

0

Food and Agriculture Organization of the United Nations FMM/RAS/298: Strengthening capacities, policies and national action plans on prudent and responsible use of antimicrobials in fisheries Final Workshop in cooperation with AVA Singapore and INFOFISH

12-14 December, Concorde Hotel, Singapore

DIAGNOSTICS AND ANTIMICROBIALS ADMINISTRATION

Snježana Zrnčić,

zrncic@irb.hr

.

INTRODUCTION

THE AIM OF THE PRESENTATION:

 EMPHASIZE THE CONTRIBUTION OF DIAGNOSTICS TO THE RESPONSIBLE MANAGEMENT OF BACTERIAL DISEASES IN AQUACULTURE AND CONSEQUENTLY TO THE REDUCTION THE ANTIMICROBIALS USE (AMU) AND PREVENTION OF THE ANTIMICROBIAL RESISTENCE (AMR) DEVELOPMENT

SOLUTIONS AGAINST BACTERIAL DISEASES ?

1 - Short term solutions:

Fast actions for immediate disease control

Treatment prescription: bath & medicated feed

Supporting actions: Stress reduction, daily mortality removal, change nets, quarantine, movement restriction, eradication

- 2 Long term solutions
- Health Management Plans to <u>avoid future outbreaks</u>
- Introductions and movement control, biosecurity, health monitoring programs
 vaccination

Short term solution 1

DIAGNOSIS AND TREATMENT

At first occurence of abnormal behaviour, farmer should inform fish health specialist According to changes in environment, clinical appearance and results of necropsy –choice of media and analysis

Sensitivity testing of pure bacterial cultures to approved and indicated antimicrobials

Treatment of affected lot during 10 days at least Ordering of medicated feed from approved feed mil Evaluation of the affected biomass will enable quantification of required medicated feed Results of the testing using the standardized protocols will advice on the choice of microbials

Table 2.1. Outline of steps for culture and identification.

Day	Activity	Method or technique
Day 1	 Sample collection and preparation Inoculation of sample to primary isolation plate media (or broths where appropriate) 	2.1 2.2, Table 2.2, Table 2.3
	Incubate at appropriate temperature and atmosphere	2.2, Table 2.2, Table 2.3
Day 2 (24 h)	 Examine culture plates Select suspect colonies and subculture to BA or MSA-B to obtain pure growth (secondary plates) Re-incubate primary plates Incubate all plates at appropriate temperature and atmosphere as before 	2.3 Table 2.4 for cultural and microscopic appearance 2.2, Table 2.2 and 2.3
Day 3 (48 h)	 Re-examine primary plates for slow-growing pathogens Check that subcultures on secondary plates are pure Perform primary identification tests Inoculate appropriate biochemical identification set Re-incubate primary plates as before 	2.3 2.4, Chapter 3, and media (Chapter 7) 2.5, 2.6 2.2, Table 2.2 and 2.3
Day 4 (72 h)	 Re-examine primary plates for growth of slow-growing pathogens. Re-incubate if disease suggests a pathogen that requires more than 3 days for growth Examine biochemical identification set/s and record results at 24 h incubation 	2.3 Table 3.1
Day 5 (96 h)	 Examine biochemical identification set/s and record results for 48 h incubation. Add reagents for tests for indole, methyl red, nitrate, Voges-Proskaüer Interpret results from appropriate identification table 	Table 3.1 Chapter 3 and Tables 4.1 to 4.22 for biochemical results (Biochem set), and Tables 4.23 to 4.31 for results for API kits

BA, blood agar; MSA-B, marine salt agar.

longer

©N.B. Buller 2004. Bacteria from Fish and Other Aquatic Animals: a Practical Identification Manual (N.B. Buller)

83

In the case of slow growing and fastidious bacteria it may last even

۲

IMPACT OF BACTERIAL DISEASES TO THE PROFITABILITY OF AQUACUTURE

-

DIRECT LOSSES

- $\circ~$ Low survival rate
- Cost of diagnostic analysis
- Cost of treatment
- In the case of diseases reoccurence new treatment is needed

INDIRECT LOSSES

- Cost of feed already used for farming of sick aquatic animals
- o Removal of dead animals
- Engagement of workers in application of medicated feed
- $\circ~$ Retarded growth and poor FCR
- Risk of disease re-occurence of outbreak on the site (endemic)

FAST AND ACCURATE RECOGNITION AND DETECTION OF THE BACTERIAL PATHOGEN

- Main prerequisite for mitigation of losses caused by bacterial diseases outbreaks
- Very important factor of the health monitoring programmes
- Diagnostic skills should be continously improved regardless to the diagnostic capacity

۲

-

Diagnostic	Diagnostic		
capacity	method applied	Findings	Suspected pathogen
		Increase or decrease of the temperature of the	Any bacterial pathogen, but suspicion on
		water, low oxygen saturation, poor water	vibriosis (Vibrio anguillarum or V. harveyi,
	CHANGES IN	exchange, stress	V. salmonicida) or even R. salmoninarum
	ENVIRONMENT	Long period of high temperature of the sea,	Pasteurellosis caused by Photobacterium
		heavy rainfalls and decreasing of salinity,	damselae subsp. piscicida,
		deteriorated cultivation conditions	
		Low water temperature, fluctuation in water	Pseudomonas fluorescens, Pseudomonas
		temperature, feeding to satiation, stress	anguilliseptica
		Swimming apart from the shoal, on the	Nocardia spp., Mycobacterium spp.,
		surface/bottom, lethargy	Clostridium botulini, Str. iniae
		Erratic swimming, spiral movement	Str. iniae/agalactiae, Lactoccocus garviae, Edw. ictluri, Cl.botulini
		Dark pigmentation	Flav. psychrophilum, Lactoccocus garviae, Y.ruckeri
		Pale colouration of the skin, anemia	Edwardsiella tarda, Nocardia spp.
		Whitish layer on whole body of glass eels	Ps.anguilliseptica
		Hemorrhages on the skin and fin basis	Aer.hydrophila, Lactoccocus garviae, Ps.
	GROSS SIGNS		fluorescens
		Hemorrhages in the eyes	L.garviae,Ps.anguilliseptica, Y. ruckeri,
			A.hydrophila
		Hemorrhages in the mouth	Ps.anguilliseptica, Y. ruckeri, A.
			hydrophila
		Hemorrhages in the gills/opercular area	F.branchiophilum & columnare,
			Ps.anguilliseptica
			Aer.hydrophila &salmonicida,
		Hemorrhages on the skin and in the muscles	Edw.ictaluri, Flav.columnare, Nocardia
			spp., Ps.anguilliseptica, Ps.fluorescens
LEVEL I		Erosion on the head and tail and fins	Y.ruckeri, Ps.fluorescens, Nocardia spp.,
			Mycobacterium
		Brownish necrotic areas in gills or fins	Fla. columnare
		Saddle like lesion on the back	Flav.psychrophilum, Flav.columnare
		Exophthalmia 🎽	E. ictaluri, A. hydrorphila, botulism
		Loss of mucus layer sometimes with	Fla. columnare
		enophthalmia	
		Distended abdomen	Aer.hydrophila &salmonicida, Edw.ictaluri
			& Edw.tarda, L. garviae, Ps.fluorescens,
			Renibacterium salmoninarum, .botulism
		Furuncles	Aer. salmonicida salm.
		Protruded anus	E.tarda, Y. ruckeri, Aeromonas hydrophila
		Everted stomach, flacid paralysis Gas filled hollows in the muscle, deep ulcers	Botulism Edwardsiella tarda
		das med honows in the muscle, deep ulcers	A.hydrophila &salmonicida, E.ictaluri
		Presence of ascitic fluid in body cavity	&tarda, Y. ruckeri, Flavobacterium spp., L.
		Thesence of ascille find in body cavity	garviae, Ps.fluorescens, R. salmoninarum,
		Petechial haemorrhages in the muscle wall	# #
		Hemorrhages in swim bladder	Ps.fluorescens, Y. ruckeri
		Granulomas in the internal organs	Edw.tarda, Nocardia spp., Francisella
	NECROPSY		noatunensis
What standed	IN A CARLAND A A DALLA	Swollen kidney	Edw.ictaluri, Ren.salmoninarum, a.o.

Diagnostic capacity	Diagnosti	c methods applied	Observations and results	Possible pathogen
capacity			MEDIA	
			TSA and BA	Most of freshwater bacteria in tropical, temperate or cold waters
			KDM2 or SKDM	<i>R.salmoninarum</i> with incubation lasting from 7 days to 19 weeks
		Isolation, and view of bacterial growth on media and identification by biochemistry or slide	AOA or TYES	Flavobacterium psychrophila, F. branhiophilum, F. Cytophaga, Yellow colonies change colour to orange after addition of 10%KOH
	BACTERIOLOGY	agglutination, and antibiogram	No brown pigment on solid agar, mostly no growth at 37°C	atypical Aeromonas salmonicida
			Brown pigment in solid agar, mostly no growth at 37°C	Aeromonas salmonicida subsp. salmonicida
LEVEL II			After obtaining pure culture: Gram staining and genus typing by biochemistry API strips (20E, 20NE,), APIZYM, API-Staph or any other miniaturized test may be used Agglutination of bacteria with specific antiserum against a bacterial species In case treatment is needed: susceptibility testing	
	HISTOLOGY	Tissues of fin fish should be preserved in the buffered formaldelhyde. When samples for histology are fixed it is useful to preserve some samples in ethanol or to freeze them to be available for molecular testing.	Histological observation is especially useful when culture methods for isolation of pathogenic bacteria failed. Findings in tissue could lead toward additional laboratory testing of the level III.	
		PCR	uit -	
	DNA based tests	qPCR	All these methods are described in details in the chapter 2.2. Role of diagnostics, and the particular of each disease is referenced in the specific paragraphs of chapter 3. on bacterial species	
LEVEL III		16SrRNA sequencing		
		NGS		
	Spectrophoto metric testing	MALDI-TOF		

*

exclude typical parasitological and viral clinical signs:

-parasitological: flashing against bottom or walls of basin, spiral swimming (whirling disease of young trout), white spots, thick slime; -viral clinical signs: often popeye (rhabdoviruses, biRNA, etc.), or enophthalmus (carp/koi with herpes or pox virus), anemia, pale gills and internal organs (exception: infectious salmon anemia (ISA) of salmon: dark hemorrhagic liver) or hemorhagges in the internal organs (VHSV, IHNV)

FAST AND ACCURATE DIAGNOSTICS

Implementation in broodstock, hatchery, pregrowing and fattening units both for both short term solutions and long term solutions

Requirements:

 Good knowledge of the technology procedure (optimal ecological condition, normal appearance and behaviour of all stages of the farmed species during all steps of the cultivation – from broodstock to market size fish)

 Knowledge of the ecological and environmental favourable conditions for disease outbreak occurence

 Knowledge of the clinical appearance of the particular bacterial disease, post mortem signs and histopathological changes in affected tissue as primary methods for diagnostics – often lack specificity and it is difficult to detect the pathogen in the animals without clinical signs of the diseases (early recognition of any changes and setting up the suspicion)

- effective control and treatment of bacterial diseases requires rapid, reliable and highly sensitive diagnostic methods
- Plating and cultivating of pathogen bacteria is also a widely used method, but it is time consuming and there are some very hardly cultivable, fastidious bacterial pathogens
- a possibility to implement immunological, protein-based and molecular methods solves all mentioned limitations
- The most important is fast commencement of diagnostic procedures (notifying the suspicion to the diagnostic lab or starting the diagnostic procedure in the own facility if there is any)

HEALTH MANAGEMENT PLANS: 1. REDUCING THE BACTERIAL PATHOGEN PRESSURE (GAP)

- Good management practices (separation of generation, stocking density, proper feeding, feed quality, reducing stress, water quality control etc...)
- **o Hygiene practices**
- Biosecurity measures: introduction of certified stocks, awareness of the diseases history on the farm, control of aquaculture animals movement between and within farm, movement of people and vehicles, control of birds, predators etc., removing of dead fish
- ♦ Cleaning and disinfection procedures of equipment, containars, nets, boats, etc.

2. HEALTH MONITORING PROGRAMMES BROODSTOCK CONTROL

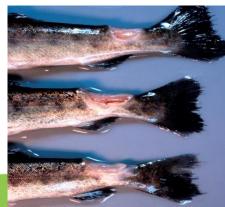
Example:

Although biosecurity measures have been implemented we should be aware of vertical transmission of different bacterial diseases like:

-Streptococcus iniae, Fransicella noatunensis subsp orientalis through fertilized eggs in tilapia

-bacterial kidney disease caused by *R. salmoninarum* in salmonid fish via eggs

-Flavobacterium psychrophilum in salmonids,


-photobacteriosis caused by *Photobacterium damselae* in marine fish

-piscirickettsiosis (salmonid rickettsial syndrome – SRS), caused by *Piscirickettsia* salmonis in salmonis fish in Chile

Streptococcus iniae

Flavobacterium psychropilum

a ha a shu wa ha shu wa ka a wa ha a shu wa ta afada a shu wa a shu wa shu wa shu wa a shu wa shu wa shu wa shu

Fransicella noatunensis subsp orientalis

.

Piscirickettsia salmonis

- Monitoring in hatcheries sometimes biosecurity measures could fail and bacterial infection in the hatchery could appear – testing of fry (the most susceptible life stage)
- Transport from hatchery to ongrowing units stress and the latent infections could occur after the transportation
- Knowledge of predisposing factors/periods for endemic diseases occurence requires disease monitoring procedures with diagnostic testing
- In absence of specific immunoprophylaxis (vaccination against endemic bacterial pathogens) losses could be mitigated only by prudent and responsible use of antimicrobials
- Key of successful treatment continuous monitoring and early diagnosis

ROLE OF RAPID DIAGNOSTIC IN AMR PREVENTION

◆Use antimicrobials to better treat infections

◆Slow the rise of drug resistance by reducing the unnecessary use of antimicrobials, in particular antibiotic

Ultimately change our approach to treat bacterial infections through targeted and precise therapy

ADMINISTRATION OF ANTIMICROBIALS

Use of antimicrobials can be divided into:

•Therapeutic antimicrobial use is the treatment of established infections.

•Metaphylaxis is a term used for group-medication procedures, aimed to treat sick animals while medicating others in the group to prevent disease.

•**Prophylaxis** means the preventative use of antimicrobials in either individuals or groups to avoid development of infections.

.

•Growth promotion use is when an antimicrobial agent is used as feed supplement in food animals to promote growth and enhance feed efficiency.

ADMINISTRATION METHODS

- Medicated feed preferred method of antimicrobials administration, more often commercially prepared as sinking or floating pellets
- Baths and dips, flush not effective as some other treatment methods, particularly for systemic infections, poor absorption of the antimicrobials used
- Topical usually only necessary for more valuable individual fish, such as ornamental varieties or broodstock – treatment of ulcers or injuries
- Injection more effective than using medicated feed practical use for valuable individuals – requires anaesthesia – i/p and i/m
- Administration through bioenrichment of live feed organisms most often Artemia or rotifers either directly or indirectly for fish larvae and shrimp postlarvae

.

EFFICACY OF BACTERIAL DISEASES TREATMENT USING MEDICATED FEED

- Medicated feed Incorporation of antimicrobial substance into the feed via powdered premix (active ingredient + carrier)
- Always under veterinary prescription

Prerequisite for successful treatment:

- Rapid diagnosis (Vibriosis in sea bass;treatment starts 1.st day-Mt=1,5%; treatment starts after 1 week, Mt=16%)
- Antimicrobial selection and dosis
- Manufacturing process
- Administration

ANTIMICROBIAL SELECTION, DOSAGE AND WITHDRAWAL TIMES

als is sugarded and

bodai dai Trimethoprim/ 50	-80mg/kg dy weight ily in feed mg /kg body ight daily in ed -50 mg/kg	Vibriosis, aeromoniasis, edwardsielosis, flavobacteriosis*, tenacibaculosis, francisellosis, streptococcosis, lactococcosis Vibriosis, aeromoniasis, edwardsielosis, pseudomoniosis, tenacibaculosis	400-600 °days 350°days
	ight daily in d	edwardsielosis, pseudomoniosis,	350°days
fee	-50 mg/kg		
(oxolinic, boo	dy weight ily in feed	Vibriosis, aeromoniasis, edwardsielosis, pseudomoniosis, flavobacteriosis*, photobacteriosis	80 °days
boo	ight daily in	aeromoniasis, edwardsielosis, yersiniosis, flavobacteriosis	150 °days
boo	0 mg/kg dy weight ily in feed	BKD, mycobacteriosis, streptococcosis, lactococcosis	700 ºdays
boo	-40 mg/kg dy weight ily in feed	Tenacibaculosis, francisellosis, lactococcosis	500 ºdays
boo	-80 mg/kg dy weight ily in feed	Furunculosis, streptococcosis, lactococcosis	500°days

.

۲

CHOICE OF ANTIMICROBIALS

Historical records (continuous monitoring needed followed by sensitivity testing)

Final premix dosE adjustment:

concentration of active ingredient – to avoid sub-dosing

biomass to treat – to avoid sub-dosing

daily feed ratio – to avoid sub-dosing

DURATION OF TREATMENT – AT LEAST THREE DAYS AFTER CESSATION OF THE SYMPTOMS OF THE DISEASE BUT NOT LESS THAN 7 DAYS

POSSIBLE MISTAKE IN USE OF ANTIMICROBIALS

-

- Starting too late
- Inadequate medicine / dosage selection
- Wrong duration of treatment
- Use of antibiotics as prophylactics, "just in case"
- Use of antibiotics in viral infections
- Repeatedly use of same medicines

USE OF ANTIMICROBIAL ON THE FARM

- Starvation before medicated feed administration
- Reduction of daily feeding ratio and medicated feed should be the first meal or it should be adapted to the age and number of daily meals
- Administration:
 - ✓ Preferred manually
 - Small air-cannons in big cultivation units/off-shore cages with high biomass per unit

BETTER PREVENT THAN CURE

-

.

THANK YOU FOR YOUR ATTENTION

and a star which where