

JEMRA update on STEC work

EHEC in beef and sprouts "priority pathogen-commodity"(1999)

Agree to prepare risk profile for STEC in beef, pork and sprouts (2001)

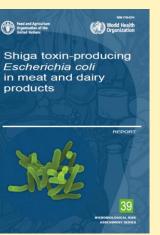
Discussion paper presented at CCFH (2003)

Request for scientific advice (2015)

Requested additional scientific advice on STEC (2019)

JEMRA, together with the Food Safety Authority of Ireland, convened an inception meeting (2006)

2010

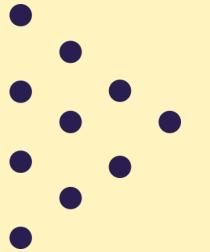

2000

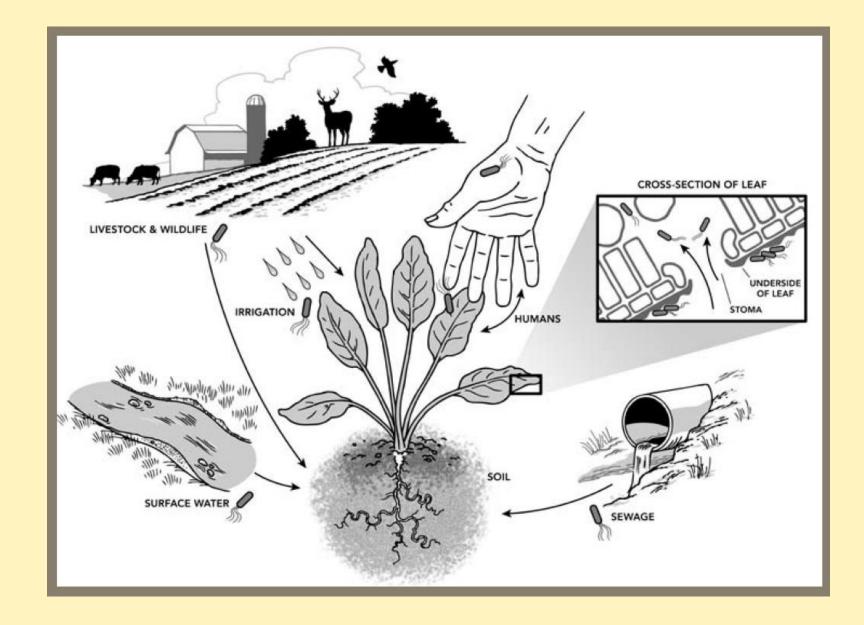
1980

1990

2020

Sources and Reservoirs

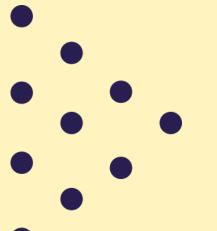


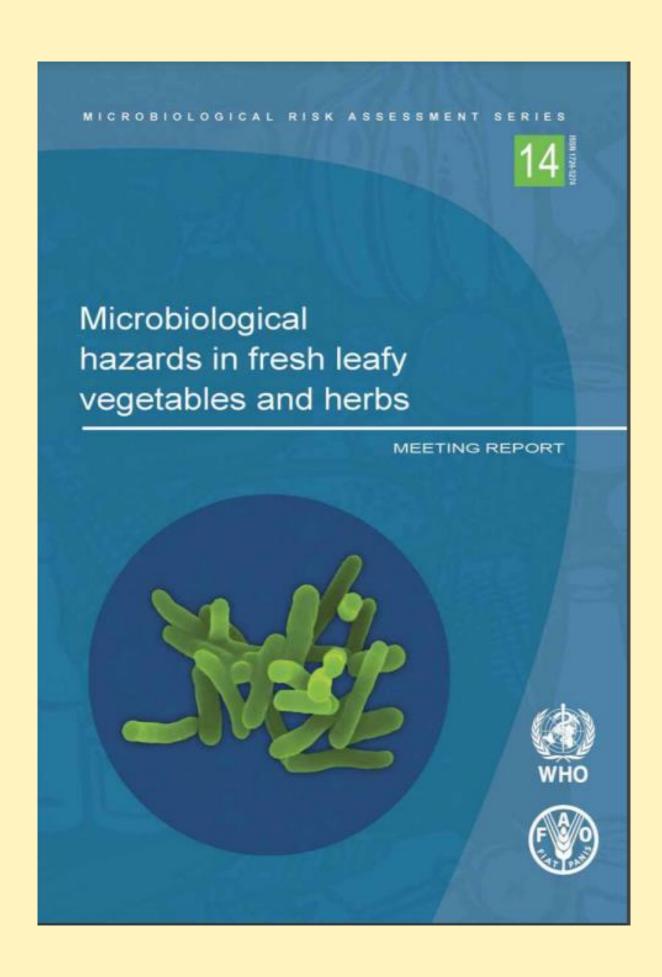

TABLE 1 Animal hosts of Shiga toxin-producing E. coli

Common Name	Scientific Name	Reference
Cattle	Bos taurus	1 Z 8 10 19 21-23 27 29-33
Goats	Capra aegagrus hircus	34, 39, 40, 43, 44, 48, 49, 53
heep	Ovis aries	1, <u>35, 39, 43-47</u>
Water buffalo	Bubalus bubalis	<u>53, 54, 61</u>
White-tailed deer	Odocoileus virginianus	62-64, <u>67-71</u>
Bison	Bison bison	<u>74</u> – <u>77</u>
Elk	Cervus canadensis	<u>72, 73, 80</u>
Llamas	Lama glama	191
Alpaca	Lama pacos	83, <u>192</u>
Yak	Bos grunniens	83
Eland	Taurotragus oryx	<u>83</u>
Antelope	Antilope cervicapra	83
Mountain goat	Oreamnos americanus	84
Guanaco	Lama guanicoe	<u>79</u>
Horses	Equus ferus caballus	85-88, 91
Donkey	Equus africanus asinus	84, 89, 90
Domestic swine	Sus domesticus	1, 92, 94-96, 101, 102
Feral swine	Sus scrofa	103-105
Chicken	Gallus gallus domesticus	92, 94, 125, 126
Turkeys	Meleagris gallopavo	92, 126
Pigeon	Columba livia	111, 116
Starling	Sturnus vulgaris	110, 112-114
Geese	Branta canadensis	107, 119
Turtle dove	Streptopelia turtur	112
Barn swallow	Hirundo rustica	112
Dogs	Canis lupus familiaris	39, 163, 165
Cats	Felis catus	166, 170, 171
Coyote	Canis latrans	84
Fox	Vulpes vulpes	84
Rabbit	Oryctolagus cuniculus	143, 144
Raccoon	Procyon lotor	152
Fish and shellfish	•	129-132
Norway rats	Rattus norvegicus	108, 137, 138
Ground hog	Marmota monax	84
•	Dolichotis patagonus	83
Frogs		193
Ferrets ^a	Mustela putorius furo	172
Mice	Mus spp.	114, 142, 180

[&]quot;Experimental infections only.

Sources and Reservoirs

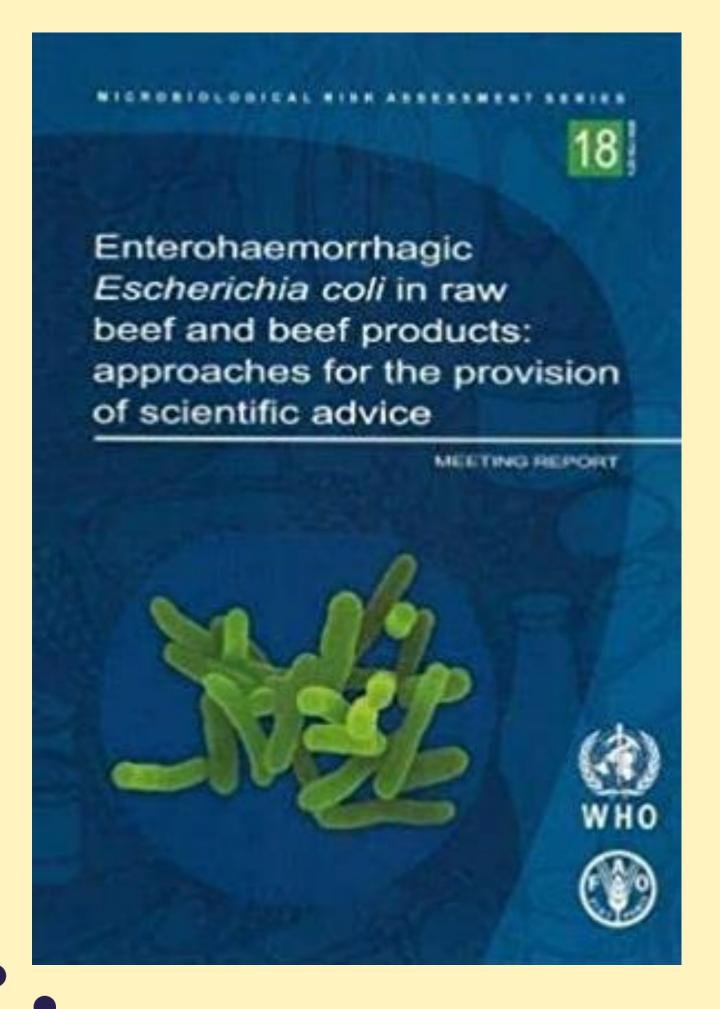



TABLE 1 Animal hosts of Shiga toxin-producing E. coli

Common Name	Scientific Name	Reference
Cattle	Bos taurus	1, Z, 8, 10, 19, 21-23, 27, 29-33
Goats	Capra aegagrus hircus	34, 39, 40, 43, 44, 48, 49, 53
Sheep	Ovis aries	1, 35, 39, 43-47
Water buffalo	Bubalus bubalis	<u>53, 54, 61</u>
White-tailed deer	Odocoileus virginianus	62-64, 67-71
Bison	Bison bison	<u>74</u> – <u>77</u>
Elk	Cervus canadensis	<u>72, 73, 80</u>
Llamas	Lama glama	191
Alpaca	Lama pacos	83, <u>192</u>
Yak	Bos grunniens	83
Eland	Taurotragus oryx	83
Antelope	Antilope cervicapra	83
Mountain goat	Oreamnos americanus	<u>84</u>
Guanaco	Lama guanicoe	<u>79</u>
Horses	Equus ferus caballus	85-88, 91
Donkey	Equus africanus asinus	84, 89, 90
Domestic swine	Sus domesticus	1, 92, 94-96, 101, 102
Feral swine	Sus scrofa	103-105
Chicken	Gallus gallus domesticus	92, 94, 125, 126
Turkeys	Meleagris gallopavo	92, 126
Pigeon	Columba livia	111, 116
Starling	Sturnus vulgaris	110, 112-114
Geese	Branta canadensis	107, 119
Turtle dove	Streptopelia turtur	112
Barn swallow	Hirundo rustica	112
Dogs	Canis lupus familiaris	39, 163, 165
Cats	Felis catus	166, 170, 171
Coyote	Canis latrans	84
Fox	Vulpes vulpes	84
Rabbit	Oryctolagus cuniculus	143, 144
Raccoon	Procyon lotor	152
Fish and shellfish	-	129-132
Norway rats	Rattus norvegicus	108, 137, 138
•	Marmota monax	84
-	Dolichotis patagonus	83
Frogs		193
Ferrets*	Mustela putorius furo	172
Mice ^a	Mus spp.	114, 142, 180

⁴Experimental infections only.

2008


Vegetables important vehicle for STEC infections

Control measures identified in fresh fruits and vegetables

- Irrigation water
- Soil amendments
- Worker Hygiene
- Equipment Sanitation
- Control of wildlife Intrusion

2011

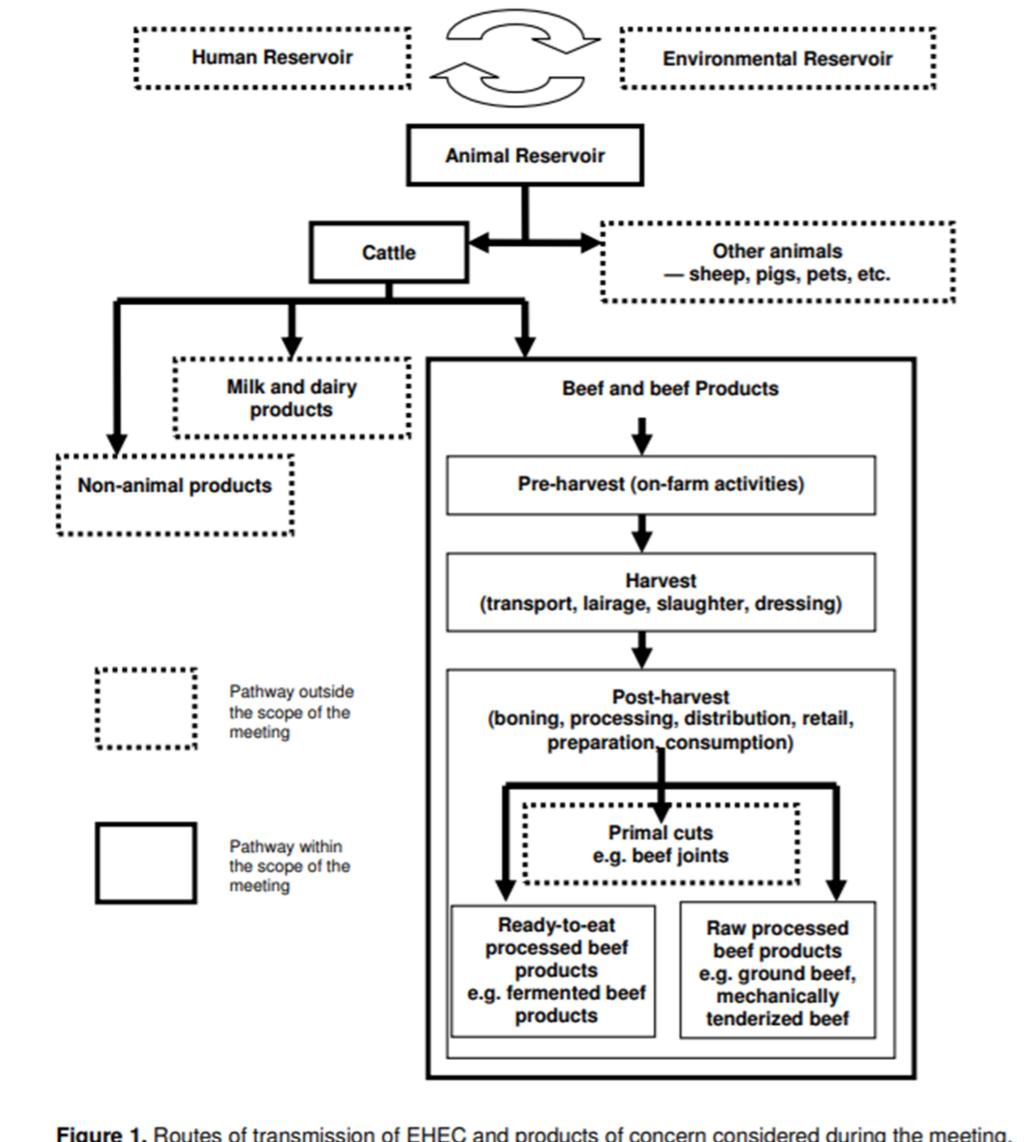
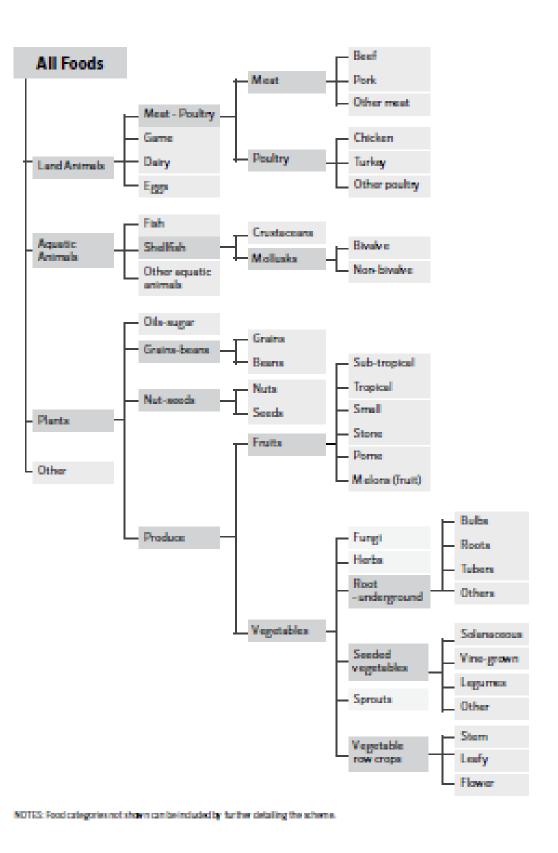
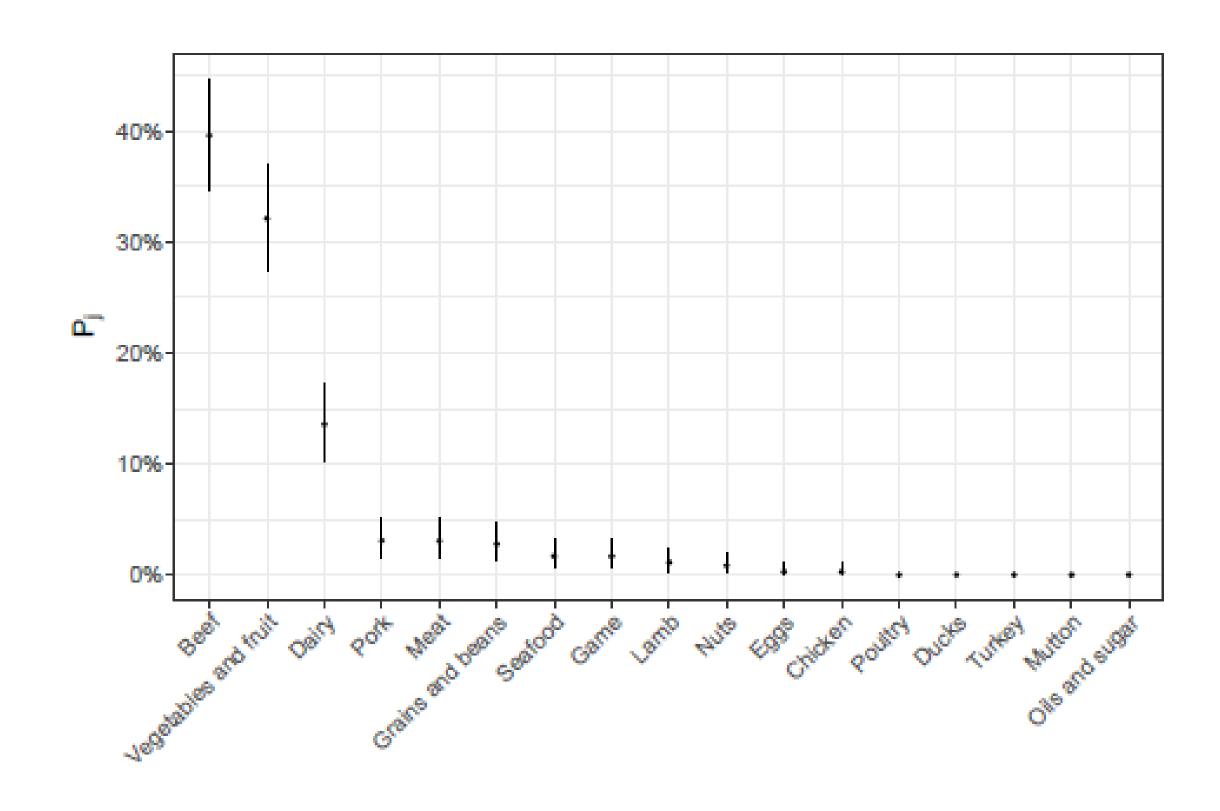
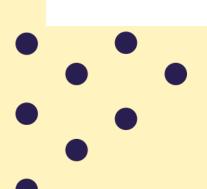



Figure 1. Routes of transmission of EHEC and products of concern considered during the meeting.

Outbreak Data 2018

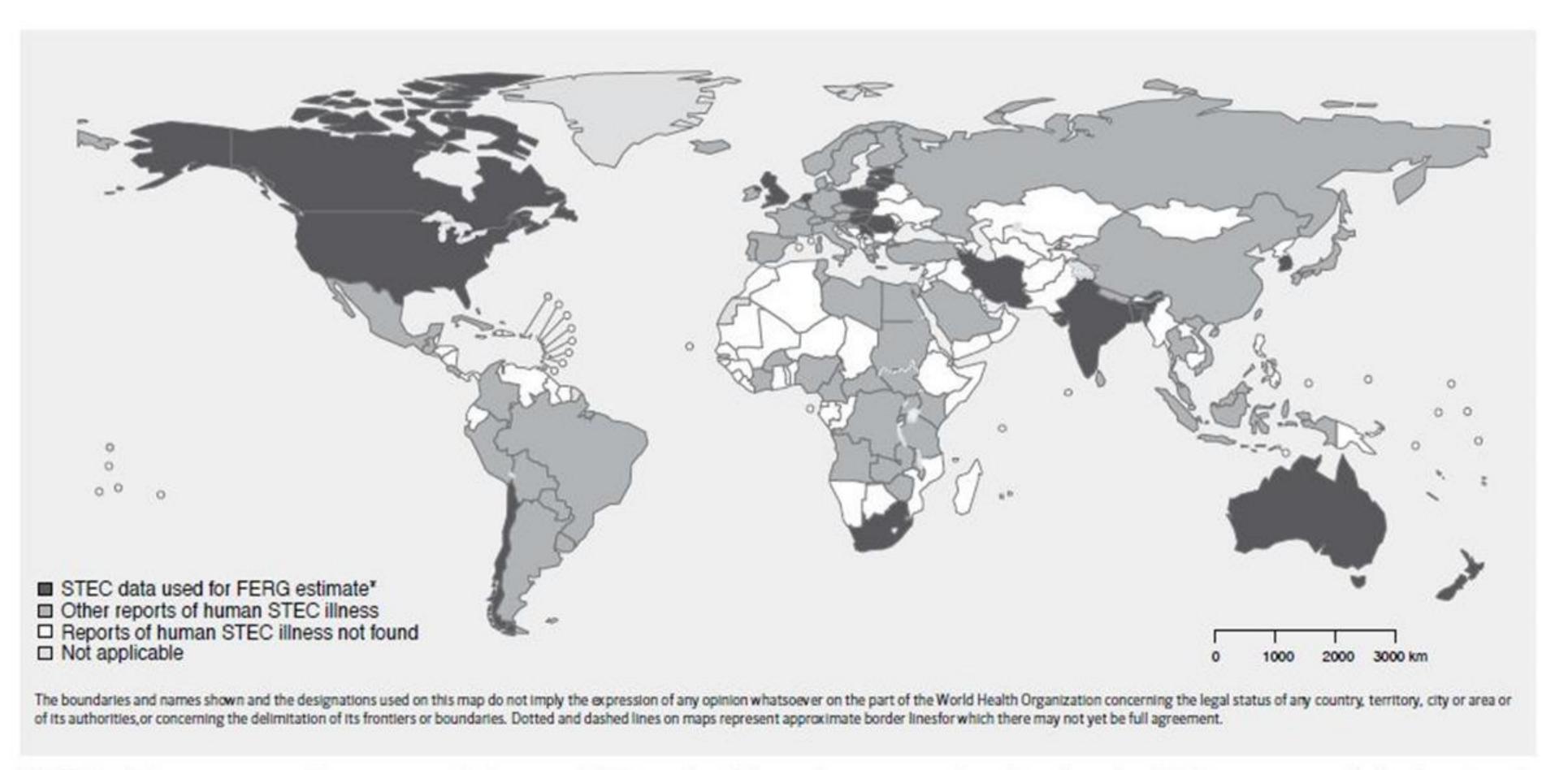
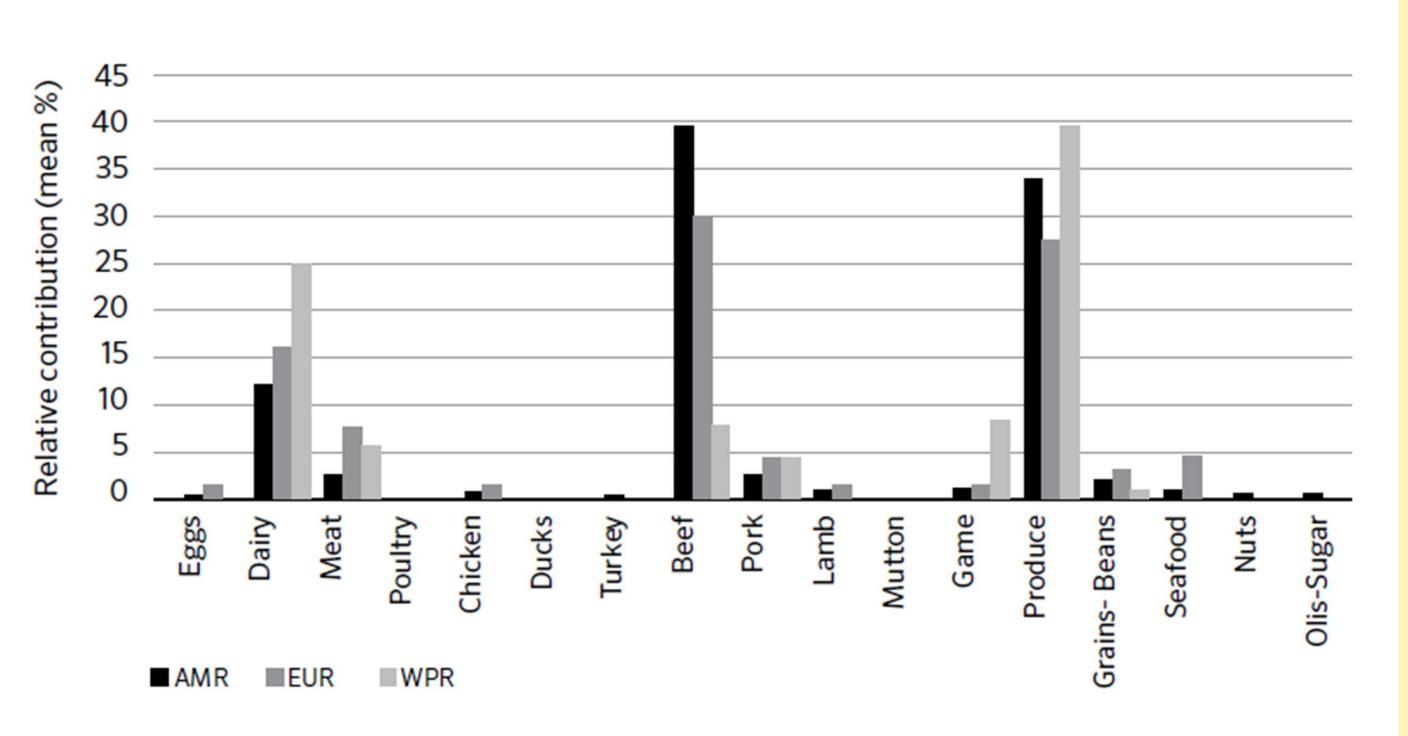

FIGURE 3. Estimates for P_i for food sources (median and 95% uncertainty interval)

FIGURE 1. Disease burden (DALYs) of STEC by sub-region, 2010 (adapted from Kirk *et al.*, 2015)

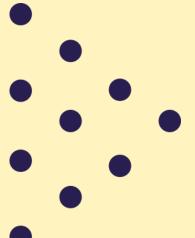
NOTES: *21 countries and regions with data on STEC isolated from humans used to develop the FERG estimate of the burden of foodborne illness by region; Majowicz et al. (2014).

FIGURE 4. Countries with reported human STEC illness.

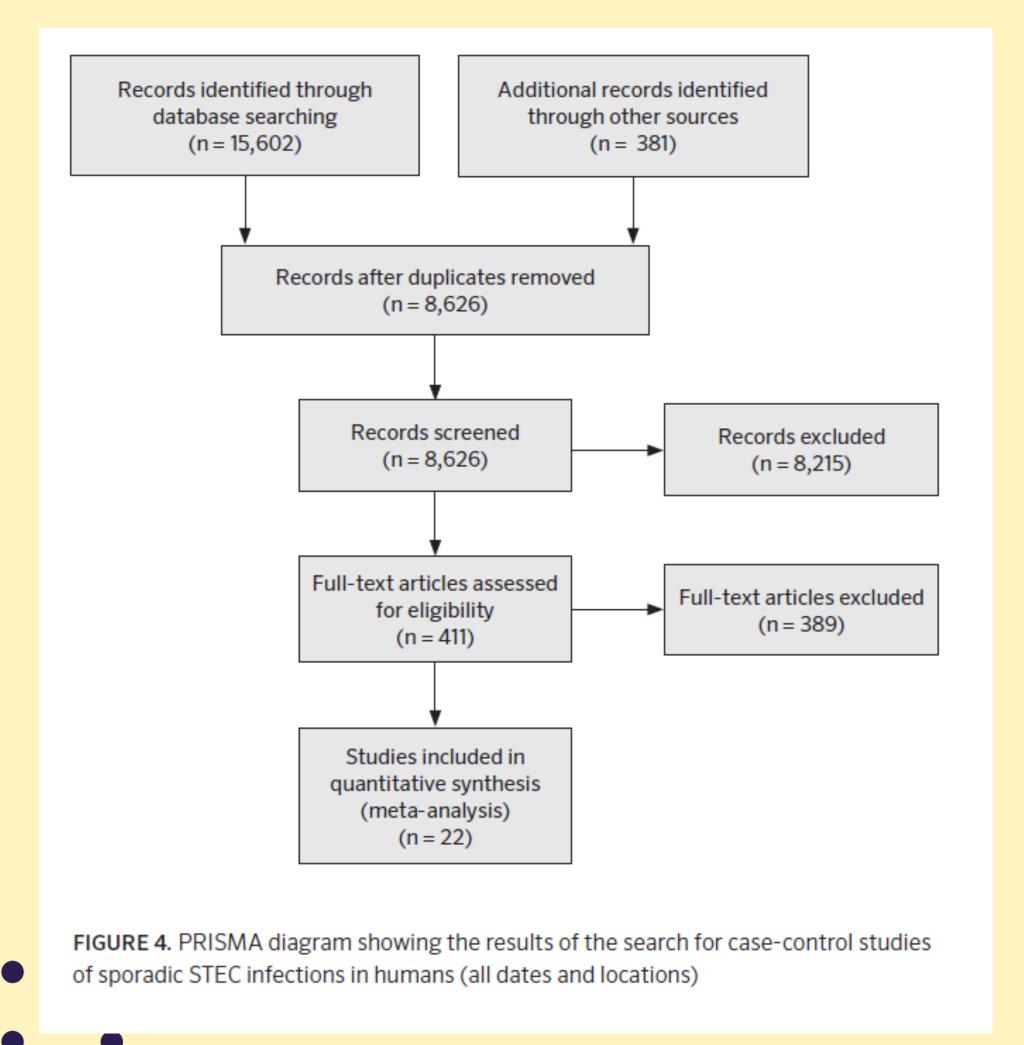


outbreak

TABLE 2. Proportion of STEC cases attributed to foods in WHO regions (%, mean and 95% uncertainty interval [UI])

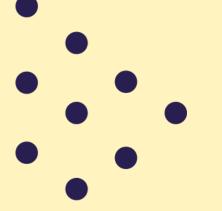

	AMR				EUR			WPR	
	Mean	959	% UI	Mean	959	% UI	Mean	95	% UI
Beef	18.3	17.8	18.6	11.8	10.8	13.1	2.7	0	2.9
Produce (fruits and vegetables)	16.1	15.5	16.5	11.4	10.2	12.5	13.6	11.4	14.3
Dairy	5.5	5.2	5.9	6.2	6.2	6.2	8.6	8.6	8.6
Grains and beans	1.4	1.1	1.7	1.2	1.1	1.7	0.4	0	2.9
Pork	1.2	1.1	1.5	1.7	1.7	1.7	1.6	0	5.7
Meat	1.1	1.1	1.3	2.3	1.7	2.8	1.7	0	5.7
Game	0.5	0.5	0.7	0.6	0.6	0.6	2.9	2.9	2.9
Lamb	0.4	0.4	0.5	0.6	0.6	1.1	0	0	0
Seafood	0.4	0.4	0.4	1.7	1.7	1.7	0	0	0
Nuts	0.4	0.4	0.4	0	0	0	0	0	0
Chicken	0.1	0.1	0.3	0	0	0.6	0	0	0
Eggs	0	0	0.1	0.6	0.6	0.6	0	0	0
Poultry	0	0	0	0	0	0	0	0	0
Ducks	0	0	0	0	0	0	0	0	0
Turkey	0	0	0	0	0	0	0	0	0
Mutton	0	0	0	0	0	0	0	0	0
Oils and sugar	0	0	0	0	0	0	0	0	0
Unknown *AMR: Region of th	54.4	54.4	54.4	61.9	61.9	61.9	68.6	68.6	68.6

*AMR: Region of the Americas; EUR: European Region; WPR: Western Pacific Region.


NOTES: Estimates exclude proportion of unknown-source outbreaks

AMR = Region of the Americas; EUR = European Region; WPR = Western Pacific Region.

Case control



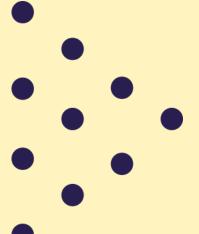
Lead author	Country	St	Study timeframe																													
		1985	1986	1987	1988	1989	1990	1991	1992	1883	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
AMRA																														П		
Bryant	Canada					x																								П		
Le Saux	Canada									x																				П		
Rowe	Canada									x																						
Holton	Canada															х														П		
MacDonald	USA				x																									П		
Slutsker	USA														x															П		
Mead	USA						Г							x														Г		П		
CDC	USA											x																				
Kassenborg	USA																				х							T		П		
Voestch	USA													Г										x				Г		П		
Denno	USA																									x		T		П		
AMR B																														П		
Rwas	Argentina																								x			T		П		
EUR A																														П		
Parry	United Kingdom														x																	
O'Brien	United Kingdom																	x														
Locking	United Kingdom																	X														
Vaillant	France																									x						
Pierrard	Belgium*								•	•	•	•	•	•	•	•x												Γ				
Friesema	Netherlands																															×
Werber	Germany																							x								
WPR A																																
Hundy	Australia																				x											
McPherson	Australia																									x		Γ				
Jaros	New Zealand		T						Γ		Г	Г		Г					П											х		Γ

^{*} specific years not reported

FIGURE 5. Study locations and timeframes for the 22 Identified case-control studies of sporadic STEC infections in humans

Case Control Studies 2.5 1.5 0.5 Meat- unspecified chicken produce pork seafood eggs Poultry/game Food

22 Studies included



Hazard Identification: Virulence

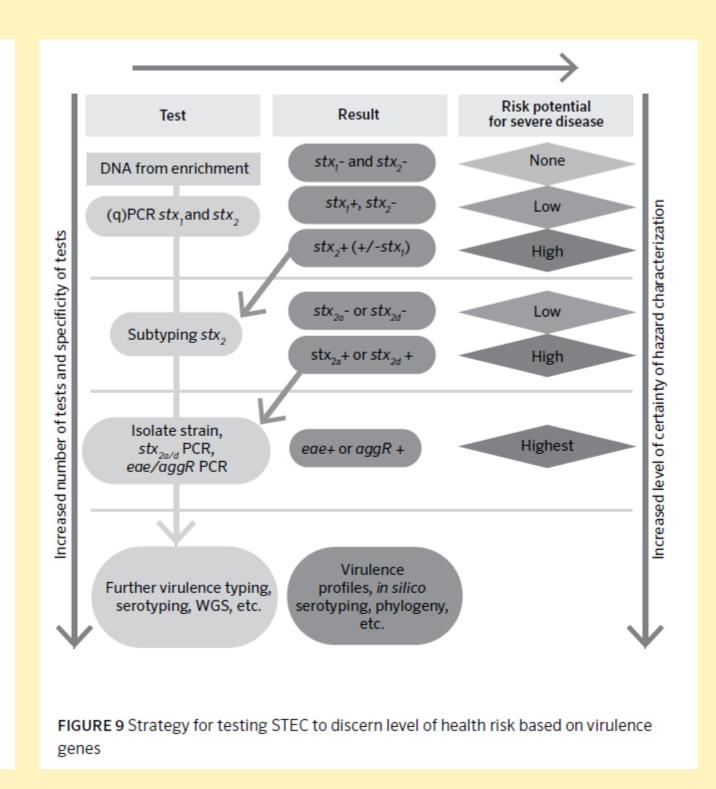
TABLE 5. Combinations of STEC virulence genes and the estimated potential to cause diarrhoea (D), bloody diarrhoea (BD) and haemolytic uraemic syndrome (HUS) ¹

Level	Trait (gene)	Potential for:
1	stx_{2a} + eae or aggR	D/BD/HUS
2	stx _{2d}	D/BD/HUS ²
3	stx _{2c} + eae	D/BD ³
4	stx _{1a} + eae	D/BD ³
5	Other stx subtypes	DΛ

NOTES: 1. depending on host susceptibility or other factors; e.g. antibiotic treatment

association with HUS dependent on stx2d variant and strain background.

^{3.} some subtypes have been reported to cause BD, and on rare occasions HUS



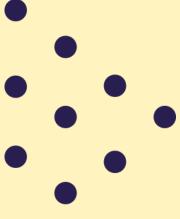

Hazard Identification: Virulence

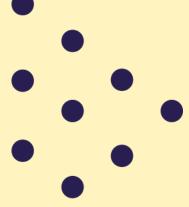
TABLE 5. Combinations of STEC virulence genes and the estimated potential to cause diarrhoea (D), bloody diarrhoea (BD) and haemolytic uraemic syndrome (HUS) ¹

Level	Trait (gene)	Potential for:
1	stx_{2a} + eae or aggR	D/BD/HUS
2	stx _{2d}	D/BD/HUS ²
3	stx _{2c} + eae	D/BD ³
4	stx _{1a} + eae	D/BD ³
5	Other stx subtypes	D^

NOTES: 1. depending on host susceptibility or other factors; e.g. antibiotic treatment

association with HUS dependent on stx2d variant and strain background.

^{3.} some subtypes have been reported to cause BD, and on rare occasions HUS

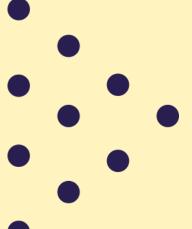

Monitoring

A variety of monitoring programs are employed globally, with different designs, based upon their respective purpose, including in: Including

- Beef and other meats
- Dairy products
- Vegetables and sprouts

Country	Purpose	Description	Pathogens and bacterial indicators							
NORTH A MERICA										
Canada	Ensure food safety and verify industry compliance with Canadian food safety standards	E. coli O157- Finished Raw Ground Beef Products (FRGBP) - Domestic raw ground beef or raw ground veal intended for use as FRGBP	Generic E. coli, STEC 0157/NM							
Canada	Ensure food safety and verify industry compliance with Canadian food safety standards	Pathogens in ready-to-Eat (RTE) Meat Products - Domestic uncooked dry or semi-dry fermented products containing beef	Salmonella spp., Listeria monocytogenes, STEC 0157/NM							
Canada	Ensure food safety and verify industry compliance with Canadian food safety standards	Beef/Veal Precursor Material (PM) Intended for Use in FRGBP	STEC 0157/NM							
Canada	Ensure food safety and verify industry compliance with Canadian food safety standards	RTE Fermented Meat [RTEM-F] Products - Fermented products that contain meat from all sources	E. coli, S. aureus, Salmonella, L. monocytogenes, STEC 0157 (beef only)							
Canada	Market access (Import)	E. coli 0157- FRGBP - Imported raw ground beef or raw ground veal intended for use as FRGBP /Veal Products	Generic, E. coli STEC 0157/NM							
Canada	Market access (import)	Pathogens in RTE Meat Products - Imported uncooked dry or semi-dry fermented products containing beef	Salmonella spp., Listeria monocytogenes, STEC 0157							
	Market access (Import)	Imported PM Intended for Use in FRGBP	STEC 0157							
	Market access (Export)	PM Intended for export to USA (Industry testing program)	STEC 0157:H7, 026, 045, 0103, 0111, 0121, and 0145.							
USA	Ensure food safety and verify industry compliance with the USA food safety standards	Sampling verification activities for STEC in raw beef and veal products including trims. Routine testing by FSIS Beef manufacturing trim; raw ground beef components other than trim	STEC 0157 Non-0157 STEC for trims including serotypes 026, 045, 0103, 0111. 121, 0145 Salmonella spp.							
		Bench trim derived from cattle not slaughtered on site Raw ground beef products in establishments that grind and form patties Raw ground or commuted beef or yeal retail programme	E. coli O157:H7 and Salmonella							

⁰ A.--7-1-1 -- 1-1-- //----- 6-- --- /7/- 1-550- -- de



Detection

Methodologies are constantly evolving.

Pros and cons to various methods.

Purpose	Approach	Example
Identification	Isolation	Culture
		Enrichment
		Immunoconcentration
	Molecular	PCR
		rtPCR
		metagenomics
	Immunological	ELISA
Characterization	Phenotypic	Serotyping
		Stx production
		sorbitol fermentation
		bet-glucuronidase
		production
	Molecular	PCR
		PFGE
		MLVA
		WGS

Interventions

STEC specific

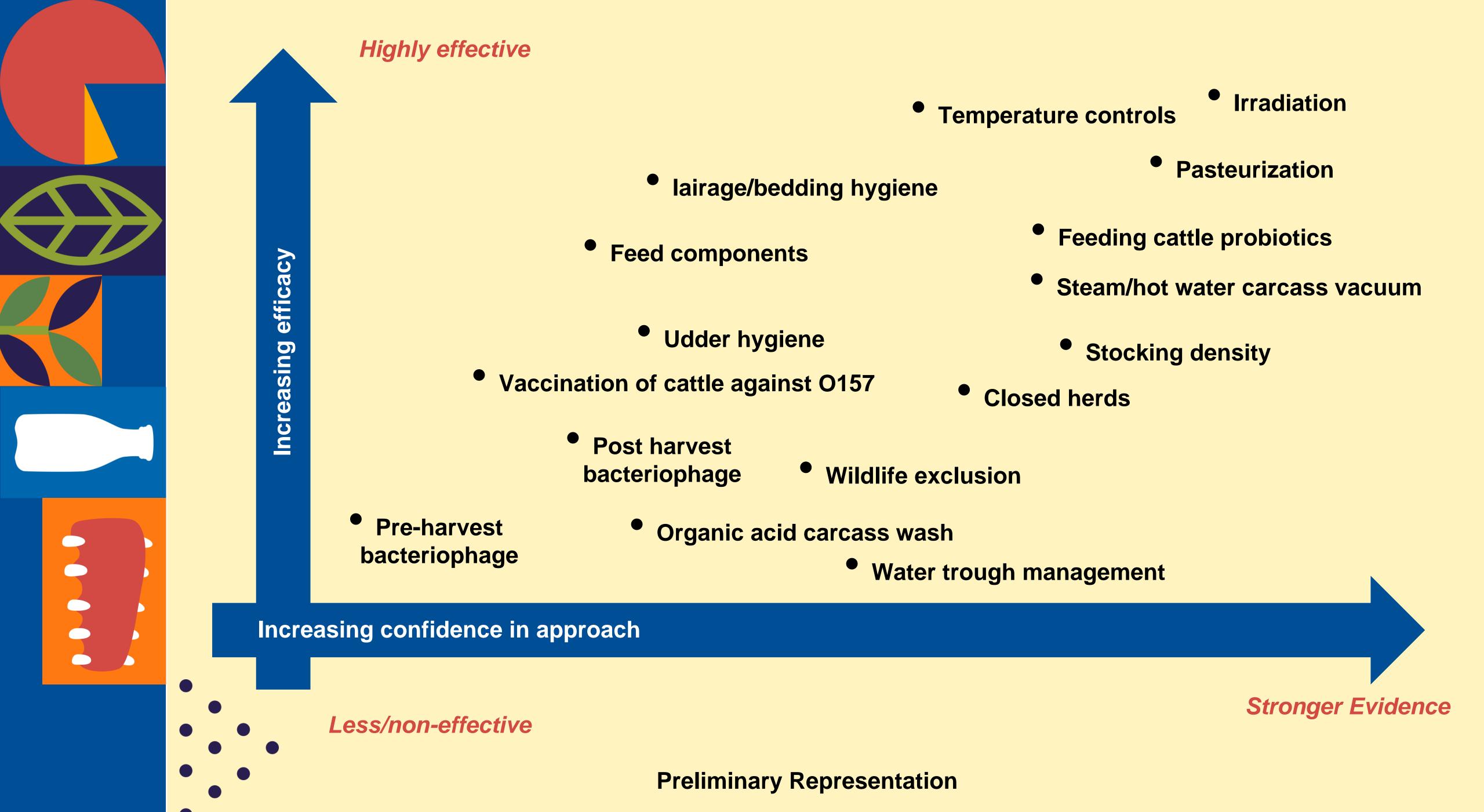
vaccination, bacteriophage, probiotics

STEC sensitive

GAP, hygiene, temperature control

Scientific inference employed to extrapolate to STEC

Evaluated for:


Primary production, beef and dairy

Beef processing

Post-processing beef

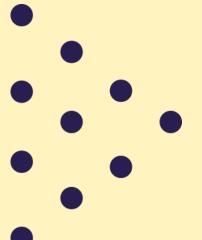
Dairy processing

Ten take-home messages

- 1.STEC remains a public health problem, O157 and non-O157 serotypes
- 2. New vehicles are emerging
- 3. Beef, produce, and dairy are primary sources
- 4. Molecular tools are improving risk assessments
- 5. Monitoring programmes should be appropriate to answer the risk management questions and the testing programmes should be fit for their purpose
- 6. Interventions need not be STEC specific to be effective
- 7. Good Agricultural Practices and Good Manufacturing practices are beneficial control measures
- 8. Probiotics and non-thermal processing are tools for control
- 9. No single "silver bullet". Multi-hurdle approaches needed.
- 10.Loss of control downstream can abrogate upstream interventions

Existing Codex texts related to STEC

General Principles of Meat Hygiene


Code of Hygienic Practice for Fresh Fruits and Vegetables

Code of Hygienic Practice for Fresh Meat

Code of practice for fish and fishery products

Standard for live and raw bivalve molluscs

Others is development

Thank you!

A special thanks to all the experts!

