# METALAXYL-M (212)

First draft prepared by Denis Hamilton, Department of Primary Industries and Fisheries, Brisbane, Australia

# **EXPLANATION**

The toxicology of metalaxyl-M was evaluated by the 2002 JMPR, which established a group ADI of 0–0.08 mg/kg bw for metalaxyl and metalaxyl-M. Residue and analytical aspects were considered for the first time by the present Meeting. Metalaxyl-M is the biologically active enantiomer (R-enantiomer) of the racemic compound metalaxyl. Metalaxyl was first evaluated by the JMPR in 1982, and Codex MRLs for metalaxyl have been established.

#### **IDENTITY**

| ISO common name    | metalaxyl-M                                                 |
|--------------------|-------------------------------------------------------------|
| Synonyms           | Mefenoxam® CGA 329351                                       |
| Chemical name      |                                                             |
| IUPAC name         | methyl N-(methoxyacetyl)-N-(2,6-xylyl-D-alaninate           |
| CAS                | methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate |
| CAS Number         | 70630-17-0                                                  |
| CIPAC Number       | 580                                                         |
| Molecular formula  | $C_{15}H_{21}NO_4$                                          |
| Molecular mass     | 279.3                                                       |
| Structural formula |                                                             |

#### PHYSICAL AND CHEMICAL PROPERTIES

Pure active ingredient. Purity 99.4% (including S-enantiomer), 97.2% R-enantiomer.

|   | ۰. | c |   | 2 | L |
|---|----|---|---|---|---|
| - | •  |   | - |   | • |

| Annearance                        | Pale vellow clear viscous liquid                                                                          | 26171         |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|---------------|
| Appearance                        | Tale yenow, clear viscous inquid                                                                          | 20171         |
| Odour                             | Weak                                                                                                      | 26171         |
| Boiling point                     | Thermal decomp ~ 270°C (below bp)                                                                         | 26165         |
| Relative density                  | 1.125 at 20°C                                                                                             | 26166         |
| Vapour pressure:                  | $3.3 \times 10^{-3}$ Pa at 25°C (extrapolated from                                                        | PP-94/45P.VPC |
| Henry's law constant              | measurements between 41.4 and 91.4 °C )<br>3.5 × $10^{-5}$ Pa m <sup>3</sup> /mol (calc from vp and water |               |
| field y s law consum              | sol)                                                                                                      |               |
| Solubility in water               | 26 g/l at 25°C                                                                                            | 26169         |
| Solubility in organic solvents at | See technical material                                                                                    | 26833         |
| 25°C:                             |                                                                                                           |               |

| Dissociation const<br>Octanol/water part | ant in water<br>ition               | No dissociation                                                                                                                                                                                                                                          | PP-94/45P.DCW<br>26168      |
|------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| coefficient:                             |                                     | $\log P_{OW} = 1.71 \pm 0.04$ at 25°C                                                                                                                                                                                                                    |                             |
| Hydrolysis (sterile                      | soln)                               | Stable to hydrolysis up to pH 7 even at 50°C.<br>At pH 9<br>Half-life 116 days at 25°C<br>7.7 days at 50°C<br>2.7 days at 60°C                                                                                                                           | 95EH05                      |
| Photolysis in wate                       | r                                   | Not degraded by light (2.2 ppm solution in<br>pH 7 buffer, irradiated for 240 h).<br>Degradation of metalaxyl-M by direct<br>photolysis in surface waters is not expected<br>because metalaxyl-M does not absorb<br>sunlight wavelengths (above 290 nm). | 95EH04                      |
| Technical material                       | (97.1% ai)                          |                                                                                                                                                                                                                                                          |                             |
| Appearance:<br>Odour<br>Minimum purity   | Light brown,<br>Weak<br>Metalaxyl-M | clear viscous liquid.<br>: no FAO specification .                                                                                                                                                                                                        | 26831<br>26831<br>FAO, 1992 |
|                                          | Metalaxyl, te<br>impurity 2,6-      | chnical: FAO specification: 950 g/kg minimum, dimethylaniline maximum 1 g/kg.                                                                                                                                                                            |                             |
| Solubility in                            | ~                                   |                                                                                                                                                                                                                                                          | 26833                       |
| organic solvents at 25°C:                | Completely r<br>ethanol, ethy       | niscible at 25°C in toluene, dichloromethane,<br>l acetate, acetone, n-octanol.                                                                                                                                                                          |                             |

# FORMULATIONS

Metalaxyl-M is available in the following formulations:

Hexane at 25°C: 59 g/l.

| FS combination with fludioxonil                               |       |
|---------------------------------------------------------------|-------|
| GR metalaxyl-M only                                           |       |
| KL combination with chlorothalonil                            |       |
| LS metalaxyl-M only                                           |       |
| SC metalaxyl-M in combination with chlorothalonil             |       |
| WG combination with folpet, mancozeb                          |       |
| WP combination with chlorothalonil, copper, folpet, mancozeb, | zineb |

Metalaxyl-M is the biologically active R-enantiomer in the racemic compound metalaxyl. Metalaxyl was first evaluated by the JMPR in 1982 and Codex MRLs were recommended. In recent years it has become possible to manufacture metalaxyl-M industrially and to register products based on the active R-enantiomer only. However as metalaxyl-M constitutes 50% of metalaxyl-M investigations into the metabolism and fate of metalaxyl can legitimately be accepted as representative of the metabolism and fate of metalaxyl-M.

# METABOLISM

Animal and plant metabolism and environmental fate studies were with metalaxyl or metalaxyl-M uniformly <sup>14</sup>C-labelled in the aromatic ring.



Structures, names and codes for metabolites are summarised below. The designations Metabolite 1 to Metabolite 14 were used in the toxicological evaluation of metalaxyl and metalaxyl-M (WHO, 2003) and are also used here. Metabolites are further identified by CAS numbers where available. Chemical names do not necessarily follow IUPAC or CAS practice.



Metabolite 8 (CGA 94689) HO-CH, N-(2-hydroxymethyl-6-methylphenyl)-N-(methoxyacetyl)alanine methyl -COOCH3 ester (occurs as 2 isomers) CAS 85933-49-9 ЮCΗ, Metabolite 9 (CGA 108905) N-(2-carboxy-6-methylphenyl)-N-(methoxyacetyl)alanine methyl ester COOCH OCH, Metabolite 10 (CGA 67868) N-methoxyacetyl-2,6-dimethyl-aniline CAS 53823-88-4 OCH2 Metabolite 11 (CGA 67867) соон N-(2,6-dimethylphenyl) alanine Metabolite 12 (CGA 108906) N-(2-carboxy-6-methylphenyl)-N-(methoxyacetyl)alanine COOH CAS 104390-56-9 OCH Metabolite 13 (CGA 78532) COOH *N*-(carboxycarbonyl)-*N*-(2,6-dimethylphenyl)alanine COOH Metabolite 14 (CGA 68124) 2,6-dimethylanilinoxoacetic acid [(2,6-dimethylphenyl)-amino]oxoacetic acid COOH CAS 2903-48-2 Metab P2 COOH *N*-(2-hydroxymethyl)-6-methylphenyl]-*N*-(hydroxyacetyl)alanine CH\_OH HO'CH, (St Metab P1

*N*-(2-hydroxymethyl)-6-methylphenyl]-*N*-(hydroxyacetyl)alanine (Sterioisomer of P2)

# CGA 119857

N-(3-hydroxy-2,6-dimethylphenyl)-N-(methoxyacetyl)alanine





#### Animal metabolism

Studies on the use of metalaxyl on rats, lactating goats and laying hens were reported to the Meeting. (The metabolism of metalaxyl and metalaxyl-M in rats, goats and hens had already been evaluated for toxicology by the 2002 JMPR (WHO, 2003).)

When animals were dosed orally with radiolabelled metalaxyl, in a short time most of the radioactivity was excreted in the urine and a small amount in the faeces. In a goat study, metalaxyl was not detected in the residues in the tissues or milk. In a laying hen study, low levels were present in liver and eggs.

Numerous metabolites formed by hydrolysis, oxidation and demethylation of metalaxyl and subsequent conjugation were identified.

# Rats

Rats dosed orally with a single treatment (27.9 mg/kg bw) of ring-labelled [ $^{14}$ C]metalaxyl excreted 63% and 33% of the administered  $^{14}$ C within 48 h in the urine and faeces respectively (Hamböck, 1978, study 26/78). Metabolite 1, Metabolite 10, Metabolite 5 and Metabolite 8 were identified in the urine as free metabolites or glucuronic acid conjugates.

Four groups of rats were dosed with  $[{}^{14}C]$  metalaxyl at 1.1 mg/kg bw (intravenous), 1.1 mg/kg bw (oral), 1.1 mg/kg bw (oral, after 14 daily doses of unlabelled metalaxyl) and 203 mg/kg bw (oral) (Itterly and Eberle, 1990, report ABR-90079). Nine metabolites (2, 5, 1, 11, 4, 8, 7, 6 and 9) were identified in the excreta as free compounds, or as glucuronide or sulfate conjugates.

Muller (1997, report 19/97) showed that the absorption, distribution, metabolism and excretion of radiolabel from metalaxyl and metalaxyl-M dosing were similar in rats.

## Goats

Fisher *et al.* (1978, report ABR-78046) orally dosed a lactating goat by capsule with  $[^{14}C]$ metalaxyl at the equivalent of 7 ppm in the feed for 10 consecutive days. Most of the radiolabel was excreted in the urine (93%) and faeces (11.6%), with total recovery of radiolabel of 107%. Very little  $^{14}C$  was found in the milk (0.003 mg/kg) or tissues (0.019 and 0.057 mg/kg in kidney and liver respectively). TLC showed similar patterns of metabolites in rat and goat urine.

In another trial two lactating dairy goats weighing 37.4 and 38.5 kg were dosed orally once daily for 4 consecutive days by gelatin capsule with 150 mg/day of [<sup>14</sup>C]metalaxyl, equivalent to 77 ppm metalaxyl in the diet (Emrani and Meadows, 1990, report ABR-90078). Milk was collected twice a day and the animals slaughtered 6 and 7 h respectively after the last dose. Recovery of administered <sup>14</sup>C was 80%.

Within 24 h of administration 67%, 9% and 0.1% of the daily dose was found in the urine, faeces and milk respectively. Six metabolites (5, 1, 3, 8, 7 and 6), mostly present as glucuronic acid conjugates, were identified in the urine. Tissues and milk were treated with glucuronidase to hydrolyse conjugates before analysis and identification (Table 1). Metalaxyl was not detected as a component of the residue. The metabolic pathways for metalaxyl in goats were similar to those in hens and rats.

Emrani and Meadows (1991, report ABR-91075) identified the main metabolites (66% of the radioactivity) in the milk as  $C_{10}$  and  $C_8$  fatty acid conjugates through the hydroxyacetyl group of Metabolite 3.

Table 1. Metabolites in the tissues and milk of goats dosed orally by gelatin capsule for 4 consecutive days with 150 mg/day of [<sup>14</sup>C]metalaxyl, equivalent to 77 ppm metalaxyl in the diet (Emrani and Meadows, 1990, 1991, reports ABR-90078, ABR-91075).

| Metabolites                                                                                        | <sup>14</sup> C, mg/kg as metalaxyl |        |         |                  |             |                 |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------|--------|---------|------------------|-------------|-----------------|--|
|                                                                                                    | Milk, goat                          | Liver, | Kidney, | Leg muscle, goat | Tenderloin, | Perirenal fat,  |  |
|                                                                                                    | 2, day 2                            | goat 2 | goat 2  | 2                | goat 2      | mean of 2 goats |  |
| <sup>14</sup> C as % of dose                                                                       | 0.10%                               | 0.17%  | 0.02%   | 0.19%            | 0.16%       | <0.01%          |  |
| <sup>14</sup> C conc                                                                               | 0.089                               | 1.37   | 1.06    | 0.074            | 0.065       | 0.25            |  |
| Metabolite 3                                                                                       | 0.004                               | 0.025  | 0.036   | 0.006            | 0.004       | 0.029           |  |
| Metabolite 3                                                                                       | $0.058^{1}$                         |        |         |                  |             |                 |  |
| fatty acid conj                                                                                    |                                     |        | L       |                  |             |                 |  |
| Metabolite 8 $\xrightarrow{HOCH_2} \xrightarrow{COCH_2} \xrightarrow{COCH_2} \xrightarrow{COCH_3}$ | 0.005                               | 0.11   | 0.36    | 0.009            | 0.007       | 0.034           |  |
| Metabolite 7 $H_{O}$                                                                               | 0.008                               | 0.070  | 0.029   | 0.004            | 0.011       | 0.007           |  |
| Metabolite 5                                                                                       | <0.001                              | 2      | 0.007   | 0.006            | 2           | 0.014           |  |
| Metabolite 6                                                                                       | 0.004                               | 0.19   | 0.335   | 0.014            | 0.011       | 0.065           |  |
| Metabolite 1                                                                                       | <0.001                              | 0.022  | 0.007   | 0.008            | 0.006       | 0.006           |  |

<sup>1</sup> Major metabolite in milk  $C_8$  and  $C_{10}$  fatty acid conjugates of Metabolite 3.

<sup>2</sup> Metabolite 5 included in Metabolite 7 value.

# Hens

Five laying hens weighing 1.3 to 1.7 kg were dosed orally once daily for 4 consecutive days by gelatin capsule with 10 mg/day of [<sup>14</sup>C]metalaxyl, equivalent to approximately 100 ppm metalaxyl in the diet (Kennedy *et al.*, 1990, report ABR-90077). Eggs were collected once a day and the hens killed 6 h after the last dose. Recovery of administered <sup>14</sup>C was 92%, with 0.97% in edible tissues and eggs and the remainder in the excreta. Metabolites in eggs, liver, thigh muscle and peritoneal fat are shown in Table 2. Recoveries from other tissues were breast muscle 0.25%, skin + fat 0.05%, gizzard 0.08% and kidney 0.04%.

Table 2. Metabolites in the tissues and eggs of hens dosed orally for 4 consecutive days by gelatin capsule with 10 mg/day of [ $^{14}$ C]metalaxyl, equivalent to approximately 100 ppm metalaxyl in the diet (Kennedy *et al.*, 1990, report ABR-90077; 1991, report ABR-91077).

| Metalaxyl,                        | <sup>14</sup> C, mg/kg as metalaxyl (includes conjugates except where |                    |       |              | cept where |  |
|-----------------------------------|-----------------------------------------------------------------------|--------------------|-------|--------------|------------|--|
|                                   |                                                                       | separately listed) |       |              |            |  |
| metabolites                       | Egg white                                                             | Egg yolk           | Liver | Thigh muscle | Fat        |  |
| <sup>14</sup> C as % of dose      | 0.01%                                                                 | 0.01%              | 0.14% | 0.31%        | 0.02%      |  |
| <sup>14</sup> C conc              | 0.18                                                                  | 0.21               | 1.4   | 0.67         | 0.25       |  |
| Metalaxyl                         | 0.013                                                                 | 0.010              | 0.018 | < 0.001      | < 0.001    |  |
| Metabolite 3                      | <0.001                                                                |                    | 0.009 | <0.001       |            |  |
| P3a (glucuronide of Metabolite 3) | < 0.001                                                               | 0.006              |       | < 0.001      | 0.002      |  |

| Metalaxyl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>14</sup> C, mg/kg as metalaxyl (includes conjugates except where |          |              |              |          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------|--------------|--------------|----------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>F</b>                                                              | Se II    | eparately li | sted)        | <b>.</b> |  |
| metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Egg white                                                             | Egg yolk | Liver        | Thigh muscle | Fat      |  |
| P4 (sulfate of Metabolite 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.014                                                                 | 0.015    |              | 0.20         | 0.021    |  |
| Metabolite 13 + Metabolite 14 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |          | 0.049        |              |          |  |
| Metabolite 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |          |              |              |          |  |
| Metabolite 8 $( \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $ | .0.017                                                                | 0.016    | 0.013        | <0.001       | <0.001   |  |
| Metabolite 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001                                                                | 0.052    | 0.24         | <0.001       | 0.10     |  |
| Metabolite 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.001                                                                | 0.007    |              | <0.001       | <0.001   |  |
| Metabolite 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                                                                    |          | 0.17         |              |          |  |
| Metabolite 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.011                                                                 | 0.005    |              | <0.001       | <0.001   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н 0.032                                                               | 0.038    |              | 0.25         | 0.013    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H 0.024                                                               | 0.034    |              | 0.062        | 0.005    |  |



Figure 1. Metabolic pathways of metalaxyl in goats and hens. Metabolites may occur as conjugates in tissues, milk and eggs.

#### **Plant metabolism**

Studies on the metabolism of metalaxyl in grapes, lettuce and potatoes and of metalaxyl-M in lettuce were reported to the Meeting. The plant metabolites had previously been identified as animal metabolites.

The parent compound was the main component of the residue in grapes and grape juice when metalaxyl was applied to vines. In treated lettuce, metalaxyl and metabolite 8 were each present at approximately 20% of the total residue. Metabolite 8 was the main residue in both cases when metalaxyl and metalaxyl-M were applied to lettuce.

When metalaxyl was applied to potato plants, the main residue in the tubers was the parent compound.

#### Grapes

In a field trial in Switzerland Riesling and Sylvaner grapevines were sprayed to run-off seven times at 14-day intervals at a [<sup>14</sup>C]metalaxyl concentration of 0.050 kg ai/hl. Although a severe hailstorm occurred sufficient ripe grapes and leaves were harvested 52 days after the seventh and last application for analysis (Gross, 1978, 11/78). Levels of <sup>14</sup>C (as metalaxyl) were 3.1 mg/kg in grapes, 1.04 mg/kg in juice, 7.3 mg/kg in presscake and 30 mg/kg in leaves. Metalaxyl constituted 64% and 22% of the total residues in grapes and leaves respectively.

In a further field trial in Switzerland two vines were sprayed to run-off 6 times at approximately 14-day intervals with a [ $^{14}$ C]metalaxyl spray concentration of 0.030 kg ai/hl. Ripe grapes and leaves were harvested 68 days after the last application (Gross, 1979, 06/79). The grapes were separated into juice and presscake. The results are shown in Table 3.

| Table 3. Metalaxyl and its metaboli               | tes in grapes | and leaves | 68 days | after spraying | ; the vin | es with |
|---------------------------------------------------|---------------|------------|---------|----------------|-----------|---------|
| [ <sup>14</sup> C]metalaxyl (Gross, 1979, 06/79). |               |            |         |                |           |         |

|                                | Component                                         | Concentration, mg/kg, as metalaxyl |                           |           |                                |
|--------------------------------|---------------------------------------------------|------------------------------------|---------------------------|-----------|--------------------------------|
|                                |                                                   | Grapes                             | Juice                     | Presscake | Leaves                         |
|                                | <sup>14</sup> C, % of total applied               | 0.18                               | 0.06                      | 0.12      | 2.4                            |
|                                | <sup>14</sup> C concentration, mg/kg as metalaxyl | 1.4                                | 0.9                       | 1.7       | 19.8                           |
|                                | Metalaxyl concentration, mg/kg                    | 0.83                               | 0.56                      | 0.96      | 2.9                            |
| Cor                            | npound including conjugates                       | % of                               | <sup>14</sup> C in grapes |           | % of <sup>14</sup> C in leaves |
| Metalaxyl                      |                                                   | 64.1                               | 7.8                       | 56.3      | 22.4                           |
| Metabolite 7                   |                                                   | 4.3                                | 1.7                       | 2.6       | 13                             |
| Metabolite 8                   |                                                   | 20.4                               | 7.0                       | 13.4      | 55.4                           |
| Metabolite 1 +<br>Metabolite 6 |                                                   | 1.8                                | 1.0                       | 0.8       | 5.0                            |

# Lettuce

Lettuce seedlings (variety Suzanne) in a greenhouse were sprayed twice with a 2-week interval with  $[^{14}C]$ metalaxyl at a rate equivalent to 0.25 kg ai/ha and harvested 2 weeks after the second application (Gross, 1979, 38/79). The total  $^{14}C$  residue in the lettuce constituted 17.6% of the applied dose. Table 4 shows the identified components of the residues (Gross, 1980, 38/80).

Table 4. Percentages of residues identified in lettuce harvested 2 weeks after the second application of  $[^{14}C]$ metalaxyl at a rate equivalent to 0.25 kg ai/ha (Gross 1980, 38/80). Glucose conjugates are included in the metabolite concentrations.



Stingelin (2000, 98JS30) compared the metabolism of metalaxyl and metalaxyl-M in Sunny lettuce plants, in a field trial in Switzerland. The plants were treated 3 times (at 10-day intervals) with the labelled compound and samples taken 1 h and 14 and 21 days after the third treatment (Table 5).

Levels of total residue and proportions of parent compounds in the residue were generally comparable. Metabolite 8, free + conjugated, was the main identified component of the residue in the 14- and 21-days samples, accounting for approximately 60% and 35% of the total residue for the

metalaxyl-M and metalaxyl treatments respectively. Enantiomeric ratio measurements suggested similar degradation rates for both isomers and very little interconversion.

Table 5. Comparison of identified components of the residue in lettuce after treatments with  $[^{14}C]$ metalaxyl-M and  $[^{14}C]$ metalaxyl (Stingelin 2000, 98JS30).

|                                                     | <sup>14</sup> C, mg/kg, as parent compound |          |          |           |           |           |
|-----------------------------------------------------|--------------------------------------------|----------|----------|-----------|-----------|-----------|
| Component                                           | Metalaxyl-M                                |          |          | Metalaxyl |           |           |
|                                                     | 1 h                                        | 14 days  | 21 days  | 1 h       | 14 days   | 21 days   |
| Total <sup>14</sup> C                               | 8.7                                        | 2.4      | 0.62     | 7.2       | 1.8       | 1.1       |
| Parent                                              | 6.8                                        | 0.30     | 0.037    | 6.2       | 0.36      | 0.13      |
| II <sub>3</sub> O-malonyl glycoside of Metabolite 8 | 0.83                                       | 1.0      | 0.20     | 0.35      | 0.27      | 0.16      |
| II <sub>8</sub> O-glucoside of Metabolite 8         | 0.20                                       | 0.31     | 0.090    | 0.097     | 0.26      | 0.17      |
| Metabolite 8                                        | 0.15                                       | 0.083    | 0.085    | 0.074     | 0.10      | 0.088     |
| Metabolite 1                                        | 0.015                                      | 0.035    | 0.015    | 0.013     | 0.025     | 0.023     |
|                                                     | Enantiomeric ratio (S/R)                   |          |          |           |           |           |
| Parent compound, enantiomeric ratios                | 0.5/99.5                                   | 1.0/99.0 | 2.3/97.7 | 51.4/48.6 | 61.0/39.0 | 53.8/46.2 |

#### Potatoes

In a field trial in Switzerland Bintje plants were treated 5 times with  $[^{14}C]$  metalaxyl at a rate of 0.2 kg ai/ha at 10-day intervals and harvested at maturity 5 weeks after the last treatment (Gross 1977, 30/77).

Of the radiolabel applied to the plants 1.5% was present in the plants at harvest (90% in the leaves and 7.4% in the tubers, <sup>14</sup>C as metalaxyl 0.02 mg/kg) demonstrating that little of the residue was translocated to the tubers. The <sup>14</sup>C in the tubers was polar material; no <sup>14</sup>C was detected in the organic extract so no parent was detectable in tubers.

In a second experiment the level of <sup>14</sup>C as metalaxyl in tubers was below 0.0001 mg/kg after [<sup>14</sup>C]metalaxyl was applied to the soil at 4.1 kg ai/ha (residues in soil approximately 0.5 mg/kg), demonstrating that metalaxyl is not taken up by the tubers directly from the soil.

Gross (1979, 39/79) identified the components of the residue in potato leaves, showing percentages of  $^{14}$ C found in the plants, metalaxyl 2.7; Metabolite 9, 43; Metabolite 1, 13.5; Metabolite 8, 5.7; and Metabolite 12, 4.5.

In an experiment in New York, USA, field-growing potato plants were treated 3 times with  $[{}^{14}C]$ metalaxyl at a rate of 1.2 kg ai/ha at 28-day intervals (Marco 1978, ABR-78001). Plant and soil samples were taken just before the second and third treatments and at maturity 4 weeks after the last treatment. Tubers were cut into pieces and immersed in a bucket of water that removed most of the soil but left a fine coating of soil particles on exposed surfaces. The level of  ${}^{14}C$  in the mature tubers was 0.14 mg/kg as metalaxyl. The level of  ${}^{14}C$  in the 0-7.5 cm soil layer at the same time was 2.6 mg/kg, most of which was identified as parent metalaxyl with a small amount of Metabolite 1. The composition of the residue in stalks and foliage was similar to that in the trial in Switzerland.

In a further trial two plots of field growing potato plants, variety Green Mountain, in New York, USA were treated 6 times, at about 2-week intervals, with [<sup>14</sup>C]metalaxyl at rates of 0.43 (1×) and 1.3 (3×) kg ai/ha (Marco 1981, ABR-81037). Samples of tubers, foliage and soil were taken 24 h after the first treatment and at maturity 1 week after the last treatment. Total residues in the tubers were 0.14 mg/kg (peel 0.22 and flesh 0.11 mg/kg) and 0.5 mg/kg (peel 0.9 and flesh 0.4 mg/kg) for the 1× and 3× treatments respectively. The composition of the residue in tubers and foliage from the

 $3 \times$  treatment is summarised in Table 6. Metalaxyl was the major component of the residue in the tubers.

Table 6. Composition of the residue in tubers and foliage of potato plants treated three times with [<sup>14</sup>C]metalaxyl at 1.3 kg ai/ha (Marco 1981, ABR-81037).

| Component                    |             | <sup>14</sup> C in compound as % of total <sup>14</sup> C |                            |                |                   |  |  |  |
|------------------------------|-------------|-----------------------------------------------------------|----------------------------|----------------|-------------------|--|--|--|
|                              |             | Tubers, ext A <sup>1</sup>                                | Tubers, ext B <sup>1</sup> | Foliage, early | Foliage, maturity |  |  |  |
| Total <sup>14</sup> C, mg/kg |             | 0.5 mg/kg                                                 | 0.5 mg/kg                  | 3.7 mg/kg      | 32 mg/kg          |  |  |  |
| Metalaxyl                    |             | 51                                                        | 57                         | 20             | 2.2               |  |  |  |
| Metabolite 8                 |             | 5.6                                                       | 1.6                        | 8.5            | 20                |  |  |  |
| Metabolite 7                 |             |                                                           | 4.0                        |                |                   |  |  |  |
| Metabolite 1                 |             |                                                           | 2.8                        |                |                   |  |  |  |
| Metabolite 6                 | ССООН       | 1.0                                                       | 1.4                        | 1.8            | 1.0               |  |  |  |
| Metabolite 9                 |             |                                                           | 0.6                        |                | <0.2              |  |  |  |
| Metabolite 12                | HOOC COCH   |                                                           | 0.6                        |                |                   |  |  |  |
| Glucose conjugate of Me      | etabolite 8 | 5.6                                                       | 2.5                        | 19             | 30                |  |  |  |
| Glucose conjugate of Me      | etabolite 7 | 1.4                                                       | 0.4                        | 8.9            | 2.7               |  |  |  |
| Glucose conjugate of Me      | etabolite 6 | 1.0                                                       | 0.6                        | 0.8            | 0.9               |  |  |  |

<sup>1</sup> A and B are different extraction procedures.

Metabolic pathways in grapes, lettuce and potatoes are shown in Figure 2.



Figure 2. Metabolism of metalaxyl in grapes, lettuce and potatoes. Some metabolites occur as glucose conjugates.

# **Environmental fate in soil**

The Meeting received information on the aerobic degradation of  $[^{14}C]$ metalaxyl and  $[^{14}C]$ metalaxyl-M in a number of soils.

The rate of degradation is strongly influenced by the properties of the soil, including biological activity, its temperature and % moisture, and concentration of the residue. In direct comparisons of metalaxyl and metalaxyl-M, the latter was more persistent in one case and less persistent in two others. The main degradation product was Metabolite 1 or, in the case of metalaxyl-M, the specific enantiomer of Metabolite 1 (NOA 409045).

The details of one anaerobic and the aerobic studies (including one study with Metabolite 1 in chronological order are summarized below. The maximum concentration of each metabolite as the percentage of the dose plus the day it occurred are given.

| Aerobic                                                                 |                 | Ref: Ellgehausen, 08/78, 1978        |
|-------------------------------------------------------------------------|-----------------|--------------------------------------|
| Test material: [ <sup>14</sup> C-phenyl]metalaxyl                       |                 | Dose rate: 10 mg/kg dry soil         |
| Duration: 360 days                                                      | Temp: 25°C      | Moisture: 75% water-holding capacity |
| Clay loam                                                               | pH: 6.5         | Organic carbon: 2.2%                 |
| Half-life of metalaxyl: approx 40 days metalaxyl remaining, day 360 <2% | -               | mineralization, day 360 = 25%        |
| Products                                                                | Max (% of dose) | Day                                  |
| Metabolite 1                                                            | 54              | 66                                   |
| Unextractable <sup>14</sup> C                                           | 38              | 360                                  |
|                                                                         |                 |                                      |

| Anaerobic (30 days aerobic, then flooded)                                           |                                               | Ref: Ellgehausen, 08/78, 19                   | 978 |
|-------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----|
| Test material: [ <sup>14</sup> C-phenyl]metalaxyl                                   |                                               | Dose rate: 10 mg/kg dry soil                  |     |
| Duration: 89 days                                                                   | Temp: 25°C                                    |                                               |     |
| Clay loam                                                                           | pH: 6.5                                       | Organic carbon: 2.2%                          |     |
| Half-life of metalaxyl: approx 40 days                                              |                                               |                                               |     |
| metalaxyl remaining, day $89 = 33\%$                                                |                                               |                                               |     |
| Products                                                                            | Max (% of dose)                               | Day                                           |     |
| Metabolite I                                                                        | 52                                            | 89                                            |     |
| Unextractable C                                                                     | 9                                             | 00                                            |     |
| Aerobic                                                                             |                                               | Ref. Guth 19/85 10                            | 985 |
| Test material: [ <sup>14</sup> C-nhenyl]metalayyl                                   |                                               | Dose rate: 10 mg/kg dry soil                  |     |
| Duration: 252 days                                                                  | Temp: 15°C                                    | Moisture: 70% water-holding capacity          |     |
| Soil: silt loam                                                                     | nH· 8 1                                       | Organic carbon: 1.4%                          |     |
| Half-life of metalaxyl: approx 100 days. I                                          | nitial (0-56 days) half-life ap               | prox 42 days                                  |     |
| metalaxyl remaining, day $252 = 12\%$                                               |                                               | mineralization, day $252 = 16\%$              |     |
| Products                                                                            | Max (% of dose)                               | Day                                           |     |
| Metabolite 1                                                                        | 34                                            | 84                                            |     |
| Unextractable <sup>14</sup> C                                                       | 37                                            | 252                                           |     |
| Aarobic                                                                             |                                               | Ref Guth 19/85 10                             | 985 |
| Test material: [ <sup>14</sup> C phonyllmotalayy]                                   |                                               | Dose rote: 10 mg/kg dry soil                  | 705 |
| Duration: 252 days                                                                  | Tomp: 15°C                                    | Moisture: 70% water-holding capacity          |     |
| Soil: sand                                                                          | nH: 77                                        | Organic carbon: 0.6%                          |     |
| Half-life of metalaxyl: approx 50 days                                              | p11. /./                                      |                                               |     |
| metalaxyl remaining, day $252 = 1.9\%$                                              |                                               | mineralization. day $252 = 20\%$              |     |
| Products                                                                            | Max (% of dose)                               | Day                                           |     |
| Metabolite 1                                                                        | 34                                            | 84                                            |     |
| Unextractable <sup>14</sup> C                                                       | 44                                            | 252                                           |     |
|                                                                                     |                                               | D.f. O.k                                      | 001 |
| Aerobic                                                                             |                                               | Ref: Schanne, 262315, 19                      | 991 |
| Test material: [ <sup>14</sup> C-phenyl]metalaxyl<br>Soil: silt loam                | pH: 6.1                                       | Duration 167-246 days<br>Organic carbon: 1.4% |     |
| (1) Dose rate: 1.3 mg/kg dry soil                                                   | Temp: 20°C                                    | Moisture: 60% water-holding capacity          |     |
| Metalaxyl half-life (0-70 d): approx 14<br>Metabolite 1 reached 22% (max) of dos    | days. Day 167, 2.3% metalax se on day 14.     | yl remaining. 35% mineralization.             |     |
| (2) Dose rate: 1.3 mg/kg dry soil                                                   | Temp: 20°C                                    | Moisture: 30% water-holding capacity          |     |
| Metalaxyl half-life (0-113 d): approx 20<br>Metabolite 1 reached 34% (max) of dos   | 5 days. Day 246, 1.1% metala<br>se on day 28. | axyl remaining: 32% mineralization.           |     |
| (3) Dose rate: 1.3 mg/kg dry soil                                                   | Temp: 10°C                                    | Moisture: 60% water-holding capacity          |     |
| Metalaxyl half-life (0-113 d): approx 45<br>Metabolite 1 reached 34% (max) of dos   | 5 days. Day 422, 1.9% metala<br>se on day 49. | axyl remaining: 23% mineralization.           |     |
| (4) Dose rate: 0.13 mg/kg dry soil                                                  | Temp: 20°C                                    | Moisture: 60% water-holding capacity          |     |
| Metalaxyl half-life (0-70 d): approx 7-1<br>Metabolite 1 reached 26% (max) of dos   | 5 days. Day 167, 3.9% metal<br>se on day 7    | axyl remaining: 33% mineralization.           |     |
| Aerobic                                                                             |                                               | Ref: Ellgehausen, 35/94, 10                   | 994 |
| Test material: [ <sup>14</sup> C-nhenvl]metalayyl and                               | metalaxyl-M                                   | Dose rate: 0.5 mg/kg dry soil                 |     |
| Duration: 21 days                                                                   | Temp. 20°C                                    | Moisture: 40% water-holding canacity          |     |
| Soil: silt loam                                                                     | pH: 7.3                                       | Organic carbon: 2.1%                          |     |
| Half-life: metalaxyl approx 13 days; meta<br>% remaining, day 21: metalaxyl 32%; me | laxyl-M approx 6 days<br>talaxyl-M 8%         |                                               |     |

| robic                                      |                                 |              |
|--------------------------------------------|---------------------------------|--------------|
| Test material: [ <sup>14</sup> C-phenyl]me | talaxyl and metalaxyl-M         | Dose rate: ( |
| Duration: 29days                           | Temp: 20°C                      | Moisture: 4  |
| Soil: sand                                 | pH: 7.4                         | Organic car  |
| Half-life: metalaxyl approx 15             | days; metalaxyl-M approx 8 days |              |
| % remaining, day 29 metalaxy               | /l 29%; metalaxyl-M 8.7%        |              |
|                                            |                                 |              |
|                                            |                                 |              |
|                                            |                                 |              |

# Ref: Ellgehausen, 95EH03 1995 0.5 mg/kg dry soil 40% water-holding capacity

rbon: 1.6%

| Aerobic<br>Test material: [ <sup>14</sup> C-phenyl]metalaxyl-M<br>Duration: 120 days<br>Soil: sandy loam<br>Half-life metalaxyl-M (0-28d): approx 5 o<br>% remaining, day 28; 1.9%<br>Products<br>Metabolite 1<br>Metabolite 10 | Temp: 20°C<br>pH: 7.3<br>days<br><u>Max (% of dose)</u><br>26<br>6.2 | Ref: Ellgehausen, 95EH06 1996<br>Dose rate: 0.2 mg/kg dry soil<br>Moisture: 40% water-holding capacity<br>Organic carbon: 2.2%<br><u>mineralization, day 120 = 34%</u><br><u>Day</u><br>7<br>7<br>7 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Aerobic<br>Test material: [ <sup>14</sup> C-phenyl]metalaxyl-M<br>Duration: 120 days<br>Soil: sandy loam<br>Half-life metalaxyl-M (0-28d): approx 8 d<br>% remaining, day 56; 0.95%%<br>Braduote                                | Temp: 20°C<br>pH: 7.3<br>days                                        | Ref: Ellgehausen, 95EH06 1996<br>Dose rate: 2 mg/kg dry soil<br>Moisture: 40% water-holding capacity<br>Organic carbon: 2.2%<br>mineralization, day 120 = 24%                                       |
| Metabolite 1<br>Metabolite 10                                                                                                                                                                                                   | 40<br>3.7                                                            | 14<br>14                                                                                                                                                                                            |
| Aerobic<br>Test material: [ <sup>14</sup> C-phenyl]metalaxyl-M<br>Duration: 120 days<br>Soil: sandy loam<br>Half-life metalaxyl-M: approx 80-180 day<br>% remaining, day 120; 56%<br>Products<br>Metabolite 1<br>Metabolite 10  | Temp: 20°C<br>pH: 7.3<br>ys<br><u>Max (% of dose)</u><br>23<br>1.3   | Ref: Ellgehausen, 95EH06 1996<br>Dose rate: 0.2 mg/kg dry soil<br>Moisture: 40% water-holding capacity<br>Organic carbon: 0.8%<br><u>mineralization, day 120 = 2.6%</u><br>Day<br>120<br>120        |
| Aerobic<br>Test material: [ <sup>14</sup> C-phenyl]metalaxyl<br>Duration: 120 days<br>Soil: sandy loam<br>Half-life metalaxyl: approx 70-140 days<br>% remaining, day 120; 50%<br>Products                                      | Temp: 20°C<br>pH: 7.3<br>Max (% of dose)                             | Ref: Ellgehausen, 95EH06 1996<br>Dose rate: 0.2 mg/kg dry soil<br>Moisture: 40% water-holding capacity<br>Organic carbon: 0.8%<br><u>mineralization, day 120 = 1.6%</u><br>Day                      |
| Metabolite 1<br>Metabolite 10                                                                                                                                                                                                   | 30<br>2.4                                                            | 120<br>120                                                                                                                                                                                          |

Aerobic

| Aerobic                                               |                                 | Ref: Fathulla HWI 6117-280, 1996     |
|-------------------------------------------------------|---------------------------------|--------------------------------------|
| Test material: [ <sup>14</sup> Cphenyl]metalaxyl-M ar | nd [ <sup>14</sup> C]-metalaxyl | Dose rate: 1.5 mg/kg dry soil        |
| Duration: 160 days                                    | Temp: 25°C                      | Moisture: 75% water-holding capacity |
| Soil: sandy loam                                      | pH: 7.0                         | Organic matter: 0.8%                 |
| Half-life: metalaxyl-M: approx 50-80 day              | s: metalaxyl 35-40 days         | - <u>-</u>                           |
| % remaining day 160: metalaxyl-M 4%.                  | netalaxyl 3%                    | mineralization, day 160:             |
| ,                                                     |                                 | metalaxyl-M 2.5% metalaxyl 2.8%      |
| Metabolites from metalaxyl-M                          | Max (% of dose)                 | Day                                  |
| Metabolite 1                                          | 67                              | 160                                  |
| Unextractable <sup>14</sup> C                         | 7                               | 130-160                              |
| Metabolites from metalaxyl                            | Max (% of dose)                 | Day                                  |
| Metabolite 1                                          | 61                              | 130-160                              |
| Unextractable <sup>14</sup> C                         | 8                               | 160                                  |
|                                                       |                                 |                                      |
| A 1:                                                  |                                 | Def Dem NOV11 2001                   |
| Aerobic                                               |                                 | Ref: Dorn, NO V11, 2001              |
| Test material: [ <sup>14</sup> C-phenyl]metalaxyl     |                                 | Dose rate: 0.3 mg/kg dry soil        |
| Duration: 118 days                                    | Temp: 20°C                      | Moisture: 40% water-holding capacity |
| Soil: sandy loam                                      | pH: 5.6                         | Organic matter: 1.4%                 |
| Half-life of metalaxyl: approx 12 days (da            | ays 2 to 21), approx 35 days    | (days 42 to 118)                     |
| metalaxyl remaining, day $118 = 3.4\%$                |                                 | mineralization, day $118 = 16\%$     |
| Products                                              | Max (% of dose)                 | Day                                  |
| Metabolite 1                                          | 53                              | 28                                   |
| Metabolite 10                                         | 3.8                             | 21                                   |
| Metabolite 12                                         | 3.0                             | 118                                  |
| Unextractable <sup>14</sup> C                         | 37                              | 118                                  |
|                                                       |                                 |                                      |
| Aerobic                                               |                                 | Ref: Dorn and Hein, NOV07, 2003      |
| Test material: [ <sup>14</sup> C-phenyl]metalaxyl-M   |                                 | Dose rate: 0.3 mg/kg dry soil        |
| Duration: 119 days                                    | Temp: 20°C                      | Moisture: 40% water-holding capacity |
| Soil: sandy loam                                      | pH: 5.6                         | Organic matter: 1.4%                 |
| Half-life of metalaxyl-M: approx 27 days              |                                 |                                      |
| metalaxyl-M remaining, day 119= 5.1%                  |                                 | mineralization, day $119 = 16\%$     |
| Products                                              | Max (% of dose)                 | Day                                  |
| NOA 409045                                            | 38                              | 63                                   |
| Metabolite 10                                         | 4.1                             | 28                                   |
| Metabolite 12                                         | 4.1                             | 119                                  |
| Unextractable <sup>14</sup> C                         | 32                              | 119                                  |
|                                                       |                                 |                                      |
| Aerobic                                               |                                 | Ref: Dorn and Hein, NOV06, 2003      |
| Test material: [ <sup>14</sup> C-phenyl]-Metabolite 1 |                                 | Dose rate: 0.18 mg/kg dry soil       |
| Duration: 118 days                                    | Temp: 20°C                      | Moisture: 40% water-holding capacity |
| Soil: sandy loam                                      | рН: 5.6                         | Organic matter: 1.4%                 |
| Half-life of Metabolite 1 : approx 50-60 c            | lays                            |                                      |
| % Metabolite 1 remaining, day $118 = 259$             | %                               | mineralization, day $118 = 22\%$     |
| Products                                              | Max (% of dose)                 | Day                                  |
| Metabolite 12                                         | 2.8                             | 84                                   |
| Unextractable <sup>14</sup> C                         | 43                              | 118                                  |

# Field dissipation

Field dissipation studies on metalaxyl-M were reported from Switzerland, France, Italy and Spain. Also, soils from the previously described metabolism studies on lettuce and potatoes were examined for their content of parent compound and metabolites.

Metalaxyl-M residues disappeared from the soil with half-lives ranging from 5 to 35 days. The residues occurred mostly in the top 10 cm of soil. Metabolite NOA 409045 (enantiomer of Metabolite 1) was produced in all cases and on some occasions its level exceeded that of the parent.

A comparison of enantiomeric ratios in metalaxyl residues in soil suggested that the Renantiomer (i.e. the metalaxyl-M enantiomer) was degraded more quickly than the S-enantiomer as there was a preponderance of S-enantiomer in the metalaxyl residue and of R-enantiomer in Metabolite 1.

The soil degradation studies suggested that when metalaxyl-M is used as a seed treatment or at the time of sowing, very little or none should remain as a residue in the soil at harvest.

In trials in Switzerland, France and Italy, metalaxyl-M was applied at a rate of approximately 1 kg ai/ha to plots of bare soil and soil cores (0-30 cm) were taken at intervals for 6-7 months for analysis by method REM 7/77, which is not enantio-selective, for residues of metalaxyl-M and NOA 409045 (the corresponding enantiomer of Metabolite 1). The results are shown in Table 7.

In one trial in Switzerland (Kühne, 2028/99, 2003), residues were detected in the 20-30 cm soil horizon on day 0 suggesting rapid movement (Table 7). Metalaxyl-M in the soil had a half-life of approximately 4-5 days. Residues of NOA 409045 reached a maximum 7 days after treatment and then also decreased rapidly. In the second trial in Switzerland (Kühne (2029/99, 2003), residues were again detected in the 20-30 cm soil horizon on day 0 suggesting rapid movement of a small part of the residue. Metalaxyl-M had a half-life of approximately 10 days, and residues of NOA 409045 reached a maximum 21 days after treatment and then decreased to a low level by day 56.

In a trial in France (Kühne, 2036/98, 2000), residues mostly remained in the top 10 cm of the soil (Table 7). Metalaxyl-M had a half-life of approximately 14 days. Residues of the metabolite NOA 409045 reached a maximum 21 days after treatment and then declined to a low level by day 56. In a second trial in France (Kühne, 2030/99, 2003), residues also mostly remained in the top 10 cm. Metalaxyl-M had a half-life of approximately 20-35 days. Residues of the metabolite NOA 409045 reached a maximum 28 days after treatment and always remained below those of metalaxyl-M.

In a trial in Italy (Kühne, 2383/97, 1998), residues were again mostly in the top 10 cm, with more product than parent appearing in the 10-20 cm horizon (Table 7). Metalaxyl-M had a half-life of approximately 10-12 days. Residues of NOA 409045 reached a maximum 14 days after treatment and exceeded those of the parent compound on days 28 and 57. In a second trial in Italy (Kühne, 2027/99, 2003), most of the residue remained in the top 10 cm. Metalaxyl-M had a half-life of about 10-20 days and residues of NOA 409045 reached a maximum 28 days after treatment and exceeded those of the parent on days 28 and 56.

In a trial in Spain with a loamy sand (Kühne, 2057/99, 2003), residues were mainly in the top 10 cm, with little product or parent in the 10-20 cm layer (Table 7). Metalaxyl-M had a half-life of about 10-16 days. Residues of NOA 409045 reached a maximum 21 days after treatment and never exceeded those of the parent compound.

| treatment $4 + 4 + 6$ $4 + 4 + 6 + 6$ Kihne (2028/99, 2003)         Switzerland, plot area 180 sq.m. Loam soil - core 0-30 cm; pH 7.4, organic carbon 1.6%, sand 52%, silt 38%, clay 9%           Days         soil 0-10 cm         soil 10-20 cm         soil 20-30 cm         soil 0-10 cm         soil 0-20 cm           2         0.54         0.027         0.040         0.054         c0.01         c0.01           2         0.54         0.027         0.040         0.033         c0.01         c0.01           4         0.48         0.011         0.012         0.11         0.013         0.016           2         0.54         0.021         c0.01         0.011         0.052         0.013           2         0.013         c0.01         c0.01         c0.01         0.011         0.052         0.011           2         0.013         c0.01         c0.01         c0.01         c0.01         c0.01         c0.01           2         0.013         c0.01         c0.01         c0.01         c0.01         c0.01         c0.01           2         0.015         c0.01         c0.01         c0.01         c0.01         c0.01         c0.01           2         0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Period after      | Metalaxyl            | -M, mg/kg            | Ссоосна             | NOA 409045, mg/kg  |                      | Соон               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------------|---------------------|--------------------|----------------------|--------------------|
| Vertication of the set of the | treatment         |                      |                      |                     |                    |                      | Ń,                 |
| Kither (2028/99, 2003)           Switzerland, plot area 180 sg m. Leam soil - core 0-30 cm: pl1 7.4, organic carbon 1.6%, sund 52%, silt 38%, clay 9%           Days         soil 0-10 cm         soil 0-20 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                      |                      | о оснз              |                    |                      | о осн <sub>а</sub> |
| Switzerland, plot area 180 sq m. Loam soil - 0:00 m soil 20:30 cm soil 0:10 cm soil 20:30 cm           Days         soil 0:10 cm         soil 10:20 cm         soil 20:30 cm         soil 10:20 cm         soil 20:30 cm           0         0.65         0.02         0.037         0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kühne (2028/99    | , 2003)              |                      |                     |                    |                      |                    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Switzerland, plo  | ot area 180 sq m. Le | oam soil - core 0-3  | 0 cm: pH 7.4, orga  | anic carbon 1.6%,  | sand 52%, silt 389   | %, clay 9%         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Days              | soil 0-10 cm         | soil 10-20 cm        | soil 20-30 cm       | soil 0-10 cm       | soil 10-20 cm        | soil 20-30 cm      |
| 2         0.54         0.027         0.040         0.054         <0.011         0.015           7         0.22         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0.65                 | 0.02                 | 0.037               | 0.056              | <0.01                | <0.01              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                 | 0.54                 | 0.027                | 0.040               | 0.054              | <0.01                | 0.016              |
| 7         0.22         <0.01         <0.01         0.03         <0.01         <0.01           14         0.038         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                 | 0.48                 | 0.011                | 0.012               | 0.17               | 0.013                | 0.015              |
| 14         0.038           0.01          0.010         0.010         0.011         0.011         0.011         0.012         0.013           28         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                 | 0.22                 | < 0.01               | <0.01               | 0.33               | <0.01                | <0.01              |
| 21         0.013         <0.01         <0.01         0.011         0.052         0.013           28         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                | 0.038                | < 0.01               | <0.01               | 0.087              | 0.10                 | 0.010              |
| 28         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                | 0.013                | < 0.01               | < 0.01              | 0.011              | 0.052                | 0.013              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                | < 0.01               | < 0.01               | <0.01               | <0.01              | 0.052                | < 0.01             |
| 128 $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ <th< td=""><td>56</td><td>&lt; 0.01</td><td>&lt; 0.01</td><td>&lt;0.01</td><td>&lt; 0.01</td><td>&lt; 0.01</td><td>&lt; 0.01</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                | < 0.01               | < 0.01               | <0.01               | < 0.01             | < 0.01               | < 0.01             |
| 203         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01           Kühne (2029/99, 2003)         -         soil 0-10 cm         soil 10-20 cm         soil 20-30 cm         soil 0-10 cm         soil 10-20 cm         soil 0-10 cm         soil 10-20 cm         soil 0-10 cm         soil 0-20 cm         soil 0-20 cm         soil 0-20 cm         soil 0-20 cm         soil 20-30 cm           0         0.68         0.017         0.039         0.015         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128               | < 0.01               | < 0.01               | < 0.01              | < 0.01             | <0.01                | < 0.01             |
| Kühne (2029/99, 2003)           Switzerland, plot area 240 sq m. Silty clay soil - core 0-30 cm: pH 7.2, organic carbon 5.4%, sand 0.4%, silt 56%, clay 43%           Days         soil 0-10 cm         soil 0-10 cm         soil 0-10 cm         soil 0-20 cm         soil 0-20 cm         soil 20-30 cm           O         0.68         0.017         0.013         soil 0-10 cm         soil 0-20 cm         soil 20-30 cm           O         0.68         0.017         0.013         colope           2         0.75         0.011         0.012         colope           10.011         0.012         colope          colope <t< td=""><td>203</td><td>&lt; 0.01</td><td>&lt; 0.01</td><td>&lt; 0.01</td><td>&lt;0.01</td><td>&lt; 0.01</td><td>&lt; 0.01</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 203               | < 0.01               | < 0.01               | < 0.01              | <0.01              | < 0.01               | < 0.01             |
| Switzerland, plot area 240 sq m. Silly clay soil 0-core 0-30 cm: pH 7.2, organic carbon 5.4%, said 0.4%, sill 56%, clay 43%,           Days         soil 0-10 cm         soil 10-20 cm         soil 20-30 cm         soil 0-10 cm         soil 10-20 cm         soil 20-30 cm           0         0.68         0.017         0.033         0.012         0.028         <0.01         0.017           2         0.75         0.017         0.043         0.028         <0.01         0.016           7         0.60         <0.01         <0.01         0.026         <0.01         <0.01           14         0.33         0.011         <0.01         0.12         <0.01         <0.01           28         0.097         <0.01         <0.01         0.020         <0.01         <0.01           203         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01           203         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01           218         <0.023         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01           203         <0.01         <0.01         <0.01         <0.01         <0.01 </td <td>Kühne (2029/99</td> <td>, 2003)</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kühne (2029/99    | , 2003)              |                      |                     |                    |                      |                    |
| Days         soil 0-10 cm         soil 10-20 cm         soil 20-30 cm         soil 0-10 cm         soil 10-20 cm         soil 20-30 cm           0         0.68         0.017         0.039         0.015         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Switzerland, plo  | ot area 240 sq m. Si | lty clay soil - core | 0-30 cm: pH 7.2,    | organic carbon 5.4 | %, sand 0.4%, silt   | 56%, clay 43%      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Days              | soil 0-10 cm         | soil 10-20 cm        | soil 20-30 cm       | soil 0-10 cm       | soil 10-20 cm        | soil 20-30 cm      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                 | 0.68                 | 0.017                | 0.039               | 0.015              | < 0.01               | < 0.01             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                 | 0.75                 | 0.017                | 0.043               | 0.028              | < 0.01               | 0.017              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                 | 0.80                 | 0.01                 | 0.012               | 0.026              | < 0.01               | 0.016              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                 | 0.60                 | < 0.01               | <0.01               | 0.12               | <0.01                | <0.01              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                | 0.33                 | 0.011                | < 0.01              | 0.18               | 0.01                 | 0.014              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21                | 0.21                 | < 0.01               | < 0.01              | 0.22               | 0.01                 | 0.014              |
| 56 $0.023$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$ $< 0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                | 0.097                | < 0.01               | < 0.01              | 0.036              | 0.01                 | <0.01              |
| 128         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                | 0.023                | < 0.01               | < 0.01              | 0.020              | < 0.01               | <0.01              |
| 203         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01           Kühne (2036/98, 2000)           France, plot area 200 sq m. Silty clay loam - core 0-30 cm: pH 7.4, organic carbon 0.99%, sand 9.6%, silt 59%, clay 32%           Days         soil 0-10 cm         soil 10-20 cm         soil 20-30 cm         soil 0-10 cm         soil 20-30 cm           0         0.79         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128               | <0.01                | < 0.01               | < 0.01              | < 0.01             | < 0.01               | <0.01              |
| Kühne (2036/98, 2000)France, plot area 200 sq m. Silty clay loam - core 0-30 cm: pH 7.4, organic carbon 0.99%, sand 9.6%, silt 59%, clay 32%Dayssoil 0-10 cmsoil 10-20 cmsoil 20-30 cmsoil 0-10 cmsoil 10-20 cmsoil 20-30 cm00.79<0.01<0.010.033<0.01<0.01<0.0120.890.037<0.010.026<0.01<0.01<0.0140.36<0.01<0.010.026<0.01<0.01<0.0170.81<0.01<0.010.0110.056<0.01<0.01140.34<0.01<0.010.0110.018<0.01<0.01210.32<0.01<0.010.015<0.01<0.01280.20<0.01<0.01<0.01<0.01<0.01<0.01560.041<0.01<0.01<0.01<0.01<0.01<0.0198<0.01<0.01<0.01<0.01<0.01<0.01<0.0198<0.01<0.01<0.01<0.01<0.01<0.01<0.0198<0.01<0.01<0.01<0.01<0.01<0.01<0.0199<br>2033 </td <td>203</td> <td>&lt; 0.01</td> <td>&lt; 0.01</td> <td>&lt; 0.01</td> <td>&lt; 0.01</td> <td>&lt; 0.01</td> <td>&lt; 0.01</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 203               | < 0.01               | < 0.01               | < 0.01              | < 0.01             | < 0.01               | < 0.01             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kühne (2036/98    | 3, 2000)             |                      |                     |                    |                      |                    |
| Dayssoil 0-10 cmsoil 10-20 cmsoil 20-30 cmsoil 0-10 cmsoil 10-20 cmsoil 20-30 cm0 $0.79$ $<0.01$ $<0.01$ $0.033$ $<0.01$ $<0.01$ 2 $0.89$ $0.037$ $<0.01$ $0.026$ $<0.01$ $<0.01$ 4 $0.36$ $<0.01$ $<0.01$ $0.056$ $<0.01$ $<0.01$ 7 $0.81$ $<0.01$ $<0.01$ $0.11$ $<0.01$ $<0.01$ 14 $0.34$ $<0.01$ $<0.01$ $0.11$ $<0.01$ $<0.01$ 21 $0.32$ $<0.01$ $<0.01$ $0.17$ $<0.01$ $<0.01$ 28 $0.20$ $<0.01$ $<0.01$ $0.050$ $0.032$ $0.012$ 127 $<0.01$ $<0.01$ $<0.01$ $<0.01$ $<0.01$ $<0.01$ 198 $<0.01$ $<0.01$ $<0.01$ $<0.01$ $<0.01$ $<0.01$ Kühne (2030/99, 2003)France, plot area 200 sq m. Loam soil - core 0-30 cm: pH 7.6, organic carbon 0.75%, sand 30%, silt 51%, clay 19%Dayssoil 0-10 cmsoil 10-20 cmsoil 20-30 cm0 $0.51$ $0.015$ $0.020$ $0.010$ $<0.01$ 2 $0.41$ $<0.01$ $0.011$ $<0.01$ $<0.01$ 2 $0.41$ $<0.01$ $0.013$ $0.015$ $<0.01$ 2 $0.41$ $<0.01$ $0.013$ $0.015$ $<0.01$ 4 $0.39$ $0.010$ $0.028$ $0.013$ $<0.01$ 4 $0.39$ $<0.010$ $0.027$ $0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | France, plot area | a 200 sq m. Silty cl | ay loam - core 0-3   | 0 cm: pH 7.4, orga  | nic carbon 0.99%   | , sand 9.6%, silt 59 | 9%, clay 32%       |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Days              | soil 0-10 cm         | soil 10-20 cm        | soil 20-30 cm       | soil 0-10 cm       | soil 10-20 cm        | soil 20-30 cm      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                 | 0.79                 | < 0.01               | < 0.01              | 0.033              | < 0.01               | < 0.01             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                 | 0.89                 | 0.037                | < 0.01              | 0.026              | < 0.01               | <0.01              |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                 | 0.36                 | < 0.01               | < 0.01              | 0.056              | < 0.01               | < 0.01             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                 | 0.81                 | < 0.01               | < 0.01              | 0.11               | < 0.01               | <0.01              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                | 0.34                 | < 0.01               | < 0.01              | 0.098              | < 0.01               | <0.01              |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21                | 0.32                 | < 0.01               | < 0.01              | 0.17               | < 0.01               | <0.01              |
| 56         0.041         <0.01         <0.01         0.050         0.032         0.012           127         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                | 0.20                 | < 0.01               | < 0.01              | 0.15               | < 0.01               | <0.01              |
| 127         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                | 0.041                | < 0.01               | < 0.01              | 0.050              | 0.032                | 0.012              |
| 198         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <0.01         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127               | <0.01                | < 0.01               | < 0.01              | < 0.01             | < 0.01               | <0.01              |
| Kühne (2030/99, 2003)France, plot area 200 sq m. Loam soil - core 0-30 cm: pH 7.6, organic carbon 0.75%, sand 30%, silt 51%, clay 19%Dayssoil 0-10 cmsoil 10-20 cmsoil 20-30 cmsoil 0-10 cmsoil 10-20 cmsoil 20-30 cm00.510.0150.0200.010<0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 198               | < 0.01               | < 0.01               | < 0.01              | < 0.01             | < 0.01               | < 0.01             |
| France, plot area 200 sq m. Loam soil - core 0-30 cm: pH 7.6, organic carbon 0.75%, sand 30%, silt 51%, clay 19%Dayssoil 0-10 cmsoil 10-20 cmsoil 20-30 cmsoil 0-10 cmsoil 10-20 cmsoil 20-30 cm00.510.0150.0200.010 $<0.01$ $<0.01$ 20.41 $<0.01$ 0.011 $<0.01$ $<0.01$ $<0.01$ 40.390.0100.0280.013 $<0.01$ $<0.01$ 70.36 $<0.01$ 0.0270.025 $<0.01$ $<0.01$ 140.29 $<0.01$ 0.0120.032 $<0.01$ $<0.01$ 280.45 $<0.01$ $<0.01$ $<0.01$ $<0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kühne (2030/99    | , 2003)              |                      |                     |                    |                      |                    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | France, plot area | a 200 sq m. Loam s   | soil - core 0-30 cm  | : pH 7.6, organic c | arbon 0.75%, sand  | 1 30%, silt 51%, cl  | lay 19%            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Days              | soil 0-10 cm         | soil 10-20 cm        | soil 20-30 cm       | soil 0-10 cm       | soil 10-20 cm        | soil 20-30 cm      |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                 | 0.51                 | 0.015                | 0.020               | 0.010              | < 0.01               | < 0.01             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                 | 0.41                 | <0.01                | 0.011               | <0.01              | <0.01                | <0.01              |
| 7         0.36         <0.01         0.013         0.015         <0.01         <0.01           14         0.29         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                 | 0.39                 | 0.010                | 0.028               | 0.013              | <0.01                | < 0.01             |
| 14         0.29         <0.01         0.027         0.025         <0.01         <0.01           21         0.36         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                 | 0.36                 | <0.01                | 0.013               | 0.015              | <0.01                | <0.01              |
| 21         0.36         <0.01         0.012         0.032         <0.01         <0.01           28         0.45         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14                | 0.29                 | <0.01                | 0.027               | 0.025              | <0.01                | <0.01              |
| 28         0.45         <0.01         0.054         <0.01         <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21                | 0.36                 | <0.01                | 0.012               | 0.032              | <0.01                | < 0.01             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28                | 0.45                 | <0.01                | <0.01               | 0.054              | <0.01                | <0.01              |

# Table 7. Residues of metalaxyl-M and NOA 409045 in soils after direct treatment with metalaxyl-M at 1 kg ai/ha.

| Period after<br>treatment | Metalaxyl             | -M, mg/kg          | CCCCH3             | NOA 409045, mg/kg |                     | С С С С С С С С С С С С С С С С С С С |  |  |  |  |
|---------------------------|-----------------------|--------------------|--------------------|-------------------|---------------------|---------------------------------------|--|--|--|--|
| 55                        | 0.091                 | 0.030              | <0.01              | 0.022             | 0.010               | <0.01                                 |  |  |  |  |
| 125                       | < 0.01                | < 0.01             | < 0.01             | < 0.01            | < 0.01              | < 0.01                                |  |  |  |  |
| 200                       | < 0.01                | < 0.01             | < 0.01             | <0.01             | <0.01               | < 0.01                                |  |  |  |  |
| Kühne (2383/97            | Kühne (2383/97, 1998) |                    |                    |                   |                     |                                       |  |  |  |  |
| Italy, plot area 1        | 14 sq m. Sandy loa    | um - core 0-10 cm: | pH 7.5, organic c  | arbon 0.57%, sand | 1 58%, silt 28%, cl | ay 14%                                |  |  |  |  |
| Days                      | soil 0-10 cm          | soil 10-20 cm      | soil 20-30 cm      | soil 0-10 cm      | soil 10-20 cm       | soil 20-30 cm                         |  |  |  |  |
| 0                         | 0.76                  | 0.017              | 0.01               | 0.020             | <0.01               | < 0.01                                |  |  |  |  |
| 2                         | 0.85                  | <0.01              | < 0.01             | 0.026             | <0.01               | <0.01                                 |  |  |  |  |
| 7                         | 0.47                  | <0.01              | < 0.01             | 0.074             | <0.01               | < 0.01                                |  |  |  |  |
| 14                        | 0.54                  | 0.024              | < 0.01             | 0.20              | 0.038               | <0.01                                 |  |  |  |  |
| 21                        | 0.17                  | 0.01               | < 0.01             | 0.13              | 0.067               | <0.01                                 |  |  |  |  |
| 28                        | 0.11                  | < 0.01             | < 0.01             | 0.18              | 0.033               | <0.01                                 |  |  |  |  |
| 57                        | < 0.01                | < 0.01             | < 0.01             | 0.014             | 0.040               | 0.01                                  |  |  |  |  |
| 128                       | < 0.01                | < 0.01             | < 0.01             | < 0.01            | < 0.01              | < 0.01                                |  |  |  |  |
| 203                       | < 0.01                | < 0.01             | < 0.01             | < 0.01            | < 0.01              | < 0.01                                |  |  |  |  |
| Kühne (2027/99            | , 2003)               |                    |                    |                   |                     |                                       |  |  |  |  |
| Italy, plot area 5        | 00 sq m. Silty clay   | loam - core 0-30   | cm: pH 7.3, organi | c carbon 1.0%, sa | nd 19%, silt 50%,   | clay 31%                              |  |  |  |  |
| Days                      | soil 0-10 cm          | soil 10-20 cm      | soil 20-30 cm      | soil 0-10 cm      | soil 10-20 cm       | soil 20-30 cm                         |  |  |  |  |
| 0                         | 0.61                  | 0.02               | 0.02               | 0.039             | <0.01               | < 0.01                                |  |  |  |  |
| 2                         | 0.62                  | < 0.01             | 0.024              | 0.028             | <0.01               | < 0.01                                |  |  |  |  |
| 4                         | 0.58                  | 0.01               | 0.017              | 0.042             | < 0.01              | < 0.01                                |  |  |  |  |
| 7                         | 0.62                  | < 0.01             | 0.018              | 0.038             | <0.01               | < 0.01                                |  |  |  |  |
| 14                        | 0.65                  | < 0.01             | < 0.01             | 0.091             | < 0.01              | < 0.01                                |  |  |  |  |
| 21                        | 0.28                  | 0.01               | 0.01               | 0.25              | 0.029               | 0.013                                 |  |  |  |  |
| 28                        | 0.21                  | < 0.01             | < 0.01             | 0.26              | 0.01                | < 0.01                                |  |  |  |  |
| 56                        | 0.012                 | <0.01              | < 0.01             | 0.025             | < 0.01              | < 0.01                                |  |  |  |  |
| 128                       | < 0.01                | < 0.01             | < 0.01             | < 0.01            | < 0.01              | < 0.01                                |  |  |  |  |
| 200                       | < 0.01                | <0.01              | < 0.01             | < 0.01            | < 0.01              | < 0.01                                |  |  |  |  |
| Kühne (2057/99            | , 2003)               |                    |                    |                   |                     |                                       |  |  |  |  |
| Spain, plot area          | 200 sq m. Loamy s     | and - core 0-30 cm | n: pH 7.8, organic | carbon 0.68%, sai | nd 82%, silt 5.2%,  | clay 13%                              |  |  |  |  |
| Days                      | soil 0-10 cm          | soil 10-20 cm      | soil 20-30 cm      | soil 0-10 cm      | soil 10-20 cm       | soil 20-30 cm                         |  |  |  |  |
| 0                         | 0.522                 | 0.023              | 0.025              | < 0.01            | < 0.01              | < 0.01                                |  |  |  |  |
| 2                         | 0.487                 | < 0.01             | 0.014              | 0.01              | <0.01               | < 0.01                                |  |  |  |  |
| 4                         | 0.43                  | < 0.01             | 0.01               | 0.01              | < 0.01              | < 0.01                                |  |  |  |  |
| 7                         | 0.409                 | < 0.01             | < 0.01             | 0.029             | < 0.01              | < 0.01                                |  |  |  |  |
| 14                        | 0.279                 | < 0.01             | 0.01               | 0.029             | < 0.01              | < 0.01                                |  |  |  |  |
| 21                        | 0.254                 | < 0.01             | <0.01              | 0.046             | <0.01               | <0.01                                 |  |  |  |  |
| 28                        | 0.056                 | 0.017              | 0.01               | 0.016             | 0.026               | 0.017                                 |  |  |  |  |
| 56                        | 0.012                 | < 0.01             | < 0.01             | < 0.01            | <0.01               | <0.01                                 |  |  |  |  |
| 128                       | < 0.01                | < 0.01             | < 0.01             | < 0.01            | <0.01               | <0.01                                 |  |  |  |  |
| 200                       | <0.01                 | < 0.01             | <0.01              | <0.01             | <0.01               | <0.01                                 |  |  |  |  |

Soil (44.7% sand, 31.5% silt, 23.8% clay, 3.1% organic carbon, pH 7.6) from the previously described lettuce metabolism study (Stingelin 2000, 98JS30) was examined for residue composition, including enantiomeric ratios of parent and the major product Metabolite 1 (Table 8). Little of the residue moved below the 10 cm layer. The R-isomer of metalaxyl disappeared more quickly than the S-isomer, leading to a preponderance of R-isomer in Metabolite 1.

Table 8. Comparison of identified components of the residue in soil after treatment of lettuce with  $[^{14}C]$ metalaxyl-M and  $[^{14}C]$ metalaxyl (Stingelin 2000, 98JS30). Soil samples were taken 1 h and 21 days after the last of 3 treatments at 0.02 kg ai/ha.

|                              | Residues in 0-10 cm soil layer, mg/kg. Enantiomeric ratio (S/R). |             |             |             |  |  |  |
|------------------------------|------------------------------------------------------------------|-------------|-------------|-------------|--|--|--|
| Component                    | Metala                                                           | xyl-M       | Metalaxyl   |             |  |  |  |
|                              | 1 h                                                              | 21 d        | 1 h         | 21 d        |  |  |  |
| Total <sup>14</sup> C, mg/kg | 0.34                                                             | 0.16        | 0.41        | 0.14        |  |  |  |
| Parent                       | 0.062 mg/kg                                                      | 0.058 mg/kg | 0.18 mg/kg  | 0.081 mg/kg |  |  |  |
|                              | (5.5/94.5)                                                       | (7.0/93.0)  | (83.6/16.4) | (86.0/14.0) |  |  |  |
| Metabolite 1                 | 0.16 mg/kg                                                       | 0.073 mg/kg | 0.13 mg/kg  | 0.044 mg/kg |  |  |  |
|                              | (3.2/96.8)                                                       | (3.3/96.7)  | (28.4/71.6) | (36.0/64.0) |  |  |  |

Soil (31.2% sand, 46.4% silt, 22.4% clay, 2.7% organic matter, pH 6.5) from the previously described potato metabolism study in the USA (Marco 1981, ABR-81037) was similarly examined. Some residue, including parent metalaxyl, moved below the 0-7.5 cm layer.

Table 9. Comparison of identified components of the residue in soil after treatment of potatoes with  $[^{14}C]$ metalaxyl (Marco 1981, ABR-81037). Soil samples were taken after the first application and at harvest.

| Component                                 |             | Residues in soil      |          |           |  |  |  |
|-------------------------------------------|-------------|-----------------------|----------|-----------|--|--|--|
|                                           |             | After 1st application | Harve    | est       |  |  |  |
|                                           |             | 0-7.5 cm              | 0-7.5 cm | 7.5-15 cm |  |  |  |
| Total <sup>14</sup> C, mg/kg a            | s metalaxyl | 0.33                  | 1.7      | 0.58      |  |  |  |
| Unextractable, % of total <sup>14</sup> C |             | 13                    | 37       | 40        |  |  |  |
| Metalaxyl, % as metalaxyl                 |             | 87                    | 48       | 31        |  |  |  |
| Metabolite 6, %<br>as metalaxyl           | Ссосн       | -                     | 1.6      | 2.5       |  |  |  |
| Metabolite 1, %<br>as metalaxyl           |             | -                     | 3.3      | 4.5       |  |  |  |

Figure 3. Degradation of metalaxyl in soil.



## **Crop rotation studies**

Information on the fate of radiolabelled metalaxyl in confined rotational crops and unlabelled metalaxyl-M in field rotational crops was reported to the Meeting.

The radiolabel studies showed that parent metalaxyl was usually a very minor part of the residue that reached the rotational crop. Identifiable metabolites were also usually very low, but Metabolite 8 was detected as glucose conjugates in spring wheat stalks at 2.3 mg/kg. Metalaxyl-M residues were not detected in the unconfined rotational crops in Switzerland or the UK, but residues of 0.11 mg/kg were present in broccoli and 0.03 mg/kg in lettuce leaves from crops sown 29 days after treatment of the first crop. The short interval was designed to simulate the ploughing in of a failed crop and the sowing of a new one.

The Meeting was provided with residue data from confined crop rotation trials using  $[^{14}C]$ metalaxyl (Table 10). In the earlier trials (1977) only the level of radiolabel was measured in the rotational crops. In the later trials (1989) the residue components were identified (Table 11) as well.

The highest levels of <sup>14</sup>C in the tissue of a rotational crop occurred in the stalks and hulls of spring wheat (ABR-91084). Parent metalaxyl constituted only 0.1% of the <sup>14</sup>C in the stalks, with the glucose conjugates of Metabolite 8 being the major identified component at 32% of the <sup>14</sup>C. Metalaxyl constituted 3.35 and 15% of the radiolabel in sugar beet roots and lettuce foliage respectively.

| First crop                        | Applicati                   | on          | PHI,              | Crop            | TSI <sup>2</sup> | THI <sup>3</sup>                       | Sample                                               | <sup>14</sup> C, mg/kg as                    | Residues,                        |
|-----------------------------------|-----------------------------|-------------|-------------------|-----------------|------------------|----------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------|
| (state), year, ref.               | Compound                    | kg ai/ha    | days <sup>1</sup> |                 | days             | days                                   |                                                      | metalaxyl                                    | metalaxyl,<br>mg/kg              |
| Potatoes (NC), 1977,<br>ABR-78013 | [ <sup>14</sup> C]metalaxyl | 0.55<br>n=6 | 1<br>14<br>14     |                 |                  |                                        | tuber<br>tuber<br>soil <sup>5</sup>                  | 0.090<br>0.094 <0.003                        | na<br>na                         |
| ABR-78013,<br>ABR-78077           |                             |             |                   | winter<br>wheat | 15               | 50<br>257<br>286<br>313<br>313         | plant<br>plant<br>plant<br>grain<br>straw            | 4.0<br>0.36<br>0.35<br>0.11<br>0.56          | na<br>na<br>na<br>na             |
| ABR-78013,<br>ABR-79005           |                             |             |                   | sugar<br>beet   | 246              | 292<br>333<br>372<br>372<br>413<br>413 | plant<br>plant<br>tops<br>roots<br>tops<br>roots     | 0.16<br>0.07<br>0.06<br>0.03<br>0.02<br>0.02 | na<br>na<br>na<br>na<br>na<br>na |
| ABR-78013,<br>ABR-79004           |                             |             |                   | maize           | 257              | 295<br>326<br>363<br>413<br>413<br>413 | plant<br>plant<br>plant<br>stalks<br>cobs<br>grain   | 0.05<br>0.06<br>0.05<br>0.06<br>0.02<br>0.03 | na<br>na<br>na<br>na<br>na<br>na |
| ABR-78013,<br>ABR-79003           |                             |             |                   | soya<br>beans   | 270              | 314<br>341<br>363<br>413<br>413        | plant<br>plant<br>plant<br>leaves/<br>stems<br>beans | 0.40<br>0.81<br>0.74<br>0.59<br>0.17         | na<br>na<br>na<br>na<br>na<br>na |

Table 10. Confined rotational crop studies in the USA.

| First crop                                           | Applicatio                             | on             | PHI,              | Crop                      | TSI <sup>2</sup> | THI <sup>3</sup>                                     | Sample                                                                  | <sup>14</sup> C, mg/kg as                                    | Residues,                              |
|------------------------------------------------------|----------------------------------------|----------------|-------------------|---------------------------|------------------|------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|
| (state), year, ref.                                  | Compound                               | kg ai/ha       | days <sup>1</sup> |                           | days             | days                                                 |                                                                         | metalaxyl                                                    | metalaxyl,<br>mg/kg                    |
| ABR-78013,<br>ABR-79002<br>ABR-78013,<br>ABR-78078   |                                        |                |                   | spring<br>oats<br>lettuce | 246              | 277<br>294<br>323<br>343<br>343<br>292<br>313<br>326 | plant<br>plant<br>plant<br>grain<br>straw<br>leaves<br>leaves<br>leaves | 0.33<br>0.17<br>0.21<br>0.09<br>0.19<br>0.11<br>0.06<br>0.05 | na<br>na<br>na<br>na<br>na<br>na<br>na |
| Tobacco, USA (NC),<br>1989, BIOL-90017<br>greenhouse | [ <sup>14</sup> C-<br>phenyl]metalaxyl | 3.4 on<br>soil | 226               |                           |                  |                                                      | soil <sup>6</sup><br>soil <sup>7</sup>                                  | 1.1<br>0.59                                                  | 0.18<br>0.089                          |
| BIOL-90017,<br>ABR-91084                             |                                        |                |                   | lettuce                   | 232              | 261<br>292                                           | foliage<br>foliage                                                      | 0.88<br>0.56                                                 | 0.13<br>na                             |
| BIOL-90017,<br>ABR-91084                             |                                        |                |                   | spring<br>wheat           | 232              | 254<br>279<br>323<br>323<br>323                      | stalks<br>stalks<br>stalks<br>grain<br>hulls                            | 5.1<br>2.6<br>7.2<br>0.59<br>7.8                             | na<br>na<br>0.007<br>na<br>na          |
| BIOL-90017,<br>ABR-91084                             |                                        |                |                   | soya<br>beans             | 232              | 261<br>292<br>432<br>432<br>432                      | stalks<br>stalks<br>stalks<br>pods<br>beans                             | 2.4<br>2.7<br>3.6<br>1.1<br>0.40                             | na<br>na<br>na<br>na<br>na             |
| BIOL-90017,<br>ABR-91084                             |                                        |                |                   | sugar<br>beet             | 232              | 271<br>307<br>307<br>411<br>411                      | foliage<br>foliage<br>roots<br>foliage<br>roots                         | 1.1<br>0.86<br>0.29<br>1.1<br>0.28                           | na<br>na<br>na<br>0.009                |

na: not analysed.

<sup>1</sup> Pre-harvest interval of first crop.

<sup>2</sup> Interval between last treatment on first crop and sowing of rotation crop.

<sup>3</sup> Interval between last treatment on target crop and sampling or harvest of rotation crop.

<sup>4</sup> Concentrations appear to be expressed on fresh weight.

<sup>5</sup><sup>14</sup>c in soil, expressed as metalaxyl 14 days after last treatment: 1.8, 0.31 and 0.05 mg/kg for 0-7.5 cm, 7.5-15 cm and 15-22.5 cm respectively.

<sup>6</sup>0-7.5 cm.

<sup>7</sup> 15-20 cm.

Table 11. Compounds identified in tissues of rotation crops sown 232 days after soil treatment with [<sup>14</sup>C-phenyl]metalaxyl at 3.4 kg ai/ha for a first crop of tobacco (McFarland 1992, BIOL-9016, BIOL-90017, ABR-91084).

| Compound                  |    | Sugar beet roots |                      | Lettuce    | foliage              | Spring wheat stalks |                      |
|---------------------------|----|------------------|----------------------|------------|----------------------|---------------------|----------------------|
|                           |    | metalaxyl,       | % of <sup>14</sup> C | metalaxyl, | % of <sup>14</sup> C | metalaxyl,          | % of <sup>14</sup> C |
|                           |    | mg/kg            | residue              | mg/kg      | residue              | mg/kg               | residue              |
| Metalaxyl                 |    | 0.009            | 3.3                  | 0.13       | 15                   | 0.007               | 0.1                  |
| Metabolite 5              |    |                  |                      |            |                      | 0.086               | 1.2                  |
| Metabolite 5, gluc conj   |    |                  |                      | 0.015      | 1.7                  | 0.31                | 4.3                  |
| Metabolite 1              |    | 0.017            | 6.2                  |            |                      | 0.086               | 1.2                  |
| Metabolite 1, complex cor | ıj | 0.053            | 19                   |            |                      |                     |                      |

| Compound                 | Compound |                        | t roots              | Lettuce                 | foliage              | Spring wheat stalks |                      |
|--------------------------|----------|------------------------|----------------------|-------------------------|----------------------|---------------------|----------------------|
|                          |          | metalaxyl,             | % of <sup>14</sup> C | metalaxyl,              | % of <sup>14</sup> C | metalaxyl,          | % of <sup>14</sup> C |
|                          |          | mg/kg                  | residue              | mg/kg                   | residue              | mg/kg               | residue              |
| Metabolite 1, gluc conjs |          |                        |                      | 0.013                   | 1.5                  | 0.14                | 2.0                  |
| Metabolite 10            |          | Included with<br>Met 1 |                      | 0.008                   | 0.9                  | 0.014               | 0.2                  |
| Metabolite 3             | С Стран  |                        |                      |                         |                      | 0.007               | 0.1                  |
| Metabolite 4             | ССССН3   | 0.022                  | 7.9                  |                         |                      |                     |                      |
| Metabolite 8             |          | 0.003                  | 1.1                  | 0.004                   | 0.5                  | 0.40                | 5.6                  |
| Metabolite 8, gluc conjs | •        |                        |                      | 0.019                   | 2.1                  | 2.3                 | 32                   |
| Metabolite 7             |          |                        |                      | Included with<br>Met 10 |                      | 0.036               | 0.5                  |
| Metabolite 7, gluc conj  | •        |                        |                      | 0.097                   | 11                   | 0.093               | 1.3                  |
| Metabolite 6             | Ссоон    | Included with<br>Met 8 |                      | 0.011                   | 1.3                  | 0.079               | 1.1                  |
| Metabolite 6, gluc conj  |          | 0.003                  | 1.0                  | 0.016                   | 1.8                  | 0.11                | 1.5                  |
| Metabolite 9             |          | 0.008                  | 3.0                  | 0.008                   | 0.9                  | 0.14                | 2.0                  |
| Metabolite 12            |          | 0.006                  | 2.1                  |                         |                      |                     |                      |
| CGA-119857               |          |                        |                      |                         |                      | 0.029               | 0.4                  |
| Total                    |          | 0.28 mg/kg equ         | iv to 100%           | 0.88 mg/kg eq           | uiv to 100%          | 7.2 mg/kg equ       | iv to 100%           |

Simoneaux (1994, ABR-91084 A1) showed that extracts of tissue samples from the 1989 crop rotation study (McFarland 1992, BIOL-9016, BIOL-90017, ABR-91084) were stable stored at approximately -20°C. HPLC profiles of extracts after 3-4 years were similar to those of extracts analysed within 8 months. The stability of parent and metabolites in homogenates of lettuce foliage, wheat stalks and sugar beet roots stored at approximately -20°C for 4.5 to 11.5 months was also indicated, since the HPLC profiles of their extracts were shown to be comparable with profiles from earlier samplings.

Table 12. Residues in unlabelled metalaxyl-M rotational crop studies.

| First crop, country,                             | A           | pplicati | on |             | PHI <sup>1</sup> | Rotational | TSI <sup>2</sup> | THI <sup>3</sup> | Sample                      | Residue,                |
|--------------------------------------------------|-------------|----------|----|-------------|------------------|------------|------------------|------------------|-----------------------------|-------------------------|
| year, ref.                                       | Compound    | Form     | No | kg<br>ai/ha | days             | crop       | days             | days             |                             | metalaxyl-M<br>mg/kg    |
| Potato (Désirée),<br>Switzerland, 1998<br>208/98 | metalaxyl-M | EC       | 1  | 0.70        | 12 <sup>4</sup>  | barley     | 29               | 63<br>79<br>93   | plant<br>plant<br>plant     | <0.02<br><0.02<br><0.02 |
|                                                  |             |          |    |             |                  | carrots    | 29               | 71<br>82<br>93   | leaves<br>roots<br>roots    | <0.02<br><0.02<br><0.02 |
|                                                  |             |          |    |             |                  | lettuce    | 30               | 51<br>58<br>65   | lettuce<br>leaves<br>leaves | <0.02<br><0.02<br><0.02 |

| First crop, country,                       | Application |      |    |             | PHI <sup>1</sup> | Rotational  | TSI <sup>2</sup> | THI <sup>3</sup> | Sample                                    | Residue,                |
|--------------------------------------------|-------------|------|----|-------------|------------------|-------------|------------------|------------------|-------------------------------------------|-------------------------|
| year, ref.                                 | Compound    | Form | No | kg<br>ai/ha | days             | crop        | days             | days             |                                           | metalaxyl-M<br>mg/kg    |
|                                            |             |      |    |             |                  | cauliflower | 27               | 51<br>75<br>82   | plant<br>flower<br>head<br>flower<br>head | <0.02<br><0.02<br><0.02 |
| Potato (Saxon), UK,<br>1998<br>209/98      | metalaxyl-M | EC   | 1  | 0.70        | 124              | carrots     | 29               | 86<br>99         | plant<br>roots                            | <0.02<br><0.02          |
|                                            |             |      |    |             |                  | lettuce     | 29               | 99               | plant                                     | < 0.02                  |
|                                            |             |      |    |             |                  | cauliflower | 29               | 59<br>99         | plant<br>leaves                           | <0.02<br><0.02          |
|                                            |             |      |    |             |                  | wheat       | 29               | 86<br>99         | plant<br>plant                            | <0.02<br><0.02          |
| Potato (Primura),<br>Italy, 1998<br>210/98 | metalaxyl-M | EC   | 1  | 1.0         | 84               | lettuce     | 29               | 50<br>56<br>71   | plant<br>leaves<br>leaves                 | 0.04<br>0.03<br><0.02   |
|                                            |             |      |    |             |                  | broccoli    | 29               | 53<br>89<br>98   | plant<br>flower<br>head<br>flower<br>head | 0.11<br><0.02<br><0.02  |
|                                            |             |      |    |             |                  | barley      | 29               | 89<br>124<br>141 | plant<br>plant<br>plant                   | <0.02<br><0.02<br><0.02 |
|                                            |             |      |    |             |                  | carrots     | 29               | 89<br>98<br>124  | plant<br>roots<br>roots                   | <0.02<br><0.02<br><0.02 |

<sup>1</sup> Pre-harvest interval of first crop.

<sup>2</sup> Interval between treatment on first crop and sowing of rotation crop.

<sup>3</sup> Interval between treatment on first crop and sampling or harvest of rotation crop.

<sup>4</sup> In trials 208/98 and 209/98 potatoes were ploughed in 12 days after application simulating crop loss before replanting, and in trial 210/98 8 days after application.

#### **RESIDUE ANALYSIS**

#### **Analytical methods**

The Meeting received validation data and details of analytical methods used for the determination of residues of metalaxyl in plant material, animal tissues, milk and eggs.

Common moiety methods rely on determination of the 2,6-dimethylaniline moiety of metalaxyl and many of its metabolites, and in particular have been used for animal commodities. Typical LOQs are 0.05 and 0.01 mg/kg for tissues and milk respectively. Metabolite 8, containing the 2-hydroxymethyl-6-methylaniline moiety, is apparently partially converted to 2,6-dimethylaniline and produces low and variable recoveries.

GLC-NPD and HPLC-MSD procedures for metalaxyl or metalaxyl-M after a simple extraction and limited clean-up achieve LOQs of 0.02-0.04 mg/kg for many crop substrates. A modification with the introduction of an HPLC chiral separation before the determination allows analysis for specific enantiomers.

The methods used in the studies are summarized below in chronological order, and recoveries are shown in Table 13.

Method DFG S19 is a multi-residue regulatory method suitable for metalaxyl, and Method REM 181.06 although not multi-residue is enantioselective and suitable as a regulatory method for metalaxyl-M.

Animal tissues, milk and eggs (Balasubramanian 1980, AG-349). Analyte: 2,6-dimethylaniline GLC-AFID or GLC-MS AG-349 LOQ: milk 0.01 mg/kg; muscle, fat tissues, eggs 0.05 mg/kg; liver and kidney 0.1 mg/kg Description Samples are extracted with acetonitrile or acetonitrile/water, except fat samples, which are extracted with hexane. The extract is cleaned up by solvent partitioning and, after solvent evaporation, is refluxed with phosphoric acid in the presence of cobalt chloride. The solution is made alkaline and the resulting 2.6dimethylaniline is steam distilled and derivatised with trichloroacetyl chloride for GLC determination Poultry tissues (Eudy 1991, AG-576) Analyte: 2.6-dimethylaniline capillary GLC-NPD AG-576 LOQ: 0.05 mg/kg as metalaxyl equivalents Description Samples are extracted with acetonitrile or acetonitrile/water, except fat samples, which are extracted with hexane. The extract is cleaned up by solvent partitioning and, after solvent evaporation, is refluxed with aqueous methanesulfonic acid. The solution is made alkaline and the resulting 2,6-dimethylaniline is steam distilled and cleaned up with a silica clean-up cartridge for capillary GLC-NPD determination Plant material (Kühne 1995, REM 181.01) Analyte: metalaxyl-M or metalaxyl GLC-NPD REM 181.01 LOQ: 0.02 mg/kg Description Homogenized samples are extracted with methanol, the extract is diluted with water and the residue is partitioned into dichloromethane. Clean-up is by normal-phase preparative HPLC. GLC with NPD is used for the final determination. GC-MS is needed for confirmation. Method REM 181.01 is not enantioselective. Grapes, grape juice, wine (Adams, 1998, 261B.00) Analyte: metalaxyl GLC-NPD 261B.00 LOO: 0.02 mg/kg Description Homogenized samples of grapes are extracted with methanol. The extract is diluted with saturated sodium chloride + water and the residue is partitioned into dichloromethane. Juice or wine is diluted with water and extracted with ethyl acetate. Clean-up is on a small chromatography column. The eluate is evaporated and the residue taken up in ethyl acetate for GLC with NP detection. Method 261B.00 is not enantioselective. Onions (Kühne 1998, 2338/97) Analyte: metalaxyl-M GLC-MSD DFG S19 LOO: 0.02 mg/kg Samples are extracted with acetone. Water is added before extraction to maintain a water: acetone ratio of Description 2:1. The residue is partitioned into ethyl acetate + cyclohexane and cleaned up by gel permeation chromatography on a polystyrene gel. The relevant fraction is collected and analysed by capillary GLC with MSD. Selected ions: m/z 249 for quantification and m/z 206 and 192 for verification. Method DFG S19 is not enantioselective. Plant material (Kühne 1999, 517/99) Analyte: metalaxyl-M LC-MS/MS REM 181.01 LOQ: 0.02 mg/kg Description Samples are thoroughly extracted with methanol. No clean-up is required. A 1 ml aliquot of filtered crude extract is diluted with HPLC water containing 0.2% formic acid ready for LC-MS/MS analysis. The HPLC is a 2-column switching system. For detection the diagnostic masses are the parent ion (M+H) at m/z 280 and a product ion at m/z 220. Method REM 181.01 is not enantioselective. Lettuce (Weber and Pelz 2000, NOV-0015) Analyte: metalaxyl-M GLC-MSD L 00 00-34 LOO: 0.02 mg/kg Description Method L 00.00-34 is almost the same as DFG S19, the only difference being that the selected ions are m/z 206 for quantification and m/z 192 and 249 for verification. The method is not enantioselective.

Plant material, orange, potato, rape seed, tomato, wheat (Kühne 2001, REM 181.06) Analyte: metalaxyLM GLC-MSD

| Anaryte.    | metalaxyi-wi                        | GLC-MSD                                    | KEWI 101.00                   |
|-------------|-------------------------------------|--------------------------------------------|-------------------------------|
| LOQ:        | 0.02 mg/kg                          |                                            |                               |
| Description | Homogenized samples are extract     | ted with methanol. An aliquot of the extra | ract is evaporated to dryness |
|             | and the residue taken up in wate    | er-methanol. Clean-up is by a C-18 cartr   | ridge and preparative HPLC.   |
|             | Chiral separation is on a preparati | ve HPLC system before GLC-MSD deter        | mination (m/z 206, 220, 234,  |
|             | 249, 279) of the metalaxyl enantio  | mers from the relevant HPLC fractions.     |                               |

Yokley (1991, ABR-91008) tested the precision of method AG-576 by analysing quadruplicate samples of eight different goat or poultry commodities. The mean relative standard deviation was 0.18. Tissue, egg and milk samples from the metabolism studies were analysed for comparison with the <sup>14</sup>C measurements, but interpretation was difficult because the common moiety method would not have included metabolites where parts of the 2,6-dimethylaniline had been oxidised or hydroxylated. The results of these and other recovery experiments are shown in Table 13.

Table 13. Analytical recoveries of metalaxyl or metalaxyl-M in from various spiked substrates. Metalaxyl was used in testing the common moiety method in ABR-81014 and ABR-91008.

| Commodity            | Analyte                | Spike conc, | no. | Mean      | Recov., | Method                 | Ref.         |
|----------------------|------------------------|-------------|-----|-----------|---------|------------------------|--------------|
|                      |                        | mg/kg       |     | recov., % | % range |                        |              |
| Fat                  | common moiety          | 0.05-0.5    | 4   | 69        | 50-87   | AG-349                 | ABR-81014    |
| Kidney               | common moiety          | 0.1-0.5     | 4   | 56        | 44-61   | AG-349                 | ABR-81014    |
| Liver                | common moiety          | 0.1-0.2     | 9   | 68        | 44-103  | AG-349                 | ABR-81014    |
| Milk                 | common moiety          | 0.01        | 4   | 64        | 52-71   | AG-349                 | ABR-81014    |
| Milk                 | common moiety          | 0.02        | 4   | 70        | 56-76   | AG-349                 | ABR-81014    |
| Milk                 | common moiety          | 0.105       | 2   | 63        | 60, 65  | AG-349                 | ABR-81014    |
| Muscle               | common moiety          | 0.05-0.1    | 4   | 80        | 64-100  | AG-349                 | ABR-81014    |
| Eggs                 | common moiety          | 0.05, 0.3   | 3   | 90        | 87-93   | AG-576                 | ABR-91008    |
| Goat leg muscle      | common moiety          | 0.05, 0.2   | 3   | 94        | 88-104  | AG-576                 | ABR-91008    |
| Goat liver           | common moiety          | 0.05, 2.0   | 3   | 73        | 52-101  | AG-576                 | ABR-91008    |
| Goat milk            | common moiety          | 0.01, 0.05  | 3   | 112       | 88-159  | AG-576                 | ABR-91008    |
| Goat omental fat     | common moiety          | 0.05, 0.07  | 3   | 101       | 83-127  | AG-576                 | ABR-91008    |
| Poultry breast       | common moiety          | 0.05, 0.5   | 3   | 93        | 75-115  | AG-576                 | ABR-91008    |
| Poultry liver        | common moiety          | 0.05, 1.5   | 3   | 135       | 103-194 | AG-576                 | ABR-91008    |
| Poultry skin+fat     | common moiety          | 0.05, 0.5   | 3   | 88        | 82-96   | AG-576                 | ABR-91008    |
| Beef liver           | metabolite 1,          | 0.05-0.5    | 5   | 72        | 23-97   | AG-576                 | ABR-96108    |
|                      | common moiety          |             |     |           |         |                        |              |
| Eggs                 | metabolite 1,          | 0.05-0.5    | 5   | 56        | 52-59   | AG-576                 | ABR-96108    |
|                      | common moiety          |             |     |           |         |                        |              |
| Poultry muscle       | metabolite 1,          | 0.05-0.5    | 5   | 97        | 80-116  | AG-576                 | ABR-96108    |
|                      | common moiety          |             |     |           |         |                        |              |
| Poultry skin + fat   | metabolite 1,          | 0.05-0.5    | 5   | 0.2       | 0-1     | AG-576 <sup>1</sup>    | ABR-96108    |
|                      | common moiety          |             |     |           |         |                        |              |
| Beef liver           | metabolite 8,          | 0.05-0.5    | 5   | 40        | 11-84   | AG-576                 | ABR-96108    |
|                      | common moiety          |             |     |           |         |                        |              |
| Eggs                 | metabolite 8,          | 0.05-0.5    | 5   | 54        | 21-109  | AG-576                 | ABR-96108    |
|                      | common moiety          |             | _   |           |         | 10.55                  | 1.5.5.0 (100 |
| Poultry muscle       | metabolite 8,          | 0.05-0.5    | 5   | 56        | 45-66   | AG-576                 | ABR-96108    |
|                      | common motety          | 0.05.0.5    | _   | 0.4       |         |                        | 100 06100    |
| Poultry skin + fat   | metabolite 8,          | 0.05-0.5    | 5   | 8.4       | 7-11    | AG-576                 | ABR-96108    |
| a                    | common molety          | 0.02.0.1    | 14  | 07        | 70.100  | 2(1) 00                | 2(10.00      |
| Grape juice, wine    | metalaxyl              | 0.02-0.1    | 14  | 95        | 78-128  | 261B.00                | 261B.00      |
| Grapes               | metalaxyl              | 0.02-5      | 21  | 95        | 72-118  | 261B.00                | 261B.00      |
| Lemon truits, peel,  | metalaxyl              | 0.04-0.8    | 10  | 100       | /9-11/  | REM 16/76 2            | 517/99       |
|                      | . 1 1                  | 0.04.0.0    | 26  | 105       | 01 122  | DEM 16/762             | 517/00       |
| Orange fruits, peel, | metalaxyl              | 0.04-0.8    | 26  | 105       | 81-132  | KENI 16/76 -           | 517799       |
| Sunflower seeds      | metalaxyl              | 0.04-0.4    | 2   | 96        | 92, 100 | REM 16/76 <sup>2</sup> | 519/99       |
| Oranges              | metalaxyl <sup>3</sup> | 0.02-0.2    | 10  | 85        | 70-101  | REM 181.06             | 212/00       |
| Potatoes             | metalaxyl <sup>3</sup> | 0.02-0.2    | 10  | 94        | 76-104  | REM 181.06             | 212/00       |

DEM 191 06

| Commodity              | Analyte                  | Spike conc, | no. | Mean      | Recov., | Method                  | Ref.          |
|------------------------|--------------------------|-------------|-----|-----------|---------|-------------------------|---------------|
|                        |                          | mg/kg       |     | recov., % | % range |                         |               |
| Rapeseed               | metalaxyl <sup>3</sup>   | 0.02-0.2    | 10  | 90        | 81-94   | REM 181.06              | 212/00        |
| Tomatoes               | metalaxyl <sup>3</sup>   | 0.02-0.2    | 10  | 89        | 65-105  | REM 181.06              | 212/00        |
| Wheat                  | metalaxyl <sup>3</sup>   | 0.02-0.2    | 10  | 100       | 90-109  | REM 181.06              | 212/00        |
| Lettuce                | metalaxyl-M              | 0.02-4      | 10  | 98        | 84-114  | L00.00-34               |               |
| Orange fruits, peel,   | metalaxyl-M              | 0.02-4      | 29  | 93        | 81-108  | REM 181.01              | 517/99        |
| pulp                   |                          |             |     |           |         |                         |               |
| Cotton seeds, hulls    | metalaxyl-M              | 0.02-0.4    | 4   | 92        | 85-99   | REM 181.01              | 518/99        |
| Grapes                 | metalaxyl-M              | 0.02, 0.2   | 6   | 104       | 96-107  | REM 181.01              | REM 181.01    |
| Potato tubers          | metalaxyl-M              | 0.02, 0.2   | 6   | 101       | 84-112  | REM 181.01              | REM 181.01    |
| Tomatoes               | metalaxyl-M              | 0.02, 0.2   | 19  | 99        | 90-114  | REM 181.01              | REM 181.01    |
| Mandarin fruits, peel, | metalaxyl-M              | 0.02-0.4    | 24  | 98        | 85-111  | REM 181.01 <sup>4</sup> | 517/99        |
| pulp                   |                          |             |     |           |         |                         |               |
| Orange fruits, peel,   | metalaxyl-M              | 0.02-0.4    | 12  | 94        | 83-106  | REM 181.01 <sup>4</sup> | 517/99        |
| pulp                   |                          |             |     |           |         |                         |               |
| Cotton seeds, hulls    | metalaxyl-M              | 0.02-0.4    | 8   | 99        | 89-107  | REM 181.01 <sup>4</sup> | 518/99        |
| Sunflower seeds        | metalaxyl-M              | 0.02-0.2    | 4   | 91        | 83-103  | REM 181.01 <sup>4</sup> | 519/99        |
| Tomatoes               | metalaxyl-M              | 0.02-0.2    | 6   | 93        | 90-98   | REM 181.06              | 212/00        |
| Oranges                | metalaxyl-M <sup>5</sup> | 0.02-0.2    | 10  | 81        | 64-107  | REM 181.06              | NOV/MET/00111 |
| Rapeseed               | metalaxyl-M <sup>5</sup> | 0.02-0.2    | 10  | 82        | 70-91   | REM 181.06              | NOV/MET/00111 |
| Tomatoes               | metalaxyl-M <sup>5</sup> | 0.02-0.2    | 10  | 103       | 86-114  | REM 181.06              | NOV/MET/00111 |

<sup>1</sup> The extraction solvent, hexane, does not extract the compound from fat.

<sup>2</sup> REM 16/76 is the same procedure as REM 181.01, but used for metalaxyl.

<sup>3</sup> Samples spiked with metalaxyl, analytical results for the R-isomer (metalaxyl-M). Analytical recoveries for the S-isomer were similar, but are not recorded here.

<sup>4</sup> REM 181.01 with LC-MS-MS finish.

<sup>5</sup> Parallel recoveries with the S-isomer gave similar results, but are not recorded here.

#### Stability of residues in stored analytical samples

The Meeting received information on the stability of metalaxyl-M residues in crop and animal commodities during storage of analytical samples (Tables 14 and 15).

Metalaxyl-M residues were stable in the substrates and under the conditions and period of storage. There was no evidence of epimerization during freezer storage. A common moiety method was used for the animal commodity samples, so the storage stability refers to the total residue rather than parent metalaxyl-M. The common moiety method is not suitable for Metabolite 8 (low and variable recoveries) so the stability of this metabolite during storage was not demonstrated.

Kühne (201/01, 2003) tested the storage stability of metalaxyl-M residues in wheat, tomatoes, rape seed, oranges and potatoes to represent respectively cereals and other dry crops, commodities with high water content, commodities with high fat content, fruits with high acid content and starch-containing commodities. The homogenised and fortified samples were stored in polyethylene containers or plastic bags at or below -18°C. Periodically, analytical subsamples were analysed by the enantioselective method REM 181.06 (

Table 14). Metalaxyl-M was stable in samples throughout the two years; it was neither degraded nor converted to the S-isomer.

| Months | Metala     | axyl-M             | S iso      | omer               | Metala     | axyl-M             | S iso      | mer                |  |
|--------|------------|--------------------|------------|--------------------|------------|--------------------|------------|--------------------|--|
| stored | Procedural | Conc.,             | Procedural | Conc.,             | Procedural | Conc.,             | Procedural | Conc.,             |  |
|        | recov %    | mg/kg <sup>1</sup> |  |
|        |            | Ora                | nges       |                    | Potatoes   |                    |            |                    |  |
| 0      | 96 101     | 0.44               | 93 87      | 0.018              | 105 100    | 0.43               | 93 93      | 0.019              |  |
| 1      | 95 94      | 0.45               | 93 93      | 0.017              | 98 95      | 0.45               | 107 107    | 0.020              |  |
| 3      | 97 99      | 0.42               | 93 100     | 0.017              | 102 102    | 0.42               | 100 100    | 0.019              |  |
| 6      | 88 87      | 0.42               | 87 93      | 0.016              | 90 91      | 0.39               | 93 93      | 0.017              |  |
| 12     | 90 93      | 0.49               | 100 100    | 0.019              | 100 98     | 0.41               | 113 113    | 0.019              |  |
| 18     | 86 93      | 0.41               | 67 60      | 0.016              | 92 90      | 0.41               | 73 67      | 0.018              |  |
| 24     | 93 92      | 0.41               | 133 133    | 0.018              | 94 91      | 0.40               | 140 127    | 0.020              |  |
|        |            | Rape               | e seed     |                    | Tomatoes   |                    |            |                    |  |
| 0      | 105 93     | 0.43               | 93 87      | 0.020              | 108 103    | 0.47               | 93 93      | 0.019              |  |
| 1      | 88 93      | 0.43               | 93 83      | 0.018              | 102 101    | 0.56               | 100 100    | 0.023              |  |
| 3      | 102 103    | 0.46               | 100 100    | 0.020              | 100 102    | 0.43               | 93 100     | 0.017              |  |
| 6      | 87 85      | 0.41               | 87 87      | 0.017              | 87 96      | 0.52               | 93 93      | 0.021              |  |
| 12     | 92 93      | 0.47               | 93 93      | 0.018              | 105 97     | 0.51               | 113 113    | 0.023              |  |
| 18     | 96 91      | 0.43               | 67 67      | 0.018              | 91 92      | 0.46               | 73 73      | 0.022              |  |
| 24     | 86 83      | 0.38               | 93 93      | 0.014              | 101 95     | 0.48               | 133 120    | 0.019              |  |
|        |            | Wł                 | ieat       |                    |            |                    |            |                    |  |
| 0      | 99 98      | 0.44               | 87 87      | 0.019              |            |                    |            |                    |  |
| 1      | 96 94      | 0.45               | 93 100     | 0.019              |            |                    |            |                    |  |
| 3      | 101 99     | 0.45               | 93 100     | 0.019              |            |                    |            |                    |  |
| 6      | 92 91      | 0.40               | 93 93      | 0.017              |            |                    |            |                    |  |
| 12     | 98 92      | 0.36               | 100 100    | 0.015              |            |                    |            |                    |  |
| 18     | 92 88      | 0.39               | 73 73      | 0.018              |            |                    |            |                    |  |
| 24     | 93 93      | 0.50               | 120 120    | 0.019              |            |                    |            |                    |  |

Table 14. Freezer storage stability of metalaxyl-M in spiked oranges, potatoes, rape seed, tomatoes and wheat (Kühne, 201/01, 2003).

<sup>1</sup> Residue concentrations unadjusted for recoveries are means of triplicate analyses for storage periods of 1-24 months and of quintuplicate analyses at time zero.

Gruenwald (ABR-98053, 1998) tested the freezer storage stability of metalaxyl-M, Metabolite 1 and Metabolite 8 in beef muscle, beef liver, milk and eggs under frozen conditions at approximately -20°C for 2 years (Table 15). Samples were analysed by method AG-576, a common moiety method that determines the total residue of metalaxyl-M and metabolites containing the 2,6-dimethylaniline moiety.

Total residues of metalaxyl-M were stable in the animal commodities in freezer storage for 22 months. Residues of Metabolite 1 were also generally stable, but the results for eggs are questionable because of poor recoveries. The method mostly produced poor recoveries for Metabolite 8, so it is difficult to conclude whether the residues are stable or unstable.

Table 15. Freezer storage stability of metalaxyl-M and metabolites in animal commodities (Gruenwald, ABR-98053, 1998). Samples were analysed by common moiety method AG-576 (concentrations unadjusted for procedural recoveries).

| Meta             | alaxyl-M              |                           | Metabolite 1     |                       | Сосна ссела               | Metabo           | olite 8 <sup>2</sup>  |                              |
|------------------|-----------------------|---------------------------|------------------|-----------------------|---------------------------|------------------|-----------------------|------------------------------|
| Storage,<br>days | Procedural<br>recov % | Conc., mg/kg <sup>1</sup> | Storage,<br>days | Procedural<br>recov % | Conc., mg/kg <sup>1</sup> | Storage,<br>days | Procedural<br>recov % | Conc.,<br>mg/kg <sup>1</sup> |
| BEE              | F MUSCLE              |                           |                  |                       |                           |                  |                       |                              |
| 0                | 89 92 76              | 1.71                      | 0                | 80 78 77              | 1.46                      | 0                | 56 58 54              | 2.56                         |
| 97               | 85 84                 | 1.55                      | 86               | 79 75                 | 1.44                      | 86               | 60 38                 | 2.63                         |

| Meta     | alaxyl-M   | COOCH <sup>3</sup>        | Met      | tabolite 1 | СССН3         | Metab    | olite 8 <sup>2</sup> |                    |
|----------|------------|---------------------------|----------|------------|---------------|----------|----------------------|--------------------|
| Storage, | Procedural | Conc., mg/kg <sup>1</sup> | Storage, | Procedural | Conc., mg/kg1 | Storage, | Procedural           | Conc.,             |
| days     | recov %    |                           | days     | recov %    |               | days     | recov %              | mg/kg <sup>1</sup> |
| 180      | 80 85      | 1.68                      | 183      | 77 80      | 1.32          | 183      | 56 58                | 2.77               |
| 382      | 90 86      | 1.67                      | 360      | 84 85      | 1.66          | 360      | 52 51                | 2.50               |
| 543      | 87 77      | 1.74                      | 546      | 86 79      | 1.57          | 567      | 33 41                | 2.80               |
| 657      | 81 76      | 1.44                      | 701      | 88 83      | 1.58          | 701      | 30 35                | 1.53               |
| BEE      | F LIVER    |                           |          |            |               |          |                      |                    |
| 0        | 81 92 86   | 1.84                      | 0        | 56 57 77   | 1.43          | 0        | 21 20 29             | 1.36               |
| 96       | 84 85      | 1.80                      | 89       | 75 71      | 1.44          | 89       | 28 23                | 1.18               |
| 181      | 85 86      | 1.66                      | 187      | 74 76      | 1.47          | 187      | 20 28                | 1.27               |
| 382      | 96 96      | 1.87                      | 365      | 79 80      | 1.64          | 365      | 24 26                | 1.23               |
| 545      | 99 85      | 1.77                      | 550      | 86         | 1.72          | 550      | 22 22                | 1.03               |
| 656      | 80         | 1.44                      | 705      | 89 86      | 1.64          | 705      | 19 23                | 0.72               |
| MILI     | X          |                           |          |            |               |          |                      |                    |
| 0        | 61 66 72   | 1.43                      | 0        | 81 77 70   | 1.49          | 0        | 72 64 64             | 3.24               |
| 98       | 80 80      | 1.60                      | 98       | 118 70     | 1.84          | 98       | 57 61                | 3.17               |
| 181      | 71 69      | 1.45                      | 196      | 56 58      | 1.18          | 196      | 53 52                | 2.33               |
| 377      | 90 98      | 1.84                      | 368      | 66 64      | 1.28          | 368      | 44 44                | 2.37               |
| 541      | 81 86      | 1.82                      | 578      | 87 80      | 1.59          | 588      | 35 26                | 1.58               |
| 653      | 79 81      | 1.80                      | 711      | 81 65      | 1.48          | 711      | 43 36                | 0.86               |
| EGG      | S          |                           |          |            |               |          |                      |                    |
| 0        | 76 79 85   | 1.56                      | 0        | 48 51 50   | 1.02          | 0        | 50 56 53             | 2.73               |
| 94       | 85 93      | 1.62                      | 86       | 50 51      | 1.05          | 86       | 49 44                | 2.31               |
| 185      | 81 87      | 1.73                      | 183      | 50 51      | 1.06          | 183      | 27 23                | 0.90               |
| 386      | 98 87      | 1.93                      | 359      | 52 47      | 1.01          | 359      | 48 50                | 2.07               |
| 548      | 82 90      | 1.73                      | 546      | 48         | 0.98          | 546      | 27 24                | 0.90               |
| 671      | 77 75      | 1.56                      | 703      | 55 55      | 1.08          | 703      | 27 19                | 0.93               |

<sup>1</sup> Residues, unadjusted for recoveries, are means of triplicate analyses at time 0 and of duplicate analyses at other intervals. <sup>2</sup> Yokley (ABR-91008, 1991) reported that Metabolite 8 is converted to 2,6-dimethylaniline during the refluxing step with aqueous methanesulfonic acid in Method AG-576.

# **USE PATTERN**

Metalaxyl-M is registered for use on fruit, nut and vegetable crops for control of various fungal diseases such as Phytophthora and Pythium spp applied to foliage, soil or seed and as a post-harvest fruit treatment. The details are shown in Table 16.

Table 16. Registered uses of metalaxyl-M. Labels were provided for all listed uses.

| Crop   | Country       | Formulation         | Method       | Timing | Rate kg ai/ha                        | Spray<br>conc<br>ka ai/hl | No. | PHI,<br>days |
|--------|---------------|---------------------|--------------|--------|--------------------------------------|---------------------------|-----|--------------|
| Citrus | Israel        | EC 480              | post-harvest |        |                                      | 0.10                      | 1   |              |
| Citrus | Italy         | EC 480              | drench       |        | 0.48-0.96 g ai/sq<br>m at plant base |                           | 1   | 30           |
| Cocoa  | Côte d'Ivoire | WP 60 (+copper 600) | foliar       |        | 0.012                                | 0.02-0.03                 | 4   | 28           |
| Grapes | Australia     | WP 50 (+copper 390) | foliar       |        | 0.11                                 | 0.011                     | 4   | 7            |
| Grapes | Greece        | WP 25 (+copper 400) | foliar       |        | 0.05-0.10                            |                           | 4   | 15           |

| Crop              | Country                  | Formulation           | Method            | Timing             | Rate kg ai/ha                        | Spray<br>conc<br>ka ai/hl | No. | PHI,<br>days |
|-------------------|--------------------------|-----------------------|-------------------|--------------------|--------------------------------------|---------------------------|-----|--------------|
| Grapes            | Greece                   | WP 40 (+mancozeb 640) | foliar            |                    | 0.05-0.10                            |                           | 4   | 15           |
| Grapes            | Uruguay                  | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 | 0.05                      | 4   | 14           |
| Lettuce           | Israel                   | WG 40 (+mancozeb 640) | foliar            |                    | 0.12                                 |                           | 3   | 14           |
| Lettuce           | Germany                  | WG 50 (+folpet 400)   | foliar            |                    | 0.097                                |                           | 2   | 21           |
| Lettuce           | Spain                    | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 3   | 14           |
| Onion             | Ecuador                  | WP 40 (+mancozeb 640) | foliar            |                    | 0.10-0.12                            |                           | 3   | 7            |
| Onion             | Germany                  | WG 50 (+folpet 400)   | foliar            |                    | 0.097                                |                           | 3   | 21           |
| Onion             | Israel                   | WG 40 (+mancozeb 640) | foliar            |                    | 0.12                                 |                           | 3   | 7            |
| Onion             | Uruguay                  | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 | 0.05                      | 3   | 7            |
| Peppers           | Spain                    | GR 25                 | soil              |                    | 0.75                                 |                           | 3   | 15           |
| Peppers,<br>sweet | Australia                | GR 25                 | soil              | pre-<br>transplant | 1.0                                  |                           | 1   | 7            |
| Peppers,<br>sweet | Italy                    | EC 480                | soil              |                    | 0.96                                 |                           | 3   | 15           |
| Peppers,<br>sweet | Italy                    | GR 25                 | soil              |                    | 1.00                                 |                           | 3   | 15           |
| Pome fruit        | Italy                    | EC 480                | drench            |                    | 0.48-0.96 g ai/sq<br>m at plant base |                           | 2   | 28           |
| Pome fruit        | Italy                    | GR 25                 | soil              |                    | approx 2-4 g<br>ai/tree              |                           | 1   | 30           |
| Pome fruit        | Spain                    | GR 25                 | soil              |                    | 0.5 - 1 g ai/tree                    |                           | 2   | 15           |
| Potato            | Algeria                  | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 3   | 7            |
| Potato            | Australia                | GR 25                 | soil              | at sowing          | 0.50                                 |                           | 1   |              |
| Potato            | Australia                | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 3   | 7            |
| Potato            | Austria                  | WG 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 4   | 14           |
| Potato            | Chile                    | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 3   | 7            |
| Potato            | Ecuador                  | WP 40 (+mancozeb 640) | foliar            |                    | 0.10-0.12                            |                           | 3   | 7            |
| Potato            | Greece                   | WP 25 (+copper 400)   | foliar            |                    | 0.10                                 |                           | 3   | 28           |
| Potato            | Greece                   | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 3   | 28           |
| Potato            | Israel                   | WG 40 (+mancozeb 640) | foliar            |                    | 0.12                                 |                           | 3   | 7            |
| Potato            | Morocco                  | WG 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 4   | 15           |
| Potato            | Uruguay                  | WP 40 (+mancozeb 640) | foliar            |                    |                                      | 0.01                      | 3   | 14           |
| Spinach           | Chile                    | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 3   | 10           |
| Spinach           | Italy                    | WP25 (+copper 400)    | foliar            |                    | 0.10                                 |                           | 3   | 20           |
| Spinach           | Switzerland              | WG 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 6   | 14           |
| Sunflower         | China                    | ES 350                | seed<br>treatment |                    | 0.035-0.105<br>kg ai/100 kg<br>seed  |                           |     |              |
| Sunflower         | Serbia and<br>Montenegro | ES 350                | seed<br>treatment |                    | 0.105 kg ai/100<br>kg seed           |                           |     |              |
| Tomato            | Algeria                  | WP 40 (+mancozeb 640) | foliar            |                    | 0.14                                 |                           | 3   | 3            |
| Tomato            | Australia                | GR 25                 | soil              | pre-<br>transplant | 0.50-1.0                             |                           | 2   |              |
| Tomato            | Chile                    | WP 40 (+mancozeb 640) | foliar            |                    | 0.10                                 |                           | 4   | 3            |
| Tomato            | Ecuador                  | WP 40 (+mancozeb 640) | foliar            |                    | 0.10-0.12                            |                           | 3   | 3            |
| Tomato            | Greece                   | WP 25 (+copper 400)   | foliar            |                    | 0.05-0.14                            |                           | 3   | 3            |
| Tomato            | Greece                   | WP 40 (+mancozeb 640) | foliar            |                    | 0.06-0.14                            |                           | 3   | 3            |
| Tomato            | Israel                   | WP 40 (+mancozeb 640) | foliar            |                    | 0.12                                 |                           | 3   | 5            |
| Tomato            | Morocco                  | WG 40 (+mancozeb 640) | foliar            |                    | 0.14                                 |                           | 4   | 3            |
| Tomato            | Uruguay                  | WP 40 (+mancozeb 640) | foliar            |                    |                                      | 0.014                     | 4   | 3            |

#### **RESIDUES RESULTING FROM SUPERVISED TRIALS**

The Meeting received information on supervised field trials with metalaxyl-M on the following crops.

| Citrus fruits in Israel.                                       | Table 18 |
|----------------------------------------------------------------|----------|
| Apples in France, Italy and Spain.                             | Table 19 |
| Grapes in Australia, Germany, Italy, Portugal and Switzerland. | Table 20 |
| Onions in Brazil, Italy, Spain and Switzerland.                | Table 21 |
| Tomatoes in France, Spain and Switzerland.                     | Table 22 |
| Peppers in Italy and Spain.                                    | Table 23 |
| Lettuce in France, Germany, Italy, The Netherlands, Spain and  | Table 24 |
| Switzerland.                                                   |          |
| Spinach in France, Germany and Switzerland.                    | Table 25 |
| Potatoes in Brazil, Germany, Switzerland and the UK.           | Table 26 |
| Sunflowers in France and Spain.                                | Table 27 |
| Cocoa in Côte d'Ivoire.                                        | Table 28 |

Trials were well documented with laboratory and field reports. Laboratory reports included method validation, including procedural recoveries with spiking at residue levels similar to those occurring in samples from the supervised trials. Dates of analyses or duration of residue sample storage were also provided. Although trials included control plots, control data are only recorded in the Tables where residues exceeded the LOQ. Residues are unadjusted for recoveries.

When residues were undetected they are shown as below the LOQ (e.g. <0.02 mg/kg). Residues, application rates and spray concentrations have generally been rounded to two significant figures or, for residues near the LOQ, to one significant figure. Residues from the trials conducted according to maximum GAP have been used for the estimation of maximum levels. Residue trials at exaggerated application rates have also been included when residues did not exceed the LOQ. Those results included in the evaluation are <u>double underlined</u>.

Conditions of the supervised residue trials are shown in Table 17. In most trials unreplicated plots were used, and details of sprayers used, plot size, sample size and sampling dates are given when reported.

Periods of frozen storage between sampling and analysis were recorded for all trials and were covered by the conditions of the freezer storage stability studies.

In some trials, residues were measured on samples taken just before the last application as well as just after (the "zero day" samples). The samples taken just before the last application are listed in the Tables as having one fewer application and with a PHI equivalent to the interval between the penultimate and last applications. They provide information on carry-over from previous applications.

Table 17. Sprayers, plot and field sample sizes in the supervised trials. Almost all trials were with unreplicated single plots.

| Crop   | Country       | Year       | Application method                              | Plot                  | Sample        |
|--------|---------------|------------|-------------------------------------------------|-----------------------|---------------|
| Apple  | France        | 1997       | manual application on soil                      | 16-20 m <sup>2</sup>  | 2 kg          |
| Apple  | Italy         | 2000       | soil drench in root zone                        | 50-140 m <sup>2</sup> | 12 fruits     |
| Apple  | Spain         | 1997       | manual application on soil                      | $20-50 \text{ m}^2$   | 2.1-3.4 kg    |
| Cocoa  | Côte d'Ivoire | 2000, 2001 | motorised knapsack                              | $1000 \text{ m}^2$    | 12-68 kg pods |
| Grapes | Australia     | 1998       | backpack CO <sub>2</sub> , orchard pump sprayer | 2-8 panels            | 0.5-1 kg      |

| Crop       | Country     | Year       | Application method                                  | Plot                   | Sample      |
|------------|-------------|------------|-----------------------------------------------------|------------------------|-------------|
| Grapes     | Germany     | 1994, 1997 | high-volume plot sprayer                            | 250-300 m <sup>2</sup> | 1.3-2.8 kg  |
| Grapes     | Italy       | 1994, 1997 | knapsack, motor sprayer                             | 36-250 m <sup>2</sup>  | 2.2-2.9 kg  |
| Grapes     | Portugal    | 1997       | knapsack                                            | $250 \text{ m}^2$      | 12 bunches  |
| Grapes     | Switzerland | 1997       | knapsack with lance                                 | 151 m <sup>2</sup>     | 0.9-1.2 kg  |
| Lettuce    | France      | 1997-2000  | knapsack with boom                                  | 30-50 m <sup>2</sup>   | 2.1-11 kg   |
| Lettuce    | Germany     | 1997-2000  | mobile plot sprayer, boom sprayer                   | 30-80 m <sup>2</sup>   | 0.5-4.5 kg  |
| Lettuce    | Italy       | 1997-1999  | knapsack with boom, knapsack sprayer                | 20-40 m <sup>2</sup>   | 1-2.8 kg    |
| Lettuce    | Netherlands | 1999       | compressed air sprayer                              | 45 m <sup>2</sup>      | 0.34-5.8 kg |
| Lettuce    | Spain       | 1999       | motorised knapsack sprayer                          | 50 m <sup>2</sup>      | 1.5 kg      |
| Lettuce    | Switzerland | 1999       | knapsack with boom, knapsack sprayer                | 18 m <sup>2</sup>      | 0.9-2.4 kg  |
| Onion      | Brazil      | 1997       | CO <sub>2</sub> sprayer                             | 20 m <sup>2</sup>      | 2 kg        |
| Onion      | Italy       | 1997, 1998 | knapsack sprayer                                    | 20-50 m <sup>2</sup>   | 12 bulbs    |
| Onion      | Spain       | 1997       | knapsack sprayer                                    | 20-50 m <sup>2</sup>   | 1-3.9 kg    |
| Onion      | Switzerland | 1997       | knapsack with boom                                  | 24-31.5 m <sup>2</sup> | 0.4-2.5 kg  |
| Orange     | Spain       | 1999       | motorised knapsack                                  | 12 trees               | 500 kg      |
| Peppers,   | Italy       | 1997       | manual on soil                                      | 20-86 m <sup>2</sup>   | 1.6-3.5 kg  |
| sweet      | C           | 1000 2000  |                                                     | 25 452                 | 1 2 2 5 1   |
| sweet      | Spain       | 1998-2000  |                                                     | 23-43 m                | 1.3-3.3 Kg  |
| Potatoes   | Brazil      | 1997       | CO <sub>2</sub> sprayer                             | $40 \text{ m}^2$       | 2 kg        |
| Potatoes   | Germany     | 1995, 1996 | plot sprayer                                        | 30 m <sup>2</sup>      | 2-3 kg      |
| Potatoes   | Switzerland | 1998       | knapsack with boom                                  | 22.5-60 m <sup>2</sup> | 3-4 kg      |
| Potatoes   | UK          | 1994, 1995 | precision plot sprayer                              | 40-60 m <sup>2</sup>   | 6-24 tubers |
| Spinach    | France      | 1997, 1999 | knapsack with boom, hand-carried boom with flat fan | 75-80 m <sup>2</sup>   | 0.9-1.2 kg  |
| Spinach    | Germany     | 1998       | boom sprayer                                        | 75 m <sup>2</sup>      | 0.5-0.8 kg  |
| Spinach    | Switzerland | 1999       | knapsack with boom                                  | 24-30 m <sup>2</sup>   | 0.6-2.5 kg  |
| Sunflowers | France      | 1998, 1999 | seed treatment                                      | 45-90 m <sup>2</sup>   | 1-1.7 kg    |
| Sunflowers | Spain       | 1998, 1999 | seed treatment                                      | 53-54 m <sup>2</sup>   | 1.1 kg      |
| Tomatoes   | France      | 1997-2001  | knapsack with boom                                  | 20-30 m <sup>2</sup>   | 1.9-4.4 kg  |
| Tomatoes   | Spain       | 1997, 1998 | motorised knapsack                                  | 12-99 m <sup>2</sup>   | 2-3 kg      |
| Tomatoes   | Switzerland | 1997-2001  | knapsack with lance                                 | 8-18 m <sup>2</sup>    | 12 fruits   |

Table 18. Metalaxyl-M residues from oranges in supervised trials in Israel in 1997 with post-harvest uses of metalaxyl-M.

| ORANGES <sup>1</sup><br>(variety) | Form      | Applic<br>kg ai/hl | spray<br>spray<br>1/100 kg fruit | Commodity <sup>2</sup>                                                                                                                 | Metalaxyl-M, mg/kg           Pulp         Peel         Whole fruit calc from pulp and peel |                                        | Ref.                                                       |         |
|-----------------------------------|-----------|--------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|---------|
| (Valencia)                        | EC<br>480 | 0.096              | 0.22                             | large fruit (275 g)<br>small fruit (125 g)<br>large fruit (250 g)<br>small fruit (125 g)<br>large fruit (240 g)<br>small fruit (160 g) | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                                | 3.4<br>3.2<br>2.3<br>3.9<br>3.7<br>3.1 | 1.7<br>1.7<br>1.1<br>1.9<br>1.8<br>1.6<br>mean <u>1.6</u>  | 2325/97 |
| (Valencia)                        | EC<br>480 | 0.096              | 0.22                             | fruit (310 g)<br>fruit (150 g)<br>fruit (300 g)<br>fruit (275 g)<br>fruit (160 g)<br>fruit (160 g)                                     | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                                | 2.2<br>2.4<br>2.0<br>2.2<br>2.8<br>2.5 | 1.0<br>1.2<br>0.94<br>1.1<br>1.4<br>1.3<br>mean <u>1.2</u> | 2326/97 |

| ORANGES <sup>1</sup><br>(variety) | Form      | Applic<br>kg ai/hl | spray<br>1/100 kg fruit | Commodity <sup>2</sup>                                                                             | N<br>Pulp                                                   | letalaxyl-M<br>Peel                    | I, mg/kg<br>Whole fruit<br>calc from pulp<br>and peel     | Ref.    |
|-----------------------------------|-----------|--------------------|-------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------|---------|
|                                   | EC<br>480 | 0.096              | 0.22                    | fruit (275 g)<br>fruit (160 g)<br>fruit (260 g)<br>fruit (160 g)<br>fruit (250 g)<br>fruit (170 g) | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02 | 2.6<br>2.6<br>2.4<br>2.7<br>2.0<br>2.6 | 1.3<br>1.4<br>1.2<br>1.3<br>1.0<br>1.3<br>mean <u>1.3</u> | 2327/97 |

<sup>1</sup> 400 ml formulation was mixed with a commercial wax to produce 200 l of spray solution, sufficient for approximately 90 tonnes of fruit (theoretical concentration of residue 2.1 g/tonne). The solution was sprayed onto the fruit in a single layer on a conveyor belt with rotating brushes to distribute the wax evenly on the fruit surface. Six sequential samples were taken during the 30-min treatment, each consisting of 4, 8 or 12 fruits. The mean weight of a fruit is recorded.

<sup>2</sup>Mean weight of an orange in parentheses.

Table 19. Metalaxyl-M residues in apples from supervised trials in France, Italy and Spain.

| APPLES<br>country, year (variety)       | Form | Application<br>kg ai/ha | No.    | PHI<br>days                    | Residues, mg/kg<br>metalaxyl-M                                             | Ref.              |
|-----------------------------------------|------|-------------------------|--------|--------------------------------|----------------------------------------------------------------------------|-------------------|
| France, 1997 (Golden)                   | GR   | 10.0<br>soil treatment  | 1 2    | 31<br>0<br>7<br>14<br>21       | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                         | 124/97<br>2139/97 |
| France, 1997 (Golden)                   | GR   | 10.0<br>soil treatment  | 1<br>2 | 30<br>0<br>7<br>14<br>21       | <0.02<br><0.02<br><0.02<br>< <u>0.02</u><br>< <u>0.02</u><br>< <u>0.02</u> | 124/97<br>2140/97 |
| Italy, 2000 (Imperatore,<br>Morgenduft) | EC   | 10<br>soil treatment    | 2      | 31                             | < <u>0.02</u>                                                              | 2081/00           |
| Italy, 2000 (Stark Spur Red)            | EC   | 10<br>soil treatment    | 2      | 30                             | < <u>0.02</u>                                                              | 2082/00           |
| Spain, 1997 (Golden Delicious)          | GR   | 0.78<br>soil treatment  | 1<br>2 | 124<br>3<br>7<br>14<br>21      | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                | 2015/97           |
| Spain, 1997 (Golden)                    | GR   | 1.9<br>soil treatment   | 1<br>2 | 113<br>0<br>3<br>7<br>14<br>21 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                | 2016/97           |

| Table 20. | Metalaxyl-M    | residues in | 1 grapes | and | grape | commoditi | es from | superv | rised | trials i | in . | Australia |
|-----------|----------------|-------------|----------|-----|-------|-----------|---------|--------|-------|----------|------|-----------|
| Germany,  | Italy, Portuga | al and Swit | zerland. |     |       |           |         |        |       |          |      |           |

| GRAPES                                           |                                       | Applica  | tion        |                |        | PHI,                            | Commodity                     | Residues, mg/kg                                                                                     | Ref.      |
|--------------------------------------------------|---------------------------------------|----------|-------------|----------------|--------|---------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------|-----------|
| country, year (variety)                          | Form                                  | kg ai/ha | kg<br>ai/hl | water,<br>l/ha | No.    | days                            |                               | metalaxyl-M <sup>1</sup>                                                                            |           |
| Australia (NSW),<br>1998 (Cabernet<br>Sauvignon) | WP<br>includes<br>copper<br>hydroxide | 0.11     |             | 900<br>-1100   | 5<br>6 | 8<br>0<br>1<br>3<br>7           | grapes                        | 0.04<br>0.44<br>0.16<br>0.15<br><u>0.06</u>                                                         | 98/7/1615 |
| Australia (NSW),<br>1998 (Cabernet<br>Sauvignon) | WP<br>includes<br>copper<br>hydroxide | 0.22     |             | 900<br>-1100   | 5<br>6 | 8<br>0<br>1<br>3<br>7           | grapes                        | 0.12<br>0.98<br>0.76<br>0.36<br>0.20                                                                | 98/7/1615 |
| Australia (SA), 1998<br>(Cabernet Sauvignon)     | WP<br>includes<br>copper<br>hydroxide | 0.11     | 0.013       | 853            | 5<br>6 | 7<br>0<br>1<br>3<br>7<br>7<br>7 | grapes<br>grape juice<br>wine | $\begin{array}{c} 0.03 \\ 0.14 \\ 0.05 \\ 0.04 \\ < \underline{0.02} \\ < 0.02 \\ 0.02 \end{array}$ | 98/7/1615 |
| Australia (SA), 1998<br>(Cabernet Sauvignon)     | WP<br>includes<br>copper<br>hydroxide | 0.22     | 0.026       | 853            | 5<br>6 | 7<br>0<br>1<br>3<br>7<br>7<br>7 | grapes<br>grape juice<br>wine | 0.04<br>0.14<br>0.12<br>0.08<br>0.08<br>0.02<br>0.04                                                | 98/7/1615 |
| Australia (SA), 1998<br>(Cabernet Sauvignon)     | WP<br>includes<br>copper<br>hydroxide | 0.11     | 0.041       | 274            | 5<br>6 | 7<br>0<br>1<br>3<br>7<br>7<br>7 | grapes<br>grape juice<br>wine | 0.06<br>0.10<br>0.10<br>0.06<br><u>0.03</u><br><0.02<br>0.03                                        | 98/7/1615 |
| Australia (SA), 1998<br>(Cabernet Sauvignon)     | WP<br>includes<br>copper<br>hydroxide | 0.22     | 0.082       | 274            | 56     | 7<br>0<br>1<br>3<br>7<br>7<br>7 | grapes<br>grape juice<br>wine | 0.05<br>0.14<br>0.08<br>0.10<br>0.10<br>0.03<br>0.05                                                | 98/7/1615 |
| Australia (Vic), 1998<br>(Chardonnay)            | WP<br>includes<br>copper<br>hydroxide | 0.11     | 0.012       | 947            | 5<br>6 | 7<br>0<br>1<br>3<br>7           | grapes                        | 0.11<br>0.30<br>0.18<br>0.16<br><u>0.14</u>                                                         | 98/7/1615 |
| Australia (Vic), 1998<br>(Chardonnay)            | WP<br>includes<br>copper<br>hydroxide | 0.22     | 0.024       | 947            | 5<br>6 | 7<br>0<br>1<br>3<br>7           | grapes                        | 0.18<br>0.41<br>0.41<br>0.34<br>0.28                                                                | 98/7/1615 |

| GRAPES                                           |                                       | Applica                         | tion        |                             |        | PHI,                                              | Commodity                                                                      | Residues, mg/kg                                                                           | Ref.                |
|--------------------------------------------------|---------------------------------------|---------------------------------|-------------|-----------------------------|--------|---------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------|
| country, year (variety)                          | Form                                  | kg ai/ha                        | kg<br>ai/hl | water,<br>l/ha              | No.    | days                                              |                                                                                | metalaxyl-M <sup>1</sup>                                                                  |                     |
| Australia (Vic), 1998<br>(Riesling)              | WP<br>includes<br>copper<br>hydroxide | 0.22                            | 0.022       | 1050                        | 56     | 7<br>0<br>1<br>3<br>7<br>7<br>7                   | grapes<br>grape juice<br>wine                                                  | 3.5<br>5.7<br>1.5<br>1.4<br>1.1<br>0.51<br>0.72                                           | 98/7/1615           |
| Australia (Vic), 1998<br>(Riesling)              | WP<br>includes<br>copper<br>hydroxide | 0.11                            | 0.044       | 253                         | 5<br>6 | 7<br>0<br>1<br>3<br>7<br>7<br>7                   | grapes<br>grape juice<br>wine                                                  | 0.68<br>2.0<br>1.2<br>1.0<br><u>0.52</u><br>0.19<br>0.20                                  | 98/7/1615           |
| Australia (Vic), 1998<br>(Riesling)              | WP<br>includes<br>copper<br>hydroxide | 0.22                            | 0.088       | 253                         | 5<br>6 | 7<br>0<br>1<br>3<br>7<br>7<br>7                   | grapes<br>grape juice<br>wine                                                  | 1.4<br>8.5<br>1.9<br>3.7<br>3.6<br>0.61<br>0.57 <sup>2</sup>                              | 98/7/1615           |
| Australia (Vic), 1998<br>(Riesling) <sup>3</sup> | WP<br>includes<br>copper<br>hydroxide | 0.11                            | 0.011       | 1050                        | 5<br>6 | 7<br>0<br>1<br>3<br>7<br>7<br>7                   | grapes<br>grape juice<br>wine                                                  | $\begin{array}{c} 0.34 \\ 1.4 \\ 0.71 \\ 0.62 \\ \hline 0.48 \\ 0.28 \\ 0.32 \end{array}$ | 98/7/1615           |
| Germany, 1994<br>(Dornfelder)                    | WP includes<br>folpet                 | 0.10                            |             | 400<br>+600<br>+800<br>+800 | 3 4    | 18<br>0<br>14<br>29<br>34<br>43<br>34<br>34<br>34 | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>young wine<br>wine | 0.27<br>0.43<br>0.19<br>0.14<br>0.12<br>0.11<br>0.08<br>0.08                              | gr 5194<br>gr 52994 |
| Germany, 1994<br>(Kerner)                        | WP includes<br>folpet                 | 0.10                            |             | 400<br>+600<br>+800<br>+800 | 3 4    | 18<br>0<br>14<br>29<br>34<br>43<br>34<br>34<br>34 | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>young wine<br>wine | 0.30<br>0.45<br>0.33<br>0.24<br>0.18<br>0.23<br>0.11<br>0.12                              | gr 5194<br>gr 52894 |
| Germany, 1997<br>(Riesling)                      | WP includes<br>folpet                 | 0.10<br>+0.10<br>+0.10<br>+0.12 |             | 400<br>+600<br>+800<br>+800 | 3 4    | 35<br>0<br>14<br>28<br>35<br>42<br>35             | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>young wine         | 0.13<br>0.32<br>0.19<br>0.11<br>0.08<br>0.04<br>0.06                                      | gr 50597            |

| GRAPES                               | Application                        |                                 |        |                             | PHI,   | Commodity                                              | Residues, mg/kg                                                                        | Ref.                                                                                                                                                                   |          |
|--------------------------------------|------------------------------------|---------------------------------|--------|-----------------------------|--------|--------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| country, year (variety)              | Form                               | kg ai/ha                        | kg     | water,                      | No.    | days                                                   |                                                                                        | metalaxyl-M <sup>1</sup>                                                                                                                                               |          |
|                                      |                                    |                                 | aı/hl  | l/ha                        |        |                                                        |                                                                                        |                                                                                                                                                                        |          |
| Germany, 1997<br>(Riesling)          | metalaxyl WP<br>includes<br>folpet | 0.20<br>+0.20<br>+0.20<br>+0.24 |        | 400<br>+600<br>+800<br>+800 | 3<br>4 | 35<br>28<br>42<br>35                                   | grapes<br>grapes<br>grapes<br>young wine                                               | 0.41 metalaxyl<br>0.31 metalaxyl<br>0.13 metalaxyl<br>0.13 metalaxyl                                                                                                   | gr 50597 |
| Italy, 1994 (Moscato)                | WP includes<br>copper              | 0.10                            | 0.02   | 500                         | 4      | 0<br>7<br>14<br>21<br>28<br>44<br>85<br>85<br>85       | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>new wine<br>wine           | $\begin{array}{c} 0.29 \ c \ 0.07 \\ 0.17 \\ 0.15 \\ \underline{0.19} \ c \ 0.31 \\ 0.13 \\ 0.08 \\ 0.04 \ c \ 0.10 \\ 0.03 \ c \ 0.05 \\ 0.04 \ c \ 0.03 \end{array}$ | 2124/94  |
| Italy, 1994 (Schiava)                | WP includes<br>folpet              | 0.10                            | 0.0094 | 1060                        | 3      | 0<br>7<br>14<br>21<br>28<br>45<br>78<br>78<br>78<br>78 | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>new wine<br>wine | 0.10<br>0.07<br><u>0.04</u><br>0.03<br>0.02<br>0.02<br><0.02<br><0.02<br><0.02<br><0.02                                                                                | 2123/94  |
| Italy, 1994 (Tocai)                  | WP includes<br>copper              | 0.10                            | 0.09   | 1100                        | 4      | 0<br>7<br>14<br>21<br>28<br>46<br>74<br>74<br>74       | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>new wine<br>wine           | 0.71 c 0.16<br>0.26<br><u>0.21</u><br>0.19<br>0.17 c 0.10<br>0.07<br>0.04 c 0.02<br><0.02<br><0.02                                                                     | 2125/94  |
| Italy, 1994 (Trebbiano<br>Romagnolo) | WP includes<br>folpet              | 0.10                            | 0.01   | 1000                        | 3      | 0<br>7<br>14<br>21<br>28<br>45<br>88<br>88<br>88<br>88 | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>new wine<br>wine | $ \begin{array}{c} 1.2 \text{ c}0.06 \\ 0.60 \\ \underline{0.55} \\ 0.40 \\ 0.44 \text{ c} 0.03 \\ 0.26 \\ 0.17 \text{ c} 0.03 \\ 0.05 \\ 0.03 \end{array} $           | 2122/94  |
| Italy, 1997 (Merlot)                 | WP includes<br>mancozeb            | 0.10                            | 0.01   | 1000                        | 3 4    | 12<br>0<br>14<br>21<br>28<br>42<br>42<br>42<br>42      | grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>grapes<br>young wine<br>wine         | 0.04<br>0.10<br><u>0.06</u><br>0.03<br>0.03<br>0.02<br><0.02<br><0.02                                                                                                  | 2035/97  |
| GRAPES                  | Application |          |       | PHI,   | Commodity | Residues, mg/kg | Ref.       |                          |         |
|-------------------------|-------------|----------|-------|--------|-----------|-----------------|------------|--------------------------|---------|
| country, year (variety) | Form        | kg ai/ha | kg    | water, | No.       | days            |            | metalaxyl-M <sup>1</sup> |         |
|                         |             |          | ai/ni | I/na   |           |                 |            |                          |         |
| Portugal, 1997          | WP includes | 0.10     | 0.01  | 1000   | 3         | 14              | grapes     | 0.09                     | 2030/97 |
| (Periquita)             | mancozeb    |          |       |        | 4         | 0               | grapes     | 0.16                     |         |
| · • •                   |             |          |       |        |           | 14              | grapes     | 0.18                     |         |
|                         |             |          |       |        |           | 21              | grapes     | 0.10                     |         |
|                         |             |          |       |        |           | 28              | grapes     | 0.10                     |         |
|                         |             |          |       |        |           | 42              | grapes     | 0.07                     |         |
|                         |             |          |       |        |           | 42              | young wine | 0.18                     |         |
|                         |             |          |       |        |           | 42              | wine       | 0.08                     |         |
| Switzerland, 1997       | WP includes | 0.10     | 0.083 | 1200   | 3         | 14              | grapes     | 0.41                     | 2332/97 |
| (Pinot Noir)            | folpet      |          |       |        | 4         | 0               | grapes     | 0.96                     |         |
|                         |             |          |       |        |           | 14              | grapes     | 0.43                     |         |
|                         |             |          |       |        |           | 21              | grapes     | 0.49                     |         |
|                         |             |          |       |        |           | 28              | grapes     | 0.52                     |         |
|                         |             |          |       |        |           | 42              | grapes     | 0.24                     |         |
|                         |             |          |       |        |           | 42              | young wine | 0.24                     |         |
|                         |             |          |       |        |           | 42              | wine       | 0.27                     |         |

<sup>1</sup> c: control sample from untreated plot <sup>2</sup> Fermented only until 25 g/l residual sugar.

<sup>3</sup> Suffered drought damage: berries small and matured 1 month earlier than expected, vines defoliated with bird damage to the berries, which were left on the vines too long. The trial was described as atypical and should be disregarded.

| Table 21.  | Metalaxyl-M | residues | in | onion | bulbs | from | supervised | trials | in | Brazil, | Italy, | Spain | and |
|------------|-------------|----------|----|-------|-------|------|------------|--------|----|---------|--------|-------|-----|
| Switzerlan | d.          |          |    |       |       |      |            |        |    |         |        |       |     |

| Country, year (variety)          |                               | App      | lication |             |     | PHI,                    | Residues, mg/kg                                            | Ref.          |
|----------------------------------|-------------------------------|----------|----------|-------------|-----|-------------------------|------------------------------------------------------------|---------------|
|                                  | Form                          | kg ai/ha | kg ai/hl | water, l/ha | No. | days                    | metalaxyl-M                                                |               |
| Brazil (SP), 1997<br>(Cerrana)   | WP includes<br>mancozeb       | 0.10     |          |             | 4   | 0<br>3<br>7<br>10<br>14 | <0.02<br><0.02<br>< <u>0.02</u><br><0.02<br><0.02<br><0.02 | FR 033/96     |
| Brazil (SP), 1997<br>(Cerrana)   | WP includes<br>mancozeb       | 0.20     |          |             | 4   | 0<br>3<br>7<br>10<br>14 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02         | FR 034/96     |
| Brazil (SP), 1997<br>(Granex 33) | WP includes chlorothalonil    | 0.10     |          |             | 4   | 7<br>14                 | <u>0.02</u><br><0.02                                       | RFFA<br>09/97 |
| Brazil (SP), 1997<br>(Granex 33) | WP includes chlorothalonil    | 0.20     |          |             | 4   | 7<br>14                 | 0.03<br>0.03                                               | RFFA<br>09/97 |
| Brazil (SP), 1997<br>(Serrana)   | WP includes<br>chlorothalonil | 0.10     |          |             | 4   | 0<br>3<br>7<br>10<br>14 | <0.02<br><0.02<br>< <u>0.02</u><br><0.02<br><0.02          | RFZO<br>09/97 |
| Brazil (SP), 1997<br>(Serrana)   | WP includes chlorothalonil    | 0.20     |          |             | 4   | 0                       | <0.02                                                      | RFZO<br>09/97 |

| Country, year (variety)          |                                      | App      | olication |             |        | PHI,                         | Residues, mg/kg                                           | Ref.    |  |
|----------------------------------|--------------------------------------|----------|-----------|-------------|--------|------------------------------|-----------------------------------------------------------|---------|--|
|                                  | Form                                 | kg ai/ha | kg ai/hl  | water, l/ha | No.    | days                         | metalaxyl-M                                               |         |  |
| Italy, 1997 (Density)            | WP includes<br>copper<br>oxychloride | 0.15     | 0.025     | 600         | 2<br>3 | 11<br>0<br>7<br>14<br>21     | <0.02<br>0.02<br><0.02<br><0.02<br><0.02<br><0.02         | 2032/97 |  |
| Italy, 1997 (Density)            | SC includes chlorothalonil           | 0.10     | 0.017     | 600         | 2<br>3 | 11<br>0<br>7<br>14<br>21     | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02        | 2033/97 |  |
| Italy, 1998 (Musona)             | WP includes<br>copper<br>oxychloride | 0.15     | 0.021     | 700         | 3      | 0<br>3<br>7<br>21            | 0.05<br><0.02<br><0.02<br><0.02<br><0.02                  | 2025/98 |  |
| Italy, 1998 (Musona)             | SC includes chlorothalonil           | 0.10     | 0.014     | 700         | 3      | 0<br>3<br>7<br>21            | 0.03<br><0.02<br><0.02<br><0.02                           | 2025/98 |  |
| Spain, 1997 (Liria)              | WP includes<br>mancozeb              | 0.15     | 0.030     | 500         | 2<br>3 | 7<br>0<br>4<br>7<br>14<br>21 | <0.02<br>0.06<br>0.02<br><0.02<br><0.02<br><0.02<br><0.02 | 2013/97 |  |
| Spain, 1997 (Llopis)             | WP includes<br>mancozeb              | 0.15     | 0.038     | 400         | 2<br>3 | 8<br>0<br>3<br>7<br>14<br>21 | <0.02<br>0.07<br><0.02<br>0.02<br><0.02<br><0.02<br><0.02 | 2014/97 |  |
| Switzerland, 1997<br>(Burgos F1) | WP includes<br>mancozeb              | 0.15     | 0.019     | 800         | 2<br>3 | 9<br>0<br>7<br>14<br>21      | <0.02<br>0.04<br><0.02<br><0.02<br>< <u>0.02</u>          | 2338/97 |  |
| Switzerland, 1997<br>(Burgos F1) | SC includes chlorothalonil           | 0.10     | 0.013     | 800         | 2<br>3 | 9<br>0<br>7<br>14<br>21      | <0.02<br>0.03<br><0.02<br><0.02<br>< <u>0.02</u>          | 2339/97 |  |
| Switzerland, 1997<br>(Copra F1)  | WP includes<br>mancozeb              | 0.15     | 0.019     | 800         | 2<br>3 | 8<br>0<br>7<br>14<br>21      | <0.02<br><0.02<br><0.02<br><0.02<br>< <u>0.02</u>         | 2340/97 |  |
| Switzerland, 1997<br>(Copra F1)  | SC includes chlorothalonil           | 0.10     | 0.013     | 800         | 2<br>3 | 8<br>0<br>7<br>14<br>21      | <0.02<br><0.02<br><0.02<br><0.02<br>< <u>0.02</u>         | 2341/97 |  |

| Country, year (variety)                    |                         | Appl     | ication  |             | PHI    | Residues,                      | Ref.                                                                                                                    |         |
|--------------------------------------------|-------------------------|----------|----------|-------------|--------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|
|                                            | Form                    | kg ai/ha | kg ai/hl | water, l/ha | No.    | days                           | ing/kg                                                                                                                  |         |
| France, 1997 (4369)<br>greenhouse          | WP includes<br>mancozeb | 0.15     | 0.038    | 400         | 4      | 3                              | <u>0.08</u>                                                                                                             | 2349/97 |
| France, 1997 (Kalimba)<br>greenhouse       | WP includes<br>mancozeb | 0.15     | 0.038    | 400         | 4      | 3                              | < <u>0.02</u>                                                                                                           | 2350/97 |
| France, 1997 (Le<br>Trepier)<br>greenhouse | WP includes<br>mancozeb | 0.15     | 0.037    | 400         | 3 4    | 7<br>0<br>3<br>7<br>14<br>22   | <0.02<br><0.02<br>< <u>0.02</u><br>< <u>0.02</u><br>< <u>0.02</u><br>< <u>0.02</u><br>< <u>0.02</u> c 0.02 <sup>1</sup> | 2347/97 |
| France, 1997<br>(Roncoula)<br>greenhouse   | WP includes<br>mancozeb | 0.15     | 0.038    | 400         | 3 4    | 7<br>0<br>3<br>7<br>14<br>21   | <0.02<br>0.05<br><u>0.02</u><br><0.02<br><0.02<br><0.02                                                                 | 2348/97 |
| France, 2001 (Brenda)<br>greenhouse        | WG includes mancozeb    | 0.15     | 0.015    | 1000        | 4      | 3                              | <u>0.03</u>                                                                                                             | 0111301 |
| France, 2001 (Granitio)<br>greenhouse      | WG includes<br>mancozeb | 0.15     | 0.015    | 1000        | 4      | 0<br>1<br>3<br>7<br>10         | 0.05<br>0.02<br><u>0.04</u><br><0.02<br><0.02                                                                           | 0111401 |
| Spain, 1997 (Genaro)                       | WP includes<br>mancozeb | 0.15     | 0.0088   | 1700        | 3<br>4 | 11<br>0<br>7<br>14<br>21<br>28 | <0.02<br>0.06<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                                                              | 2011/97 |
| Spain, 1997 (Royestra)                     | WP includes<br>mancozeb | 0.15     | 0.015    | 1000        | 3 4    | 12<br>0<br>7<br>14<br>21<br>28 | <0.02<br>0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02                                                              | 2012/97 |
| Spain, 1998 (Daniella)<br>greenhouse       | WP includes<br>mancozeb | 0.15     | 0.015    | 1000        | 4      | 0<br>3<br>7<br>14<br>20        | 0.23<br><u>0.18</u><br>0.07<br>0.06<br>0.03                                                                             | 2048/98 |

# Table 22. Metalaxyl-M residues in tomatoes from supervised trials in France, Spain and Switzerland.

| Country, year (variety)                    |                         | Appl     | ication  |             |        | PHI                     | Residues,                                      | Ref.    |
|--------------------------------------------|-------------------------|----------|----------|-------------|--------|-------------------------|------------------------------------------------|---------|
|                                            | Form                    | kg ai/ha | kg ai/hl | water, l/ha | No.    | days                    |                                                |         |
| Spain, 1998 (Genaro)<br>greenhouse         | WP includes<br>mancozeb | 0.15     | 0.012    | 1300        | 4      | 0<br>3<br>7<br>14<br>21 | 0.17<br><u>0.05</u><br><0.02<br><0.02<br><0.02 | 2049/98 |
| Switzerland, 1997<br>(Cristal)             | WP includes<br>mancozeb | 0.15     | 0.0075   | 2000        | 4      | 3                       | 0.02                                           | 2334/97 |
| Switzerland, 1997<br>(Cristal)             | WP includes copper      | 0.15     | 0.0075   | 2000        | 4      | 3                       | <0.02                                          | 2335/97 |
| Switzerland, 1997<br>(Selhardy)            | WP includes<br>copper   | 0.15     | 0.0075   | 2000        | 3<br>4 | 7<br>0<br>3<br>7<br>14  | <0.02<br>0.04<br><0.02<br><0.02<br><0.02       | 2337/97 |
| Switzerland, 1997<br>(Selhardy)            | WP includes<br>mancozeb | 0.15     | 0.0075   | 2000        | 3<br>4 | 7<br>0<br>3<br>7<br>14  | <0.02<br>0.03<br><0.02<br><0.02<br><0.02       | 2336/97 |
| Switzerland, 1998<br>(Paola)<br>greenhouse | WG includes<br>mancozeb | 0.15     | 0.0075   | 2000        | 4      | 0<br>3<br>7<br>14<br>21 | 0.18<br><u>0.09</u><br>0.06<br>0.03<br><0.02   | 2071/98 |
| Switzerland, 1998<br>(Paola)<br>greenhouse | WG includes<br>mancozeb | 0.15     | 0.0075   | 2000        | 4      | 0<br>3<br>7<br>14<br>21 | 0.07<br><u>0.04</u><br>0.02<br><0.02<br><0.02  | 2072/98 |
| Switzerland, 2001<br>(Paola)<br>greenhouse | WG includes mancozeb    | 0.15     | 0.0083   | 1800        | 4      | 3                       | <u>0.12</u>                                    | 2011/01 |
| Switzerland, 2001<br>(Paola)<br>greenhouse | WG includes<br>mancozeb | 0.15     | 0.015    | 1000        | 4      | 0<br>1<br>3             | 0.12<br>0.08<br><u>0.05</u>                    | 2012/01 |

<sup>1</sup> c: sample from control plot.

Table 23. Metalaxyl-M residues in sweet peppers from supervised trials in Italy and Spain with a granular formulation used in soil treatments.

| Country, year (variety)             |      | Application           | PHI | Residues, mg/kg | Ref.          |                   |
|-------------------------------------|------|-----------------------|-----|-----------------|---------------|-------------------|
|                                     | Form | kg ai/ha              | No. | days            |               |                   |
| Italy, 1997 (Benrico)<br>greenhouse | GR   | 1.0<br>soil treatment | 3   | 10              | < <u>0.02</u> | 121/97<br>2130/97 |

| Country, year (variety)              | Form | Application<br>kg ai/ha | No.    | PHI<br>days                    | Residues, mg/kg                                                            | Ref.              |
|--------------------------------------|------|-------------------------|--------|--------------------------------|----------------------------------------------------------------------------|-------------------|
| Italy, 1997 (Campor)<br>greenhouse   | GR   | 1.0<br>soil treatment   | 2<br>3 | 20<br>0<br>5<br>10<br>20       | <0.02<br>0.02<br><0.02<br>< <u>0.02</u><br><0.02                           | 121/97<br>2129/97 |
| Italy, 1997 (Friariello)             | GR   | 1.0<br>soil treatment   | 3      | 30                             | <0.02                                                                      | 2045/97           |
| Italy, 1997 (Magister)               | GR   | 1.0<br>soil treatment   | 2<br>3 | 20<br>0<br>5<br>9<br>20        | <0.02<br><0.02<br><0.02<br><u>0.02</u><br>0.02                             | 121/97<br>2127/97 |
| Italy, 1997 (Osir)                   | GR   | 1.0<br>soil treatment   | 3      | 9                              | < <u>0.02</u>                                                              | 121/97<br>2128/97 |
| Italy, 1997 (Peto)                   | GR   | 1.0<br>soil treatment   | 2<br>3 | 39<br>0<br>5<br>10<br>20       | <0.02<br><0.02<br><0.02<br>< <u>0.02</u><br>< <u>0.02</u><br>< <u>0.02</u> | 2044/97           |
| Spain, 1997 (Diamante)<br>greenhouse | GR   | 1.0<br>soil treatment   | 2<br>3 | 40<br>0<br>5<br>10<br>15<br>20 | 0.04<br>0.03<br>0.02<br>0.02<br><u>0.02</u><br>0.02                        | 2008/97           |
| Spain, 1997 (Italico)<br>greenhouse  | GR   | 1.0<br>soil treatment   | 2<br>3 | 46<br>0<br>5<br>10<br>15<br>20 | 0.08<br>0.07<br>0.25<br>0.40<br>0.35<br><u>0.36</u>                        | 2007/97           |
| Spain, 1998 (Estar)<br>greenhouse    | GR   | 1.0<br>soil treatment   | 3      | 0<br>5<br>10<br>15<br>20       | 0.12<br>0.08<br>0.09<br><u>0.08</u><br>0.03                                | 2046/98           |
| Spain, 1998 (Italico)<br>greenhouse  | GR   | 1.0<br>soil treatment   | 3      | 10                             | 0.24                                                                       | 2047/98           |
| Spain, 2000 (Cadia)<br>greenhouse    | GR   | 1.0<br>soil treatment   | 3      | 0<br>3<br>7<br>15<br>21        | 0.06<br>0.05<br>0.07<br><u>0.10</u><br>0.07                                | 2024/00           |
| Spain, 2000 (Roxi)<br>greenhouse     | GR   | 1.0<br>soil treatment   | 3      | 0<br>3<br>7<br>15<br>21        | 0.04<br>0.05<br>0.06<br><u>0.03</u><br>0.02                                | 2023/00           |

| Country, year                                         |                                         | Application            |          |                     |     |                          |                                           | Residues, mg/kg                     | Ref.    |
|-------------------------------------------------------|-----------------------------------------|------------------------|----------|---------------------|-----|--------------------------|-------------------------------------------|-------------------------------------|---------|
| (variety)                                             | Form                                    | kg ai/ha               | kg ai/hl | water, l/ha         | No. | days                     | -                                         |                                     |         |
| France, 1997 (head lettuce, Christine)                | WP includes<br>mancozeb                 | 0.10                   | 0.025    | 400                 | 3   | 14                       | heads                                     | 0.03                                | 2262/97 |
| France, 1997 (head lettuce, Flandria)                 | WP includes<br>mancozeb                 | 0.10 <sup>1</sup>      | 0.030    | 330                 | 3   | 14                       | heads                                     | <0.02                               | 2263/97 |
| France, 1997 (head lettuce, Floreal)                  | WP includes<br>mancozeb                 | 0.10                   | 0.025    | 400                 | 3   | 14                       | heads                                     | <0.02                               | 2260/97 |
| France, 1997 (head lettuce, Newton)                   | WP includes<br>mancozeb                 | 0.10                   | 0.025    | 400                 | 3   | 10<br>0<br>7<br>15<br>21 | heads<br>heads<br>heads<br>heads<br>heads | 0.03<br>1.5<br>0.06<br>0.02<br>0.03 | 2261/97 |
| France, 1999 (head lettuce, Angie) <i>greenhouse</i>  | WG includes<br>acibenzolar-S-<br>methyl | 0.14                   | 0.035    | 400                 | 3   | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 3.0<br>1.6<br>1.0<br>0.64<br>0.43   | 2169/99 |
| France, 1999 (head lettuce, Angie) <i>greenhouse</i>  | WG includes<br>acibenzolar-S-<br>methyl | 0.14                   | 0.035    | 400                 | 3   | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 4.5<br>2.6<br>1.5<br>1.1<br>0.43    | 2170/99 |
| France, 1999 (head<br>lettuce, Augié)<br>greenhouse   | WG includes<br>acibenzolar-S-<br>methyl | 0.14<br>+0.14<br>+0.13 | 0.035    | 400<br>+410<br>+370 | 3   | 11                       | heads                                     | 0.86                                | 2000/00 |
| France, 1999 (head<br>lettuce, Nalis)<br>greenhouse   | WG includes<br>acibenzolar-S-<br>methyl | 0.14                   | 0.035    | 400                 | 4   | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 8.1<br>4.0<br>1.8<br>1.0<br>0.50    | 2171/99 |
| France, 1999 (head lettuce, Norma) <i>greenhouse</i>  | WG includes<br>acibenzolar-S-<br>methyl | 0.14                   | 0.035    | 400                 | 3   | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 7.3<br>3.0<br>1.8<br>1.7<br>1.1     | 2172/99 |
| France, 2000 (head<br>lettuce, Manita)<br>greenhouse  | WG includes<br>acibenzolar-S-<br>methyl | 0.14<br>+0.15<br>+0.16 | 0.035    | 410<br>+430<br>+440 | 3   | 10                       | heads                                     | 0.17                                | 2001/00 |
| France, 2000 (head<br>lettuce, Perlane)<br>greenhouse | WG includes<br>acibenzolar-S-<br>methyl | 0.14                   | 0.028    | 500                 | 3   | 10                       | heads                                     | 0.15                                | 2002/00 |

Table 24. Metalaxyl-M residues in lettuce from supervised trials in France, Germany, Italy, The Netherlands, Spain and Switzerland.

| Country, year                                               |                       | App      | lication |             |        | PHI,                     | Sample                                                      | Residues, mg/kg                                | Ref.     |
|-------------------------------------------------------------|-----------------------|----------|----------|-------------|--------|--------------------------|-------------------------------------------------------------|------------------------------------------------|----------|
| (variety)                                                   | Form                  | kg ai/ha | kg ai/hl | water, l/ha | No.    | days                     | 1                                                           |                                                |          |
| Germany, 1997<br>(head lettuce,<br>Rapsodi)                 | WP includes<br>folpet | 0.10     | 0.017    | 600         | 2<br>3 | 8<br>0<br>6<br>14<br>21  | heads<br>heads<br>heads<br>heads<br>heads                   | 0.07<br>3.6<br>0.56<br>0.04<br><u>0.02</u>     | 2255/97  |
| Germany, 1997<br>(head lettuce,<br>Rapsodi)<br>greenhouse   | WP includes<br>folpet | 0.10     | 0.017    | 600         | 2<br>3 | 7<br>0<br>7<br>14<br>21  | heads<br>heads<br>heads<br>heads<br>heads                   | 0.40<br>10<br>0.72<br>0.07<br>< <u>0.02</u>    | 2254/97  |
| Germany, 1997<br>(head lettuce, Rosali)                     | WP includes<br>folpet | 0.10     | 0.017    | 600         | 2<br>3 | 12<br>0<br>7<br>14<br>21 | heads<br>heads<br>heads<br>heads<br>heads                   | <0.02<br>3.5<br>0.04<br>0.03<br>< <u>0.02</u>  | 2252/97  |
| Germany, 1997<br>(head lettuce, Rosali)                     | WP includes<br>folpet | 0.10     | 0.017    | 600         | 2<br>3 | 9<br>0<br>7<br>14<br>21  | heads<br>heads<br>heads<br>heads<br>heads                   | <0.02<br>2.6<br>0.04<br>0.03<br><u>0.03</u>    | 2253/97  |
| Germany, 1998<br>(head lettuce,<br>Macarena)                | WP includes<br>folpet | 0.10     |          | 610         | 2      | 0<br>7<br>10<br>14<br>21 | plants<br>plants<br>heads<br>heads<br>heads                 | 1.6<br>0.06<br><0.02<br><0.02<br>< <u>0.02</u> | gr 22998 |
| Germany, 1998<br>(head lettuce,<br>Troubadur)<br>greenhouse | WP includes<br>folpet | 0.10     |          | 630         | 2      | 0<br>7<br>10<br>14<br>21 | whole<br>plant<br>whole<br>plant<br>heads<br>heads<br>heads | 3.4<br>1.7<br>0.94<br>0.59<br><u>0.41</u>      | gr 23998 |
| Germany, 2000<br>(head lettuce,<br>Fiorella)                | WP includes<br>folpet | 0.10     |          | 610         | 3      | 0<br>14                  | plants<br>heads                                             | 1.1<br>0.02                                    | gr 52700 |
| Germany, 2000<br>(head lettuce,<br>Nadine)                  | WP includes<br>folpet | 0.10     |          | 610         | 3      | 0<br>14                  | plants<br>heads                                             | 2.1<br>0.02                                    | gr 51900 |
| Germany, 2000<br>(head lettuce,<br>Nadine)                  | WP includes<br>folpet | 0.10     |          | 630         | 3      | 0<br>7<br>10<br>13<br>20 | plants<br>plants<br>heads<br>heads<br>heads                 | 1.2<br>0.09<br>0.02<br><0.02<br>< <u>0.02</u>  | gr 50800 |
| Germany, 2000<br>(lettuce, Pullmann)                        | WP includes<br>folpet | 0.10     |          | 600         | 3      | 0<br>7<br>10<br>14<br>20 | plants<br>plants<br>plants<br>heads<br>heads                | 2.6<br>0.03<br>0.02<br><0.02<br>< <u>0.02</u>  | gr 49500 |

| Country, year                                            |                                         | lication       |          |               | PHI.   | Sample                   | Residues, mg/kg                           | Ref.                                           |                      |
|----------------------------------------------------------|-----------------------------------------|----------------|----------|---------------|--------|--------------------------|-------------------------------------------|------------------------------------------------|----------------------|
| (variety)                                                | Form                                    | kg ai/ha       | kg ai/hl | water, l/ha   | No.    | days                     | I I I                                     |                                                |                      |
| Italy, 1997 (head<br>lettuce, Justine)                   | WP includes<br>copper<br>oxychloride    | 0.10           | 0.016    | 600           | 2<br>3 | 10<br>0<br>7<br>14<br>21 | heads<br>heads<br>heads<br>heads<br>heads | <0.02<br>2.1<br>0.02<br>< <u>0.02</u><br><0.02 | 2062/97              |
| Italy, 1998 (head<br>lettuce, Martina)                   | WG includes<br>acibenzolar-S-<br>methyl | 0.14           | 0.023    | 600           | 3      | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 2.4<br>0.31<br>0.04<br>0.02<br>0.02            | 2028/98              |
| Italy, 1999 (head<br>lettuce, Martina)                   | WG includes<br>acibenzolar-S-<br>methyl | 0.14           | 0.014    | 1000          | 3      | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 1.8<br><0.02<br>0.02<br>0.02<br><0.02<br><0.02 | 2035/99              |
| Italy, 1999 (head<br>lettuce, Musette ez)                | WG includes<br>acibenzolar-S-<br>methyl | 0.14           | 0.014    | 1000          | 3      | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 2.3<br>1.7<br>0.26<br>0.07<br>0.02             | 2036/99              |
| Netherlands, 1999<br>(head lettuce,<br>Ardeola)          | WP includes<br>mancozeb                 | 0.11<br>+ 0.12 | 0.012    | 900<br>+ 1040 | 2      | 0<br>7<br>14<br>21       | heads<br>heads<br>heads<br>heads          | 0.84<br><0.02<br><0.02<br>< <u>0.02</u>        | 2131/99              |
| Netherlands, 1999<br>(head lettuce,<br>Einstein)         | WP includes<br>mancozeb                 | 0.12<br>+ 0.13 | 0.012    | 970<br>+ 1060 | 2      | 0<br>7<br>14<br>21       | heads<br>heads<br>heads<br>heads          | 1.2<br><0.02<br><0.02<br>< <u>0.02</u>         | 2132/99              |
| Spain, 1999 (head<br>lettuce, Iceberg)                   | WG includes<br>acibenzolar-S-<br>methyl | 0.14           | 0.020    | 700           | 3      | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 0.11<br>0.07<br>0.02<br><0.02<br><0.02         | 2009/99 <sup>2</sup> |
| Spain, 1999 (head<br>lettuce, Iceberg)                   | WG includes<br>acibenzolar-S-<br>methyl | 0.14           | 0.020    | 700           | 3      | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 0.10<br>0.07<br>0.02<br><0.02<br><0.02         | 2010/99 <sup>2</sup> |
| Switzerland, 1999<br>(head lettuce, Levis)<br>greenhouse | WG includes<br>acibenzolar-S-<br>methyl | 0.14           | 0.018    | 800           | 3      | 0<br>3<br>7<br>11<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 5.2<br>3.7<br>1.8<br>0.96<br>0.68              | 2052/99              |
| Switzerland, 1999<br>(head lettuce, Reskia<br>NL)        | WG includes<br>acibenzolar-S-<br>methyl | 0.14           | 0.018    | 800           | 3      | 0<br>3<br>7<br>10<br>14  | heads<br>heads<br>heads<br>heads<br>heads | 1.0<br>0.13<br>0.04<br>0.02<br><0.02           | 2050/99              |

| Country, year                                     |                                         | App      | lication |             | PHI, | Sample                  | Residues, mg/kg                           | Ref.                                   |         |
|---------------------------------------------------|-----------------------------------------|----------|----------|-------------|------|-------------------------|-------------------------------------------|----------------------------------------|---------|
| (variety)                                         | Form                                    | kg ai/ha | kg ai/hl | water, l/ha | No.  | days                    |                                           |                                        |         |
| Switzerland, 1999<br>(head lettuce, Reskia<br>NL) | WG includes<br>acibenzolar-S-<br>methyl | 0.14     | 0.018    | 800         | 3    | 0<br>3<br>7<br>10<br>14 | heads<br>heads<br>heads<br>heads<br>heads | 1.6<br>0.07<br><0.02<br><0.02<br><0.02 | 2051/99 |

<sup>1</sup> Outdoor foliar under protective covering. <sup>2</sup> Trials 2009/99 and 2010/99 appear to be replicate plots with same treatment rather than separate trials.

Table 25. Metalaxyl-M residues in spinach resulting from supervised trials in France, Germany and Switzerland.

| Country, year<br>(variety)               |                               | Appl     | ication  |             |              | PHI,                     | Sample                               | Residues,                                   | Ref.              |
|------------------------------------------|-------------------------------|----------|----------|-------------|--------------|--------------------------|--------------------------------------|---------------------------------------------|-------------------|
| (functy)                                 | Form                          | kg ai/ha | kg ai/hl | water, l/ha | No.          | days                     |                                      | mg/kg                                       |                   |
| France<br>(Beaucaire), 1997<br>(Kerdion) | WP includes<br>copper         | 0.10     | 0.029    | 360         | 1<br>2       | 10<br>0<br>5<br>10<br>21 | leaf<br>leaf<br>leaf<br>leaf<br>leaf | 0.03<br>3.5<br>0.09<br><u>0.02</u><br><0.02 | 125/97<br>2142/97 |
| France<br>(Beaucaire), 1997<br>(Kerdion) | ES                            |          |          |             | ST           | 105                      | leaf                                 | <0.02                                       | 125/97<br>2141/97 |
| France<br>(Beaucaire), 1997<br>(Kerdion) | ES<br>+ WP includes<br>copper | 0.10     | 0.029    | 360         | ST<br>1<br>2 | 10<br>0<br>5<br>10<br>21 | leaf<br>leaf<br>leaf<br>leaf<br>leaf | 0.05<br>2.8<br>0.07<br><u>0.02</u><br><0.02 | 125/97<br>2143/97 |
| France (Senas),<br>1997 (Kerdion)        | WP includes<br>copper         | 0.10     | 0.029    | 360         | 1<br>2       | 10<br>0<br>5<br>10<br>20 | leaf<br>leaf<br>leaf<br>leaf<br>leaf | 0.02<br>2.7<br>0.18<br><u>0.05</u><br>0.03  | 125/97<br>2148/97 |
| France (Senas),<br>1997 (Kerdion)        | ES                            |          |          |             | ST           | 108                      | leaf                                 | <0.02                                       | 125/97<br>2147/97 |
| France (Senas),<br>1997 (Kerdion)        | ES<br>+ WP includes<br>copper | 0.10     | 0.029    | 360         | ST<br>1<br>2 | 10<br>0<br>5<br>10<br>20 | leaf<br>leaf<br>leaf<br>leaf<br>leaf | 0.03<br>3.3<br>0.19<br><u>0.04</u><br>0.03  | 125/97<br>2149/97 |
| France (Tarascon),<br>1997 (Kerdion)     | WP includes copper            | 0.10     | 0.029    | 360         | 1<br>2       | 10<br>0<br>5<br>10<br>21 | leaf<br>leaf<br>leaf<br>leaf<br>leaf | 0.03<br>2.1<br>0.07<br><u>0.02</u><br><0.02 | 125/97<br>2145/97 |

| Country, year<br>(variety)           |                                         | Application       |          |             |              |                          | Sample                                         | Residues,                                                | Ref.              |
|--------------------------------------|-----------------------------------------|-------------------|----------|-------------|--------------|--------------------------|------------------------------------------------|----------------------------------------------------------|-------------------|
|                                      | Form                                    | kg ai/ha          | kg ai/hl | water, l/ha | No.          | days                     |                                                | mg/kg                                                    |                   |
| France (Tarascon),<br>1997 (Kerdion) | WP includes<br>copper                   | 0.10              | 0.029    | 360         | 1<br>2       | 10<br>0<br>5<br>10<br>20 | leaf<br>leaf<br>leaf<br>leaf<br>leaf           | 0.03<br>3.3<br>0.10<br><u>0.04</u><br>0.02               | 125/97<br>2151/97 |
| France (Tarascon),<br>1997 (Kerdion) | ES                                      |                   |          |             | ST           | 105                      | leaf                                           | <0.02                                                    | 125/97<br>2144/97 |
| France (Tarascon),<br>1997 (Kerdion) | ES                                      |                   |          |             | ST           | 103                      | leaf                                           | <0.02                                                    | 125/97<br>2150/97 |
| France (Tarascon),<br>1997 (Kerdion) | ES<br>+ WP includes<br>copper           | 0.10              | 0.029    | 360         | ST<br>1<br>2 | 10<br>0<br>5<br>10<br>21 | leaf<br>leaf<br>leaf<br>leaf<br>leaf           | 0.03<br>2.2<br>0.05<br><u>0.02</u><br><0.02              | 125/97<br>2146/97 |
| France (Tarascon),<br>1997 (Kerdion) | ES<br>+ WP includes<br>copper           | 0.10              | 0.029    | 360         | ST<br>1<br>2 | 10<br>0<br>5<br>10<br>20 | leaf<br>leaf<br>leaf<br>leaf<br>leaf           | 0.03<br>2.9<br>0.07<br><u>0.03</u><br><0.02              | 125/97<br>2152/97 |
| France, 1999<br>(Santana)            | WG includes<br>acibenzolar-S-<br>methyl | 0.10 <sup>1</sup> | 0.025    | 380         | 3            | 10                       | leaf                                           | < <u>0.02</u>                                            | 2062/99           |
| France, 1999<br>(Santana)            | WG includes<br>acibenzolar-S-<br>methyl | 0.141             | 0.035    | 390         | 3            | 10                       | leaf                                           | < <u>0.02</u>                                            | 2062/99           |
| Germany, 1998<br>(Bolero)            | WP includes<br>folpet                   | 0.10              |          | 580         | 2            | 0<br>7<br>10<br>14<br>21 | leaf<br>leaf<br>leaf<br>leaf<br>leaf           | 5.1<br><0.02<br><0.02<br>< <u>0.02</u><br><0.02          | gr 24998          |
| Germany, 1998<br>(Laska)             | WP includes<br>folpet                   | 0.10              |          | 600         | 2            | 0<br>7<br>10<br>14<br>21 | leaf<br>leaf<br>leaf<br>leaf<br>leaf           | 4.3<br>0.13<br>0.02<br>< <u>0.02</u><br><0.02            | gr 25998          |
| Switzerland, 1999<br>(Chica F1)      | WG includes<br>acibenzolar-S-<br>methyl | 0.10              | 0.013    | 800         | 3            | 0<br>3<br>7<br>10<br>14  | leaves<br>leaves<br>leaves<br>leaves<br>leaves | 2.6<br><0.02<br><0.02<br><0.02<br><0.02<br>< <u>0.02</u> | 2045/99           |
| Switzerland, 1999<br>(Chica F1)      | WG includes<br>acibenzolar-S-<br>methyl | 0.14              | 0.018    | 800         | 3            | 0<br>3<br>7<br>10<br>14  | leaves<br>leaves<br>leaves<br>leaves<br>leaves | 5.2<br>0.02<br><0.02<br><0.02<br>< <u>0.02</u>           | 2045/99           |

| Country, year<br>(variety)     |                                         | Appl     | ication  |             |     | PHI,                    | Sample                                                                  | Residues,                                       | Ref.    |
|--------------------------------|-----------------------------------------|----------|----------|-------------|-----|-------------------------|-------------------------------------------------------------------------|-------------------------------------------------|---------|
|                                | Form                                    | kg ai/ha | kg ai/hl | water, l/ha | No. | days                    |                                                                         | mg/kg                                           |         |
| Switzerland, 1999<br>(Monnopa) | WG includes<br>acibenzolar-S-<br>methyl | 0.10     | 0.013    | 800         | 3   | 10                      | whole plant                                                             | < <u>0.02</u>                                   | 2046/99 |
| Switzerland, 1999<br>(Monnopa) | WG includes<br>acibenzolar-S-<br>methyl | 0.14     | 0.018    | 800         | 3   | 10                      | whole plant                                                             | < <u>0.02</u>                                   | 2046/99 |
| Switzerland, 1999<br>(Monnopa) | WG includes<br>acibenzolar-S-<br>methyl | 0.10     | 0.013    | 800         | 3   | 0<br>3<br>7<br>10<br>14 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant | 2.0<br><0.02<br><0.02<br><0.02<br>< <u>0.02</u> | 2044/99 |
| Switzerland, 1999<br>(Monnopa) | WG includes<br>acibenzolar-S-<br>methyl | 0.14     | 0.018    | 800         | 3   | 0<br>3<br>7<br>10<br>14 | whole plant<br>whole plant<br>whole plant<br>whole plant<br>whole plant | 3.0<br>0.02<br><0.02<br><0.02<br>< <u>0.02</u>  | 2044/99 |

ST: seed treatment 0.088 kg ai/100 kg seed.

<sup>1</sup> seeds treated by the seller with metalaxyl before sowing.

| Table  | 26.    | Metalaxyl-M   | residues | in | potato | tubers | from | supervised | trials | in | Brazil, | Germany, |
|--------|--------|---------------|----------|----|--------|--------|------|------------|--------|----|---------|----------|
| Switze | erland | d and the UK. |          |    |        |        |      |            |        |    |         |          |

| Country, year                   |                            | Applic   | ation    |             |     | PHI,                    | Residues, mg/kg                                   | Ref.                |
|---------------------------------|----------------------------|----------|----------|-------------|-----|-------------------------|---------------------------------------------------|---------------------|
| (variety)                       | Form                       | kg ai/ha | kg ai/hl | water, l/ha | No. | days                    |                                                   |                     |
| Brazil (SP), 1997<br>(Achat)    | WP includes<br>mancozeb    | 0.10     |          |             | 4   | 7<br>14                 | < <u>0.02</u><br><0.02                            | FR 017/96           |
| Brazil (SP), 1997<br>(Achat)    | WP includes<br>mancozeb    | 0.20     |          |             | 4   | 7<br>14                 | < <u>0.02</u><br><0.02                            | FR 018/96           |
| Brazil (SP), 1997<br>(Achat)    | WP includes chlorothalonil | 0.10     |          |             | 4   | 0<br>7                  | <0.02<br>< <u>0.02</u>                            | RFFA 06/97          |
| Brazil (SP), 1997<br>(Achat)    | WP includes chlorothalonil | 0.20     |          |             | 4   | 7                       | < <u>0.02</u>                                     | RFFA 06/97          |
| Brazil (SP), 1997<br>(Monalisa) | WP includes chlorothalonil | 0.20     |          |             | 4   | 7                       | < <u>0.02</u>                                     | RFLU 06/97          |
| Brazil (SP), 1997<br>(Monalisa) | WP includes chlorothalonil | 0.10     |          |             | 4   | 0<br>3<br>7<br>14<br>21 | <0.02<br><0.02<br>< <u>0.02</u><br><0.02<br><0.02 | RFLU 06/97          |
| Germany, 1995<br>(Agria)        | WP includes<br>mancozeb    | 0.10     |          | 400         | 4   | 0<br>14                 | <0.02<br>< <u>0.02</u>                            | gr 4795<br>gr 41395 |
| Germany, 1995<br>(Agria)        | EC includes fluazinam      | 0.10     |          | 400         | 5   | 0<br>7                  | <0.02<br>< <u>0.02</u>                            | gr 4895<br>gr 41495 |

| Country, year                  |                         | Applica  | ation    |             |     | PHI,                   | Residues, mg/kg                                            | Ref.                |
|--------------------------------|-------------------------|----------|----------|-------------|-----|------------------------|------------------------------------------------------------|---------------------|
| (variety)                      | Form                    | kg ai/ha | kg ai/hl | water, l/ha | No. | days                   |                                                            |                     |
| Germany, 1995<br>(Linda)       | WP includes<br>mancozeb | 0.10     |          | 400         | 4   | 0<br>15                | <0.02<br>< <u>0.02</u>                                     | gr 4795<br>gr 31395 |
| Germany, 1995<br>(Linda)       | EC includes fluazinam   | 0.10     |          | 400         | 5   | 0<br>7                 | <0.02<br>< <u>0.02</u>                                     | gr 4895<br>gr 31495 |
| Germany, 1996<br>(Hansa)       | EC includes fluazinam   | 0.10     |          | 400         | 5   | 0<br>7                 | <0.02<br>< <u>0.02</u>                                     | gr 46696            |
| Germany, 1996<br>(Panda)       | EC includes fluazinam   | 0.10     |          | 400         | 5   | 0<br>7                 | <0.02<br>< <u>0.02</u>                                     | gr 45396            |
| Switzerland, 1998<br>(Agria)   | WP includes<br>mancozeb | 0.075    | 0.015    | 500         | 5   | 0<br>1<br>3<br>7<br>14 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br>< <u>0.02</u> | 2068/98             |
| Switzerland, 1998<br>(Désirée) | WP includes<br>mancozeb | 0.075    | 0.015    | 500         | 5   | 7                      | < <u>0.02</u>                                              | 2070/98             |
| Switzerland, 1998<br>(Sirtema) | WP includes<br>mancozeb | 0.075    | 0.015    | 500         | 5   | 0<br>1<br>3<br>7<br>14 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br>< <u>0.02</u> | 2069/98             |
| UK, 1994 (Estima)              | WP includes<br>mancozeb | 0.1      |          | 250         | 5   | 0<br>28                | <0.02<br>< <u>0.02</u>                                     | 02/95               |
| UK, 1994<br>(Pentland Squire)  | WP includes<br>mancozeb | 0.1      |          | 250         | 5   | 0<br>28<br>29          | <0.02<br>< <u>0.02</u><br><0.02                            | 01/95               |
| UK, 1995 (Anna)                | EC includes fluazinam   | 0.10     | 0.05     | 200         | 5   | 1<br>7                 | <0.02<br>< <u>0.02</u>                                     | FR0595BR            |
| UK, 1995 (Kerrs<br>Pink)       | EC includes fluazinam   | 0.10     | 0.05     | 200         | 5   | 1<br>7                 | <0.02<br>< <u>0.02</u>                                     | FR0595AR            |

Table 27. Metalaxyl-M residues in sunflower seed resulting from supervised trials in France and Spain.

| Country, year (variety) |      | Application      |     | Days         | Residues, mg/kg | Ref.    |
|-------------------------|------|------------------|-----|--------------|-----------------|---------|
|                         | Form | g ai/100 kg seed | No. | after sowing |                 |         |
| France, 1998 (Albena)   | ES   | 83 (nominal 105) | 1   | 125          | < <u>0.02</u>   | 2118/98 |
| France, 1998 (Albena)   | ES   | 80 (nominal 105) | 1   | 139          | < <u>0.02</u>   | 2120/98 |
| France, 1998 (Autan)    | ES   | 75 (nominal 105) | 1   | 126          | < <u>0.02</u>   | 2121/98 |

| Country, year (variety) |      | Application      |     | Days         | Residues, mg/kg | Ref.    |
|-------------------------|------|------------------|-----|--------------|-----------------|---------|
|                         | Form | g ai/100 kg seed | No. | after sowing |                 |         |
| France, 1998 (Cliosol)  | ES   | 70 (nominal 105) | 1   | 151          | < <u>0.02</u>   | 2119/98 |
| France, 1999 (Cliosol)  | ES   | 61 (nominal 105) | 1   | 144          | < <u>0.01</u>   | 4013/99 |
| France, 1999 (Cliosol)  | ES   | 61 (nominal 105) | 1   | 134          | < <u>0.01</u>   | 4014/99 |
| Spain, 1998 (Tornasol)  | ES   | 67 (nominal 105) | 1   | 138          | < <u>0.02</u>   | 2116/98 |
| Spain, 1999 (Coban)     | ES   | 71 (nominal 105) | 1   | 146          | < <u>0.02</u>   | 4012/99 |

# Table 28. Metalaxyl-M residues in cacao beans resulting from supervised trials in Côte d'Ivoire.<sup>1,2</sup>

| Year (variety)                 |                       | Appl     | ication  |             |     | PHI  | Residues,     | Ref.    |
|--------------------------------|-----------------------|----------|----------|-------------|-----|------|---------------|---------|
|                                | Form                  | kg ai/ha | kg ai/hl | water, l/ha | No. | days | mg/kg         |         |
| 2000 (Selectioné)              | WP includes copper    | 0.09     | 0.09     | 100         | 4   | 29   | < <u>0.02</u> | 2148/00 |
| 2000 (Tout Venant)             | WP includes copper    | 0.09     | 0.09     | 100         | 4   | 30   | <u>0.02</u>   | 2149/00 |
| 2000 (Selectioné)              | WP includes copper    | 0.09     | 0.09     | 100         | 4   | 30   | < <u>0.02</u> | 2150/00 |
| 2000 (Tout Venant)             | WP includes copper    | 0.09     | 0.09     | 100         | 4   | 29   | <u>0.02</u>   | 2151/00 |
| 2001 (Various local varieties) | WP includes<br>copper | 0.09     | 0.020    | 450         | 4   | 30   | <u>0.02</u>   | 2102/01 |
| 2001 (Various local varieties) | WP includes copper    | 0.09     | 0.020    | 450         | 4   | 30   | <u>0.02</u>   | 2103/01 |
| 2001 (Various local varieties) | WP includes copper    | 0.09     | 0.020    | 450         | 4   | 30   | < <u>0.02</u> | 2104/01 |
| 2001 (Selectioné)              | WP includes<br>copper | 0.09     | 0.020    | 450         | 4   | 30   | < <u>0.02</u> | 2105/01 |

<sup>1</sup> Pods harvested, and fermented and dried beans analysed.

 $<sup>\</sup>frac{2}{2}$  Kühne (2148/00, 2002) described the fermentation and drying of cacao beans after harvest and before analysis in supervised trials on cocoa. The pods were cut open and beans and pulp were removed from the shell, placed inside black plastic and sealed. Every 48 h the plastic was opened and the contents stirred. Fermentation lasted 6 days. The fermented beans were then placed in a thin layer on black plastic under the open sky and stirred 2-3 times per day for 5 days, and overnight were protected with a layer of plastic. Samples of fermented and dried beans were deep-frozen for despatch to the analytical laboratory.

## FATE OF RESIDUES IN STORAGE AND PROCESSING

## In processing

The Meeting received information on the fate of metalaxyl-M residues during the production of fruit juices and wine, and on its fate under hydrolysis conditions simulating commercial food processing.

Adam (00.DAOS, 2000) hydrolysed [<sup>14</sup>C]metalaxyl-M as in food provessing. The HPLC analytical method was not enantiomer-selective, so epimerisation, if it occurred, would not have been observed. Metalaxyl-M was stable under these conditions (Table 29).

Table 29. Effect of food processing conditions on the hydrolysis of metalaxyl-M (Adam, 00DA05, 2000).

| pH | Temperature, °C | Incubation, min | % of applied metalaxyl-M remaining | Process represented      |
|----|-----------------|-----------------|------------------------------------|--------------------------|
| 4  | 90              | 20              | 96, 101                            | pasteurisation           |
| 5  | 100°C           | 60              | 96, 106                            | baking, brewing, boiling |
| 6  | 120°C           | 20              | 97, 102                            | sterilisation            |

In a study on orange processing (Kühne, 2186/99, 2000), 163 kg of fruit were used for juice production, while 44 kg were used for marmalade. Subsamples of peel (1 kg) and pulp (6 kg) were used to produce 10 kg of marmalade.

Table 30. Fate of metalaxyl-M residues in oranges during orange processing.

| Country, year                                                                                |                                                                                                 | Application   |               |                |     | PHI,    | Sample                                                                                         | Residues, mg/kg                                                                                                  | Ref.    |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------|---------------|----------------|-----|---------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------|
| (Variety)                                                                                    | Form                                                                                            | kg ai/ha      | kg ai/hl      | water,<br>l/ha | No. | days    |                                                                                                |                                                                                                                  |         |
| Spain, 2000<br>(Valencia)                                                                    | WP includes<br>mancozeb                                                                         | 0.20<br>+0.60 | 0.02<br>+0.06 | 1000<br>+980   | 2   | 0<br>14 | fruit<br>fruit<br>peel<br>pulp                                                                 | 1.0<br>0.11 0.11<br>0.23 0.24<br><0.01 <0.01                                                                     | 2186/99 |
| Fresh oranges<br>Washed oranges<br>Juice Peel Wet pomace<br>Pasteurised juice Oil Dry pomace |                                                                                                 |               |               |                |     | 14      | fruit<br>fruit washed<br>juice, raw<br>juice, pasteurised<br>oil<br>pomace, wet<br>pomace, dry | 0.13<br>0.15<br><0.01<br><0.01 <0.01 0.01 0.01<br>1.3 0.98 1.2 1.2<br>0.13 0.11 0.15 0.17<br>0.51 0.51 0.61 0.48 |         |
|                                                                                              | Fresh oranges<br>Washed oranges<br>Separate peel from p<br>Cook marmalade<br>containing 15 % pe | ulp           |               |                |     | 14      | fruit<br>fruit, washed<br>peel<br>pulp<br>marmalade                                            | 0.11<br>0.086<br>0.34<br>0.01<br>0.043 0.042<br>0.040 0.048                                                      |         |

Table 31. Calculated processing factors for metalaxyl-M residues in orange products (2186/99).

| Residue in RAC,<br>mg/kg | Sample        | Residues, mg/kg | Processing factors<br>(PF) | Mean PF |
|--------------------------|---------------|-----------------|----------------------------|---------|
| 0.13                     | Fruit, washed | 0.15            | 1.2                        |         |

| Residue in RAC,<br>mg/kg | Sample        | Residues, mg/kg         | Processing factors<br>(PF) | Mean PF |
|--------------------------|---------------|-------------------------|----------------------------|---------|
| 0.11                     | Fruit, washed | 0.086                   | 0.78                       | 0.97    |
| 0.13                     | Juice, raw    | <0.01                   | <0.08                      | <0.08   |
| 0.13                     | Juice,        | 0.007 0.006 0.009 0.009 | 0.054 0.046 0.069 0.069    | 0.060   |
|                          | pasteurised   |                         |                            |         |
| 0.13                     | Oil           | 1.3 0.98 1.2 1.2        | 10.0 7.5 9.2 9.2           | 9.0     |
| 0.13                     | Pomace, wet   | 0.13 0.11 0.15 0.17     | 1.0 0.8 1.2 1.3            | 1.1     |
| 0.13                     | Pomace, dry   | 0.51 0.51 0.61 0.48     | 3.9 3.9 4.7 3.7            | 4.1     |
| 0.11                     | Peel          | 0.34 0.23 0.24          | 3.09 2.09 2.18             | 2.5     |
| 0.11                     | Pulp          | 0.01                    | 0.09                       | 0.09    |
| 0.11                     | Marmalade     | 0.043 0.042 0.040 0.048 | 0.39 0.38 0.36 0.44        | 0.39    |

Table 32. Processing factors calculated from the metalaxyl-M residues in grapes and their processed commodities shown in Table 20.

|        | Residues    |            |        | Processing factors |             | Ref.        |           |
|--------|-------------|------------|--------|--------------------|-------------|-------------|-----------|
| Grapes | Grape juice | Young wine | Wine   | Juice              | Young wine  | Wine        |           |
| < 0.02 | < 0.02      |            | 0.02   |                    |             |             | 98/7/1615 |
| 0.08   | 0.02        |            | 0.04   | 0.25               |             | 0.50        | 98/7/1615 |
| 0.03   | < 0.02      |            | 0.03   |                    |             | 1.00        | 98/7/1615 |
| 0.1    | 0.03        |            | 0.05   | 0.30               |             | 0.50        | 98/7/1615 |
| 1.1    | 0.51        |            | 0.72   | 0.46               |             | 0.65        | 98/7/1615 |
| 0.52   | 0.19        |            | 0.2    | 0.37               |             | 0.38        | 98/7/1615 |
| 3.6    | 0.61        |            | 0.57   | 0.17               |             | 0.16        | 98/7/1615 |
| 0.48   | 0.28        |            | 0.32   | 0.58               |             | 0.67        | 98/7/1615 |
| 0.12   |             | 0.08       | 0.08   |                    | 0.67        | 0.67        | gr 5194   |
| 0.18   |             | 0.11       | 0.12   |                    | 0.61        | 0.67        | gr 5194   |
| 0.08   |             | 0.06       |        |                    | 0.75        |             | gr 50597  |
| 0.41   |             | 0.13       |        |                    | 0.32        |             | gr 50597  |
| 0.04   |             | 0.03       | 0.04   |                    | 0.75        | 1.00        | 2124/94   |
| < 0.02 |             | < 0.02     | < 0.02 |                    |             |             | 2123/94   |
| 0.04   |             | < 0.02     | < 0.02 |                    |             |             | 2125/94   |
| 0.17   |             | 0.05       | 0.03   |                    | 0.29        | 0.18        | 2122/94   |
| 0.02   |             | < 0.02     | < 0.02 |                    |             |             | 2035/97   |
| 0.07   |             | 0.18       | 0.08   |                    | 2.57        | 1.14        | 2030/97   |
| 0.24   |             | 0.24       | 0.27   |                    | 1.00        | 1.13        | 2332/97   |
|        |             |            | Mean   | <u>0.36</u>        | <u>0.87</u> | <u>0.66</u> |           |

## **RESIDUES IN ANIMAL COMMODITIES**

### Farm animal feeding studies

A lactating dairy cow feeding study and a laying hen study with metalaxyl, which provided information on likely residues in tissues, milk and eggs from residues in animal feeds, were reported to the Meeting.

In the first study 3 <u>lactating Holstein cows</u> weighing 445-698 kg each were dosed daily at a rate of 1.5 g metalaxyl per cow per day, equivalent to 75 ppm in the diet (Kahrs, ABR-82052, 1982). The dose was mixed with 1 kg of untreated commercial dairy ration. Milk was collected twice daily and a cow was slaughtered on days 14, 21 and 28. Animals consumed approximately 20 kg of dairy ration and hay each per day. Samples of liver, kidney, fat and muscle were analysed by the dimethylaniline common moiety method AG-349.

Residues did not accumulate and were transitory, with the interval between the last dose and slaughter influencing the levels more than the duration of dosing (Table 33). Residues 4 h after dosing in the cow slaughtered on day 14 were higher than in the cows that were dosed for the last time 23.5 h before slaughter. Residues in the blood were higher 1.5-2 h after dosing (0.32 mg/kg on day 13) than after 19-20 h (<0.05 mg/kg on days 21 and 28).

Table 33. Residues in the tissues and milk of dairy cows dosed with metalaxyl at 1.5 g metalaxyl per cow per day, equivalent to 75 ppm in the diet (Kahrs, ABR-82052, 1982).

| Tissue                 | Total residues, mg/kg. Method AG-349 |                  |                             |        |                      |
|------------------------|--------------------------------------|------------------|-----------------------------|--------|----------------------|
|                        | Day 14 (4 h post-dosing)             | Day 21 (23.5 h p | Day 21 (23.5 h post-dosing) |        | (23.5 h post-dosing) |
| Tenderloin muscle      | 0.09                                 | < 0.05           | < 0.05 0.06                 |        | 0.06                 |
| Round muscle           | 0.15                                 | 0.07             |                             |        | 0.08                 |
| Round muscle (control) | 0.06                                 |                  |                             | 0.07   |                      |
| Omental fat            | <0.05                                | < 0.05           |                             | <0.05  |                      |
| Perirenal fat          | <0.05                                | < 0.05           |                             | <0.05  |                      |
| Liver                  | 0.96                                 | 0.14             |                             | 0.12   |                      |
| Kidney                 | 5.4                                  | 0.12             |                             | 0.11   |                      |
| Milk                   | Day 1                                | Day 14           | Day 2                       | 20     | Day 27               |
| Cow A                  | 0.02                                 | 0.02             |                             |        |                      |
| Cow B                  | 0.02                                 | 0.02             | 0.02                        |        |                      |
| Cow C                  | 0.02                                 | 0.02             | 0.02                        | 2 0.02 |                      |

In the second study three groups of 15 <u>laying White Leghorn hens</u>, were dosed daily for 28 days with metalaxyl mixed with untreated poultry feed at levels equivalent to 10 ppm, 30 ppm and 100 ppm in the feed, fed *ad libitum* (Eudy, ABR-91047, 1991). Average consumption was 0.133-0.153 kg/bird/day. Eggs were collected for analysis. Birds were slaughtered on days 7, 14, 21 and 28 days after the first dose, and samples analysed by the dimethylaniline common moiety method AG-576.

There were no detectable residues in the eggs (<0.05 mg/kg) at any dose level (Table 34). In the tissues, residues were higher at higher doses. In the 10 ppm group, residues in the tissues were generally below the LOQ (<0.05 mg/kg) or, in a few cases, slightly above. Highest residues occurred in the skin + attached fat. In the 100 ppm feeding group, residues at 14, 21 and 28 days were generally similar, suggesting no continued accumulation in the tissues.

| Sample                    | Total residues, mg/kg. Method AG-576 |        |        |  |          |        |        |
|---------------------------|--------------------------------------|--------|--------|--|----------|--------|--------|
|                           | Days of dosing                       |        |        |  |          |        |        |
|                           | 7                                    |        | 14     |  | 21       | 23     | 8      |
| 10 ppm group              |                                      |        |        |  |          |        |        |
| Muscle, breast plus thigh | < 0.05                               |        | 0.06   |  | < 0.05   | <      | 0.05   |
| Skin + attached fat       | < 0.05                               |        | < 0.05 |  | < 0.05   | <      | 0.05   |
| Fat, peritoneal           | < 0.05                               |        | < 0.05 |  | < 0.05   | <      | 0.05   |
| Liver                     | < 0.05                               |        | < 0.05 |  | 0.10 c 0 | .08    | 0.05   |
| 30 ppm group              |                                      |        |        |  |          |        |        |
| Muscle, breast plus thigh | 0.06                                 |        | 0.10   |  | < 0.05   | <      | 0.05   |
| Skin + attached fat       | < 0.05                               |        | 0.07   |  | 0.10     | (      | 0.08   |
| Fat, peritoneal           | < 0.05                               |        | 0.07   |  | 0.08     | (      | 0.07   |
| Liver                     | 0.07                                 |        | 0.07   |  | 0.09 c 0 | .08    | 0.10   |
| 100 ppm group             |                                      |        |        |  |          |        |        |
| Muscle, breast plus thigh | 0.13                                 |        | 0.13   |  | < 0.05   | (      | 0.12   |
| Skin + attached fat       | 0.12                                 |        | 0.32   |  | 0.40     | (      | 0.34   |
| Fat, peritoneal           | 0.09                                 |        | 0.27   |  | 0.34     | (      | 0.17   |
| Liver                     | 0.16                                 |        | 0.10   |  | 0.09 c 0 | 0.08   | 0.11   |
| Eggs                      | Day 1                                | Day 3  | Day 7  |  | Day 14   | Day 21 | Day 28 |
| 10 ppm group              | < 0.05                               | < 0.05 | < 0.05 |  | < 0.05   | < 0.05 | < 0.05 |
| 30 ppm group              | < 0.05                               | < 0.05 | < 0.05 |  | < 0.05   | < 0.05 | < 0.05 |
| 100 ppm group             | < 0.05                               | < 0.05 | < 0.05 |  | < 0.05   | < 0.05 | < 0.05 |

Table 34. Residues in tissues and eggs of laying hens dosed daily for 28 days with metalaxyl at levels equivalent to 10 ppm, 30 ppm and 100 ppm in the feed (Eudy, ABR-91047, 1991).

c: control group sample

## **RESIDUES IN FOOD IN COMMERCE OR AT CONSUMPTION**

No information was reported for metalaxyl-M.

### NATIONAL MAXIMUM RESIDUE LIMITS

The Meeting was aware of the following national MRLs. Only MRLs that have been set solely for metalaxyl-M uses on crops that have residue data provided for this residue evaluation are included. (MRLs or tolerances based on metalaxyl data covering the use of metalaxyl-M and metalaxyl are not included.)

| Country | Crop            | MRL, mg/kg |
|---------|-----------------|------------|
| Brazil  | Grape           | 1          |
|         | Onion           | 0.5        |
|         | Potato          | 0.05       |
|         | Tomato          | 0.05       |
| EU      | Citrus fruit    | 0.5        |
|         | Grape           | 1          |
|         | Lettuce         | 2          |
|         | Onion           | 0.02       |
|         | Pepper          | 0.5        |
|         | Pome fruit      | 0.02       |
|         | Potato          | 0.02       |
|         | Spinach         | 0.05       |
|         | Sunflower seeds | 0.05       |
|         | Tomato          | 0.2        |

### APPRAISAL

The toxicology of metalaxyl-M was evaluated by the 2002 JMPR, which established a group ADI of 0–0.08 mg/kg bw for metalaxyl and metalaxyl-M. Residue and analytical aspects were considered for the first time by the present Meeting. Metalaxyl-M is the biologically active enantiomer (R-enantiomer) of the racemic compound metalaxyl. Metalaxyl was first evaluated by the JMPR in 1982, and Codex MRLs for metalaxyl have been established.

Metalaxyl-M is registered for use on fruit, nut and vegetable crops for the control of various fungal diseases such as those caused by *Phytophthora* and *Pythium* spp. It is applied to foliage, soil or seed and also as a post-harvest fruit treatment.



IUPAC name Chemical Abstracts name  $\label{eq:constraint} (R)-2-[(2,6-dimethylphenyl)-methoxyacetylamino]-propionic acid methyl ester $$N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alanine methyl ester $$$ 

The Meeting received information on the metabolism and environmental fate of metalaxyl-M and on methods of residue analysis, stability in freezer storage, national registered use patterns, the results of supervised trials and farm animal feeding studies, the fate of residues in processing and national MRLs.

As metalaxyl-M constitutes 50% of metalaxyl, investigations into the metabolism and fate of metalaxyl can legitimately be accepted as supporting the metabolism and fate of metalaxyl-M. When the metabolism of metalaxyl and metalaxyl-M was compared directly, it was found to be similar.

In the studies of animal and plant metabolism and environmental fate, metalaxyl or metalaxyl-M uniformly <sup>14</sup>C labelled in the aromatic ring was used.

## Metabolism

In the list below, the numbering is preserved from the 2002 JMPR toxicology evaluation.

Metabolite 1: *N*-(2,6-dimethylphenyl)-*N*-(methoxyacetyl)alanine Metabolite 3: *N*-(2,6-dimethylphenyl)-*N*-(hydroxyacetyl)alanine methyl ester Metabolite 6: *N*-(2,6-dimethylphenyl)-*N*-(hydroxyacetyl)alanine Metabolite 7: *N*-(2,6-dimethyl-5-hydroxyphenyl)-*N*-(methoxyacetyl)alanine methyl ester Metabolite 8: *N*-(2-hydroxymethyl-6-methylphenyl)-*N*-(methoxyacetyl)alanine methyl ester (occurs as two isomers) Metabolite P: *N*-[(2-hydroxymethyl)-6-methylphenyl]-*N*-(hydroxyacetyl)alanine (occurs as two isomers)

## Animals

The Meeting received the results of studies on metabolism in rats, lactating goats and laying hens. When animals were dosed orally with radiolabelled metalaxyl, most of the radiolabel was excreted in the urine within a short time, with a small amount in the faeces. Numerous metabolites resulting from hydrolysis, oxidation and demethylation of metalaxyl and subsequent conjugate formation were identified. In a study in goats, metalaxyl itself was not detected as a component of the residue in

tissues or milk. In a study in laying hens, low levels of metalaxyl were present in liver and eggs. The metabolic pathway for metalaxyl was similar in rats, goats and hens.

The absorption, distribution, metabolism and excretion of radiolabel were similar in *rats* dosed orally with <sup>14</sup>C-metalaxyl or <sup>14</sup>C-metalaxyl-M. Detailed information on metabolism in this species is reported in the 2002 JMPR toxicological evaluations.

Very little radiolabel was found in milk (0.003 mg/kg) or tissues (0.057 mg/kg in liver) from a *goat* dosed with <sup>14</sup>C-metalaxyl at the equivalent of 7 ppm in the feed for 10 days.

When two lactating dairy goats were dosed orally once daily for 4 consecutive days by gelatin capsule with <sup>14</sup>C-metalaxyl, equivalent to 77 ppm in the diet, the radiolabel was excreted rapidly: within 24 h of administration, 67% of the daily dose appeared in urine, 9% in faeces and 0.1% in milk. Metalaxyl was not detected as a component of the residue. Metabolite 6 was the main component of the residue in liver (0.19 mg/kg), leg muscle (0.014 mg/kg) and perirenal fat (0.065 mg/kg); metabolite 8 was the main residue component in kidney. The main metabolites in milk were C-10 and C-8 fatty acid conjugates of metabolite 3 (0.058 mg/kg). These fatty acids are conjugated through the hydroxyacetyl group of metabolite 3.

When five laying *hens* were dosed orally once daily for 4 consecutive days by gelatin capsule with <sup>14</sup>C-metalaxyl, equivalent to approximately 100 ppm metalaxyl in the diet, radiolabel recovered in edible tissues and eggs represented 0.97% of the administered dose; the remainder was recovered in excreta. Metabolite P (consisting of P1 and P2, steric isomers) was the main metabolite in egg white (0.056 mg/kg), egg yolk (0.072 mg/kg) and thigh muscle (0.31 mg/kg). Metalaxyl parent was identified in egg white (0.013 mg/kg), egg yolk (0.010 mg/kg) and liver (0.018 mg/kg), but not in thigh muscle or fat (< 0.001 mg/kg).

### Plants

The Meeting received the results of studies on the metabolism of metalaxyl in grape, lettuce and potato and of metalaxyl-M in lettuce. No metabolites were identified in plants which had not already been identified in animals. Parent metalaxyl was the main component of the residue in grapes and in juice produced from the grapes when metalaxyl was used on grape vines. In treated lettuce, parent metalaxyl and metabolite 8 were each present at approximately 20% of the total residue. Metabolite 8 was the main residue component in lettuce in both cases in which metalaxyl and metalaxyl-M were compared. When metalaxyl was used on plants, some residue reached the tubers, where parent metalaxyl was the main residue component.

Grapevines in Switzerland were sprayed to runoff seven times at 14-day intervals with a <sup>14</sup>Cmetalaxyl spray at a concentration of 0.050 kg ai/hl and were harvested 52 days after the last application. Parent metalaxyl (2.0 mg/kg) constituted 64% of the total residues in *grapes*.

When two grapevines in Switzerland were sprayed to runoff six times at approximately 14day intervals with a <sup>14</sup>C-metalaxyl spray at a concentration of 0.030 kg ai/hl and harvested 68 days after the last application, parent metalaxyl (0.83 mg/kg) comprised 64% of total residues in the grapes. Metabolite 8 accounted for 20% of the residue, and metabolites 1, 6 and 7 were minor components (1.8–4.3%). When the grapes were separated into juice and presscake, metalaxyl was still the main part of the residue (62% and 57%, respectively).

Metalaxyl was the main identified component of the residue in *lettuce* (18.6% of the total <sup>14</sup>C residue) after seedlings in a greenhouse were sprayed twice, 2 weeks apart, with <sup>14</sup>C-metalaxyl at a rate equivalent to 0.25 kg ai/ha and harvested 2 weeks later. The identified metabolites (including glucose conjugates) were metabolite 8 (22% of the total <sup>14</sup>C residue), metabolite 6 (10%), metabolite 3 (8.9%), metabolite 7 (6.2%) and metabolite 1 (6.0%).

The metabolic pathways of metalaxyl-M and metalaxyl were compared in lettuce in a field in Switzerland treated three times at 10-day intervals with labelled compounds. The levels of total applied residue and parent compounds in the residue were generally comparable. Metabolite 8 (free and conjugated) was the main identified component of the residue in samples taken 14 and 21 days after treatment. Enantiomeric ratio measurements suggested similar disappearance rates for the two enantiomers and little interconversion.

*Potato* plants in the field in Switzerland received five foliar treatments of <sup>14</sup>C-metalaxyl at 0.2 kg ai/ha at 10-day intervals and were harvested at maturity 5 weeks after the last treatment. Little residue reached the tubers (0.02 mg/kg <sup>14</sup>C as metalaxyl). No parent metalaxyl was detected in tubers. In a second experiment, the level of <sup>14</sup>C as metalaxyl in tubers was < 0.0001 mg/kg after <sup>14</sup>C-metalaxyl was applied to the soil (residues in soil, approximately 0.5 mg/kg), indicating that metalaxyl is not taken up by the tubers directly from the soil.

Potato plants in the field in the USA received six foliar treatments, about 2 weeks apart, of <sup>14</sup>C-metalaxyl at 1.3 kg ai/ha. Tubers harvested at maturity, 1 week after the last treatment, contained 0.5 mg/kg <sup>14</sup>C as metalaxyl, of which 50–60% was parent metalaxyl. A number of metabolites were identified, but only the concentration of metabolite 8 exceeded 5% of the residue.

#### Environmental fate

#### Soil

The Meeting received information on the behaviour and fate of metalaxyl and metalaxyl-M during aerobic metabolism in a number of soils. The rate of degradation is strongly influenced by the properties of the soil, including its biological activity and the conditions of temperature, moisture and concentration of the residue, with recorded half-lives in the range of 5–180 days. In direct comparisons of metalaxyl and metalaxyl-M under aerobic conditions, metalaxyl-M was the more persistent in one case and less persistent in two others. The main soil metabolite is metabolite 1 or, in the case of metalaxyl-M, the specific enantiomer of metabolite 1.

Field dissipation studies for metalaxyl-M were provided from France, Italy, Spain and Switzerland. Metalaxyl-M residues disappeared from the soil with half-lives ranging from 5 to 35 days. The residues occurred mostly in the top 10 cm of soil, but some reached lower levels. The enantiomer of metabolite 1 was produced in all cases, and its level sometimes exceeded that of the parent metalaxyl-M. A comparison of enantiomeric ratios in metalaxyl residues in soil suggested that the R-enantiomer (i.e. the metalaxyl-M enantiomer) disappeared more quickly than the S-enantiomer. This resulted in a preponderance of S-enantiomer in the metalaxyl residue and a preponderance of R-enantiomer in metabolite 1.

The studies of dissipation in the field suggest that, after use of metalaxyl-M for seed treatment or at the time of sowing, little or none will remain as a soil residue when the crop is harvested.

### Rotational crops

Information on the fate of radiolabelled metalaxyl in confined crop rotational studies and of unlabelled metalaxyl-M in field rotational crops was made available to the Meeting. The studies with radiolabel showed that parent metalaxyl was usually a minor part of the residue that reached the rotational crop. The identifiable metabolites were also usually minor, but metabolite 8 as glucose conjugates was detected in spring wheat stalks at 2.3 mg/kg. Metalaxyl-M residues were not detected in unconfined field rotational crops in Switzerland or the United Kingdom, but levels of 0.11 mg/kg were present in broccoli and 0.03 mg/kg in lettuce leaves from crops sown 29 days after treatment of the first crop in a study in Italy. The short interval was used in order to simulate the ploughing-in of a failed crop and the sowing of a new one.

#### Methods of analysis

The Meeting received descriptions and validation data for analytical methods for residues of metalaxyl in plant material, animal tissues, milk and eggs.

Common moiety methods rely on the 2,6-dimethylaniline moiety of metalaxyl and many of its metabolites, and these methods have been used to identify metalaxyl residues in animal commodities. The typical LOQs are 0.05 mg/kg for tissues and 0.01 mg/kg for milk. Metabolite 8, containing the 2-hydroxymethyl-6-methylaniline moiety, is apparently partially converted to 2,6-dimethylaniline, resulting in low and variable recoveries.

With gas-liquid chromatography and nitrogen-phosphorus detection and HPLC with mass spectrometry detection procedures for identifying metalaxyl or metalaxyl-M after a simple extraction and limited clean-up, the LOQs are 0.02–0.04 mg/kg for many crop substrates. A modification to the method (method REM 181.06), with the introduction of an HPLC chiral separation step before determination, allows for the analysis of specific enantiomers.

A multi-residue regulatory method (DFG S19) is available for metalaxyl.

Method REM 181.06 (gas–liquid chromatography with mass spectrometry detection) is not a multi-residue method, but it is enantioselective and suitable as a regulatory method for metalaxyl-M.

#### Stability of residues in stored analytical samples

The Meeting received information on the stability of residues of metalaxyl-M in crops (orange, potato, rape-seed, tomato, wheat) and animal commodities (beef muscle, beef liver, milk, eggs) during storage of analytical samples. Metalaxyl-M residues were stable in these substrates and under the conditions and intervals of storage (2 years). There was no evidence of epimerization during freezer storage. As a common moiety method was used for the animal commodity samples, storage stability refers to the total residue rather than to parent metalaxyl-M. As the common moiety method, which relies on the 2,6-dimethylaniline moiety, is less suitable for metabolite 8, the freezer stability of this metabolite during storage is not demonstrated.

#### Definition of the residue

Parent metalaxyl is the main identifiable component of the residue in crops resulting from use of metalaxyl, although metabolite 8 can occur at approximately the same levels. Metabolite 8 was not considered to be toxicologically significant.

The current residue definition of metalaxyl is metalaxyl. As metalaxyl-M is one enantiomer of metalaxyl, it is covered by the current residue definition. Non-enantioselective methods cannot distinguish metalaxyl-M from metalaxyl, but an enantioselective method is available. While metalaxyl-M and metalaxyl are both registered for crop uses, it is preferable, for enforcement purposes, to maintain a single residue definition. As the 2002 JMPR recommended a group ADI for metalaxyl and metalaxyl-M, the inclusive residue definition is also suitable for risk assessment purposes. The Meeting recommended that metalaxyl-M be contained within the metalaxyl residue definition and recommended amendment of the metalaxyl residue definition to provide definitions for enforcement and risk assessment purposes.

*For plant commodities*: Metalaxyl, including metalaxyl-M. Definition of the residue (for compliance with MRL and for estimation of dietary intake): metalaxyl. Note: Metalaxyl is a racemic mixture of an R-enantiomer and an S-enantiomer. Metalaxyl-M is the R-enantiomer.

In animals dosed with metalaxyl, parent metalaxyl was either a minor part of the residue or was not detected. Analytical methods for metalaxyl are based on a common moiety method, and residues in the farm animal feeding studies were measured by this method. Common moiety residues are acceptable for estimation of dietary intake when the parent compound is a minor part of the residue. The log  $P_{OW}$  for metalaxyl-M is 1.7, and the studies of animal metabolism confirm that metalaxyl is not fat-soluble.

*For animal commodities*: Metalaxyl including metalaxyl-M. Definition of the residue (for compliance with MRL and for estimation of dietary intake): metalaxyl and metabolites containing the 2,6-dimethylaniline moiety, expressed as metalaxyl.

### Results of supervised trials on crops

The Meeting received data from supervised trials with metalaxyl-M used on citrus fruit, apple, grape, onion, tomato, pepper, lettuce, spinach, potato, sunflower and cacao. In some trials, residues were measured on samples taken just before and just after ('zero-day' residue) the last application. The residue level measured just before the last application, expressed as a percentage of zero-day residue, provides a measure of the contribution of previous applications to the final residue in the use pattern used in the trial. For grapes, the average carryover of residue was 32% in 12 trials in Australia, 57% in three trials in Germany and 46% in three trials in Italy. In lettuce, the average carryover was 1.7% in six trials in France, Germany and Italy. In spinach, the average carryover was 1.1% in eight trials in France.

Residue data were evaluated only when labels (or translations of labels) describing the relevant GAP were available to the Meeting.

### Citrus fruit

Metalaxyl-M is registered for use as a post-harvest treatment on citrus in Israel. It is applied as a 0.1 kg ai/hl spray.

In the trials, the formulation of metalaxyl-M was mixed with a commercial wax to produce a spray solution, which was applied at a rate of  $200 \ 1/90$  t of fruit (theoretical concentration of residue, 2.1 g/t). The residue levels in three trials on *oranges* were 1.2, 1.3 and 1.6 mg/kg in whole fruit and < 0.02 mg/kg in pulp. This method of post-harvest application includes control of the application rate in terms of the amount of metalaxyl-M per unit weight of fruit. The residue levels agreed substantially with expectations.

The Meeting noted that three supervised trials is generally an insufficient number for a major commodity such as oranges.

The residue levels of metalaxyl-M in the trials conducted in line with Israeli GAP did not exceed the current metalaxyl MRL of 5 mg/kg for citrus fruit.

### Apple

Metalaxyl-M is registered in Spain for soil treatment around apple trees at 0.5-1.0 g ai/tree and in Italy at 0.5-4 g ai/tree. In two trials each in France, Italy and Spain at application rates of 0.78-10 kg ai/ha, no residues were detected in apples (< 0.02 mg/kg). For an assumed 500–1000 trees per ha, the rate of 10 kg ai/ha appears to be exaggerated.

The Meeting estimated a maximum residue level for metalaxyl-M in apples of 0.02\* and an STMR value of 0 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 0.02\* mg/kg would not exceed the current metalaxyl MRL of 1 mg/kg for pome fruits.

### Grape

In Australia, metalaxyl-M is registered for a maximum four applications on grapes at 0.11 kg ai/ha, with a PHI of 7 days. The residue levels in grapes in five Australian trials matching GAP, but with six applications instead of four, were: < 0.02, 0.03, 0.06, 0.14 and 0.52 mg/kg. As the final residue level should not be influenced by earlier applications, residue levels after six applications are acceptable as equivalent to residues levels in GAP trials.

No GAP was available to evaluate the data for grapes treated in Germany and Switzerland.

In Greece, grapes may be treated four times with metalaxyl-M at 0.1 kg ai/ha, with harvest 15 days after the last application. The residue levels in grapes in six trials in Italy and Portugal, conducted substantially according to Greek GAP, were: 0.04, 0.06, 0.18, 0.19, 0.21 and 0.55 mg/kg.

The residue levels in the Australian and European trials appear to be similar and can be combined. In summary, the residue levels in the 11 trials, in ranked order, were: < 0.02, 0.03, 0.04, 0.06, 0.06, 0.14, 0.18, 0.19, 0.21, 0.52 and 0.55 mg/kg

The Meeting estimated a maximum residue level for metalaxyl-M in grapes of 1 mg/kg and an STMR value of 0.14 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 1 mg/kg would not exceed the current metalaxyl MRL of 1 mg/kg for grapes.

#### Onion

In Ecuador and Uruguay, metalaxyl-M is registered for a maximum of three applications on onions at 0.1 and 0.12 kg ai/ha, with a PHI of 7 days. Metalaxyl-M residue levels in bulb onions in three Brazilian trials matching Uruguayan GAP, but with four applications instead of three, were < 0.02 (two) and 0.02 mg/kg.

Metalaxyl-M is registered in Germany for a maximum of three applications on onions at 0.097 kg ai/ha, with a PHI of 21 days. In four trials in Switzerland with conditions matching German GAP, the residue levels were all below the LOQ (0.02 mg/kg).

Data on residues in trials in onions in Italy and Spain could not be evaluated because no relevant GAP was available.

In summary, the residue levels in the seven trials, in ranked order, were  $\leq 0.02$  (six) and 0.02 mg/kg.

The Meeting estimated a maximum residue level for metalaxyl-M in onions of 0.03 mg/kg and an STMR value of 0.02 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 0.02 mg/kg would not exceed the current metalaxyl MRL of 2 mg/kg for bulb onions.

#### Tomato

Metalaxyl-M is registered for foliar application on tomatoes in Algeria, Chile, Ecuador, Greece, Israel and Morocco at 0.10–0.14 kg ai/ha, with a PHI of 3 days and a maximum of three or four treatments.

Residue levels in tomatoes in six greenhouse trials in France, two in Spain and four in Switzerland at 0.15 kg ai/ha, with harvest 3 days after treatment (equivalent to the stated GAP) were: 0.02 (two), 0.02, 0.03, 0.04, 0.04, 0.05, 0.05, 0.08, 0.09, 0.12 and 0.18 mg/kg.

The Meeting estimated a maximum residue level for metalaxyl-M in tomatoes of 0.2 mg/kg and an STMR value of 0.045 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 0.2 mg/kg would not exceed the current metalaxyl MRL of 0.5 mg/kg for tomatoes.

#### Pepper

GAP for use of metalaxyl-M in Italy allows three soil applications of 1 kg ai/ha with a 15-day PHI. Data on residues from Italian and Spanish trials approximating Italian GAP were provided. In some of the trials, residues were measured 10 and 20 days after the last application instead of 15 days, but these trials were considered valid because the residue levels were relatively unchanged. The residue levels in the seven greenhouse trials were: < 0.02 (two), 0.02, 0.03, 0.08, 0.10 and 0.36 mg/kg; and those in the three outdoor trials in Italy were: < 0.02 (two) and 0.02 mg/kg.

The Meeting decided to use the data from the greenhouse trials: < 0.02 (two), 0.02, <u>0.03</u>, 0.08, 0.10 and 0.36 mg/kg.

The Meeting estimated a maximum residue level for metalaxyl-M in sweet peppers of 0.5 mg/kg and an STMR value of 0.03 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 0.5 mg/kg would not exceed the current metalaxyl MRL of 1 mg/kg for peppers.

### Lettuce

Metalaxyl-M is registered in Spain for use on lettuce at 0.10 kg ai/ha with a PHI of 14 days. The residue levels in lettuce were < 0.02 mg/kg in an Italian trial matching Spanish GAP. The residue levels in lettuce in four French trials matching Spanish GAP were: < 0.02 (two), 0.02 and 0.03 mg/kg.

Metalaxyl-M is registered in Germany for a maximum of two applications on lettuce at 0.097 kg ai/ha, with a PHI of 21 days. In six trials on head lettuce in Germany under conditions matching GAP, but with three applications instead of two, the residue levels were: < 0.02 (four), 0.02 and 0.03 mg/kg. In two German greenhouse trials at 0.10 kg ai/ha with harvest 21 days after the second application, the residue levels were < 0.02 and 0.41 mg/kg.

In two trials in The Netherlands matching German GAP, the residue levels were < 0.02 mg/kg.

Trials in Spain and Switzerland could not be evaluated because there was no matching GAP.

In summary, the residue levels in lettuce in the 15 trials, in ranked order, were: < 0.02 (10), 0.02 (two), 0.03 (two) and 0.41 mg/kg.

The Meeting estimated a maximum residue level for metalaxyl-M in head lettuce of 0.5 mg/kg and an STMR value of 0.02 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 0.5 mg/kg would not exceed the current metalaxyl MRL of 2 mg/kg for head lettuce.

#### Spinach

Metalaxyl-M is registered in Switzerland for a maximum of six applications on spinach at 0.10 kg ai/ha with a PHI of 14 days. In three trials on spinach in Switzerland at 0.10 kg ai/ha and three at 0.14 kg ai/ha, with intervals before harvest of 10 or 14 days, the residue levels were all < 0.02 kg/ha. The levels were also < 0.02 mg/kg in two trials in Germany matching the conditions of GAP in Switzerland.

In a number of trials in France in which the application rate was 0.10 or 0.14 kg ai/ha, spinach was sampled for analysis 10 and 20 days after treatment. The Meeting noted that the residue levels generally changed slowly between 10 and 20 days post-treatment and decided to accept the residue levels at 10 days as sufficiently close to those expected at 14 days. The residue levels in the 10 French trials were: < 0.02 (two), 0.02 (four), 0.03, 0.04 (two) and 0.05 mg/kg.

In summary, metalaxyl-M residue levels in the 18 trials were < 0.02 (10), 0.02 (four), 0.03, 0.04 (two) and 0.05 mg/kg.

The Meeting estimated a maximum residue level for metalaxyl-M in spinach of 0.1 mg/kg and an STMR value of 0.02 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 0.1 mg/kg would not exceed the current metalaxyl MRL of 2 mg/kg for spinach.

#### Potato

Labels were available from Algeria, Australia, Austria, Chile, Ecuador, Greece, Israel and Morocco from formulations for foliar application of metalaxyl-M to potatoes at 0.1–0.12 kg ai/ha. The

information on GAP suggests that the recommended foliar application rate on potatoes is 0.1 kg ai/ha in many situations.

The results of supervised trials were available from Brazil (three at 0.1 kg ai/ha and three at 0.2 kg ai/ha), Germany (six at 0.1 kg ai/ha), Switzerland (three at 0.075 kg ai/ha) and the United Kingdom (four at 0.1 kg ai/ha). The residue levels in all 19 trials, measured at intervals of 0–28 days after the last treatment, were below the LOQ (0.02 mg/kg).

As residues were found in potato tubers in the metabolism studies after high application rates, the median residue values cannot be assumed to be nil. The Meeting estimated a maximum residue level for metalaxyl-M in potato of  $0.02^*$  mg/kg and an STMR value of 0.02 mg/kg. Metalaxyl-M residue levels complying with the estimated maximum residue level of  $0.02^*$  mg/kg would not exceed the current metalaxyl MRL of  $0.05^*$  mg/kg for potato.

### Sunflower seed

Metalaxyl-M is registered in China and Serbia and Montenegro for use as a seed treatment at 0.105 kg ai/100 kg sunflower seed. The Meeting agreed that the results of trials from other countries could be evaluated with respect to this seed treatment GAP.

In six trials in France and two in Spain, metalaxyl-M was used as seed treatment at a nominal rate of 105 g ai/100 kg seed (measured, 61–80 g ai/100 kg seed). The residue levels in harvested sunflower seed 125–151 days after sowing were all below the LOQ (0.01 and 0.02 mg/kg). Because of the long interval between sowing and harvest and the solubility of metalaxyl-M, residues would not be expected in harvested sunflower seed.

The Meeting estimated a maximum residue level for metalaxyl-M in sunflower seed of  $0.02^*$  mg/kg and an STMR value of 0 mg/kg. Metalaxyl-M residue levels complying with the estimated maximum residue level of  $0.02^*$  mg/kg would not exceed the current metalaxyl MRL of  $0.05^*$  mg/kg for sunflower seed.

### Cacao beans

Metalaxyl-M is registered in Côte d'Ivoire for use on cacao at 0.012 kg ai/ha. In eight trials in Côte d'Ivoire in which metalaxyl-M was applied as foliar treatment four times at 0.09 kg ai/ha (an exaggerated rate), with harvest 29–30 days after the last treatment, the residue levels in the cacao beans were: < 0.02 (four) and 0.02 (four) mg/kg. The cacao beans were fermented and dried before analysis. The Meeting agreed that the residue levels after application at the label rate would not exceed 0.02 mg/kg.

The Meeting estimated a maximum residue level for metalaxyl-M in cacao beans of 0.02 mg/kg and an STMR value of 0.02 mg/kg.

Metalaxyl-M residue levels complying with the estimated maximum residue level of 0.02 mg/kg would not exceed the current metalaxyl MRL of 0.2 mg/kg for cacao beans.

### Fate of residues during processing

The Meeting received information on the fate of metalaxyl-M residues during the production of fruit juices and vinification. The Meeting also received information that metalaxyl-M is hydrolytically stable under hydrolysis conditions that simulate those occurring during food processing.

The following processing factors were calculated from the data from the trials. The factors are mean values, excluding those calculated in cases of undetectable residues.

| Commodity | Processed product  | Processing factor | No. of trials |
|-----------|--------------------|-------------------|---------------|
| Orange    | Washed fruit       | 0.97              | 2             |
|           | Juice, pasteurized | 0.060             | 4             |

|        | Oil         | 9.0   | 4  |  |
|--------|-------------|-------|----|--|
|        | Pomace, wet | 1.1   | 4  |  |
|        | Pomace, dry | 4.1   | 4  |  |
|        | Peel        | 2.5   | 3  |  |
|        | Pulp        | 0.091 | 1  |  |
|        | Marmalade   | 0.39  | 4  |  |
| Grapes | Juice       | 0.36  | 6  |  |
|        | Young wine  | 0.87  | 8  |  |
|        | Wine        | 0.66  | 13 |  |
|        |             |       |    |  |

The Meeting used the processing factors to estimate STMR-Ps for processed commodities. The processing factor for wine (0.66) was applied to the grape STMR (0.14 mg/kg) to calculate an STMR-P of 0.092 mg/kg for wine. The processing factor for grape juice (0.36) was applied to the grape STMR (0.14 mg/kg) to calculate an STMR-P of 0.050 mg/kg for grape juice

#### **Residues in animal commodities**

#### Feeding studies

The Meeting received the results of studies of feeding metalaxyl to lactating dairy cows and laying hens, which provided information on probable residue levels in tissues, milk and eggs from residues in animal feeds.

A group of three lactating dairy cows were dosed daily with metalaxyl, equivalent to 75 ppm in their diet, and were slaughtered for tissue collection on days 14, 21 and 28. Liver, kidney, fat and muscle were analysed by a dimethylaniline common moiety method. The residues were transitory and did not accumulate, and the interval between last dose and slaughter (4 and 23.5 h) influenced the residue levels more than the duration of dosing. The level of residue in milk was 0.02 mg/kg. The residue levels in the tissues collected on day 28 from the animal slaughtered 23.5 h after the last dose were 0.11 mg/kg in kidney, 0.12 mg/kg in liver, < 0.05 mg/kg in fat and 0.06–0.08 mg/kg in muscle.

Groups of 15 laying hens were dosed daily for 28 days with metalaxyl at levels equivalent to 10, 30 and 100 ppm in the feed. Tissue and egg samples were analysed by a dimethylaniline common moiety method. No residues appeared in the eggs (< 0.05 mg/kg) at any dose. The residue levels in the tissues of hens fed 10 ppm were generally below the LOQ (< 0.05 mg/kg) or, in a few cases, just above the LOQ.

### Maximum residue levels

The farm animal feeding studies suggest that residues would generally be undetected or transitory in meat, milk and eggs if metalaxyl was present in animal feeds.

Farm animals are therefore not exposed to residues in their feed from commodities in this evaluation, and no MRLs have been established for metalaxyl in animal commodities. Consequently, the Meeting agreed not to recommend animal commodity maximum residue levels.

## RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the metalaxyl-M residue levels listed below are already covered by existing metalaxyl MRLs.

## **Definition of the residue**

For plant commodities.

Metalaxyl including metalaxyl-M: for compliance with MRL and for estimation of dietary intake: metalaxyl.

For animal commodities. (Note that no metalaxyl MRLs are currently recommended for animal commodities).

Metalaxyl including metalaxyl-M: for compliance with MRL and for estimation of dietary intake: metalaxyl and metabolites containing the 2,6-dimethylaniline moiety, expressed as metalaxyl.

<u>Note</u>: Metalaxyl is a racemic mixture of an R-enantiomer and an S-enantiomer. Metalaxyl-M is the R-enantiomer.

| CCN     | Commodity      | Metalaxyl-N                               | Metalaxyl               |                       |
|---------|----------------|-------------------------------------------|-------------------------|-----------------------|
|         | Name           | Estimated maximum residue<br>level, mg/kg | STMR or STMR-P<br>mg/kg | Existing MRL<br>mg/kg |
| FP 0009 | Apple          | 0.02(*)                                   | 0                       | Pome fruits 1         |
| FB 0269 | Grapes         | 1                                         | 0.14                    | 1                     |
| VL 0482 | Lettuce, Head  | 0.5                                       | 0.02                    | 2                     |
| VA 0385 | Onion, Bulb    | 0.03                                      | 0.02                    | 2                     |
| VO 0445 | Peppers, Sweet | 0.5                                       | 0.03                    | Peppers 1             |
| VO 0448 | Tomato         | 0.2                                       | 0.045                   | 0.5                   |
| VR 0589 | Potato         | 0.02(*)                                   | 0.02                    | 0.05(*)               |
| VL 0502 | Spinach        | 0.1                                       | 0.02                    | 2                     |
| SO 0702 | Sunflower seed | 0.02(*)                                   | 0                       | 0.05(*)               |
| SB 0715 | Cacao beans    | 0.02                                      | 0.02                    | 0.2                   |
|         | Grape juice    |                                           | 0.050                   |                       |
|         | Wine           |                                           | 0.092                   |                       |

\* at or about the LOQ

## DIETARY RISK ASSESSMENT

## Long-term intake

Estimated Theoretical Maximum Daily Intakes for the five GEMS/Food regional diets, based on recommended MRLs for metalaxyl, were in the range of 2-10% of the ADI (Annex 3 of the Report). The Meeting concluded that the long-term intake of residues of metalaxyl and metalaxyl-M resulting from their uses that have been considered by JMPR is unlikely to present a public health concern.

## Short-term intake

The 2002 JMPR decided that an ARfD is unnecessary. The Meeting therefore concluded that the short-term intake of metalaxyl and metalaxyl-M residues is unlikely to present a public health concern.

#### REFERENCES

#### Note. References are listed by company reference number, not by author

00DA05. Adam D. 2000. Hydrolysis of <sup>14</sup>C-labelled CGA 329351 under processing conditions. Novartis Crop Protection, Switzerland. Report 00DA05. Syngenta File N° CGA329351/1386. Unpublished.

01/95. Tack T. 1995. CGA 329351 + Mancozeb (A-9407A 68WP), potato, UK. Ciba Agriculture, United Kingdom. Residue report 01/95. Syngenta File N° CGA329351/0150. Unpublished.

0111301. Pointurier R. 2002. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on tomatoes in France (south). ADME - Bioanalyses, France. Report 0111301. Syngenta File N° CGA329351/1644. Unpublished.

0111401. Pointurier R. 2002. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on tomatoes in France (south). ADME - Bioanalyses, France. Report 0111401. Syngenta File N° CGA329351/1645. Unpublished.

02/95. Tack T. 1995. CGA 329351 + Mancozeb (A-9407A 68WP), potato, UK. Ciba Agriculture, United Kingdom. Residue report 02/95. Syngenta File N° CGA329351/0151. Unpublished.

06/79. Gross D. 1979. Identification of metabolites of CGA 48988 (Ridomil®) in grapevine. Ciba-Geigy, Switzerland. Report 06/79. Syngenta File N° CGA48988/2018. Unpublished.

08/78. Ellgehausen H. 1978. Degradation of CGA 48988 (Ridomil) in soil under aerobic, aerobic/anaerobic and sterile/aerobic conditions. Ciba-Geigy Ltd. Basel, Switzerland. Report 08/78. Syngenta File N° CGA48988/0193. Unpublished.

11/78. Gross D. 1978. Metabolism of CGA 48988 in grapevine. Ciba-Geigy, Switzerland. Report 11/78. Syngenta File N° CGA48988/2017. Unpublished.

121/97. Kühne RO. 1998. Magnitude of residues of metalaxyl-M (CGA 329351) in sweet peppers applied as formulation GR 2.5 in Italy. Novartis Crop Protection, Switzerland. Report 121/97, includes 2127/97, 2128/97, 2129/97 and 2130/97. Syngenta File N° CGA329351/0915. Unpublished.

124/97. Kühne RO. 1998. Magnitude of residues of metalaxyl-M (CGA 329351) in apples applied as formulation GR 2.5 in France (south). Novartis Crop Protection, Switzerland. Report 124/97, includes 2139/97 and 2140/97. Syngenta File N° CGA329351/1023. Unpublished.

125/97. Kühne RO. 1998. Magnitude of residues of metalaxyl-M (CGA 329351) and copper in spinach applied as formulations ES 350 and WP 42.5 in sise-by-side trials in France (south). Novartis Crop Protection, Switzerland. Report 125/97, includes 2141/97, 2142/97, 2143/97, 2144/97, 2145/97, 2146/97, 2147/97, 2148/97, 2149/97, 2150/97 and 2151/97. Syngenta File N° CGA329351/0931. Unpublished.

19/85. Guth JA. 1985. Degradation of metalaxyl (CGA 48988) in aerobic soils at a temperature of  $15^{\circ}$ C. Ciba-Geigy Ltd. Basel, Switzerland. Report 19/85. Syngenta File N° CGA48988/0197. Unpublished.

19/97. Muller T. 1997. Comparison of the adsorption, distribution, metabolism and excretion of [phenyl-U-<sup>14</sup>C]CGA 329351 and [phenyl-U-<sup>14</sup>C]CGA 48988 in the rat. Project 034AM03. Report 19/97. Novartis, Switzerland. Unpublished.

2000/00. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in France (north). Syngenta AG, Switzerland. Report 2000/00. Syngenta File N° CGA245704/0762. Unpublished.

2001/00. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in France (south). Syngenta AG, Switzerland. Report 2001/00. Syngenta File N° CGA245704/0758. Unpublished.

2002/00. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in France (south). Syngenta AG, Switzerland. Report 2002/00. Syngenta File N° CGA245704/0759. Unpublished.

2007/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Spain. Novartis Crop Protection, Switzerland. Report 2007/97. Syngenta File N° CGA329351/0946. Unpublished.

2008/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Spain. Novartis Crop Protection, Switzerland. Report 2008/97. Syngenta File N° CGA329351/0947. Unpublished.

2009/99. Sack S. 2000. Residue study with acibenzolar-S-Methyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Spain. Novartis Crop Protection AG, Switzerland. Report 2009/99. Syngenta File N° CGA245704/0705. Unpublished.

201/01. Kühne RO. 2003. Stability of residues of metalaxyl-M (CGA 329351) in deep freeze stored analytical specimens of oranges (fruit), potatoes (tuber), rape seed (seed), tomatoes (fruit) and wheat (grain). Syngenta Crop Protection, Switzerland. Report 201/01. Syngenta File N° CGA329351/1737. Unpublished.

2010/99. Sack S. 2000. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Spain. Novartis Crop Protection AG, Switzerland. Report 2010/99. Syngenta File N° CGA245704/0706. Unpublished.

2011/01. Kühne RO. 2002. Residue study with mancozeb (ASF21) and metalaxyl-M (CGA 329351) in or on tomatoes in Switzerland. Syngenta Crop Protection, Switzerland. Report 2011/01. Syngenta File N° CGA329351/1624. Unpublished.

2011/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in Spain. Novartis Crop Protection, Switzerland. Report 2011/97. Syngenta File N° CGA329351/0912. Unpublished.

2012/01. Kühne RO. 2002. Residue study with mancozeb (ASF21) and metalaxyl-M (CGA 329351) in or on tomatoes in Switzerland. Syngenta Crop Protection, Switzerland. Report 2012/01. Syngenta File N° CGA329351/1623. Unpublished.

2012/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in Spain. Novartis Crop Protection, Switzerland. Report 2012/97. Syngenta File N° CGA329351/0911. Unpublished.

2013/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on onions in Spain. Novartis Crop Protection, Switzerland. Report 2013/97. Syngenta File N° CGA329351/0925. Unpublished.

2014/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on onions in Spain. Novartis Crop Protection, Switzerland. Report 2014/97. Syngenta File N° CGA329351/0924. Unpublished.

2015/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on apples in Spain. Novartis Crop Protection, Switzerland. Report 2015/97. Syngenta File N° CGA329351/1035. Unpublished.

2016/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on apples in Spain. Novartis Crop Protection, Switzerland. Report 2016/97. Syngenta File N° CGA329351/1036. Unpublished.

2023/00. Kühne RO. 2001. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Spain. Syngenta Crop Protection, Switzerland. Report 2023/00. Syngenta File N° CGA329351/1531. Unpublished.

2024/00. Kühne RO. 2001. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Spain. Syngenta Crop Protection, Switzerland. Report 2024/00. Syngenta File N° CGA329351/1530. Unpublished.

2025/98.Kühne RO. 1999. Residue study with metalaxyl-M (CGA 329351) + copper as copper oxychloride (ASF 45) and metalaxyl-M (CGA 329351) + chlorothalonil (ASF 41) in or on onions in Italy. Novartis Crop Protection, Switzerland. Report 2025/98. Syngenta File N° CGA329351/1149. Unpublished.

2027/99. Kühne RO. 2003. Study on fate and behaviour of metalaxyl-M (CGA 329351) in or on soil in Italy. Syngenta Crop Protection, Switzerland. Report 2027/99. Syngenta File N° CGA329351/1729. Unpublished.

2028/98. Sack S. 1999. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Italy. Novartis Crop Protection AG, Switzerland. Report 2028/98. Syngenta File N° CGA245704/0638. Unpublished.

2028/99. Kühne RO. 2003. Study on fate and behaviour of metalaxyl-M (CGA 329351) in or on soil in Switzerland.

Syngenta Crop Protection, Switzerland. Report 2028/99. Syngenta File N° CGA 329351/1731. Unpublished.

2029/99. Kühne RO. 2003. Study on fate and behaviour of metalaxyl-M (CGA 329351) in or on soil in Switzerland. Syngenta Crop Protection, Switzerland. Report 2029/99. Syngenta File N° CGA329351/1732. Unpublished.

2030/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on grapes in Portugal. Novartis, Switzerland. Report 2030/97. Syngenta File N° CGA329351/1034. Unpublished.

2030/99. Kühne RO. 2003. Study on fate and behaviour of metalaxyl-M (CGA 329351) in or on soil in France (south). Novartis Crop Protection, Switzerland. Report 2030/99. Syngenta File N° CGA329351/1740. Unpublished.

2032/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and copper in or on onions in Italy. Novartis Crop Protection, Switzerland. Report 2032/97. Syngenta File N° CGA329351/0921. Unpublished.

2033/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and chlorothalonil (ASF 41)in or on onions in Italy. Novartis Crop Protection, Switzerland. Report 2033/97. Syngenta File N° CGA329351/0922. Unpublished.

2035/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on grapes in Italy. Novartis, Switzerland. . Report 2035/97. Syngenta File N° CGA329351/1037. Unpublished.

2035/99. Sack S. 2000. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Italy. Novartis Crop Protection, Switzerland. Report 2035/99. Syngenta File N° CGA245704/0720. Unpublished.

2036/98. Kühne RO. 2000. Study on fate and behaviour of metalaxyl-M (CGA 329351) in or on Soil in France (South). Novartis Crop Protection AG. Basel, Switzerland. Report 2036/98 unpublished. Syngenta File N° CGA329351/1210.

2036/99. Sack S. 2000. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Italy. Novartis Crop Protection, Switzerland. Report 2036/99. Syngenta File N° CGA245704/0721. Unpublished.

2044/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Italy. Novartis Crop Protection, Switzerland. Report 2044/97. Syngenta File N° CGA329351/0948. Unpublished.

2044/99. Sack S. 2000. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on spinach in Switzerland. Novartis Crop Protection, Switzerland. Report 2044/99. Syngenta File N° CGA245704/0723. Unpublished.

2045/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Italy. Novartis Crop Protection, Switzerland. Report 2045/97. Syngenta File N° CGA329351/0949. Unpublished.

2045/99. Sack S. 2000. Residue Study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on spinach in Switzerland. Syngenta, Switzerland. Report 2045/99. Syngenta File N° CGA245704/0742). Unpublished.

2046/98. Kühne RO. 1999. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Spain. Novartis Crop Protection, Switzerland. Report 2046/98. Syngenta File N° CGA329351/1103. Unpublished.

2046/99. Sack S. 2000. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on spinach in Switzerland. Novartis Crop Protection, Switzerland. Report 2046/99. Syngenta File N° CGA245704/0724. Unpublished.

2047/98. Kühne RO. 1999. Residue study with metalaxyl-M (CGA 329351) in or on sweet peppers in Spain. Novartis Crop Protection, Switzerland. Report 2047/98. Syngenta File N° CGA329351/1104. Unpublished.

2048/98. Kühne RO. 1999. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on tomatoes in Spain. Novartis Crop Protection, Switzerland. Report 2048/98. Syngenta File N° CGA329351/1147. Unpublished.

2049/98. Kühne RO. 1999. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on tomatoes in Spain. Novartis Crop Protection, Switzerland. Report 2049/98. Syngenta File N° CGA329351/1148. Unpublished.

2050/99. Sack S. 2000. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Switzerland. Syngenta AG, Switzerland. Report 2050/99. Syngenta File N° CGA245704/0746. Unpublished.

2051/99. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Switzerland. Syngenta AG, Switzerland. Report 2051/99. Syngenta File N° CGA245704/0747. Unpublished.

2052/99. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in Switzerland. Syngenta AG, Switzerland. Report 2052/99. Syngenta File N° CGA245704/0748. Unpublished.

2057/99. Kühne RO. 2003. Study on fate and behaviour of metalaxyl-M (CGA 329351) in or on soil in Spain. Syngenta Crop Protection, Switzerland. Report 2057/99. Syngenta File N° CGA329351/1733. Unpublished.

2062/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and copper as copper oxychloride in or on head lettuce in Italy. Novartis Crop Protection, Switzerland. Report 2062/97. Syngenta File N° CGA329351/0964. Unpublished.

2062/99. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on spinach in France (North). Syngenta, Switzerland. Report 2062/99. Syngenta File N° CGA245704/0753. Unpublished.

2068/98. Kühne RO. 1999. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on potatoes in Switzerland. Novartis Crop Protection,

Switzerland. Report 2068/98.Syngenta File  $N^\circ$  CGA329351/1150. Unpublished.

2069/98. Kühne RO. 1999. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on potatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2069/98. Syngenta File N° CGA329351/1141. Unpublished.

2070/98. Kühne RO. 1999. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on potatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2070/98. Syngenta File N° CGA329351/1142. Unpublished.

2071/98. Kühne RO. 1999. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on tomatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2071/98. Syngenta File N° CGA329351/1143. Unpublished.

2072/98. Kühne RO. 1999. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on tomatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2072/98. Syngenta File N° CGA329351/1144. Unpublished.

208/98. Kühne RO. 2000. Crop rotation study for metalaxyl-M (CGA 329351) in follow-up crop after treatment of potatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 208/98. Syngenta File N° CGA329351/1300. Unpublished.

2081/00. Kühne RO. 2001. Residue study with metalaxyl-M (CGA 329351) in or on apples in Italy. Syngenta Crop Protection, Switzerland. Report 2081/00. Syngenta File N° CGA329351/1529. Unpublished.

2082/00. Kühne, RO. 2001. Residue study with metalaxyl-M (CGA 329351) in or on apples in Italy. Syngenta Crop Protection, Switzerland. Report 2082/00. Syngenta File N° CGA329351/1528. Unpublished.

209/98. Kühne RO. 2000. Crop rotation study for metalaxyl-M (CGA 329351) in follow-up crop after treatment of potatoes in the United Kingdom. Novartis Crop Protection, Switzerland. Report 209/98. Syngenta File N° CGA329351/1301. Unpublished.

210/98. Kühne RO. 2000. Crop rotation study for metalaxyl-M (CGA 329351) in follow-up crop after treatment of potatoes in Italy. Novartis Crop Protection, Switzerland. Report 210/98. Syngenta File N° CGA329351/1302. Unpublished.

2102/01. Kühne RO. 2002. Residue study with metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2102/01. Syngenta File N° CGA329351/1618. Unpublished.

2103/01. Kühne RO. 2002. Residue study with metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2103/01. Syngenta File N° CGA329351/1619. Unpublished.

2104/01. Kühne RO. 2002. Residue study with metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2104/01. Syngenta File N° CGA329351/1620. Unpublished. 2105/01. Kühne RO. 2002. Residue study with metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2105/01. Syngenta File N° CGA329351/1622. Unpublished.

2116/98. Kühne RO. 1999. Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in Spain. Novartis Crop Protection, Switzerland. Report 2116/98. Syngenta File N° CGA329351/1161. Unpublished.

2118/98. Kühne RO. 1999 Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in France (north). Novartis Crop Protection, Switzerland. Report 2118/98. Syngenta File N° CGA329351/1079. Unpublished.

2119/98. Kühne RO. 1999. Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in France (north). Novartis Crop Protection, Switzerland. Report 2119/98. Syngenta File N° CGA329351/1080. Unpublished.

212/00. Kühne RO. 2001. Validation of method REM 181.06. Validation by analysis of specimens fortified with metalaxyl-M (CGA 329351; R-enantiomer) and CGA 351920 (S-enantiomer) and determination of recoveries. Syngenta, Basel. Syngenta report No 212/00. Syngenta File N° CGA329351/1464. Unpublished.

2120/98. Kühne RO. 1999. Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in France (south). Novartis Crop Protection, Switzerland. Report 2120/98. Syngenta File N° CGA329351/1081. Unpublished.

2121/98. Kühne RO. 1999. Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in France (south). Novartis Crop Protection, Switzerland. Report 2121/98. Syngenta File N° CGA329351/1082. Unpublished.

2122/94. Kühne RO. 1996. Determination of residues of CGA 329351 and folpet in grapes (berries, must, new wine and wine) - field trial, Italy. Ciba-Geigy, Switzerland. Report 2122/94. Syngenta File N° CGA329351/0477. Unpublished.

2123/94. Kühne RO. 1996. Determination of residues of CGA 329351 and folpet in grapes (berries, must, new wine and wine) - field trial, Italy. Ciba-Geigy, Switzerland. Report 2123/94. Syngenta File N° CGA329351/0478. Unpublished.

2124/94. Kühne RO. 1996. Determination of residues of CGA 329351 and copper in grapes (berries, must, new wine and wine) -field trial, Italy. Ciba-Geigy, Switzerland. Report 2124/94. Syngenta File N° CGA329351/1544. Unpublished.

2125/94. Kühne RO. 1996. Determination of residues of CGA 329351 and copper in grapes (berries, must, new wine and wine) -field trial, Italy. Ciba-Geigy, Switzerland. Report 2125/94. Syngenta File N° CGA329351/1543. Unpublished.

2127/97, see 121/97

2128/97, see 121/97

- 2129/97, see 121/97
- 2130/97, see 121/97

2131/99. Kühne RO. 2000. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on head lettuce in the Netherlands. Novartis Crop Protection,

Switzerland. Report 2131/99. Syngenta File N° CGA329351/1330. Unpublished.

2132/99. Kühne RO. 2000. Residue study with mancozeb (ASF 21) and metalaxyl-M (CGA 329351) in or on head lettuce in the Netherlands. Novartis Crop Protection, Switzerland. Report 2132/99. Syngenta File N° CGA329351/1331. Unpublished.

2139/97, see 124/97 2140/97, see 124/97 2141/97 see 125/97 2142/97 see 125/97 2143/97 see 125/97 2144/97 see 125/97 2145/97 see 125/97 2146/97 see 125/97

2147/97 see 125/97

2148/00. Kühne RO. 2002. Residue study with copper (ASF47) and metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2148/00. Syngenta File N° CGA329351/1610. Unpublished.

#### 2148/97 see 125/97

2149/00. Kühne RO. 2002. Residue study with copper (ASF47) and metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2149/00. Syngenta File N° CGA329351/1611. Unpublished.

#### 2149/97 see 125/97

2150/00. Kühne RO. 2002. Residue study with copper (ASF47) and metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2150/00. Syngenta File N° CGA329351/1613. Unpublished.

#### 2150/97 see 125/97

2151/00. Kühne RO. 2002. Residue study with copper (ASF47) and metalaxyl-M (CGA 329351) in or on cocoa in Ivory Coast. Syngenta Crop Protection, Switzerland. Report 2151/00. Syngenta File N° CGA329351/1614. Unpublished.

#### 2151/97 see 125/97

2169/99. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in France (north). Syngenta AG, Switzerland. Report 2169/99. Syngenta File N° CGA245704/0760. Unpublished.

2170/99. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in France (north). Syngenta AG, Switzerland. Report 2170/99. Syngenta File N° CGA245704/0761. Unpublished.

2171/99. Sack S. 2001. Residue study with acibenzolar-Smethyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in France (south). Syngenta AG, Switzerland. Report 2171/99. Syngenta File N° CGA245704/0756. Unpublished.

2172/99. Sack S. 2001. Residue study with acibenzolar-S-Methyl (CGA 245704) and metalaxyl-M (CGA 329351) in or on head lettuce in France (south). Syngenta AG, Switzerland. Report 2172/99. Syngenta File  $N^{\circ}$  CGA245704/0757. Unpublished.

2186/99. Kühne RO. 2000. Residue study with metalaxyl-M (CGA 329351) in or on oranges in Spain. Syngenta AG, Switzerland. Report 2186/99. Syngenta File N° CGA329351/1429. Unpublished.

2252/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and folpet in or on head lettuce in Germany. Novartis Crop Protection, Switzerland. Report 2252/97. Syngenta File N° CGA329351/0984. Unpublished.

2253/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and folpet in or on head lettuce in Germany. Novartis Crop Protection, Switzerland. Report 2253/97. Syngenta File N° CGA329351/0985. Unpublished.

2254/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and folpet in or on head lettuce in Germany. Novartis Crop Protection, Switzerland. Report 2254/97. Syngenta File N° CGA329351/0986. Unpublished.

2255/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and folpet in or on head lettuce in Germany. Novartis Crop Protection, Switzerland. Report 2255/97. Syngenta File N° CGA329351/0987. Unpublished.

2260/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on head lettuce in France (north). Novartis Crop Protection, Switzerland. Report 2260/97. Syngenta File N° CGA329351/0940. Unpublished.

2261/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on head lettuce in France (north). Novartis Crop Protection, Switzerland. Report 2261/97. Syngenta File N° CGA329351/0941. Unpublished.

2262/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on head lettuce in France (south). Novartis Crop Protection, Switzerland. Report 2262/97. Syngenta File N° CGA329351/0942. Unpublished.

2263/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on head lettuce in France (south). Novartis Crop Protection, Switzerland. Report 2263/97. Syngenta File N° CGA329351/0943. Unpublished.

2325/97. Kühne RO. 1998. Residue Study with metalaxyl-M (CGA 329351) in or on oranges in Israel. Novartis Crop Protection, Switzerland. Report 2325/97. Syngenta File N° CGA329351/0858. Unpublished.

2327/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on oranges in Israel. Novartis Crop Protection, Switzerland. Report 2326/97. Syngenta File N° CGA329351/0859. Unpublished. 2327/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) in or on oranges in Israel. Novartis Crop Protection, Switzerland. Report 2327/97. Syngenta File N° CGA329351/0860. Unpublished.

2332/97. Kühne RO.1999. Residue study with folpet (ASF 16) and metalaxyl-M (CGA 329351) in or on grapes in Switzerland. Novartis, Switzerland. Report 2332/97. Syngenta File N° CGA329351/1062. Unpublished.

2334/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2334/97. Syngenta File N° CGA329351/0926. Unpublished.

2335/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and copper as copper oxychloride (ASF 45) in or on tomatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2335/97. Syngenta File N° CGA329351/0928. Unpublished.

2336/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2336/97. Syngenta File N° CGA329351/0927. Unpublished.

2337/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and copper as copper oxychloride (ASF 45) in or on tomatoes in Switzerland. Novartis Crop Protection, Switzerland. Report 2337/97. Syngenta File N° CGA329351/0929. Unpublished.

2338/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on onions in Switzerland. Novartis Crop Protection, Switzerland. Report 2338/97. Syngenta File N° CGA329351/0905. Unpublished.

2339/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and chlorothalonil (ASF 41) in or on onions in Switzerland. Novartis Crop Protection, Switzerland. Report 2339/97. Syngenta File N° CGA329351/0903. Unpublished.

2340/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on onions in Switzerland. Novartis Crop Protection, Switzerland. Report 2340/97. Syngenta File N° CGA329351/0906. Unpublished.

2341/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and chlorothalonil (ASF 41) in or on onions in Switzerland. Novartis Crop Protection, Switzerland. Report 2341/97. Syngenta File N° CGA329351/0904. Unpublished.

2347/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in France. Novartis Crop Protection, Switzerland. Report 2347/97. Syngenta File N° CGA329351/0907. Unpublished.

2348/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in France. Novartis Crop Protection, Switzerland. Report 2348/97. Syngenta File N° CGA329351/0908. Unpublished. 2349/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in France. Novartis Crop Protection, Switzerland. Report 2349/97. Syngenta File N° CGA329351/0909. Unpublished.

2350/97. Kühne RO. 1998. Residue study with metalaxyl-M (CGA 329351) and mancozeb (ASF 21) in or on tomatoes in France. Novartis Crop Protection, Switzerland. Report 2350/97. Syngenta File N° CGA329351/0910. Unpublished.

2383/97. Kühne RO. 1998. Study on fate and behaviour of metalaxyl-M (CGA 329351) in or on soil in Italy. Novartis Crop Protection, Switzerland. Report 2383/97. Syngenta File N° CGA329351/1028. Unpublished.

26/78. Hamböck H. 1978. Metabolism of CGA 48988 in the rat. Ciba-Geigy, Switzerland Report 26/78. Syngenta File N° CGA48988/0571. Unpublished.

26165. Das R. 1994. Report on boiling point / boiling range. Ciba-Geigy, Switzerland. Report 26165. Syngenta File N° CGA329351/0034. Unpublished.

26166. Das R. 1994. Report on density. Ciba-Geigy, Switzerland. Report 26166. Syngenta File N $^{\circ}$  File no 329351/0017. Unpublished.

26168. Stulz J. 1994. Report on octanol/water partition coefficient. Ciba-Geigy, Switzerland. Report 26168. Syngenta File N° CGA329351/0018. Unpublished.

26169. Stulz J. 1994. Report on water solubility. Ciba-Geigy, Switzerland. Report 26169. Syngenta File N° CGA329351/0016. Unpublished.

26171. Das R. 1994. Report on general physico-chemical properties (pure active ingredient). Ciba-Geigy, Switzerland. Report 26171. Syngenta File N° CGA329351/0021. Unpublished.

261B.00. Adams S. 1998. Determination of CGA 329351 in grapes, grape juice and wine by GLC. Analytical procedure 261B.00. Novartis Animal Health Australasia Pty Ltd. Unpublished.

262315. Schanné C. 1991. Degradation of <sup>14</sup>C-labelled metalaxyl (CGA 48988) in one soil incubated under various experimental conditions. RCC AG., Switzerland. Report 262315. Syngenta File N° CGA48988/3091. Unpublished.

26831. Das R. 1994. Report on general physico-chemical properties (technical grade active ingredient). Ciba-Geigy, Switzerland. Report 26831. Syngenta File N° CGA329351/0020. Unpublished.

26833. Stulz J. 1994. Report on solubility in organic solvents. Ciba-Geigy, Switzerland. Report 26833. Syngenta File N° CGA329351/0022. Unpublished.

30/77. Gross D. 1977. Metabolism of CGA 48988 in field grown potato plants. Ciba-Geigy, Switzerland. Report 30/77. Syngenta File N° CGA48988/2022. Unpublished.

35/94. Ellgehausen H. 1994. Comparison of rate of degradation of [U-<sup>14</sup>C]-phenyl CGA 48988 with CGA 329351 in soil under laboratory conditions. Ciba-Geigy Ltd, Switzerland. Report 35/94. Syngenta File N° CGA48988/3745. Unpublished.

38/79. Gross D. 1979. Fate of CGA 48988 in lettuce. Ciba-Geigy, Switzerland. Report 38/79. Syngenta File N° CGA48988/2019. Unpublished.

38/80. Gross D. 1980. Identification of degradation products of CGA 48988 (Ridomil) in lettuce. Ciba-Geigy, Switzerland. Report 38/80. Syngenta File N° CGA48988/2020. Unpublished.

39/79. Gross D. 1979. Identification of metabolites of CGA 48988 (Ridomil®) in field grown potato plants. Ciba-Geigy, Switzerland. Report 39/79. Syngenta File N° CGA48988/2025. Unpublished.

4012/99. Kühne RO. 2000. Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in Spain. Novartis Crop Protection, Switzerland. Report 4012/99. Syngenta File N° CGA329351/1344. Unpublished.

4013/99. Kühne RO. 2001. Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in France (north). Syngenta Crop Protection, Switzerland. Report 4013/99. Syngenta File N° CGA329351/1447. Unpublished.

4014/99. Kühne RO. 2001. Residue study with metalaxyl-M (CGA 329351) in or on sunflowers in France (north). Syngenta Crop Protection, Switzerland. Report 4014/99. Syngenta File N° CGA329351/1448. Unpublished.

517/99. Kühne RO. 1999. Validation data of the method REM 181.01 (Including also the version modified for use with LC-MS-MS). Validation by analysis of fortified specimens and determination of recoveries: discussion and evaluation of previously reported results. Substrate citrus crops (lemons, mandarins, oranges). Novartis Crop Protection, Switzerland. Report 517/99. Syngenta File N° CGA329351/1229. Unpublished.

518/99. Kühne RO. 1999. Validation data of the method REM 181.01 (Including also the version modified for use with LC-MS-MS). Validation by analysis of fortified specimens and determination of recoveries: discussion and evaluation of previously reported results. Substrate cotton seeds. Novartis Crop Protection, Switzerland. Syngenta Report 518/99. Syngenta File N° CGA329351/1230. Unpublished.

519/99. Kühne RO. 1999. Validation data of the method REM 181.01 (Including also the version modified for use with LC-MS-MS). Validation by analysis of fortified specimens and determination of recoveries: discussion and evaluation of previously reported results. Substrate sunflower seeds. Novartis Crop Protection, Switzerland. Report 519/99. Syngenta File N° CGA329351/1231. Unpublished.

95EH03. Ellgehausen H. 1995. Comparison of rate of degradation of [U-<sup>14</sup>C]-phenyl CGA 48988 with CGA 329351 in sandy soil Collombey under laboratory conditions. Ciba-Geigy Ltd, Switzerland. Report 95EH03. Syngenta File N° CGA48988/3827. Unpublished.

95EH04. Ellgehausen H. 1995. Aqueous photolysis of <sup>14</sup>C CGA 329351 under artificial sunlight conditions. Ciba-Geigy, Switzerland. Report 95EH04. Syngenta File N° CGA329351/0329. Unpublished.

95EH05. Ellgehausen H. 1996. Hydrolysis of <sup>14</sup>C-labelled CGA 329351 under laboratory conditions. Ciba-Geigy,

Switzerland. Report 95EH05. Syngenta File N° CGA329351/0330. Unpublished.

95EH06. Ellgehausen H. 1996. Metabolism of <sup>14</sup>C-CGA 329351 under aerobic conditions in two soils at 20°C. Project No. 95EH06. Ciba-Geigy Ltd., Switzerland. Syngenta File N° CGA329351/0326. Unpublished.

98/7/161. Dal Santo P, Adams S and Chaophrasy K. 1998. Determination of metalaxyl-M (CGA 329351) and copper residues in grapes, grape juice and wine following six applications of Ridomil Gold Plus to grapevines close to harvest.. Novartis Crop Protection, Australia. Report 98/7/1615. Syngenta File N° CGA329351/1016. Unpublished.

98JS30. Stingelin J. 2000. Comparative metabolism of [phenyl-(U)-<sup>14</sup>C] CGA 329351 and [Phenyl-(U)-<sup>14</sup>C] CGA 48988 in field grown lettuce. Novartis Crop Protection, Switzerland. Report 98JS30. Syngenta File N° CGA329351/1254. Unpublished.

ABR-78001. Marco JJ. 1978. Balance and metabolism of <sup>14</sup>C-CGA 48988 in potatoes. Ciba-Geigy, United States. Report ABR-78001. Syngenta File N° CGA48988/2023. Unpublished.

ABR-78013. Foster RA, Fischer WC and Cassidy JE. 1978. Uptake of <sup>14</sup>C-metalaxyl in potatoes grown in a field plot – preparation of rotational plots. Ciba Geigy Corp., United States. Report ABR-78013. Syngenta File N° CGA48988/2024. Unpublished.

ABR-78046. Fisher WC, Foster RA and Cassidy JE. 1978. Balance and metabolism of f-<sup>14</sup>C-CGA-48988 in a lactating cow. M6-69-3A. Report ABR-78046. Ciba-Geigy, USA. Unpublished.

ABR-78077. Marco JJ. 1978. Uptake and characterization of  $\Phi$ -<sup>14</sup>C-CGA 48988 and its soil metabolites in rotation winter wheat. Ciba-Geigy Corp., United States. Report ABR-78077. Syngenta File N° CGA48988/3570. Unpublished.

ABR-78078. Marco JJ. 1978. Uptake and characterization of  $\Phi$ -<sup>14</sup>C-CGA 48988 and its soil metabolites in rotation lettuce. Ciba-Geigy Corp., United States. Report ABR-78078. Syngenta File N° CGA48988/3569. Unpublished.

ABR-79002. Marco JJ. 1979. Uptake and characterization of  $\Phi$ -<sup>14</sup>C-CGA 48988 and its soil metabolites in field rotation spring oats. Ciba-Geigy Corp., United States. Report ABR-79002. Syngenta File N° CGA48988/3568. Unpublished.

ABR-79003. Marco JJ. 1979. Uptake and characterization of  $\Phi$ -<sup>14</sup>C-CGA 48988 and its soil metabolites in field rotation soybeans. Ciba-Geigy Corp., United States. Report ABR-79003. Syngenta File N° CGA48988/3567. Unpublished.

ABR-79004. Marco JJ. 1979. Uptake and characterization of  $\Phi$ -<sup>14</sup>C-CGA 48988 and its soil metabolites in field rotation corn. Ciba-Geigy Corp., United States. Report No. ABR-79004. Syngenta File N° CGA48988/3566. Unpublished.

ABR-79005. Marco JJ. 1979. Uptake and characterization of  $\Phi$ -<sup>14</sup>C-CGA 48988 and its soil metabolites in field rotation sugar beets. Ciba-Geigy Corp., United States.

Report ABR-79005. Syngenta File N° CGA48988/3565. Unpublished.

ABR-81014. Balasubramanian K and Ross JA. 1981. Validation of AG-349 for the determination of metalaxyl in animal tissues and milk. Ciba-Geigy, United States. Report ABR-81014. Syngenta File N° CGA48988/5085. Unpublished.

ABR-81037. Marco JJ. 1981. Uptake, balance and metabolism of  $f^{-14}$ C-CGA 48988 in field grown potatoes. Ciba-Geigy, United States. Report ABR-81037. Syngenta File N° CGA48988/2026. Unpublished.

ABR-82052. Kahrs RQ. 1982. Residues of metalaxyl and metabolites in tissues and milk of dairy cows receiving metalaxyl in their diet. Ciba-Geigy Corp., United States. Report No. ABR-82052. Syngenta File N° CGA48988/1982. Unpublished.

ABR-90077. Kennedy E, Brown K and Goins A. 1990. Metabolism of [f-<sup>14</sup>C]-metalaxyl in hens. Project 409925. Report ABR-90077. Ceiba-Geigy, USA. Unpublished.

ABR-90078. Emrani J and Meadows W. 1990. Metabolism of [f-<sup>14</sup>C]metalaxyl in goats. Project 409925. Report ABR-90078. Ciba\_Geigy, USA. Unpublished.

ABR-90079. Itterly W and Eberle W. 1990. Characterization and identification of phenyl-[<sup>14</sup>C]metalaxyl metabolites in rats. Study M89-409-002A, M89-409-003A, M89-409-004A, M89-409-005A. Project 409925. Report ABR-90079. Ciba-Geigy, USA. Unpublished.

ABR-91008. Yokley RA. 1991. Validation of analytical method AG-576 for the determination of total residues of metalaxyl in goat tissues, milk, poultry tissues and eggs. Ciba-Geigy, United States. Report ABR-91008. Syngenta File N° CGA48988/3074. Unpublished.

ABR-91047. Eudy LW. 1991. Metalaxyl - Three level/28 day poultry study. Ciba-Geigy Corp., United States. Report No. ABR-91047. Syngenta File N° CGA48988/3167. Unpublished.

ABR-91075. Emrani J and Meadows W. 1991. Supplemental report of the metabolism of [f-<sup>14</sup>C]metalaxyl in goats. Identification of the major milk metabolite "A". Project 409925. Report ABR-91075. Ciba\_Geigy, USA. Unpublished.

ABR-91077. Kennedy E, Worsham C and Meadows W. 1991. Supplemental report on the metabolism of [f<sup>-14</sup>C]metalaxyl in hens. Project 409925. Report ABR-91077. Ceiba-Geigy, USA. Unpublished.

ABR-91084. McFarland J. 1992. Uptake and metabolism of metalaxyl in greenhouse rotational crops following target tobacco grown in soil treated with phenyl-<sup>14</sup>C-metalaxyl. Ciba-Geigy Corp., United States. Report ABR-91084. Syngenta File N° CGA48988/3220. Unpublished.

ABR-91084 A1. Simoneaux B. 1994. Final report amendment on the uptake and metabolism of metalaxyl in greenhouse rotational crops following target tobacco grown in soil treated with [phenyl-<sup>14</sup>C]-metalaxyl (Amendment 1). Ciba-Geigy Corp., United States. Report ABR-91084 A1. Syngenta File N° CGA48988/3599. Unpublished. ABR-96108. Eudy LW and Swaim LF. 1997. Method validation trial for the determination of CGA-94689, P1/P2, and CGA-62826 in meat and eggs using analytical method AG-576. Project 409925, Study 77-95, report ABR-96108. Ciba-Geigy, USA. Unpublished.

ABR-98053. Gruenwald MC. 1998. Stability of CGA-329351, CGA 62826, and CGA-94689 in meat, milk, and eggs, under freezer storage conditions. Novartis Crop Protection, United States. Report ABR-98053. Syngenta File N° CGA329351/1006. Unpublished.

AG-349. Balasubramanian K. 1980. Analytical method for the determination of total residues of metalaxyl in animal tissues, milk and eggs as 2,6-dimethylaniline. Ciba-Geigy, United States. Method AG-349. Syngenta File N° CGA48988/0606. Unpublished.

AG-576. Eudy LW. 1991. Improved analytical method for the determination of total residues of metalaxyl in poultry tissues and eggs as 2,6-dimethylaniline. Ciba-Geigy, United States. Method AG-576. Syngenta File N° CGA48988/3073. Unpublished.

BIOL-90016. McFarland J. 1992. Biological report for greenhouse rotational crops grown after tobacco in soil treated with <sup>14</sup>Cmetalaxyl. Ciba-Geigy Corp., United States. Report BIOL-90016. Syngenta File N° CGA48988/3218. Unpublished.

BIOL-90017. McFarland J. 1992. Biological report for greenhouse grown tobacco grown in soil treated with <sup>14</sup>C-metalaxyl.Ciba-Geigy Corp., United States. Report BIOL-90017. Syngenta File N° CGA48988/3219.Unpublished.

FAO. 1992. Metalaxyl technical. FAO Specification 365/TC/S/F (1992).

FR 017/96. Machado TR. 1998. Ridomil Gold MZ, CGA 329351 + mancozeb, A-9407 B, potatoes, Brazil. Novartis Biociências S/A, Taboão da Serra SP, Brazil. Report FR 017/96 and FR 018/96. Syngenta File N° CGA329351/1821. Unpublished.

#### FR 018/96. See FR 017/96

FR 033/96. Machado TR. 1998. Ridomil Gold MZ, CGA 329351 + mancozeb, A-9407 B, onions, Brazil. Novartis Biociências S/A, Taboão da Serra SP, Brazil. Report FR 033/96 and FR 034/96. Syngenta File N° CGA329351/1820. Unpublished.

#### FR 034/96. See FR 033/96

FR0595AR. Adams S. 1998. Determination of residues of CGA 329351 and fluazinam in potatoes, after five applications of either A-9575A or Shirlan in the UK. Novartis, United Kingdom. Residue study FR0595AR. Syngenta File N° CGA329351/0836. Unpublished.

FR0595BR. Adams S. 1998. Determination of residues of CGA 329351 and fluazinam in potatoes, after five applications of either A-9575A or Shirlan in the UK. Novartis, United Kingdom. Residue study FR0595BR. Syngenta File N° CGA329351/0835. Unpublished.

gr 22998. Smith JA. 1999. Determination of residues of CGA 329351 and folpet in field grown lettuce , Germany. Novartis Agro, Germany. Report gr 22998. Syngenta File  $N^{\circ}$  CGA329351/1154. Unpublished.

gr 23998. Smith JA. 1999. Determination of residues of CGA 329351 and folpet in glasshouse grown lettuce. Novartis Agro, Germany. Report gr 23998. Syngenta File  $N^{\circ}$  CGA329351/1162. Unpublished.

gr 24998. Smith JA. 1999. Determination of residues of CGA 329351 and folpet in spinach, Germany. Novartis Agro, Germany. Report gr 24998. Syngenta File N° CGA329351/1152. Unpublished.

gr 25998. Smith JA. 1999. Determination of residues of CGA 329351 and folpet in spinach, Germany. Novartis Agro, Germany. Report gr 25998. Syngenta File N° CGA329351/1153. Unpublished.

gr 45396. Smith JA. 1998. Residues of CGA 329351 + CGA 143268 in potatoes (Test product: CGD 20660 F -A9575A, EC 600). Study report gr 45396. Novartis, Germany. Syngenta File N° CGA329351/0646. Unpublished.

gr 46696. Smith JA. 1998. Residues of CGA 329351 + CGA 143268 in potatoes (Test product: CGD 20660 F -A9575A, EC 600). Study report gr 46696. Novartis, Germany. Syngenta File N° CGA329351/0644. Unpublished.

gr 4795. Raum J and Smith J. 1996. Field trial for the determination of residues of CGD 20500 F in potatoes. Study gr 4795. Ciba-Geigy, Switzerland. Experiments gr 31395, gr 41395. Syngenta File N° CGA329351/0379. Unpublished.

gr 4895. Smith JA. 1997. Field trial for the determination of residues of CGA 329351 + fluazinam in potatoes (Test product: CGD 20660 F). Project report gr 4895. Novartis, Germany. Experiments gr 31495, gr 41495. Syngenta File N° CGA329351/0645. Unpublished.

gr 49500. Smith JA. 2001. Determination of residues of CGA 329351 and folpet in lettuce, Germany. Novartis Agro, Germany. Report gr 49500. Syngenta File N° CGA329351/1454. Unpublished.

gr 50597. Smith JA. 1999. Determination of residues of metalaxyl-M and folpet in comparison to metalaxyl and folpet in grapes, must and white wine. Novartis, Germany. Report gr 50597. Syngenta File N° CGA329351/1137. Unpublished.

gr 50800. Smith JA. 2001. Determination of residues of CGA 329351 and folpet in lettuce, Germany. Novartis Agro, Germany. Report gr 50800. Syngenta File N° CGA329351/1452. Unpublished.

gr 51900. Smith JA. 2001. Determination of residues of CGA 329351 and folpet in field grown lettuce, Germany. Novartis Agro, Germany. Report gr 51900. Syngenta File N° CGA329351/1453. Unpublished.

gr 5194. Leiblein M. 1995. Residues of CGA 329351 and folpet in grapes, must, and wine. Ciba-Geigy, Germany. Report GR 5194. Includes gr 52894 and gr 52994. Syngenta File N° CGA329351/0198. Unpublished.

gr 52700. Smith JA. 2001. Determination of residues of CGA 329351 and folpet in lettuce, Germany. Novartis Agro, Germany. Report gr 52700. Syngenta File N° CGA329351/1451. Unpublished.

gr 52894. See gr 5194.

gr 52994. See gr 5194.

HWI 6117-280. Fathulla R. 1995. Aerobic soil metabolism of <sup>14</sup>C-CGA 329351 in a sandy loam soil. Corning Hazleton Inc. Madison, United States. Report HWI 6117-280. Syngenta File N° CGA329351/0343. Unpublished.

NOV/MET/00111. Pointurier R. 2001. Independent laboratory validation (ILV) - validation of method REM 181.06 (validation by analysis of fortified specimens and determination of recoveries). ADME - Bioanalyses, Vergèze, France. Report NOV/MET/00111. Syngenta File N° CGA329351/1469. Unpublished.

NOV-0015. Weber H and Pelz S. 2000. Determination of the residues of CGA 329351 + folpet in lettuce - analytical part (CGA 329351 + folpet) of Novartis GLP study no gr 50800. Analytical report. Specht & Partner, Germany. Unpublished.

NOV06. Dorn R and Hein W. 2003. Degradation of CGA 62826 in soil "Birkenheide". Staatl. Lehr-und Forschungsanstalt für Landwirtschaft, Weinbau und Gartenbau (SLFA). Nuestadt, Germany. Report NOV06. Syngenta File N° CGA62826/0023. Unpublished.

NOV07. Dorn R and Hein W. 2003. Degradation of CGA 329351 in soil "Birkenheide". Staatl. Lehr-und Forschungsanstalt für Landwirtschaft, Weinbau und Gartenbau (SLFA). Nuestadt, Germany. Report NOV07. Syngenta File N° CGA329351/1744. Unpublished.

NOV11. Dorn R. 2001. Degradation of CGA 48988 in soil "Birkenheide". Staatl. Lehr-und Forschungsanstalt für Landwirtschaft, Weinbau und Gartenbau (SLFA). Nuestadt, Germany. Report NOV11. Syngenta File N° CGA48988/5019. Unpublished.

PP-94/45P.DCW. Jäkel K.1995. Report on dissociation constant in water. Ciba-Geigy, Switzerland. Report PP-94 / 45P.DCW. Syngenta File N° CGA329351/0041. Unpublished.

PP-94/45P.VPC. Geoffroy A. 1994. Report on vapour pressure curve. Ciba-Geigy, Switzerland. Report PP-94/45P.VPC. Syngenta File N° CGA329351/0044. Unpublished.

REM 181.01. Kühne RO. 1995. CGA 329351. Determination of parent compound by gas chromatography (GC). Plant material. Ciba-Geigy, Switzerland. Method REM 181.01. Syngenta File N° CGA329351/0216. Unpublished.

REM 181.06. Kühne RO. 2001. Metalaxyl-M (CGA 329351). Plant material. Determination of parent compound by GC (enantiomer specific method). Syngenta, Switzerland. Method REM 181.06. Syngenta File N° CGA329351/1463. Unpublished.

RFFA 06/97. Garozi MJ. 1998. Fólio Gold PM, CGA 329351 + chlorothalonil, A-9857 A, potatoes, Brazil. Universidade Federal do Espirito Santo, Rio de Janeiro, Brazil. Report RFFA 06/97. Syngenta File N° CGA329351/1825. Unpublished.

RFFA 09/97. Garozi MJ. 1998. Folio Gold PM, CGA 329351 + chlorothalonil, A-9857 A, onions, Brazil. Universidade Federal do Espirito Santo, Rio de Janeiro, Brazil. Report RFFA 09/97. Syngenta File N° CGA329351/1826. Unpublished. RFLU 06/97. Machado TR. 1998. Fólio Gold , CGA 329351 + chlorothalonil, A-9857 A, potatoes, Brazil. Novartis Biociências S/A, Taboão da Serra SP, Brazil. Report RFLU 06/97. Syngenta File N° CGA329351/1828. Unpublished.

RFZO 09/97. Machado TR. 1998. Fólio Gold, CGA 329351 + chlorothalonil, A-9857 A, onions, Brazil. Novartis Biociências S/A, Taboão da Serra SP, Brazil. Report RFZO 09/97. Syngenta File N° CGA329351/1827. Unpublished.

WHO. 2003. Metalaxyl and metalaxyl-M. Pesticide Residues in Food - 2002. Toxicological Evaluations. 165-221. WHO/PCS/03.1.