

FAO/China Intensive Training Course on Tilapia Lake Virus (TiLV)

Sun Yat Sen University, Guangzhou, China 18-24 June 2018

Session 2

Ha Thanh Dong^{1,2} & Kathy F.J. Tang^{3,4}

In situ hybridization for TiLV

¹King Mongkut's University of Technology Thonburi; ²Fish Health Platform, Centex Shrimp (Mahidol University/BIOTEC); ³Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shangdong, P.R. China; ⁴Tucson, Arizona 85719, United States of America.

"Basically it involves formation of a hybrid molecule between an endogenous single-stranded RNA or DNA in the cell and a complementary single-stranded RNA or DNA probe" Gall (2016) Methods 98:4-9

In situ hybridization (ISH)

Purpose

- To detect and confirm the presence of TiLV (through its nucleic acid) in the tissues and histopathological lesions.
- To identify tissue tropisms of TiLV

DNA probes preparation

- Probes were prepared using DIG-labeling Mix (Roche, Germany)
- Plasmid pGEM-415 bp was used as a template in the labeling reaction
- 282-bp fragment derived from IMNV was employed as an unrelated negative probe

TATGCAGTACTTTCCCTGCCTGAGTTGTGCTTCTAGCAATCAACATCAAAAAGCTCACGAGCAAGTGGGGCACTAGCTGGTAGAGGCAATATCTTCTGTGTAGCAGGCTTATGAGAAGCAACTGTATACCTTTGTATCCACCCTCCATTGCGGAACTCAAATTCTCCAAATTCTCCTCTTGCCTCTTGGTCAAGACCACACTCCTCACCACAGGCGAGGAACTTTGAGCACTCGAAGAACCCATATTGCCTCTTTAGCTCAGCTGTCTCGATACGAGGCTTCGGGGCCACTCTGTGGTGCCACCCACTCGAATACGAGGCTTCGGGGCCACTCTTTGGATGTGGTAGTTCAAATAGCCGTTCCCTTAGCTCAGCATCGTAGGATGCCTTGGCCCACCCACACCATCGCATCGTAGGATGCCCTTGGCCCCACCC

Sequence of a 415-bp derived from genome segment 3 of TiLV cloned in pGEM-T. (used primer Nested ext-1 & ME1)

Principle of in situ hybridization (ISH)

1. Labeling DNA probe

2. Denaturation of DNA probe

3. Hybridization

4. Color development

5. Result interpretation

Non-Radioactive Detection Based on Digoxigenin-label

In Situ Hybridization Incubator

- Temperature control
- Trough for water to maintain humidity
- Rack to hold slides
- Cover to maintain temperature & humidity

Unrelated probe

TiLV-specific probe

Unrelated probe

TiLV-specific probe

Unrelated probe TiLV-specific probe

Example of ISKNV (1)

H&E

Unrelated probe

Specific-probe

Taken in conjunction with outbreaks described in Dong et al. 2017 Fish & Shellfish Immunology 68: 65-73

Example of ISKNV (2)

- ISKNV-specific probe (517 bp)
- Kidney (A, B), liver and pancreas (C) and brain (D).
- Strong signals were observed in the epithelial cells (Epi), of hematopoietic tissue (Hpt) and the glomerulus (Glo) of the kidney (A).

Dong et al. 2017 Fish & Shellfish Immunology 68: 65-73

Applications of ISH in the study of shrimp viruses

1. 3 major penaeid species, *P. vannmei*, *P. stylirostris, P. monodon*, are susceptible to IMNV infection

2. Prove that yellow head virus has a positive sense RNA genome

IMNV: non-enveloped ds RNA virus

In situ hybridization

H&E staining and ISH detection of IMNV in skeletal muscle of *L. vannamei*

H&E

ISH

Experimental infection

P. vannamei, P. stylirostris, P. monodon

Injection with an IMNV inoculum 4 wks

Appearance of clinical signs and mortality

ISH: all positive for IMNV infection

Susceptibility of penaeid shrimp to IMNV infection

Laboratory infections to species of P. vannamei, P. stylirostris, P. monodon

P. vannamei P. stylirostris P. monodon

Yellow head virus 44 nm x 173 nm

Was suspected to be a negative-sense RNA virus?

Rhabdovirus 70 nm x 180 nm

With a single, negative-sense, RNA genome

ISH to YHV-infected shrimp using single-stranded DIG-RNA probes

ISH with a anti-sense DIG-RNA probe: **Positive reaction**

Probe with a DIG-sense RNA: Negative reaction

The result indicated that YHV has a positivesense RNA genome

In vitro transcribed DIG-RNA probe

Thank you for your attention!