codex alimentarius commission

JOINT OFFICE: Viale delle Terme di Caracalla 00100 ROME Tel: 39 06 57051 www.codexalimentarius.net Email: codex@fao.org Facsimile: 39 06 5705 4593

AGENDA ITEM 4

CX/AF 02/5 May 2002

JOINT FAO/WHO FOOD STANDARDS PROGRAMME

AD HOC INTERGOVERNMENTAL CODEX TASK FORCE ON ANIMAL FEEDING Third Session Copenhagen, Denmark, 17 - 20 June 2002

INFORMATION PAPER ON ESTABLISHMENT OF CODEX MAXIMUM LEVELS AND RESIDUES LIMITS FOR FEEDINGSTUFFS AND FOODS

Prepared by the Secretariat of the Codex Alimentarius Commision

BACKGROUND

- 1. At the 2nd Session of the *Ad-hoc* Intergovernmental Codex Task Force on Animal Feeding, the Codex Secretariat provided the delegations with comprehensive information of the work undertaken by the Codex Committee on Food Additives and Contaminants, Codex Committee on Pesticide Residues, Codex Committee on Residues of Veterinary Drugs in Foods, Codex Committee on Food Hygiene and Codex Committee on Food Labelling. The Task Force noted that although the establishment of maximum levels for contaminants, pesticides, veterinary drugs and microbiological limits were outside its mandate, it was within its purview to recommend future work on specific issues in the context of animal feeding as it relates to food safety. The proposals would be presented to the Codex Alimentarius Commission for potential distribution as new work to the relevant Codex body.
- 2. In view of the information provided the Codex Secretariat agreed ¹ to present at the 3^d session of the Task Force an update on related activities of other Codex Committees ², including a presentation of the step status of various levels for contaminants established or under consideration by the CCFAC.
- 3. This document (CX/AF 02/5) provides updated information on Codex provisions related:
- contaminants and toxins, established or under consideration by the CCFAC (Appendix I);
- veterinary drug residues, established or under consideration by the CCRVDF (Appendix II);
- pesticide residues, established or under consideration by the CCPR (Appendix III)
- 4. In addition, the document presents updated information on the work carried out by relevant Codex Committees on microbiological specification and on aspects of microbiological risk analysis.

.

ALINORM 01/38A, para. 15

Information on the activities of relevant Codex Committees is contained in document CX/AF02/2 "Matters referred to the Task Force from the Codex Alimentarius Commission and other Codex Committees"

<u>CX/AF 02/5</u>

EXPLANATORY NOTES ON THE APPENDICES

Appendix I - Food Contaminants and Toxins in Foods (Schedule I of the proposed draft Codex General Standard for Contaminants and Toxins in Foods - GSCTF)

- 5. Appendix I contains a copy of document CX/FAC 02/16 "Schedule I of the Proposed Draft Codex General Standard for Contaminants and Toxins in Foods GSFCT" which was prepared by the Netherlands for the 34th Session of the Codex Committee on Food Additives and Contaminants (the Hague, Netherlands, 11-15 March 2002). Schedule I has not yet officially published in the format mentioned in the Annex III of the Preamble to the Codex GSCTF (CODEX STAN 193-1995, Rev. 1-1997). According to the GSFCT, Schedule I should contain the list of Codex standards for individual contaminants and toxins in foods and feeds and all the provisions for food and feed contaminants adopted by the Codex Alimentarius Commission ³.
- 6. Document CX/FAC 02/16 contains a first draft of Schedule I that was presented at the 34th Session of the CCFAC to discuss the format and content and other issues such as maintenance. Due to time constraints, Schedule I, as presented at the 34th Session of the CCFAC, was not complete and for the main part only elaborated regarding the essential standard aspects. Schedule I could in future also contain more explanatory notes and a more or less elaborate general introduction per substance. It was meant to be a dynamic document to be changed/updated regularly on the basis of the development and progress of standards in CCFAC and other Codex Committees.
- 7. The 34th Session of the CCFAC agreed ⁴ that the Netherlands would update and present Schedule I every year. Schedule I would contain two lists: List 1 with Maximum Limits (MLs) for contaminants and toxins already adopted as final text and List 2 with MLs for contaminants and toxins under discussion at different steps of the Codex procedure. It was understood that Schedule I would be used as a working document during the Working Group and the plenary sessions.

Appendix II - Residues of Veterinary Drugs in Foods

- 8. Appendix II of this document presents updated information on the status of Maximum Residue Limits (MRLs) for veterinary drugs. Data include a list of veterinary drugs (or group of drugs ⁵) which are classified by substance, species and tissue. MRLs adopted by the Codex Alimentarius Commission, have indicated the year of adoption and for those MRLs still under consideration by CCRVDF, the step is indicated.
- 9. Data presented in Appendix II includes the MRLs adopted by the 24th Session of the Codex Alimentarius Commission ⁶ and those which have been considered by the 13th Session of the Codex Committee on Veterinary Drugs Residues in Foods ⁷ (Charleston, South Carolina, US, 8-12 December 2001).

Appendix III - Pesticide Residues

- 10. Appendix III of this document presents updated information on the status of Maximum Residue Limits (MRLs) and Extraneous Maximum Residue Limites (EMRLs) for pesticides ⁸ for the Class "Primary Animal Feed Commodities" which includes the following groups of commodities:
- legume animal feed (AL);
- straw, fodder and forage of cereal grains and grasses (including buckwheat fodder) (forage) (AF);
- straw, fodder and forage of cereal grains and grasses (including buckwheat fodder)(straw and fodder dry) (AS);

Some substances such as Chlortetracycline/Oxytetracycline/Tetracycline are grouped together

⁶ ALINORM 01/41, para. 141-142 and ALINORM 01/31, Appendices II and III

ALINORM 03/31, Appendices II, III, IV and V

The GSC uses the food categorization system which has been developed in the framework of the Codex Committee for Pesticide Residues

⁴ ALINORM 03/12, pars. 103-105

^{8 200} Pesticides Considered by the Commission and 2,433 Maximum Residue Limits for Pesticides)

- miscellaneous fodder and forage crops (fodder) (AM);
- miscellaneous fodder and forage crops (forage) (AV);
- forage crops (green) (AO);
- by-products used for animal feeding purposes, derived from fruits and vegetable (AB).
- 11. Data presented in Appendix III includes MRLs/EMRLs adopted by the 24th Session of the Codex Alimentarius Commission as final standards and those MRLs/EMRLs under examination by the Codex Committee on Pesticide Residues (up to its 33rd session, 2-7 April 2001) as draft standards with their respective status in the Codex Step procedure.

MICROBIOLOGICAL SPECIFICATIONS

- 12. The Codex Principles for the Establishment and Application of Microbiological Criteria for Foods (CAC/GL 21-1997) gives guidance on the establishment and application of microbiological criteria for foods at any point in the food chain from primary production to final consumption.
- 13. The Codex Alimentarius Commission has not elaborated microbiological specifications that apply in a horizontal way to all foods, nor has elaborated detailed procedures to test for microbiological contamination in feed and food. There are, however, a limited number of Codex documents that contains microbiological specifications. In particular:
- Guide for the Microbiological Quality of Spices and Herbs Used in Processed Meat and Poultry Products (CAC/GL 14-1991);
- Recommended International Code of Hygienic Practice for Egg Products (CAC/RCP 15-1976) (amended in 1978, 1985);
- Recommended International Code of Hygienic Practice for Dried Milk (CAC/RCP 31-1983);
- Code of Hygienic Practice for Spices and Dried Aromatic Plants (CAC/RCP 42-1995);
- Recommended International Code of Practice for Shrimps and Prawns (CAC/RCP 17-1978);
- Codex Standard for Natural Mineral Waters (CODEX STAN 108 1981, Rev. 1 1997) (amended in 2001).

MICROBIOLOGICAL RISK ANALYSIS

- 14. In the light of the results of the work jointly carried out by FAO and WHO on risk assessment of microbiological hazards in foods ⁹, the Codex Committee on Food Hygiene is developing the following texts:
- Proposed Draft Guidelines for the Control of *Listeria monocytogens* in Foods" (at Step 2);
- Revision of the Code of Hygienic Practice for Egg Products (CAC/RCP 30-1983) (at Step 2);
- Discussion Paper on Risk Management Strategies for *Salmonella* spp in poultry to be considered at its next Session (October 2002);
- Risk profile for entherohemorragic *E. coli* (including sprouts, ground beef and pork).

Update information on this work can be found at the following website: http://www.fao.org/es/ESN/pagerisk/riskpage.htm

APPENDIX I

SCHEDULE 1 OF THE PROPOSED DRAFT CODEX GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD

(WORKING DOCUMENT PRESENTED TO THE 34TH SESSION OF THE CODEX COMMITTEE ON FOOD ADDITIVES AND CONTAMINANTS AS CX/FAC 02/16)

codex alimentarius commission

JOINT OFFICE: Viale delle Terme di Caracalla 00100 ROME Tel: 39 06 57051 www.codexalimentarius.net Email: codex@fao.org Facsimile: 39 06 5705 4593

Agenda Item 14b CX/FAC 02/16

JOINT FAO/WHO FOOD STANDARDS PROGRAMME

CODEX COMMITTEE ON FOOD ADDITIVES AND CONTAMINANTS Thirty-fourth Session Rotterdam, The Netherlands, 11-15 March 2002

SCHEDULE 1 OF THE PROPOSED DRAFT CODEX GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD

A first version of the Schedule 1 is presented by The Netherlands, to discuss the format and content and other issues such as maintenance.

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD

SCHEDULE I - MAXIMUM AND GUIDELINE LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

Introduction

Schedule I of the Codex General Standard for Contaminants and Toxins in Food (GSCTF) is the list of Codex Standards for individual contaminants and toxins in foods and feeds. It contains all the provisions for food and feed contaminants adopted by the Codex Alimentarius Commission.

Schedule I is not yet (officially) published in the format mentioned in Annex III of the Preamble to the GSCTF. Schedule I can only be officially published containing adopted standards. Since it is a dynamic document that needs to be changed regularly on the basis of progress in Codex Committees, it is considered necessary to present to all delegates a Working Document in the format of Schedule I, updated annually, on the development and progress of standards in CCFAC and other Codex Comittees. This working document shall contain all existing and proposed Codex Standards for contaminants and toxins in foods and feeds, with notes and references regarding relevant Codex decisions and information sources. In this way also the obligations of Annex IV of the GSCTF can be met.

Schedule I can only be read in conjunction with the GSCTF and its annexes. Schedule II is a product-based presentation of the Codex contaminant standards which may come available when these data are assembled in a suitable data base format. Schedule I as presented here is a Working Document provided to the Committee for information purposes; it is a first draft and no guarantees can be given regarding the exact validity of the contents. It is hoped that with the aid of suggestions for improved texts by the participants of the CCFAC and other interested parties, it will become a valuable informatory document to the discussions of the CCFAC. The annually redrafted Schedule I will provide an overview of the situation regarding contaminants to the CCFAC, albeit an unofficial document.

On the next pages a format for a Table of standards with references and remarks is used as it could appear in the Working Document for Schedule I.

The document is due to time constraints now not yet complete and for the main part only elaborated regarding the essential standard aspects; it could in future also contain more explanatory notes and a more or less elaborate general introduction per substance. Some examples (mercury, some mycotoxins) are more fully elaborated with explanatory notes. References to Codes of Practice being developed or established are (or should be) made.

Information contained

The following information wil be contained in the Working Document Schedule I, according to the agreed format (Annex III of the GSCTF).

- Name of the contaminant, Codex number and short monograph (synonym; TDI; ref JECFA; definition)
- In the form of a table:
- · Commodity
- · Product code
- · Maximum or Guideline Level in mg/kg or other appropriate expression
- · Suffix to specify the application of the ML/GL
- · Type of standard (ML or GL)
- · Step or other indication of status (adopted by CAC)
- · Reference to official documents, relevant Codex Committee meetings with decisions etc.

<u>CX/AF 02/5-Appendix I</u> 8

- Notes and remarks to the table, including short summaries of decisions, requests for information etc.

- An Index of contaminants in Code order and in alphabetic order will be provided.
- Explanatory notes to the terms used.

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE I - MAXIMUM AND GUIDELINE LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

INDEX OF CONTAMINANTS IN CODE ORDER

CODE	NAME	CONTENT
1.3	arsenic	short concept
1.6	cadmium	short concept
1.9	copper	
1.10	iron	
1.11	lead	short concept
1.13	mercury	concept with notes
1.16	tin	short concept
1.18	zinc	
3.1.5	monochloromethane (vinylchloride)	
3.4	polychlorobiphenyls	
3.8	chlorinated dibenzodioxins and dibenzofurans	short concept
3.10.1	1,3-dichloro-2-propanol	
3.10.2	3-chloro-1,2-propanediol	
4.9.1	acylonitrile	
4.11.1	ethylcarbamate	
5.1	aflatoxins	concept with notes
5.2	ochratoxins	concept with notes
5.3.1	T-2 and HT-2-toxin	
5.3.8	deoxynivalenol	
5.4.1	fumonisins	
5.4.3	zearalenone	concept with notes
5.6.1	patulin	concept with notes
8.	radionuclides	

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD

SCHEDULE I - MAXIMUM AND GUIDELINE LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

INDEX OF CONTAMINANTS IN ALPHABETIC ORDER

NAME	CODE NR.	PAGE
Acrylonitrile	4.9.1	
Aflatoxins	5.1	9
Arsenic	1.3	1
Cadmium	1.6	2
3-chloro-1,2-propanediol	3.10.2	
Copper	1.9	
1,3-DCP	3.10.1	
Deoxynivalenol	5.3.8	
1,3-dichloro-2-propanol	3.10.1	
Dioxins	3.8	8
Ethylcarbamate	4.11.1	
Fumonisins	5.4.1	
HT-2 toxin	5.3.1	
Iron	1.10	
Lead	1.11	3
3-MCPD	3.10.2	
Mercury	1.13	5
Monochloromethane	3.15	
3-monochloropropane-1,2-diol	3.10.2	
Ochratoxins	5.2	11
Patulin	5.6.1	12
Polychlorobiphenyls	3.4	
Radionuclides	8	
T-2 toxin	5.3.1	
Tin	1.16	7
Vinylchloride	3.1.5	
Zearalenone	5.4.3	13
Zinc	1.18	

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD

SCHEDULE I - MAXIMUM AND GUIDELINE LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

EXPLANATORY NOTES

Code nr.: The codes for food commodities are according to the food and feed categorization system

adopted in the GSCTF, as mentioned in Annex V.

The codes for substances are derived from the coding system mentioned in Annex IV of the

GSCTF.

Definition: Definition of the contaminant in the form to which the ML applies or which may or should

be analysed in commodities.

Reference: references, e.g. to JECFA or CCFAC meetings in which the contaminant was discussed,

(ref.) characterised by the year in which the meeting took place and/or the number of the

meeting.

Step: Step in the Codex Procedure for developing standards; see the Codex Procedural

Manual. The term CXL is used for a definitive Codex Standard.

suffix: Note accompanying a ML or GL, used to specify the application or the future

revision of the ML. E.g. specific residue definitions can be mentioned by abbreviations here.

See also Qualification of MLs.

synonym: symbols, synonyms, abbreviations, scientific descriptions and identication codes used to

define the contaminant.

Toxicology: Toxicological advice about the maximum acceptable or tolerable intake level of the

contaminant for humans, expressed in milligrammes (mg) or microgrammes (mcg or µg) per

kg body weight (bw).

Type: Refers to type of maximum level, e.g. ML or GL. See the definitions in the preamble of the

GSCTF

Qualification of MLs

(*) At or about the limit of determination

C In canned products only

Fat soluble contaminant (Further provisions about the application of the ML may be

necessary)

R Under review T Temporary

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

1.3 Arsenic

Synonym: As

Toxicology: PTWI 15 mcg/kg bw for inorganic arsenic

Reference: JECFA 1983, 1988

Definition: arsenic, total (As-tot) when not otherwise mentioned; or inorganic arsenic (As-in), or other specification

Commodity/ Code	Product Name	Level Suf mg/kg	fix Type	Step/ Status	Committee	Reference, Standard	Notes, remarks
	Cereals* Pulses* Legumes*				CPL 94 CPL 94 CPL 94		* Development of MLs discontinued * " * "
	Edible fats and oils Fruit juices and nectars Cocoa butters Chocolate Other cocoa products Vinegar Natural mineral water	0.1 0.2 0.5 0.5 1.0 1 0.05#	ML ML ML ML ML ML	CXL CXL CXL CXL CXL CXL		162-87* 108-81, rev.1	* regional European Standard # to be changed to 0.01

Notes and remarks

General

A position document CX/FAC 99/22 was last discussed in CCFAC 1999; see ALINORM 99/12A, para. 137.

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

1.6 Cadmium

Synonym: Cd

Toxicology: PTWI 7 mcg/kg bw
Reference: JECFA 1988, 2000 (55)
Definition: cadmium, total

Commodity/ Code	Product Name	Level Suffix mg/kg	Туре	Step/ Status	Committee s	Reference, Standard	Notes, remarks
	Cereals*	0.1	ML	CXL	CPL, FAC 01		* excl. bran, germ, wheat grain, rice
	Pulses*	0.1	ML	CXL	CPL, FAC 01		* does not include peanut
	Legumes*	0.1	ML	CXL	CPL, FAC 01		* excl. soybean
	Fruit	0.05	ML	5#	FAC 01		# See Alinorm 03/3, para. 20
	Vegetables, excl. tomatoes and *	0.05	ML	5#	FAC 01		* see other mentioned vegetables
	Leafy vegetables, fresh herbs,	0.2	ML	5#	FAC 01		· ·
	Fungi, celeriac	0.2	ML	5#	FAC 01		
	Potatoes*, stem & root vegetables**0.1		ML	5#	FAC 01		* peeled ** excl. celeriac
	Wheat grain and rice*	0.2	ML	5#	FAC 01		* incl. bran and germ
	Soybeand and peanuts	0.2	ML	5#	FAC 01		Ğ
	Meat of cattle, poultry, pig, sheep	0.05	ML	5#	FAC 01		
	Meat of horse	0.2	ML	5#	FAC 01		
	Liver of cattle, poultry, pig, sheep	0.5	ML	5#	FAC 01		
	Kidney of cattle, poultry, pig, sheep	1.0	ML	5#	FAC 01		
	Crustaceans*	0.5	ML	5#	FAC 01		*excl. lobster & brown meat from crab
	Molluscs	1.0	ML	5#	FAC 01		

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

1.11 Lead

Synonym: Pb

Toxicology: PTWI 25 mcg/kg bw per week Reference: JECFA 1972, 1978, 1987, 1993

Definition: lead, total

Commodity/ Code	Product Name	Level Suf mg/kg	fix Type	Step/ Statu	Committee S	Reference, Standard	Notes, remarks
FC1 FP9 FS12 FB18	Fruit, except	0.1	ML	CXL	FAC 00		
FT26 F130	Small fruit and berries	0.2	ML	CXL	FAC 00		
VA 35 VO50 VC45 VR75	Vegetables, except* #	0.1	ML	CXL	FAC 00		* see other mentioned vegetables and product codes # includes potatoes as peeled p.
VB 40	Brassica, except kale	0.3	ML	CXL	FAC 00		# illelidies potatoes as peeled p.
VL 53	Leafy vegetables, except spinach	0.3	ML	CXL	FAC 00		
C 81	Cereal grains	0.2	ML	CXL	FAC 00		
VD 70	Pulses	0.2	ML	CXL	FAC 00		
VP 60	Legume vegetables	0.2	ML	CXL	FAC 00		
MM97 PM100	Meat of cattle, pig, sheep, poultry	0.1	ML	CXL	FAC 00		
MF 97 PF 111	Fat from meat, poultry	0.1	ML	CXL	FAC 00		
MO 97 ML 107	Edible offal of cattle, pig, poultry Milk* 1) 2)	0.5 0.02 R	ML ML	CXL CXL	FAC 00 FAC 00		* also sec. milk products, as
consumed.	Will 1) 2)	0.02 K	IVIL	CAL	FAC 00		also sec. Illik products, as
FM 183	milk fat 2)	0.1 R	ML	CXL	FAC 00		
FF 269	wine 3)	0.20	ML	CXL	FAC 00		
LM unspec.	Infant formulae	0.02	ML	CXL	FAC 00		
WF115 VD120 WS 125	Fish * #	0.2	ML	6	FAC 01		* as fish muscle # comments asked
WC 143	Crustaceans*	0.5	ML	6	FAC 01		
IM 151	Molluscs	1.0	ML	6	FAC 01		

CX/AF 02/5-Appendix I						<u> 14</u>	
JF 175	Fruit juices*	0.05	ML	CXL	FAC 01		* ready to drink; includes nectars

Notes and remarks

Further notes and MLs to be incorporated (e.g. situation regarding lead MLs in commodity standards not covered here yet)

The CAC agreed (ALINORM 01/41, para. 124) that the CCFAC should develop a Code of Practice on the prevention and reduction of lead contamination in food and recommended that the FAO Guidelines on lead-soldered cans could be useful in this regard.

- 1) 2)
- For dairy products, an appropriate concentration factor should apply.

 The 2001 CAC requests reevaluation of the lead MLs in milk and milk fat (ALINORM 01/41, para. 121)
- 3) The OIV requested special consideration to be given to levels of lead in wines that had been stored for long periods of time (ALINORM 01/41).

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINE LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

1.13 Mercury

Synonym: Hg

Toxicology: PTWI 5 mcg/kg bw total mercury, of which no more than 3.3 mcg/kg bw as methylmercury

Reference: JECFA 1972, 1978, 1988, 1999, (2002?)

Definition: Specified per product and per standard as total mercury (tm) or methylmercury (mm)

Commodity/ Code	Product Name	Level mg/kg	Suffix 3	Туре	Step/ Statu	Committee s	Reference, Standard	Notes, remarks
WF 115, except WD 120, except WS 125, except		0.5	mm	GL	CXL	CCFFP CCFAC *	CAC/GL 7-91	(1) (3); *: 92, 94,00
WS 131, 132 WF 865	Predatory fish, such as shark, tuna, swordfish, pike and others (2)	1.0	mm	GL	CXL	CCFFP	CAC/GL 7-91	(1), (2) (3)
DW	Natural mineral water	0.001 r	ng/l tm	ML	CXL	CCNMW C-STA	N 108-81* * Rev.	1 -1997

Notes and remarks

General: Mercury is a naturally occurring element which can be present in foodstuffs by natural causes; elevated levels can occur due to e.g. environmental contamination by industrial or other uses of mercury. No CCFAC position document available. See also remark 4.

- (1) The Guideline levels are intended for methylmercury in fresh or processed fish and fish products moving in international trade.
- The CGLs for methylmercury in fish were adopted by the CAC-19 in 1991, on the understanding that the levels would be kept under review by the CCFAC as well as the CCFFP, especially as to the identification of predatory species of fish to which the higher GL applies.
- The 1992 CCFAC informed the CAC and the CCFFP that the recommended GLs for mercury in fish referred to total mercury rather than methylmercury.

 The 20th CAC (1993) decided to maintain the GLs for methylmercury in fish as previously adopted, while recommending that the establishment of corresponding GLs for total mercury in fish be considered by the CCFAC at its next meeting. The 26th CCFAC (1994) noted that analysis of total mercury was generally adequate to ensure that GLs for methylmercury were not exceeded and decided that the establishment of GLs for total mercury in fish was not necessary. The 29th CCFAC noted that the 43rd CXEXEC had recommended that the CCFAC initiate a new risk analysis on mm. It was decided to defer any decision on the question of GLs based on

<u>CX/AF 02/5-Appendix I</u> 16

mm or tm until JECFA had performed the risk assessment. The 53rd JECFA (1999) maintained the existing PTWI for mm and recommended that mm be re-evaluated in 2002 when a new information on the cohort in one of the studies could be assessed and possibly other new relevant data could be available. The 53rd JECFA also recommended that the nutritional benefits of fish consumption are weighed against the possibility of harm when limits on mm concentrations in fish or on fish consumption are being considered. The 32nd CCFAC(2000) took note of these recommendations.

(4) The draft Code of Practice for Source Directed Measures to Reduce Contamination of Food with Chemicals (ALINORM 01/12A, Appendix XIII, was adopted by the 24th CAC (2001), with an amendment to paragraph 3 of the introduction.

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

1.16 Tin

Synonym: Sr

Toxicology: PTWI 14 mg/kg bw per week for inorganic tin

Reference: JECFA 1988, 2000 (55)

Definition: tin, total (Sn-tot) when not otherwise mentioned; or inorganic tin (Sn-in), or other specification

Commodity/ Code	/Product Name	Leve l mg/kg	Suffix	Туре	Step/ Statu	Committee s	Reference, Standard	Notes, remarks
	Liquid canned foods Solid canned foods	200 250	C C	ML ML	5 5	FAC 99, 01 FAC 99, 01		1)
	Fruit juices and nectars, except Apple, grape, blackcurrant, small fr. j/n	200 150	R R	ML ML	CXL CXL			1) 1)

Notes and remarks

General

A position document on tin (CX/FAC 98/24) was last discussed in CCFAC 1998; see also ALINORM 99/12A, para. 127-131.

1) The 23rd CAC (1999) held the proposed draft MLs at step 5, pending the evaluation by JECFA in 2001.

The 55th JECFA maintained the existing PTWI and reiterated that limited human data available indicate that concentrations of 150 mg/kg tin in canned beverages and 250 mg/kg in other canned foods may produce acute manifestations of gastric irritation in certain individuals.

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

3.8 **Dioxins**

Synonym: chlorinated dibenzodioxins and -furans

Toxicology: PTMI 70 pg TEQ/kg bw/month (including dioxin like PCBs)

Reference: JECFA, 2001 Definition: dioxins, total

Commodity/Product Code Name

Level Suffix Type Step/ Committee mg/kg

Status

Reference, Standard

Notes, remarks

Notes and remarks

To be prepared by NL.

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

5.1 Aflatoxins

Synonym: Abbreviations used are AFB, AFG, AFM, with numbers, to designate specific compounds; AF-tot for the total (see def.).

Toxicology: Aflatoxins are carcinogenic for animals and probably also for humans. Exposure should be restricted to a minimum, without threatening an adequate

food supply. The carcinogenic potency has been assessed by the JECFA.

Reference: JECFA 1987, 1997, 2001

Definition: Depending on the commodity, the contaminant is defined as aflatoxins total (B1 +B2 + G1 + G2), or (in milk) as the metabolite AFM1.

Commodity/ Code	/Product Name	Level mcg/kg	Suffix	Туре	Step/ Status	Committee s	Reference, Standard	Notes, remarks
SO 703	Peanuts, raw Peanuts, processed	15	AF-tot	ML	CXL	FAC 88-98	CS 209-99	1 1
TN 675	Pistachio nuts					FAC 02		Discussion Paper CX/FAC 02/22
DF 297 FAC	Figs, dried					FAC 94		Information was asked by the 1994
GC 81 GC 645	Cereals Corn (maize)					FAC 88-91		4
ML 106	Milk	0.5	AFM1	ML	CXL	FAC 88-01		2
	Animal Feedingstuffs					FAC 87-94	RCP 45-97	3

Notes and remarks

General

The 23rd CCFAC (1991) decided to discontinue the development of a ML for aflatoxins in foods in general, and to discuss the problems on a commodity basis.

It is acknowledged that for primary plant products the aflatoxin contamination is often not homogenous and a sampling plan is necessary to assure reasonable application of MLs. A general position paper on aflatoxins in food and feeds (CX/FAC 97/16) was presented to the 1997 CCFAC.

- 1. The 1994 CCCPL decided not to proceed with the proposed GL for processed peanuts and to advance the proposed GL for raw peanuts (intended for further processing), associated with a specific sampling plan. It is assumed that raw peanuts are the major commodity in international trade. The 49th JECFA (1997) evaluated hypothetical standards of 10 and 20 mcg/kg AFB in peanuts and concluded that the higher standard would not result in any observable difference in rates of liver cancer. As a result of this evaluation, the 1998 CCFAC (discussing about options of 10 and 15 mcg/kg as a ML for AF-total in peanuts), decided to propose 15 mcg/kg as ML.
- 2. The 24th CCFAC (1993) decided to stop the development of a specific standard for AFM1 in milk destined for use in baby foods.

 The CCFAC has discussed 2 options for a standard for AFM1 in milk: 0.05 mcg/kg and 0.5 mcg/kg. At the request of the 32nd CCFAC (2000), the 56th JECFA (2001) evaluated the exposures and cancer risks associated with these 2 options and concluded that the additional risks for liver cancer for the higher ML are very small. As a result, 0.5 mcg/kg was forwarded as proposed ML at step 8 by the 2001 CCFAC. The 2001 CAC adopted this proposed draft ML, noting that data supporting the lower level, if and when available, could be examined by the CCFAC at a future meeting when necessary.

 It is acknowledged that the AFM1 level in milk is related to the AFB1 level in the animal feed. See note 3.
- 3. The 1994 CCFAC decided to discontinue the establishment of GLs for AFB1 in supplementary feedingstuffs for milk-producing animals (previously proposed at the level of 5 mcg/kg), based on the assumption that the relationship between aflatoxins in milk and feeds is not (completely) clear and that there is not much international trade in (composite) supplementary feedingstuffs. International trade mostly is in the form of individual commodities which can be used as feed components in various quantities, directed to other feed uses than milk producing animals, or to other uses in general, or be decontaminated etc. Therefore, a Code of Practice was developed (and forwarded by the 1997 CCFAC to the CAC for adoption at step 8).
- 4. Corn was included in a Technical Consultation on sampling plans for aflatoxins in commodities. See FAO Food and nutrition Paper 55 (Rome, 1993).

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

5.2 Ochratoxins

Synonym: Ochratoxins include a number of related mycotoxins (A, B, C and their esters and metabolites), the most important one being ochratoxin A,

abbreviated here as OTA.

Toxicology: PTWI 100 ng/kg bw for OTA

Reference: JECFA 37 (1990), 44 (1995), 56 (2001), [2004]

Definition: ochratoxin A (OTA)

Commodity/ Code	Product Name	Level mcg/k		Type Status	-	Committee Standa	Notes, remarks
GC 640, 650, 654	Wheat, barley, rye	5	*	ML	5	FAC 91-02	1) * includes derived products

Notes and remarks

General

Ochratoxin A is the major compound of a group of chemically related mycotoxins produced by species of the genera *Aspergillus* and *Penicillium*. OTA contamination is commonly found in various cereals, some pulses, coffee, cocoa, figs, nuts and coconut products. It can also be transferred through the feed to animal products and concentrates especially in the kidney, but may also be found in meat and milk. Most OTA is however converted to the less harmful ochratoxin-α in the rumen of ruminants. OTA is a nephrotoxic mycotoxin, which is carcinogenic to rodents and has also teratogenic, immunotoxic and possibly neurotoxic properties. It has been associated with Balkan Endemic Nephropathy.

The situation regarding ochratoxin has been reviewed in a position paper (last version CX/FAC 99/14).

1. A Code of Practice for the prevention of mycotoxin contamination in cereals is being prepared (CX/FAC 02/21, per nov. 2001 at step 3), which includes an annex on OTA.

<u>CX/AF 02/5-Appendix I</u> 22

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

5.6.1 Patulin

Synonym:

Toxicology: PMTDI 0.4 mcg/kg bw Reference: JECFA 44 (1995)

Definition: patulin

Commodity Code	/Product Name	Level Suffix mcg/kg	Type Status	-	Committee Reference, Standard	Notes, remarks
JF 226 ingredient	Apple juice*	50	ML	6	FAC 97-02	1); 2); * includes apple juice as in other beverages

Notes and remarks

General

Patulin is a low molecular weight hemiacetal lactone mycotoxin produced by species of the genera Aspergillus, Penicillium and Byssochlamys. The major sources of patulin

15. contamination are apples with brown rot and blue mould. Because patulin does not spread much from spoilt tissue, the main human exposure can be expected from processed products, like apple juice and apple sauce, in which the contamination is not visible. Because fermentation destroys patulin, it is not normally present in cider and perry, unless unfermented apple juice has been added after fermentation.

Patulin may also be a contaminant of soft fruits, some vegetables, barley, wheat and corn.

The PMTDI was set by applying a safety factor of 100 from the lowest NOAEL. Potential health problems related to patulin are due to immunotoxic, neurotoxic, mutagenic, carcinogenic and possible adverse gastrointestinal effects observed in animals. Patulin is mostly eliminated within a few days after ingestion.

- 16. The situation regarding patulin has been reviewed in a position paper (last version CX/FAC 99/14).
- 1. A Code of Practice for the prevention of patulin contamination in apple juice and apple juice ingredients in other beverages is being developed (last version CX/FAC 02/20).
- 2. As an alternative ML, a level of 25 mcg/kg has been discussed within the CCFAC and the CAC. Because consensus could not be reached, the 2001 CAC returned the draft ML to step 6 for further consideration by the CCFAC.

CODEX ALIMENTARIUS - GENERAL STANDARD FOR CONTAMINANTS AND TOXINS IN FOOD SCHEDULE 1 - MAXIMUM AND GUIDELINES LEVELS FOR CONTAMINANTS AND TOXINS IN FOOD

5.4.3 Zearalenone

Synonym: Zearalenone is the most important of a group of related mycotoxins and relevant metabolites.

It is abbreviated here as ZEN. A metabolite of ZEN, Zeranol (ZAL) is used as veterinary drug.

Toxicology: PMTDI 0.5 mcg/kg bw Reference: JECFA 53 (1999)

Definition: Zearalenone for residues of the mycotoxin in plant products;

zeranol for residues of the veterinary drug in animal products.

Commodity/Product		Level	evel Suffix Type Step/ Committee Reference, Not		Notes, remarks				
Code Name		mcg/k	cg/kg Status Standard						
	Cattle liver Cattle muscle	1) 1)	10 2	ZAL ZAL	ML* ML*	CXL CXL	RVDF RVDF		* based on use as veterinary drug

Notes and remarks

General

Zearalenone is the most important of a group of resorcyclic acid lactone mycotoxins, produced by several species of *Fusarium* moulds.

It is found worldwide in a number of cereal crops and also in derived products like beer. It has been implicated in numerous incidents of mycotoxicosis in farm animals, especially pigs. ZEN is rapidly metabolized and excreted in animals; residuesof this mycotoxin in animal products are probably not significant from a health point of view. A metabolite of ZEN, α -zearalanol (zeranol, abbreviated here as ZAL) is however relevant relating to its potential use as a veterinary drug. Also β -zearalanol (taleranol) has hormonal activity. Besides these substances which can be used as anabolic growth promotors, also α - and β -zearalanol (ZEL) and zearalanone (ZAN) are mentioned as possibly occurring metabolites of or co-occurring substances with ZEN.

The PMTDI for ZEN was set by applying a safety factor of 100 from the lowest NOAEL, related to the estrogenic effect in pigs. ZAL has an ADI of 0,5 mcg/kg bw (ref. JECFA 26, 27 and 32)

17. The situation regarding ZEN has been reviewed in a position paper (last version CX/FAC 00/19). Preliminary intake calculations indicate values well below the PMTDI. It is mentioned however that further action seems required to reduce the levels of ZEN in risk products (especially maize containing products) for especially children with a high intake of these products. The 31st CCFAC (1999) agreed that, recognizing that there were no identified trade problems with ZEN, a Codex ML was not necessary for the time being.

<u>CX/AF 02/5-Appendix I</u> 24

18.

19. ZEN is incorporated with a specific Annex in the Code of Practice for the prevention of mycotoxin contamination in cereals, which is being developed (CX/FAC 02/21, per nov. 2001 in step 3).

1) Residues of ZEN and ZAL together in an animal product may be regarded as evidence that the animal feed was contaminated with ZEN. In order to distinguish between contamination of the feed with mycotoxins of the ZEN group or use of ZAL as veterinary drug, it may be necessary to determine the relative proportions of the different residues, e.g. as ZEN + α- and β-ZEL against ZAL. A ratio of 5 or more probably indicates only contamination by mycotoxins.

APPENDIX II

LIST OF MAXIMUM RESIDUE LIMITS FOR VETERINARY DRUGS IN FOODS

(AT SEVERAL STAGES OF EXAMINATION BY THE CCRVDF AND THE CODEX ALIMENTARIUS COMMISSION FROM CODEX DATABASE ON RESIDUES FOR VETERINARY DRUGS IN FOODS)

STATUS OF MAXIMUM RESIDUE LIMITS FOR VETERINARY DRUGS IN FOODS

Abamectin

JECFA Evaluation 45 (1995), 47 (1996)

ADI 0-2 μ g/kg body weight (1997) Established for the sum of abamectin and (Z)-8,9 isomer **Residue** Avermectin B1a.

Species	Tissue	MRL (µg/kg)	Step	JECFA	ALINORM
Cattle	Liver	100	8	47	10V, 11IV, 12IV, 13II
Cattle	Kidney	50	8	47	10V, 11IV, 12IV, 13II
Cattle	Fat	100	8	47	10V, 11IV, 12IV, 13II

Albendazole

JECFA Evaluation 34 (1989)

ADI 0-50 μg/kg body weight (1989)

Residue Except milk, 2-aminosulfone metabolite; Milk, not yet identified.

Species	Tissue	MRL (µg/kg)	Step	JECFA	ALINORM
Not specified	l Muscle	100	(1993)	34	
Not specified	l Liver	5000	(1993)	34	
Not specified	l Kidney	5000	(1993)	34	
Not specified	l Fat	100	(1993)	34	
Not specified	l Milk	100	(1993)	34	

Azaperone

JECFA Evaluation 38 (1991), 43 (1994), 50 (1998), 52(1999)

ADI 0-6 μ g/kg body weight (1998)

Residue Sum of azaperone and azaperol.

Species Pig	Tissue Muscle	MRL (μg/kg) 60	Step (1999)	JECFA 38, 43, 50	ALINORM
Pig	Liver	100	(1999)	38, 43, 50	
Pig	Kidney	100	(1999)	38, 43, 50	
Pig	Fat	60	(1999)	38, 43, 50	

Benzylpenicillin/Procaine benzylpenicillin

JECFA Evaluation 50 (1998)

ADI 30 μg-penicillin/person/day (1998) Residues of benzylpenicillin and procaine **Residue** Benzylpenicillin.

Species Cattle	Tissue Muscle	MRL (µg/kg	g)		Step (1999)	JECFA 50	ALINORM
Pig	Muscle	50			(1999)	50	
Chicken	Muscle	50		1/	(1999)	50	
Cattle	Liver	50			(1999)	50	
Pig	Liver	50			(1999)	50	
Chicken	Liver	50		1/	(1999)	50	
Cattle	Kidney	50			(1999)	50	
Pig	Kidney	50			(1999)	50	
Chicken	Kidney	50		1/	(1999)	50	
Cattle	Milk	4	$(\mu g/l)$		(1999)	50	

Procaine benzylpenicillin is also used in horses, sheep, turkeys, rabbits, quail and pheasants. Due to the lack of

information, the 50th JECFA could not establish MRLs for these species.

1/ Applies to procaine benzylpenicillin only.

Bovine somatotropins

JECFA Evaluation 40 (1992), 50 (1998)

ADI Not specified (1992)

Residue Not applicable.

Species	Tissue	$MRL (\mu g/kg)$		Step	JECFA	ALINORM
Cattle	Muscle	not specified	1/	8	40, 50	
Cattle	Liver	not specified	1/	8	40, 50	
Cattle	Kidney	not specified	1/	8	40, 50	
Cattle	Fat	not specified	1/	8	40, 50	
Cattle	Milk	not specified	1/	8	40, 50	

Consideration of the adoption of all draft MRLs suspended by the 22nd Session of the Codex Alimentarius

Commission pending the reevaluation of scientific data by JECFA/CCRVDF and the examination of the application

of "other legitimate factors" in relation to BST by the Codex Committee on General Principles.

The Commission at its 23rd Session decided to hold the MRLs at Step 8 in accordance with the provisions

contained in the introductory paragraphs of the Uniform Procedure for the Elaboration of Codex Standards and

Related Texts.

ADI "not specified" means that available data on the toxicity and intake of the veterinary drug indicate a large

margin of safety for consumption of residues in food when the drug is used according to good practice in the use of

veterinary drugs. For that reason, and for the reasons stated in the individual evaluation, the JECFA concluded that

use of the veterinary drugs does not represent a hazard to human and that there is no need to specify a numerical

ADI.

1/ MRL "not specified" means that available data on the identity and concentration of residues of the veterinary

drug in animal tissues indicate a wide margin of safety for consumption of residues in food when the drug is used

according to good practice in the use of veterinary drugs. For that reason, and for the reasons stated in the

individual evaluation, the JECFA concluded that the presence of drug residues in the named animal product does not

present a health concern and that there is no need to specify a numerical MRL.

Carazolol

JECFA Evaluation 38 (1991), 43 (1994), 52 (1999)

ADI 0-0.1 μ g/kg body weight (1994) ADI based on the acute pharmacological effects of **Residue** Carazolol.

Species	Tissue	$MRL (\mu g/kg)$		Step	JECFA	ALINORM
Pig	Muscle	5	1/	8	38, 43, 52	7V,8V,9IV,10II,11IV, 12IV,13II
Pig	Liver	25		8	38, 43, 52	7V,8V,9IV,10II,11IV, 12IV,13II
Pig	Kidney	25		8	38, 43, 52	7V,8V,9IV,10II,11IV, 12IV,13II
Pig	Fat/Skin	5	1/	8	38, 43, 52	7V,8V,9IV,10II,11IV, 12IV,13II

All MRLs were returned to Step 7 by the 22nd Session of the Codex Alimentarius Commission due to concerns

that the concentration of residues at the injection site may exceed the ADI.

Recognizing that high level residues at the injection site could pose health risks, the CCRVDF-11 agreed to retain

all draft MRLs at Step 7 and to request JECFA to review this issue based on the principles outlined in the paper

contained in CL 1998/4-RVDF.

1/ The concentration at the injection site tow hours after treatment may result in an intake that exceeds the acute

RfD and therefore, an appropriate withdrawal period should be applied (13th CCRVDF).

Carbadox

JECFA Evaluation 36 (1990)

ADI Limited acceptance (1990)

Residue Quinoxaline-2-carboxylic acid.

Species	Tissue	MRL (µg/kg)	Step	JECFA	ALINORM
Pig	Muscle	5	(1993)	36	
Pig	Liver	30	(1993)	36	

Ceftiofur

JECFA Evaluation 45 (1995), 48 (1997)

ADI 0-50 μ g/kg body weight (1995)

Residue Desfuroylceftiofur.

Species Cattle	Tissue Muscle	MRL (μg/k 1000	g)	Step (1999)	JECFA 45, 48	ALINORM
Pig	Muscle	1000		(1999)	45, 48	
Cattle	Liver	2000		(1999)	45, 48	
Pig	Liver	2000		(1999)	45, 48	
Cattle	Kidney	6000		(1999)	45, 48	
Pig	Kidney	6000		(1999)	45, 48	
Cattle	Fat	2000		(1999)	45, 48	
Pig	Fat	2000		(1999)	45, 48	
Cattle	Milk	100	$(\mu g/l)$	(1999)	45, 48	

Chlortetracycline/Oxytetracycline/Tetracycline

JECFA Evaluation 45 (1995), 47 (1996), 50 (1998)

ADI 0-30 μ g/kg body weight (1998) Group ADI for chlortetracycline, oxytetracycline and **Residue** Parent drugs, singly or in combination.

Species Cattle	Tissue Muscle	MRL (μg/k 200	(g)		Step 8	JECFA 45, 47, 50	ALINORM 9V, 10V, 11IV, 12IV, 13II
Pig	Muscle	200			8	45, 47, 50	9V, 10V, 11IV, 12IV, 13II
Sheep	Muscle	200			8	45, 47, 50	9V, 10V, 11IV, 12IV, 13II
Poultry	Muscle	200			8	45, 47, 50	9V, 10V, 11IV, 12IV, 13II
Fish	Muscle	200	T	1/3/	8	50, 54	11V, 12IV, 13II
Giant prawn	Muscle	200		1/2/	8	50	11V, 12IV, 13II
Cattle	Liver	600			8	45, 47, 50	9V, 10V, 11IV, 12IV, 13II
Pig	Liver	600			8	45, 47, 50	9V, 10V, 11IV, 12IV, 13II
Sheep	Liver	600			8	45, 47, 50	9V, 10V, 11IV, 12IV, 13II
Poultry	Liver	600			8	45, 47, 50	9V, 10V, 11IV, 12IV, 13II
Cattle	Kidney	1200			8	45, 47, 50	9V, 10V, 11IV, 12IV
Pig	Kidney	1200			8	45, 47, 50	9V, 10V, 11IV, 12IV
Sheep	Kidney	1200			8	45, 47, 50	9V, 10V, 11IV, 12IV
Poultry	Kidney	1200			8	45, 47, 50	9V, 10V, 11IV, 12IV
Cattle	Milk	100			8	45, 47	9V, 10V, 11IV, 12IV, 13II
Sheep	Milk	100			8	45, 47	9V, 10V, 11IV, 12IV, 13II
Poultry	Eggs	400			8	45, 47, 50	9V, 10V, 11IV, 12IV

See also oxytetracycline.

^{1/} Applies only to oxytetracycline.

^{2/} Penaeus monodon. The current Codex MRL at 100 μg/kg in giant prown for oxytetracycline adopted in 1997.

^{3/} The 54th JECFA confirmed the previous recommendation. Residue data and a validated analytical method are

required for evaluation in 2002 (54th JECFA). The current Codex MRL at 100 μ g/kg in fish for oxytetracycline adopted in 1993.

Clenbuterol

JECFA Evaluation 47 (1996)

ADI 0-0.004 μ g/kg body weight (1996) Due to the potential for abuse of this drug, the MRLs **Residue** Clenbuterol.

Species Cattle	Tissue Muscle	MRL (μg/kg) 0.2	Step 5	JECFA 47	ALINORM 10VI, 11VI, 12VI, 13V
Horse	Muscle	0.2	5	47	10VI, 11VI, 12VI, 13V
Cattle	Liver	0.6	5	47	10VI, 11VI, 12VI, 13V
Horse	Liver	0.6	5	47	10VI, 11VI, 12VI, 13V
Cattle	Kidney	0.6	5	47	10VI, 11VI, 12VI, 13V
Horse	Kidney	0.6	5	47	10VI, 11VI, 12VI, 13V
Cattle	Fat	0.2	5	47	10VI, 11VI, 12VI, 13V
Horse	Fat	0.2	5	47	10VI, 11VI, 12VI, 13V
Cattle	Milk	0.05	8	47	10VI, 11VI, 12V, 13II

Due to the potential for abuse of this drug, the MRLs are recommended only when associated with the nationally

approved therapeutic use, such as for tocolysis or as an adjunct therapy in respiratory disease.

Closantel

JECFA Evaluation 36 (1990), 40 (1992)

ADI 0-30 μg/kg body weight (1992)

Residue Closantel.

Species Cattle	Tissue Muscle	MRL (μg/kg) 1000	Step (1993)	JECFA 36, 40	ALINORM
Sheep	Muscle	1500	(1993)	36, 40	
Cattle	Liver	1000	(1993)	36, 40	
Sheep	Liver	1500	(1993)	36, 40	
Cattle	Kidney	3000	(1993)	36, 40	
Sheep	Kidney	5000	(1993)	36, 40	
Cattle	Fat	3000	(1993)	36, 40	
Sheep	Fat	2000	(1993)	36, 40	

Cyfluthrin

JECFA Evaluation 48 (1997)

ADI 0-20 μg/kg body weight (1997)

Residue Cyfluthrin.

Species Cattle	Tissue Muscle	MRL (μg/kg) 20	Step 8	JECFA 48	ALINORM 11V, 12IV, 13II
Cattle	Liver	20	8	48	11V, 12IV, 13II
Cattle	Kidney	20	8	48	11V, 12IV, 13II
Cattle	Fat	200	8	48	11V, 12IV, 13II
Cattle	Milk	40	8	48	11V, 12IV, 13II

There are a number of MRLs adopted for cyfluthrin in or on both plant and animal products (see Codex

Alimentarius, Volume 2B).

The Codex Committee on Pesticide Residues at its 31st Session agreed to support the Draft MRL in cattle milk at 40

μg/l to replace the Codex MRL at 0.01 mg/kg adopted by the Commission.

The MRLs were advanced to Step 8 with the understanding that when new information becomes available, it should

be sent to JECFA for evaluation (13th CCRVDF).

Cyhalothrin

JECFA Evaluation 54 (2000)

ADI 0-2 μg/kg body weight (2000) temporary ADI 1/

Residue Cyhalothrin.

Species Cattle	Tissue Muscle	MRL (μg/k 20	g) T		Step 5/8	JECFA 54	ALINORM 13III
Pig	Muscle	20	T		5/8	54	13III
Sheep	Muscle	20	T		5/8	54	13III
Cattle	Liver	20	T		5/8	54	13III
Pig	Liver	20	T		5/8	54	13III
Sheep	Liver	20	T	2/	5/8	54	13III
Cattle	Kidney	20	T		5/8	54	13III
Pig	Kidney	20	T		5/8	54	13III
Sheep	Kidney	20	T		5/8	54	13III
Cattle	Fat	400	T		5/8	54	13III
Pig	Fat	400	T		5/8	54	13III
Sheep	Fat	400	T		5/8	54	13III
Cattle	Milk	30	T		5/8	54	13III

All MRLs are temporary because the ADI is temporary.

^{1/} Results of appropriate studies to establish a no-observed-effect level (NOEL) for neurobehavioral effects in

laboratory animals are required for evaluation in 2002 (54th JECFA).

^{2/} Results of the validation of the analytical method to demonstrate a limit of quantification of $0.01\,$ mg/kg (sheep

liver) are required for evaluation in 2002 (54th JECFA).

Danofloxacin

JECFA Evaluation 48 (1997)

ADI 0-20 μ g/kg body weight (1997)

Residue Danofloxacin.

Species Cattle	Tissue Muscle	MRL (μg/kg) 200	Step (2001)	JECFA 48	ALINORM
Pig	Muscle	100	(2001)	48	
Chicken	Muscle	200	(2001)	48	
Cattle	Liver	400	(2001)	48	
Pig	Liver	50	(2001)	48	
Chicken	Liver	400	(2001)	48	
Cattle	Kidney	400	(2001)	48	
Pig	Kidney	200	(2001)	48	
Chicken	Kidney	400	(2001)	48	
Cattle	Fat	100	(2001)	48	
Pig	Fat	100	(2001)	48	
Chicken	Fat	100	(2001)	48	

^{1/} Fat/skin in normal proportion.

Deltamethrin

JECFA Evaluation 52 (1999)

ADI 0-10 µg/kg body weight (1982) Established by the 1982 JMPR.

Residue Deltamethrin

Species Cattle	Tissue Muscle	MRL (μg/kg) 30	1/	Step 5	JECFA 52	ALINORM 12V, 13V
Sheep	Muscle	30	1/	5	52	12V, 13V
Chicken	Muscle	30	1/	5	52	12V, 13V
Salmon	Muscle	30	1/	5	52	12V, 13V
Cattle	Liver	50		5	52	12V, 13V
Sheep	Liver	50		5	52	12V, 13V
Chicken	Liver	50		5	52	12V, 13V
Cattle	Kidney	50		5	52	12V, 13V
Sheep	Kidney	50		5	52	12V, 13V
Chicken	Kidney	50		5	52	12V, 13V
Cattle	Fat	500		5	52	12V, 13V
Sheep	Fat	500		5	52	12V, 13V
Chicken	Fat	500		5	52	12V, 13V
Cattle	Milk	30	1/	5	52	12V, 13V
Chicken	Eggs	30	1/	5	52	12V, 13V

The MRLs were advanced to Step 5 only, pending the future evaluation of intake by JECFA (13th CCRVDF).

the analytical method.

 $^{1/\,\}text{No}$ residues were detected. MRLs are for guidance only and are based on two times the limit of quantification of

Diclazuril

JECFA Evaluation 45 (1995), 50 (1998)

ADI 0-30 μ g/kg body weight (1998)

Residue Diclazuril.

Species Sheep	Tissue Muscle	MRL (μg/kg) 500	Step (1999)	JECFA 45, 50	ALINORM
Rabbit	Muscle	500	(1999)	45, 50	
Poultry	Muscle	500	(1999)	45, 50	
Sheep	Liver	3000	(1999)	45, 50	
Rabbit	Liver	3000	(1999)	45, 50	
Poultry	Liver	3000	(1999)	45, 50	
Sheep	Kidney	2000	(1999)	45, 50	
Rabbit	Kidney	2000	(1999)	45, 50	
Poultry	Kidney	2000	(1999)	45, 50	
Sheep	Fat	1000	(1999)	45, 50	
Rabbit	Fat	1000	(1999)	45, 50	
Poultry	Fat/Skin	1000	(1999)	45, 50	

Dicyclanil

JECFA Evaluation 54 (2000)

ADI 0-7 μg/kg body weight (2000)

Residue Dicyclanil.

Species Sheep	Tissue Muscle	MRL (μg/kg) 200	Step 5	JECFA 54	ALINORM 13V
Sheep	Liver	400	5	54	13V
Sheep	Kidney	400	5	54	13V
Sheep	Fat	150	5	54	13V

Dihydrostreptomycin/Streptomycin

JECFA Evaluation 43 (1994), 48 (1997), 52 (1999)

ADI 0-50 μ g/kg body weight (1997) Group ADI for combined residues of **Residue** Sum of dihydrostreptomycin and streptomycin.

Species Cattle	Tissue Muscle	MRL (μg/k	xg)		Step (2001)	JECFA 52	ALINORM
Pig	Muscle	600			(2001)	52	
Sheep	Muscle	600			(2001)	52	
Chicken	Muscle	600			(2001)	52	
Cattle	Liver	600			(2001)	52	
Pig	Liver	600			(2001)	52	
Sheep	Liver	600			(2001)	52	
Chicken	Liver	600			(2001)	52	
Cattle	Kidney	1000			(2001)	52	
Pig	Kidney	1000			(2001)	52	
Sheep	Kidney	1000			(2001)	52	
Chicken	Kidney	1000			(2001)	52	
Cattle	Fat	600			(2001)	52	
Pig	Fat	600			(2001)	52	
Sheep	Fat	600			(2001)	52	
Chicken	Fat	600			(2001)	52	
Cattle	Milk	200	T	1/	(2001)	52	

^{1/} A validated analytical method is required for evaluation in 2001 that will quntitate both compounds in milk at a low level (52nd JECFA).

Diminazene

JECFA Evaluation 34 (1989), 42 (1994)

ADI 0-100 μg/kg body weight (1994)

Residue Diminazene.

Species Cattle	Tissue Muscle	MRL (μg/k) 500	g)		Step (1997)	JECFA 34, 42	ALINORM
Cattle	Liver	12000			(1997)	34, 42	
Cattle	Kidney	6000			(1997)	34, 42	
Cattle	Milk	150	(µg/l)	1/	(1997)	34, 42	

^{1/} Limit of quantitation of the analytical method.

Doramectin

JECFA Evaluation 45 (1995), 52 (1999)

ADI 0-0.5 μg/kg body weight (1995)

Residue Doramectin.

Species Cattle	Tissue Muscle	MRL (μ g/kg) 10		Step (1997)	JECFA 45	ALINORM
Pig	Muscle	5	1/	(2001)	52	
Cattle	Liver	100		(1997)	45	
Pig	Liver	100		(2001)	52	
Cattle	Kidney	30		(1997)	45	
Pig	Kidney	30		(2001)	52	
Cattle	Fat	150		(1997)	45	
Pig	Fat	150	1/	(2001)	52	

^{1/} High concentration of residues at the injection sites (52nd JECFA).

Eprinomectin

JECFA Evaluation 50 (1998)

ADI 0-10 μg/kg body weight (1998)

Residue Eprinomectin B1a

Species Cattle	Tissue Muscle	MRL (μg/k) 100	g)	Step 8	JECFA 50	ALINORM 11V, 12IV, 13II
Cattle	Liver	2000		8	50	11V, 12IV, 13II
Cattle	Kidney	300		8	50	11V, 12IV, 13II
Cattle	Fat	250		8	50	11V, 12IV, 13II
Cattle	Milk	20	(µg/l)	8	50	11V, 12IV, 13II

Estradiol-17beta

JECFA Evaluation 25 (1981), 32 (1987), 52 (1999)

ADI 0-0.05 μg/kg body weight (1999)

Residue Estradiol-17beta.

Species Cattle	Tissue Muscle	MRL (μg/kg) unnecessary		Step (1995)	JECFA 25, 32	ALINORM
Cattle	Muscle	not specified	1/	(a)	52	
Cattle	Liver	not specified	1/	(a)	52	
Cattle	Liver	unnecessary		(1995)	25, 32	
Cattle	Kidney	unnecessary		(1995)	25, 32	
Cattle	Kidney	not specified	1/	(a)	52	
Cattle	Fat	unnecessary		(1995)	25, 32	
Cattle	Fat	not specified	1/	(a)	52	

Previous ADI, Unnecessary (1987)

1/MRL "not specified" means that available data on the identity and concentration of residues of the veterinary

drug in animal tissues indicate a wide margin of safety for consumption of residues in food when the drug is used

according to good practice in the use of veterinary drugs. For that reason, and for the reasons stated in the

individual evaluation, the 52nd JECFA concluded that the presence of drug residues in the named animal product does

not present a health concern and that there is no need to specify a numerical MRL.

The 12th CCRVDF decided not to consider these new recommendations.

Febantel/Fenbendazole/Oxfendazole

JECFA Evaluation 38(1991), 45(1995), 50 (1998)

ADI 0-7 μg/kg body weight (1998) Group ADI.

 $\begin{tabular}{ll} \textbf{Residue} & Sum of fenbendazole, oxfendazole and oxfendazole sulphone, expressed as oxfendazole sulphone equivalents. \end{tabular}$

Species Cattle	Tissue Muscle	MRL (μg/k 100	g)	Step (1999)	JECFA 38, 45, 50	ALINORM
Pig	Muscle	100		(1999)	38, 45, 50	
Sheep	Muscle	100		(1999)	38, 45, 50	
Goat	Muscle	100		(1999)	50	
Horse	Muscle	100		(1999)	50	
Cattle	Liver	500		(1999)	38, 45, 50	
Pig	Liver	500		(1999)	38, 45, 50	
Sheep	Liver	500		(1999)	38, 45, 50	
Goat	Liver	500		(1999)	50	
Horse	Liver	500		(1999)	50	
Cattle	Kidney	100		(1999)	38, 45, 50	
Pig	Kidney	100		(1999)	38, 45, 50	
Sheep	Kidney	100		(1999)	38, 45, 50	
Goat	Kidney	100		(1999)	50	
Horse	Kidney	100		(1999)	50	
Cattle	Fat	100		(1999)	38, 45, 50	
Pig	Fat	100		(1999)	38, 45, 50	
Sheep	Fat	100		(1999)	38, 45, 50	
Goat	Fat	100		(1999)	50	
Horse	Fat	100		(1999)	50	
Cattle	Milk	100	$(\mu g/l)$	(1999)	38, 45, 50	

Sheep Milk 100 (µg/l) (1999) 38, 45, 50

Fluazuron

JECFA Evaluation 48 (1997)

ADI 0-40 μg/kg body weight (1997)

Residue Fluazuron.

Species	Tissue	MRL (µg/kg)	Step	JECFA	ALINORM
Cattle	Muscle	200	(1999)	48	
Cattle	Liver	500	(1999)	48	
Cattle	Kidney	500	(1999)	48	
Cattle	Fat	7000	(1999)	48	

Flubendazole

JECFA Evaluation 40 (1992)

ADI 0-12 μ g/kg body weight (1992)

Residue Flubendazole.

Species	Tissue	$MRL (\mu g/kg)$	Step	JECFA	ALINORM
Pig	Muscle	10	(1995)	40	
Poultry	Muscle	200	(1995)	40	
Pig	Liver	10	(1995)	40	
Poultry	Liver	500	(1995)	40	
Poultry	Eggs	400	(1995)	40	

Flumequine

JECFA Evaluation 42 (1994), 48 (1997)

ADI 0-30 μg/kg body weight (1997)

Residue Flumequine.

Species Cattle	Tissue Muscle	MRL (μg/kg) 500	2/	Step 6	JECFA 42, 48, 54	ALINORM 11V, 12IV, 13IV
Pig	Muscle	500	2/3/	6	42, 48, 54	11V, 12IV, 13IV
Sheep	Muscle	500	2/3/	6	42, 48, 54	11V, 12IV, 13IV
Chicken	Muscle	500	2/3/	6	42, 48, 54	11V, 12IV, 13IV
Trout	Muscle	500	1/2/3/	6	42, 48, 54	11V, 12IV, 13IV
Cattle	Liver	500	4/	6	42, 48, 54	11V, 12IV, 13IV
Pig	Liver	500	3/4/	6	42, 48, 54	11V, 12IV, 13IV
Sheep	Liver	500	3/4/	6	42, 48, 54	11V, 12IV, 13IV
Chicken	Liver	500	3/4/	6	42, 48, 54	11V, 12IV, 13IV
Cattle	Kidney	3000	2/	6	42, 48, 54	11V, 12IV
Pig	Kidney	3000	2/3/	6	42, 48, 54	11V, 12IV, 13IV
Sheep	Kidney	3000	2/3/	6	42, 48, 54	11V, 12IV, 13IV
Chicken	Kidney	3000	2/3/	6	48, 54	11V, 12IV, 13IV
Cattle	Fat	1000	2/	6	48, 54	11V, 12IV
Pig	Fat	1000	2/3/	6	48, 54	11V, 12IV
Sheep	Fat	1000	2/3/	6	48, 54	11V, 12IV
Chicken	Fat	1000	2/3/	6	48, 54	11V, 12IV

New toxicological data had become available that may affect the ADI since the 12th CCRVDF (13th CCRVDF)

^{1/} For muscle including skin in natural proportions.

^{2/} MRL confirmed (54th JECFA).

^{3/} Coverted from temporary to full status (54th JECFA).

^{4/} Previous recommendation was 1000 µg/kg by the 48th JECFA.

Gentamicin

JECFA Evaluation 43 (1994), 48 (1997), 50 (1998)

ADI 0-20 μg/kg body weight (1998)

Residue Gentamicin.

Species Cattle	Tissue Muscle	MRL (μg/kg) 100	Step (2001)	JECFA 43, 48, 50	ALINORM
Pig	Muscle	100	(2001)	43, 48, 50	
Cattle	Liver	2000	(2001)	43, 48, 50	
Pig	Liver	2000	(2001)	43, 48, 50	
Cattle	Kidney	5000	(2001)	43, 48, 50	
Pig	Kidney	5000	(2001)	43, 48, 50	
Cattle	Fat	100	(2001)	43, 48, 50	
Pig	Fat	100	(2001)	43, 48, 50	
Cattle	Milk	200	(2001)	43, 48, 50	

Imidocarb

JECFA Evaluation 50 (1998)

ADI 0-10 μg/kg body weight (1998)

Residue Imidocarb.

Species	Tissue	MRL (µg/kg)		Step	JECFA	ALINORM
Cattle	Muscle	300	T	(2001)	50	
Cattle	Liver	2000	T	(2001)	50	
Cattle	Kidney	1500	T	(2001)	50	
Cattle	Fat	50	T	(2001)	50	
Cattle	Milk	50	T	(2001)	50	

MRLs are temporary. Residue depletion studies in lactating and non-lactating cattle using recommended subcutaneous

doses of unlabelled imidocarb and analyzing samples using the proposed regulatory method with enzymatic digestion

are required for evaluation in 2001. If MRLs are to be recommended for sheep, a residue depletion study using the

recommended does and route of administration would be required.

Isometamidium

JECFA Evaluation 40 (1992)

ADI 0-100 μg/kg body weight (1992)

Residue Isometamidium.

Species Cattle	Tissue Muscle	MRL (μg/kg) 100	Step (1995)	JECFA 40	ALINORM
Cattle	Liver	500	(1995)	40	
Cattle	Kidney	1000	(1995)	40	
Cattle	Fat	100	(1995)	40	
Cattle	Milk	100	(1995)	40	

Ivermectin

JECFA Evaluation 36 (1990), 40 (1992)

ADI 0-1 μg/kg body weight (1992)

Residue 22,23-Dihydroavermectin B1a (H2B1a).

Species Cattle	Tissue Liver	MRL (μg/k 100	(g)		Step (1993)	JECFA 36, 40	ALINORM
Pig	Liver	15			(1993)	36, 40	
Sheep	Liver	15			(1993)	36, 40	
Cattle	Fat	40			(1993)	36, 40	
Pig	Fat	20			(1993)	36, 40	
Sheep	Fat	20			(1993)	36, 40	
Cattle	Milk	10	T	1/	5/8	54	13III

^{1/} Validation data on the analytical method and information on other routes of application to cattle to evaluate the

residues in milk are required for evaluation in 2002 (54th JECFA).

Levamisole

JECFA Evaluation 36 (1990), 42 (1994) **ADI** 0-6 μg/kg body weight (1994)

Residue Levamisole.

Species Cattle	Tissue Muscle	MRL (μg/kg) 10	Step (1997)	JECFA 36, 42	ALINORM
Pig	Muscle	10	(1997)	36, 42	
Sheep	Muscle	10	(1997)	36, 42	
Poultry	Muscle	10	(1997)	36, 42	
Cattle	Liver	100	(1997)	36, 42	
Pig	Liver	100	(1997)	36, 42	
Sheep	Liver	100	(1997)	36, 42	
Poultry	Liver	100	(1997)	36, 42	
Cattle	Kidney	10	(1997)	36, 42	
Pig	Kidney	10	(1997)	36, 42	
Sheep	Kidney	10	(1997)	36, 42	
Poultry	Kidney	10	(1997)	36, 42	
Cattle	Fat	10	(1997)	36, 42	
Pig	Fat	10	(1997)	36, 42	
Sheep	Fat	10	(1997)	36, 42	
Poultry	Fat	10	(1997)	36, 42	

Lincomycin

JECFA Evaluation 54 (2000)

ADI 0-30 μ g/kg body weight (2000)

Residue Lincomycin.

Species	Tissue	MRL (μg/k	<u> </u>		Step	JECFA	ALINORM
Cattle	Muscle	100	T	1/	5/8	54	13III
Pig	Muscle	100			5/8	54	13III
Sheep	Muscle	100	T	1/	5/8	54	13III
Chicken	Muscle	100	T	1/	5/8	54	13III
Cattle	Liver	500	T	1/	5/8	54	13III
Pig	Liver	500			5/8	54	13III
Sheep	Liver	500	T	1/	5/8	54	13III
Chicken	Liver	500	T	1/	5/8	54	13III
Cattle	Kidney	1500	T	1/	5/8	54	13III
Pig	Kidney	1500			5/8	54	13III
Sheep	Kidney	1500	T	1/	5/8	54	13III
Chicken	Kidney	1500	T	1/	5/8	54	13III
Cattle	Fat	100	T	1/	5/8	54	13III
Pig	Fat	100			5/8	54	13III
Sheep	Fat	100	T	1/	5/8	54	13III
Chicken	Fat	100	T	1/	5/8	54	13III
Cattle	Milk	150			5/8	54	13III

^{1/} Data comparable to those provided for tissues of pigs, which show that lincomycin is the major component with

significant microbiological activity in tissues of cattle, sheep, and chickens, are required for evaluation in 2002 (54th JECFA).

Melengestrol acetate

JECFA Evaluation 54 (2000)

ADI 0-0.03 μg/kg body weight (2000)

Residue Melengestrol acetate.

Species	Tissue	$MRL (\mu g/kg)$		Step	JECFA	ALINORM
Cattle	Liver	2	T	5	54	
Cattle	Fat	5	T	5	54	

All MRLs are temporary. A practical analytical method for monitoring residues of melengestrol acetate at the

recommended MRL is required for evaluation in 2002 (54th JECFA).

Scheduled for reevaluation by the 58th JECFA for a practical analytical method for monitoring residues at the

recommended MRLs (13th CCRVDF).

Moxidectin

JECFA Evaluation 45 (1995), 47 (1996), 48 (1997), 50 (1998) **ADI** 0-2 μg/kg body weight (1995)

Residue Moxidectin.

Species Cattle	Tissue Muscle	MRL (μg/kg) 20	1/2/	Step (1997)	JECFA 45, 47, 48	ALINORM
Sheep	Muscle	50		(1997)	47, 48	
Deer	Muscle	20		(1999)	45, 47, 48, 50	
Cattle	Liver	100		(1997)	45, 47, 48	
Sheep	Liver	100		(1997)	45, 47, 48	
Deer	Liver	100		(1999)	45, 47, 48, 50	
Cattle	Kidney	50		(1997)	45, 47, 48	
Sheep	Kidney	50		(1997)	45, 47, 48	
Deer	Kidney	50		(1999)	45, 47, 48, 50	
Cattle	Fat	500		(1997)	45, 47, 48	
Sheep	Fat	500		(1997)	45, 47, 48	
Deer	Fat	500		(1999)	45, 47, 48, 50	

^{1/} Very high concentration and great variation in the level of residues at the injection site in cattle over a 49 day

period after dosing.

^{2/} The 48th JECFA reconsidered the MRL but, based on the available data, maintained it.

Neomycin

JECFA Evaluation 43 (1994), 47 (1996)

ADI 0-60 μ g/kg body weight (1996)

Residue Neomycin.

Species Cattle	Tissue Muscle	MRL (μg/kg) 500	Step (1999)	JECFA 43, 47	ALINORM
Pig	Muscle	500	(1999)	43, 47	
Sheep	Muscle	500	(1999)	43, 47	
Goat	Muscle	500	(1999)	43, 47	
Chicken	Muscle	500	(1999)	43, 47	
Turkey	Muscle	500	(1999)	43, 47	
Duck	Muscle	500	(1999)	43, 47	
Cattle	Liver	15000	6(r)	52	12V, 13IV
Cattle	Liver	500	(1999)	43, 47	
Pig	Liver	500	(1999)	43, 47	
Sheep	Liver	500	(1999)	43, 47	
Goat	Liver	500	(1999)	43, 47	
Chicken	Liver	500	(1999)	43, 47	
Turkey	Liver	500	(1999)	43, 47	
Duck	Liver	500	(1999)	43, 47	
Cattle	Kidney	10000	(1999)	43, 47	
Cattle	Kidney	20000	6(r)	52	12V, 13IV
Pig	Kidney	10000	(1999)	43, 47	
Sheep	Kidney	10000	(1999)	43, 47	
Goat	Kidney	10000	(1999)	43, 47	
Chicken	Kidney	10000	(1999)	43, 47	

Turkey	Kidney	10000		(1999)	43, 47	
Duck	Kidney	10000		(1999)	43, 47	
Cattle	Fat	500		(1999)	43, 47	
Pig	Fat	500		(1999)	43, 47	
Sheep	Fat	500		(1999)	43, 47	
Goat	Fat	500		(1999)	43, 47	
Chicken	Fat	500		(1999)	43, 47	
Turkey	Fat	500		(1999)	43, 47	
Duck	Fat	500		(1999)	43, 47	
Cattle	Milk	500		6(a)	52	12V, 13IV
Cattle	Milk	500	(µg/l)	(1999)	43, 47	
Chicken	Eggs	500		(1999)	43, 47	

New toxicological information became available since the ADI had been established. The 58th JECFA will evaluates

information on the registration of injectable neomycin products and how they were used with regard to GPVD. (13th CCRVDF)

Nicarbazin

JECFA Evaluation 50 (1998)

ADI 0-400 μg/kg body weight (1998)

Residue N,N'-bis(4-nitropheyl)urea.

Species Chicken	Tissue Muscle	MRL (μg/kg) 200	1/	Step (1999)	JECFA 50	ALINORM
Chicken	Liver	200	1/	(1999)	50	
Chicken	Kidney	200	1/	(1999)	50	
Chicken	Fat/Skin	200	1/	(1999)	50	

^{1/} Broilers.

Oxytetracycline

JECFA Evaluation 12 (1968), 36 (1990), 45 (1995), 47 (1996)

ADI 0-30 μ g/kg body weight (1998) Group ADI for chlortetracycline, oxytetracycline and **Residue** Oxytetracycline.

Species Cattle	Tissue Muscle	MRL (μg/kg) 100	2/	Step (1993)	JECFA 12, 36	ALINORM
Pig	Muscle	100	2/	(1993)	12, 36	
Sheep	Muscle	100	2/	(1993)	12, 36	
Chicken	Muscle	100	2/	(1993)	12, 36	
Turkey	Muscle	100	2/	(1993)	12, 36	
Fish	Muscle	100	2/	(1993)	12, 36	
Cattle	Liver	300	2/	(1993)	12, 36	
Pig	Liver	300	2/	(1993)	12, 36	
Sheep	Liver	300	2/	(1993)	12, 36	
Chicken	Liver	300	2/	(1993)	12, 36	
Turkey	Liver	300	2/	(1993)	12, 36	
Cattle	Kidney	600	2/	(1993)	12, 36	
Pig	Kidney	600	2/	(1993)	12, 36	
Sheep	Kidney	600	2/	(1993)	12, 36	
Chicken	Kidney	600	2/	(1993)	12, 36	
Turkey	Kidney	600	2/	(1993)	12, 36	
Cattle	Milk	100	2/	(1993)	12, 36	
Chicken	Eggs	200	2/	(1993)	12, 36	
Giant prawn	Not specified	100	1/2/	(1997)	45, 47	

^{1/} Penaeus monodon.

^{2/} Will be replaced by the relevant MRL for chlortetracycline/oxytetracycline/tetracycline.

Phoxim JECFA Evaluation 52 (1999)

ADI 0-4 μ g/kg body weight (1999)

Residue Phoxim

Species Cattle	Tissue Muscle	MRL (μg/k 50	g) T	Step 8	JECFA 52	ALINORM 12V, 13II
Pig	Muscle	50	T	8	52	12V, 13II
Sheep	Muscle	50	T	8	52	12V, 13II
Goat	Muscle	50	T	8	52	12V, 13II
Cattle	Liver	50	T	8	52	12V, 13II
Pig	Liver	50	T	8	52	12V, 13II
Sheep	Liver	50	T	8	52	12V, 13II
Goat	Liver	50	T	8	52	12V, 13II
Cattle	Kidney	50	T	8	52	12V, 13II
Pig	Kidney	50	T	8	52	12V, 13II
Sheep	Kidney	50	T	8	52	12V, 13II
Goat	Kidney	50	T	8	52	12V, 13II
Cattle	Fat	400	T	8	52	12V, 13II
Pig	Fat	400	T	8	52	12V, 13II
Sheep	Fat	400	T	8	52	12V, 13II
Goat	Fat	400	T	8	52	12V, 13II
Cattle	Milk	10	T	8	52	12V, 13II

Porcine somatotropin

JECFA Evaluation 52 (1999)

ADI Not Specified (1999)

Residue Not applicable

Species Pig	Tissue Muscle	MRL (μg/kg) not specified	1/	Step 8	JECFA 52	ALINORM 12V, 13II
Pig	Liver	not specified	1/	8	52	12V, 13II
Pig	Kidney	not specified	1/	8	52	12V, 13II
Pig	Fat	not specified	1/	8	52	12V, 13II

The ADI applies only to three specific compounds.

ADI "not specified" means that available data on the toxicity and intake of the veterinary drug indicate a large

margin of safety for consumption of residues in food when the drug is used according to good practice in the use of

veterinary drugs. For that reason, and for the reasons stated in the individual evaluation, the 52nd JECFA concluded

that use of the veterinary drug does not represent a hazard to human health and that there is no need to specify a

numerical ADI.

1/ MRL "not specified" means that available data on the identity and concentration of residues of the veterinary

drug in animal tissues indicate a wide margin of safety for consumption of residues in food when the drug is used

according to good practice in the use of veterinary drugs. For that reason, and for the reasons stated in the

individual evaluation, the 52nd JECFA concluded that the presence of drug residues in the named animal product does

not present a health concern and that there is no need to specify a numerical MRL.

Progesterone

JECFA Evaluation 25 (1981), 32 (1987), 52 (1999)

ADI 0-30 μg/kg body weight (1999)

Residue Progesterone.

Species Cattle	Tissue Muscle	MRL (μg/kg) unnecessary		Step (1995)	JECFA 25, 32	ALINORM
Cattle	Muscle	not specified	1/	(a)	52	
Cattle	Liver	not specified	1/	(a)	52	
Cattle	Liver	unnecessary		(1995)	25, 32	
Cattle	Kidney	unnecessary		(1995)	25, 32	
Cattle	Kidney	not specified	1/	(a)	52	
Cattle	Fat	not specified	1/	(a)	52	
Cattle	Fat	unnecessary		(1995)	25, 32	

Previous ADI, Unnecessary (1987)

1/ MRL "not specified" means that available data on the identity and concentration of residues of the veterinary

drug in animal tissues indicate a wide margin of safety for consumption of residues in food when the drug is used

according to good practice in the use of veterinary drugs. For that reason, and for the reasons stated in the

individual evaluation, the 52nd JECFA concluded that the presence of drug residues in the named animal product does

not present a health concern and that there is no need to specify a numerical MRL.

The 12th CCRVDF decided not to consider these MRLs.

Sarafloxacin

JECFA Evaluation 50 (1998)

ADI 0-0.3 μ g/kg body weight (1998)

Residue Sarafloxacin.

Species Chicken	Tissue Muscle	MRL (μ g/kg) 10	Step (2001)	JECFA 50	ALINORM
Turkey	Muscle	10	(2001)	50	
Chicken	Liver	80	(2001)	50	
Turkey	Liver	80	(2001)	50	
Chicken	Kidney	80	(2001)	50	
Turkey	Kidney	80	(2001)	50	
Chicken	Fat	20	(2001)	50	
Turkey	Fat	20	(2001)	50	

Spectinomycin

JECFA Evaluation 42 (1994), 50 (1998)

ADI 0-40 μg/kg body weight (1994)

Residue Spectinomycin.

Species Cattle	Tissue Muscle	MRL (μg/k 500	g)	Step (1999)	JECFA 42, 50	ALINORM
Pig	Muscle	500		(1999)	42, 50	
Sheep	Muscle	500		(1999)	50	
Chicken	Muscle	500		(1999)	42, 50	
Cattle	Liver	2000		(1999)	42, 50	
Pig	Liver	2000		(1999)	42, 50	
Sheep	Liver	2000		(1999)	50	
Chicken	Liver	2000		(1999)	42, 50	
Cattle	Kidney	5000		(1999)	42, 50	
Pig	Kidney	5000		(1999)	42, 50	
Sheep	Kidney	5000		(1999)	50	
Chicken	Kidney	5000		(1999)	42, 50	
Cattle	Fat	2000		(1999)	42, 50	
Pig	Fat	2000		(1999)	42, 50	
Sheep	Fat	2000		(1999)	50	
Chicken	Fat	2000		(1999)	42, 50	
Cattle	Milk	200	(µg/l)	(1999)	42, 50	
Chicken	Eggs	2000		(1999)	50	

Spiramycin

JECFA Evaluation 38 (1991), 43 (1994), 47 (1996), 48 (1997)

ADI 0-50 μg/kg body weight (1994)

Residue Cattle & chickens, Sum of spiramycin and neospiramycin; Pigs, Spiramycin equivalents (antimicrobially active residues).

Species Cattle	Tissue Muscle	MRL (μg/kg 200	g)	Step (1997)	JECFA 38, 43, 47, 48	ALINORM
Pig	Muscle	200		(1997)	38, 43, 47, 48	
Chicken	Muscle	200		(1997)	38, 43, 47, 48	
Cattle	Liver	600		(1997)	38, 43, 47, 48	
Pig	Liver	600		(1997)	38, 43, 47, 48	
Chicken	Liver	600		(1997)	38, 43, 47, 48	
Cattle	Kidney	300		(1997)	38, 43, 47, 48	
Pig	Kidney	300		(1997)	38, 43, 47, 48	
Chicken	Kidney	800		(1997)	38, 43, 47, 48	
Cattle	Fat	300		(1997)	38, 43, 47, 48	
Pig	Fat	300		(1997)	38, 43, 47, 48	
Chicken	Fat	300		(1997)	38, 43, 47, 48	
Cattle	Milk	200	(µg/l)	(1997)	38, 43, 47, 48	

Sulfadimidine

JECFA Evaluation 34 (1989), 38 (1991), 42 (1994)

ADI 0-50 μg/kg body weight (1994)

Residue Sulfadimidine.

Species	Tissue	MRL (µg/k	g)	Step	JECFA	ALINORM
Not specified	l Muscle	100		(1995)	34, 38, 42	
Not specified	l Liver	100		(1995)	34, 38, 42	
Not specified	l Kidney	100		(1995)	34, 38, 42	
Not specified	l Fat	100		(1995)	34, 38, 42	
Cattle	Milk	25	(µg/l)	(1995)	34, 38, 42	

Testosterone

JECFA Evaluation 25 (1982), 32 (1987), 52 (1999)

ADI 0-2 μ g/kg body weight (1999)

Residue Testosterone.

Species Cattle	Tissue Muscle	MRL (µg/kg) unnecessary		Step (1995)	JECFA 25, 32	ALINORM
Cattle	Muscle	not specified	1/	(a)	52	
Cattle	Liver	unnecessary		(1995)	25, 32	
Cattle	Liver	not specified	1/	(a)	52	
Cattle	Kidney	unnecessary		(1995)	25, 32	
Cattle	Kidney	not specified	1/	(a)	52	
Cattle	Fat	not specified	1/	(a)	52	
Cattle	Fat	unnecessary		(1995)	25, 32	

Previous ADI, Unnecessary (1987).

1/ MRL "not specified" means that available data on the identity and concentration of residues of the veterinary

drug in animal tissues indicate a wide margin of safety for consumption of residues in food when the drug is used

according to good practice in the use of veterinary drugs. For that reason, and for the reasons stated in the

individual evaluation, the 52nd JECFA concluded that the presence of drug residues in the named animal product does

not present a health concern and that there is no need to specify a numerical MRL.

The 12th CCRVDF decided not to consider these MRLs.

Thiabendazole

JECFA Evaluation 40 (1992), 48 (1997)

ADI 0-100 μg/kg body weight (1992)

Residue Sum of thiabendazole and 5-hydroxythiabendazole.

Species Cattle	Tissue Muscle	MRL (μg/kg) 100	Step (1995)	JECFA 40	ALINORM
Pig	Muscle	100	(1995)	40	
Sheep	Muscle	100	(1995)	40	
Goat	Muscle	100	(1995)	40	
Cattle	Liver	100	(1995)	40	
Pig	Liver	100	(1995)	40	
Sheep	Liver	100	(1995)	40	
Goat	Liver	100	(1995)	40	
Cattle	Kidney	100	(1995)	40	
Pig	Kidney	100	(1995)	40	
Sheep	Kidney	100	(1995)	40	
Goat	Kidney	100	(1995)	40	
Cattle	Fat	100	(1995)	40	
Pig	Fat	100	(1995)	40	
Sheep	Fat	100	(1995)	40	
Goat	Fat	100	(1995)	40	
Cattle	Milk	100	(1995)	40	
Goat	Milk	100	(1995)	40	

These MRLs also cover residues derived from feed containing the residues resulted from agricultural use. there are a

number of MRLs established for plant products (see also Codex Alimentarius, Volume 2B).

Thiamphenicol

JECFA Evaluation 47 (1996), 52 (1999)

ADI 0-5 μg/kg body weight (1999)

Residue Sum of thiamphenicol and thiamphenicol conjugates, measured as thiamphenicol.

Species	Tissue	MRL (µg/k	(g)	Step	JECFA	ALINORM
Pig	Muscle	50	T	6	52	12V, 13IV
Fish	Muscle	50	T	6	52	12V, 13IV
Pig	Liver	100	T	6	52	12V, 13IV
Pig	Kidney	500	T	6	52	12V, 13IV
Pig	Fat	50	T	6	52	12V, 13IV

The 52nd JECFA changed the residue definition.

The 58th JECFA will evaluate residue data (proportions of the totak residues accounted for by free thiamphenicol

and thiamphenicol conjugates in all tissues) and validated analytical method for use with all animal tissues.

Tilmicosin

JECFA Evaluation 47 (1996)

ADI 0-40 μg/kg body weight (1996)

Residue Tilmicosin.

Species Cattle	Tissue Muscle	MRL (μg/k 100	g)		Step (1999)	JECFA 47	ALINORM
Pig	Muscle	100			(1999)	47	
Sheep	Muscle	100			(1999)	47	
Cattle	Liver	1000			(1999)	47	
Pig	Liver	1500			(1999)	47	
Sheep	Liver	1000			(1999)	47	
Cattle	Kidney	300			(1999)	47	
Pig	Kidney	1000			(1999)	47	
Sheep	Kidney	300			(1999)	47	
Cattle	Fat	100			(1999)	47	
Pig	Fat	100			(1999)	47	
Sheep	Fat	100			(1999)	47	
Sheep	Milk	50	(µg/l) T	1/	(1999)	47	

1/ The 54th JECFA did not extend the temporary MRL as results of a a study with radiolabelled drug in lactating

sheep to determine the relationship between total residues and parent drug in milk were not available. The CCRVDF

should consider whether to recommend revocation of the temporary MRL.

Trenbolone acetate

JECFA Evaluation 26 (1982), 27 (1983), 32 (1987), 34 (1989)

ADI 0-0.02 μg/kg body weight (1989)

Residue Cattle muscle, beta-Trenbolone; Cattle liver, alpha-Trenbolone.

Species Tissue MRL (µg/kg) **ALINORM** Step **JECFA** Cattle Muscle 2 (1995)26, 27, 32, 34 Cattle Liver 10 (1995)26, 27, 32, 34

Trichlorfon

JECFA Evaluation 54 (2000)

ADI 0-20 μg/kg body weight (200)

Residue Trichlorfon.

Species	Tissue	$MRL (\mu g/kg)$		Step	JECFA	ALINORM
Cattle	Milk	50	T	5	54	

(Metrifonate)

MRLs were not recommended by 54th JECFA for muscle, liver, kidney or fat in cattle considering that no detectable

residues should be present in tissues from animals treated with trichlorfon when used in accordance with good

practice in the use of veterinary drugs. The limit of quantification may be used as guideline maximum residue

concentrations in muscle, liver, kidney and fat of cattle (50 µg/kg).

Three studies were published after the 54th JECFA, which may affect the ADI. The CCRVDF requested JECFA to

review these new data during its 60th meeting (2003) (13th CCRVDF).

Triclabendazole

JECFA Evaluation 40 (1992)

ADI 0-3 μg/kg body weight (1992)

Residue 5-Chloro-6-(2',3'-dichlorophenoxy)-benzimidazole-2-one.

Species Cattle	Tissue Muscle	MRL (μg/kg) 200	Step (1997)	JECFA 40	ALINORM
Sheep	Muscle	100	(1997)	40	
Cattle	Liver	300	(1997)	40	
Sheep	Liver	100	(1997)	40	
Cattle	Kidney	300	(1997)	40	
Sheep	Kidney	100	(1997)	40	
Cattle	Fat	100	(1997)	40	
Sheep	Fat	100	(1997)	40	

Zeranol

JECFA Evaluation 26 (1982), 27 (1983), 32 (1987)

ADI 0-0.5 μ g/kg body weight (1987)

Residue Zeranol.

Species	Tissue	MRL (µg/kg)	Step	JECFA	ALINORM
Cattle	Muscle	2	(1995)	26, 27, 32	
Cattle	Liver	10	(1995)	26, 27, 32	

APPENDIX III

LIST OF MAXIMUM RESIDUE LIMITS FOR PESTICIDES IN FOOD ADOPTED BY THE CODEX ALIMENTARIUS COMMISSION

(EXTRACT FROM CODEX DATABASE ON PESTICIDE RESIDUES)

STATUS OF CODEX MAXIMUM RESIDUE LIMITS (MRLs) AND EXTRANEOUS MAXIMUM RESIDUE LIMITS (EMRLs) FOR THE CLASS "PRIMARY ANIMAL FEED COMMODITIES"

PRIMARY ANIMAL FEED COMMODITIES PRODUITS PRIMAIRES DESTINÉS À L'ALIMENTATION ANIMALE PRODUCTOS FORRAJEROS PRIMARIOS

PRIMARY FEED COMMODITED OF PLANT ORIGIN / PRODUITS PRIMAIRES D'ORIGINE VEGETALE DESTINES A L'ALIMENTATION ANIMALE / PRODUCTOS FORRAJEROS PRINMARIOS DE ORIGEN VEGETAL

AL LEGUME ANIMAL FEEDS LEGUMINEUSES FOURRAGERES FORRAJES DE LEGUMINOSAS

AL 0061 Bean fodder / Fourrage de haricots / Forraje seco de frijoles

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step: 94 METHOMYL MRL 10 MÉTHOMYL Step: 3 METOMILO 187 CLETHODIM MRL 10 CLÉTHODIME Step: 6 CLETODIM

AL 0072 Pea hay or pea fodder (dry) / Fourrage (sec) de pois / Heno o forraje seco de guisantes (arvejas)

Pesticide/Plaguicida 59 PARATHION-METHYL	MRL/LMR (mg/kg) Step: MRL 70	Note/Nota
PARATHION-MÉTHYL PARATION-METILO	Step: 3	
62 PIPERONYL BUTOXIDE BUTOXYDE DE PIPÉRONYLE PIPERONIL BUTÓXIDO	MRL 200 Step: 3	
63 pyrethrins pyréthrines piretrinas	MRL 1 Step: 3	
64 quintozene quintozène quintoceno	MRL 0.05 Step: 6	

AL 0157 Legume animal feeds / Légumineuses fourragères / Leguminosas forrajeras

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

75 PROPOXUR MRL 1 fresh wt

PROPOXUR Step: CXL

PROPOXUR

135 DELTAMETHRIN MRL 0.5 dry wt DELTAMÉTHRINE Step: CXL

DELTAMETRIN

AL 0528 Pea vines (green) / Pois fourrager (en vert) / Parras verdes de guisantes (arvejas)

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step: 1999-2003 8 CARBARYL **MRL** 100 T fresh wt Step: 1999-2003 CARBARYL CXL 1999-2003 **CARBARILO** 17 CHLORPYRIFOS MRL CHLORPYRIPHOS Step: 3 **CLORPIRIFOS** 59 PARATHION-METHYL MRL 40 PARATHION-MÉTHYL Step: 3 PARATION-METILO

62 PIPERONYL BUTOXIDE MRL 400 BUTOXYDE DE PIPÉRONYLE **Step:** 3

PIPERONIL BUTÓXIDO

63 PYRETHRINS MRL 10 dry wt

PYRÉTHRINES Step: 3

PIRETRINAS

94 METHOMYL MRL 40
MÉTHOMYL Step:

MÉTHOMYL Step: 3(a)
METOMILO

94 METHOMYL MRL 10 fresh wt

MÉTHOMYL Step: CXL METOMILO

AL 0541 Soya bean fodder / Fourrage de soja / Forraje seco de soja

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step:

20 2,4-D MRL 0.01 (*)

2,4-D Step: 6

58 parathion parathion paration	MRL Step:	2	3		
64 quintozene quintozène quintoceno	MRL Step:	0.01	(*) 6		
72 CARBENDAZIM CARBENDAZIME carbendazime CARBENDAZIM	MRL Step:	0.1	(*)	Source of data: carbendazing cxl. Bases de données: Base de datos: carbendazim	l
94 methomyl méthomyl metomilo	MRL Step:	0.2	3		
120 permethrin perméthrine permetrin	MRL Step:	50	dry wt		
149 ETHOPROPHOS ETHOPROPHOS ETOPROFOS	MRL Step:	0.02	(*) CXL		
158 GLYPHOSATE GLYPHOSATE GLIFOSATO	MRL Step:	200	CXL		

AL 0697 Peanut fodder / Fourrage d'arachide / Forraje seco de maní

Pesticide/Plaguicida	MRL/LMR (mg/kg) Step:	Note/Nota
8 carbaryl carbaryl carbarilo	MRL 100 T Step:	1999-2003 CXL 1999-2003 1999-2003
105 DITHIOCARBAMATES DITHIOCARBAMATES DITIOCARBAMATOS	MRL 5 Step: CXL	Source of data: mancozeb Bases de données: mancozèbe Base de datos: mancozeb
113 propargite propargite propargita	MRL 10 Step: CXL	
126 OXAMYL OXAMYL OXAMILO	MRL 2 Step: CXL	
149 ETHOPROPHOS ETHOPROPHOS ETOPROFOS	MRL 0.02 (*) Step: CXL	
167 TERBUFOS TERBUFOS TERBUFOS	MRL 1 Step: CXL	

189 TEBUCONAZOLE MRL 30

TEBUCONAZOLE Step: CXL

TEBUCONAZOL

AL 1020 Alfalfa fodder / Fourrage de luzerne / Forraje seco de alfalfa

Pesticide/Plaguicida		LMR ((mg/kg)	Note/Nota
2 AZINPHOS-METHYL AZINPHOS-MÉTHYL AZINFOS-METILO	Step: MRL Step:	10	CXL	
17 CHLORPYRIFOS CHLORPYRIPHOS CLORPIRIFOS	MRL Step:	5	3	
31 diquat diquat diquat	MRL Step:	100	CXL	
49 MALATHION MALATHION MALATION	MRL Step:	200	6	
59 parathion-methyl parathion-méthyl paration-metilo	MRL Step:	70	3	
74 disulfoton disulfoton disulfoton	MRL Step:	5	(dry wt)	
94 methomyl méthomyl metomilo	MRL Step:	20	3	
96 carbofuran carbofuran carbofuran	MRL Step:	10	CXL	
101 pirimicarb pirimicarbe pirimicarb	MRL Step:	20	dry wt	
113 propargite propargite propargita	MRL Step:	75	CXL	
119 fenvalerate fenvalérate fenvalerato	MRL Step:	20	dry wt	
120 permethrin perméthrine permetrin	MRL Step:	100	dry wt	

187 CLETHODIM MRL 10 Step: CLÉTHODIME 6 CLETODIM

AL 1021 Alfalfa forage (green) / Luzerne fourragère (en vert) / Alfalfa, forraje verde

Pesticide/Plaguicida	MRL/I Step:	LMR	(mg/kg)	Note/Nota
2 AZINPHOS-METHYL AZINPHOS-MÉTHYL AZINFOS-METILO	MRL Step:	5	CXL	
8 CARBARYL CARBARYL CARBARILO	MRL Step:	100	T	1999-2003 CXL 1999-2003 1999-2003
17 CHLORPYRIFOS CHLORPYRIPHOS CLORPIRIFOS	MRL Step:	20	3	
32 endosulfan endosulfan endosulfan	MRL Step:	1	CXL	
49 malathion malathion malation	MRL Step:	500	dry wt	
51 METHIDATHION MÉTHIDATHION METIDATION	MRL Step:	10	CXL	
59 parathion-methyl parathion-méthyl paration-metilo	MRL Step:	70	3	
94 methomyl méthomyl metomilo	MRL Step:	25	3(a)	
94 methomyl méthomyl metomilo	MRL Step:	10	fresh w	vt
95 ACEPHATE ACÉPHATE ACEFATO	MRL Step:	10	fresh w	vt
96 carbofuran carbofuran carbofuran	MRL Step:	10	CXL	
100 methamidophos méthamidophos metamidofos	MRL Step:	2	CXL	Based on treatment with acephate. Sur la base de traitements à l'acéphate. Basado en tratamiento con acefato.

101 PIRIMICARB MRL 50 dry wt Step: PIRIMICARBE CXL PIRIMICARB MRL 50 113 PROPARGITE Step: PROPARGITE CXL PROPARGITA 118 CYPERMETHRIN MRL 5 dry wt Step: **CYPERMÉTHRINE** CXL **CIPERMETRIN** 172 BENTAZONE MRL 2 BENTAZONE Step: CXL **BENTAZONA** 194 HALOXYFOP MRL 5 fresh wt HALOXYFOP Step: 3 HALOXIFOP

AL 1023 Clover / Trèfle / Trebol

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step: 8 CARBARYL MRL 100 T fresh wt 1999-2003 1999-2003 CARBARYL Step: CXL 1999-2003 CARBARILO 31 DIOUAT MRL 50 DIQUAT Step: CXL DIQUAT 32 ENDOSULFAN MRL 1 ENDOSULFAN Step: CXL **ENDOSULFAN** 49 MALATHION MRL 500 dry wt MALATHION Step: 6 MALATION 59 PARATHION-METHYL MRL 10 PARATHION-MÉTHYL Step: 6 PARATION-METILO

AL 1028 Trefoil / Lotier des prés / Loto de los prados

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step:

32 ENDOSULFAN MRL 1
ENDOSULFAN Step: CXL

AL 1030 Bean forage (green) / Haricots fourragers (en vert) / Forraje verde de frijoles

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step: MRL T 1999-2003 8 CARBARYL 100 Step: 1999-2003 CARBARYL CXL CARBARILO 1999-2003 59 PARATHION-METHYL MRL 1 fresh wt PARATHION-MÉTHYL Step: 6 PARATION-METILO 187 CLETHODIM MRL 5 Step: CLÉTHODIME 6 CLETODIM

AL 1031 Clover hay or fodder / Fourrage de trèfle / Forraje de trebol

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step: MRL 5 2 AZINPHOS-METHYL Step: AZINPHOS-MÉTHYL CXL AZINFOS-METILO 49 MALATHION MRL 150 MALATHION Step: 6 MALATION 74 DISULFOTON MRL 10 DISULFOTON Step: CXL DISULFOTON

AL 1265 Soya bean forage (green) / Soja fourrager (en vert) / Forraje verde de soja

Pesticide/Plaguicida	MRL/LMR (mg/kg) Step:	Note/Nota
8 carbaryl carbaryl carbarilo	MRL 100 T fresh wt Step: CXL	1999-2003 1999-2003 1999-2003
20 2,4-D 2,4-D 2,4-D	MRL 0.01 (*) Step: 6	
64 QUINTOZENE QUINTOZÈNE QUINTOCENO	MRL 0.01 (*) Step: 6	
94 methomyl méthomyl metomilo	MRL 10 Step: CXL	

94 METHOMYL MRL 40

MÉTHOMYL Step: 3(a)

METOMILO

158 GLYPHOSATE MRL 5

GLYPHOSATE Step: CXL

GLIFOSATO

AL 1270 Peanut forage (green) / Arachide fourragère (en vert) / Forraje verde de maní

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

94 METHOMYL MRL 5

MÉTHOMYL Step: CXL

METOMILO

113 PROPARGITE MRL 10 fresh wt

PROPARGITE Step: CXL

PROPARGITA

167 TERBUFOS MRL 1

TERBUFOS Step: CXL

TERBUFOS

AF STRAW, FODDER AND FORAGE OF CEREAL GRAINS AND GRASSES (INCLUDING BUCKWHEAT FODDER) (FORAGE)

PAILLE ET FOURRAGES DE GRAINES CEREALIERES ET DE GRAMINEES (Y COMPRIS LE FOURRAGE DE SARRASIN)(FOURRAGE VERT)

PAJA, FORRAJE SECO Y FORRAJE VERDE DE CEREALES EN GRANO Y PLANTAS

AF 0162 Grass forage / Graminées fourragères / Forraje verde de gramíneas

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

49 MALATHION MRL 200
MALATHION Step: 6

MALATION

AF 0645 Maize forage / Maïs fourrager / Forraje verde de maíz

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

8 CARBARYL MRL 100 T fresh wt 1999-2003 CARBARYL Step: CXL 1999-2003 CARBARILO 1999-2003

15 CHLORMEQUAT MRL 15 dry wt

CHLORMÉQUAT Step: 3

CLORMEQUAT

17 CHLORPYRIFOS MRL 20 CHLORPYRIPHOS Step: 3

CLORPIRIFOS

20 2,4-D 2,4-D 2,4-D	MRL Step:	10	CXL	
22 diazinon diazinon diazinon	MRL Step:	10	CXL	
49 MALATHION MALATHION MALATION	MRL Step:	10	dry wt	
58 parathion parathion paration	MRL Step:	10	3	
64 quintozene quintozène quintoceno	MRL Step:	0.01	(*) 6	
74 disulfoton disulfoton disulfoton	MRL Step:	1	CXL	
94 methomyl méthomyl metomilo	MRL Step:	50	3(a)	
94 methomyl méthomyl metomilo	MRL Step:	50	fresh wt	Based on thiodicarb use Correspondant à l'emploi de thiodicarbe Basados en usos de tiodicarb
112 phorate PHORATE FORATO	MRL Step:	0.2	fresh wt	
113 propargite propargite propargita	MRL Step:	10	CXL	
117 aldicarb aldicarbe aldicarb	MRL Step:	0.5	CXL	
137 BENDIOCARB BENDIOCARBE BENDIOCARB	MRL Step:	0.05	(*) CXL	
149 ETHOPROPHOS ETHOPROPHOS ETOPROFOS	MRL Step:	0.02	(*) CXL	
158 GLYPHOSATE GLYPHOSATE GLIFOSATO	MRL Step:	1	CXL	
167 terbufos terbufos terbufos	MRL Step:	1	CXL	
	вир			

GLUFOSINATE-AMMONIUM **Step:** 6(a) GLUFOSINATO-AMONIO

175 GLUFOSINATE-AMMONIUM MRL 0.2

GLUFOSINATE-AMMONIUM Step: CXL

GLUFOSINATO-AMONIO

178 BIFENTHRIN MRL 0.05 (*)
BIFENTHRINE Step: CXL

BIFENTRIN

202 FIPRONIL

MRL 0.1 dry wt

Step: 3

203 SPINOSAD MRL 5 dry wt

Step: 3

AF 0647 Oat forage (green) / Avoine fourragère (en vert) / Forraje verde de avena

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

15 CHLORMEQUAT MRL 100 dry wt

CHLORMÉQUAT Step: 6

CLORMEQUAT

74 DISULFOTON MRL 0.5

DISULFOTON Step: 6(a)

DISULFOTON

144 BITERTANOL MRL 0.05 (*) dry wt.

BITERTANOL Step: CXL

BITERTANOL

AF 0650 Rye forage (green) / Seigle fourrager (en vert) / Forraje verde de centeno

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

15 CHLORMEQUAT MRL 100 dry wt

CHLORMÉQUAT Step: 6

CLORMEQUAT

144 BITERTANOL MRL 0.05 (*) dry wt

BITERTANOL Step: CXL

BITERTANOL

AF 0651 Sorghum forage (green) / Sorgho fourrager (en vert) / Forraje verde de sorgo

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

8 CARBARYL MRL 100 T fresh wt 1999-2003 CARBARYL Step: CXL 1999-2003 CARBARILO 1999-2003

20 2,4-D MRL 0.2

2,4-D Step: CXL

2,4-D

58 PARATHION MRL 10 PARATHION Step: 3

PARATION

94 METHOMYL MRL 1

Step: **MÉTHOMYL** CXL

METOMILO

96 CARBOFURAN MRL 2

Step: CARBOFURAN CXL

CARBOFURAN

113 propargite 10 **MRL** fresh wt Step: CXL

PROPARGITE **PROPARGITA**

AF 0654 Wheat forage (whole plant) / Blé fourrager (plante entière) / Forraje verde de trigo (planta entera)

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

MRL 49 MALATHION 20 dry wt

MALATHION Step: 6

MALATION

74 DISULFOTON MRL 1

DISULFOTON Step: 6(a)

DISULFOTON

178 BIFENTHRIN MRL 0.2

BIFENTHRINE Step: CXL

BIFENTRIN

AS STRAW, FODDER AND FORAGE OF CEREAL GRAINS AND GRASSES (INCLUDING BUCKWHEAT FODDER) (STRAWS AND FODDER DRY)

PAILLE ET FOURRAGES DE GRAINES CEREALIERES ET DE GRAMINEES (Y COMPRIS LE FOURRAGE DE SARRASIN)(PAILLES ET FOURRAGES SECS) PAJA, FORRAJE SECO Y FORRAJE VERDE DE CEREALES EN GRANO Y PLANTAS

AS 0081 Straw and fodder (dry) of cereal grains / Paille et fourrage (sec) de céréales / Paja y forraje seco de cereales

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step: 15 CHLORMEQUAT MRL 30 dry wt **CHLORMÉQUAT** Step: 3(a) CLORMEQUAT 135 DELTAMETHRIN MRL 0.5 **DELTAMÉTHRINE** Step: CXL DELTAMETRIN

158 GLYPHOSATE MRL 100

GLYPHOSATE Step: CXL

GLIFOSATO

167 TERBUFOS MRL 1

TERBUFOS Step: CXL

TERBUFOS

199 KRESOXIM-METHYL MRL 5

KRÉSOXIM-MÉTHYL **Step:** CXL

KRESOXIM-METILO

AS 0162 Hay or fodder (dry) of grasses / Foin ou fourrage (sec) de graminées / Heno o forraje seco de gramíneas

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

8 CARBARYL MRL 100 T 1999-2003 CARBARYL **Step:** CXL 1999-2003

CARBARILO 1999-2003

20 2,4-D MRL 400

2,4-D **Step:** 6

49 MALATHION MRL 300

MALATHON Step: 6
MALATION

59 PARATHION-METHYL MRL 5

PARATHION-MÉTHYL Step: 6

PARATION-METILO

158 GLYPHOSATE MRL 50

GLYPHOSATE Step: CXL

GLIFOSATO

AS 0640 Barley straw and fodder, Dry / Paille et fourrage sec d'orge / Paja y forraje seco de cebada

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

15 CHLORMEQUAT MRL 50

CHLORMÉQUAT Step: CXL

CLORMEQUAT

15 CHLORMEOUAT MRL 20

CHLORMÉQUAT Step: 6(a)

CLORMEQUAT

58 PARATHION MRL 30
PARATHION Step: 3

PARATION

64 QUINTOZENE MRL 0.01 (*)
QUINTOZÈNE Step: 6

QUINTOZÈNE Step: QUINTOCENO

72 CARBENDAZIM MRL 2

CARBENDAZIME Step: 6(a)

CARBENDAZIM

72 carbendazim carbendazime carbendazim	MRL Step:	2	CXL	Source of data: benomyl Bases de données: bénomyl Base de datos: benomilo
74 disulfoton disulfoton disulfoton	MRL Step:	3	CXL	
81 CHLOROTHALONIL CHLOROTHALONIL CLOROTALONILO	MRL Step:	20	CXL	
94 methomyl méthomyl metomilo	MRL Step:	5	CXL	
105 dithiocarbamates dithiocarbamates ditiocarbamatos	MRL Step:	25	CXL	Source of data: mancozeb, maneb Bases de données: mancozèbe, manèbe Base de datos: mancozeb, maneb
106 ETHEPHON ÉTHÉPHON ETEFON	MRL Step:	5	CXL	
117 aldicarb aldicarbe aldicarb	MRL Step:	0.05	CXL	
133 triadimefon triadiméfon triadimefon	MRL Step:	2	CXL	
142 PROCHLORAZ PROCHLORAZE PROCLORAZ	MRL Step:	15	CXL	
144 BITERTANOL BITERTANOL BITERTANOL	MRL Step:	0.05	(*) CXL	
163 anilazine anilazine anilazina	MRL Step:	10	CXL	
165 flusilazole flusilazol flusilazol	MRL Step:	2	CXL	
166 OXYDEMETON-METHYL OXYDÉMÉTON-MÉTHYL OXIDEMETÓN-METILO	MRL Step:	2	6	
168 TRIADIMENOL TRIADIMÉNOL TRIADIMENOL	MRL Step:	5	CXL	Source of data: triadimefon, triadimenol Bases de données: triadiméfon, triadiménol Base de datos: triadimefón, triadimenol
178 bifenthrin bifenthrine bifentrin	MRL Step:	0.5	CXL	

MRL 5 188 FENPROPIMORPH Step: FENPROPIMORPHE CXL FENPROPIMORF 189 Tebuconazole MRL 10 Step: TEBUCONAZOLE \mathbf{CXL} TEBUCONAZOL 197 FENBUCONAZOLE MRL 3 Step: FENBUCONAZOLE CXL FENBUCONAZOL

AS 0645 Maize fodder / Fourrage de maïs / Forraje seco de maíz

Pesticide/Plaguicida		LMR	(mg/kg)	Note/Nota
15 CHLORMEQUAT CHLORMÉQUAT CLORMEQUAT	Step: MRL Step:	7	dry wt	
17 CHLORPYRIFOS CHLORPYRIPHOS CLORPIRIFOS	MRL Step:	10	3	
20 2,4-D 2,4-D 2,4-D	MRL Step:	40	CXL	
49 MALATHION MALATHION MALATION	MRL Step:	50	6	
58 parathion parathion paration	MRL Step:	30	3	
64 quintozene quintozène quintoceno	MRL Step:	0.01	6	
74 disulfoton disulfoton disulfoton	MRL Step:	3	CXL	
94 methomyl méthomyl metomilo	MRL Step:	50	fresh wt	Based on thiodicarb use Correspondant à l'emploi de thiodicarbe Basados en usos de tiodicarb
96 carbofuran carbofuran carbofuran	MRL Step:	5	fresh wt	
105 DITHIOCARBAMATES DITHIOCARBAMATES DITIOCARBAMATOS	MRL Step:	2	CXL	Source of data: mancozeb Bases de données: mancozèbe, Base de datos: mancozeb

112 phorate Phorate Forato	MRL Step:	0.2	fresh wt
113 propargite propargite propargita	MRL Step:	10	CXL
117 aldicarb aldicarbe aldicarb	MRL Step:	0.5	CXL
118 CYPERMETHRIN CYPERMÉTHRINE CIPERMETRIN	MRL Step:	5	dry wt
120 permethrin perméthrine permetrin	MRL Step:	100	dry wt
137 BENDIOCARB BENDIOCARBE BENDIOCARB	MRL Step:	0.05	(*) CXL
149 ETHOPROPHOS ETHOPROPHOS ETOPROFOS	MRL Step:	0.02	(*) CXL
172 BENTAZONE BENTAZONE BENTAZONA	MRL Step:	0.2	CXL
175 GLUFOSINATE-AMMONIUM GLUFOSINATE-AMMONIUM GLUFOSINATO-AMONIO	MRL Step:	10	(*) 6
178 bifenthrin bifenthrine bifentrin	MRL Step:	0.2	CXL
202 FIPRONIL	MRL Step:	0.1	dry wt
203 spinosad	MRL Step:	5	3

AS 0647 Oat straw and fodder, Dry / Paille et fourrage sec d'avoine / Paja y forraje seco de avena

Pesticide/Plaguicida	MRL/LMR (mg/kg)	Note/Nota
	Step:	
15 CHLORMEQUAT	MRL 50	
CHLORMÉQUAT CLORMEQUAT	Step: CXL	
15 CHLORMEQUAT	MRL 20	
CHLORMÉQUAT CLORMEQUAT	Step: 6(a)	

74 disulfoton disulfoton disulfoton	MRL Step:	0.05	6	
94 methomyl méthomyl metomilo	MRL Step:	5	CXL	
133 triadimefon triadiméfon triadimefon	MRL Step:	2	CXL	
142 PROCHLORAZ PROCHLORAZE PROCLORAZ	MRL Step:	15	CXL	
144 BITERTANOL BITERTANOL	MRL Step:	0.05	(*) CXL	
168 TRIADIMENOL TRIADIMÉNOL TRIADIMENOL	MRL Step:	5	CXL	Source of data: triadimefon, triadimenol Bases de données: triadiméfon, triadiménol Base de datos: triadimefón, triadimenol
188 FENPROPIMORPH FENPROPIMORPHE FENPROPIMORF	MRL Step:	5	CXL	

AS 0649 Rice straw and fodder, Dry / Paille et fourrage de riz secs / Paja y forraje seco de arroz

Pesticide/Plaguicida	MRL/LM Step:	R (mg/kg)	Note/Nota
20 2,4-D 2,4-D 2,4-D	MRL 10 Step:	CXL	
59 parathion-methyl parathion-méthyl paration-metilo	MRL 10 Step:	6	
72 CARBENDAZIM	MRL 15 Step:	CXL	Source of data: benomyl, carbendazim, thiophanate-methyl
CARBENDAZIME			Bases de données: bénomyl, carbendazime, thiophanate-méthyle
CARBENDAZIM			Base de datos: benomilo, carbendazim, tiofanato-metilo
72 CARBENDAZIM	MRL 15		
CARBENDAZIME CARBENDAZIM	Step:	6(a)	
202 FIPRONIL	MRL 0.2 Step:	2 dry wt	

AS 0650 Rye straw and fodder, Dry / Paille et fourrage sec de seigle / Paja y forraje seco de centeno

Pesticide/Plaguicida	MRL/LMF Step:	R (mg/kg)	Note/Nota
15 CHLORMEQUAT CHLORMÉQUAT CLORMEQUAT	MRL 20 Step:	6(a)	
15 CHLORMEQUAT CHLORMÉQUAT CLORMEQUAT	MRL 50 Step:	CXL	
106 ETHEPHON ÉTHÉPHON ETEFON	MRL 5 Step:	CXL	
133 triadimefon triadiméfon triadimefon	MRL 2 Step:	CXL	
142 PROCHLORAZ PROCHLORAZE PROCLORAZ	MRL 15 Step:	CXL	
144 BITERTANOL BITERTANOL BITERTANOL	MRL 0.03	5 (*) CXL	
165 flusilazole flusilazol flusilazol	MRL 2 Step:	CXL	
166 OXYDEMETON-METHYL OXYDÉMÉTON-MÉTHYL OXIDEMETÓN-METILO	MRL 2 Step:	6	
168 triadimenol triadiménol triadimenol	MRL 5 Step:	CXL	Source of data: triadimefon, triadimenol Bases de données: triadiméfon, triadiménol Base de datos: triadimefón, triadimenol
188 FENPROPIMORPH FENPROPIMORPHE FENPROPIMORF	MRL 5 Step:	CXL	
189 TEBUCONAZOLE TEBUCONAZOLE TEBUCONAZOL	MRL 5 Step:	CXL	

AS 0651 Sorghum straw and fodder, Dry / Paille et fourrage sec de sorgho / Paja y forraje seco de sorgo

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota Step: 17 CHLORPYRIFOS MRL 2 Step: **CHLORPYRIPHOS** 3 **CLORPIRIFOS** 58 PARATHION MRL 15 PARATHION Step: 3 PARATION 96 CARBOFURAN MRL 0.5 CARBOFURAN Step: CXL CARBOFURAN 113 propargite MRL 10 PROPARGITE Step: CXL **PROPARGITA** 117 ALDICARB MRL 0.5 ALDICARBE Step: CXL ALDICARB 118 CYPERMETHRIN MRL 5 CYPERMÉTHRINE Step: CXL **CIPERMETRIN** 120 PERMETHRIN MRL 20 PERMÉTHRINE Step: CXL PERMETRIN

AS 0653 Triticale straw and fodder, Dry / Paille et fourrage (sec) de triticale / Paja y forraje seco de triticale

Pesticide/Plaguicida	MRL/LMR (mg/kg)	Note/Nota
	Step:	
144 BITERTANOL	MRL 0.05 (*)	
BITERTANOL	Step: CXL	
BITERTANOI.	-	

AS 0654 Wheat straw and fodder, Dry / Paille et fourrage sec de blé / Paja y forraje seco de trigo

Pesticide/Plaguicida	MRL/LMR Step:	(mg/kg)	Note/Nota
15 CHLORMEQUAT	MRL 50		
CHLORMÉQUAT CLORMEQUAT	Step:	CXL	
15 CHLORMEQUAT CHLORMÉQUAT CLORMEQUAT	MRL 20 Step:	6(a)	
17 CHLORPYRIFOS CHLORPYRIPHOS CLORPIRIFOS	MRL 5 Step:	3	

20 2,4-D 2,4-D 2,4-D	MRL Step:	100	CXL	
27 діметноате діметноате діметоато	MRL Step:	10	6	
49 MALATHION MALATHION MALATION	MRL Step:	50	6	
58 parathion parathion paration	MRL Step:	20	3	
59 parathion-methyl parathion-méthyl paration-metilo	MRL Step:	10	6	
64 quintozene quintozène quintoceno	MRL Step:	0.03	6	
72 carbendazim carbendazime carbendazim	MRL Step:	5	CXL	Source of data: benomyl Bases de données: bénomyl Base de datos: benomilo
72 carbendazim carbendazime carbendazim	MRL Step:	1	6(a)	
74 disulfoton disulfoton disulfoton	MRL Step:	5	6	
81 CHLOROTHALONIL CHLOROTHALONIL CLOROTALONILO	MRL Step:	20	CXL	
82 dichlofluanid dichlofluanide diclofluanida	MRL Step:	0.5	CXL	
94 methomyl méthomyl metomilo	MRL Step:	5	CXL	
105 DITHIOCARBAMATES DITHIOCARBAMATES	MRL Step:	25	CXL	Source of data: mancozeb, maneb, metiram Bases de données: mancozèbe, manèbe, métirame
DITIOCARBAMATOS				Base de datos: mancozeb, maneb, metiram
106 ETHEPHON ÉTHÉPHON ETEFON	MRL Step:	5	CXL	
110 imazalil imazalil imazalil	MRL Step:	0.1	CXL	

117 aldicarb aldicarbe aldicarb	MRL Step:	0.05	CXL	
118 CYPERMETHRIN CYPERMÉTHRINE CIPERMETRIN	MRL Step:	5	CXL	
133 triadimefon triadiméfon triadimefon	MRL Step:	2	CXL	
142 prochloraz prochloraze procloraz	MRL Step:	15	CXL	
144 bitertanol bitertanol bitertanol	MRL Step:	0.05	(*) CXL	
163 anilazine anilazine anilazina	MRL Step:	10	CXL	
165 flusilazole flusilazol flusilazol	MRL Step:	2	CXL	
166 OXYDEMETON-METHYL OXYDÉMÉTON-MÉTHYL OXIDEMETÓN-METILO	MRL Step:	2	6	
168 triadimenol triadiménol triadimenol	MRL Step:	5	CXL	Source of data: triadimefon, triadimenol Bases de données: triadiméfon, triadiménol Base de datos: triadimefón, triadimenol
170 HEXACONAZOLE HEXACONAZOLE HEXACONAZOL	MRL Step:	0.5	CXL	
178 bifenthrin bifenthrine bifentrin	MRL Step:	0.5	CXL	
188 FENPROPIMORPH	MRL	5		
FENPROPIMORPHE FENPROPIMORF	Step:		CXL	
	MRL Step:	10	CXL	
FENPROPIMORF 189 TEBUCONAZOLE TEBUCONAZOLE	MRL			

AM MESCELLANEOUS FODDER AND FORAGE CROPS (FODDER) **CULTURES FOURRAGERES DIVERSES (FOURRAGE SEC)** CULTIVOS VARIOS DE FORRAJE SECO Y FORRAJE VERDE (FORRAJE SECO)

AM 0353 Pineapple fodder / Fourrage d'ananas / Forraje seco de piña

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

149 ETHOPROPHOS MRL 0.02 (*) **ETHOPROPHOS** Step: CXL

ETOPROFOS

AM 0659 Sugar cane fodder / Fourrage de canne à sucre / Forraje seco de caña de azúcar

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

149 ETHOPROPHOS MRL 0.02 (*) **ETHOPROPHOS** Step: CXL

ETOPROFOS

AM 0660 Almond hulls / Coques d'amandes / Cáscara de almendras

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

2 AZINPHOS-METHYL MRL 5

AZINPHOS-MÉTHYL Step: CXL

AZINFOS-METILO

22 DIAZINON MRL 5

DIAZINON Step: CXL

DIAZINON

Source of data: maneb, ziram 105 DITHIOCARBAMATES MRL 20

6

Bases de données: manèbe, zirame DITHIOCARBAMATES Step: CXL Base de datos: maneb, ziram

DITIOCARBAMATOS

175 GLUFOSINATE-AMMONIUM MRL 0.5 Step: GLUFOSINATE-AMMONIUM

GLUFOSINATO-AMONIO

177 ABAMECTIN MRL 0.1

Step: ABAMECTINE CXL

ABAMECTIN

196 TEBUFENOZIDE MRL 30

Step: **TÉBUFÉNOZIDE** 3

TEBUFENOZIDA

203 SPINOSAD MRL 2

> Step: 3

AM 0738 Mint hay / Fourrage de menthe / Heno de menta

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

94 METHOMYL MRL 2

Step: MÉTHOMYL CXL

METOMILO

MRL 50 113 PROPARGITE

Step: PROPARGITE CXL

PROPARGITA

AM 1051 Fodder beet / Betterave fourragère / Forraje seco de remolacha

MRL/LMR (mg/kg) Pesticide/Plaguicida Note/Nota

Step:

MRL 0.05 112 PHORATE

PHORATE Step: CXL

FORATO

MRL 0.05 (*) 133 TRIADIMEFON TRIADIMÉFON Step: CXL

TRIADIMEFON

MRL 0.05 (*) 168 TRIADIMENOL

Source of data: triadimefon TRIADIMÉNOL Step: Bases de données: triadiméfon CXL Base de datos: triadimefón

TRIADIMENOL

187 CLETHODIM MRL 0.1 (*) Step: CLÉTHODIME 6

CLETODIM

194 HALOXYFOP MRL 0.3

HALOXYFOP Step: 6

HALOXIFOP

AV MISCELLANEOUS FODDER AND FORAGE CROPS (FORAGE) CULTURES FOURRAGERES DIVERSES (FOURRAGES VERTS) CULTIVOS VARIOS DE FORRAJE SECO Y FORRAJE VERDE (FORRAJE SECO)

AV 0353 Pineapple forage / Fourrage d'ananas / Forraje verde de piña

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

149 ETHOPROPHOS MRL 0.02 (*)
ETHOPROPHOS Step: CXL

ETOPROFOS

PARATION-METILO

AV 0596 Sugar beet leaves or tops / Fanes ou verts de betterave sucrière / Hojas o coronas de remolacha azucarera

Pesticide/Plaguicida	MRL/I Step:	LMR	(mg/kg)	Note/Nota
8 carbaryl carbaryl carbarilo	MRL Step:	100	T CXL	1999-2003 1999-2003 1999-2003
17 CHLORPYRIFOS CHLORPYRIPHOS CLORPIRIFOS	MRL Step:	40	3	
22 diazinon diazinon diazinon	MRL Step:	5	CXL	
27 dimethoate diméthoate dimetoato	MRL Step:	0.1	6 (a)	
27 dimethoate diméthoate dimetoato	MRL Step:	1	CXL	
32 endosulfan endosulfan endosulfan	MRL Step:	1	CXL	
48 LINDANE LINDANE LINDANO	MRL Step:	0.1	CXL	
55 OMETHOATE OMÉTHOATE OMETOATO	MRL Step:	1	T 6	
59 PARATHION-METHYL PARATHION-METHYL	MRL Step:	0.05	(*) fresh wt	

74 disulfoton disulfoton disulfoton	MRL Step:	2	CXL	
77 THIOPHANATE-METHYL THIOPHANATE-MÉTHYL TIOFANATO-METILO	MRL Step:	5	CXL	
81 CHLOROTHALONIL CHLOROTHALONIL CLOROTALONILO	MRL Step:	20	CXL	
95 асернате асе́рнате асе́рато	MRL Step:	10	CXL	
96 carbofuran carbofuran carbofuran	MRL Step:	0.2	CXL	
100 methamidophos méthamidophos metamidofos	MRL Step:	1	CXL	
105 dithiocarbamates dithiocarbamates manèbe	MRL Step:	20	CXL	Source of data: mancozeb, maneb Bases de données: mancozèbe,
DITIOCARBAMATOS				Base de datos: mancozeb, maneb
112 phorate	MRL	1		
PHORATE FORATO	Step:		CXL	
117 aldicarb aldicarbe aldicarb	MRL Step:	1	CXL	
133 triadimefon triadiméfon triadimefon	MRL Step:	2	CXL	
137 BENDIOCARB BENDIOCARBE BENDIOCARB	MRL Step:	0.05	(*) CXL	
160 PROPICONAZOLE PROPICONAZOLE PROPICONAZOL	MRL Step:	0.5	CXL	
166 OXYDEMETON-METHYL OXYDÉMÉTON-MÉTHYL OXIDEMETÓN-METILO	MRL Step:	0.05	(*) 6	
168 TRIADIMENOL TRIADIMÉNOL TRIADIMENOL	MRL Step:	1	CXL	Source of data: triadimefon, triadimenol Bases de données: triadiméfon, triadiménol Base de datos: triadimefón, triadimenol
175 GLUFOSINATE-AMMONIUM GLUFOSINATE-AMMONIUM GLUFOSINATO-AMONIO	MRL Step:	0.1	CXL	

179 CYCLOXYDIM MRL 1

CYCLOXYDIME Step: CXL

CICLOXIDIM

188 FENPROPIMORPH MRL 1

FENPROPIMORPHE Step: CXL

FENPROPIMORF

194 HALOXYFOP MRL 0.3 fresh wt

HALOXYFOP Step: 3

HALOXIFOP

202 FIPRONIL MRL 0.2 dry wt

Step: 3

AV 0659 Sugar cane forage / Canne à sucre fourragère / Forraje verde de caña de azúcar

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

20 2,4-D MRL 0.2

2,4-D Step: CXL

2,4-D

FENPROPIMORF

149 ETHOPROPHOS MRL 0.02 (*)

ETHOPROPHOS **Step:** CXL ETOPROFOS

AV 1051 Fodder beet leaves or tops / Fanes ou verts de betterave fourragère / Hojas o coronas de remolacha forrajera

Pesticide/Plaguicida	MRL/LMR (mg/kg) Step:	Note/Nota
133 triadimefon triadiméfon triadimefon	MRL 0.05 (*) Step: CXL	
167 TERBUFOS TERBUFOS TERBUFOS	MRL 1 Step: CXL	
168 triadimenol triadiménol triadimenol	MRL 0.2 Step: CXL	Source of data: triadimefon Bases de données: triadiméfon Base de datos: triadimefón
188 FENPROPIMORPH FENPROPIMORPHE	MRL 1 Step: CXL	

194 HALOXYFOP MRL 0.3 fresh wt

Step: HALOXYFOP 3

HALOXIFOP

AO3 FORAGE CROPS (GREEN)

CULTURES FORRAGERES (EN VERT) CULTIVOS FORRAJEROS (EN VERDE)

AO3 1600 Forage crops (green) / Cultures fourragères (en vert) / Cultivos forrajeros (en verde)

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

MRL 5 74 DISULFOTON Except maize forage. Sauf maïs fourrager. DISULFOTON Step: CXL

Excepto forrage verde de maís. DISULFOTON

AB BY-PRODUCTS, USED FOR ANIMAL FEEDING PURPOSES, DERIVED FROM FRUIT AND

VEGETABLES

SOUS-PRODUITS, UTILISES POUR L'ALIMENTATION ANIMALE, DE LA TRANSFORMATION DES FRUITS ET LEGUMES

PRODUCTOS SECUNDARIOS UTILIZADOS PARA LA ELEBORACION DE PIENSOS,

AB 0001 Citrus pulp, Dry / Pulpe d'agrumes sèche / Pulpa de cítricos desecada

Pesticide/Plaguicida	MRL/I Step:	LMR	(mg/kg)) Note/Nota
56 2-PHENYLPHENOL PHÉNYL-2 PHÉNOL 2-FENILFENOL	MRL Step:	60	PoP 6	
94 methomyl méthomyl metomilo	MRL Step:	3	3	
96 carbofuran Carbofuran Carbofuran	MRL Step:	2	CXL	Based on the use of carbosulfan. Correspondant à l'emploi de carbosulfan. Basado en los usos de carbosulfan.
109 FENBUTATIN OXIDE FENBUTATIN-OXYDE FENBUTATIN ÓXIDO	MRL Step:	25	CXL	
113 propargite propargite propargita	MRL Step:	40	CXL	
145 carbosulfan carbosulfan carbosulfan	MRL Step:	0.1	6	

AB 0226 Apple pomace, Dry / Marc de pomme sec / Pulpa de manzana, seca

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

7 CAPTAN MRL 2

CAPTANE Step: 6

CAPTAN

109 FENBUTATIN OXIDE MRL 40

FENBUTATIN-OXYDE Step: CXL

FENBUTATIN ÓXIDO

113 propargite MRL 80

PROPARGITE Step: CXL

PROPARGITA

120 PERMETHRIN MRL 50

PERMÉTHRINE Step: CXL

PERMETRIN

192 FENARIMOL MRL 5

FÉNARIMOL Step: CXL

FENARIMOL

AB 0269 Grape pomace, Dry / Marc de raisin sec / Orujo de uva, desecado

Pesticide/Plaguicida MRL/LMR (mg/kg) Note/Nota

Step:

109 FENBUTATIN OXIDE MRL 100

FENBUTATIN-OXYDE Step: CXL

FENBUTATIN ÓXIDO

113 PROPARGITE MRL 40

PROPARGITE Step: CXL

PROPARGITA