FAO/ASTF Project: GCP/RAF/510/MUL:

Enhancing capacity/risk reduction of emerging Tilapia Lake Virus (TiLV) to African tilapia aquaculture: Intensive Training Course on TiLV

4-13 December 2018. Kisumu, Kenya

in cooperation with Kenya Marine Fisheries Research Institute (KMFRI) and Kenya Fisheries Service (KeFS)

Session:

TiLV risk management

Win Surachetpong (DVM, PhD, DTBVP, CertAqv) fvetwsp@ku.ac.th

TILAPIA HEALTH & DISEASES

Disease concerns

Level of concerns for disease epidemics in tilapia farming:

What could be the factors?

- Crowding
- Competition
 - Food
 - Space
 - Mates

- Introduced pathogens
- Introduced hosts
- Spread to native pop's
- Competition with native pop's
- Water condition

TILAPIA HEALTH & DISEASES

- Outbreaks require all these 3 factors -

Production-level risk factors for syncytial hepatitis in farmed tilapia (Oreochromis niloticus L)

R M Kabuusu¹ | A T Aire² | D F Stroup³ | C N L Macpherson⁴ | H W Ferguson¹

TABLE 3 Linear regression model for severity of excess tilapia mortality associated with syncytial hepatitis viral infection as function of production factors

Excess mortality	Coefficient	SE	F test	p-Value
Stocking density	365.651	59.599	37.6400	<.000001
Initial weight	-258.106	84.566	9.3154	.002405
Temperature	-1,025.331	122.099	70.5191	<.000001
Dissolved oxygen	5,768.980	749.898	59.1825	<.000001
# of pond cycles	340.179	82.853	16.8578	.000048
CONSTANT	-41,152.417	3,456.541	141.7449	<.000001

Correlation coefficient: $r^2 = .24$; no confounding or interaction was established in both models.

- Chitralada strain had higher risk
- Stocking density
- Dissolved oxygen
- Pond production cycles

risk

risk

Production-level risk factors for syncytial hepatitis in farmed tilapia (Oreochromis niloticus L)

R M Kabuusu¹ | A T Aire² | D F Stroup³ | C N L Macpherson⁴ | H W Ferguson¹

TABLE 3 Linear regression model for severity of excess tilapia mortality associated with syncytial hepatitis viral infection as function of production factors

Excess mortality	Coefficient	SE	F test	p-Value
Stocking density	365.651	59.599	37.6400	<.000001
Initial weight	-258.106	84.566	9.3154	.002405
Temperature	-1,025.331	122.099	70.5191	<.000001
Dissolved oxygen	5,768.980	749.898	59.1825	<.000001
# of pond cycles	340.179	82.853	16.8578	.000048
CONSTANT	-41,152.417	3,456.541	141.7449	<.000001

Correlation coefficient: $r^2 = .24$; no confounding or interaction was established in both models.

- Higher initial weight
- Higher

temperature

 Season and stocking year (not associated with severity)

Global: China Brasil

Africa: Ghana, Nigeria, Zambia, Kenya, Zimbabwe

LAC: Brasil, Honduras, Costa Rica, Guatemala Slide courtesy: Melba Reantaso; FAO Current known distribution of TiLV

Based on OIE notification, scientific reports, stakeholder info

Simplified Risk Analysis Process They generally incorporate the concepts of: uncertainty of outcome (of an action or situation) that leads to a likelihood (probability or chance) of an unwanted event happening, and a **consequence** or impact (if the unwanted event happens)

risk = likelihood x consequence

Slide courtesy: Melba Reantaso; FAO

Species	Country	Reference
Hybrid tilapia	Israel	Eyngor et al., 2014
(Oreochromis niloticus x O. aureus	Chinese Taipei	OIE, 2017c
hybrids)		
Nile tilapia (O. niloticus)	Egypt	Fathi et al., 2017
	Ecuador	Ferguson et al., 2014
	Colombia	Tsofack et al., 2017
	Thailand	Dong et al., 2017a;
		Surachetpong et al., 2017
	Peru	OIE notification 2018
	Philippines	OIE notification 2017
	Indonesia	Isti et al. 2018
	India	Behera et al 2018
Black tilapia (Oreochromis spp)	Malaysia	OIE notification 2017
(Wild)		
Red tilapia Oreochromis sp	Thailand	Dong <i>et al.</i> , 2017a;
		Surachetpong et al., 2017
Wild tilapinies (Sarotherodon	Sea of Galilee, Israel	Eyngor et al., 2014
galileus, Tilapia zilli, O. aureus, and		
Tristamellasimonis intermedia		

TiLV Risk Profile: Host range farmed and wild populations

Slide courtesy: Melba Reantaso; FAO

Risk Profile: TiLV distribution:

TiLV OIE notification, scientific publication, stakeholder information

The presence of a disease in any particular country can be a very sensitive issue and easily subject to misinterpretation; caution is recommended; it is always good to have a reference/source

Country		Reference	
	OIE Notification (as emerging disease) (date of start of event/	Scientific report	Stakeholder information
	date of confirmation of event/ date of report)		
Bangladesh			√ suspicion (2018)
Colombia		√ (2014)	
Ecuador		√ (2014)	
Ghana			√ unexplained mortalities (2017)
India		√ (2018)	
Indonesia		√ (I2018; local report)	
Israel	√ (2011/2014/2017)	√ (2014, 2016, 2017) First observation in 2009	
Peru	√ (2017/2017/2018)		
Malaysia	√ (2017/2017/2017)	√ (2017)	
Mexico	√ (2018/2018/201)		
Philippines	√ (2017/2017/2017)		
Tanzania		√ (2018)	
Taiwan Province of China	√ (2017/2017/2017)		
Thailand	√ (2015/2017/2017)	√ (2016.2017, 2018)	
Uganda		√ (2-18)	
Vietnam			√ suspicion (2017)

Risk management measures

- Movement restriction
- Surveillance program
- Farm level biosecurity and husbandry
- Emergency preparedness and response

Risk of TiLV spreading via frozen fillet?

TiLV genomic was detected until 28 days post freezingClinically-infected fishThe virus still infective

		C _t values		CP (days p	E formati post inocu	on lation)
Fish no.	Day 0	Day 14	Day 28	Day 0	Day 14	Day 28
1	17.04	17.22	16.22	3	10	9
2	17.73	17.79	16.39	3	5	9
3	17.36	17.31	17.41	3	10	9
4	17.45	18.68	16.83	5	5	7
5	20.36	24.31	24.48	6	_	_
6	17.89	21.38	16.75	4	6	6
7	22.43	24.68	20.36	6	6	6

No infection for frozen fillet at 90 and 120 days

Clinically-infected fish

	C _t va	lues	CPE for (days post i	mation noculation)
Fish no.	Day 90	Day 120	Day 90	Day 120
1	26.80	29.27	_	_
2	17.99	24.13	_	_
3	24.72	23.51	_	_
4	20.27	N/A	_	N/A
5	18.21	N/A	_	N/A

No infection for frozen fillet at 0 to 28 days

Subclinically-infected fish

		C _t values		Cl (days)	PE formatio post inocula	n ation)
Fish no.	Day 0	Day 14	Day 28	Day 0	Day 14	Day 28
1	31.09	29.64	26.49	_	_	_
2	27.31	35.40	26.50	_	_	_
3	34.49	35.08	31.98	_	_	_
4	28.85	31.99	28.36	_	_	_
5	32.03	36.25	26.72	_	_	_
6	27.15	30.80	27.37	_	_	_
Mean ± SD	30.15 ± 2.90 ^{*,***}	33.19 ± 2.74 [*]	27.90 ± 2.12**,***			

Low risk of TiLV transmission via frozen fillet

Thammatorn et al., Journal of Fish Diseases in press.

Strategies for prevention and control in the presence of TiLV

Win Surachetpong DVM, MS, PhD, DTBVP, CertAqV

Department of Veterinary Microbiology and Immunology Faculty of Veterinary Medicine Kasetsart University fvetwsp@ku.ac.th

What is biosecurity?

A set of management and physical measures designed to reduce the *risk* of introduction, establishment and spread of *pathogenic agents* to, from and within an *aquatic animal* population

OIE aquatic animal health code, 2015

Identified transmission routes

Infected live fish and eggs

Potential risk

Exposure via water

Fish processing on site Mechanical transmission

Potential pathways for introduction and spread into the compartment of the agents

Open cage culture: risk of diseases

Important of Biosecurity

Use pre-caution prior to move aquatic animals

Pathogens introduction via a transport truck?

Important of farms location and disease spreading

Biosecurity to prevent pathogen introduction

Farm with clear boundary

A farm with surrounding wall

Disinfecting water supply

Stock only certified disease free eggs/animals

Received: 1 June 2017 Revised: 20 July 2017 Accepted: 23 July 2017

DOI: 10.1111/jfd.12708

ORIGINAL ARTICLE

WILEY Journal of

Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

P Tattiyapong^{1,2} | K Sirikanchana^{3,4} | W Surachetpong^{1,2}

¹Center for Advanced Studies for Agriculture and Food (CASAF), Kasetsart University Institute for Advanced Studies, Kasetsart University (NRU-KU), Bangkok, Thailand

²Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand

³Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand

⁴Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, Bangkok, Thailand

Correspondence Win Surachetpong, Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thaland. Email: Netwsp@ku.ac.th

Abstract

Tilapia lake virus (TiLV) is an emerging pathogen associated with high mortalities of wild and farm-raised tilapia in different countries. In this study, a SYBR green-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting segment three of the virus was developed to detect and quantify TiLV in clinical samples and experimentally challenged fish. All 30 field samples with clinical signs and history consistent with TiLV infection were positive for TiLV as detected by the developed RT-qPCR method. The RT-qPCR technique provided 100 and 10,000 times more sensitive for virus detection than those offered by the RT-PCR and virus isolation in cell culture methods, respectively. The detection limit of the RT-qPCR method was as low as two viral copies/µl. Moreover, the RT-qPCR technique could be applied for TiLV detection in various fish tissues including gills, liver, brain, heart, anterior kidney and spleen. Significantly, this study delivered an accurate and reliable method for rapid detection of TiLV viruses that facilitates active surveillance programme and disease containment.

Highly sensitive and specific method for disease screening

Routine disease monitoring & biosecurity practice

Sampling & Disease screening

Good biosecurity practices

Remove moribund and dead animals properly!

Non-lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture

Pavarit Liamnimitr^a, Worrayanee Thammatorn^a, Sonicha U-thoomporn^a, Puntanat Tattiyapong^b, Win Surachetpong^{a,b,*}

• Virus in mucus is still infective!

TiLV presents in mucus upto 12 dpi \rightarrow shedding

Management of dead fish is critical

Liamnimitr et al., 2018 Aquaculture, 486: 75-80

Don't dump dead fish in public water

Avoid stocking fish at different ages/size

Minimize handling to reduce stress that predispose to disease

Some farmer said if you want fish to get TiLV \rightarrow Grading or stress them!!

Transmission by carriers?

Mechanical vectors causing disease to spread

Vectors?

 No detection of TiLV in fish Argulus and mollusk (prelim study)

• How long the virus survive in water?

Aquaculture 497 (2018) 462-468

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Susceptibility of important warm water fish species to tilapia lake virus (TiLV) infection

Phitchaya Jaemwimol^a, Pattarasuda Rawiwan^{a,b}, Puntanat Tattiyapong^{a,b}, Pattrawut Saengnual^c, Attapon Kamlangdee^d, Win Surachetpong^{a,b,*}

Trichogaster pectoralis Barbodes gonionotus

Cyprinus carpio

Lates calcarifer

Anabas testudineus

Pangasianodon hypophtthalmus Chana striata

Clarias macrocephalus

TiLV Susceptible

Oreochromis sp.

Aquaculture 497 (2018) 462–468

Contents lists available at ScienceDirect
Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Susceptibility of important warm water fish species to tilapia lake virus (TiLV) infection

Phitchaya Jaemwimol^a, Pattarasuda Rawiwan^{a,b}, Puntanat Tattiyapong^{a,b}, Pattrawut Saengnual^c, Attapon Kamlangdee^d, Win Surachetpong^{a,b,*}

Mortality of ten species after TiLV challenge

Syncytial cell in liver of giant gourami

In situ hybridization signal in the brain of infected giant gourami

First detection of tilapia lake virus (TiLV) in wild river carp (*Barbonymus schwanenfeldii*) at Timah Tasoh Lake, Malaysia

Azila Abdullah¹ | Rimatulhana Ramly¹ | Mohammad Syafiq Mohammad Ridzwan¹ | Fahmi Sudirwan¹ | Adnan Abas² | Kamisa Ahmad¹ | Munira Murni¹ | Beng Chu Kua¹

- Healthy and normal river barb
- Positive TiLV (2/2)
- Pale liver and congested kidney

Rabbit or Duck?

FAO/China Intensive Course on TiLV 18-24 June 2018 Guangzhou China

Detection of Tilapia Lake Virus in Egyptian fish farms experiencing high mortalities in 2015

P Nicholson^{1*} | M A Fathi^{2,3*} | A Fischer⁴ | C Mohan⁵ | E Schieck⁴ | N Mishra⁶ | A Heinimann⁷ | J Frey¹ | B Wieland⁸ | J Jores^{1,4}

dfrom	Farm	Diseased fish/tota fish sampled ID Morbidity rate (%)	l TiLV detected	Aeromonas species detected
airom	1	7/13 (54%)	-	A. veronii A. hydrophilia
d fich	2	14/26 (54%)	-	A. veronii
	3	13/24 (54%)	+	A. veronii
	4	13/30 (43%)	-	A. veronii A. ichthiosmia A. enteropelogenes
	5	21/40 (53%)	+	A. veronii
FAO/China Intensive Course on Guangzhou C	TiLV 18-24 June 20 4 8 hina	14/20 (70%)	-	A. veronii A. enteropelogenes

TiLV + Bacteria + Parasites

Technical A	Appendix Table	e 1. Description of TiL	v outbreaks	; in Thailand*		
					Laboratory diagnosis	
Outbreak	Date	Location	Species	Ectoparasite†	Bacteria identification‡	TiLV Identification§
1	15/10/2015	Ang Thong	RT	ND	ND	+
2	30/10/2015	Ang Thong	RT	ND	ND	+
3	11/11/2015	Ang Thong	RT	ND	ND	+
4	29/12/2015	Kanchanaburi	RT	ND	No growth	-
5	29/12/2015	Chai Nat	RT	ND	Flavobacterium	+
6	29/12/2015	Kanchanaburi	RT	ND	Flavobacterium, Aeromonas	+ (TV2)
7	29/12/2015	Chai Nat	RT	ND	Flavobacterium	_
8	05/01/2016	Nakhon	RT	1+	Flavobacterium	+ (TV3)
		Ratchasima				
9	05/01/2016	Pathum Thani	RT	ND	No growth	+
10	15/01/2016	Pathum Thani	RT	2+	Aeromonas	+
11	15/01/2016	Chachoengsao	Т	3+	Aeromonas	+ (TV4)
12	15/01/2016	Pathum Thani	RT	ND	ND	-
13	19/01/2016	Ratchaburi	RT	1+	Aeromonas	+ (TV5)
14	04/02/2016	Pathum Thani	RT	0	Aeromonas	+
15	05/02/2016	Kanchanaburi	RT	ND	Aeromonas	+
16	09/02/2016	Kanchanaburi	RT	1+	Aeromonas	+
17	16/02/2016	Samut Songkhram	RT	2+	ND	-
18	16/02/2016	Samut Songkhram	RT	3+	Aeromonas	+
19	18/02/2016	Pathum Thani	RT	3+	Aeromonas	-
20	26/02/2016	Pathum Thani	RT	2+	Flavobacterium, Aeromonas	+ (TV1)
21	27/02/2016	Samut Songkhram	RT	1+	No growth	+
22	30/03/2016	Pathum Thani	RT	ND	Aeromonas	+
23	28/04/2016	Nakhon	RT	ND	ND	+
		Ratchasima				
24	28/04/2016	Pathum Thani	RT	ND	ND	+
25	06/05/2016	Pathum Thani	RT	2+	Aeromonas	+
26	06/05/2016	Prachin buri	т	0	Streptococcus	-
27	10/05/2016	Pathum Thani	т	1+	ND	-
28	13/05/2016	Nong Khai	т	3+	ND	-
29	20/05/2016	Phitsanulok	RT	0	Aeromonas	+ (TV6)
30	20/05/2016	Phitsanulok	т	0	Streptococcus, Aeromonas	_
31	23/05/2016	Chai Nat	RT	0	Aeromonas	-
32	24	FAO/China	Intensive C	Course on TiLV 18	3-24 June 2018	

Emerging Infectious Diseases Conv.cdc.gov/eid • Vol. 23, No. 6, June 2017

Complex bacteria were isolated from TiLV-infected fish

Flavobacterium, Aeromonas,

Streptococcus, Francisella

FAO/China Intensive Course on TiLV 18-24 June 2018

Guangzhou China

TiLV vaccine

Fish that survive TiLV do not have re-infection –> develop solid immunity?

TILAVAC: Vaccine for the prevention of an emerging viral disease in tilapia

- Live and killed vaccines
- Immersion and injection

• Currently testing in the field, under natural infection conditions

Biosecurity - key considerations for TiLV control

- Fish movement (between sites)
- Sick and dead fish management (quickly remove them)

- Trucks, equipment, boats (disinfectants)
- Personnel (control facility access)
- Potential vectors & other species (???)

How could we detect the disease?

- History, clinical signs, mortality pattern
- Histopathology; liver, brain, spleen
- In situ hybridization
- Virus isolation
- RT-PCR, Nested RT-PCR, SYBR & TaqMan real-time PCR

TiLV-infected E-11 cells

OC: 10.1111.04.12708		
DRIGINAL ARTICLE	WILEY	Invisio Fish Diseases

Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

Short communication

A TaqMan RT-qPCR assay for tilapia lake virus (TiLV) detection in tilapia

Pitchaporn Waiyamitra^{a,5}, Puntanat Tattiyapong^{a,5}, Kwanrawee Sirikanchana^{6,4}, Skora Mongkolsuk^{6,4}, Pamela Nicholson⁹, Win Surachetpong^{23,4}

Prof. Kevin Fitzsimmons

Expert: New tilapia virus 'is going to be a mess,' but not the next EMS

Researcher not worried about the long-term consequences.

June 9th, 2017 13:10 GMT Updated June 12th, 2017 13:05 GMT

Is Tilapia Lake Virus (TiLV) the new ISA or EMS?

Not quite, University of Arizona tilapia guru Kevin Fitzsimmons told IntraFish.

"Long term, I'm not that worried, because people will breed in resistance fairly quickly," he said. "It's not going to end the tilapia industry by any means."

Egypt is free from Tilapia lake virus: FAO

August 4, 2017 5:24 pm

8/26/2017

On Thursday, Saudi Arabia's Ministry of Environment, Water and Agriculture imposed a temporary ban on imports of fish from Egypt, based on a warning issued by the FAO on May 26 regarding the virus.

Take home messages....

- The problem is more complex than just only the virus (bacteria, parasites or other virus) may impact on the mortality rate
- Don't panic...the problem is manageable
- **Biosecurity** and Farm management
- Vaccine is one of the important priority for this emerging virus

Thank you....Q & A

Grand palace, Bangkok, THAILAND