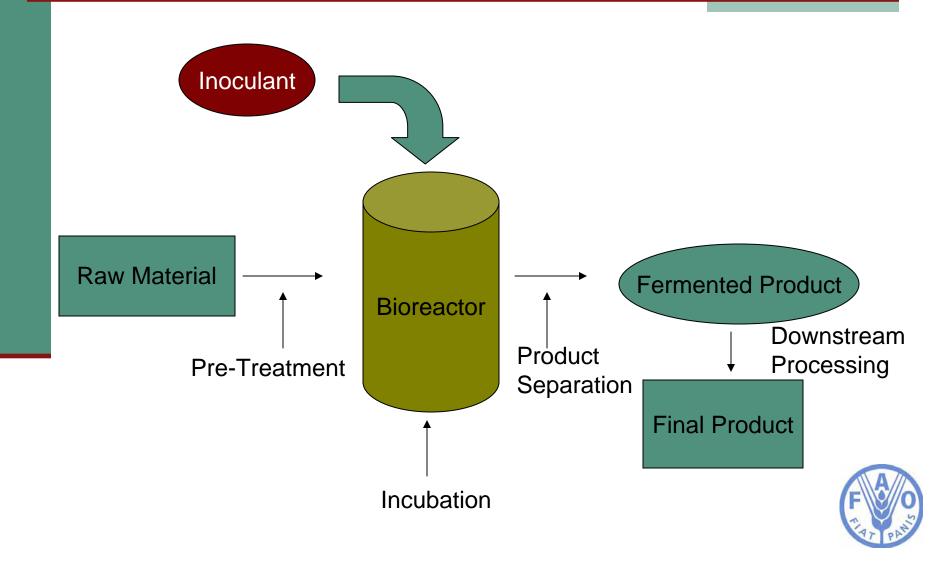
Current Status and Options for Biotechnologies in Food Processing and Food Safety in Developing Countries

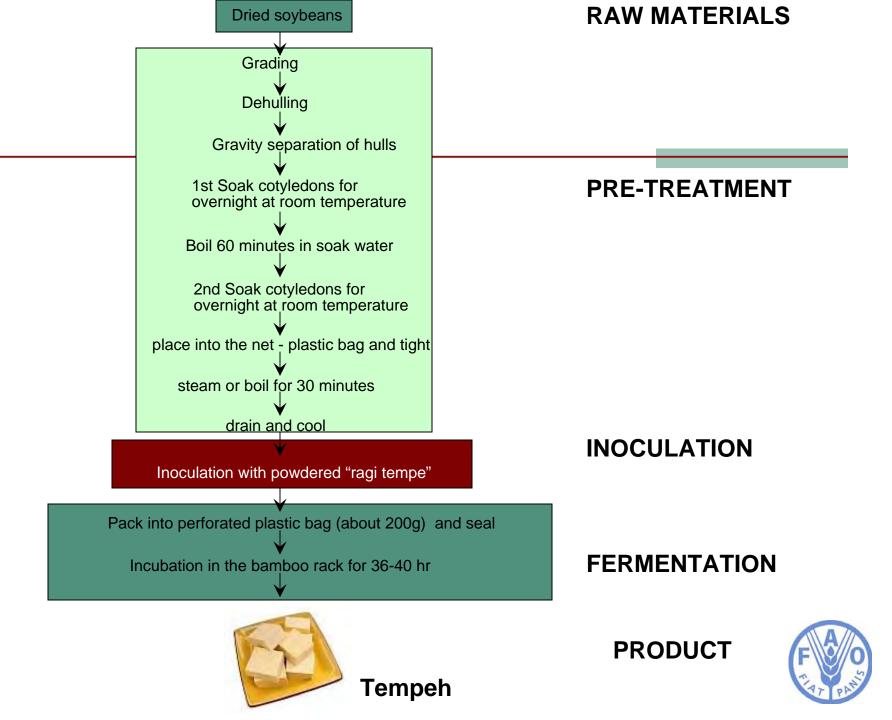
Rosa S. Rolle, Ph.D
Senior Agro-Industry and Post-harvest Officer
FAO Regional Office for Asia and the Pacific
Bangkok, Thailand

Rosa.Rolle@fao.org

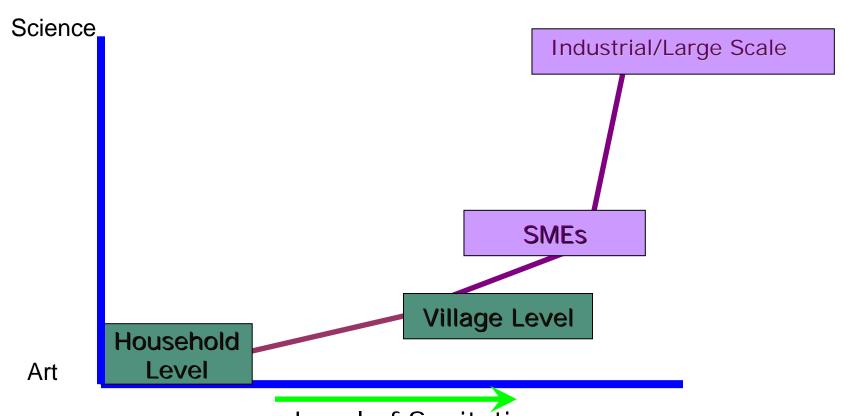
Biotechnology

"any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use." Convention on Biological Diversity.




Biotechnology in Food Processing

- The fermentation bioprocess:
 - Is the major biotechnological application in food processing
 - Is one step in a sequence of food processing operations
 - Makes use of microbial inoculants to enhance
 - Taste
 - Aroma
 - Shelf-life
 - Texture
 - Nutritional Value



Schematic of Steps of an Ideal Fermentation Process

From Art to Science: Levels of Technology

Level of Sanitation Level of Technology Process Control Product Quality & Consistency

- "Appropriate" Starter Cultures
 - Back-slopping
- Defined Starter Cultures
 - Propagated and maintained under sterile conditions
- "Chance" inoculation of fermentation processes is also widely employed

Chance Inoculation

"Appropriate" Starter Cultures

Mould Starter Cultures

Defined Starter Cultures

Super Tempeh Kit & Instructions
Contents: Rhizopus Oligosporus Culture & Rice Flour
NET WT: 4 Gr.

TEMPEH SUPER STARTER RAGI TEMPEH SUPER ASLI INDONESIA

Makes 12 Lbs

Copyright: IndonesianFoodMart.com

Bioreactor Technology

Soy Sauce Fermentation (Asia)

Cassava Fermentation W. Africa

Earthenware Pots used as Bioreactors

Bioreactor Technology

Traditional Koji Chamber

New Koji Chamber

Bioreactor Technology

Traditional Sorghum Beer Production

Role of Biotechnology in Starter Culture Development

- Enhancement of starter culture safety
- Tailoring of cultures to achieve desirable products.
- Improve yields, quality and consistency of product

All of the above are possible with the appropriate bioreactor conditions

Biotechnological Tools For Starter Culture Improvement

	Biotechnological Tools
I. Diagnostics	
Characterization of microorganisms	PCR Specific and Non Specific Gene Amplification Genome sequencing

Biotechnological Tools For Food Safety Assurance

Food Safety	Biotechnological Tools
I. Pathogen Detection	Specific Gene PCR Amplification Specific protein identification by Immunoassays Biosensors
II. Detection of chemical and biochemical hazards	Immunoassays Biosensors
III.Traceability of Food	DNA Bar code - Unique DNA Polymorphism

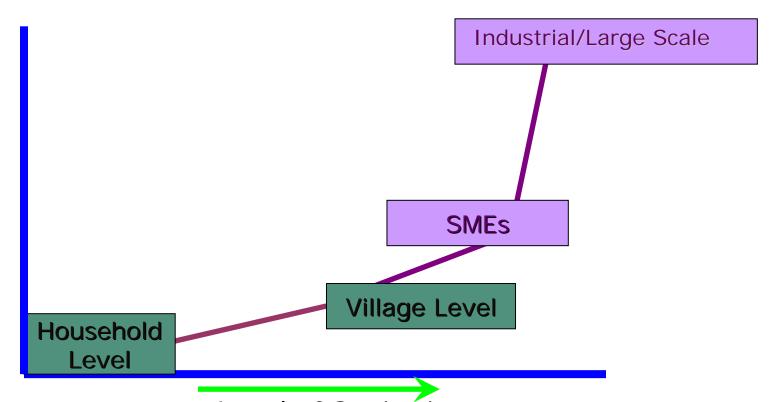
Changing Socio-economics a Driving Factor for Improvement

Traditional Consumer

- Affordable staples
- Taste
- Shelf-life
- Food Security and Safety

Mid-High Income

- Health food
- Quality
- Convenience
- Food Safety
- Shelf-life



From Art to Science: Levels of Technology

Level of Sanitation Level of Technology Process Control Product Quality & Consistency

Lessons from the Past

- Success has been achieved where:
 - An enabling environment has been provided by Governments
 - Governmental support facilitates the adoption of improved technologies
 - Development of technical skills has been prioritized
 - Funding support exists for research
 - Industry-institutional linkages have been developed
 - North-South, and South-South collaboration has taken place
 - Industry has adopted proactive approaches
 - Production of fermented foods is market driven
- Attention must be paid to intellectual property issues
- Starter culture development is a driving force for upgrading bioreactor technology

Country Level - Priorities for Action

- Regulatory and policy issues
 - Food Safety
 - Food and nutritional security
 - Technology transfer and innovation
 - Business policy
- Education Policy
 - Consumer education
 - Academic and vocational education on food biotechnology fermentations
- Institutional Strengthening and Capacity Building
 - R&D support targeted to the food bio-processing sector
 - Dissemination of improved technologies
 - Strengthening of food safety management systems

Country Level - Priorities for Action

- Infrastructure Development
 - Transfer and adaptation of technology
- Intellectual Property Rights
- Information, Networking and International Cooperation
 - Access to specialized technical information
 - Networking and exchange among institutions and across regions

Role of the International Community

INTERNATIONAL COMMUNITY

Policy Development and Planning

Regulatory Frameworks

Capacity Building on Technical and Regulatory Issues

R & D Technology Transfer

> Infrastructure Development

Networking Information & Awareness Raising

Acknowledgements

- Olusola B. Oyewole, University of Agriculture, Abeokuta, Nigeria
- Rudd Valyasevi, Biotec, Thailand
- FAO- Nutrition and Consumer Protection Division
 - M. Takeuchi; S. Dharmapuri; Maria de Lourdes Costarrica; Annika Wennberg

ABDC Steering Committee

- Adama Diallo FAO/IAEA Division, Austria
- Kathleen Jones USFDA
- Marc Levine- ILSI
- Haruko Okusu, CGIAR
- Masashi Kusukawa (Codex)
- Jorgen Schlundt (WHO)
- ABDC Secretariat
 - Preet Lidder
 - John Ruane

Rosa.Rolle@fao.org

