard be prepared and handled in accordance with the appropriate sections of the General Principles of Food Hygiene (CXC 1-1969), and other relevant Codex texts such as the Code of Hygienic Practice for Powdered Formulae for Infants and Young Children (CXC 66-2008), and in the case of liquid formula that has been commercially sterilised should also consider the appropriate sections of the Code of Hygienic Practice for Aseptically Processed and Packaged Low-acid Foods (CXC 40-1993) and the Code of Hygienic Practice for Low and Acidified Low-acid Canned Foods (CXC 23-1979), as applicable.

6.2 The products should comply with any microbiological criteria established in accordance with the Principles and Guidelines for the Establishment and Application of Microbiological Criteria Related to Foods (CXG 21-1997).

7. Fill of Containers

In the case of products in ready-to-eat form, the fill of container shall be:
(i) not less than 80% v/v for products weighing less than 150 g (5 oz.);

(ii) not less than 85% v/v for products in the weight range 150-250 g (5 - 9 oz.); and

(iii) not less than 90% v/v for products weighing more than 250 g (9 oz.) of the water capacity of the container. The water capacity of the container is the volume of distilled water at 20°C which the sealed container will hold when completely filled.

9. Methods of Analysis and Sampling

For checking the compliance with this Standard, the methods of analysis contained in the Recommended Methods of Analysis and Sampling (CXS 234-1999) relevant to the provisions in this standard, shall be used.