

FAO/China Intensive Training Course on Tilapia Lake Virus (TiLV)

Sun Yat Sen University, Guangzhou, China 18-24 June 2018

Session 2

Win Surachetpong DVM, PhD, CertAqV, DTBVP TiLV diagnosis

Learning objectives

 Describe diagnostic methods for detecting infection with TiLV

Clinical signs and gross pathology

Molecular diagnostic methods

General overview of diagnostic methods in virology

Direct methods

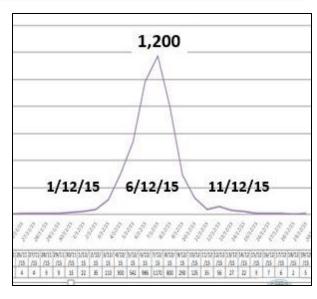
- Electron microscopy
- Light microscopy
- Immunofluorescence
- Molecular techniques

Indirect methods

- Cell culture
- Embryonated egg
- Laboratory animals

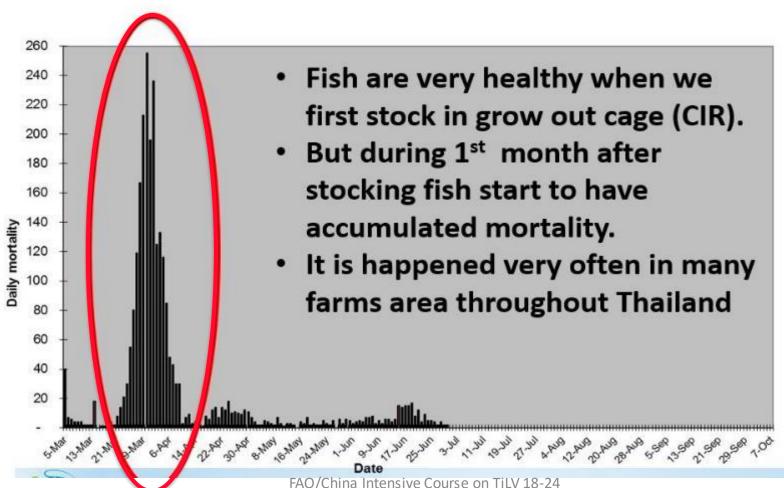
Serology

Classical techniques


- Complement fixation test
- Haemagglutination inhibition test
- Neutralization test

Advanced techniques

- Immunoassay (ELISA etc.)
- Western blot


How do we know if TiLV exists in a farm?

- High mortality 20-90%
- Swimming at water surface
- Skin redness, erosion
- Red tilapia (pale body)
- Exophthalmos, scale protrusion

1st month post stocking mortality

Tilapia One Month Mortality Syndrome (TOMMS)

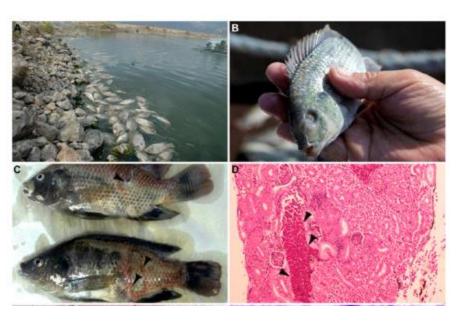
- High mortality rates often found within one month of transferring tilapia into rearing sites
 - Transportation?
 - Acclimatization to new environments?
 - Pathogens at rearing site?

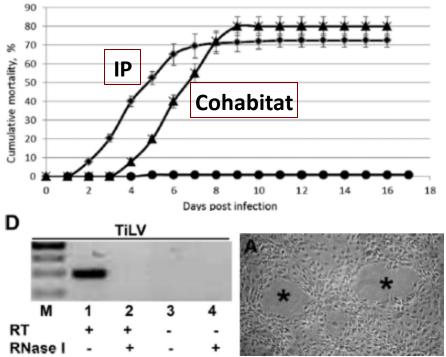
Immunized tilapia fingerings

ปลาผ่านเชื้ออนุบาลในแม่น้ำเมืองกาญครับสนใจติดต่อสอบถามได้ครับ

- Nursery culture in the river
- Survived from massive die offs
- Healthy in growout period

Tilapia Lake Virus: TiLV

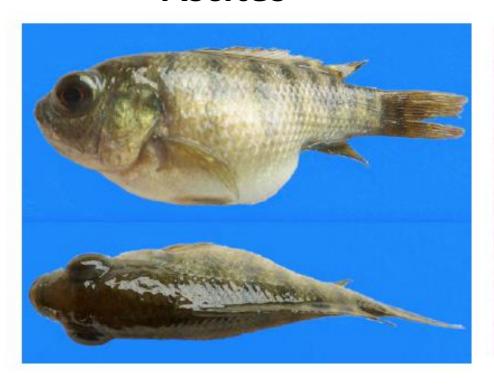

Journal of Clinical Microbiology p. 4137-4146

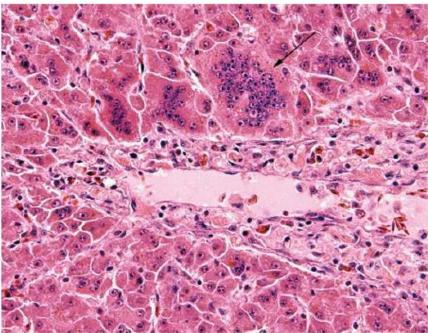

December 2014 Volume 52 Number 12

Identification of a Novel RNA Virus Lethal to Tilapia

Marina Eyngor, a Rachel Zamostiano, Japhette Esther Kembou Tsofack, Asaf Berkowitz, Hillel Bercovier, Simon Tinman, Menachem Lev, Avshalom Hurvitz, Marco Galeotti, Eran Bacharach, Avi Eldar

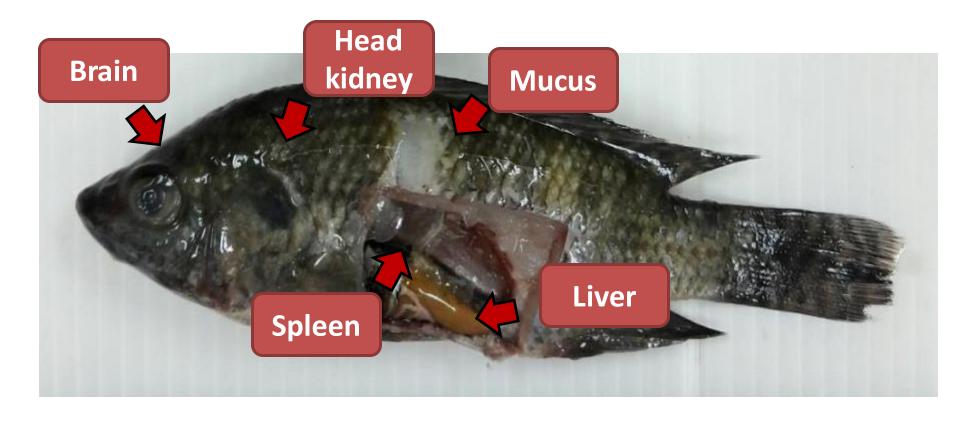
Department of Poultry and Fish Diseases, The Kimron Veterinary Institute, Bet Dagan, Israel^a; Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel^b; The Hebrew University-Hadassah Medical School, Jerusalem, Israel^c; Department of Animal Facility, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel^d; Ein Gev Fisheries, Kibbutz Ein Gev, Israel^e; Dan Fish Farms, Kibbutz Dan, Upper Galilee, Israel^f; Department of Food Science, Section of Veterinary Pathology, University of Udine, Udine, Italy^g




Syncytial hepatitis of farmed tilapia, *Oreochromis* niloticus (L.): a case report Journal of Fish Diseases 2014, 37, 583-589

H W Ferguson¹, R Kabuusu¹, S Beltran², E Reyes², J A Lince² and J del Pozo³

- 1 Marine Medicine Programme, School of Veterinary Medicine, St George's University, St George, Grenada
- 2 Produmar S.A., Guayaquil, Ecuador
- 3 Department of Pathology, Royal (Dick) School of Veterinary Medicine, University of Edinburgh, Edinburgh, Scotland, UK


Ascites

Sample collection for diagnostic procedures

Organs be used for diagnosis

General overview of diagnostic methods in virology

Direct methods

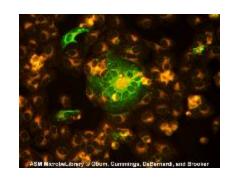
- Electron microscopy
- Light microscopy
- Immunofluorescence
- Molecular techniques

Indirect methods

- Cell culture
- Embryonated egg
- Laboratory animal

Serology

Classical techniques

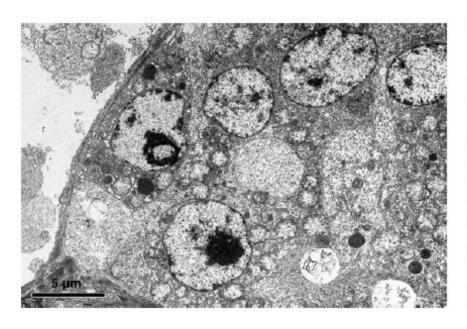

- Complement fixation test
- Haemagglutination inhibition test
- Neutralization test

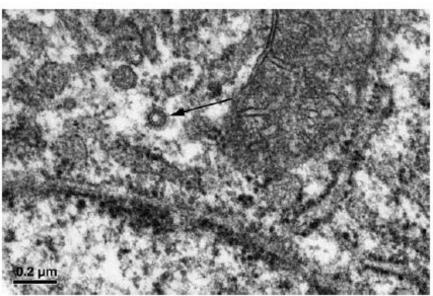
Advanced techniques

- Immunoassay (ELISA etc.)
- Western blot

Direct Examination

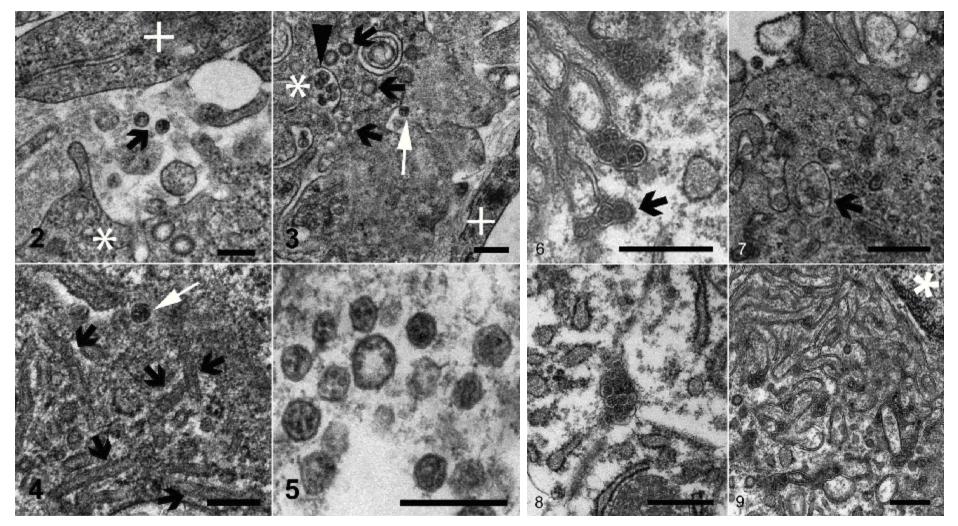
- 1. Electron microscopy
- 2. Light microscopy
- 3. Immunofluorescence
- 4. Molecular techniques


1. Transmission electron microscopy

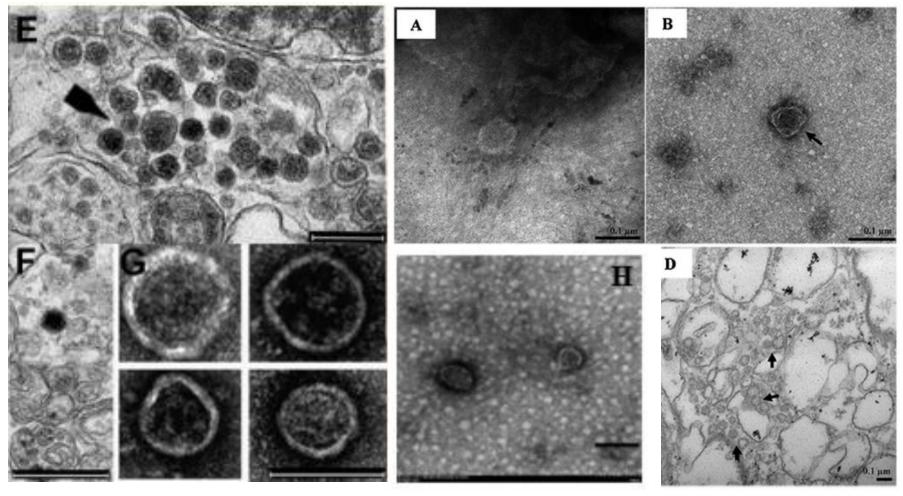

 Examination of virus preparations in which their morphological identity is unknown

 A beam of electrons is transmitted through an ultra thin specimen → An image is formed, magnified, and focused in an imaging device

SHV morphology Transmission electron microscopy



Liver from moribund tilapia showing multinucleated hepatocyte


Electron micrograph of hepatocyte from moribund tilapia showing typical appearance of virus-like particle within cytoplasm (arrow)

TiLV morphology Transmission electron microscopy

Del-Pozo et al., 2016 Vet. Pathol.

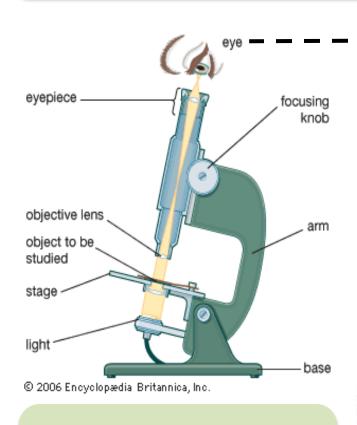
TiLV morphology Transmission electron microscopy

Eyngor et al 2014

Surachetpong et al 2014

Tattiyapong et al 2017

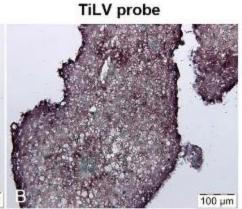
TiLV morphology Transmission electron microscopy


A Ultrastructure of liver from diseased tilapia showing multinuclear hepatocytes

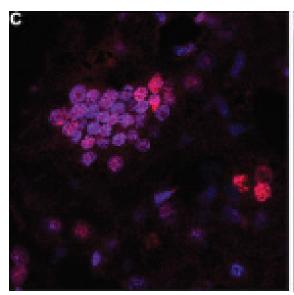
B numerous swollen mitochondria within cytoplasm

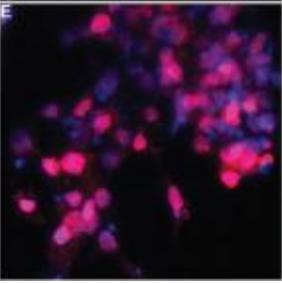
C Infected cell contained typical viral particles in cytoplasm

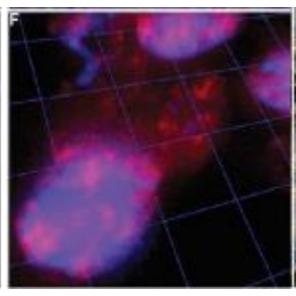
D Intracytoplasmic virions observed showing round-shaped particles with diameter around 100 nm


2. Light microscopy

- Viral detection
- Microscopic pathological examination

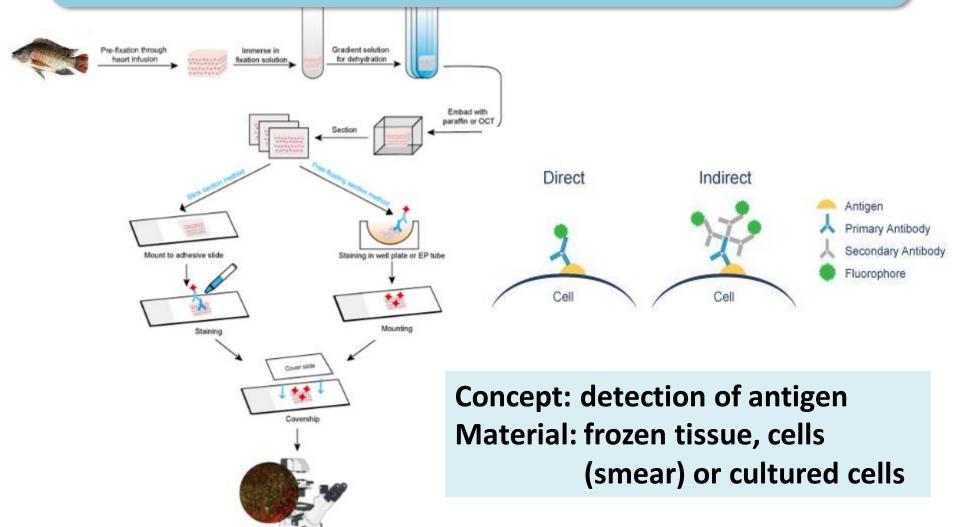

Negative probe




Bacharach et al 2016

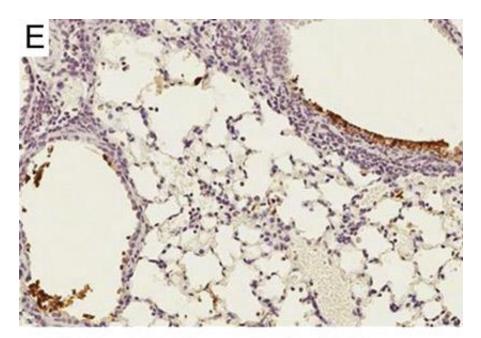
Dong et al 2017

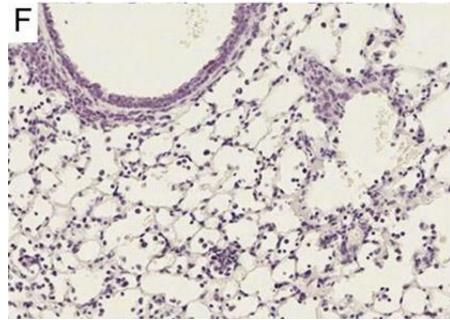
In situ hybridization with fluorescence probes



Liver sections Cy3-conjugated (red) 3 to detect mRNA Nuclei are stained with DAPI (blue).

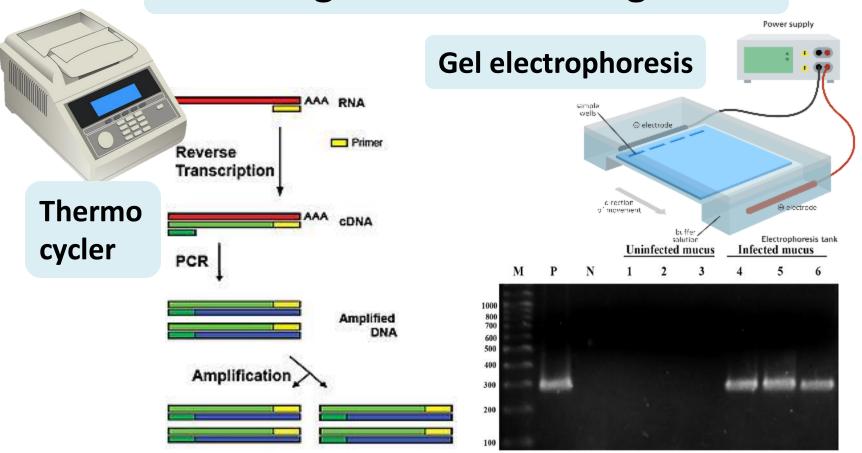
TiLV-infected E-11 cells Quasar 670-conjugated (red) Stellaris probes to segment Stellaris probe to segment 3 to detect TiLV mRNA. Nuclei are stained with DAPI (blue).


Images of confocal sections of cells in panel E were reconstituted into a 3D image.


3. Immunofluorescence Immunohistochemistry staining

IHC staining of influenza A virus in mouse lung tissue

Brown staining indicates positive staining in cell's cytoplasm and/or nucleus.


Kash et al., 2013 Free Radic Biol Med.

4. Molecular techniques

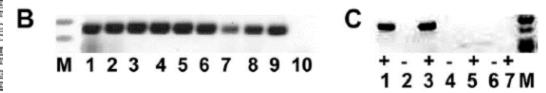
- Reverse transcription polymerase chain reaction (RT-PCR)
- Quantitative reverse transcription polymerase chain reaction (RT-qPCR)
- Insulated isothermal PCR (iiPCR)

Reverse transcription polymerase chain reaction (RT-PCR)

TiLV = negative sense RNA genome

Reverse transcription polymerase chain reaction (RT-PCR)

- Several PCR methods have been described for the detection of TiLV including
 - RT-PCR, RT-qPCR, in situ hybridization
- Recently, a SYBR green-based RT-qPCR method targeting the same segment was developed with a reported sensitivity of 2 copies

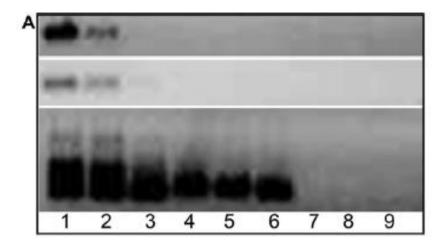


Identification of a Novel RNA Virus Lethal to Tilapia

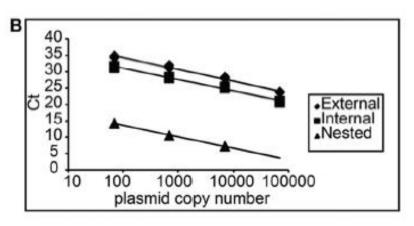
Marina Eyngor, a Rachel Zamostiano, b Japhette Esther Kembou Tsofack, b Asaf Berkowitz, a Hillel Bercovier, c Simon Tinman, d Menachem Lev, Avshalom Hurvitz, Marco Galeotti, Eran Bacharach, b Avi Eldar

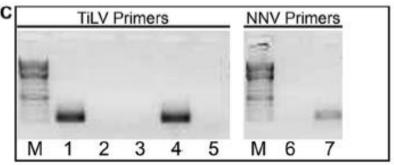
Department of Poultry and Fish Diseases, The Kimron Veterinary Institute, Bet Dagan, Israel^a; Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel^b; The Hebrew University-Hadassah Medical School, Jerusalem, Israel^c; Department of Animal Facility, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel^d; Ein Gev Fisheries, Kibbutz Ein Gev, Israel^e; Dan Fish Farms, Kibbutz Dan, Upper Galilee, Israel^f; Department of Food Science, Section of Veterinary Pathology, University of Udine, Italy^g

EMDSR FAQLTGVFCDDFTYSEGSRRFLSSYSTVERRPGVPVEGDCYDCLKNKWIAFELEGQPR
KFPKATVRCILNNDATYVCSEQEYQQICKVQFKDYLEIDGVVKVGHKASYDAELRERLLELPH
PKSGPKPRIEWVAPPRIADISKETAELKRQYGFFECSKFLACŒECGLDQEARELILNEYARD
REFEFRNGGWIQRYTVASHKPATQKILPLEASAPLARELLMLIARSTTQAGKVLHSDNTSILA
VPVMRDSGKHSKRRPTASTHHLVVGLSKPGCEHDFFDGYRAAVHVMHLDPKQSANIGEQDFV
STREIYKLDMLELPPISREGDLDRASGLETRWDVILLLECLDSTRVSQAVAQHFNRHRLALSV
CKDEPRKGYQLASEIRGTIPLSSLYYSLCAVRLMMTVHPPAR

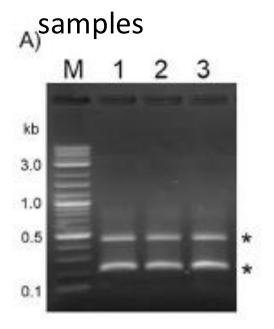

RT-PCR method based on the design of segment 3 of TiLV

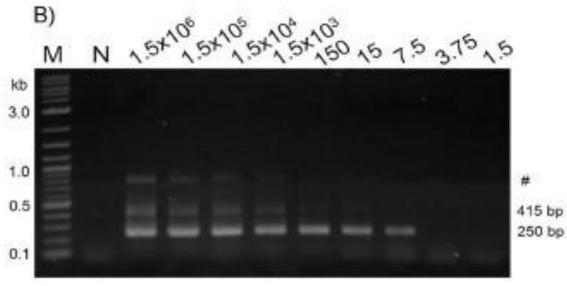
RT-PCR method based on the design of segment 3 of TiLV


Detection of Tilapia Lake Virus in Clinical Samples by Culturing and Nested Reverse Transcription-PCR



Japhette Esther Kembou Tsofack,^a Rachel Zamostiano,^a Salsabeel Watted,^b Asaf Berkowitz,^b Ezra Rosenbluth,^b Nischay Mishra,^c Thomas Briese,^c W. Ian Lipkin,^c Richard M. Kabuusu,^d Hugh Ferguson,^d Jorge del Pozo,^e Avi Eldar,^b Eran Bacharach^a

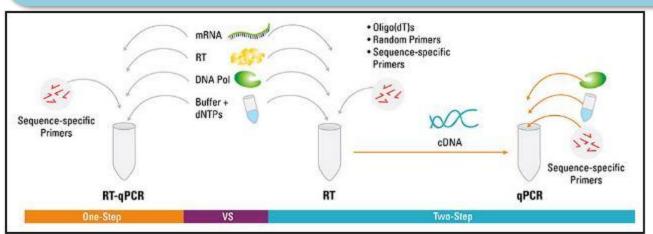

Sensitivity of PCR, nested PCR (491 bp plasmid)



RT-PCR method based on the design of segment 3 of TiLV

Semi-nested RT-PCR for TiLV detection of clinical sick fish

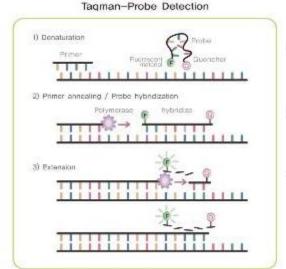
Three nested RT-PCR reactions run at an annealing temperature 56 °C non-specifically amplified fish mRNA

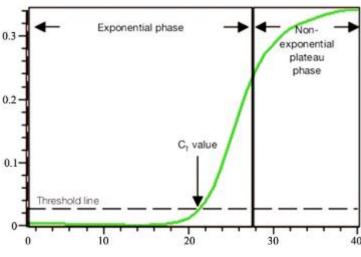

The detection sensitivity assay from 3 replicates using newly modified semi-nested RTPCR.

#Marks band probably derived from cross hybridizations of the amplified products. M, DNA marker

Serial dilutions of positive control plasmid (pGEM-415_bp) are indicated. Expected band sizes of 415 bp and 250 bp represent amplicons from the first and seminested.

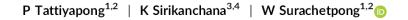
Expected band sizes of 415 bp and 250 bp represent amplicons from the first and seminested PCR

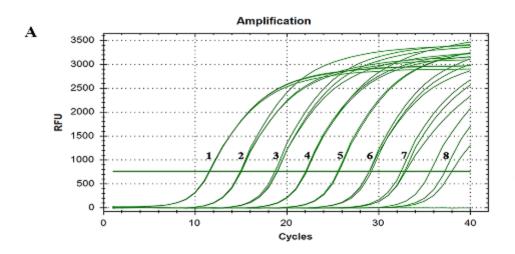

Quantitative reverse transcription polymerase chain reaction (RT-qPCR)



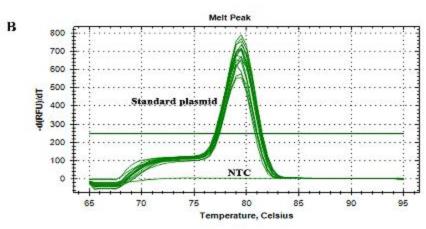
1) Denaturation | Interestable | In

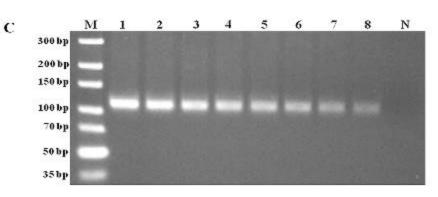
SYBR Green Detection





DOI: 10.1111/jfd.12708

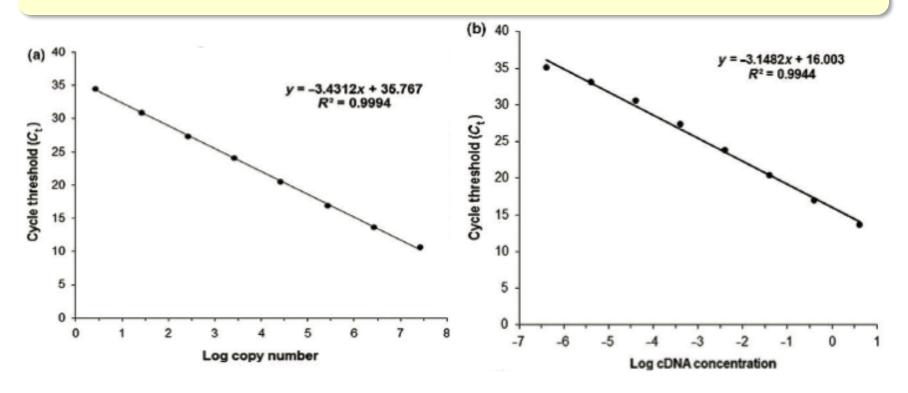



Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

Amplification curve of serial ten-fold diltuion

Melt curve and gel electrophoresis

Validation of qPCR assay with field collected samples


Supplementary Table 1 List of field samples and estimated TiLV copies in liver

Supplementary Table 1 (Cont.) List of field samples and estimated TiLV copies in liver

Sample No.	Collection date	Locations	Mean Ct values	Viral loads ^a	Sample No.	Collection date	Locations	Mean Ct values	Viral loads*
1	30/10/2015	Ang Thong	23.52	1.06×10 ⁴	16	16/10/2016	Pathum Thani	19.20	1.94×10 ⁵
2	11/11/2015	Ang Thong	22.75	1.77×10 ⁴	17	25/11/2016	Ang Thong	14.56	4.35×10 ⁶
3	05/01/2016	Pathum Thani	24.70	4.75×10 ³	18	26/11/2016	Pathum Thani	13.46	9.08×10 ⁶
4	19/01/2016	Ratchaburi	22.37	2.28×10 ⁴	19	21/12/2016	Petchaburi	17.16	7.55×10 ⁵
5	02/08/2016	Pathum Thani	15.21	2.80×10 ⁶	20	14/11/2016	Khon Kaen	19.45	1.62×10 ⁵
6	05/08/2016	Pathum thani	26.66	1.28×10 ³	21	01/01/2017	Pathum Thani	21.11	5.35×10 ⁴
7	16/08/2016	Ratchaburi	13.31	9.95×10 ⁶	22	14/02/2017	Nakhon Sawan	16.72	1.01×10 ⁶
8	22/08/2016	Ang Thong	18.09	4.00×10 ⁵	23	20/02/2017	Uthai Thani	13.26	1.04×10 ⁷
9	24/08/2016	Nakhon Pathom	13.52	8.67×10 ⁶	24	24/02/2017	Phitsanulok	27.84	5.85×10 ²
10	27/08/2016	Nakhon Pathom	28.82	3.00×10 ²	25	24/02/2017	Uttaradit	32.89	1.97×10 ¹
11	02/09/2016	Suphanburi	25.13	3.60×10 ³	26	25/02/1017	Ratchaburi	25.39	3.01×10^{3}
12	16/09/2016	Pathum Thani	22.30	2.39×10 ⁴	27	25/02/2017	Nakhon Si Thammarat	19.87	1.22×10 ⁵
13	23/09/2016	Nong Khai	13.66	7.90×10 ⁶	28	25/02/2017	Prachinburi	16.21	1.43×10 ⁶
14	02/10/2016	Pathum Thani	12.83	1.37×10 ⁷	29	25/02/2017	Nakhon Nayok	14.36	4.98×10 ⁶
15	05/10/2016	Pathum Thani	19.46	1.61×10 ⁵	30	25/02/2017	Ang Thong	18.76	2.55×10 ⁵
				\\\\China Intensi	vo Courso on	711 17 1 0 37			

FAO/China Intensive Course on TILV 18-24

Standard curve of SYBR green-based RT-qPCR

FIGURE 1 Standard curve of SYBR green-based RT-qPCR amplification of plasmid pTiLV containing segment three of TiLV and infected tissue. (a) Standard curve was plotted between mean Ct values obtained from each dilution of standard plasmid pTiLV against calculated log copy number (slope = -3.4312, R² = 0.9994). (b) Standard curve of cDNA prepared from TiLV-infected fish tissue showed slopes = -3.1482, R² = 0.994

Tattiyapong et al., 2018 J. Fish Dis.

Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

P Tattiyapong^{1,2} | K Sirikanchana^{3,4} | W Surachetpong^{1,2}

Table 3 Analysis of viral loads in different tissues

	Viral loads (copies μg ⁻¹ of total RNA)								
Sample No.	Gills	Liver	Brain	Heart	Anterior kidney	Spleen			
1	2.2×10 ⁵	1.7×10 ⁵	3.4×10 ⁵	6.3×10 ⁵	1.6×10 ⁵	2.3×10 ⁴			
2	3.1×10 ⁵	6.3×10 ³	1.3×10 ⁶	3.9×10 ⁵	3.1×10 ⁵	2.8×10 ⁴			

DOI: 10.1111/jfd.12708

Development and validation of a reverse transcription quantitative polymerase chain reaction for tilapia lake virus detection in clinical samples and experimentally challenged fish

P Tattiyapong^{1,2} | K Sirikanchana^{3,4} | W Surachetpong^{1,2}

Table 4 Comparison of RT-qPCR, conventional RT-PCR and virus isolation in cell culture

Data ati an maath a d		Template dilution							
Detection method	10 ⁻¹	10 -2	10 -3	10-4	10 -5	10 -6	10 ⁻⁷	10-8	
RT-qPCR	+	+	+	+	+	+	+	-	
Conventional RT-PCR	+	+	+	+	+	-	-	-	
Virus isolation in cell culture	+	+	+	-	-	-	-	-	

Detection of TiLV in clinical samples using RT-qPCR method

Fish sam- ples	Number of samples	TiLV posi- tive (%)	Mean Ct values (range)	Estimated viral loads (Copy numbers) ^c
Clinical samples ^a	30	30/30 (100)	22.86 (12.83 - 32.89)	$1.65 \times 10^4 \text{ (1.37} \times 10^7 \text{-} 1.97 \times 10^1\text{)}$
TiLV- challenged fish	10	10/10 (100)	23.65 (20.08 - 27.28)	$9.72 \times 10^{3} (1.00 \times 10^{5} - 8.50 \times 10^{2})$
Non- challenged fish	10	0/10 (0)	ND ^b	ND ^b

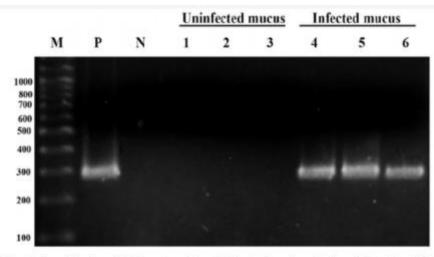
^aClinical samples were collected from 30 field outbreaks with history of massive mortality.

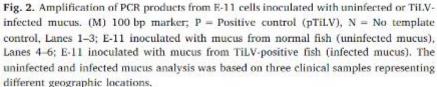
Tattiyapong et al., 2018 J. Fish Dis.

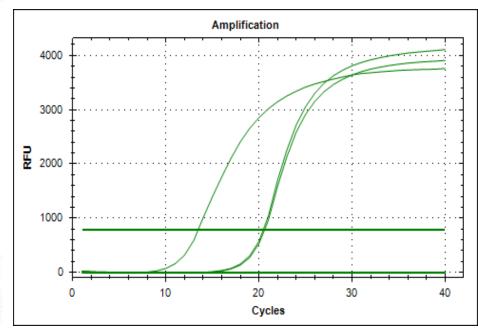
^bND = No detection.

^cCopy numbers of TiLV template per µg of total RNA.

Aquaculture


Aquaculture


journal homepage: www.elsevier.com/locate/aquaculture

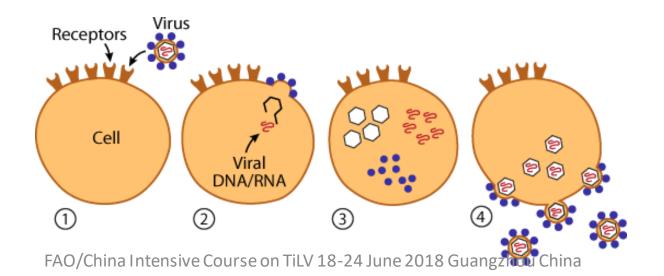

Non-lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture

Pavarit Liamnimitr^a, Worrayanee Thammatorn^a, Sonicha U-thoomporn^a, Puntanat Tattiyapong^b, Win Surachetpong^{a,b,*}

On farm diagnostic PCR for TiLV detection

- A commercial pond-site TiLV RT-PCR detection assay based on insulated isothermal PCR (iiPCR) is available
- POCKIT™ Micro (GeneBeach Biotechnology Corp.)
- Assay can be completed in 45 min.
- Rapid, inexpensive, sensitive, easy to maintain

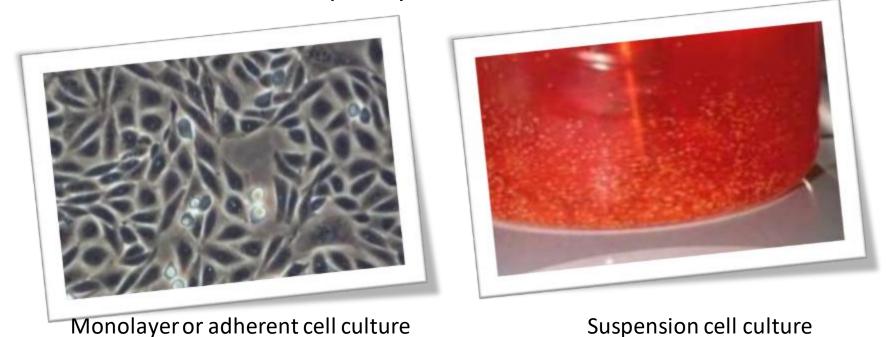
POCKIT™ Micro (GeneBeach Biotechnology Corp.) Insulated isothermal PCR (iiPCR)


Commercial pond-site TiLV RT-PCR detection

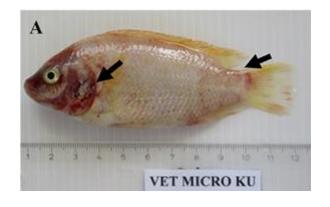
The TiLV RT-PCR has a limit of detection LoD95% of 12 genome

Indirect Examination

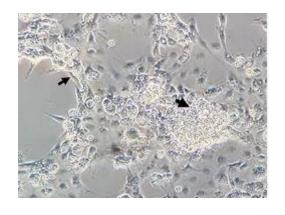
- 1. Cell Culture methods
- 2. Embryonated eggs
- 3. Laboratory animals


1. Cell culture methods

- Since the discovery by Enders (1949) that polioviruses could be cultured in cells, cell culture has become a very useful and convenient method for isolating viruses *in vitro*
- Gold standard for virus isolation and identification



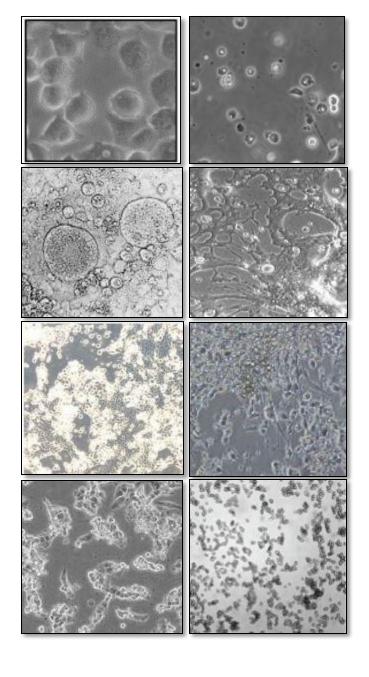
Cell culture methods


- Mainly propagate viruses in monolayer cell cultures
 - Main advantage is the ease of monitoring of infected cultures microscopically

TiLV viral isolation

Clinical specimens

- Organ and tissue
- Mucus


Virion isolation and cultivation in cell culture

Observe CPE in viral replicated cells

Cytopathic effects (CPE)

Morphological changes occurring in viral infection

- 1. Rounding
- 2. Detachment
- 3. Syncytia or fusion
- 4. Shrinkage
- 5. Increased refractivity
- 6. Aggregation
- 7. Loss of adherence
- 8. Cell lysis or death

2. Embryonated eggs

- First used by Goodpasture and Burnet in 1931 for the cultivation of virus
- The process of cultivation depends on the type of egg being used
- Eggs provide a suitable means for
 - Primary isolation and of viruses
 - Maintenance of stock cultures
 - Production of vaccines

3. Laboratory animals

- Play an essential role in the studies of viral pathogenesis
- Routes of viral inoculation
 - Intracerebral
 - Subcutaneous
 - Intraperitoneal
 - Intranasal
- After inoculation, the animal is:
 - Observed for signs of disease or visible lesions
 - Euthanized so that infected tissues can be examined

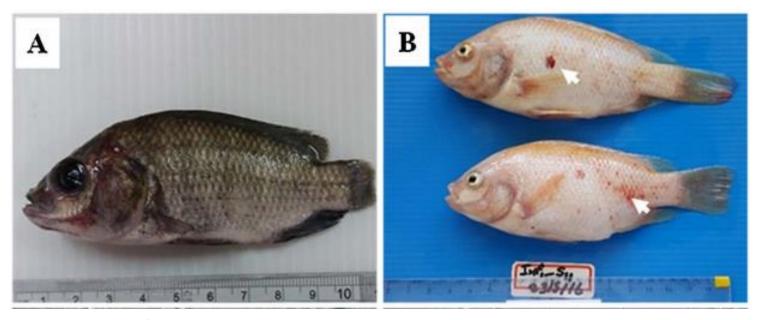
44

ELSEVIER

Contents lists available at ScienceDirect

Veterinary Microbiology

journal homepage: www.elsevier.com/locate/vetmic



Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (*Oreochromis niloticus*) and red tilapia (*Oreochromis* spp.)

Puntanat Tattiyapong^{a,b}, Worawan Dachavichitlead^{a,b}, Win Surachetpong^{a,b,*}

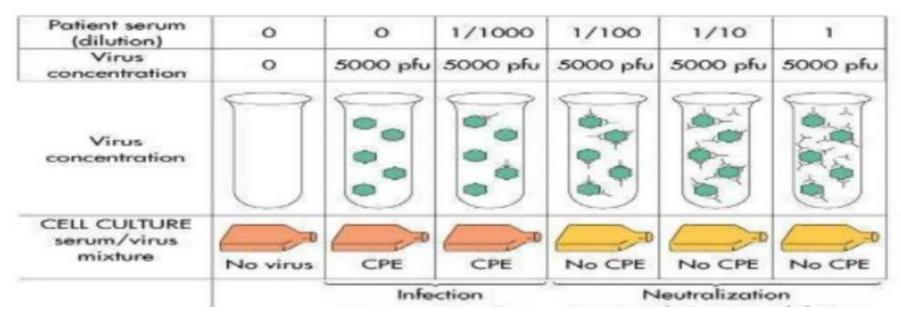
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- b Center for Advanced Studies for Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand

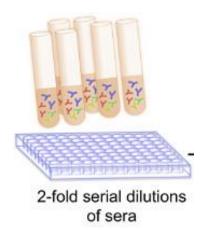
Serology

Classical techniques

- Complement fixation test
- Haemagglutination inhibition test
- Neutralization test

Advanced techniques


- Immunoassay (ELISA etc.)
- Western blot



Classical techniques

- Neutralization test
 - Detects the presence of viral neutralizing antibodies
 - Complete blockage of viral activity >
 No cell infection (no CPE)

Antibody detection

Original Article

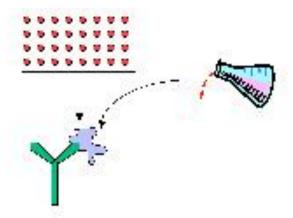
Validation of a serum neutralization test for detection of antibodies specific to cyprinid herpesvirus 3 in infected common and koi carp (*Cyprinus carpio*)

J Cabon, L Louboutin, J Castric, S Bergmann, G Bovo, M Matras, O Haenen, N J Olesen, T Morin 🔀

 Neutralizing antibodies were steadily detected in infected carp subjected to restrictive or permissive temperature variations over more than 25 months post-infection. The results suggest that this non-lethal diagnostic test could be used in the future to improve the epidemiological surveillance and control of CyHV-3 disease.

Development and Evaluation of a Blocking Enzyme-Linked Immunosorbent Assay and Virus Neutralization Assay To Detect Antibodies to Viral Hemorrhagic Septicemia Virus

Anna Wilson, Tony Goldberg, Susan Marcquenski, Wendy Olson, Frederick Goetz, Paul Hershberger, Lucas Hart, Kathy Toohey-Kurth


TABLE 4 Results of VN assay^a

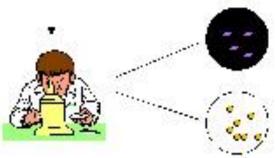
VHS infection status	No. of known positives $(n = 28)$	No. of known negatives $(n = 34)$
Positive	12	0
Negative	16	34

 $^{^{}a}$ n = 62. The sensitivity is 42.9% and the specificity is 100%, both calculated from fish in the VHS-negative and VHS-positive groups.

Classical techniques

Serial dilutions of test sera

Addition of virus

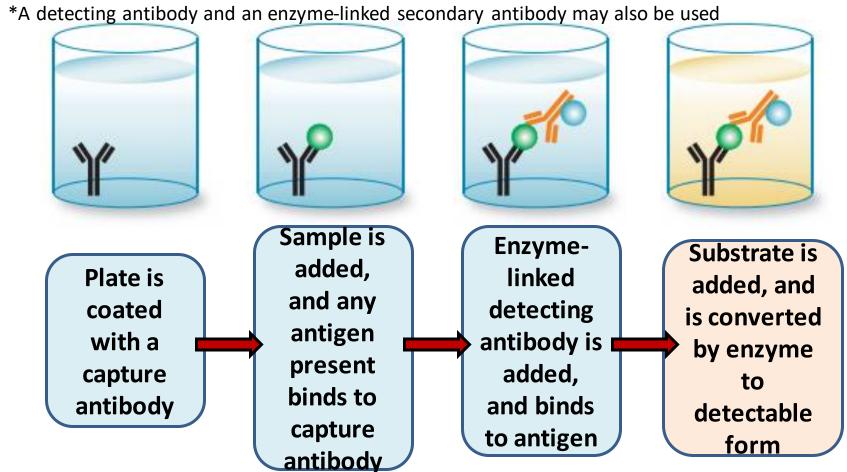

First incubation

Addition of cells

Second incubation

Plate reading

Neutralization test (limitation)

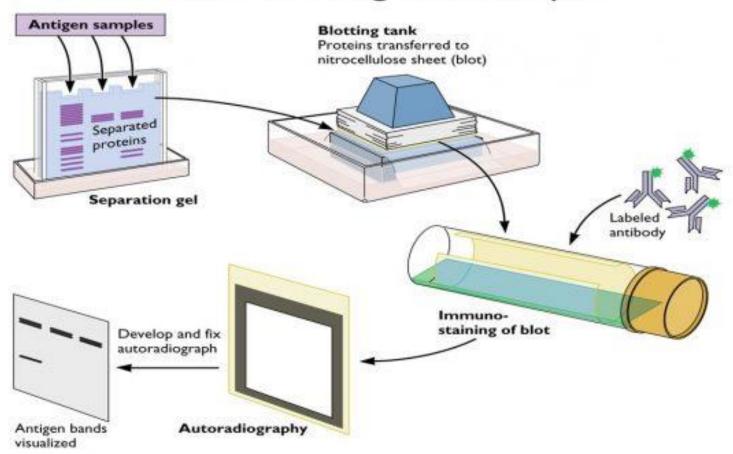

- The test was not very sensitive
 - Fish has predominant IgM subtype in serum (low specificity)
 - Absence of affinity maturation in Blymphocytes

ELISA

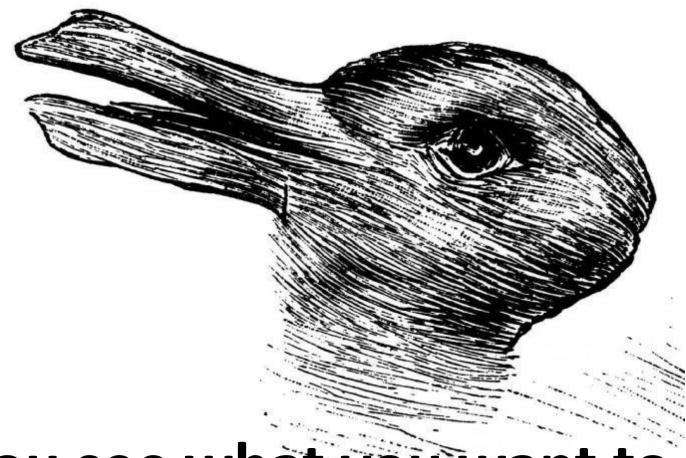
- Immunoassay (ELISA)
 - Uses antibodies and color change to identify a substance (antigen)
 - Adsorb certain components onto an immobilized solid phase
 - Color development by the product of an enzymatic reaction

ELISA

Sandwich ELISA



Advanced techniques


- Western blot
 - Identification of particular protein from a sample
 - Uses antibodies to detect target protein/antigen (Immunoblotting)

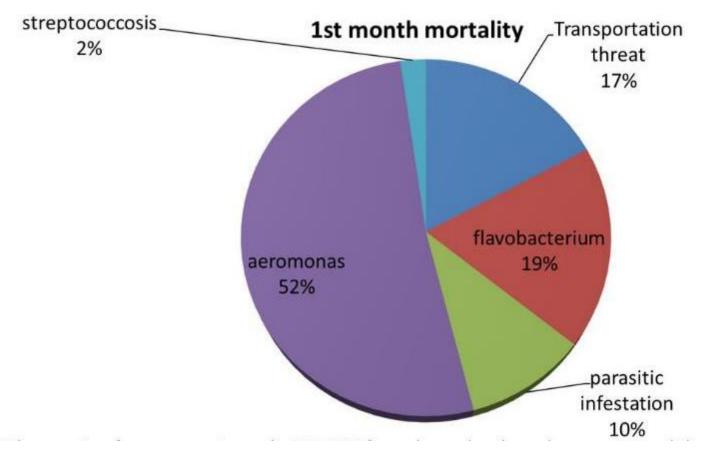
Advanced techniques

Western Blotting Technique

Rabbit or Duck?

You see what you want to see!

TiLV + Bacteria + Parasites

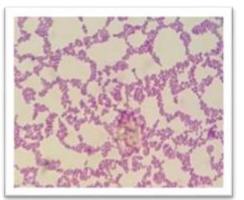

Technical Appendix Table 1, Desc	ription of TiLV outbreaks in Thailand*
----------------------------------	--

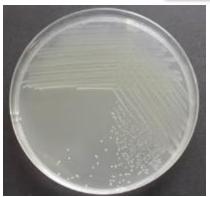
		•			Laboratory diagnosis	
Outbreak	Date	Location	Species	Ectoparasite†	Bacteria identification‡	TiLV Identification§
1	15/10/2015	Ang Thong	RT	ND	ND	+
2	30/10/2015	Ang Thong	RT	ND	ND	+
3	11/11/2015	Ang Thong	RT	ND	ND	+
4	29/12/2015	Kanchanaburi	RT	ND	No growth	_
5	29/12/2015	Chai Nat	RT	ND	Flavobacterium	+
6	29/12/2015	Kanchanaburi	RT	ND	Flavobacterium, Aeromonas	+ (TV2)
7	29/12/2015	Chai Nat	RT	ND	Flavobacterium	_
8	05/01/2016	Nakhon	RT	1+	Flavobacterium	+ (TV3)
		Ratchasima				
9	05/01/2016	Pathum Thani	RT	ND	No growth	+
10	15/01/2016	Pathum Thani	RT	2+	Aeromonas	+
11	15/01/2016	Chachoengsao	Т	3+	Aeromonas	+ (TV4)
12	15/01/2016	Pathum Thani	RT	ND	ND	_
13	19/01/2016	Ratchaburi	RT	1+	Aeromonas	+ (TV5)
14	04/02/2016	Pathum Thani	RT	0	Aeromonas	+
15	05/02/2016	Kanchanaburi	RT	ND	Aeromonas	+
16	09/02/2016	Kanchanaburi	RT	1+	Aeromonas	+
17	16/02/2016	Samut Songkhram	RT	2+	ND	_
18	16/02/2016	Samut Songkhram	RT	3+	Aeromonas	+
19	18/02/2016	Pathum Thani	RT	3+	Aeromonas	-
20	26/02/2016	Pathum Thani	RT	2+	Flavobacterium, Aeromonas	+ (TV1)¶
21	27/02/2016	Samut Songkhram	RT	1+	No growth	+
22	30/03/2016	Pathum Thani	RT	ND	Aeromonas	+
23	28/04/2016	Nakhon	RT	ND	ND	+
		Ratchasima				
24	28/04/2016	Pathum Thani	RT	ND	ND	+
25	06/05/2016	Pathum Thani	RT	2+	Aeromonas	+
26	06/05/2016	Prachin buri	Т	0	Streptococcus	_
27	10/05/2016	Pathum Thani	Т	1+	ND	_
28	13/05/2016	Nong Khai	Т	3+	ND	_
29	20/05/2016	Phitsanulok	RT	0	Aeromonas	+ (TV6)
30	20/05/2016	Phitsanulok	Т	0	Streptococcus, Aeromonas	_
31	23/05/2016	Chai Nat	RT	0	Aeromonas	_
32	24					

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 6, June 2017

Bacterial culture results of TOMMS

Data between June and December 2015 in a hatchery farm (600,000 fingerlings)




Screening for external parasites and other bacterial infection

Detection of Tilapia Lake Virus in Egyptian fish farms experiencing high mortalities in 2015

Aeromonas were isolated from TiLV-infected fish

Farm ID	Diseased fish/total fish sampled Morbidity rate (%) ^a	TiLV detected	Aeromonas species detected
1	7/13 (54%)	-	A. veronii A. hydrophilia
2	14/26 (54%)	-	A. veronii
3	13/24 (54%)	+	A. veronii
4	13/30 (43%)	-	A. veronii A. ichthiosmia A. enteropelogenes
5	21/40 (53%)	+	A. veronii
6	14/20 (70%)	-	A. veronii A. enteropelogenes A. jandaei
7	8/24 (33%)	+	A. veronii A. ichthiosmia
8	10/10 (100%)	+	A. enteropelogenes A. hydrophilia
WF	0/20 (0%)	_	A. veronii

Summary: diagnostic methods for TiLV

Direct methods

- Electron microscopy
- Light microscopy
- Immunofluorescence
- Molecular techniques

Indirect methods

- Cell culture
- Embryonated egg
- Laboratory animal

Serology

Classical techniques

- Complement fixation test
- Haemagglutination inhibition test
- Neutralization test

Advanced techniques

- Immunoassay (ELISA etc.)
- Western blot

Thank you