POCKIT System

An Innovative Point-of-need PCR System

Nina Chen

Product Specialist from GeneReach

December, 6, 2018

Outline

- TiLV detection by POCKIT system
- Technology
- PCR application
- Pipe line of POCKIT system
- Summary
- Operation Guide (hands-on-time)

Overview of TiLV detection by POCKIT system

PetNAD nucleic acid co-prep kit

Per-NAD Plant of Book Transporters

Nucleic Acid Co-prep Kit

SO TESTS

Cat a partie of the Accordance of the Accordance

IQ plus TiLV kit on POCKIT micro plus

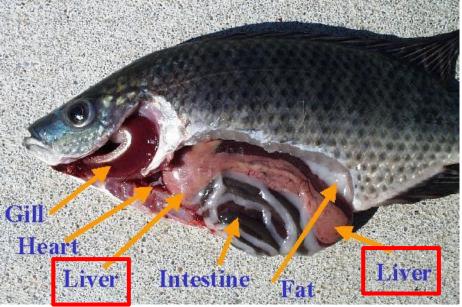
Nucleic Acid Extraction

PCR detection

15-20 mins

42 mins

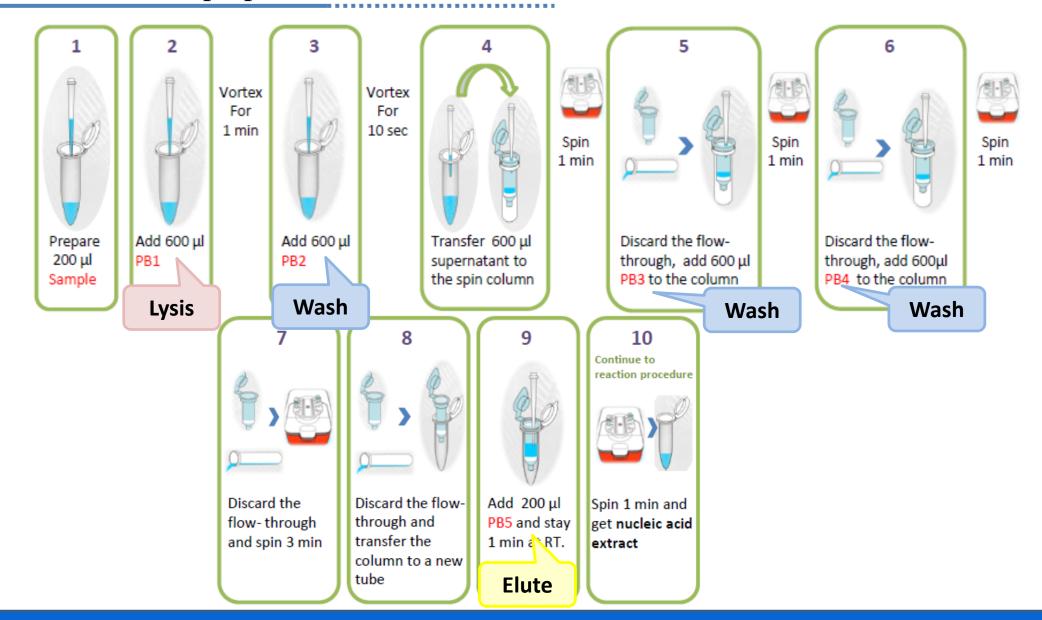
Content

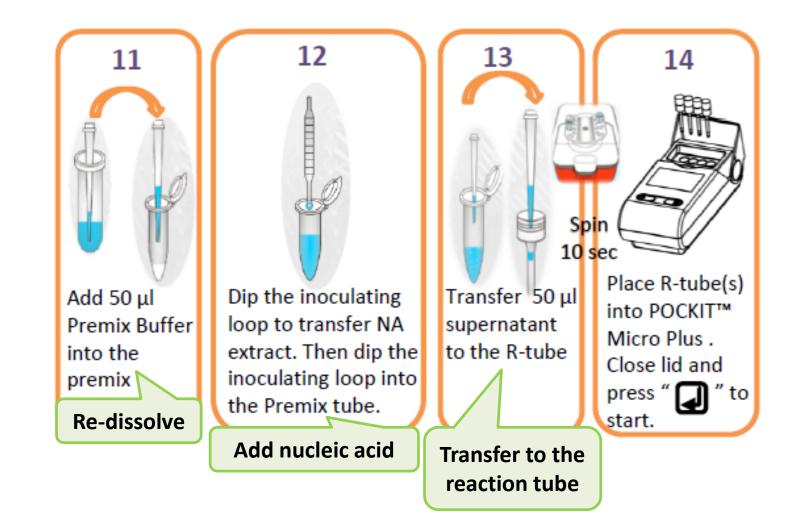

Sampling

- Nucleic Acid extraction system
 - PetNAD Nucleic Acid Co-prep kit

- PCR reaction
 - POCKIT micro plus
 - IQ plus TiLV kit

Sampling




- Sample type: Liver, Brain (or other potential source.)
- Fresh or Frozen sample

Sample preparation

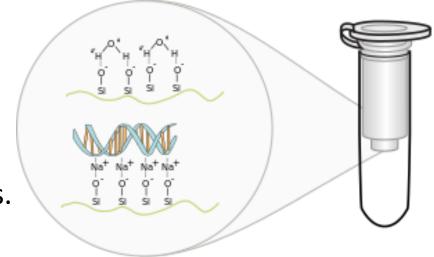
```
40mg tissue + 500 ul PBS
             Grinding
            Centrifuge
(12000g for 3 min; cubee for 5 min)
        200ul supernatant
    for nucleic acid extraction
```

PetNAD[™] Nucleic Acid Co-prep Kit Operation steps:

PetNAD Nucleic Acid Co-prep Kit

Product Introduction

Item	Volume	Note: Before first use	
PB1	36 ml/bottle, 1 bottle	III St use	
PB2	1 ml/bottle, 1 bottle	Add 35 ml 95%	
		ethanol before use	
PB3	20 ml/bottle, 1 bottle	Add 20 ml 95%	
		ethanol before use	
PB4	15 ml/bottle, 1 bottle	Add 25 ml 95%	
		ethanol before use	
PB5	3 ml/bottle, 1 bottle		
Spin Column &	50 sots/bag 1 bag		
Collection Tube	50 sets/bag, 1 bag		
User Manual	1 copy		


(50 tests/kit)

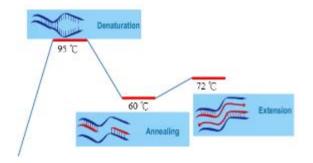
Note: Before first use, please add appropriate volume of ethanol as indicated.

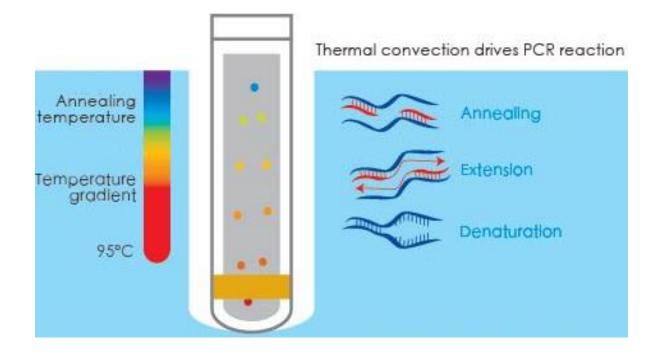
- All reagents should be kept sealed tightly in cool and dry place at room temperature.
- Shelf life: 2 years

Principles of Nucleic Acid Co-prep Kit

 The nucleic acid is tightly bound on silica membrane under certain salt condition, and extensive washing removes all contaminations.

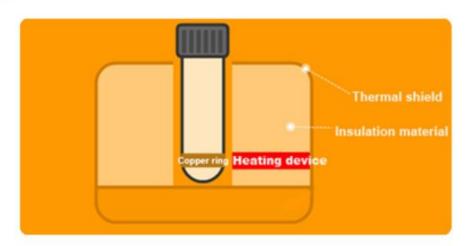
POCKIT micro plus

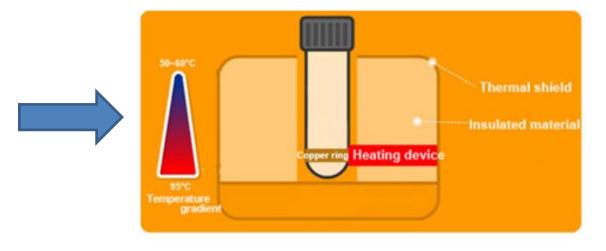



Specification					
Fluorescent Wavelength	520 nm (FAM)				
Detection Target	DNA / RNA				
Throughput	1 - 4 samples per run				
PCR Reaction Time	Approx. 45 minutes				
Dimensions & Weight	152 (W) × 63 (D) × 50 (H) mm				
Weight	380 g				
Operating Temperature	15 - 35°C				
Power Source	Li-ion polymer battery				
Warranty Information	1-year limited warranty				

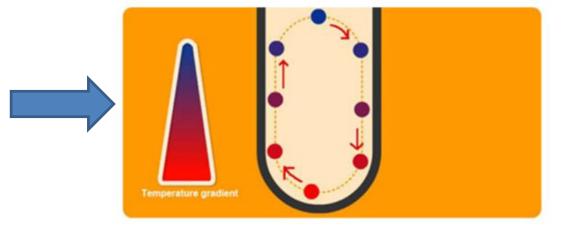
Insulated Isothermal PCR (iiPCR)

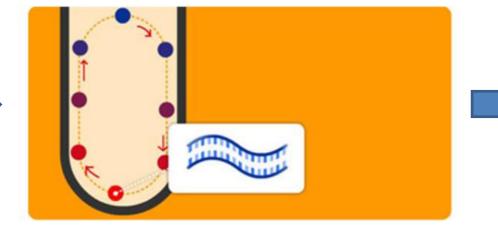
iiPCR

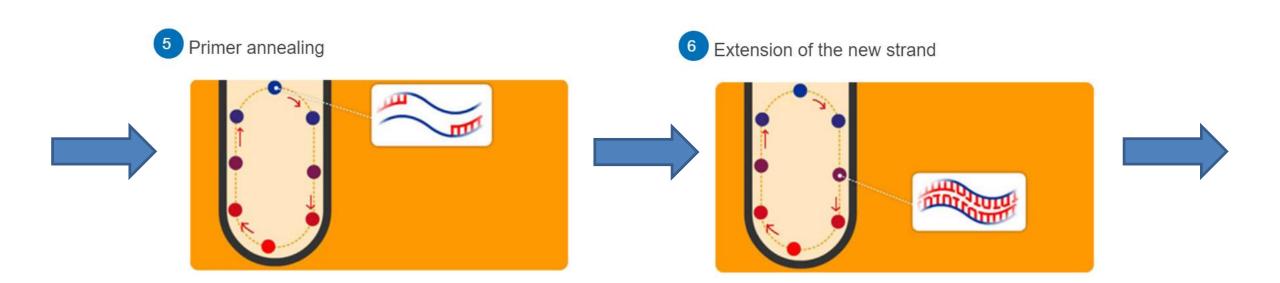

Traditional PCR

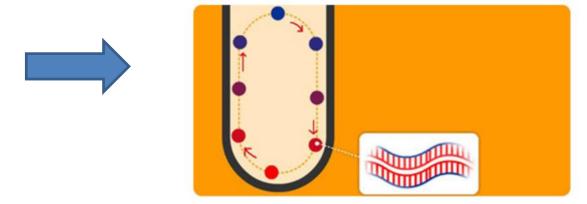


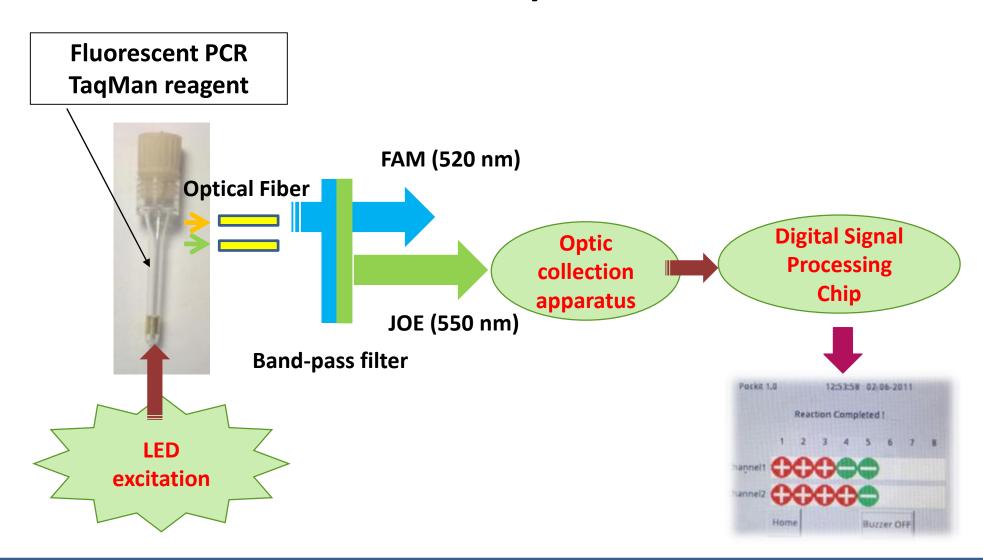
1 The environment is insulated by a radiation shell.


2 Natural thermal convection is induced by heat.





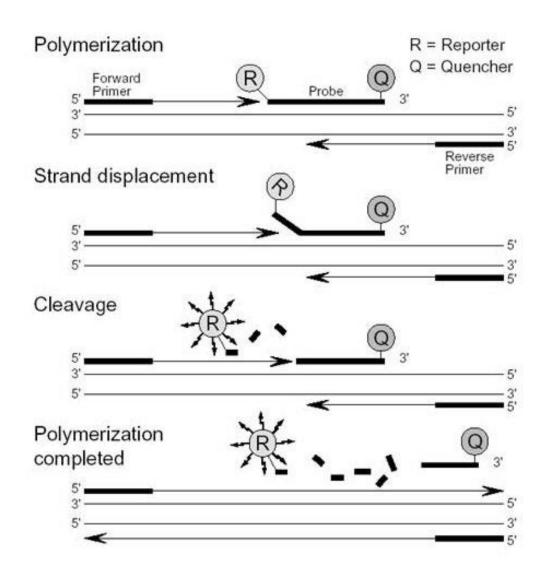

- 3 Thermal convection drives fluid cycling and results in PCR reaction.
- 4 Denaturation of dsDNA



Traditional PCR v.s. Insulated Isothermal PCR (iiPCR)

Traditional PCR	iiPCR
Time-consuming (usually > 1 h)	Time-saving (< 1 h)
Instrument is heavy	Light (Portable)
Complicated set-up	Single default program
Well trained personnel	No specific training is required

Automatic Data Interpretation Process


Signal Detection

TaqMan Probe

- Reporter (R)
- Quencher (Q)

Target sequence – Fluorescence

No Target sequence – No fluorescence

Reagent Format

- Lyophilized format
- Stored in 2-8°C (shelf life: 2 years after manufacturing)
- Can be transported in ambient temperature
- Open-bag stability: 2-8°C for 2 months or -20°C for 6 months

IQ plus TiLV kit

Component	Contents or Purpose	Amount
Premix Pack	Each Premix vial contains	6 individually
	lyophilized pellet, which	sealed zip-lock
	consists mainly of dNTPs,	packs, 8 vials/pack
	specific primers, fluorescent	
	probes, and enzymes.	
Premix	Reaction buffer to re-dissolve	2 vials, 1.3 ml/vial
Buffer	the lyophilized pellet.	
P(+)	Dry plasmid pellet.	1 vial
Standard		
Standard	Reaction buffer to re-dissolve	1 vial, 110 μl/vial
Buffer	the P(+) Standard.	
Inoculating		3 packs(20pc/pack)
Loops		

(48 tests/kit; R-tube, 48 tubes/pack)

- The kit should be stored at 4°C (shelf life : 3 years)
- 2 week short-term transportation will not affect the efficiency.
- Once the Premix Pack is opened, it would remain stable at 4°C for 2 months or at 20°C for 6 months.

IQ Plus TiLV Reagent Set

- Pathogen: TiLV (ss(-) RNA virus)
- Detected target: Segment 3
- Size of amplicon: 92bp
- Analytical sensitivity (95% hit rate by probit analysis)
 - LoD for POCKIT: up to 10 copies/rxn
- Specificity (Bioinformatic analysis)
 - Inclusivity: TiLV
 - Exclusivity: TLEV, VNN (in silico analysis)
- Interference test (with 300 ng/reaction genomic DNA): PASS
- Suggested sample type
 - brain tissue or liver tissue

Product Specification

- Product name: IQ Plus TiLV Reagent Set (48rxn/kit)
- Product format: iiPCR (single channel, 520 nm)
- Machine/POCKIT version : POCKIT Nucleic Acid Analyzer, POCKIT
 Micro Plus
- Intended user: fish farm & D-lab
- Applications: screening purpose, pathogen identification
- Suggested extraction Kit:
 - PetNAD™ Nucleic acid Co-prep Kit
 - taco™ mini Automatic Nucleic Acid Extraction System
- Suggested sample type: brain tissue or liver tissue

Advantages of iiPCR Detection Reagent

- Easy-to-use: Reagents in lyophilized format
- Uni-dose: easy to operate
- High sensitivity and specificity
- **Dual platform application:** can be adapted for most

Real-Time PCR instruments

Affordable

About FAO | In Action | Countries | Themes | Media | Publications | Statistics | Partnerships

English Tiếng Việt

Emergency Centre for Transboundary Animal Disease (ECTAD) - Viet Nam

Programme Overview

Components

News

Resources

Events

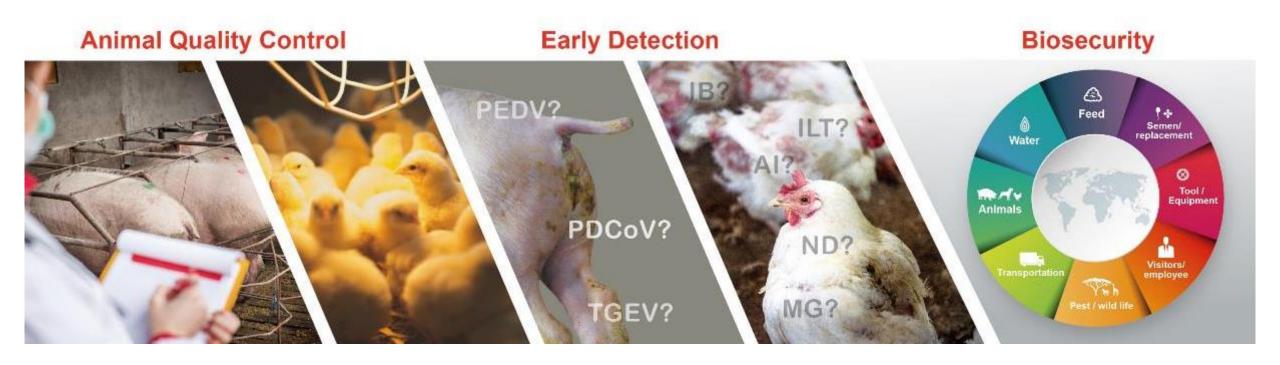
Partners

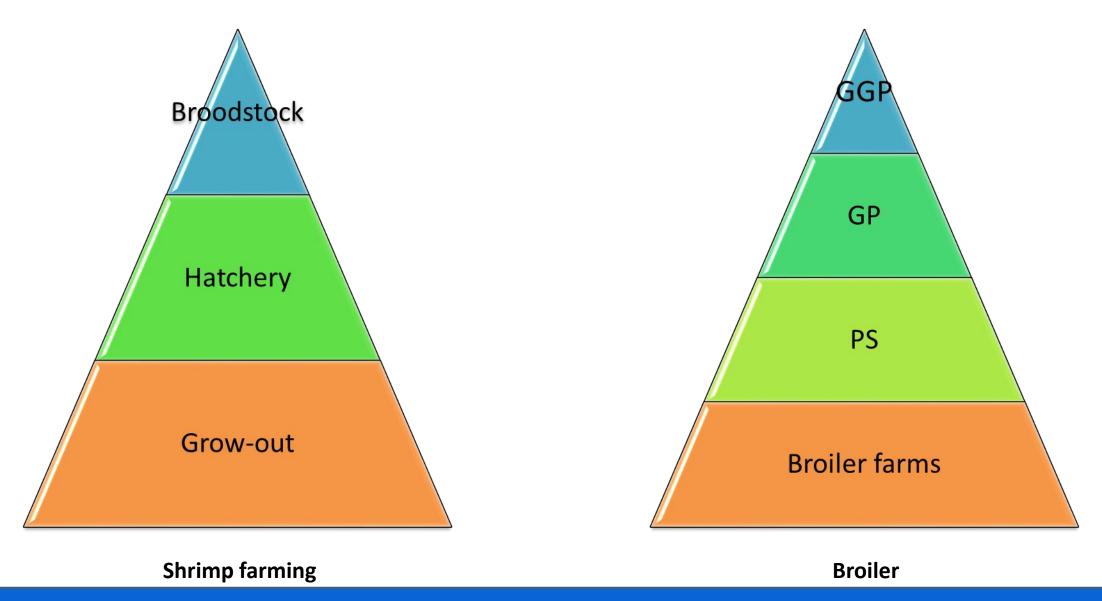
Using innovative technology for quicker results and quicker response

transportation reasons.

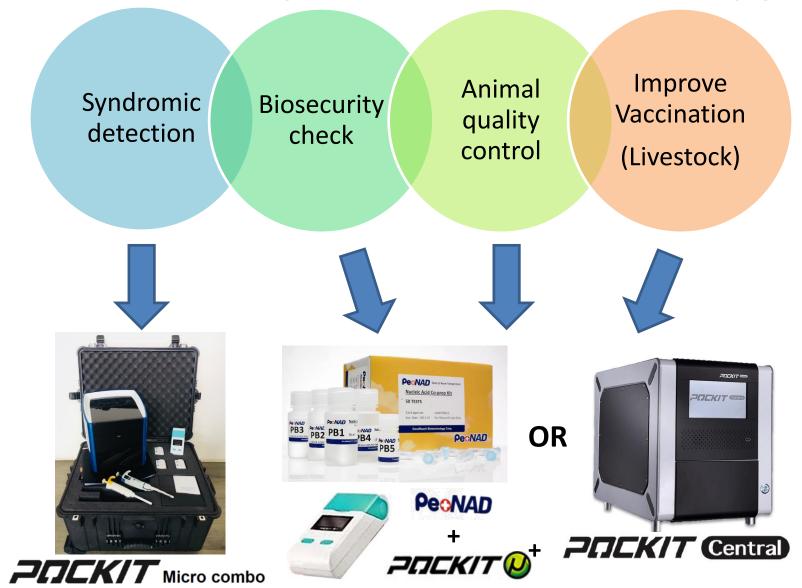
09/05/2017 Swiftly locating and identifying viruses at the source is the first step for a quick and smart response towards a disease outbreak. With the number of animal and human cases of influenza A (H7N9) outbreak in China drastically increasing, it is critical for Viet Nam to quickly monitor and detect any unusual virus emergence to prevent the intrusion of this virus and minimize its impacts.

A novel technology called Pen-side PCR has become available to enable this task. It is a surveillance method to detect viruses close to sampling sites like markets or district veterinary stations with a hand-held, battery-operated device. With this system, animal health experts will be able to detect and identify the virus within 2 hours after sampling, whereas the traditional real-time PCR would take in average of 2.5 days to get the result due to


Potential Applications of POCKIT system


Product list

	Aquaculture		Companie	on animal		Livestock				Food		Biothreat	Human Diseases
	Shrimp	Fish	Canine	Feline	Equine	Bovine	Poultry	Swine	Ruminant	Microorganism	GMO & food adulteration	Biothreat	Human Diseases
	AHPND/EMS Plasmid	Carp Edema Virus (CEV)	Anaplasma platys	Bordetella bronchiseptica	Anaplasma phagocytophilum	Bovine Leukemia Virus	Avian Reovirus (Asia & America regions only)	Actinobacillus Pleuropneumonia	Bluetongue Virus	Cronobacter spp.	GMO-CaMV 35S	Bacillus anthracis PL3	Chagas Disease
	AHPND/EMS Toxin 1	IRIDO- Megalocytivirus	Babesia gibsoni	Candidatus Mycoplasma haemominutum	EAV	Bovine Tuberculosis	Chicken infectious anemia virus	Africa Swine Fever Virus	Brucella abortus	Escherichia coli (0157)	GMO-NOS	Bacillus anthracis pXO1	Chikungunya virus
	Baculovirus penaei	IRIDO- Ranaviruses	Bordetella bronchiseptica	Candidatus Mycoplasma turicensis	EHV-1	Brucella abortus	Infectious bronchitis virus	Brachyspira hyodysenteriae	Brucella melitensis	Listeria monocytogenes	GMO-RRS	Bacillus anthracis pXO2	Dengue Virus (universal)
	CMNV	ISAV	Canine Adeno Virus 2	Chlamydophila felis	EHV-3	Brucella spp.	Infectious Bursal Disease Virus	CSFV	Brucella spp.	Meat Ingredient	Meat Ingredient	Brucella abortus	Filariasis (Brugia spp.)
	ЕНР	KHV	Canine Babesia	Cytauxzoon felis	EHV-4	BVDV-1	Infectious Laryngotracheitis	Mycoplasma suis	FMDV	Porcine Ingredient	Porcine Ingredient	Brucella melitensis	Filariasis (Wuchereria bancrofti)
	IHHNV	Streptococcus iniae	Canine Influenza Virus	FCoV	EIAV	BVDV-2	Influenza A	FMDV	PPRV	Salmonella spp.		Brucella spp.	MERS-CoV
	IMNV	svcv	Canine Leishmaniasis	FCV	Influenza H3N8	Campylobacter fetus	Influenza H5 (Asian Lineage)	Lawsonia intracellularis		Staphylococcus aureus		Chagas disease	Mycoplasma pneumoniae
Available	MrNV	Tilapia Lake Virus (TiLV)	CDV	Feline Parvovirus	Leptospirosis lipL32	Rotavirus	Influenza H5 (American Lineage)	Mycoplasma hyopneumoniae		Streptococcus agalactiae		FV3 Rana Virus	Yellow Fever Virus
Reagents	NHPB	VHSV	CHV	FeLV	Rotavirus	Tritrichomonas foetus	Influenza H7	Mycoplasma suis				MERS-CoV	Zaire Ebolavirus
	PvNV	VNN	CPiV	FHV	Salmonella spp.		Influenza HP-H7 with insertion	PCV2				Mink enteritis virus	Zika Virus
	SHIV		CRCoV	FIV	Streptococcus equi		Influenza N9	PDCoV				Paenibacillus larvae	Leishmaniass
	TSV		E. granulosus / E.multilocularis	Leptospirosis lipL32	Taylorella equigenitalis (CEM)		Marek's Disease	PEDV				R. communis (Ricin)	Leptospirosis
	Vibrio harveyi		Ehrlichia canis	Mycoplasma felis			Mycoplasma gallisepticum	Porcine parvovirus				Rift Valley Fever Virus	
	WSSV		Influenza H3N8	Mycoplasma haemofelis			Mycoplasma synoviae	PRRS-NA				Salmonella spp.	
	YHV		Leptospirosis lipL32	Toxoplasma gondii			NDV-class 1	PRRSV NADC30-like					
			Parvovirus				NDV-class 2	PRRSV-CN					
							NDV-Lasota	PRRSV-EU					
							Salmonella spp.	Pseudorabies Virus -gB gene					
							Avian Influenza H9	Pseudorabies Virus -gE gene					
								SVA					
								Swine Influenza Virus (Type A)					
	MBV	Largemouth					Avian Eimeria	JEV					0 4:05-11
Under		bass virus					Species						C. difficile
development							H7 (HPAI)	Chlamydia psittaci					Norovirus
							H7 (LPAI)						


PCR applications in food production animals

Comparison between aquaculture and others

Different POCKIT System for different application

Overview of TiLV detection by POCKIT system

PetNAD nucleic acid co-prep kit

Per NAD Nuclei Acid Co-prep Kit

SO TESTS

Call & acid core

Call & acid core

Call & acid core

PB1

PB2

PB1

Acid Call

PB2

PB2

PB2

PB3

PB2

Acid Call

PB3

PB2

Call

IQ plus TiLV kit on POCKIT micro plus

Nucleic Acid Extraction

PCR detection

15-20 mins

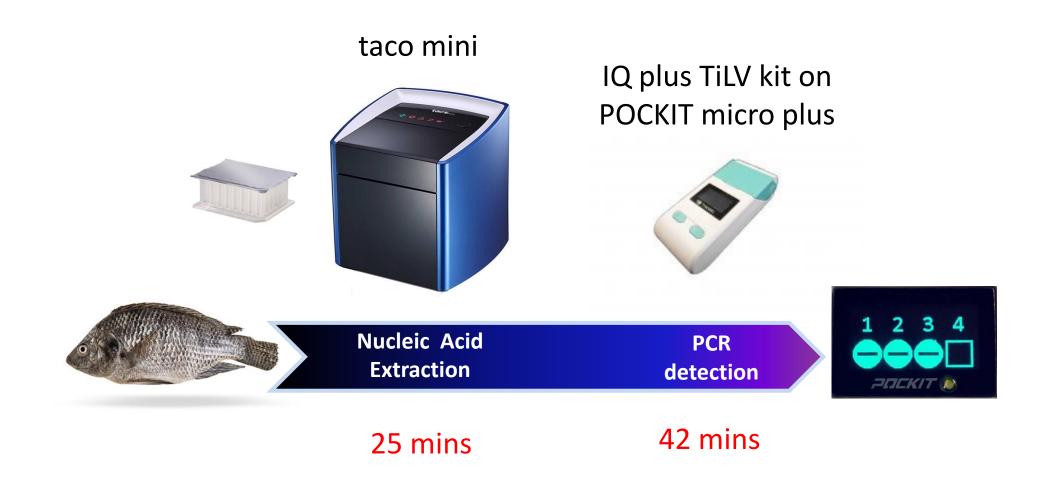
42 mins

Overview of TiLV detection by POCKIT system

Re	action Overv	Report N	o:20180	8170853		
	Sample ID	Extraction Lot No.	Reagent Lot No	o. Target	520	550
A	TEST 1	0206185	TFC0301185	TF	+	+
В	TEST 2	0206185	TFC0301185	TF	-	+
С	TEST 3	0206185	TFC0301185	TF	?	+
D	TEST 4	0206185	CDVA030718	3 CDV	!	
Е	TEST 5	0206185	CDVA0307183	3 CDV	-	
F	TEST 6	0206185	CDVA030718	3 CDV	-	
G	TEST 7	0206185	CDVA0307183	3 CDV	-	
Н	TEST 8	0206185	CDVA030718	3 CDV	+	
	UV Treatment Is Completed Save to USB End					

POCKIT Central – Sample in, result out fully automatic nucleic acid detection

Test report
•Positive/Negative

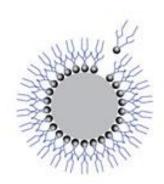

SPECIFICATIONS				
Throughput	1 - 8 samples			
Reaction Time	within 1.5 hours			
Fluorescent Wavelength	520 nm & 550 nm			
Dimensions (W \times H \times D)	310 x 400 x 480 mm			
Weight	Approx. 21 kg			

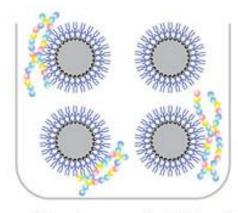
Re	action Over	R	eport N	o:20180	8170853		
	Sample ID	Extraction Lot No.	Reagen	t Lot No.	Target	520	550
Α	TEST 1	0206185	TFC03	01185	TF	+	+
В	TEST 2	0206185	TFC03	01185	TF	-	+
С	TEST 3	0206185	TFC03	01185	TF	?	+
D	TEST 4	0206185	CDVA0	307183	CDV	!	
E	TEST 5	0206185	CDVA0	307183	CDV	-	
F	TEST 6	0206185	CDVA0	307183	CDV	-	
G	TEST 7	0206185	CDVA0	307183	CDV	-	
Н	TEST 8	0206185	CDVA0307183		CDV	+	
,	UV Treatment Is Completed Save					En	ıd

Testing procedure of POCKIT Central

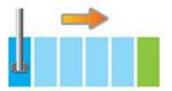
- 1. Prepare the PCR reagent into Cartridge Set
- 2. Open cover of pre-loaded extraction cartridge
- 3. Add 200ul of sample to the first row
- 4. Setup the information in POCKIT Central
- 5. Run
- 6. Wait for 85 minutes
- 7. Read results (positive / negative)

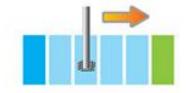
Overview of TiLV detection by POCKIT system

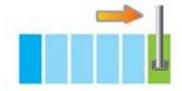



Specification				
Dimensions $(W \times D \times H)$	260 mm × 265 mm × 300 mm			
Net Weight	5.5 kg			
Power Requirement	1. 100-120V/ 200-240V AC, 50/60 Hz, 2A 2. Battery			
Fuse	F2A/250V			
Operating Temperature	16–30°C			
Extraction Time	Within 30 minutes			
Throughput	8 Samples			

Principles and Advantages

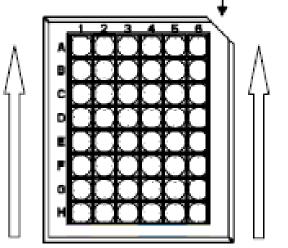

 The tacoTM is based on the magnetic separation technology by motors and precision screw


magnetic beads are surface-modified.


The magnetic beads are capable to bind nucleic acids.

Break the cell in lysis buffer (deep blue). The nucleic acid from broken cell will be bound to the surface-modified magnetic beads.

Wash the beads for three times in wash buffer (light blue).

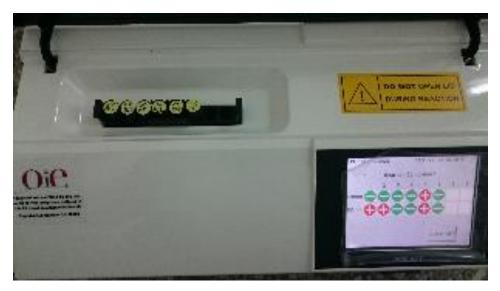

Release DNA from magnetic beads in the elute (green) and remove the beads with a magnetic bar.

— cut site

Reagent and Sample Loading

Loading reagent Step	Reagents
1	Add Lysis Buffer with EtOH to column #I
2	Add 750 μl Washing Buffer A* to column #2
3	Add 750 μl Washing Buffer A to column #3
4	Add 750 μl Washing Buffer B* to column #4
5	Add 750 μl Washing Buffer B to column #5
6	Add 200 μl Eluting Buffer to column #6
7	Add 50 μl Magnetic Bead to column #2
8	Add Sample in column #1

POCKIT Micro Combo System



Can farmers use PCR in the farm?

Small PCR lab in the farm

Check PLs

Publication

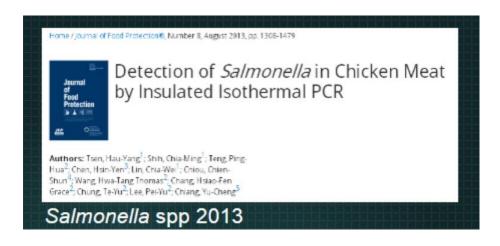
PLoS One. 2014; 9(3): e90545.

PMCID: PMC3953118

Published online 2014 Mar 13. doi: 10.1371/journal.pone.0090545

Validation of a Commercial Insulated Isothermal PCR-based POCKIT Test for Rapid and Easy Detection of White Spot Syndrome Virus Infection in Litopenaeus vannamei

Yun-Long Tsai, ¹ Han-Ching Wang, ² Chu-Fang Lo, ³ Kathy Tang-Nelson, ⁴ Donald Lightner, ⁴ Bor-Rung Ou, ⁵ Ai-Ling Hour, ⁶ Chuan-Fu Tsai, ¹ Cheng-Chi Yen, ¹ Hsiao-Fen Grace Chang, ¹ Ping-Hua Teng, ¹ and Pei-Yu Lee^{1, ^}


WSSV iiPCR assay on POCKIT system Performance comparable to nested PCR (OIE approved)

	weev -	Nested PCR			
	V22W		Negative	Total	
	Positive	374	9	383	
iiPCR	Negative	26	291	317	
	Total	400	300	700	

Sensitivity- 93.5%, Specificity- 97.0%;
 Agreement- 95.0% (kappa = 0.90)

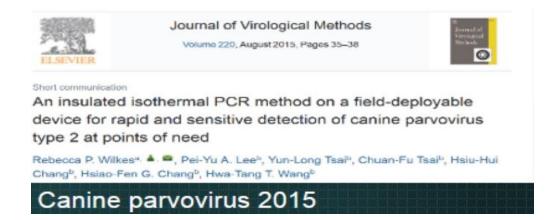
PLoS One. 2014; 9(3): e90545.

Validation: Live stocks

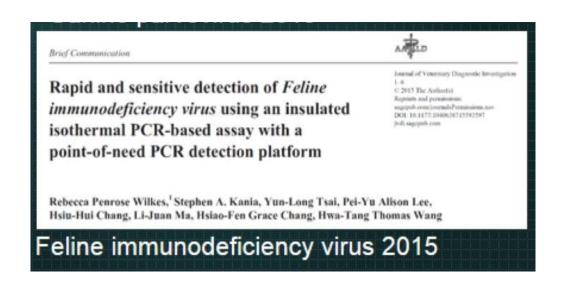
Porcine epidemic diarrhea virus and Porcine delta coronavirus
2016 Journal of Virological Methods (accepted)

Validation: Pet animals

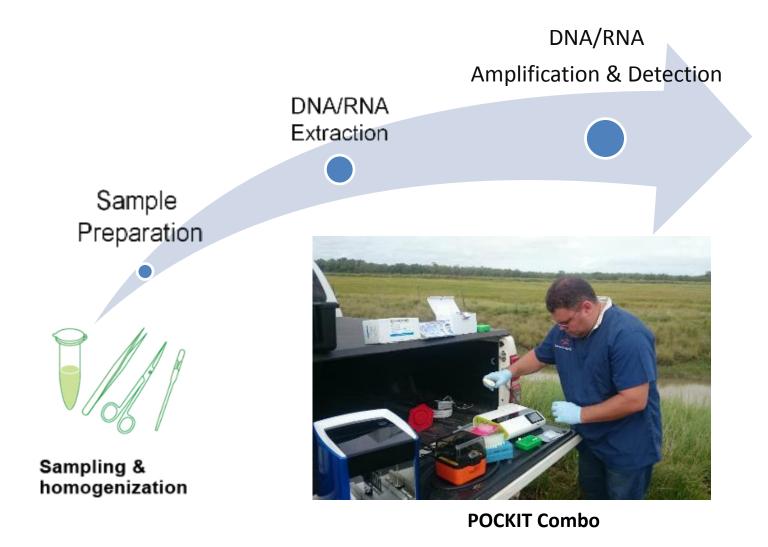
Wilkes et al. 85K: Veterinary Research 2014, 10:213 http://www.biomedcentral.com/1746-6148/10/213


METHODOLOGY ARTICLE

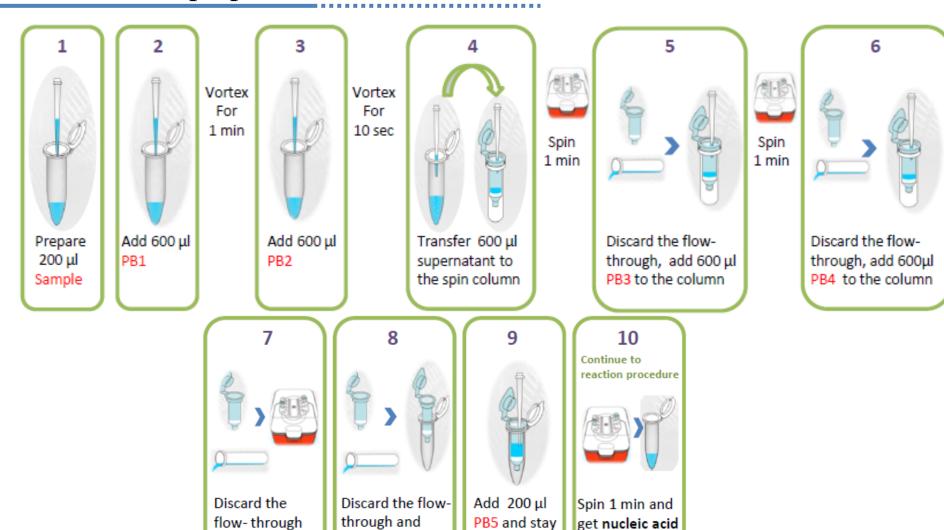
Open Access


Rapid and sensitive detection of canine distemper virus by one-tube reverse transcription-insulated isothermal polymerase chain reaction

Rebecca P Wilkes^{1*}, Yun-Long Tsai², Pei-Yu Lee², Fu-Chun Lee², Hsiao-Fen Grace Chang² and Hwa-Tang Thomas Wang²


Canine distemper virus 2014

We are providing a Total Solution for Nucleic Acid Detection



Reagents available

Shrimp	Fish
IQ Plus WSSV Kit with POCKIT System	IQ Plus Irido-Ranaviruses Kit
IQ Plus TSV Kit	IQ Plus VNN Kit
IQ Plus YHV Kit	IQ Plus KHV Kit
IQ Plus IMNV Kit	IQ Plus Irido-Megalocytivirus Kit
IQ Plus PvNV Kit	IQ Plus SVCV Reagent Set
IQ Plus IHHNV Kit	IQ Plus VHSV Reagent Set
IQ Plus NHPB Kit	IQ Plus CEV (Carp edema virus) Reagent Set
IQ Plus V. harveyi Kit	IQ Plus Streptococcus iniae Reagent Set
IQ Plus AHPND/EMS Toxin 1 Kit	IQ Plus TiLV Reagent Set
IQ Plus AHPND/EMS Plasmid Kit	IQ Plus IHNV Reagent Set
IQ Plus EHP Reagent Set	IQ Plus ISAV Reagent Set
IQ Plus CMNV Reagent Set	
IQ Plus Baculovirus penaei Reagent Set	
IQ Plus Vibrio fluvialis Reagent Set	
IQ Plus MrNV Reagent Set	
IQ Plus SHIV Reagent Set	

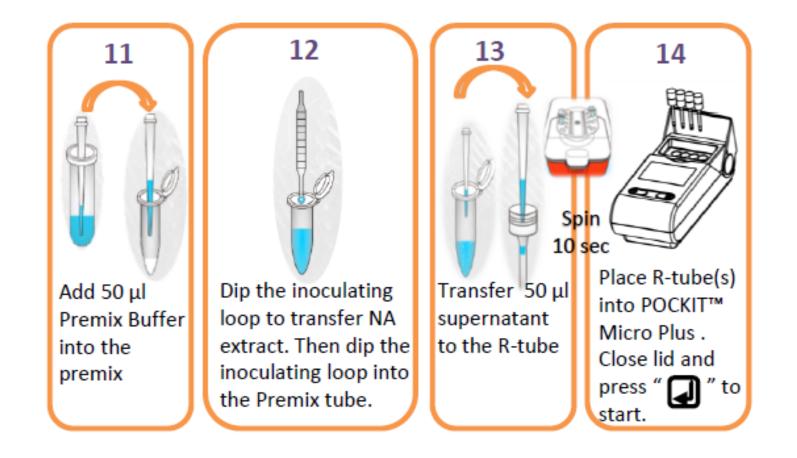
Hands-on-time

PetNAD[™] Nucleic Acid Co-prep Kit Operation steps:

Spin

1 min

1 min at RT.


extract

transfer the

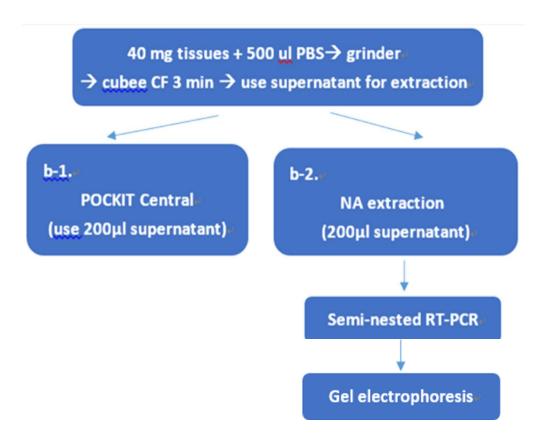
tube

column to a new

and spin 3 min

Thank you for your attention

Pipe line of POCKIT


Analytical sensitivity of TiLV RT-iiPCR

Copy/rxn	hit rate	percentage
100	2/2	100%
30	20/20	100%
10	16/20	80%
NTC	0/26	0%

^{*}serial dilutions of IVT RNA

Limit of detection (LoD) 95% is 12 genome equivalents (probit analysis).

Performance of TiLV RT-iiPCR on POCKIT™ Central System

		Semi-nested RT-PCR		
		Positive	Negative	Total
TiLV RT-iiPCR +POCKIT Central	Positive	17	3	20
	Negative	1	71	72
	Total	18	74	92

Agreement 95.65%; CI (95%): 90.73%~100%, k=0.87

Summary:

Higher than 95% agreement between RT-iiPCR and reference semi-nested RT-PCR

Sample number: 92 samples

Sample type: liver, brain, gill, muscle, mix