FAO/ASTF Project: GCP/RAF/510/MUL:

Enhancing capacity/risk reduction of emerging Tilapia Lake Virus (TiLV) to African tilapia aquaculture: Intensive Training Course on TiLV

4-13 December 2018. Kisumu, Kenya

in cooperation with Kenya Marine Fisheries Research Institute (KMFRI) and Kenya Fisheries Service (KeFS)

Session: Diagnostic PCR method for Tilapia Lake Virus (TiLV)

Win Surachetpong (DVM, PhD, DTBVP, CertAqv) fvetwsp@ku.ac.th

Acknowledgements

Sample collection for diagnostic procedures Organs be used for TiLV diagnosis

Direct Examination

1. Electron microscopy

2. Light microscopy

- 3. Immunofluorescence
- 4. Molecular techniques

1. Transmission electron microscopy

- Examination of virus preparations in which their morphological identity is unknown
- A beam of electrons is transmitted through an ultra thin specimen → An image is formed, magnified, and focused in an imaging device

SHV morphology Transmission electron microscopy

Liver from moribund tilapia showing multinucleated hepatocyte

Ferguson et al., 2014 J Fish Dis.

EM of hepatocyte from moribund tilapia showing typical appearance of virus-like particle within cytoplasm (arrow)

TilV morphology Transmission electron microscopy

Eyngor et al J Clin Micro 2014

Surachetpong et al Emerging Infectious Dis 2017

Tattiyapong et al Vet Micro 2017

TilV morphology Transmission electron microscopy

Del-Pozo et al., 2016 Vet. Pathol.

2. Light microscopy

In situ hybridization of TiLV in the

brain of infected fish

Credit: Dr.Attapon Kamlungdee Vet Patho KU

3. Immunofluorescence Immunohistochemistry staining

In situ hybridization with fluorescence probes

Liver sections Cy3-conjugated (red) Stellaris probes to segment 3 to detect mRNA. Nuclei are stained with DAPI (blue).

TiLV-infected E-11 cells Quasar 670-conjugated (red) Stellaris probe to segment 3 to detect TiLV mRNA. Nuclei are stained with DAPI (blue).

Images of confocal sections of cells in panel E were reconstituted into a 3D image. Bacharach et al., 2016 MBIO

IHC staining of influenza A virus in mouse lung tissue

Brown staining indicates positive staining in cell's cytoplasm and/or nucleus.

Kash et al., 2013 Free Radic Biol Med.

Immunohistochemistry of TiLV-infected brain

Credit: Dr.Promporn Raksaseri Faculty of Veterinary Science

Chulalongkorn University

4. Molecular techniques

- Reverse transcription polymerase chain reaction (RT-PCR)
- Quantitative reverse transcription

polymerase chain reaction (RT-qPCR)

Insulated isothermal PCR (iiPCR)

Reverse transcription polymerase chain reaction (RT-PCR)

Several PCR methods have been described for the detection of TiLV including

conventional RT-PCR, semi-nested RT-PCR

 Recently, a SYBR green-based RT-qPCR method targeting the same segment was developed with a reported sensitivity of 2 copies

Reverse transcription polymerase chain reaction (RT-PCR)

TiLV = negative sense RNA genome AA RNA Primer Reverse Thermo Transcription cycler CDNA PCR Amplified DNA Amplification

Gel electrophoresis

Identification of a Novel RNA Virus Lethal to Tilapia

Marina Eyngor,^a Rachel Zamostiano,^b Japhette Esther Kembou Tsofack,^b Asaf Berkowitz,^a Hillel Bercovier,^c Simon Tinman,^d Menachem Lev,^e Avshalom Hurvitz,^f Marco Galeotti,^g Eran Bacharach,^b Avi Eldar^a

Department of Poultry and Fish Diseases, The Kimron Veterinary Institute, Bet Dagan, Israel^a; Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel^b; The Hebrew University-Hadassah Medical School, Jerusalem, Israel^c; Department of Animal Facility, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel^d; Ein Gev Fisheries, Kibbutz Ein Gev, Israel^e; Dan Fish Farms, Kibbutz Dan, Upper Galilee, Israel^f; Department of Food Science, Section of Veterinary Pathology, University of Udine, Udine, Italy^g

1326 bases clone of 7450 segment 3

GAAAT GGAC TCGCGGT TT G CACAGCTAAC TG GGGT TT TC T GT GAC GATT TCA CTT AT AGC GAA gggagccgaaggttcctaagttcttacagtacagtagagagacgtccaggagtccccgtaga GGT GACTGTTATGACTGTTTGAAGAATAAGTGGATTGCCTTTGAGCTGGAAGGCCAGCCGCG AAATTTCCAAAGGCAACAGTTCGTTGCATTTTGAACAATGATGCTACATACGT CAAGAGTACCAGCAGATTTGTAAGGTACAATTCAAGGATTATTTGGAGATCGACGGGGTT AAAGTTGGGCACAAGGCATCCTACGATGCTGAGCTAAGGGAACGGCTATTGGAAC CCAAAGAGTGGCCCGAAGCCTCGTATTGAGTGGGTGGCACCACCCAGACTTGCGG AAGGAAACAGCTGAGCTAAAGAGGCAATATGGATTCTTCGAGTGCTCAAAGTT GGTGAGGAGTGTGGTCTTGACCAAGAGGCAAGAGAACTTATACTGAACGAGTACGCACGTGA AGAGAATTTGAGTTCCGCAATGGAGGGTGGATACAAAGGTATACAGTTGCTTCTCACAAGCC GCTACACAGAAGATATTACCTCTACCGGCTAGTGCTCCACTTGCTCGTGAGCTTTTGA ATT GETAGAAG CACAACT CAGGCAGGGAAAG TAC TG CATAGC GATAATACCAG GTACCGGTCATGCGCGACTCTGGAAAGCACAGTAAAAGGAGACCAACCO TTAGTTGTAGGTCTAAGTAAACCTGGCTGTGAACACGATTTTGAGTTTGACGGGTACAGGGCJ g ct gt g cat gt g c ac c t a g at c c c a ag c a at c g g c t a at at a g g g g a g c a a A GTACCCGA GAAA TTTACAAG CTGGA TATGTTGGAACTACCTCCCA TAAGTA GGAAGGGTGA CTGGACAGAGCTAGTGGTCTTGAGACAAGATGGGACGTCATC TCTACAAGGGTTAGCCAAGCAGTGGCTCAACATTTTAATAGGCACCGGCTAGCACTT TGTAAGGACGAGTTCAGGAAAGGCTACCAGCTGGCTTCTGAGATAAGGGGTACAATACCCTTA AGCTCACTTTATTATTCACTTTGTGCAGTAAGATTGCGGATGACAGTACACCCATTTGCGAGA TGATCGCTTTCGACGCCTTCGCTAAAGGTTACGACGTTCTAATAGAGGATTATG TGC

EMD SR FAQLTGVFCDDFTY SEGSRRFLSSYSTVERRPGV PVEGDCYDCLKNKWIAFELEGQPR KFP KATVRC ILNNDATYVC SEQEYQQICKVQFKDYLEIDGVV KVGHKASYDAELRERLLELPH PKSGPK PRIEWVAPPRLADISKETAELKRQYGFFECSKFLACGECGLDQEARELILNEYARD REFEFRNGGWIQRYTVASHKPATQKILPLPASAPLARELLMLIARSTTQAGKVLHSDNTSILA VPVMRDSGKHSKRRPTASTHHLVVGLSKPGCEHDFEFDGYRAAVHVMHLDPKQSANIGEQDFV STREIYKLDMLELPPISRKGDLDRASGLETKWDVILLLECLDSTRVSQAVAQHFNRHRLALSV CKDEPRKGYQLASEIRGTIPLSSLYYSLCAVRLRMTVHPPAR

RT-PCR method based on the design of segment 3 of TiLV

M 1 2 3 4 5 6 7 8 9 10

Lane 1-7 infected fish

Lane 8-9 infected E-11 cells

Lane 10 healthy fish

Detection of Tilapia Lake Virus in Clinical Samples by Culturing and Nested Reverse Transcription-PCR

Japhette Esther Kembou Tsofack,^a Rachel Zamostiano,^a Salsabeel Watted,^b Asaf Berkowitz,^b Ezra Rosenbluth,^b Nischay Mishra,^c Thomas Briese,^c W. Ian Lipkin,^c Richard M. Kabuusu,^d Hugh Ferguson,^d Jorge del Pozo,^e Avi Eldar,^b Eran Bacharach^a

Sensitivity of PCR, and nested PCR

RT-PCR method based on the design of segment 3 of TiLV

Journal of Society FOR MICROBIOLOGY

qPCR reaction using primers in (A)

Semi-nested RT-PCR for TiLV detection

Three nested RT-PCR reactions run at an annealing temperature 56 °C non-specifically amplified fish mRNA #Marks band probably derived from cross hybridizations of the amplified products. M, DNA marker

- Serial dilutions of positive control plasmid (pGEM-415_bp) are indicated. Expected band sizes of 415 bp and 250 bp represent amplicons from the first and seminested.
- Expected band sizes of 415 bp and 250 bp represent amplicons from the first and seminested PCR

Dong et al 2017

Quantitative reverse transcription polymerase chain reaction (RT-qPCR)

Tagman-Probe Detection

Received: 1 June 2017 Revised: 20 July 2017 Accepted: 23 July 2017

DOI: 10.1111/jfd.12708

Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

P Tattiyapong^{1,2} | K Sirikanchana^{3,4} | W Surachetpong^{1,2}

Amplification curve of serially ten-fold diltuion

Melt curve and gel electrophoresis

Standard curve of SYBR green-based RT-qPCR

FIGURE 1 Standard curve of SYBR green-based RT-qPCR amplification of plasmid pTiLV containing segment three of TiLV and infected tissue. (a) Standard curve was plotted between mean Ct values obtained from each dilution of standard plasmid pTiLV against calculated log copy number (slope = -3.4312, R² = 0.9994). (b) Standard curve of cDNA prepared from TiLV-infected fish tissue showed slopes = -3.1482, R² = 0.994

Tattiyapong et al., 2018 J. Fish Dis.

Primer-dimer formation (SYBR)

 Must run melting curve analysis

Validation of qPCR assay with field collected samples

A CONTRACT OF

Supplementary Table 1 List of field samples and estimated TiLV copies in liver						
Sample No.	Collection date	Locations	Mean Ct values	Viral loads*		
1	30/10/2015	Ang Thong	23.52	1.06×10 ⁴		
2	11/11/2015	Ang Thong	22.75	1.77×10 ⁴		
3	05/01/2016	Pathum Thani	24.70	4.75×10 ³		
4	19/01/2016	Ratchaburi	22.37	2.28×10 ⁴		
5	02/08/2016	Pathum Thani	15.21	2.80×10 ⁶		
6	05/08/2016	Pathum thani	26.66	1.28×10 ³		
7	16/08/2016	Ratchaburi	13.31	9.95×10 ⁶		
8	22/08/2016	Ang Thong	18.09	4.00×10 ⁵		
9	24/08/2016	Nakhon Pathom	13.52	8.67×10 ⁶		
10	27/08/2016	Nakhon Pathom	28.82	3.00×10 ²		
11	02/09/2016	Suphanburi	25.13	3.60×10 ³		
12	16/09/2016	Pathum Thani	22.30	2.39×104		
13	23/09/2016	Nong Khai	13.66	7.90×10 ⁶		
14	02/10/2016	Pathum Thani	12.83	1.37×10 ⁷		
15	05/10/2016	Pathum Thani	19.46	1.61×10 ⁵		

Supplementary Table 1	(Cont.)	List of field	samples and	estimated	TiLV	copies in	liver
-----------------------	---------	---------------	-------------	-----------	------	-----------	-------

Sample No.	Collection date	Locations	Mean Ct values	Viral loads*
16	16/10/2016	Pathum Thani	19.20	1.94×10 ⁵
17	25/11/2016	Ang Thong	14.56	4.35×10 ⁶
18	26/11/2016	Pathum Thani	13.46	9.08×10 ⁶
19	21/12/2016	Petchaburi	17.16	7.55×10 ⁵
20	14/11/2016	Khon Kaen	19.45	1.62×10 ⁵
21	01/01/2017	Pathum Thani	21.11	5.35×10 ⁴
22	14/02/2017	Nakhon Sawan	16.72	1.01×10 ⁶
23	20/02/2017	Uthai Thani	13.26	1.04×10 ⁷
24	24/02/2017	Phitsanulok	27.84	5.85×10 ²
25	24/02/2017	Uttaradit	32.89	1.97×10 ¹
26	25/02/1017	Ratchaburi	25.39	3.01×10 ³
27	25/02/2017	Nakhon Si Thammarat	19.87	1.22×10 ⁵
28	25/02/2017	Prachinburi	16.21	1.43×10 ⁶
29	25/02/2017	Nakhon Nayok	14.36	4.98×10 ⁶
30	25/02/2017	Ang Thong	18.76	2.55×10 ⁵

Detection of TiLV in clinical samples using RT-qPCR method

Fish sam- ples	Number of samples	TiLV posi- tive (%)	Mean Ct values (range)	Estimated viral loads (Copy num- bers) ^c
Clinical samples ^a	30	30/30 (100)	22.86 (12.83 - 32.89)	1.65 \times 10 4 (1.37 \times 10 7 -1.97 \times 10 1)
TiLV- challenged fish	10	10/10 (100)	23.65 (20.08 - 27.28)	9.72 \times 10 3 (1.00 \times 10 5 -8.50 \times 10 2)
Non- challenged fish	10	0/10 (0)	ND ^b	ND ^b

^aClinical samples were collected from 30 field outbreaks with history of massive mortality.

 ${}^{b}ND = No$ detection.

^cCopy numbers of TiLV template per μ g of total RNA.

Tattiyapong et al., 2018 J. Fish Dis.

Received: 1 June 2017 Revised: 20 July 2017

Accepted: 23 July 2017

DOI: 10.1111/jfd.12708

Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

P Tattiyapong^{1,2} | K Sirikanchana^{3,4} | W Surachetpong^{1,2}

Table 4 Comparison of RT-qPCR, conventional RT-PCR and virus isolation in cell culture

Dotoction mothod	Template dilution								
Detection method	10-1	10-2	10-3	10-4	10 ⁻⁵	10-6	10-7	10 ⁻⁸	
RT-qPCR	+	+	+	+	+	+	+	-	
Conventional RT-PCR	+	+	+	+	+	-	-	-	
Virus isolation in cell culture	+	+	+	-	-	-	-	-	

Received: 1 June 2017 | Revised: 20 July 2017 |

20 July 2017 Accepted: 23 July 2017

DOI: 10.1111/jfd.12708

Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

P Tattiyapong^{1,2} | K Sirikanchana^{3,4} | W Surachetpong^{1,2}

Table 3 Analysis of viral loads in different tissues

	Viral loads (copies µg ⁻¹ of total RNA)								
Sample					Anterior				
No.	Gills	Liver	Brain	Heart	kidney	Spleen			
1	2.2×10 ⁵	1.7×10 ⁵	3.4×10 ⁵	6.3×10 ⁵	1.6×10 ⁵	2.3×10 ⁴			
2	3.1×10 ⁵	6.3×10 ³	1.3×10 ⁶	3.9×10 ⁵	3.1×10 ⁵	2.8×10 ⁴			

Aquaculture 497 (2018) 184–188

Table 2

Fish samples	Number of samples	TiLV positive (%)
Positive sample		
Nile tilapia	7	100
Red tilapia	10	100
Negative sample		
Nile tilapia	5	0
Red tilapia	6	0

ND: no fluorescence detection.

Contents lists available at ScienceDirect

Aquaculture

Non-lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture

Aquacultur

Pavarit Liamnimitr^a, Worrayanee Thammatorn^a, Sonicha U-thoomporn^a, Puntanat Tattiyapong^b, Win Surachetpong^{a,b,*}

Fig. 2. Amplification of PCR products from E-11 cells inoculated with uninfected or TiLVinfected mucus. (M) 100 bp marker; P = Positive control (pTiLV), N = No template control, Lanes 1–3; E-11 inoculated with mucus from normal fish (uninfected mucus), Lanes 4–6; E-11 inoculated with mucus from TiLV-positive fish (infected mucus). The uninfected and infected mucus analysis was based on three clinical samples representing different geographic locations.

On farm diagnostic PCR for TiLV detection

• A commercial pond-site TiLV RT-PCR detection

assay based on insulated isothermal PCR (iiPCR) is available

- POCKIT[™] Micro (GeneBeach Biotechnology Corp.)
- Assay can be completed in 45 min
- Rapid, inexpensive, sensitive, easy to maintain

POCKIT[™] Micro (GeneBeach Biotechnology Corp.) Insulated isothermal PCR (iiPCR)

www.genereach.com

Commercial pond-site TiLV RT-PCR detection

The TiLV RT-PCR has a limit of detection LoD95% of 12 genome

Indirect Examination

Cell Culture methods Laboratory animals

1. Cell culture methods

- Since the discovery by Enders (1949) that polioviruses could be cultured in cells, cell culture has become a very useful and convenient method for isolating viruses *in vitro*
- Gold standard for virus isolation and identification

Cytopathic effects (CPE)

Morphological changes occurring in viral infection

- 1. Rounding
- 2. Detachment
- 3. Syncytia or fusion
- 4. Shrinkage
- 5. Increased refractivity
- 6. Aggregation
- 7. Loss of adherence
- 8. Cell lysis or death

TiLV viral isolation

Clinical specimens

- Organ and tissue
- Mucus

Virus cultivation in cell culture

Observe CPE in viral replicated cells

2. Laboratory animals

- Play an essential role in the studies of viral pathogenesis
- Routes of viral inoculation
 - Intracerebral
 - Subcutaneous
 - Intraperitoneal
 - Intranasal
- After inoculation, the animal is:
 - Observed for signs of disease or visible lesions
 - Euthanized so that infected tissues can be examined

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic

Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (*Oreochromis niloticus*) and red tilapia (*Oreochromis spp.*)

Puntanat Tattiyapong^{a,b}, Worawan Dachavichitlead^{a,b}, Win Surachetpong^{a,b,*}

^a Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand

^b Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand

Gross signs of fish from field outbreak

Gross signs of fish from lab challenge

Tattiyapong, Dachavichitlead, and Surachetpong 2017. Veterinary Microbiology. 207: 170-177

Serology

Classical techniques

- Complement fixation test
- Haemagglutination inhibition test
- Neutralization test

Advanced techniques

- Immunoassay (ELISA etc.)
- Western blot

Classical techniques

- <u>Neutralization test</u>
 - Detects the presence of viral

neutralizing antibodies

• Complete blockage of viral activity

 \rightarrow No cell infection (no CPE)

JOURNAL OF FISH DISEASES

Original Article

Validation of a serum neutralization test for detection of antibodies specific to cyprinid herpesvirus 3 in infected common and koi carp (*Cyprinus carpio*)

J Cabon, L Louboutin, J Castric, S Bergmann, G Bovo, M Matras, O Haenen, N J Olesen, T Morin 💌

 Neutralizing antibodies were steadily detected in infected carp subjected to restrictive or permissive temperature variations over more than 25 months post-infection. The results suggest that this non-lethal diagnostic test could be used in the future to improve the epidemiological surveillance and control of CyHV-3 disease.

Development and Evaluation of a Blocking Enzyme-Linked Immunosorbent Assay and Virus Neutralization Assay To Detect Antibodies to Viral Hemorrhagic Septicemia Virus

Anna Wilson,^a Tony Goldberg,^a Susan Marcquenski,^b Wendy Olson,^c Frederick Goetz,^d Paul Hershberger,^e Lucas Hart,^e Kathy Toohey-Kurth^{a,f}

VHS infection status	No. of known positives $(n = 28)$	No. of known negatives $(n = 34)$
Positive	12	0
Negative	16	34

TABLE 4 Results of VN assay^a

 a n = 62. The sensitivity is 42.9% and the specificity is 100%, both calculated from fish in the VHS-negative and VHS-positive groups.

Development of VN for TiLV

		Infe	ction	N	eutralizatio	n
CELL CULTURE serum/virus mixture	No virus	CPE	CPE			
Virus concentration						
Virus concentration	0	5000 pfu	5000 pfu	5000 pfu	5000 pfu	5000 pfu
Patient serum (dilution)	0	0	1/1000	1/100	1/10	1

Neutralization test (limitation)

- The test was not very specific
 - Fish has predominant IgM subtype in
 - serum (low specificity)
 - Absence of affinity maturation in Blymphocytes

ELISA

- Immunoassay (ELISA)
 - Uses antibodies and color change to identify a substance (antigen)
 - Adsorb certain components onto an

immobilized solid phase

 Color development by the product of an enzymatic reaction

Sandwich ELISA

*A detecting antibody and an enzyme-linked secondary antibody may also be used

Proteomic study

- Western blot
 - Identification of particular protein from a

sample

Uses antibodies to detect target

protein/antigen (Immunoblotting)

Proteomic study

Western Blotting Technique

SDS-PAGE and Western blot analysis

Fig 3. SDS-polyacrylamide gel analysis of viral particle in sucrose gradient containing PEG buffer. The viral particle were analyzed by SDS-PAGE and Coomassie brilliant blue R-250 staining.

Tilapia serum

Manuscript in preparation

General overview of diagnostic methods in virology

Direct methods

- Electron microscopy \bullet
- Light microscopy
- Immunofluorescence \bullet
- Molecular techniques \bullet

Serology

Classical techniques

- Complement fixation test
- Haemagglutination inhibition test Western blot
- Neutralization test

Indirect methods

- Cell culture
- Embryonated egg
- Laboratory animals

Advanced techniques

- Immunoassay (ELISA etc.)

