

FAO/China Intensive Training Course on Tilapia Lake Virus (TiLV)

Sun Yat Sen University, Guangzhou, China 18-24 June 2018

Session 2

Ha Thanh Dong^{1,2}

Emerging, re-emerging and new diseases of tilapia

¹King Mongkut's University of Technology Thonburi, ²Fish Health Platform, Centex Shrimp (Mahidol University/BIOTEC), Thailand.

Objective

- To update on emerging, re-emerging and new diseases of tilapia
 - Emerging viral infections
 - Emerging bacterial infections
 - Emerging parasitic infection
 - Emerging unknown pathogen

Emerging Viral Infections

Viral Infections in Tilapia

Agent	DNA/ RNA	Geographical Distribution	Ref.
Lymphocystis disease virus (LCDV)	DNA	North Tanzania	Paperna, 1973
Infectious pancreatic necrosis virus (IPNV)	RNA	Taiwan	Hedrick et al. 1983
Bohle virus	DNA	Australia	Ariel and Owens, 1997
Iridovirus-like		Canada	McGrogan et al.1998
Viral nervous necrosis (VNN)	RNA	France, Indonesia and Thailand	Bigarre´ et al. 2009; Prihartini et al. 2015; Keawcharoen et al. 2015
Infectious spleen and kidney necrosis virus (ISKNV)	DNA	US Midwest, Thailand	Subramaniam et al. 2015; Suebsing et al. 2016
Tilapia larvae encephalitis virus (TLEV)	DNA	Israel	Shlapobersky et al. 2010
Tilapia lake virus (TiLV)	RNA	Asia, Africa, and South America	e.g. Eyngor et al. 2014; Jansen et al. 2018

Emerging, re-emerging, new viral infections of tilapia

	Lymphocystis disease Lymphocystivirus virus (LCDV)				
Re-emerging	Infectious pancreatic necrosis virus (IPNV)	Aquabirnavirus			
	Bohle virus	Ranavirus	Case		
	Iridovirus-like	Iridoviridae	reports		
Emerging	Viral nervous necrosis (VNN)	Betanodavirus	with little concern		
	Infectious spleen and kidney necrosis virus (ISKNV)	Megalocytivirus			
New/ newly emerging	Tilapia larvae encephalitis virus (TLEV)	Herpesvirus			
	Tilapia lake virus (TiLV)	Tilapinevirus	Global		

IPNV re-emerged in tilapia

1983: Subclinical infection of IPNV in tilapia in Taiwan was reported

1987: Experimental challenge indicated that IPNV is pathogenic to tilapia (killed 25% fish)

2018: IPNV re-emerged in tilapia

Subclinical infection cases

.

- Its impact remains unknown
- Investigation should be initiated in tilapia farming countries

Received: 1 January 2018 Revised: 27 February 2018 Accepted: 28 February 2018

DOI: 10.1111/jfd.12807

ORIGINAL ARTICLE

WILEY Journal of Fish Diseases

Infectious pancreatic necrosis virus isolated from farmed rainbow trout and tilapia in Kenya is identical to European isolates

```
I R Mulei<sup>1,2</sup> | P N Nyaga<sup>2</sup> | P G Mbuthia<sup>2</sup> | R M Waruiru<sup>2</sup> | L W Njagi<sup>2</sup> |
E W Mwihia<sup>2</sup> | A.A.A. Gamil<sup>1</sup> | Ø Evensen<sup>1</sup> | S Mutoloki<sup>1</sup>
```

TABLE 1 Results of samples screened for infectious pancreatic necrosis virus by PCR and immunohistochemistry

Species	Farm	Samples collected	Ratio positive by PCR and sequencing	Ratio positive by Immunohistochemistry
Rainbow	RTH	15	7/9	4/7
trout	RTM	14	9/13	1/9
	RTT	6	2/5	2/7
	RTK	12	5/10	6/8
	RTJ	15	3/5	1/5
Tilapia	TGA	15	5/8	Not examined
	TCD	12	4/8	Not examined
	TOF	16	3/10	Not examined

Viral Nervous Necrosis (VNN) disease

- Causative agent: Betanodavirus
- Clinical signs: signs of neurological disorders: loss of balance, erratic swimming
- ✤ Host: >30 species, mainly in marine fish
- Geographical distribution: worldwide
- Cases in tilapia (France, Thailand & Indonesia)
 - e.g. a case in tilapia hatchery
 - 10 days-old larvae of tilapia
 - Mortality 90-100%
 - Histopathological manifestation of VNN disease
 - 93.07–93.88% similarity to red-spotted grouper nervous necrosis virus (RGNNV)

Keawcharoen et al. JFD 2015, 38, 49-54

Viral Nervous Necrosis (VNN) disease

Keawcharoen et al. JFD 2015, 38, 49-54

- Histopathological feature: Vacuolation was observed in brain, eye and spinal cord of diseased fish
- Detection methods: PCR methods (OIE disease card)

Infectious spleen and kidney necrosis disease (ISKND)

- Synonym: Iridoviral disease (common name), red sea bream iridoviral disease (OIE)
- Causative agent: Megalocytivirus ISKNV
- Clinical signs: darkening, pale gills
- Host: wide range of both marine and freshwater fish, including tilapia

Subramaniam et al. (2016)

Infectious spleen and kidney necrosis disease (ISKND)

A case in USA (Subramaniam et al. 2016)

- Tilapia fry/fingerlings
- Mortality 50-75%

In Thailand

- Multiple infections of ISKNV/Iridovirus was reported in cage culture & a semi-nested PCR was developed (Dong et al. 2016)
- Recent reports: vertical transmission & LAMP detection method (Suebsing et al. 2016)

Presence of basophilic hypertrophied cells (Subramaniam et al. 2016)

Tilapia larvae encephalitis virus (TLEV) disease

- Causative agent: TLEV/Herpes-like virus
- Clinical signs: spiral swimming
- Host: blue tilapia (O. aureus), red tilapia
 (Oreochromis sp.), Nile tilapia (O. niloticus)
- ✤ Mortality: reach up to 98%
- Susceptible stages: 32-34 days post fertilization
- * Geographical distribution: Israel
- Histopathological feature: Not available
- PCR detection: available

TLEV-1(5' TCGTGGGCCTTATCCCGCGT 3') TLEV-2 (5' GAGACCAGAAAGTGCTTCTC 3')

Lack of investigation in other countries

Tilapia lake virus disease (TiLVD)

REVIEWS IN Aquaculture

Reviews in Aquaculture, 1-15

doi: 10.1111/raq.12254

Tilapia lake virus: a threat to the global tilapia industry?

Mona Dverdal Jansen¹ (D), Ha Thanh Dong² and Chadag Vishnumurthy Mohan³

1 Norwegian Veterinary Institute, Oslo, Norway

2 Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand

3 WorldFish, Penang, Malaysia

Will be presented by other speakers

Emerging Bacterial Infections

Bacterial Diseases in Tilapia

- Streptococcosis Emergence of S. agalactiae serotype IX
- Columnaris Complexity of F. columnare
- Francisellosis Emerging/re-emerging in some countries
- Hemorrhagic septicemia
 - o A. hydrophila
 - Non-A. hydrophila (A. veronii & A. jandaei) (Dong et al. JFD 2017)
- Edwardsiellosis caused by E. ictaluri
- Aerococcus viridans infection (Ke et al. Aquaculture 2012)
- Hahellosis/red egg disease (Senapin et al. Aquaculture 2016)
- Unknown diseases

New to tilapia

S. agalactiae serotype IX emerged in tilapia

- GBS have been classified to 10 serotypes (Ia, Ib, II–IX)
- In aquatic animals: 4 serotypes Ia, Ib, II and III
- Serotype IX is new to tilapia
- Killed 10-90% fish in challenged experiments
- Investigation of serotype IX should be investigated in other countries

Zhang et al. 2018

Microbial Pathogenesis, doi: 10.1016/j.micpath.2018.05.053.

Table 2. The geographical distribution of the S. agalactiae isolates

Areas	Serotype III	Serotype I	X Total
Hui Zhou	15	0	15
Zhan Jiang	5	1	6
Zhao Qing	53	5	58
Zhu Hai	0	μ	1
Total	73	7	80

Complexity of F. columnare in tilapia

- F. columnare is causative agent of columnaris disease
- F. columnare in tilapia is a complex of several unclassified taxa

Genomovar	II			_		I	1/11				Е
Strains	1362	CF1	94-081	C#2	ATCC49512	Pf1	1215	1214	NK01	F. johnsoniae UW101	F. psychrophilum JIP02/86
1362										4 5	4 1
CF1	92.9 0.15										
94-081	97.6 0.19	91.3 0.04						_			_
C#2	93.2 0.36	92.1 0.21	93.1 0.17						%D[
ATCC49512	42.6 0.85	43.5 0.71	42.6 0.66	43 0.5				%	G+C co differe		
Pf1	42.8 0.96	43.4 0.82	42.7 0.77	43.3 0.61	95.9 0.11						1
1215	30.1 0.02	30.4 0.12	30 0.17	30.2 0.33	29.8 0.83						
1214	27.8 0.62	28.1 0.76	28.3 0.81	27.9 0.98	28 1.47	28.2 1.58	28 0.64				
NK01	27.7 0.74	28.1 0.89	28.3 0.93	27.9 1.1	28 1.6	28.1 1.71	28.1 0.77	94.5 0.12			
F. johnsoniae UW101	22.6 3.5	21.9 3.36	22.7 3.31	24 3.14	22.6 2.65	22.9 2.54	20.7 3.48	21.5 4.12	20.9 4.24		
F. psychrophilum JIP02/86	20.4 1.92	20.7 1.78	21.1 1.73	22.2 1.56	21.5 1.07	21.7 0.96	20.1 1.9	20 2.54	20 2.66	22 1.58	

dDDH supports taxonomic reclassification of Fc originated from tilapia

Dong et al. J Fish Dis (2015) 38:901-913 Kayansamruaj et al. Infection, Genetics and Evolution 54 (2017) 7–17

Same same...but different...

What disease you think about?

Causative agent:

- Francisella noatunensis subsp. orientalis
- Previously known as Rickettsia-like organism, RLO
- Fastidious intracellular bacterium

Host range:

- Susceptible tilapia, ornamental cichlids
- Infection but does not kill the hosts: striped catfish, common carp

Cumulative mortality: 40-50%

Clinical signs: visceral white spots (eg spleen & head kidney) **Season:** Cool weather (25-28 °C)

Geographical distribution

Adapted from Nguyen et al. 2015 Aquac Res. doi:10.1111/are.12802

Presumptive Diagnosis

Clinical sign

Wet mount examination

Photographs were taken in conjunction with the outbreaks described in Nguyen et al. 2015. Aquac Res & Dong et al. 2016. Dis Aquat Org.

Diagnosis

Rapid staining of smeared-head kidney with Giemsa revealed presence of both intra- and extra-cellular bacteria

Micrographs of H&E stained sections of the spleen showed typical granulomas

Photographs were taken in conjunction with the outbreaks described in Nguyen et al. 2015. Aquac Res & Dong et al. 2016. Dis Aquat Org.

Molecular Diagnosis

- Genus specific PCR (Forsman et al. 1994)
- Real-time PCR (Duodu et al. 2012);
- ISH, genus-specific (Hsieh et al. 2007)
- Immunohistochemistry (Soto et al. 2012)
- Duplex PCR and ISH (Dong et al. 2016)
- Colorimetric LAMP (Pradeep et al. 2016)
- Recombinase polymerase amplification (RPA) (Shahin et al. 2018)

Which one infected with *F. noatunensis* subsp. *orientalis* ?

Causative agent:

- Edwardsiella ictaluri
- Common in catfish but not common in non-catfish
- Does not kill tilapia in striped catfish ponds (personal observation)
- 2012: first report of *E. ictaluri* in Nile tilapia in Western Hemisphere (Soto et al. 2012)
- No reported in other countries

Recent cases in Southeast Asia

- Red tilapia juveniles
- Killed 40-50% fish in the first month after stocking
- Presence of white spots in multiple internal organs

- Presumptive diagnosis based on clinical sign: Francisellosis
- PCR negative for Fno

Presumptive diagnosis

- Tissue smear, Gram staining (take 5 min)
- Numerous Gram negative, rod-shaped bacteria
- Suspected bacterial infection

Gram staining of tissue smear

Intracellular bacteria

- Bacterial isolation: pure pinpoint colonies on TSA
- Gram negative, rod-shaped bacteria

Challenged experiments fulfilled Koch's postulates

- Fish reproduce the same clinical signs
- 95-100% mortality in 3-9 days (dose-dependent)

Histopathological features of edwardsiellosis in the experimental fish

MS submitted

- E. ictaluri is an emerging pathogen of tilapia aquaculture in Southeast Asia
- *E. ictaluri* infections in tilapia may have been overlooked due to similar clinical signs between Francisellosis & Edwardsiellosis
- Should be put on disease watchlist

A. veronii & A. jandaei infection

- are newly reported pathogens of tilapia
- may have been misidentified as A. hydrophila or previously overlooked
- both cause "hemorrhagic septicemia"
- Coinfections with other pathogens are very common

Blood congestion

Intestinal necrosis

Dong et al. 2015 Aquaculture 448:427-435 Peepim et al. 2016 Aquaculture 464:399-409 Dong et al. 2017 J Fish Dis 40:1395–1403

Aerococcus viridans infection

Aquaculture 342-343 (2012) 18-23

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aqua-online

Recovery and pathogenicity analysis of *Aerococcus viridans* isolated from tilapia (*Orecohromis niloticus*) cultured in southwest of China

Xiaoli Ke, Maixin Lu ^{*}, Xing Ye, Fengying Gao, Huaping Zhu, Zhanghan Huang

Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China

- This work firstly reports the infection and histopathological changes of *A. viridans* in tilapia
- Associated with 30-40% loss in Guangdong Province, China, 2010
- The major symptoms: serious congestion of the gill and the abdomen, swelling gallbladder and a severe diffusion in liver. Some fish show exophthalmia and spiral swimming.
- Experimental infection caused 45-85% mortality, fulfilled Koch's postulates

- ✤ Occurred in a tilapia hatchery in Thailand since 2010
- Mortality 10-50%
- ✤ Occur during cold season (<24 °C)</p>
- Causative agent: unknown

Normal eggs

Bacteria in the egg

Senapin et al. Aquaculture (2016) 454:1-7

Bacterial isolation using TSA

Hahella chejuensis is a marine bacteria

...occurred in tilapia hatcheries?

Red pigmented bacteria was identified using 16S rRNA

SNCBI Resources 🖸	How To 🖂	
Public of		
Pub Med.gov	PubMed •	
US National Library of Medicine National Institutes of Health		Advanced

Format: Abstract -

Int J Syst Evol Microbiol. 2001 Mar;51(Pt 2):661-6.

Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium.

Lee HK1, Chun J, Moon EY, Ko SH, Lee DS, Lee HS, Bae KS.

Senapin et al. Aquaculture (2016) 454:1-7

MNH 1 <u>2 3 4 5 6 7 8 9 10</u> 11 <u>12</u>

H. chejuensis caused red egg disease & reduced hatching rate in experimental challenge

Specific PCR detection methods were developed targeting 16S rRNA

Senapin et al. Aquaculture (2016) 454:1-7

How the farmer solve this problem?

- ✓ Reduce salinity from 7 ppt to 4 ppt
- ✓ Expose sand from the filter system to sunlight
- ✓ Wrap the hatcheries with plastic to increase temperature (30 °C)

- Reduction of loss: ~ \$ 600,000 /year
- Calculation based on 30% mortality (range from 10-50%)

Emerging parasitic infection

Aquaculture 491 (2018) 169-176

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Aquacultur

Raphael Barbetta de Jesus, Sílvia Umeda Gallani, Gustavo Moraes Ramos Valladão, Gabriela Pala, Thiago Fernandes Alves da Silva, Jaqueline Custódio da Costa, Suzana Kotzent, Fabiana Pilarski*

São Paulo State University (UNESP), Aquaculture Center of Unesp (CAUNESP), Microbiology and Parasitology Laboratory of Aquatic Organisms, Jaboticabal, São Paulo, Brazil

- The first outbreak of *Trypanosoma* in Nile tilapia (~460 g) in South America
- Unspecific signs such as anorexia, skin darkening and gill paleness

Trypanosomiasis

- Trypanosoma sp. (combined morphology & molecular analysis)
- ✤ 18S rDNA showed 95-98% identity to *Trypanosoma* sp.

de Jesus et al. 2018 Aquaculture 491: 169-176

Emerging unknown pathogen

50% fish (n=10) in a TiLV-positive cage showed a novel histopathological change (microsporidian-like?)

Comments

- Emerging diseases are never ending threats in aquaculture industry
- Preparedness for rapid response to emerging diseases should be encouraged
- Rapid pathogen discovery and early diagnosis will limit its spread and reduce negative impact
- SPF and autogenous inactivated vaccine programs should be promoted for long-term development

Acknowledgments

Colleagues/collaborators

