# **FENPROPATHRIN (185)**

The first draft was prepared by professor Árpád Ambrus, temporary adviser, Hungary

### **EXPLANATION**

Fenpropathrin is a type II pyrethroid insecticide and acaricide used for the control of a variety of arthropods including aphids, worms, moths, beetles, mites, spiders, thrips, flies, fleas and other pests in agriculture. It acts by contact and ingestion. It is also a repellent. It interferes with nerve impulse transmission by acting on sodium channels.

Fenpropathrin was first evaluated by JMPR in 1993 when an ADI of 0–0.03 mg/kg bw was established and a number of MRLs recommended. In 2006 MRL for tea was recommended. The compound was re-evaluated for toxicology within the periodic review programme in 2012 when the Meeting reaffirmed the ADI of 0–0.03 mg/kg bw and established an ARfD of 0.03 mg/kg bw.

Fenpropathrin is scheduled for periodic re-evaluation of residues in 2014. Data to support proposed Codex MRLs on a number of commodities and on animal products were submitted for review.

#### **IDENTITY**

ISO common name: Fenpropathrin

IUPAC name: (RS)- $\alpha$ -cyano-3-phenoxybenzyl 2,2,3,3-

tetramethyl cyclopropane carboxylate

Chemical Abstract name: cyano(3-phenoxyphenyl)methyl 2,2,3,3-

tetramethylcyclopropanecarboxylate

CAS No.: 64257-84-7 (racemate);

39515-41-8 (unstated stereochemistry)

Molecular Formula:  $C_{22}H_{23}NO_3$ 

Structural Formula:

Molecular Weight: 349.43

### **Specifications**

Specifications for fenpropathrin have not yet developed by FAO.

### Physical and Chemical Properties

Technical material (90%) (Reference: JMPR, 1993)

| Chemical/physical property                 | Results                                        |       |
|--------------------------------------------|------------------------------------------------|-------|
| Physical state                             | Liquid                                         |       |
| Colour                                     | Yellow to brown                                |       |
| Odour                                      | Faint characteristic odour                     |       |
| Density                                    | 1.105                                          |       |
| Vapour pressure                            | $2.15 \times 10^{-6} \text{ Pa}$               |       |
| Melting range                              | 45-50 °C                                       |       |
| Flammability                               | Flash point : 205 °C<br>Ignition point: 325 °C |       |
| Solubility in organic solvents (g/L, 23°C) | Acetone                                        | > 500 |

| Chemical/physical property          | Results                                                                                          |                                   |
|-------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|
|                                     | Acetonitrile                                                                                     | > 500                             |
|                                     | Cyclohexanone                                                                                    | > 500                             |
|                                     | Ethyl acetate                                                                                    | > 500                             |
|                                     | Methanol                                                                                         | 216                               |
|                                     | Xylene                                                                                           | > 500                             |
| Solubility in water                 | 36.3 μg/L at 25.1 °C                                                                             |                                   |
| Octanol/water partition coefficient | $Log_{Po/w} = 6.0 \pm 0.20$                                                                      |                                   |
| Hydrolytic half lives               | pH 5 and pH: 7 200 days<br>pH 9: 17.1 days (calculated<br>cyclopropyl-1- <sup>14</sup> C)-fenpro | d based on hydrolysis of pathrin. |
| Stability                           | No significant breakdown 60 °C                                                                   | after 20 weeks storage at         |

### Hydrolytic degradation

The hydrolytic degradation of fenpropathrin was examined at pH 5, 7, and 9 with [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin or [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin in sterile aqueous solution containing 1% acetonitrile as co-solvent (Takahashi, *et.al.*, 1983 and 1985, References FM-30-0010 and FM-50-0053; Concha, *et al.*, 1992; Reference FM-21-0060).

The predominant hydrolysis reactions were cleavage of the ester linkage and hydration of the cyano group. Major hydrolysis products from cyclopropyl labelled fenpropathrin were TMPA, TMPA-carboxamide and CONH<sub>2</sub>-fenpropathrin, while from phenoxyphenyl labelled fenpropathrin, were PBacid and CONH<sub>2</sub>-fenpropathrin

### **Formulation**

The emulsifiable concentrate formulation containing 300 g/L fenpropathrin was used in the residue trials submitted for evaluation.

## METABOLISM AND ENVIRONMENTAL FATE

The metabolism of fenpropathrin has been investigated in apple, tomato, beans, cotton, cabbage, lactating goat and laying hens. The crops selected represent those for which supervised trials have been provided.

The fate and behaviour of fenpropathrin in plants, animals and soil were investigated using either [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin, [benzyl-<sup>14</sup>C]-fenpropathrin or [cyano-<sup>14</sup>C]-fenpropathrin (all with radiochemical purity >98%).

[cyclopropyl-1-14C]-fenpropathrin

[phenoxyphenyl-14C]-fenpropathrin

[cyano-<sup>14</sup>C]-fenpropathrin

[benzyl-14C]-fenpropathrin

The chemical structures and code names of metabolites and the major degradation products of fenpropathrin are shown in Table 1.

Table 1 Degradation compounds from the metabolism of fenpropathrin

| Compound Name                                                                                                                                                      | Structure                                 | Found in:                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|
| 2'-or 4'-OH-Fenpropathrin [α-cyano-3-(2'- or 4'- hydroxyphenoxy)benzyl 2,2,3,3- tetramethylcyclopropanecarboxylate]                                                | O CN OH                                   | Plant, animal, soil        |
| 2'- or 4'-OH-Fenpropathrin-CH <sub>2</sub> OH [α-cyano-3-(2'- or 4'-hydroxyphenoxy) benzyl-2-hydroxymethyl-2,3,3-trimethylcyclopropanecarboxylate]                 | OH OH                                     | Plant, animal              |
| CONH $_2$ -Fenpropathrin [ $\alpha$ -carbamoyl-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate]                                                         | CONH <sub>2</sub>                         | Soil, water plant          |
| COOH-Fenpropathrin [α-carboxy-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate]                                                                          | ССООН                                     | Soil, plant                |
| Desphenyl-Fenpropathrin [α-cyano-3-hydroxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate]                                                                       | O CN OH                                   | Animal, soil, plant        |
| Fenpropathrin-CH <sub>2</sub> OH [α-cyano-3-phenoxybenzyl 2-hydroxymethyl-2,3,3-trimethylcyclopropanecarboxylate]                                                  | OH ON | Plant, animal              |
| Fenpropathrin-COOH [α-cyano-3-phenoxybenzyl 2-carboxy-2,3,3-trimethylcyclopropanecarboxylate]                                                                      | COOH                                      | Animal                     |
| Fenpropathrin-(CH <sub>2</sub> OH) <sub>2</sub> [α-cyano-3-phenoxybenzyl 2,2-dihydroxymethyl-3,3-dimethylcyclopropanecarboxylate]                                  | HO—OH CO CN                               | Plant                      |
| 2'- or 4'-OH-Fenpropathrin-(CH <sub>2</sub> OH) <sub>2</sub> [α-cyano-3-(2'- or 4'- hydroxyphenoxy)benzyl 2,2-dihydroxymethyl-3,3-dimethylcyclopropanecarboxylate] | HO OH OH                                  | Plant                      |
| PB aldehyde (PBald) [3-phenoxybenzaldehyde]                                                                                                                        | СНО                                       | Plant, animal, soil        |
| PB alcohol (PBalc) [3-phenoxybenzyl alcohol]                                                                                                                       | CH <sub>2</sub> OH                        | Plant, soil                |
| PBacid [3-phenoxybenzoic acid]                                                                                                                                     | Соон                                      | Plant, animal, soil, water |

| Compound Name                                                                             | Structure       | Found in:                  |
|-------------------------------------------------------------------------------------------|-----------------|----------------------------|
| 2'- or 4'-OH-PBalc<br>[3-(2'- or 4'-hydroxyphenoxy)benzyl<br>alcohol]                     | но Сн2ОН        | Plant                      |
| 2'- or 4'-OH-PBacid [3-(2'- or 4'-hydroxyphenoxy)benzoic acid]                            | но              | Plant, animal, soil        |
| 3-OH-Bacid [3-hydroxy-benzoic acid]                                                       | но соон         | Animal, soil               |
| TMPA [2,2,3,3-tetramethylcyclopropane-carboxylic acid]                                    | СООН            | Plant, animal, soil, water |
| TMPA-CH <sub>2</sub> OH [2-hydroxymethyl-2,3,3- trimethylcyclopropanecarboxylic acid]     | ОН              | Plant, animal              |
| TMPA-lactone [5,6,6-trimethyl-3-oxabicyclohexan-2-one]                                    |                 | Plant                      |
| TMPA-CH <sub>2</sub> OH lactone<br>[5-hydroxymethyl-6,6-dimethyl-3-oxabicyclohexan-2-one] | НО              | Plant, animal              |
| TMPA carboxamide [2,2,3,3-tetramethylcyclopropane-carboxamide]                            | NH <sub>2</sub> | Water                      |
| TMPA-COOH [2-carboxy-2,3,3- trimethylcyclopropanecarboxylic acid]                         | ноос            | Plant, animal              |

### Animal metabolism

#### Laboratory animals

Absorption by rats was rapid and excretion almost complete (97%) within 48 hours. About 56% of the administered dose was found in urine and 40% in faeces at 48 hours. The amount of radioactivity excreted via expired air was 0.005%. The low residues found in blood, liver, kidney, fat, muscle and brain 24 hours after dosing depleted rapidly over the following 7 days to barely detectable levels, and less than 1.5% of the administered dose remained in the body 8 days after treatment. The highest residue was found in the fat. About 29–53% of the parent compound was detected in the faeces and no parent compound was detected in the urine. The predominant urinary metabolites derived from the acid moiety were identified as TMPA–glucuronide and TMPA-CH2OH (*trans*). Other metabolites identified were TMPA-COOH (*trans*) and TMPA-CH2OH-lactone in free form or as the glucuronide conjugate. The major urinary metabolites derived from the alcohol moiety were PBacid in free form and as the glycine conjugate, 4'-OH-PBacid–sulfate and 2'-OH-PBacid–sulfate. The urinary metabolites from the alcohol moiety were similar to those from other pyrethroids. The major faecal metabolite was identified as CH2OH *trans*-fenpropathrin, followed by COOH *trans*-fenpropathrin, 4'-

OH-fenpropathrin and 4'-OH,CH<sub>2</sub>OH *trans*-fenpropathrin. Depending on the dose administered, 30–50% of the applied radioactivity was excreted in faeces as parent compound. Fenpropathrin and TMPA were the major components of <sup>14</sup>C in tissues. No sex-related differences in tissue distribution were observed.

# Lactating goats

The adsorption and deposition of radioactivity was studied in lactating goats (Ku and Doran, 1990, Reference FM-01-0041). Two animals per group were dosed for five consecutive days via capsules with either [phenoxyphenyl-14C]-fenpropathrin or [cyclopropyl-1-14C]-fenpropathrin at a rate equivalent to 50 ppm (based on a 2 kg diet, 100 mg per dose of test material). A single control animal was dosed, using a placebo capsule, in an identical manner. Sample collection was initiated on study day 1, with the twice daily collection of milk (morning and afternoon) until sacrifice. Urine and faeces were collected daily from study day 1 to day 4 (with cage wash conducted at study termination). Blood samples were collected at specified times during the last day of dosing. At sacrifice, and within 4 hours of the terminal dose, samples of omental and perirenal fat, kidneys, liver, gall bladder contents, heart, loin muscle and rear leg muscle were taken for analysis. Urine, milk and butterfat (obtained from the milk) were quantified directly by LSC of replicate aliquots. Faeces and non-fatty tissues were homogenized and replicate subsamples taken for combustion and radio-assay. Replicate samples of the fatty tissues were solubilised prior to radio-assay.

Milk, tissues and fat (omental and perirenal) were extracted with either acidified acetonitrile/hexane (milk) or acidified acetonitrile (fat and tissues). Extracts were combined, concentrated and partitioned with either ethyl ether or ethyl acetate with further concentration and subsequent quantification by HPLC. Aqueous fractions from the milk, tissues, urine and faeces extractions were subjected to acid hydrolysis, extracted with either ethyl acetate or ethyl ether and the organo-soluble components analysed. Non extractable residues of milk, tissues, fat and faeces were air dried prior to combustion and radio-assay. Selected non-extractable residues were subjected to acid hydrolysis with analysis of the organo-soluble components.

The mean total recovery of radioactivity following dosing with [cyclopropyl-1-1<sup>4</sup>C]-fenpropathrin was 65.2% (63.9–66.5%) with 40.9% (40.0–41.8) recovered in the urine and 23.5% (23.0–24.0) in the faeces. Excretion via milk was a minor route with radioactivity accounting for *ca* 0.15% (0.73 (0.497–0.954)) mg fenpropathrin equivalents for the phenoxyphenyl label and *ca* 0.087% (0.43 (0.416–0.449)) mg fenpropathrin equivalents of total dose 500 mg for the cyclopropyl label. Total radioactive residues in the milk reached a steady state by the evening milking on the third day when average residues in the whole milk were 0.11 mg/L for [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin treated animals and 0.25 mg/L for the [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin treated animals. Less than 3% of the radioactivity in the milk was associated with the butterfat. Most of the retained activity was found in the liver, kidney and fat. Levels in these three organs were in the range of 0.4–0.7 mg/kg fenpropathrin equivalent for both labels. Muscle levels were in the range of 0.02–0.04 mg/kg fenpropathrin equivalent.

Between 20% and 40% of the radiocarbon in the milk from animals receiving the phenoxyphenyl label was associated with the parent compound, with nearly all of the remainder being present as the glycine conjugate of PBacid which reached levels of 0.03–0.15 mg/L (Table 3). There were minor amounts of the hydroxylated derivatives of PBacid (0.003–0.01 mg/kg) and also of fenpropathrin itself (0.02–0.12 mg/kg). With the cyclopropyl label, 57–75% of the activity was associated with the parent material with moderate amounts of TMPA (< 0.002–0.005 mg/kg), its hydroxymethyl (< 0.002–0.003 mg/kg) and carboxy (< 0.002–0.003 mg/kg) derivatives and its hydroxymethylated lactone (< 0.002–0.004 mg/kg) (Table 4). In this case, however, the total recovery was only about 70–80% and the concentration of TMPA and all its derivatives did not exceed 0.01 mg/L. The identity of the compounds associated with the radioactivity in the tissues was somewhat similar except that in the liver and kidney there were only traces left as parent material (Table 5). In the case of the phenoxyphenyl label, most of the activity was in the form of PBacid (kidney 0.22–0.34 mg/kg; liver 0.05–0.07 mg/kg) and its glycine conjugate (kidney 0.21–0.38 mg/kg; liver 0.06-0.11 mg/kg) and in the case of the cyclopropyl label TMPA and its derivatives

predominated. The hydroxymethyl TMPA-lactone (TMPA-CH<sub>2</sub>OH lactone) was practically absent from the fat but was prominent in muscle, liver and kidney, accounting for up to 40% of the activity in the kidney, equivalent to about 0.2 mg/kg.

Table 2 Distribution of radioactive residues in milk and tissues following administration of [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin or [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin to lactating goats for 5 consecutive days

| Tissue           |         | Radioactive resid                                                                                                                                               |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
|                  |         | [phenoxyphenyl-                                                                                                                                                 | · <sup>14</sup> C]-fenpropathrir                                                                                                    | 1                                                                                                       | [cyclopropyl-1-1                                                            | <sup>4</sup> C]-fenpropathrin                   |                     |
|                  |         | Goat 12                                                                                                                                                         | Goat 16                                                                                                                             | Mean                                                                                                    | Goat 10                                                                     | Goat 13                                         | Mean                |
| Liver            |         | 0.329                                                                                                                                                           | 0.532                                                                                                                               | 0.431                                                                                                   | 0.495                                                                       | 0.432                                           | 0.464               |
| Kidney           |         | 0.514                                                                                                                                                           | 0.863                                                                                                                               | 0.689                                                                                                   | 0.521                                                                       | 0.441                                           | 0.481               |
| Heart            |         | 0.0534                                                                                                                                                          | 0.113                                                                                                                               | 0.0832                                                                                                  | 0.130                                                                       | 0.110                                           | 0.120               |
| Muscle a         |         | 0.0177                                                                                                                                                          | 0.0253                                                                                                                              | 0.0215                                                                                                  | 0.0428                                                                      | 0.0394                                          | 0.0411              |
| Fat <sup>a</sup> |         | 0.451                                                                                                                                                           | 0.852                                                                                                                               | 0.652                                                                                                   | 0.748                                                                       | 0.556                                           | 0.652               |
| Blood b          |         | 0.0933                                                                                                                                                          | 0.127                                                                                                                               | 0.110                                                                                                   | 0.197                                                                       | 0.245                                           | 0.221               |
| Blood c          |         | 0.0618                                                                                                                                                          | 0.0332                                                                                                                              | 0.0475                                                                                                  | 0.184                                                                       | 0.244                                           | 0.214               |
| Blood d          |         | 0.0834                                                                                                                                                          | 0.093                                                                                                                               | 0.0882                                                                                                  | 0.178                                                                       | 0.228                                           | 0.203               |
| Milk:            |         |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
| Study            | -1 (am) | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |
| day              | -1 (pm) | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |
|                  | 1 (am)  | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<> | <loq< td=""><td><loq< td=""></loq<></td></loq<> | <loq< td=""></loq<> |
|                  | 1 (pm)  | 0.139                                                                                                                                                           | 0.282                                                                                                                               | 0.211                                                                                                   | 0.117                                                                       | 0.0666                                          | 0.0918              |
|                  | 2 (am)  | 0.0682                                                                                                                                                          | 0.0850                                                                                                                              | 0.0766                                                                                                  | 0.0609                                                                      | 0.0453                                          | 0.0531              |
|                  | 2 (pm)  | 0.190                                                                                                                                                           | 0.240                                                                                                                               | 0.215                                                                                                   | 0.115                                                                       | 0.0877                                          | 0.101               |
|                  | 3 (am)  | 0.0956                                                                                                                                                          | 0.151                                                                                                                               | 0.123                                                                                                   | 0.0820                                                                      | 0.0609                                          | 0.0715              |
|                  | 3 (pm)  | 0.186                                                                                                                                                           | 0.313                                                                                                                               | 0.250                                                                                                   | 0.141                                                                       | 0.0816                                          | 0.111               |
|                  | 4 (am)  | 0.107                                                                                                                                                           | 0.0986                                                                                                                              | 0.103                                                                                                   | 0.0842                                                                      | 0.0624                                          | 0.0733              |
|                  | 4 (pm)  | 0.223                                                                                                                                                           | 0.278                                                                                                                               | 0.251                                                                                                   | 0.119                                                                       | 0.0853                                          | 0.102               |
|                  | 5 (am)  | 0.101                                                                                                                                                           | 0.0958                                                                                                                              | 0.0984                                                                                                  | 0.103                                                                       | 0.0654                                          | 0.0842              |
|                  | 5 (pm)  | 0.114                                                                                                                                                           | 0.0989                                                                                                                              | 0.106                                                                                                   | 0.101                                                                       | 0.0612                                          | 0.0811              |

<sup>&</sup>lt;sup>a</sup> mean mg/kg value for the tissue samples representing a specific sample matrix

<sup>&</sup>lt;sup>b</sup> taken at sacrifice,

<sup>&</sup>lt;sup>c</sup> prior to the final dose,

d taken at last milking

LOQ – limit of quantification (0.0004 mg/kg)

Table 3 Summary of the nature of the <sup>14</sup>C-fenpropathrin residues in milk following dosing with [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin

| [phenoxy] | thenyl-14C]  | [phenoxyphenyl-14C]-fenpropathrin | ir.            |        |        |        |                                  |                       |                     |            |               |        |                        |        |
|-----------|--------------|-----------------------------------|----------------|--------|--------|--------|----------------------------------|-----------------------|---------------------|------------|---------------|--------|------------------------|--------|
|           | 4'-OH-PBacid | Bacid                             | PBacid-glycine | ycine  | PBacid |        | Fenpropathrin-CH <sub>2</sub> OH | in-CH <sub>2</sub> OH | 4'-OH-Fenpropathrin | propathrin | Fenpropathrin | ırin   | Total <sup>a</sup>     |        |
| Milk      | %TRR         | mg/kg                             | %TRR           | mg/kg  | %TRR   | mg/kg  | %TRR                             | mg/kg                 | %TRR                | mg/kg      | %TRR          | mg/kg  | %TRR                   | mg/kg  |
| Goat 12   |              |                                   |                |        |        |        |                                  |                       |                     |            |               |        |                        |        |
| 3 (am)    | 8.52         | 0.0083                            | 44.17          | 0.0431 | 10.85  | 0.0106 | 1.43                             | < 0.002               | 0.72                | < 0.002    | 18.98         | 0.0185 | 84.67                  | 9260.0 |
| 3 (pm)    | 3.75         | 0.0073                            | 41.64          | 0.0815 | 11.05  | 0.0216 | 2.01                             | 0.0039                | 68.0                | < 0.002    | 24.25         | 0.0475 | 83.59                  | 0.1958 |
| 4 (pm)    | 3.83         | 9600.0                            | 99.09          | 0.1515 | 1.27   | 0.0032 | 0.73                             | < 0.002               | 0.47                | < 0.002    | 27.99         | 6690.0 | 94.95                  | 0.2498 |
| 5 (am)    | 5.80         | 0.0070                            | 56.83          | 0.0682 | 2.37   | 0.0028 | 29.0                             | < 0.002               | 0.34                | < 0.002    | 22.67         | 0.0272 | 89.88                  | 0.1200 |
| 5 (pm)    | 4.22         | 0.0045                            | 37.51          | 0.0397 | 5.87   | 0.0062 | 2.27                             | 0.0024                | 2.08                | 0.0022     | 28.98         | 0.0307 | 80.93                  | 0.1058 |
| Goat 16   |              |                                   |                |        |        |        |                                  |                       |                     |            |               |        |                        |        |
| 3 (am)    | 5.53         | 0.0059                            | 46.98          | 0.0498 | 4.68   | 0.0050 | 1.28                             | < 0.002               | 1.00                | < 0.002    | 28.94         | 0.0307 | 88.41                  | 0.1060 |
| 3 (pm)    | 2.93         | 0.0088                            | 45.06          | 0.1349 | 4.96   | 0.0149 | 98.0                             | 0.0026                | 0.54                | < 0.002    | 39.31         | 0.1177 | 99.66                  | 0.2994 |
| 4 (pm)    | 3.84         | 0.0103                            | 48.52          | 0.1303 | 2.96   | 0.0080 | 0.81                             | 0.0022                | 0.85                | 0.0023     | 36.24         | 0.0973 | 93.22                  | 0.2686 |
| 5 (am)    | 8.36         | 0.0078                            | 32.52          | 0.0302 | 5.98   | 0.0055 | 1.67                             | < 0.002               | 1.09                | < 0.002    | 28.14         | 0.0261 | 9 <i>L</i> ' <i>LL</i> | 0.0928 |
| 5 (pm)    | 3.95         | 0.0026                            | 41.94          | 0.0279 | 3.18   | 0.0021 | 6.32                             | 0.0072                | 2.19                | < 0.002    | 30.31         | 0.0202 | 68.78                  | 0.0666 |
|           |              |                                   |                |        |        |        |                                  |                       |                     |            |               |        |                        |        |

Table 4 Summary of the nature of the <sup>14</sup>C-fenpropathrin residues in milk following dosing with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin

| [cyclopro] | oyl-1- <sup>14</sup> C | [cyclopropyl-1-14C]-fenpropathrin | nin       |         |                           |         |      |         |                |         |           |                     |               |        |           |        |
|------------|------------------------|-----------------------------------|-----------|---------|---------------------------|---------|------|---------|----------------|---------|-----------|---------------------|---------------|--------|-----------|--------|
|            | TMPA                   | TMPA-CH <sub>2</sub> OH           | TMPA-COOH | H000    | TMPA-                     |         | TMPA |         | Fenpropathrin- | athrin- | 4'-OH-Fer | 4'-OH-Fenpropathrin | Fenpropathrin | athrin | $Total^a$ |        |
|            |                        |                                   |           |         | CH <sub>2</sub> OHlactone | ctone   |      | 1       | $CH_2OH$       | 1       |           |                     |               |        |           |        |
|            | %TR<br>R               | mg/kg                             | %TR<br>R  | mg/kg   | %TRR                      | mg/kg   | %TRR | mg/kg   | %TRR           | mg/kg   | %TRR      | mg/kg               | %TRR          | mg/kg  | %TRR      | mg/kg  |
| Goat 10    |                        |                                   |           |         |                           |         |      |         |                |         |           |                     |               |        |           |        |
| 3 (am)     | 2.88                   | 0.0024                            | 0.45      | < 0.002 | 2.68                      | 0.0022  | 99.5 | 0.0047  | 0.22           | < 0.002 | 0.00      | < 0.002             | 65.95         | 0.0547 | 78.10     | 0.0830 |
| 3 (pm)     | 1.93                   | 0.0030                            | 1.90      | 0.0029  | 2.20                      | 0.0034  | 2.23 | 0.0034  | 0.05           | < 0.002 | 0.50      | < 0.002             | 74.83         | 0.1154 | 83.64     | 0.1542 |
| 4 (pm)     | 2.80                   | 0.0034                            | 0.42      | < 0.002 | 3.17                      | 0.0039  | 3.10 | 0.0038  | 99.0           | < 0.002 | 1.98      | 0.0024              | 60.99         | 0.0804 | 78.22     | 0.1217 |
| 5 (am)     | 0.92                   | < 0.002                           | 1.14      | < 0.002 | 1.20                      | < 0.002 | 2.14 | 0.0021  | 0.42           | < 0.002 | 1.06      | < 0.002             | 72.21         | 0.0724 | 60.67     | 0.1003 |
| 5 (pm)     | 0.32                   | < 0.002                           | 1.60      | < 0.002 | 1.43                      | < 0.002 | 2.34 | 0.0025  | 0.63           | < 0.002 | 0.77      | < 0.002             | 74.99         | 0.0790 | 82.08     | 0.1053 |
| Goat 13    |                        |                                   |           |         |                           |         |      |         |                |         |           |                     |               |        |           |        |
| 3 (am)     | 3.27                   | 0.0020                            | 1.01      | < 0.002 | 1.68                      | < 0.002 | 2.41 | < 0.002 | 0.27           | < 0.002 | 1.80      | < 0.002             | 62.19         | 0.0373 | 72.63     | 0.0599 |
| 3 (pm)     | 2.71                   | 0.0024                            | 0.90      | < 0.002 | 3.89                      | 0.0034  | 1.82 | < 0.002 | 0.47           | < 0.002 | 1.00      | < 0.002             | 64.91         | 0.0570 | 75.70     | 0.0878 |
| 4 (pm)     | 3.15                   | 0.0031                            | 1.01      | < 0.002 | 3.30                      | 0.0032  | 2.38 | 0.0023  | 1.11           | < 0.002 | 3.04      | 0.0030              | 57.58         | 0.0565 | 71.57     | 0.0982 |
| 5 (am)     | 3.05                   | < 0.002                           | 1.68      | < 0.002 | 3.62                      | 0.0021  | 2.07 | < 0.002 | 0.55           | < 0.002 | 1.01      | < 0.002             | 56.53         | 0.0325 | 68.51     | 0.0575 |
| 5 (pm)     | 2.98                   | < 0.002                           | 0.29      | < 0.002 | 1.82                      | < 0.002 | 1.98 | < 0.002 | 0.34           | < 0.002 | 0.33      | < 0.002             | 67.34         | 0.0398 | 75.08     | 0.0591 |
| 14.        |                        |                                   |           |         |                           |         |      |         |                |         |           |                     |               |        |           |        |

<sup>a 14</sup>C- Fenpropathrin equivalents,

<sup>b</sup> Fractions containing TMPA-CH<sub>2</sub>OH may contain TMPA-COOH,

<sup>c</sup> Fractions containing Fenpropathrin-CH<sub>2</sub>OH may contain Desphenyl-Fenpropathrin or Fenpropathrin-COOH

Table 5 Summary of the nature of the <sup>14</sup>C-fenpropathrin residues in tissues following dosing with [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin

| [phenoxyphenyl- <sup>14</sup> C]-fenpropathrin | <sup>4</sup> C]-fenpropa | thrin   |                |         |        |         |                                               |                       |                     |           |               |        |                    |        |
|------------------------------------------------|--------------------------|---------|----------------|---------|--------|---------|-----------------------------------------------|-----------------------|---------------------|-----------|---------------|--------|--------------------|--------|
|                                                | 4'-OH-PBacid             | cid     | PBacid-glycine | lycine  | PBacid |         | Fenpropathrin-CH <sub>2</sub> OH <sup>c</sup> | n-CH <sub>2</sub> OH° | 4'-OH-Fenpropathrin | ropathrin | Fenpropathrin | hrin   | Total <sup>a</sup> |        |
|                                                | %TRR                     | mg/kg   | %TRR           | mg/kg   | %TRR   | mg/kg   | %TRR                                          | mg/kg                 | %TRR                | mg/kg     | %TRR          | mg/kg  | %TRR               | mg/kg  |
| Goat 12                                        |                          |         |                |         |        |         |                                               |                       |                     |           |               |        |                    |        |
| Rear leg muscle                                | 2.19                     | < 0.002 | 8.73           | < 0.002 | 9.94   | < 0.002 | 5.12                                          | < 0.002               | 1.16                | < 0.002   | 50.15         | 0.0075 | 77.29              | 0.0150 |
| Loin muscle                                    | 2.18                     | < 0.002 | 16.62          | 0.0048  | 10.03  | 0.0029  | 1.33                                          | < 0.002               | 1.32                | < 0.002   | 51.67         | 0.0148 | 83.15              | 0.0287 |
| Omental fat                                    | 0.75                     | 0.0029  | 4.95           | 0.0193  | 1.83   | 0.0071  | 28.0                                          | 0.0034                | 0.29                | < 0.002   | 76.65         | 0.2986 | 85.34              | 0.3895 |
| Perirenal fat                                  | 69.0                     | 0.0034  | 5.07           | 0.0248  | 1.97   | 0.0097  | 683                                           | 0.0041                | 0.57                | 0.0020    | 78.29         | 0.3837 | 87.42              | 0.4901 |
| Kidney                                         | 9.42                     | 0.0533  | 36.42          | 0.2059  | 39.77  | 0.2248  | 0.64                                          | 0.0036                | 0.45                | 0.0025    | 0.88          | 0.0050 | 87.58              | 0.5653 |
| Heart                                          | 1.91                     | < 0.002 | 22.97          | 0.0126  | 7.38   | 0.0041  | 1.76                                          | < 0.002               | 1.24                | < 0.002   | 40.40         | 0.0222 | 75.66              | 0.0550 |
| Liver                                          | 6.77                     | 0.0327  | 19.31          | 0.0645  | 14.80  | 0.0494  | 4.84                                          | 0.0162                | 2.54                | 0.0085    | 3.02          | 0.0101 | 54.28              | 0.3342 |
| Goat 16                                        |                          |         |                |         |        |         |                                               |                       |                     |           |               |        |                    |        |
| Rear leg muscle                                | 4.18                     | < 0.002 | 30.19          | 9600.0  | 10.33  | 0.0033  | 1.69                                          | < 0.002               | 0.88                | < 0.002   | 42.58         | 0.0135 | 89.85              | 0.0317 |
| Loin muscle                                    | 1.71                     | < 0.002 | 34.00          | 0.0089  | 13.42  | 0.0035  | 1.11                                          | < 0.002               | 0.53                | < 0.002   | 34.88         | 0.0000 | 85.65              | 0.0259 |
| Omental fat                                    | 0.31                     | 0.0025  | 3.71           | 0.0294  | 1.20   | 0.0095  | 98.0                                          | 0.0068                | 0.26                | 0.0021    | 81.28         | 0.6448 | 87.62              | 0.7933 |
| Perirenal fat                                  | 0.48                     | 0.0043  | 5.03           | 0.0454  | 2.68   | 0.0242  | 0.78                                          | 0.0070                | 0.36                | 0.0032    | 76.70         | 0.6918 | 86.03              | 0.9020 |
| Kidney                                         | 8.76                     | 0.0813  | 40.70          | 0.3778  | 36.80  | 0.3416  | 0.38                                          | 0.0035                | 09.0                | 0.0056    | 1.60          | 0.0149 | 88.84              | 0.9280 |
| Heart                                          | 3.32                     | 0.0038  | 12.21          | 0.0141  | 3.37   | 0.0039  | 1.70                                          | 0.0020                | 0.61                | < 0.002   | 61.28         | 0.0707 | 82.49              | 0.1154 |
| Liver                                          | 12.15                    | 0.0638  | 20.56          | 0.1079  | 12.48  | 0.0655  | 6.51                                          | 0.0342                | 2.38                | 0.0125    | 3.34          | 0.0175 | 57.42              | 0.5250 |

Table 6 Summary of the nature of the <sup>14</sup>C-fenpropathrin residues in tissues following dosing with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin

| [cyclopropyl-1- <sup>14</sup> C]-fenpropathrin | fenpropath   | ırin                                 |           |         |                       |        |       |         |                |         |               |         |               |        |                    |        |
|------------------------------------------------|--------------|--------------------------------------|-----------|---------|-----------------------|--------|-------|---------|----------------|---------|---------------|---------|---------------|--------|--------------------|--------|
|                                                | TMPA-        | TMPA-CH <sub>2</sub> OH <sup>b</sup> | TMPA-COOH | ОН      | TMPA-                 |        | TMPA  |         | Fenpropathrin- | athrin- | 4'-OH-        |         | Fenpropathrin | athrin | Total <sup>a</sup> |        |
|                                                |              |                                      |           |         | CH <sub>2</sub> OHlac | ctone  |       |         | $CH_2OH^c$     |         | Fenpropathrin | hrin    |               |        |                    |        |
|                                                | %TR          | mg/kg                                | %TRR      | mg/kg   | %TRR                  | mg/kg  | %TR   | mg/kg   | %TR            | mg/kg   | %TRR          | mg/kg   | %TR           | mg/kg  | %TR                | mg/kg  |
|                                                | R            |                                      |           |         |                       |        | R     |         | R              |         |               |         | R             |        | R                  |        |
| Goat 10                                        |              |                                      |           |         |                       |        |       |         |                |         |               |         |               |        |                    |        |
| Rear leg muscle                                | 15.29        | 0.0071                               | 3.88      | < 0.002 | 18.84                 | 0.0088 | 7.32  | 0.0034  | 1.97           | < 0.002 | 1.91          | < 0.002 | 12.58         | 0.0059 | 61.79              | 0.0467 |
| Loin muscle                                    | 5.61         | 0.0022                               | 13.04     | 0.0052  | 20.48                 | 0.0082 | 3.74  | < 0.002 | 1.62           | < 0.002 | 0.97          | < 0.002 | 10.30         | 0.0041 | 92.29              | 0.0401 |
| Omental fat                                    | 0.75         | 0.0059                               | 0.26      | 0.0020  | 1.80                  | 0.014  | 1.00  | 0.008   | 0.54           | 0.004   | 0.48          | 0.004   | 88.10         | 889.0  | 92.93              | 0.781  |
| Perirenal fat                                  | 0.43         | 0.0033                               | 0.50      | 0.0038  | 2.61                  | 0.02   | 06.0  | 8900.0  | 0.27           | 0.0021  | 0.31          | 0.0024  | 84.81         | 0.6447 | 88.83              | 0.7602 |
| Kidney                                         | 15.94        | 0.0861                               | 3.71      | 0.0200  | 41.33                 | 0.223  | 29.9  | 0.0360  | 1.25           | 8900.0  | 0.62          | 0.0033  | 1.68          | 0.0091 | 71.20              | 0.5400 |
| Heart                                          | 5.98         | 0.0083                               | 0.93      | 0.0013  | 69.7                  | 0.0106 | 2.42  | 0.003   | 0.73           | < 0.002 | 0.36          | < 0.002 | 52.89         | 0.0732 | 71.0               | 0.1384 |
| Liver                                          | 15.59        | 0.0768                               | 7.13      | 0.0350  | 14.62                 | 0.0720 | 19.19 | 0.094   | 4.02           | 0.02    | 2.51          | 0.012   | 2.61          | 0.013  | 29.69              | 0.493  |
| Goat 13                                        |              |                                      |           |         |                       |        |       |         |                |         |               |         |               |        |                    |        |
| Rear leg muscle                                | 16.74        | 92000                                | 4.23      | < 0.002 | 18.15                 | 0.0082 | 5.89  | 0.003   | 1.08           | < 0.002 | 0.78          | < 0.002 | 14.9          | 800.0  | 61.80              | 0.046  |
| Loin muscle                                    | 87.9         | 0.0024                               | 14.00     | 0.0052  | 20.32                 | 0.0074 | 7.25  | 0.003   | 3.93           | < 0.002 | 0.95          | < 0.002 | 7.30          | 0.003  | 60.53              | 0.038  |
| Omental fat                                    | 1.06         | 0.0062                               | 0.58      | 0.0034  | 2.22                  | 0.0130 | 1.58  | 0.009   | 98.0           | 0.0051  | 0.56          | 0.0033  | 81.4          | 0.478  | 88.27              | 0.588  |
| Perirenal fat                                  | 09.0         | 0.0033                               | 1.18      | 0.0064  | 3.80                  | 0.0206 | 1.62  | 0.009   | 0.95           | 0.0051  | 0.54          | 0.0029  | 68.4          | 0.371  | 77.12              | 0.542  |
| Kidney                                         | 13.05        | 9090.0                               | 4.13      | 0.0192  | 40.22                 | 0.1867 | 7.99  | 0.037   | 1.56           | 0.0072  | 0.87          | 0.0040  | 1.27          | 900.0  | 60.69              | 0.464  |
| Heart                                          | 10.32        | 0.0121                               | 1.95      | 0.0023  | 6.74                  | 0.0079 | 5.24  | 900.0   | 69.0           | < 0.002 | 0.77          | < 0.002 | 42.2          | 0.049  | 68.79              | 0.117  |
| Liver                                          | 16.05        | 0.0693                               | 4.39      | 0.0190  | 10.47                 | 0.0452 | 17.30 | 0.075   | 2.27           | 8600.0  | 2.08          | 0600'0  | 2.28          | 0.01   | 54.84              | 0.432  |
| al4C_ Fannronathrin amirvalents                | Politicalent | 3,                                   |           |         |                       |        |       |         |                |         |               |         |               |        |                    |        |

<sup>a14</sup>C- Fenpropathrin equivalents,

<sup>b</sup>Fractions containing TMPA-CH<sub>2</sub>OH may containing TMPA-COOH,

<sup>c</sup>Fractions containing Fenpropathrin-CH<sub>2</sub>OH may contain Desphenyl-Fenpropathrin or Fenpropathrin-COOH

### Laying Hens

Fenpropathrin, labelled in either the cyclopropyl or the benzyl ring was administered in capsules to laying hens daily for 10 days (Ku and Doran, 1990, Reference FM-01-0042). The group of 10 hens were dosed with [phenoxyphenyl-14C]-fenpropathrin (benzyl-label) and [cyclopropyl-1-14C]-fenpropathrin (cyclo-label) at a nominal rate of either 0.5 or 5 mg/kg body weight. Eggs were collected every morning and evening and excreta daily. The hens were all sacrificed within four hours of the last dose and kidneys, liver, heart, gizzard (washed without contents), ovaries and contents, muscle and skin were retained for analysis.

The samples were combusted and the <sup>14</sup>C activity was determined with liquid scintillation counter. Liquid samples were directly analysed with LSC. The residues in eggs and tissues were extracted with acetonitrile/1% conc. HCl. The organic phase was evaporated and the remaining aqueous phase was diluted and partitioned into ethyl acetate. The concentrated extract was analysed with HPLC. The remaining aqueous fraction was hydrolysed by refluxing it at 80–90 °C with 6N HCl overnight. The radioactivity was determined with LSC. The remaining radioactivity in PES was also determined with LSC. Portions of egg, meat, fat and liver were also analysed with gas chromatography based on acetone/hexane (1/2 v/v) extraction, silica gel clean-up. The polar metabolites were determined after methylation with diazomethane. The compounds were identified with GC/MS applying authentic analytical standards.

The recovery of total radioactivity from excreta, eggs and tissues was between 75 and 84% of the total applied dose. Between 98.9 and 99.6% of the recovered activity was found in the faeces irrespective of the label. Approximately 0.05% of the applied benzyl label was found in the eggs and 0.2% of the cyclopropyl label. The total radioactive residues expressed as fenpropathrin equivalent are summarised in Table 7.

Table 7 Total radioactive residues [mg/kg] expressed as fenpropathrin and parent fenpropathrin found following treatments with benzyl-labelled and cyclopropyl-labelled fenpropathrin at 5 ppm level

| Commla       | Benzyl -label |               | Cyclopropyl -labe | el            |
|--------------|---------------|---------------|-------------------|---------------|
| Sample       | Total, mg/kg  | Parent, mg/kg | Total, mg/kg      | Parent, mg/kg |
| Egg          | 0.05-0.22     | 0.016-0.07    | 0.22-0.49         | 0.014-0.061   |
| Meat, breast | 0.07          | 0.02          | 0.53              | 0.0324        |
| Meat, thigh  | 0.16          | 0.0376        | 0.57              | 0.033         |
| Fat          | 0.87          | 0.4315        | 0.90              | 0.5781        |
| Liver        | 1.46          | 0.0143        | 2.91              | 0.0357        |
| Kidney       | 4.56          | 0.0963        | 4.19              | 0.2127        |
| Heart        | 0.37          | 0.0838        | 1.35              | 0.0825        |
| Gizzard      | 5.08          | 0.6563        | 4.86              | 0.9492        |
| Skin         | 0.48          | 0.1653        | 0.81              | 0.2164        |
| Excreta      | 48.8-67.5     | 2.72-4.82     | 50.7-63.3         | 3.69-4.01     |

The percent proportion and concentration of parent compound and the major metabolites, expressed as parent fenpropathrin, in eggs and tissues after treatments at 5 ppm level are shown in Tables 8–13.

Table 8 Distribution of residues in eggs after treatment with [benzyl-14C]-fenpropathrin at 5 mg/kg bw.

| Component                         | Percent     | mg/kg         |
|-----------------------------------|-------------|---------------|
| Fenpropathrin                     | 29.90-32.38 | 0.0161-0.0698 |
| 4'-OH PBacid                      | 4.07-5.88   | 0.003-0.0129  |
| PBacid-glycine                    | 1.72-5.03   | 0.0026-0.0093 |
| PBacid                            | 3.23-3.68   | 0.0017-0.0079 |
| Fenpropathrin-CH <sub>2</sub> -OH | 3.98-6.08   | 0.0032-0.0117 |
| 4'-OH- Fenpropathrin              | 1.33-1.7    | 0.0009-0.0029 |
| 3-OH-BAacid                       | 4.53-5.68   | 0.0023-0.0108 |

Table 9 Distribution of residues in eggs after treatment with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin at 5 mg/kg bw.

| Component                         | Percent      | mg/kg       |
|-----------------------------------|--------------|-------------|
| Fenpropathrin                     | 6.05 - 13.34 | 0.014-0.061 |
| TMPA-CH <sub>2</sub> OH           | 10.24-11.73  | 0.023-0.053 |
| TMPA-COOH                         | 2.23-3.01    | 0.005-0.013 |
| TMPA-CH <sub>2</sub> -lactone     | 5.97-6.96    | 0.016-0.032 |
| TMPA                              | 5.91-9.02    | 0.02-0.029  |
| Fenpropathrin-CH <sub>2</sub> -OH | 1.55-2.33    | 0.004-0.012 |
| 4'-OH- Fenpropathrin              | 1.51-4.29    | 0.01-0.013  |

Table 10 Percent distribution of residues in chicken muscle after treatment with [phenoxyphenyl-\dangle^1^4C]-fenpropathrin

|                                   | Breast muscle | Breast muscle |         |        |
|-----------------------------------|---------------|---------------|---------|--------|
| Component                         | Percent       | mg/kg         | Percent | mg/kg  |
| Fenpropathrin                     | 14.75         | 0.0100        | 23.12   | 0.0376 |
| 4'-OH PBacid                      | 9.01          | 0.0061        | 5.23    | 0.0085 |
| PBacid-glycine                    | 5.11          | 0.0034        | 2.48    | 0.0040 |
| PBacid                            | 23.90         | 0.161         | 19.84   | 0.0323 |
| Fenpropathrin-CH <sub>2</sub> -OH | 2.33          | 0.0016        | 2.65    | 0.0043 |
| 4'-OH- Fenpropathrin              | 1.73          | 0.0012        | 1.95    | 0.0032 |
| 3-OH-BAcid                        | 16.02         | 0.011         | 9.34    | 0.0152 |
|                                   |               |               |         |        |

Table 11 Percent distribution of residues in chicken muscle after treatment with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin

|                                   | Breast muscle | ;      | Thigh muscle |        |
|-----------------------------------|---------------|--------|--------------|--------|
| Component                         | Percent       | mg/kg  | Percent      | mg/kg  |
| Fenpropathrin                     | 6.09          | 0.0324 | 5.82         | 0.0331 |
| TMPA-CH <sub>2</sub> OH           | 14.47         | 0.0769 | 18.013       | 0.1032 |
| TMPA-COOH                         | 7.72          | 0.0410 | 4.54         | 0.0258 |
| TMPA-CH <sub>2</sub> -lactone     | 12.93         | 0.0687 | 11.66        | 0.0664 |
| TMPA                              | 15.14         | 0.0804 | 16.27        | 0.0926 |
| Fenpropathrin-CH <sub>2</sub> -OH | 0.60          | 0.0032 | 1.06         | 0.006  |
| 4'-OH- Fenpropathrin              | 0.97          | 0.0052 | 1.49         | 0.0085 |

Table 12 Percent distribution of residues in chicken liver, kidney skin after treatment with [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin

| Component                         | Liver | Kidney | Skin  | Fat   | Gizzard |
|-----------------------------------|-------|--------|-------|-------|---------|
| Fenpropathrin                     | 0.98  | 2.11   | 34.51 | 49.63 | 12.91   |
| 4'-OH PBacid                      | 16.10 | 26.02  | 12.53 | 0.65  | 14.38   |
| PBacid-glycine                    | 5.62  | 6.23   | 2.4   | 0.39  | 8.67    |
| PBacid                            | 14.65 | 8.73   | 7.73  | 1.48  | 6.89    |
| Fenpropathrin-CH <sub>2</sub> -OH | 1.33  | 0.63   | 3.13  | 2.84  | 1.70    |
| 4'-OH- Fenpropathrin              | 0.84  | 0.44   | 1.01  | 1.24  | 0.70    |
| 3-OH-BAacid                       | 28.89 | 35.35  | 12.70 | 3.77  | 12.25   |

Table 13 Percent distribution of residues in chicken liver, kidney, skin after treatment with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin at 5 ppm level

| Component                         | Liver | Kidney | Skin  | Fat   | Gizzard |
|-----------------------------------|-------|--------|-------|-------|---------|
| Fenpropathrin                     | 1.23  | 5.08   | 26.73 | 63.91 | 19.54   |
| TMPA-CH <sub>2</sub> OH           | 14.71 | 7.71   | 13.00 | 2.20  | 5.22    |
| TMPA-COOH                         | 11.37 | 15.28  | 3.15  | 0.85  | 6.89    |
| TMPA-CH <sub>2</sub> -lactone     | 14.81 | 5.3    | 6.95  | 5.64  | 6.08    |
| TMPA                              | 26.38 | 47.49  | 15.37 | 14.23 | 17.18   |
| Fenpropathrin-CH <sub>2</sub> -OH | 1.77  | 1.02   | 3.28  | 4.28  | 22.99   |
| 4'-OH- Fenpropathrin              | 1.13  | 1.28   | 1.15  | 1.57  | 2.89    |

# Summary of animal metabolism

The major biotransformation reactions of fenpropathrin in animals consisted of oxidation at the methyl groups of the acid moiety and at the 2'- or 4'-positions of the alcohol moiety, cleavage of the ester and ether linkages and conjugation of the resultant carboxylic acids and alcohols. The proposed metabolic pathway for fenpropathrin in animals is shown in Figure 1.

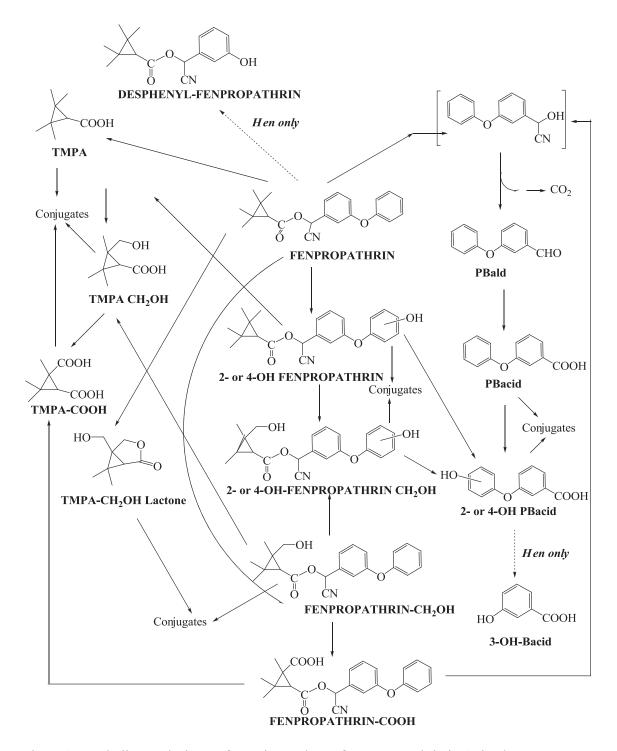



Figure 1 Metabolism and Biotransformation Pathway for Fenpropathrin in Animals

### Plants metabolism

# Apples

In 1984, one apple tree (cv. Red Delicious) in California, USA was treated 3 times with [cyclopropyl- $1-^{14}$ C]-fenpropathrin and [benzyl- $^{14}$ C]-fenpropathrin (both radiochemical purity > 99%) at a rate

equivalent to 0.45 kg ai/ha (Chen and Abell, Report FM-41-0031,1985 and Reference FM-51-0022, 1986). Samples were collected 14 days after the final application. Apple fruit was washed with methanol and separated into peel and pulp. Samples were pulverized with dry ice then extracted with acetone and methanol/water. Analysis was by autoradiography/TLC/LSC. The radioactivity remaining in un-extractable material was determined by combustion/LSC. Free metabolites were separated from conjugated metabolites by solid phase chromatography on a silica column eluted with hexane/acetone, methanol/acetone and methanol. To release aglycones, conjugated metabolites were subjected either to enzyme hydrolysis using cellulase or β-glucosidase then acidified and extracted with diethyl ether, or to chemical hydrolysis with both acid and base. Characterization of metabolites was by radio-TLC.

Table 14 Distribution of <sup>14</sup>C-fenpropathrin in apple tree samples

|          | Benzyl-label  |       | Cyclopropyl-label |       |
|----------|---------------|-------|-------------------|-------|
| Sample   | mg/kg         | % TRR | mg/kg             | % TRR |
| Sample   | fenpropathrin |       | fenpropathrin     |       |
|          | equivalent    |       | equivalent        |       |
| Leaves   | 12.2          | 61.0  | 15.9              | 72.1  |
| Branches | 4.0           | 13.9  | 2.5               | 4.2   |
| Fruit    | 2.11          | 25.1  | 1.40              | 24.7  |

Table 15 Extractability of <sup>14</sup>C-fenpropathrin radioactivity (%TRR)

|                | Leaves  |                   | Branches     | Fruit        |                   |
|----------------|---------|-------------------|--------------|--------------|-------------------|
|                | Benzyl- | Cyclopropyl-label | Benzyl-label | Benzyl-label | Cyclopropyl-label |
|                | label   |                   |              |              |                   |
| Acetone        | 81      | 87                | 89           | 94           | 94                |
| Methanol/water | 11      | 8                 | 6            | 3            | 3                 |
| Un-extractable | 8       | 5                 | 5            | 3            | 3                 |

The cyclopropyl-<sup>14</sup>C-treated branches contained only 2.5% of TRR and therefore no further analysis was carried out.

Table 16 Identity of fenpropathrin metabolites in apple fruits and apple plants (%TRR)

|                                               | Apple fruits |                       | Apple plants |                   |
|-----------------------------------------------|--------------|-----------------------|--------------|-------------------|
|                                               | Benzyl-label | Cyclopropyl-<br>label | Benzyl-label | Cyclopropyl-label |
| Fenpropathrin                                 | 91.8         | 93.6                  | 60.6         | 65.6              |
| Conjugated metabolites                        | 2.5          | 2.5                   |              |                   |
| 4'-OH-Fenpropathrin                           | 0.8          | 0.8                   | 1.9          | 1.8               |
| Fenpropathrin-CH <sub>2</sub> OH              | 0.6          | 0.6                   | 1.6          | 1.3               |
| Fenpropathrin-CH <sub>2</sub> OH conjugates   |              |                       | 1.1          | 0.9               |
| 2'- or 4'-OH-Fenpropathrin-CH <sub>2</sub> OH |              |                       | 0.1          | 0.3               |
| conjugates                                    |              |                       |              |                   |
| PBalc conjugates                              |              |                       | 4.8          |                   |
| PBacid conjugates                             |              |                       | 1.3          |                   |
| 2'- or 4'-OH-PBalc conjugate                  |              |                       | 1.0          |                   |
| 2'- or 4'-OH-PBacid conjugates                |              |                       | 1.2          |                   |
| TMPA conjugates                               |              |                       |              | 4.3               |
| TMPA-CH <sub>2</sub> OH conjugates            |              |                       |              | 3.4               |
| TMPA-CH <sub>2</sub> OH lactone conjugates    |              |                       |              | 1.1               |
| Other free metabolites                        | 1.4*         | 0.2*                  | 6.7**        | 3.5**             |
| Other conjugated metabolites                  |              |                       | 12.0***      | 13.0***           |
| Non-extractable                               | 2.9          | 2.2                   | 7.7          | 4.8               |

- \* contained at least 2 metabolites
- \*\* contained at least 5 metabolites

#### **Tomatoes**

In studies carried out in California, USA in 1983, greenhouse-grown tomato plants (cv. Bonny Best) were treated four times, 7–8 days apart, with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin and [benzyl-<sup>14</sup>C]-fenpropathrin (both radiochemical purity >99%) at rates equivalent to 0.224 kg ai/ha (Chen and Abell, 1985 and 1986; References FM-41-0031 and FM-51-0023). Fruit and leaves were extracted at harvest (PHI 19 days) as described for apples.

Table 17 Distribution of <sup>14</sup>C-fenpropathrin in tomato plant samples expressed as fenpropathrin equivalent

| Sample            | Benzyl-label | Cyclopropyl-label |
|-------------------|--------------|-------------------|
|                   | mg/kg        | mg/kg             |
| Leaves            | 5.8          | 4.0               |
| Stem and petioles | 0.49         | 0.53              |
| Fruit             | 0.10         | 0.04              |

Table 18 Extractability of <sup>14</sup>C-fenpropathrin radioactivity (%TRR)

|                | Leaves       |                   | Stems and petioles |                   |
|----------------|--------------|-------------------|--------------------|-------------------|
|                | Benzyl-label | Cyclopropyl-label | Benzyl-label       | Cyclopropyl-label |
| Acetone        | 78           | 78                | 78                 | 80                |
| Methanol/water | 13           | 15                | 12                 | 10                |
| Unextractable  | 9            | 7                 | 10                 | 10                |

Table 19 Characterization of fenpropathrin metabolites in tomatoes (%TRR)

|                        | Benzyl-label | Cyclopropyl-label |
|------------------------|--------------|-------------------|
| Fenpropathrin          | 66.1         | 29.6              |
| Conjugated metabolites | 28.2         | 58.6              |
| Free metabolites       | 0.2          | 5.1               |
| Un-extractable         | 5.5          | 6.7               |

Table 20 Identity of fenpropathrin metabolites in tomato plants (%TRR)

|                                                   | Benzyl-label | Cyclopropyl-label |
|---------------------------------------------------|--------------|-------------------|
| Fenpropathrin                                     | 36.5         | 39.1              |
| Fenpropathrin-CH <sub>2</sub> OH conjugates       | 2.2          | 2.1               |
| 4'-OH-Fenpropathrin-CH <sub>2</sub> OH conjugates | 1.0          | 0.9               |
| Fenpropathrin-(CH <sub>2</sub> OH) <sub>2</sub>   | 3.1          | 2.7               |
| PBald conjugates                                  | 0.4          |                   |
| 4'-OH-PBacid conjugates                           | 7.0          |                   |
| PBacid conjugates                                 | 2.0          |                   |
| TMPA conjugates                                   |              | 4.6               |
| TMPA-CH <sub>2</sub> OH conjugates                |              | 7.5               |
| Other free metabolites                            | 5.7*         | 5.1*              |
| Other conjugated metabolites                      | 33.1**       | 30.6**            |

<sup>\*\*\*</sup> contained at least 10-20 metabolites

|                 | Benzyl-label | Cyclopropyl-label |
|-----------------|--------------|-------------------|
| Non-extractable | 9.3          | 7.4               |

<sup>\*</sup> contained at least 10 metabolites

In the fruit, the radioactivity was too low to allow full characterization, but some two thirds were present as unchanged fenpropathrin with a further 28% as conjugated metabolites. In the leaves, only 30% of the total residue was present as parent and just under 60% as conjugated metabolites. In the case of the benzyl label, the most prominent metabolites were conjugates of PBacid and its 4'-hydroxy derivative (4'-OH-PBacid), although these only constituted a minor proportion of the total radioactivity. The main metabolites reported in the case of the cyclopropyl label were conjugates of TMPA and hydroxymethyl-TMPA (TMPA-CH2OH).

In studies carried out in California, USA in 1994, greenhouse-grown tomato plants (cv. 5715) were sprayed four times with a 2.4% EC formulation containing [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin (radiochemical purity 98.7%) and [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin (radiochemical purity 98.4%) at rates equivalent to 0.224 kg ai/ha (Toia, *et. al.*, 1995; Reference FM-51-0070). Fruit and leaves were collected at harvest (PHI 3 days); fruit were washed with hexane/acetone. Total radioactivity was determined by combustion/LSC. The washes were evaporated, redissolved in hexane/acetone and analysed by radio-HPLC/TLC. The major radiolabelled zone was removed from the TLC plate, dissolved in acetone, filtered, evaporated and analysed by GC-MS. Tomato fruit were extracted using acetonitrile with the supernatant being analysed using LSC. Further extractions were made using methanol and dichloromethane. Extracts were analysed using radio-HPLC with UV detection and TLC. Radioactivity in dried, un-extracted material was determined by combustion/LSC. Soil samples were analysed by combustion/LSC to determine the total radioactive residue; only small amounts of radioactivity were detected.

Table 21 Radioactive residues in tomatoes following treatment with [14C]-fenpropathrin

|              | Phenoxyphenyl | Phenoxyphenyl-label ( |      | el   |
|--------------|---------------|-----------------------|------|------|
|              | mg/kg         | mg/kg %TRR            |      | %TRR |
| Rinse        | 0.34          | 33.6                  | 0.23 | 27.3 |
| Rinsed fruit | 0.68          | 66.4                  | 0.62 | 72.8 |
| Total        | 1.02          | 100                   | 0.85 | 100  |

The majority of radioactivity was attributed to parent compound but small amounts of *trans*-TMPA-COOH and/or *trans*-TMPA-CH<sub>2</sub>OH was tentatively identified.

Table 22 Radioactivity in extracts from tomato plants treated with <sup>14</sup>C-fenpropathrin; mg/kg fenpropathrin equivalents (dichloromethane extracts not included)

|                     | Available | Fenpropathrin |      | Polar material |     | Miscellaneous |     |
|---------------------|-----------|---------------|------|----------------|-----|---------------|-----|
|                     |           | mg/kg %       |      | mg/kg          | %   | mg/kg         | %   |
| Phenoxyphenyl-label |           |               |      |                |     |               |     |
| Rinses              | 0.34      | 0.34          | 97.9 | 0.00           | 0.0 | << 0.01       | 2.1 |

<sup>\*\*</sup> contained at least 15 metabolites

| Extracts          | 0.65 | 0.62 | 95.3 | 0.01 | 2.1 | << 0.01 | 2.7  |
|-------------------|------|------|------|------|-----|---------|------|
| Total             | 0.99 | 0.96 | 96.2 | 0.01 | 1.3 | 0.03    | 2.5  |
| Cyclopropyl-label |      |      |      |      |     |         |      |
| Rinses            | 0.23 | 0.23 | 98.9 | 0.00 | 0.0 | << 0.01 | 1.1  |
| Extracts          | 0.53 | 0.52 | 97.7 | 0.01 | 1.8 | << 0.01 | 0.05 |
| Total             | 0.76 | 0.75 | 98.0 | 0.01 | 1.3 | 0.01    | 0.7  |

#### Beans

In 1984, five pinto bean plants (cv. Idaho 111) grown in a greenhouse in California, was treated three times with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin and [benzyl-<sup>14</sup>C]-fenpropathrin (both radiochemical purity >99%) at a rate equivalent to 0.224 kg ai/ha (Chen and Abell, 1985, 1986; References FM-41-0031 and FM-51-0024). Samples were collected 15 days after the final application. Fruit and leaves were extracted at harvest as described for apples.

Table 23 Distribution of <sup>14</sup>C-fenpropathrin in bean plant samples expressed as fenpropathrin equivalent

| Sample            | Benzyl-label | Cyclopropyl-label |
|-------------------|--------------|-------------------|
|                   | mg/kg        | mg/kg             |
| Leaves            | 8.8          | 5.1               |
| Stem and petioles | 1.3          | 0.6               |
| Bean pods         | 0.1          | 0.1               |
| Beans             | 0.03         | 0.07              |

Table 24 Extractability of <sup>14</sup>C-fenpropathrin radioactivity (%TRR)

|                | Leaves                           |    | Stems and petioles |                   |  |
|----------------|----------------------------------|----|--------------------|-------------------|--|
|                | Benzyl-label Cyclopropyl-label I |    | Benzyl-label       | Cyclopropyl-label |  |
| Acetone        | 63                               | 73 | 74                 | 81                |  |
| Methanol/water | 32                               | 22 | 20                 | 13                |  |
| Unextractable  | 5                                | 5  | 6                  | 6                 |  |

Table 25 Characterization of fenpropathrin metabolites in beans (%TRR)

|                        | Benzyl-label | Cyclopropyl-label |
|------------------------|--------------|-------------------|
| Fenpropathrin          | 4.1          | 0.1               |
| Conjugated metabolites | 60.7         | 50.7              |
| Free metabolites       | 17.0         | 4.1               |
| Unextractable          | 18.2         | 45.1              |

Table 26 Identity of fenpropathrin metabolites in pinto beans leaves (%TRR)

|                                    | benzyl-label | Cyclopropyl-label |
|------------------------------------|--------------|-------------------|
| Fenpropathrin                      | 46.7         | 46.4              |
| PBald conjugates                   | 19.5         |                   |
| PBalc conjugates                   | 4.0          |                   |
| 4'-OH PBacid conjugates            | 9.8          |                   |
| 2'-OH PBalc conjugates             | 0.4          |                   |
| 4'-OH PBalc conjugates             | 0.3          |                   |
| PBacid conjugates                  | 1.1          |                   |
| TMPA conjugates                    |              | 7.0               |
| TMPA-CH <sub>2</sub> OH conjugates |              | 16.7              |

|                                            | benzyl-label | Cyclopropyl-label |
|--------------------------------------------|--------------|-------------------|
| TMPA-CH <sub>2</sub> OH lactone conjugates |              | 2.2               |
| Other free metabolites                     | 4.6**        | 3.3**             |
| Other conjugated metabolites               | 8.5*         | 8.4**             |
| Unknown conjugate                          |              | 11.2***           |
| Non-extractable                            | 5.1          | 4.8               |

<sup>\*</sup> contained at least 10 metabolites

#### Cotton

Cotton pants were treated four times with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin and [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin (both radiochemical purity > 99%) applying a total of *ca.* 4.7–4.8 mg <sup>14</sup>C-fenpropathrin (Hitchings and Roberts, 1977; Reference FM-81-0005). The plant parts were extracted with acetonitrile/water and the main products in the extracts were found to be fenpropathrin itself with small amounts of TMPA and PBacid together with some polar material which is likely to have consisted primarily of conjugates of either PBacid or TMPA. In the leaves at harvest (the interval between treatment and harvest was 66 days for the benzyl label and 111 days for the cyclopropyl label) the total remaining activity included 70% parent in the case of the cyclopropyl label and 55% parent in the case of the phenoxyphenyl label. Most of the remaining activity was tentatively accounted for by PBacid and TMPA, mainly in conjugated forms. Examination of the plants grown on soils treated with 0.5 kg/ha of fenpropathrin and containing 0.86 mg/kg fenpropathrin equivalent showed only extremely low uptake of radioactivity (0.002 mg/kg in leaves and 0.01 mg/kg in bolls), demonstrating limited tendency for translocation.

In a study carried out outdoors in California in 1992, cotton plants (cv Acala Royale) were sprayed with [phenoxyphenyl-<sup>14</sup>C]- or [cyclopropyl-<sup>14</sup>C]-fenpropathrin (97.9% or > 99.9% radiochemical purity) on 4 occasions at a rate equivalent to 0.336 kg as/ha (total application rate 1.344 kg as/ha) (Kimmel. 1994, Reference FM-41-0067). Plants were harvested by hand 21 days after the final application. Seeds were delinted by hand and extracted using hexane and extracted radioactivity was analysed by LSC, TLC, HPLC-UV and GC-MS. The un-extracted material was further extracted with methanol/water, followed by diluted hydrochloric acid/methanol. Cotton lint and foliage were extracted using hexane/acetone and analysed by LSC, TLC and HPLC. Unextracted material was further extracted using methanol/water and analysed by LSC. The results are shown in Tables 27–29.

Table 27 Distribution of radioactivity of cotton plant parts expressed as fenpropathrin equivalents

|             | Phenoxypheny | Phenoxyphenyl label |       | abel  |
|-------------|--------------|---------------------|-------|-------|
|             | mg/kg        | %TRR                | mg/kg | %TRR  |
| Seed rinses | 0.71         | 62.7                | 1.07  | 67.5  |
| Rinsed seed | 0.42         | 37.3                | 0.52  | 32.6  |
| Total seed  | 1.14         | 100.0               | 1.59  | 100.0 |
| Lint rinses | 48.6         | 63.9                | 31.8  | 76.2  |

<sup>\*\*</sup> contained at least 6 metabolites

<sup>\*\*\*</sup> artefact of the acid hydrolysis product

|             | Phenoxyphenyl label |       | Cyclopropyl label |       |
|-------------|---------------------|-------|-------------------|-------|
|             | mg/kg               | %TRR  | mg/kg             | %TRR  |
| Rinsed lint | 27.4                | 36.1  | 10.0              | 23.8  |
| Total lint  | 76.0                | 100.0 | 41.8              | 100.0 |
| Foliage     | 78.6                | 100.0 | 67.7              | 100.0 |

Table 28 The extractability of radioactivity from cotton plant parts (mg/kg fenpropathrin equivalents)

| Label/sample  | Hexane | Hexane/<br>acetone | Methanol/<br>water | Methanol/<br>HCl | Total extracted | Unextracted | Accountability (%TRR) |
|---------------|--------|--------------------|--------------------|------------------|-----------------|-------------|-----------------------|
| Phenoxyphenyl |        |                    |                    |                  |                 |             |                       |
| seeds         | 0.34   | 0.04               | 0.10               | 0.01             | 0.49            | 0.01        | 118.9                 |
| lint          | -      | 17.2               | 6.2                | -                | 23.4            | 4.0         | 100.0                 |
| foliage       | -      | 55.8               | 22.2               | -                | 78.0            | -           | -                     |
| Cyclopropyl   |        |                    |                    |                  |                 |             |                       |
| seeds         | 0.36   | 0.05               | 0.10               | 0.01             | 0.51            | 0.02        | 101.6                 |
| lint          | -      | 6.1                | 2.7                | -                | 8.8             | 1.1         | 100.0                 |
| foliage       | -      | 41.9               | 19.0               | -                | 60.9            | -           | -                     |

The majority of the radioactivity was associated with parent compound although a small number of low level metabolites were also detected.

Table 29 The Identity of fenpropathrin metabolites in cotton plant parts (mg/kg fenpropathrin equivalents)

|                                      | Phenoxyphenyl  |                             |                                      |                        | Cyclopropyl                |                                       |              |                         |
|--------------------------------------|----------------|-----------------------------|--------------------------------------|------------------------|----------------------------|---------------------------------------|--------------|-------------------------|
|                                      | seed<br>rinse  | seed<br>extract             | lint                                 | foliage                | seed rinse                 | seed<br>extract                       | lint         | foliage                 |
| Fenpropathrin                        | 0.71<br>(100%) | 0.45<br>(93.8%)             | 69.2<br>(96.2%)                      | 54.2<br>(69.5%)        | 1.1<br>(99.5%)             | 0.43<br>(85.6%)                       | 40.7 (100%)  | 41.0<br>(67.4%)         |
| PBacid                               |                | 0.01                        |                                      | 0.02                   |                            |                                       |              |                         |
| TMPA                                 |                |                             |                                      |                        |                            | 0.007                                 |              | 0.08                    |
| TMPA-lactone                         |                |                             |                                      |                        |                            |                                       |              | 0.22                    |
| Trans-TMPA-<br>CH <sub>2</sub> OH    |                |                             |                                      |                        |                            |                                       |              | 1.2                     |
| Trans-TMPA-<br>COOH                  |                |                             |                                      |                        |                            |                                       |              | 6.7                     |
| 4'-OH-PBacid                         |                |                             |                                      | 1.8                    |                            |                                       |              |                         |
| 4'-OH-<br>Fenpropathrin              |                |                             |                                      |                        |                            |                                       |              | 0.06                    |
| Desphenyl-<br>Fenpropathrin          |                |                             | 0.15                                 |                        |                            |                                       |              |                         |
| COOH-<br>Fenpropathrin               |                |                             |                                      | 0.15                   |                            |                                       |              | 0.26                    |
| CONH <sub>2</sub> -<br>Fenpropathrin |                |                             |                                      | 0.13                   |                            |                                       |              | 0.12                    |
| Polar material                       |                |                             |                                      | 11.2                   |                            |                                       |              | 9.1                     |
| other                                |                | 12 peaks<br>each<br>< 0.005 | Up to 4<br>peaks<br>each<br>0.07-1.6 | 7-12<br>other<br>peaks | 2 peaks<br>0.002,<br>0.003 | 13 peaks<br>each<br>< 0.009-<br>0.012 | 3 components | 10-17<br>other<br>peaks |

# Cabbage

The metabolism of <sup>14</sup>C-fenpropathrin was investigated in cabbages grown and treated in a greenhouse (Mikami, N. *et al.*, 1985; Reference FM-50-0044). <sup>14</sup>C-fenpropathrin labelled at either the cyano

group (referred to as [cyano- $^{14}$ C]-fenpropathrin), or the  $C_{(1)}$  position of the cyclopropyl ring ([cyclopropyl- $^{14}$ C]-fenpropathrin), or the phenoxyphenyl ring ([phenoxyphenyl- $^{14}$ C]-fenpropathrin) were prepared (all radio-chemical purities > 99%). Each of the preparations were dissolved in methanol and evenly applied to the upper surface of two  $3^{rd}$ – $4^{th}$  leaves of cabbage seedlings at a rate of 22 µg per leaf (ca. 25cm², equivalent to 0.09 kg ai/ha). The cabbages were sampled immediately after application and at 3, 7, 14, 21, 28, 35 and 42 days after application.

The cabbage samples were separated into the treated leaves and non-treated shoot portion. The treated leaves were rinsed twice with methanol and the leaves and the untreated shoots were separately homogenized and extracted with a solution of methanol:chloroform:distilled water (4:2:1). Each of the rinse and extract was radioassayed and analysed by TLC. 97.3% of fenpropathrin was recovered from cabbages immediately after application of [cyano-<sup>14</sup>C]-fenpropathrin. Direct TLC comparison of metabolites from three labelled preparations was used to distinguish products retaining the ester linkage from hydrolysis products. The extractable components in cabbages harvested 28 and 42 days after application are shown in Table 30.

Table 30 Extractable components in cabbage samples harvested 28 and 42 days after application.

|                                                         | % of the applied <sup>14</sup> C |                      |                  |       |                   |       |  |  |  |
|---------------------------------------------------------|----------------------------------|----------------------|------------------|-------|-------------------|-------|--|--|--|
|                                                         | Cyclopro                         | pyl- <sup>14</sup> C | <sup>14</sup> CN |       | phenoxyphenyl-14( |       |  |  |  |
|                                                         | 28                               | 42                   | 28               | 42    | 28                | 42    |  |  |  |
| Surface Wash:                                           |                                  |                      |                  |       |                   |       |  |  |  |
| Fenpropathrin                                           | 0.6                              | 0.3                  | 1.0              | 0.6   | 1.7               | 0.4   |  |  |  |
| Others                                                  | 0.3                              | 0.1                  | 0.4              | 0.3   | 0.3               | 0.1   |  |  |  |
| Surface Wash Total                                      | 0.9                              | 0.4                  | 1.4              | 0.9   | 2.0               | 0.5   |  |  |  |
| Extracts:                                               |                                  |                      |                  |       |                   |       |  |  |  |
| Fenpropathrin                                           | 15.8                             | 11.7                 | 16.9             | 6.0   | 12.9              | 11.3  |  |  |  |
| CONH <sub>2</sub> -Fenpropathrin                        | 0.7                              | < 0.1                | 0.3              | < 0.1 | 0.9               | < 0.1 |  |  |  |
| COOH-Fenpropathrin                                      | 0.4                              | 0.4                  | 0.6              | 0.3   | 0.7               | < 0.1 |  |  |  |
| 2'-OH-Fenpropathrin                                     | 0.1                              | < 0.1                | 0.4              | < 0.1 | 0.4               | < 0.1 |  |  |  |
| Fenpropathrin-CH <sub>2</sub> OH                        | 0.4                              | 0.3                  | 0.5              | 0.5   | 0.6               | 0.2   |  |  |  |
| TMPA-lactone                                            | 0.1                              | < 0.1                | -                | -     | -                 | -     |  |  |  |
| TMPA-CH <sub>2</sub> OH-lactone                         | 0.8                              | 0.9                  | -                | -     | -                 | -     |  |  |  |
| COOH-Fenpropathrin-conjugate                            | 0.4                              | 0.2                  | 0.6              | 0.4   | 0.6               | 0.7   |  |  |  |
| 2'-OH-Fenpropathrin-conjugate                           | 0.2                              | 0.1                  | 0.1              | 0.1   | 0.1               | 0.2   |  |  |  |
| 4'-OH-Fenpropathrin-conjugate                           | 1.3                              | 0.7                  | 1.6              | 1.0   | 0.6               | 0.8   |  |  |  |
| Fenpropathrin-CH <sub>2</sub> OH-conjugate              | 3.5                              | 4.0                  | 3.4              | 4.3   | 4.2               | 4.0   |  |  |  |
| 2'-OH-fenpropathrin-CH <sub>2</sub> OH-conjugate        | 4.8                              | 4.5                  | 4.6              | 4.5   | 5.9               | 6.2   |  |  |  |
| 4'-OH-fenpropathrin-CH <sub>2</sub> OH-conjugate        | 4.8                              | 4.3                  | 4.0              | 4.3   | 3.9               | 0.2   |  |  |  |
| 2'-OH-fenpropathrin-(CH <sub>2</sub> OH) <sub>2</sub> - |                                  |                      |                  |       |                   |       |  |  |  |
| conjugate                                               | 20.3                             | 22.0                 | 18.6             | 20.7  | 19.4              | 21.6  |  |  |  |
| 4'-OH-fenpropathrin-(CH <sub>2</sub> OH) <sub>2</sub> - | 20.3                             | 22.0                 | 16.0             | 20.7  |                   | 21.0  |  |  |  |
| conjugate                                               |                                  |                      |                  |       |                   |       |  |  |  |
| TMPA-conjugate                                          | 0.9                              | 0.8                  | -                | -     | -                 | -     |  |  |  |
| TMPA-CH <sub>2</sub> OH-conjugate                       | 1.1                              | 1.0                  | -                | -     | -                 | -     |  |  |  |
| TMPA-COOH-conjugate                                     | 3.7                              | 4.2                  | -                | -     | -                 | -     |  |  |  |
| TMPA-CH <sub>2</sub> OH-lactone-conjugate               | 11.3                             | 11.1                 | -                | -     | -                 | -     |  |  |  |
| PBalc-conjugate                                         | -                                | -                    | -                | -     | 0.1               | 0.1   |  |  |  |
| PBacid-conjugate                                        | -                                | -                    | -                | -     | 0.8               | 1.1   |  |  |  |
| 2'-OH-PBacid-conjugate                                  | -                                | -                    | -                | -     | 6.9               | 7.4   |  |  |  |
| 4'-OH-PBacid-conjugate                                  | -                                | -                    | -                | -     | 4.5               | 4.6   |  |  |  |
| Others                                                  | 5.2                              | 5.8                  | 4.2              | 5.8   | 9.6               | 9.1   |  |  |  |
| Extracts Total                                          | 71.0                             | 67.7                 | 51.8             | 43.6  | 68.2              | 67.3  |  |  |  |
| Unextractable <sup>14</sup> C Total                     | 2.6                              | 5.1                  | 6.7              | 11.3  | 4.0               | 7.5   |  |  |  |
| Treated Leaves Total                                    | 74.5                             | 73.2                 | 59.9             | 55.8  | 74.2              | 75.3  |  |  |  |

|                  | % of the a | % of the applied <sup>14</sup> C |      |      |      |      |  |  |
|------------------|------------|----------------------------------|------|------|------|------|--|--|
|                  | Cycloprop  | Cyclopropyl- <sup>14</sup> C     |      |      |      |      |  |  |
|                  | 28         | 42                               | 28   | 42   | 28   | 42   |  |  |
| Untreated Shoots | 0.9        | 1.2                              | 0.6  | 0.7  | 0.4  | 0.4  |  |  |
| Overall Total    | 75.4       | 74.4                             | 60.5 | 56.5 | 74.6 | 75.7 |  |  |

The study demonstrated that after foliar application of <sup>14</sup>C-fenpropathrin to cabbages the radiocarbon remaining on the treated leaves (as shown by the surface wash) decreased with concomitant increase of <sup>14</sup>C in the plant tissues. Most of the recovered radiocarbon was in the treated leaves and less than 1.2% of the applied radiocarbon was found in the untreated shoots indicating that fenpropathrin and its metabolites hardly translocate from the application site to other parts of the plant.

TLC showed that in all cases the predominant radioactive component in the surface washes was the parent, fenpropathrin. Fenpropathrin underwent ester cleavage, hydrolysis of the CN group to the CONH<sub>2</sub> and the COOH groups, hydroxylation at either or both of the gem-dimethyl group with subsequent oxidation to carboxylic acid, and hydroxylation at the 2'- or 4'-position of the phenoxy group. Most of the resultant carboxylic acids and alcohols occurred as glycoside conjugates in plants.

## Fate of hydrogen cyanide (HCN) and TMPA in abscised leaves

Mikami, N. *et al.*, also conducted work on the fate of HCN and 2,2,3,3-tetramethylcyclopropanecarboxylic acid (TMPA) in abscised leaves of apple, kidney bean, cabbage, mandarin orange, tomato and vine. 2,2,3,3-tetramethylcyclopropanecarboxylic acid labelled at the  $C_{(1)}$  position of the cyclopropyl ring ( $^{14}$ C-TMPA) was prepared. Two abscised leaves from each plant were placed in 100 mL distilled water containing  $^{14}$ C-TMPA at a concentration of 1.0 ppm. After cultivation for five days the leaves were extracted with methanol:chloroform:water (4:2:1).

In a separate experiment, abscised leaves of cabbage and bean plants were placed in a 100 ppm solution of <sup>14</sup>C-TMPA in order to obtain large quantities of metabolites for characterization. The extracts were partitioned between ethyl ether and distilled water. After acidification the aqueous layer was partitioned with ethyl acetate. The extractable components in abscised leaves of various plants over a 5 day period are shown in Table 31.

Table 31 Extractable components in abscised leaves of various plants over a 5 day period.

|                                     | % of the applied <sup>14</sup> C |       |         |        |        |       |  |  |  |  |
|-------------------------------------|----------------------------------|-------|---------|--------|--------|-------|--|--|--|--|
|                                     | Apple                            | Bean  | Cabbage | Orange | Tomato | Vine  |  |  |  |  |
| Extracts                            |                                  |       |         |        |        |       |  |  |  |  |
| TMPA                                | < 0.1                            | < 0.1 | < 0.1   | < 0.1  | < 0.1  | < 0.1 |  |  |  |  |
| TMPA-Gu                             | 21.5                             | 14.7  | 3.2     | 3.0    | 2.0    | 6.6   |  |  |  |  |
| CH <sub>2</sub> OH-TMPA-Gu          | 5.2                              | 3.2   | 3.4     | 0.2    | 0.2    | 0.4   |  |  |  |  |
| TMPA-CH <sub>2</sub> OH-Gu          | 1.3                              | -     | -       | -      | -      | 0.1   |  |  |  |  |
| TMPA-Gu-Gu                          | 5.4                              | 2.8   | -       | -      | 12.8   | 0.7   |  |  |  |  |
| TMPA-malonyl-Gu                     | 0.7                              | 56.2  | 70.5    | 3.1    | 4.3    | 0.1   |  |  |  |  |
| CH <sub>2</sub> OH-TMPA-malonyl-Gu  | -                                | -     | 1.5     | 0.4    | -      | -     |  |  |  |  |
| Others                              | 1.5                              | 3.0   | 0.2     | 0.5    | 1.1    | 0.2   |  |  |  |  |
| Extracts Total                      | 35.6                             | 79.9  | 78.8    | 7.2    | 20.4   | 8.1   |  |  |  |  |
| Unextractable <sup>14</sup> C Total | 0.3                              | 0.2   | 0.2     | 0.4    | 0.2    | 0.3   |  |  |  |  |

|                        | % of the applied <sup>14</sup> C |                                       |      |      |      |      |  |  |  |  |  |
|------------------------|----------------------------------|---------------------------------------|------|------|------|------|--|--|--|--|--|
|                        | Apple                            | Apple Bean Cabbage Orange Tomato Vine |      |      |      |      |  |  |  |  |  |
| Abscised Leaves Total  | 32.9                             | 80.1                                  | 79.0 | 7.6  | 20.6 | 8.4  |  |  |  |  |  |
| Aqueous Solution       | Aqueous Solution                 |                                       |      |      |      |      |  |  |  |  |  |
| TMPA                   | 57.1                             | 24.5                                  | 13.2 | 63.8 | 76.1 | 83.0 |  |  |  |  |  |
| Others                 | 1.2                              | 0.8                                   | 0.9  | 0.7  | 1.6  | 0.5  |  |  |  |  |  |
| Aqueous Solution Total | 58.3                             | 25.3                                  | 14.1 | 64.5 | 77.7 | 83.5 |  |  |  |  |  |
| Overall Total          | 94.2                             | 105.4                                 | 93.1 | 72.1 | 98.3 | 91.9 |  |  |  |  |  |

TMPA was readily converted in plants to more polar products. The metabolic pathways for TMPA varied dependent upon species of plant. The glucose ester was a main product in apple and vine plants. In orange, cabbages and bean plants, the malonylglucoside was mainly formed.

Further work was carried out using K<sup>14</sup>CN. Two abscised cabbage leaves were treated for four hours with distilled water containing K<sup>14</sup>CN and then transferred to K<sup>14</sup>CN-free distilled water. The treated leaves were extracted at specific intervals after dosing with K<sup>14</sup>CN, and the extracts were subject to TLC. There was a gradual increase in the amount of volatile <sup>14</sup>C trapped in NaOH solution, most of the radiocarbon was considered to be <sup>14</sup>CO<sub>2</sub>. At least six <sup>14</sup>C metabolites were present in the extracts of the abscised leaves treated with K<sup>14</sup>CN. The extractable components in abscised leaves of cabbage over a 2 day period are shown in Table 32.

Table 32 Extractable components in abscised leaves of cabbage over a 2 day period following treatment with K<sup>14</sup>CN.

|                                     | % of the applied <sup>14</sup> C |      |      |      |  |  |  |  |  |
|-------------------------------------|----------------------------------|------|------|------|--|--|--|--|--|
| Extracts                            | Hours after treatment            |      |      |      |  |  |  |  |  |
|                                     | 2                                | 4    | 8    | 48   |  |  |  |  |  |
| β-Cyanoalanine                      | 0.6                              | 0.9  | 0.9  | 0.6  |  |  |  |  |  |
| Asparagine                          | 1.8                              | 2.4  | 2.8  | 1.1  |  |  |  |  |  |
| Aspartic acid                       | 0.7                              | 1.0  | 1.1  | 1.3  |  |  |  |  |  |
| γ-Glutamyl-β-cyanoalanine           | 3.8                              | 5.4  | 5.1  | 2.4  |  |  |  |  |  |
| Others                              | 0.7                              | 1.2  | 1.1  | 1.9  |  |  |  |  |  |
| Extracts Total                      | 7.6                              | 10.9 | 11.0 | 7.3  |  |  |  |  |  |
| Unextractable <sup>14</sup> C Total | 2.9                              | 3.7  | 4.5  | 7.7  |  |  |  |  |  |
| Treated Leaves Total                | 10.5                             | 14.6 | 15.5 | 15.0 |  |  |  |  |  |
| Aqueous Solution                    | 86.9                             | 79.6 | 83.1 | 63.2 |  |  |  |  |  |
| Overall Total                       | 97.4                             | 94.2 | 98.6 | 78.2 |  |  |  |  |  |

This study demonstrates that  $H^{14}CN$  liberated on ester hydrolysis of fenpropathrin and its derivatives would be rapidly incorporated into  $\beta$ -cyanoalanine, asparagines, aspartic acid and  $\gamma$ -glutamyl- $\beta$ -cyanoalanine, with ultimate formation of  $^{14}CO_2$  and unextractable  $^{14}C$  residues.

#### Summary of plant metabolism

Metabolism of fenpropathrin has been studied in apples, tomatoes (fruiting crops), beans (legume crops), cotton (pulses/oilseed crops) and cabbage (leafy crops). Trials were carried out at approximately recommended rate with fenpropathrin labelled in the phenoxyphenyl, benzyl, cyclopropyl or cyano positions. The majority of radioactivity was found in leaf samples. Low levels of radioactivity were found in fruit/beans. Parent fenpropathrin was the primary component of the

residues in the fruits of the plants, but degradation products constituted the greater part of the residues present in the leaves. Breakdown products/metabolites detected in both fruits and leaves were similar to those detected in rats. It is therefore considered that crop residues are described adequately by defining them as the parent product alone.

The study on cabbage further demonstrated that after foliar application of <sup>14</sup>C-fenpropathrin the radiocarbon remaining on the treated leaves (as shown by the surface wash) decreased with concomitant increase of <sup>14</sup>C in the plant tissues. Most of the recovered radiocarbon was in the treated leaves and less than 1.2% of the applied radiocarbon was found in the untreated shoots indicating that fenpropathrin and its metabolites hardly translocate from the application site to other parts of the plant.

The general pattern of degradation in all the plant studies include breaking of the ester linkage to produce 3-phenoxybenzoic acid (PBacid) and the corresponding alcohol (PBalc) and aldehyde (PBald). From the acid side of the molecule, the main metabolite is 2,2,3,3-tetramethylcyclopropanecarboxylic acid (TMPA) which can give rise to 2-hydroxymethyl-2,3,3-trimethylcyclopropanecarboxylic acid (TMPA-CH<sub>2</sub>OH) and 5-hydroxymethyl-6,6-dimethyl-3-oxabicyclohexan-2-one (TMPA-CH<sub>2</sub>OH lactone). PBacid can be hydroxylated at various positions on the phenoxy ring to produce, α-cyano-3-(2'-or 4'-hydroxyphenoxy)benzyl 2,2,3,3-tetramethylcyclopropanecarboxylate (2'-or 4'-OH-fenpropathrin). The proposed metabolic pathway of fenpropathrin in plants is shown in Figure 2.

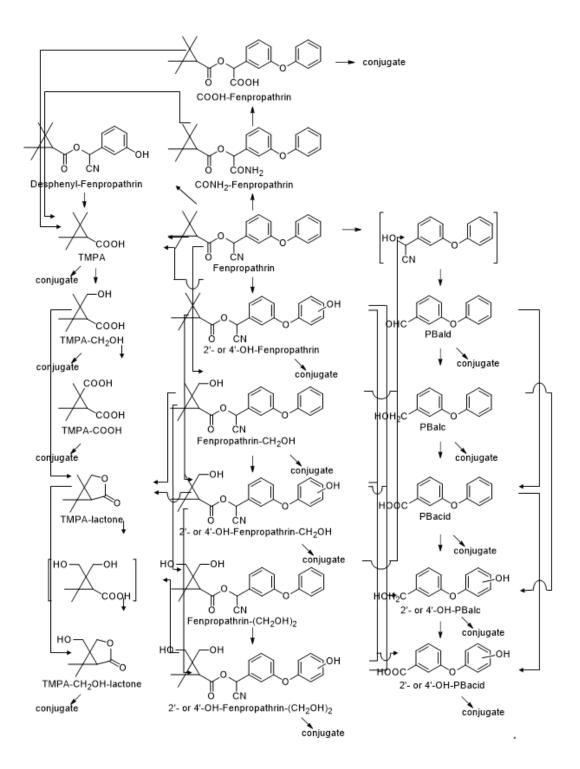



Figure 2 Metabolism and biotransformation pathway for fenpropathrin in plants

## Environmental Fate in Soil

The fate and behaviour of fenpropathrin in soils was investigated using fenpropathrin labelled with <sup>14</sup>C either in the cyano group, the C-1 position of the cyclopropyl ring, the benzylic carbon or

uniformly in the phenoxyphenyl ring. The reports had been reviewed by the 1993 JMPR, no new study was submitted.

#### Aerobic soil metabolism

A 365-day aerobic soil metabolism study was conducted in 1989 using [benzyl- $^{14}$ C]-fenpropathrin (Cranor, 1990, Reference FM-91-0039). The test material was incubated in the dark at 25  $^{\circ}$ C with silt loam soil confirmed to be biologically active by plating and counting colonies. The nominal concentration of fenpropathrin was  $10 \,\mu\text{g/g}$  soil; the measured concentration immediately after the addition was  $10.2 \,\mu\text{g/g}$ . The soils were maintained at 70–75% field capacity throughout the study and sampled at intervals up to the end of the 365-day incubation. The samples were extracted with methanol (3–4 times) and then combusted to determine the un-extracted activity.

After 365 days, 18.4% of the dose remained as parent with accumulated volatiles accounting for 59.9% (99.8% of which was CO2) and un-extractable residues for 17.8%.

During the whole course of the study the maximum levels of the metabolites were 1.25% PBacid (Day 1), 0.21% CONH<sub>2</sub>-fenpropathrin (Day 122), 0.55% desphenyl-fenpropathrin (Day 122), 0.19% 4'-OH-fenpropathrin (Day 122) and 0.39% COOH-fenpropathrin (Day 61), all in terms of per cent of the initial dose. In addition there were maxima of 0.07 (Day 14), 0.28 (Day 365), 0.34 (Day 61) and 0.16% (Day 30) of unidentified products. The <sup>14</sup>C mass balance for the whole period ranged from 98.7% to 107.1% with a mean of 102.3% and a value at the end of the study of 98.7%. The half-life was calculated, using a first order model, to be 152 days. These results were similar to those of previous degradation studies.

The production of labelled carbon dioxide was greatest from the cyano label over 208 days, and least from the phenoxyphenyl label (at day 148), indicating the relative readiness of the different parts of the molecule to mineralize. (Noble, 1976, Reference FR-61-0013).

In the soil extracts from the cyclopropyl label, the parent compound was the main component with small amounts of TMPA and unidentified polar compounds and, in one of the perfusions, the amide of fenpropathrin (CONH<sub>2</sub>-fenpropathrin). No amide was found from the cyano label.

In the case of the phenoxyphenyl label, the liberation of carbon dioxide was much slower and the rates were erratic. Neither CONH<sub>2</sub>-fenpropathrin nor PBacid was detected in the soils. In the perfusion mixtures, the main components isolated were the parent and unidentified hydrophilic compounds.

In the aerobic soil after 16 weeks, the most important component of the residue was the parent compound. The half-life of the fenpropathrin was about 4 weeks on moist soils (Leiston and moist Brenes) but more than 16 weeks on the drier ones (dry Brenes and Los Palacios). After 16 weeks the most prominent metabolite in drier soil was PBacid in the case of the phenoxyphenyl label and TMPA in the case of the cyclopropyl label (Roberts and Standen, 1976, Reference FR-61-0014). The other

two metabolites found were CONH<sub>2</sub>-fenpropathrin and COOH-fenpropathrin, but these were scarcely detectable in the soils with high moisture (Brenes at 16% moisture and Leiston). In the study using Brenes soils, to detect volatile activity, the percentage of the applied radioactivity evolving as CO<sub>2</sub> after 26 weeks was 16.0%, with 71.8% as the intact parent compound and 11.6% as unextracted activity. Other degradation products were only present at negligible levels.

Mikami et al., 1983 (Reference FM-30-0008) investigated two fresh Japanese soils, a sandy clay loam (Azuchi) and a light clay with 15% organic matter (Kodaira), under three different conditions: natural aerobic soil, anaerobic soil, and autoclaved aerobic soil. Under aerobic conditions the half-life of fenpropathrin was 11 and 17 days and after 24 weeks the level of fenpropathrin had declined from 1 mg/kg to 0.025 and 0.040 mg/kg respectively. After 8 weeks approximately 0.93 mg/kg remained under sterilized conditions. Sterilization retarded degradation, demonstrating the importance of biological processes. While there were only minor indications of degradation products in the sterile soils, at least 7 were detected in the methanol extracts of the non-sterile soil. With the cyclopropyl-labelled compound the main components of radioactivity were the parent fenpropathrin, desphenyl-fenpropathrin, 4'-OH-fenpropathrin, and small amounts of CONH2-fenpropathrin and COOH-fenpropathrin. There were also indications of very small amounts of unidentified products. In the case of the phenoxyphenyl label, very low levels of PBacid were observed during the first 4 weeks. Un-extractable residues at the end of the study reached 44-45% of the added radioactivity in the Kodaira soil (the one containing a high proportion of organic matter), but only 24-32% in the lower-organic Azuchi soil. No TMPA was reported. A major part of the lost radioactivity was recovered as labelled CO<sub>2</sub> in fairly similar amounts from both labels.

#### Photodegradation in soil

Photodegradation studies carried out in Japan on light clay, sandy loam and sandy clay loam with fenpropathrin labelled with <sup>14</sup>C in the cyano group, the phenoxyphenyl ring or the C-1 position of the cyclopropyl ring and applied to thin-layer soil plates (Takahashi *et al.*, 1983, 1985, Reference FM-30-0011). The fenpropathrin was applied at a rate of 1.1 μg/cm² and the plates exposed to natural sunlight for 14 days. Dark controls were run at the same time. Under irradiation, the half-lives of the CN-labelled fenpropathrin were between 1–5 days on the three soils. The mean fenpropathrin residues left in the soils at the end of the 14-day period amounted to 5.1, 29.4 and 32.9% of the amounts applied. The corresponding figures in the dark controls were 74, 84 and 96%; there was insufficient degradation for half-lives to be estimated. The main degradation product under irradiation with all three labels was CONH₂-fenpropathrin which reached a maximum in the three soils after 5, 7 and 7 days. Substantial amounts also occurred in the dark controls. For the most part, other metabolites were present in the irradiated soils in only very small amounts, except PBacid which reached a maximum of 11.4% of the total applied radioactivity after 7 days. Minor metabolites found were COOH-fenpropathrin, desphenyl-fenpropathrin, and 3-OH-Bacid. Loss of radioactivity from soils was greatly

enhanced by irradiation. The nitrile carbon was the most susceptible followed closely by the C-1 of the cyclopropyl group. The phenoxyphenyl group was a more stable part of the molecule.

### Summary: Aerobic soil metabolism

Studies on the metabolism of fenpropathrin in soil demonstrated that fenpropathrin is degraded in the soil by a combination of photochemical and microbiological processes. Metabolism proceeds via cleavage of the ester bonds, hydroxylation, and hydrolysis of the cyano group to CONH<sub>2</sub> and COOH groups. The major products detected after aerobic metabolism were the parent fenpropathrin, CO<sub>2</sub>, and non-extractable residues. Metabolites included desphenyl-fenpropathrin, 4'-OH-fenpropathrin, phenoxybenzoic acid, and CONH<sub>2</sub>-fenpropathrin, which was further degraded to COOH-fenpropathrin. The proposed metabolic pathway of fenpropathrin in soil is shown in Figure 3.

Figure 3 Metabolism and biotransformation pathway for fenpropathrin in soil

# Residues in Succeeding or Rotational Crops

The crops included in this evaluation are permanent or semi-permanent crops, for which rotational crop studies are not required. No study was submitted for evaluation.

#### Residue analytical methods

Analytical methods have been developed for determination of residues of fenpropathrin in plant and animal. In general, the methods involve solvent extraction, clean-up by either silica gel or Florisil column, GLC using electron capture detection. The main variations depending on the substrates are in the extraction and clean-up procedures. Fruits and vegetables may be homogenized with water, shaken with acetone, and extracted with dichloromethane, using NaCl to minimize emulsification. After drying with anhydrous sodium sulfate and clean-up by silica gel column chromatography, the solvent is evaporated at <40 °C and the residue dissolved in acetone before estimation by gas chromatography with electron capture detection. Other extraction procedures involve direct extraction of the homogenized material suspension in water or homogenization with methanol instead of water. The results of recovery studies carried out as part of method validation or concurrent recoveries obtained from supervised trial samples are summarised in Table 33.

# Analytical methods for plant matrices

The base method, RM-22-4 consolidates RM-22-2 (for high moisture crops), RM-22-3 (for oily crops) and includes a procedure for processed oil and soapstock (Lai and Fujie, 1983; Reference FA-41-0040). Homogenized samples are extracted with hexane/acetone and cleaned up through silica gel and C18 solid phase extraction (SPE). Additional purification using gel permeation chromatography (GPC) are performed for oily matrices. Soapstock samples are dissolved in water, extracted with dichloromethane, before proceeding with the processed oil method which involves partition between hexane and acetonitrile and clean-up using alumina oxide. Analysis is by GC with electron capture detection (ECD) (column 3% OV 101 - high moisture and oily samples; DB-1 – processed oil and soapstock samples).

#### Method used for citrus fruit, pome fruit, grapes and their processed fractions

Citrus fruit samples were analysed using method RM-22-4, with modifications. Homogenized samples were extracted with hexane/acetone, partitioned into hexane and cleaned up with silica gel and C18 solid phase extraction (SPE). Residues of fenpropathrin were determined by gas chromatography with electron capture detection. The LOQ for the method was 0.01 mg/kg.

### Method used for raspberry

Raspberry samples were analysed using the revised method RM-22-4 (revision May 1993), with modifications. Homogenized samples were extracted with hexane/acetone, partitioned into hexane and cleaned up with silica gel and C18 solid phase extraction (SPE). Residues of fenpropathrin were

determined by gas chromatography with mass spectrometry (MS)-SIM. The LOQ for the method was 0.02 mg/kg.

Method used for tomato and processed fractions, cucumber, melon and squash

Method RM-22-4 was used for the analysis of fenpropathrin in fruiting vegetables, cucurbits and fruiting vegetables other than cucurbits. The LOQ was 0.01 mg/kg. A revised RM-22-4 method (revision May 1993) using a DB-17 column and nitrogen phosphorus detection (NPD) was used for certain raw and processed tomato samples.

# Method used for tea

Method RM-22-2 was revised for analysis of fenpropathrin in tea. Tea samples were extracted with an acetonitrile-water mixture and the extracts filtered under suction (Lavakumar, S., *et al.*, 2003; Report No. 11861 and Lavakumar, S., *et al.*, 2004; Report No.14246). The filtrate was concentrated then diluted with 5 percent aqueous sodium chloride solution and subjected to extraction with hexane-ether mixture. The combined extracts were filtered through sodium sulfate and evaporated to near dryness before being dissolved in 5 mL hexane. Clean-up was performed and the eluate evaporated and dissolved in acetone. Fenpropathrin was quantified by gas chromatography using an electron capture detector. The LOQ is 0.05 mg/kg.

#### Methods used for soya beans

Method RM 22-4 was modified for soya bean determination. Soya bean seeds were extracted with acetonitrile-ethyl acetate mixture, centrifuged and cleaned up through silica gel column with hexane. The extract was eluted with ethyl acetate-hexane mixture, evaporated to dryness and re-suspended in hexane. Fenpropathrin residues were determined by gas chromatography using a micro electron capture detector (Tomaz, 2013; Reference FR-0570). The LOQ for the method is 0.01 mg/kg.

In the other soya bean study, residues were extracted with acetonitrile and salt mixture and fenpropathrin analysed by liquid chromatography with mass spectrophotometric detection (LC/MS/MS) Lopez, 2012; Reference FR-0571). The LOQ for the method was 0.01 mg/kg.

# Methods used for cotton matrices

Method RM 22-4 was modified for cotton matrix determination. Fuzzy seed and processing fractions were extracted with hexane-acetone and cleaned up using gel permeation chromatography or partitioned into acetonitrile for oil removal with clean up through silica gel and C-18 Sep Pak columns. For cotton seed oil, samples were dissolved in hexane, portioned into acetonitrile and cleaned up by alumina oxide column chromatography. For soapstock, samples were dissolved in water, partitioned into dichloromethane, partitioned between hexane and acetonitrile and cleaned up by alumina oxide column chromatography. Fenpropathrin residues were determined by gas

chromatography using an electron capture detector (Fujie, 1990; Reference FR-01-0306). The LOQ for the method is 0.01 mg/kg.

In the other soya bean study, residues were extracted with acetonitrile and salts mixture and fenpropathrin analysed by liquid chromatography with mass LC-MS/MS detection *utilising the* transition of mz 350 $\rightarrow$ 125. The LOQ for the method is 0.01 mg/kg (Lopez, 2012; Reference FR-0571).

#### Method used for coffee beans

Coffee samples were extracted with water and 0.1% acetic acid in acetonitrile and a mixture of salts (anhydrous magnesium sulfate, sodium acetate and sodium chloride are added and the mixture centrifuged. An aliquot of the supernatant was transferred to a tube containing anhydrous magnesium sulfate and centrifuged. The extract was diluted in methanol:water (20:80) and residues of fenpropathrin were analysed by LC-MS/MS. The LOQ was 0.01 mg/kg (Gravena, 2013; Reference FR-0572)

### Analytical methods for animal matrices

Method RM-22A-1 was used to analyse for fenpropathrin residues in milk and animal tissue samples in the feeding study (Fujie, 1986; FR-61-0174 and FR-61-0175). In summary, the method involves extraction with hexane/acetone, acetonitrile/hexane partitioning, silica gel column chromatography and measurement by gas chromatography using the electron capture detector. The method was validated with an LOQ of 0.01 mg/kg fenpropathrin. Control samples fortified with fenpropathrin were analysed together with treated samples from the feeding studies and the concurrent recoveries were within the acceptable range of 70–120%.

#### Multi-residue Methods

The multi-residue method DFG S19 was investigated and validated for the determination of fenpropathrin in acidic plant matrices high water content (tomatoes and oranges) (Class, 2003; Reference FA-0093). Samples were extracted with acetone/water, following neutralization of the pH in the case of oranges. Extracts were partitioned with ethyl acetate/cyclohexane in the presence of sodium chloride and cleaned up using gel permeation chromatography (GPC) and silica gel. Analysis was by GC-MS (ions mz 181 and 265 for quantitation and 209 and 349 for confirmation). Recoveries (range and mean) and precision were within the acceptable limits. Linearity was demonstrated. There were no interfering peaks at the retention time for fenpropathrin in any of the crop matrices. The method is suitable for monitoring pesticide residues.

The multi-residue method DFG S19 was also validated for the determination of fenpropathrin in foodstuffs of animal origin (milk, bovine meat and fat, eggs) (Class, 2003; Reference FA-0094). Whole milk, egg and bovine meat samples were extracted with acetone/water and the extracts were partitioned with ethyl acetate/cyclohexane in the presence of sodium chloride. Fat samples were

extracted with ethyl acetate/cyclohexane. Extracts were cleaned up using gel permeation chromatography (GPC) and silica gel. Analysis was by GC-MS (ions mz 181 and 265 for quantitation and 125, 152, 209 and 349 for confirmation). Recoveries (range and mean) and precision were within the acceptable limits. Linearity was demonstrated. There were no interfering peaks at the retention time for fenpropathrin in any of the animal matrices. The validated LOQ is 0.01 mg/kg for animal tissues and eggs. The method can be used for enforcement of MRLs and monitoring of residues.

A summary of recovery data from the methods used for plant and animal commodities supported in this submission are presented in the table 33.

Table 33 Summary of method validation and concurrent recovery data <sup>a</sup>

| Commodity          | Fortification mg/kg | n  | Range<br>Recovery | Mean<br>recovery | %<br>RSD | Method   | Reference  |
|--------------------|---------------------|----|-------------------|------------------|----------|----------|------------|
|                    | 8 8                 |    | (%)               | (%)              |          |          |            |
| Plant commodities  |                     |    | 1 (1-1)           | (1-5)            |          |          |            |
| Almond hulls       | 0.02-7.5            | 6  | 90-115            | 103              | 8.9      | RM-22-4  | FR-0382    |
| Almond nutmeat     | 0.02-0.1            | 6  | 84-119            | 96               | 14       | RM-22-4  | FR-0382    |
| Apples             | 0.1                 | 9  | 89-111            | 98               | 8        | RM-22-4  | FR-81-0305 |
| TT                 | 0.1                 | 6  | 87-103            | 97               | 6        |          | FR-61-0190 |
|                    | 0.1                 | 12 | 73-119            | 98               | 12       |          | FR-0370    |
|                    | 1.0                 | 1  | 106               | _                | -        |          | FR-81-0305 |
| Apple juice        | 0.1                 | 1  | 106               | -                | -        | RM-22-4  | FR-81-0305 |
| 11 3               | 0.1                 | 12 | 73-96             | 87               | 12       |          | FR-0370    |
| Apple wet pomace   | 0.2                 | 1  | 109               | -                | -        | RM-22-4  | FR-81-0305 |
| 11 1               | 1.0-4.0             | 4  | 75-98             | 89               | -        |          | FR-0370    |
| Apple dry pomace   | 0.2                 | 1  | 96                | -                | -        | RM-22-4  | FR-81-0305 |
| 11 31              | 0.4-8.0             | 4  | 71-126            | 92               | 26       |          | FR-0370    |
| Bell pepper        | 0.02-1.0            | 10 | 94-107            | 101              | 4        | RM-22-4  | FR-0558    |
| Canned tomatoes    | 0.01-0.2            | 3  | 94-100            | 97               | 3        | RM-22-4  | FR-21-0344 |
| Cherry             | 0.02-4.0            | 8  | 82-110            | 99               | 9.6      | RM-22-4  | FR-0381    |
| Coffee             | 0.01-0.5            | 13 | 79-116            | 98               | 15.3     | LC-MS/MS | FR-0572    |
| Cotton, fuzzy seed | 0.1-0.2             | 38 | 70-101            | 83               | -        | RM-22-4  | Fr-01-0306 |
| Cucumber           | 0.01-11.4           | 15 | 66-115            | 89               | 13.8     | RM-22-4  | FR-0556    |
| Grape              | 0.1                 | 4  | 93-102            | 99               | 4        | RM-22-4  | FR-01-0308 |
| 1                  | 0.1                 | 22 | 77-123            | 99               | 12       |          | FR-010335  |
|                    | 1.0                 | 1  | 110               | -                | -        |          | FR-0374    |
|                    | 0.02                | 1  | 98                | -                | -        |          |            |
|                    | 0.4                 | 1  | 97                | -                | -        |          |            |
| Grape wet pomace   | 0.1                 | 3  | 100-101           | 100              | 0.7      | RM-22-4  | FR-01-0308 |
|                    | 0.2                 | 1  | 95                | -                | -        |          |            |
|                    | 0.5                 | 4  | 97-106            | 101              | 4        |          |            |
|                    | 0.5                 | 8  | 100               | -                | 4        |          |            |
| Grape dry pomace   | 0.1                 | 3  | 86-121            | 101              | 18       | RM-22-4  | FR-01-0308 |
|                    | 0.2                 | 2  | 84-96             | 90               | -        |          |            |
|                    | 0.5                 | 2  | 100-119           | 109              | -        |          |            |
|                    | 1.0                 | 4  | 95-108            | 100              | 6        |          |            |
|                    | 1.0                 | 11 | 100               | -                | 12       |          |            |
| Grape juice        | 0.1                 | 9  | 87-101            | 96               | 5        | RM-22-4  | FR-01-0308 |
|                    | 0.005               | 1  | 98                | -                | -        |          | FR-01-0335 |
|                    | 0.1                 | 1  | 98                | -                | -        |          |            |
| Grapefruit         | 0.02                | 2  | 106-114           | 110              | -        | RM-22-4  | FR-21-0343 |
|                    | 0.1                 | 9  | 85-108            | 95               | 7        |          |            |
|                    | 0.5                 | 7  | 90-99             | 94               | 3        |          |            |
|                    |                     | 18 |                   | 96               | 7        |          |            |
| Lemon              | 0.02                | 3  | 98-120            | 109              | 10       | RM-22-4  | FR-21-0342 |
|                    | 0.1                 | 8  | 92-117            | 101              | 9        |          |            |
|                    | 0.5                 | 5  | 90-108            | 99               | 7        |          |            |
|                    |                     | 16 |                   | 102              | 9        |          |            |
| Melon              | 0.02-1.0            | 16 | 82-98             | 90               | 4.8      | RM-22-4  | FR-0375    |
| Non-bell pepper    | 0.02-10             | 12 | 88-115            | 97               | 8        | RM-22-4  | FR-0558    |

| March   Recovery   Responsible   Recovery   Recovery   Responsible   Recovery   Recov   | C 174                                                                       | E                                   | T                  | D                                 | 14   | 0/  | M . d 1                                                | D . C                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|--------------------|-----------------------------------|------|-----|--------------------------------------------------------|------------------------------------------------|
| C%   C%   C%   C%   C%   C%   C%   C%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commodity                                                                   | Fortification                       | n                  | Range                             | Mean | %   | Method                                                 | Reference                                      |
| Olive fruit, no pit         002-15         15         70-121"         91         9-9         RM-22-4         FR-0561           Olive out, no pit         0.02-20         12         76-115"         96         13.0         RM-22-4         FR-0561           Olive oil         0.02-20         12         76-115"         96         13.0         RM-22-4         FR-0561           Olive oil         0.02-20         12         76-115"         96         13.0         RM-22-4         FR-0561           Olive oil         0.02-20         1         73         9.9         DFG S19         (FR-0093)           Orange         0.1 - 1         10         79-104         95         7         RM-22-4         FR-01-0307           Orange oil         0.1         4         77-109         90         1         RM-22-4         FR-01-0307           Orange oil         0.4         3         97-98         97         0.6         RM-22-4         FR-01-0307           Orange oil         0.4         81         81         1         RM-22-4         FR-01-0307           Orange oil         0.4         86         86         80         9         RM-22-4         FR-01-0307           O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             | mg/kg                               |                    |                                   |      | KSD |                                                        |                                                |
| Olive oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01: 6 :                                                                     | 0.02.15                             | 1.7                | (%)                               |      | 0.0 | DN ( 22 4                                              | ED 0561                                        |
| Olive oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Olive oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     | ,                  |                                   |      |     |                                                        |                                                |
| Grange         0.01 - 0.1         10         79-109         98         9         DiFG S19         (FA-0093)           Orange         0.1         34         77-115         96         7         RM-22-4         FR-01-0307           Orange dried         0.1         2         90-92         91         -         RM-22-4         FR-01-0307           Orange guice         0.1         3         97-98         97         0.6         RM-22-4         FR-01-0307           Orange guice         0.1         3         97-98         97         0.6         RM-22-4         FR-01-0307           Orange onl         0.4         1         81         81         -         RM-22-4         FR-01-0307           Orange onl         0.4         1         81         81         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         96-102         100         3         -         FR-01-0307           Orange ped (wet)         0.1         1         99-102         9         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         99-101         9         -         RM-22-4         FR-01-0307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Orange         0.01-0.1         10         79-104         95         7         DFG S19         (FA-0093)           Orange dried         0.1         34         77-115         96         7         RM-22-4         FR-01-0307           Orange dried         0.1         2         90-92         91         -         RM-22-4         FR-01-0307           Orange molasses         0.1         3         97-98         97         0.6         RM-22-4         FR-01-0307           Orange molasses         0.1         3         90-94         92         2         RM-22-4         FR-01-0307           Orange goal         0.4         1         81         81         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         91         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         91         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         91         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         91         -         RM-22-4         FR-01-0307           Pear selo         0.02-0         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Orange         0.1         34         77-115         96         7         RAM-22-4         FR-01-0307           Orange dride         0.1         2         99-02         91         -         RM-22-4         FR-01-0307           Orange picie         0.1         3         97-98         97         0.6         RM-22-4         FR-01-0307           Orange oil         0.4         1         81         81         -         RM-22-4         FR-01-0307           Orange oil         0.4         1         81         81         -         RM-22-4         FR-01-0307           1.0         2         86-100         93         -         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         91         -         RM-22-4         FR-01-0307           Pear         1.0         4         98-102         100         3         -           Pear         0.1         2         82-98         90         -         RM-22-4         FR-01-0307           Pear         0.0         1.0         1.0         91-102         97         4         RM-22-4         FR-01-0307           Pear         0.1         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             |                                     |                    |                                   |      | -   |                                                        |                                                |
| Pear pulp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   |      | ,   |                                                        |                                                |
| DeetMines   1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                     |                    |                                   |      | /   |                                                        |                                                |
| Orange pilice         0.1         3         97-98         97         0.6         RM-22-4         FR-01-0307           Orange molasses         0.1         3         90-94         92         2         RM-22-4         FR-01-0307           Orange oil         0.4         1         81         81         -         RM-22-4         FR-01-0307           Orange poll         0.1         1         86         86         -         -           Orange ped (wet)         0.1         1         91         -         RM-22-4         FR-01-0307           Orange pulp         0.1         2         82-98         90         -         RM-22-4         FR-01-0307           Peach         0.0         1         95-102         100         3         RM-22-4         FR-0307           Pear doil         0.1         5         91-102         97         4         RM-22-4         FR-0369           Pear         0.1         1         49-1113         101         6.4         RM-22-4         FR-0369           Pear         0.1         1         99-10         -         RM-22-4         FR-0369           Pear pulp         0.1         1         99-110 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>RM-22-4</td><td>FR-01-0307</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                     |                    |                                   |      | -   | RM-22-4                                                | FR-01-0307                                     |
| Orange molasses         0.1         3         90-94         92         2         RM-22-4         FR-01-0307           Orange oil         0.4         1         81         81         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         86         86         -         RM-22-4         FR-01-0307           Orange ped (wet)         0.1         1         91         91         -         RM-22-4         FR-01-0307           Orange pulp         0.1         2         82-98         90         -         RM-22-4         FR-01-0307           Pear h         0.02-1.0         10         91-113         101         6.4         RM-22-4         FR-01-0307           Pear h         0.1         5         91-102         97         4         RM-22-4         FR-0369           Pear pulp         0.1         2         98-101         100         -         RM-22-4         FR-0369           Pear pulp         0.1         2         98-101         100         -         RM-22-4         FR-0369           Pear pure         0.1         1         99         -         -         RM-22-4         FR-0369           Pear p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                             |                                     |                    |                                   |      |     | D14 22 4                                               | ED 01 0207                                     |
| Orange oil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                     |                    |                                   |      | 2   |                                                        |                                                |
| Corange peel (wet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Orange oil                                                                  |                                     |                    |                                   |      | -   | RM-22-4                                                | FR-01-0307                                     |
| Orange peel (wet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                     |                    |                                   |      | -   |                                                        |                                                |
| Orange peel (wet)         0.1         1         91         91         2         RM-22-4         FR-01-0307           Orange pulp         0.1         2         82-98         90         -         RM-22-4         FR-01-0307           Peach         0.02-1.0         10         91-113         101         6.4         RM-22-4         FR-0369           Pear         0.1         7         74-109         95         12         RM-22-4         FR-0369           Pear pulp         0.1         14         94-117         99         6         RM-22-4         FR-0369           Pear pulp         0.1         2         98-101         100         -         RM-22-4         FR-0369           Pear skin         0.5         2         105-108         106         -         RM-22-4         FR-0369           Pear pure         0.1         1         99         -         -         RM-22-4         FR-0369           Pear skin         0.5         2         105-108         106         -         RM-22-4         FR-0369           Pear pure         0.1         1         99         -         -         RM-22-4         FR-0369           Pear skin <t< td=""><td></td><td>2.0</td><td>_</td><td>86</td><td></td><td>-</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             | 2.0                                 | _                  | 86                                |      | -   |                                                        |                                                |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 1( )                                                                      | 0.4                                 |                    | 0.1                               |      | 9   | D1 ( 00 )                                              | TD 04 0205                                     |
| Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Orange peel (wet)                                                           |                                     | _                  |                                   |      | -   | RM-22-4                                                | FR-01-0307                                     |
| Peach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                     |                    |                                   |      | 3   |                                                        |                                                |
| Pear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                     |                    |                                   |      | -   |                                                        |                                                |
| Pear pulp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Pear pulp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pear                                                                        |                                     |                    |                                   |      |     | RM-22-4                                                | FR-0369                                        |
| Pear pulp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     | ,                  |                                   |      |     |                                                        |                                                |
| Pear skin         0.5         2         105-108         106         -         RM-22-4         FR-0369           Pear puree         0.1         1         99         -         -         RM-22-4         FR-0369           Pecans         0.02-0.6         7         97-109         101         4.6         RM-22-4         FR-0385           Plum         0.05-2.0         4         96-101         99         2.5         RM-22-4         FR-0559           Plum, dried         10,10         2         101,104         103         -         RM-22-4         FR-0585           Plum, dried         0.1,2.0         2         94,99         97         -         RM-22-4         FR-0589           Raisin/raisin waste         0.1         2         82-107         94         -         RM-22-4         FR-0559           Raisin/raisin waste         0.1         2         82-107         94         -         RM-22-4         FR-0559           Raisin/raisin waste         0.1         2         82-107         94         -         RM-22-4         FR-0559           Raisin/raisin waste         0.1         0.2         3         81-103         94         -         RM-22-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                             |                                     |                    |                                   |      | 6   |                                                        |                                                |
| Pear puree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                             |                                     |                    |                                   |      | -   |                                                        |                                                |
| Pecans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pear skin                                                                   |                                     | 2                  |                                   | 106  | -   |                                                        |                                                |
| Plum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pear puree                                                                  |                                     | 1                  | L                                 | -    | -   | RM-22-4                                                | FR-0369                                        |
| Plum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pecans                                                                      |                                     | 6                  |                                   |      | 9.3 | RM-22-4                                                |                                                |
| Plum, dried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plum                                                                        | 0.02-0.6                            | 7                  | 97-109                            |      | 4.6 | RM-22-4                                                | FR-0385                                        |
| Plum, dried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Plum                                                                        | 0.05-2.0                            | 4                  | 96- 101                           | 99   | 2.5 | RM-22-4                                                | FR-0559                                        |
| Raisin/raisin waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Plum, dried                                                                 | 1.0, 10                             | 2                  | 101, 104                          | 103  | -   | RM-22-4                                                | FR-0385                                        |
| December    | Plum, dried                                                                 | 0.1, 2.0                            | 2                  | 94, 99                            | 97   | -   | RM-22-4                                                | FR-0559                                        |
| December    | Raisin/raisin waste                                                         |                                     | 2                  | 82-107                            | 94   | _   | RM-22-4                                                | FR-01-0308                                     |
| Raspberry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   | 94   | 12  |                                                        |                                                |
| Raspberry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   | 103  | -   |                                                        |                                                |
| Raspberry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   | -    | 11  |                                                        |                                                |
| Soya beans         0.025, 0.25         2         74, 74         74         -         GC-ECD         FR-0570           Soya beans         0.01-0.1         10         77-100         90         8.7         LC-MS/MS         FR-0571           Squash         0.01-11.4         9         85-116         97         11.5         RM-22-4         FR-0557           Strawberry         0.1-0.5         27         81-115         98         8.2         RM-22-4         FR-0557           Strawberry         0.1-0.5         27         81-115         98         8.2         RM-22-4         FR-0577           Tea         0.05-2.0         16         88-93         90         2         RM-22-4         FR-11-0345           Tea         0.05-2.0         16         88-93         90         2         RM-22-4         FR-40020;           Tomato         0.01-0.1         10         67-112         100         13         DFG S19         FA-0093           Tomato         0.01-0.1         9         96-111         103         5         DFG S19         FA-0093           Tomato dry pomace         0.1         3         100-101         10         0.7         RM-22-4         FR-41-0360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Raspberry                                                                   | 0.02-10                             | 10                 | 74-110                            | 88   | -   | RM-22-4                                                | FR-0560                                        |
| Soya beans         0.01-0.1         10         77-100         90         8.7         LC-MS/MS         FR-0571           Squash         0.01-11.4         9         85-116         97         11.5         RM-22-4         FR-0557           Strawberry         0.1-0.5         27         81-115         98         8.2         RM-22-4         FR-11-0345           Tea         0.05-2.0         16         88-93         90         2         RM-22-4         04-2974-2002; 04-4190-2004           Tomato         0.01-0.1         10         67-112         100         13         DFG S19         FA-0093           Tomato         0.01-0.1         9         96-111         103         5         DFG S19         FA-0093           Tomato dry pomace         0.1         3         75-118         96         23         RM-22-4         FR-41-0360           Tomato grice         0.1         3         100-101         101         0.7         RM-22-4         FR-41-0360           Tomato paste         0.1         3         100-102         101         1         RM-22-4         FR-41-0360           Tomato, green         0.01-0.2         16         86-130         99         11         RM-22-4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                     | _                  |                                   |      | _   |                                                        |                                                |
| Squash         0.01-11.4         9         85-116         97         11.5         RM-22-4         FR-0557           Strawberry         0.1-0.5         27         81-115         98         8.2         RM-22-4         FR-11-0345           Tea         0.05-2.0         16         88-93         90         2         RM-22-4         04-2974-2002; 04-4190-2004           Tomato         0.01-0.1         10         67-112         100         13         DFG S19         FA-0093           Tomato         0.01-0.1         9         96-111         103         5         DFG S19         FA-0093           Tomato dry pomace         0.1         3         75-118         96         23         RM-22-4         FR-41-0360           Tomato juice         0.1         3         100-101         101         0.7         RM-22-4         FR-41-0360           Tomato paste         0.1         3         100-105         102         3         RM-22-4         FR-41-0360           Tomato wet pomace         0.1         3         100-102         101         1         RM-22-4         FR-21-0344           Tomato, green         0.01-0.2         16         86-130         99         11         RM-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             | ,                                   |                    |                                   |      | 8.7 |                                                        |                                                |
| Strawberry         0.1-0.5         27         81-115         98         8.2         RM-22-4         FR-11-0345           Tea         0.05-2.0         16         88-93         90         2         RM-22-4         04-2974-2002; 04-4190-2004           Tomato         0.01-0.1         10         67-112         100         13         DFG S19         FA-0093           Tomato         0.01-0.1         9         96-111         103         5         DFG S19         FA-0093           Tomato dry pomace         0.1         3         75-118         96         23         RM-22-4         FR-41-0360           Tomato juice         0.1         3         100-101         101         0.7         RM-22-4         FR-41-0360           Tomato paste         0.1         3         100-105         102         3         RM-22-4         FR-41-0360           Tomato wet pomace         0.1         3         100-102         101         1         RM-22-4         FR-41-0360           Tomato, green         0.01-0.2         16         86-130         99         11         RM-22-4         FR-21-0344           Tomato, ripe         0.02-0.2         10         85-113         95         10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Tomato 0.05- 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                             |                                     | -                  |                                   |      |     |                                                        |                                                |
| Tomato 0.01-0.1 10 67-112 100 13 DFG S19 FA-0093 Tomato 0.01-0.1 9 96-111 103 5 DFG S19 FA-0093 Tomato dry pomace 0.1 3 75-118) 96 23 RM-22-4 FR-41-0360 Tomato juice 0.1 3 100-101 101 0.7 RM-22-4 FR-41-0360 Tomato paste 0.1 3 100-105 102 3 RM-22-4 FR-41-0360 Tomato wet pomace 0.1 3 100-102 101 1 RM-22-4 FR-41-0360 Tomato wet pomace 0.1 3 100-102 101 1 RM-22-4 FR-41-0360 Tomato, green 0.01-0.2 16 86-130 99 11 RM-22-4 FR-41-0360 Tomato, ripe 0.02-0.2 18 94-102 98 2 RM-22-4 FR-21-0344 Tomato, ripe 0.02-0.2 10 85-113 95 10 RM-22-4 FR-21-0344 Foodstuffs of animal origin Bovine Fat 0.1 1 100 - RM-22-4 FR-61-0174 Bovine fat 0.01-0.1 10 72-117 94 14 DFG S19 FA-0094 Bovine fat 0.01-0.1 10 80-133 103 14 DFG S19 FA-0094 Bovine Kidney 0.1 3 81-93 88 6.8 RM-22A-1 FR-61-0174 Bovine Liver 0.1 1 114 - RM-22A-1 FR-61-0174 Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094 Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094 Bovine muscle 0.01-0.1 10 65-106 86 18 DFG S19 FA-0094 Bovine Muscle 0.1 1 - 94 - RM-22A-1 FR-61-0174 Milk fat 0.4 1 104 - RM-22A-1 FR-61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Tomato         0.01-0.1         10         67-112         100         13         DFG S19         FA-0093           Tomato         0.01-0.1         9         96-111         103         5         DFG S19         FA-0093           Tomato dry pomace         0.1         3         75-118 )         96         23         RM-22-4         FR-41-0360           Tomato juice         0.1         3         100-101         101         0.7         RM-22-4         FR-41-0360           Tomato paste         0.1         3         100-105         102         3         RM-22-4         FR-41-0360           Tomato wet pomace         0.1         3         100-102         101         1         RM-22-4         FR-41-0360           Tomato, green         0.01-0.2         16         86-130         99         11         RM-22-4         FR-21-0344           Tomato, ripe         0.02-0.2         18         94-102         98         2         RM-22-4         FR-41-0360           Tomato, ripe         0.02-0.2         10         85-113         95         10         RM-22-4         FR-21-0344           Foodstuffs of animal origin         Bovine fat         0.01         1         100         - <td>Tou</td> <td>0.03 2.0</td> <td>10</td> <td>00 75</td> <td></td> <td>-</td> <td>1011 22 1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tou                                                                         | 0.03 2.0                            | 10                 | 00 75                             |      | -   | 1011 22 1                                              |                                                |
| Tomato         0.01-0.1         9         96-111         103         5         DFG S19         FA-0093           Tomato dry pomace         0.1         3         75-118         96         23         RM-22-4         FR-41-0360           Tomato juice         0.1         3         100-101         101         0.7         RM-22-4         FR-41-0360           Tomato paste         0.1         3         100-102         101         1         RM-22-4         FR-41-0360           Tomato wet pomace         0.1         3         100-102         101         1         RM-22-4         FR-41-0360           Tomato, green         0.01-0.2         16         86-130         99         11         RM-22-4         FR-21-0344           Tomato, ripe         0.02-0.2         18         94-102         98         2         RM-22-4         FR-41-0360           Tomato, ripe         0.02-0.2         10         85-113         95         10         RM-22-4         FR-21-0344           Foodstuffs of animal origin         Bovine Fat         0.1         1         100         -         RM-22A-1         FR-61-0174           Bovine fat         0.01-0.1         10         72-117         94         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tomato                                                                      | 0.01-0.1                            | 10                 | 67-112                            | 100  | 13  | DEG S19                                                |                                                |
| Tomato dry pomace         0.1         3         75-118 )         96         23         RM-22-4         FR-41-0360           Tomato juice         0.1         3         100-101         101         0.7         RM-22-4         FR-41-0360           Tomato paste         0.1         3         100-105         102         3         RM-22-4         FR-41-0360           Tomato wet pomace         0.1         3         100-102         101         1         RM-22-4         FR-41-0360           Tomato, green         0.01-0.2         16         86-130         99         11         RM-22-4         FR-21-0344           Tomato, ripe         0.02-0.2         18         94-102         98         2         RM-22-4         FR-41-0360           Tomato, ripe         0.02-0.2         10         85-113         95         10         RM-22-4         FR-41-0360           Tomato, ripe         0.02-0.2         10         85-113         95         10         RM-22-4         FR-21-0344           Foodstuffs of animal origin         Bovine Fat         0.1         1         100         -         -         RM-22A-1         FR-61-0174           Bovine fat         0.01-0.1         10         80-133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Tomato juice 0.1 3 100-101 101 0.7 RM-22-4 FR-41-0360 Tomato paste 0.1 3 100-105 102 3 RM-22-4 FR-41-0360 Tomato wet pomace 0.1 3 100-102 101 1 RM-22-4 FR-41-0360 Tomato, green 0.01-0.2 16 86-130 99 11 RM-22-4 FR-21-0344 Tomato, ripe 0.02-0.2 18 94-102 98 2 RM-22-4 FR-21-0344 Tomato, ripe 0.02-0.2 10 85-113 95 10 RM-22-4 FR-21-0344 Foodstuffs of animal origin Bovine Fat 0.1 1 100 - RM-22-4 FR-61-0174 Bovine fat 0.01-0.1 10 72-117 94 14 DFG S19 FA-0094 Bovine fat 0.01-0.1 10 80-133 103 14 DFG S19 FA-0094 Bovine Kidney 0.1 3 81-93 88 6.8 RM-22A-1 FR—61-0174 Bovine Liver 0.1 1 114 - RM-22A-1 FR—61-0174 Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094 Bovine muscle 0.01-0.1 10 65-106 86 18 DFG S19 FA-0094 Bovine Muscle 0.1 1 - 94 - RM-22A-1 FR—61-0174 Milk fat 0.4 1 104 - RM-22A-1 FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             |                                     | -                  |                                   |      |     |                                                        |                                                |
| Tomato paste 0.1 3 100-105 102 3 RM-22-4 FR-41-0360 Tomato wet pomace 0.1 3 100-102 101 1 RM-22-4 FR-41-0360 Tomato, green 0.01-0.2 16 86-130 99 11 RM-22-4 FR-21-0344 Tomato, ripe 0.02-0.2 18 94-102 98 2 RM-22-4 FR-21-0344 Tomato, ripe 0.02-0.2 10 85-113 95 10 RM-22-4 FR-21-0344 Foodstuffs of animal origin Bovine Fat 0.1 1 100 - RM-22-4 FR-61-0174 Bovine fat 0.01-0.1 10 72-117 94 14 DFG S19 FA-0094 Bovine fat 0.01-0.1 10 80-133 103 14 DFG S19 FA-0094 Bovine Kidney 0.1 3 81-93 88 6.8 RM-22A-1 FR—61-0174 Bovine Liver 0.1 114 - RM-22A-1 FR—61-0174 Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094 Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094 Bovine muscle 0.01-0.1 10 65-106 86 18 DFG S19 FA-0094 Bovine Muscle 0.1 1 - 94 - RM-22A-1 FR—61-0174 Milk fat 0.4 1 104 - RM-22A-1 FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Tomato wet pomace   0.1   3   100-102   101   1   RM-22-4   FR-41-0360   Tomato, green   0.01-0.2   16   86-130   99   11   RM-22-4   FR-21-0344   Tomato, ripe   0.02-0.2   18   94-102   98   2   RM-22-4   FR-41-0360   Tomato, ripe   0.02-0.2   10   85-113   95   10   RM-22-4   FR-21-0344   Frodstuffs of animal origin   RM-22-4   FR-21-0344   Frodstuffs of animal origin   RM-22-4   FR-21-0344   FR-21-0344   Frodstuffs of animal origin   RM-22-4   FR-21-0344   FR-21-034 |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Tomato, green 0.01-0.2 16 86-130 99 11 RM-22-4 FR-21-0344 Tomato, ripe 0.02-0.2 18 94-102 98 2 RM-22-4 FR-41-0360 Tomato, ripe 0.02- 0.2 10 85-113 95 10 RM-22-4 FR-21-0344 Foodstuffs of animal origin Bovine Fat 0.1 1 100 - RM-22A-1 FR—61-0174 Bovine fat 0.01-0.1 10 72-117 94 14 DFG S19 FA-0094 Bovine fat 0.01-0.1 10 80-133 103 14 DFG S19 FA-0094 Bovine Kidney 0.1 3 81-93 88 6.8 RM-22A-1 FR—61-0174 Bovine Liver 0.1 1 114 - RM-22A-1 FR—61-0174 Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094 Bovine muscle 0.01-0.1 10 65-106 86 18 DFG S19 FA-0094 Bovine Muscle 0.1 1 - 94 - RM-22A-1 FR—61-0174 Milk fat 0.4 1 104 - RM-22A-1 FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Tomato, ripe 0.02-0.2 18 94-102 98 2 RM-22-4 FR-41-0360 Tomato, ripe 0.02-0.2 10 85-113 95 10 RM-22-4 FR-21-0344 Foodstuffs of animal origin Bovine Fat 0.1 1 100 - RM-22A-1 FR—61-0174 Bovine fat 0.01-0.1 10 72-117 94 14 DFG S19 FA-0094 Bovine fat 0.01-0.1 10 80-133 103 14 DFG S19 FA-0094 Bovine Kidney 0.1 3 81-93 88 6.8 RM-22A-1 FR—61-0174 Bovine Liver 0.1 114 - RM-22A-1 FR—61-0174 Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094 Bovine muscle 0.01-0.1 10 65-106 86 18 DFG S19 FA-0094 Bovine Muscle 0.1 1 - 94 - RM-22A-1 FR—61-0174 Milk fat 0.4 1 104 - RM-22A-1 FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             |                                     |                    |                                   |      | _   |                                                        |                                                |
| Tomato, ripe         0.02- 0.2         10         85-113         95         10         RM-22-4         FR-21-0344           Foodstuffs of animal origin         Bovine Fat         0.1         1         100         -         -         RM-22A-1         FR-61-0174           Bovine fat         0.01-0.1         10         72-117         94         14         DFG S19         FA-0094           Bovine fat         0.01-0.1         10         80-133         103         14         DFG S19         FA-0094           Bovine Kidney         0.1         3         81-93         88         6.8         RM-22A-1         FR-61-0174           Bovine Liver         0.1         1         114         -         -         RM-22A-1         FR-61-0174           Bovine muscle         0.01-0.1         10         82-99         89         7         DFG S19         FA-0094           Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR-61-0174           Milk fat         0.4         1         104         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Foodstuffs of animal origin  Bovine Fat 0.1 1 100 - RM-22A-1 FR—61-0174  Bovine fat 0.01-0.1 10 72-117 94 14 DFG S19 FA-0094  Bovine fat 0.01-0.1 10 80-133 103 14 DFG S19 FA-0094  Bovine Kidney 0.1 3 81-93 88 6.8 RM-22A-1 FR—61-0174  Bovine Liver 0.1 1 114 - RM-22A-1 FR—61-0174  Bovine muscle 0.01-0.1 10 82-99 89 7 DFG S19 FA-0094  Bovine muscle 0.01-0.1 10 65-106 86 18 DFG S19 FA-0094  Bovine Muscle 0.1 1 - 94 - RM-22A-1 FR—61-0174  Milk fat 0.4 1 104 - RM-22A-1 FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                             |                                     | _                  |                                   |      |     |                                                        |                                                |
| Bovine Fat         0.1         1         100         -         -         RM-22A-1         FR—61-0174           Bovine fat         0.01-0.1         10         72-117         94         14         DFG S19         FA-0094           Bovine fat         0.01-0.1         10         80-133         103         14         DFG S19         FA-0094           Bovine Kidney         0.1         3         81-93         88         6.8         RM-22A-1         FR—61-0174           Bovine Liver         0.1         1         114         -         -         RM-22A-1         FR—61-0174           Bovine muscle         0.01-0.1         10         82-99         89         7         DFG S19         FA-0094           Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR—61-0174           Milk fat         0.4         1         104         -         -         RM-22A-1         FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                             |                                     | 10                 | 63-115                            | 90   | 10  | KIVI-22-4                                              | гк-21-0344                                     |
| Bovine fat         0.01-0.1         10         72-117         94         14         DFG S19         FA-0094           Bovine fat         0.01-0.1         10         80-133         103         14         DFG S19         FA-0094           Bovine Kidney         0.1         3         81-93         88         6.8         RM-22A-1         FR—61-0174           Bovine Liver         0.1         1         114         -         -         RM-22A-1         FR—61-0174           Bovine muscle         0.01-0.1         10         82-99         89         7         DFG S19         FA-0094           Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR—61-0174           Milk fat         0.4         1         104         -         -         RM-22A-1         FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                             |                                     | 1                  | 100                               | 1    | 1   | D1 ( 00 ) (                                            | ED (1.0151                                     |
| Bovine fat         0.01-0.1         10         80-133         103         14         DFG S19         FA-0094           Bovine Kidney         0.1         3         81-93         88         6.8         RM-22A-1         FR—61-0174           Bovine Liver         0.1         1         114         -         -         RM-22A-1         FR—61-0174           Bovine muscle         0.01-0.1         10         82-99         89         7         DFG S19         FA-0094           Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR—61-0174           Milk fat         0.4         1         104         -         -         RM-22A-1         FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                             |                                     | _                  |                                   | -    | -   |                                                        |                                                |
| Bovine Kidney         0.1         3         81-93         88         6.8         RM-22A-1         FR—61-0174           Bovine Liver         0.1         1         114         -         -         RM-22A-1         FR—61-0174           Bovine muscle         0.01-0.1         10         82-99         89         7         DFG S19         FA-0094           Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR—61-0174           Milk fat         0.4         1         104         -         -         RM-22A-1         FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                             |                                     |                    |                                   |      |     |                                                        |                                                |
| Bovine Liver         0.1         1         114         -         -         RM-22A-1         FR—61-0174           Bovine muscle         0.01- 0.1         10         82-99         89         7         DFG S19         FA-0094           Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR—61-0174           Milk fat         0.4         1         104         -         -         RM-22A-1         FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bovine fat                                                                  |                                     |                    |                                   |      |     |                                                        |                                                |
| Bovine muscle         0.01- 0.1         10         82-99         89         7         DFG S19         FA-0094           Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR—61-0174           Milk fat         0.4         1         104         -         -         RM-22A-1         FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D                                                                           | 10.1                                | 3                  |                                   | 88   | 6.8 |                                                        |                                                |
| Bovine muscle         0.01-0.1         10         65-106         86         18         DFG S19         FA-0094           Bovine Muscle         0.1         1         -         94         -         RM-22A-1         FR—61-0174           Milk fat         0.4         1         104         -         -         RM-22A-1         FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                             |                                     |                    |                                   | 1    | 1   | DM 22 A 1                                              | FR_61_0174                                     |
| Bovine Muscle 0.1 1 - 94 - RM-22A-1 FR—61-0174 Milk fat 0.4 1 104 - RM-22A-1 FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bovine Liver                                                                | 0.1                                 | 1                  |                                   | -    | -   |                                                        |                                                |
| Milk fat 0.4 1 104 - RM-22A-1 FR—61-0174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bovine Liver<br>Bovine muscle                                               | 0.1<br>0.01- 0.1                    | 10                 | 82-99                             |      | 1.  | DFG S19                                                | FA-0094                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bovine Liver<br>Bovine muscle<br>Bovine muscle                              | 0.1<br>0.01- 0.1<br>0.01-0.1        | 10                 | 82-99                             | 86   | 1.  | DFG S19<br>DFG S19                                     | FA-0094<br>FA-0094                             |
| Poultry fat 0.1 1 94 - RM-22A-1 FR-61-0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bovine Liver Bovine muscle Bovine muscle Bovine Muscle                      | 0.1<br>0.01- 0.1<br>0.01-0.1<br>0.1 | 10                 | 82-99<br>65-106<br>-              | 86   | 1.  | DFG S19<br>DFG S19<br>RM-22A-1                         | FA-0094<br>FA-0094<br>FR—61-0174               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bovine Liver Bovine muscle Bovine muscle Bovine Muscle Milk fat             | 0.1<br>0.01- 0.1<br>0.01-0.1<br>0.1 | 10                 | 82-99<br>65-106<br>-<br>104       | 86   | 1.  | DFG S19<br>DFG S19<br>RM-22A-1<br>RM-22A-1             | FA-0094<br>FA-0094<br>FR—61-0174<br>FR—61-0174 |
| Poultry gizzard 0.1 1 94 RM-22A-1 FR-61-0175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bovine Liver Bovine muscle Bovine muscle Bovine Muscle Milk fat Poultry fat | 0.1<br>0.01- 0.1<br>0.01-0.1<br>0.1 | 10<br>10<br>1<br>1 | 82-99<br>65-106<br>-<br>104<br>94 | 86   | 1.  | DFG S19<br>DFG S19<br>RM-22A-1<br>RM-22A-1<br>RM-22A-1 | FA-0094<br>FA-0094<br>FR-61-0174<br>FR-61-0175 |

| Commodity      | Fortification | n  | Range    | Mean     | %   | Method   | Reference  |
|----------------|---------------|----|----------|----------|-----|----------|------------|
|                | mg/kg         |    | Recovery | recovery | RSD |          |            |
|                |               |    | (%)      | (%)      |     |          |            |
| Poultry liver  | 0.1           | 1  | 94       | -        | -   | RM-22A-1 | FR-61-0175 |
| Poultry muscle | 0.1           | 1  | 93.4     | -        | -   | RM-22A-1 | FR-61-0175 |
| Whole Egg      | 0.1           | 6  | 94-102   | 96       | 3.6 | RM-22A-1 | FR-61-0175 |
| Whole egg      | 0.01-0.1      | 10 | 93-102   | 99       | 3   | DFG S19  | FA-0094    |
| Whole egg      | 0.01-0.1      | 10 | 71-105   | 99       | 10  | DFG S19  | FA-0094    |
| Whole milk     | 0.1           | 12 | 83-119   | 96       | 9.4 | RM-22A-1 | FR-61-0174 |
| Whole milk     | 0.01-0.1      | 10 | 85-93    | 89       | 3   | DFG S19  | FA-0094    |
| Whole milk     | 0.01-0.1      | 10 | 77-105   | 96       | 8   | DFG S19  | FA-0094    |

<sup>&</sup>lt;sup>a</sup> Data presented are only for registered uses and from studies submitted in this document.

#### Storage Stability under Frozen Conditions

The stability of fenpropathrin residues in commodities under frozen conditions has been investigated in apples, orange, cotton, pears, grapes, tomato and its processed products as well as in products of animal origin.

In addition to these individual studies, storage stability determinations, together with procedural recovery analyses were also carried out concurrently with the field trial samples for strawberry, olives (fruit and oil), cucumber, squash, melon, peppers, milk, eggs and kidney. All these storage stability studies are summarized below. For samples analysed within 30 days of harvest (soya beans, coffee beans, eggs and poultry tissues), storage stability requirements have been waived. The results are summarised in Table 34.

In general, results of the storage stability tests confirmed that residues of fenpropathrin in stored frozen samples were stable within the period of storage between sampling and analyses.

#### Apple, orange, cotton, pears and grapes

The stability of field incurred fenpropathrin was investigated in five matrices (Fujie, 1986; Reference FR-61-0190). Samples taken from residues trials conducted with fenpropathrin 2.4 EC were stored at -20 °C and four replicate samples taken at 3, 6, 9 and 12 months during storage. Fortified control samples (0.1 mg/kg) were analysed concurrently with each set of samples to validate analytical method recovery. Homogenized samples were extracted with hexane/acetone and cleaned up through silica gel and C18 solid phase extraction (SPE) (method RM-22-4). Additional purification using gel permeation chromatography (GPC) was performed for oily matrices (method RM-22-4). Analysis was by GC with electron capture detection (ECD).

### Orange oil and dried peel

The stability of field incurred fenpropathrin was investigated in orange oil and dried peel samples from a processing study (Fujie, 1990; Reference FR-01-0307). Duplicate samples taken from processing study were stored at -20 °C and samples taken after 11 months storage. Analysis was by methods RM-22-4 and RM-22-2.

#### Strawberry

The storage stability data for strawberries were obtained by reanalysis of retained samples from a previous field trial (Mitten, 1989; Reference FR-11-0345). Samples harvested on 07.04.89 were received frozen in the laboratory on 18.04.89, macerated on 25.04.89 and were extracted for the initial analysis on 28.04.89. After sub-sampling, the retained samples were stored at -20 °C with periodic subsampling for reanalysis using method RM-22-4. The results demonstrate that fenpropathrin is stable in strawberries up to six months in frozen storage.

#### Raspberry

The storage stability data for strawberries were obtained by reanalysis of retained samples from a previous field trial (Samoil, 2007; Reference FR-0560). Samples were fortified with 2 mg/kg fenpropathrin then stored frozen for 216 days. Analysis using modified method RM-22-4.

### Grape products

The storage stability of fenpropathrin in samples of grape juice, dry and wet pomace, hydrated raisins and raisin waste was determined from incurred residues from the field trial sites (Fujie, 1990; Reference FR-01-0335). Samples were held in frozen storage under similar conditions to the field generated samples.

### Olive fruit and olive oil

The storage stability of fenpropathrin in samples of olive fruit without pit and in olive oil was determined by fortifying samples with 2 mg/kg fenpropathrin after receipt from the field trial sites (Samoil, 2007; Reference FR-0561). Samples were held in frozen storage under similar conditions to the field generated samples. After 208 days (olive fruit without pits) and 202 days (olive oil), the storage stability samples were analysed by method RM-22-4.

#### Cucumber

The stability of fenpropathrin residues in cucumber samples stored frozen under the same conditions as the field trial samples, was determined as part of the field phase of the study (Samoil, 1999; Reference FR-0556). Untreated samples from two field sites were fortified at 11.4 mg/kg fenpropathrin and returned to storage at -20 °C, together with the field trials samples. After 245 and 286 days in storage, the storage stability and field samples were analysed.

#### Melons

Storage stability of fenpropathrin on melons was determined as part of the field trial study (Green, 1995; Reference FR-0375). Untreated samples fortified at 0.1 mg/kg fenpropathrin were stored at -20°C under the same conditions as the field trial samples. Duplicate analyses were conducted on the day of fortification and again after 187 days of storage.

# Squash

Storage stability of fenpropathrin in squash samples was verified by taking untreated control samples, fortifying at 1 and 11 mg/kg with fenpropathrin, and storing in freezers under the same conditions as the field samples. Storage stability samples were analysed after 230 days in storage (Samoil, 1999; Reference FR-0557).

#### Tomatoes and tomato canning waste

The stability of fenpropathrin was investigated in tomatoes (fortified samples) and tomato canning waste samples (field incurred residues) from a processing study (Lai, 1990; Reference FR-21-0344). Duplicate samples taken from a processing study were stored at -20 °C and samples taken after various time periods up to 6 months storage. Analysis was by method RM-22-4.

#### Tomato paste, tomato juice, wet and dry tomato pomace

The stability of fenpropathrin was investigated in tomato paste, tomato juice and wet and dry tomato pomace from a processing study (Green, 1994; Reference FR-41-0360). Duplicate control samples taken from a processing study were fortified at 0.1 mg/kg, stored at -20 °C and samples taken after 5 months storage. Analysis was by methods RM-22-4.

### Non-bell peppers

Samples from field trials were fortified with fenpropathrin at 10 mg/kg and stored frozen at -25 °C for 323 days (Samoil, 2001; Reference FR-0558). 323

#### Milk and bovine kidney

The stability of fenpropathrin in milk when stored at -20 °C was determined by fortifying control milk samples bought from a store, with 0.1 mg/kg fenpropathrin and stored at -20 °C along with the milk samples from the residue feeding study (Fujie, 1986; Reference FR-61-0174). The fortified milk samples were analysed at a time interval greater than the storage interval for milk from the feeding study.

To determine the stability of fenpropathrin in tissues, kidney samples from the feeding study were reanalysed following an appropriate interval which reflected the time interval between sacrifice and the initial analyses. The analytical method RM-22A-1 was used to analyse all samples. Reanalysis of kidney samples following an additional 71 days in storage at -20 °C resulted in a mean recovery of 104% of initial analyses results.

### Eggs

The stability of fenpropathrin in eggs following storage at -20 °C was determined by fortifying control egg samples bought from the store, with 0.1 mg/kg fenpropathrin and stored at -20 °C along with the egg samples from the residue feeding study (Fujie, 1986; Reference FR-61-0175). The fortified egg

samples were analysed at a time interval greater than the storage interval for eggs from the feeding study.

Table 34 Summary of results of storage stability studies

| Apple   2.53*   3   96±8.2   82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s remaining |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Cotton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Cotton         0.03°         3         96±8.2         133           6         1116         116         116           9         n/a         116           12         100         100           Cucumber         11.4         -9         87±12.6         76-96           Grapes         0.37°         3         96±8.2         n/a           6         89         87         87           Grapes         12         87         87           Grape juice         14         94-100         100           Dry pomace         14         98-99         93-98           Hydrated raisins         1-11         92-113         77-106           Raisin waste         1-11         80-112         77-96           Wet pomace         5-12         95-104         89-90           Pear         1.2a         3         96±8.2         99           Pear         1.2a         3         96±8.2         99           Pear         1.2a         3         96±8.2         99           Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| Cotton         0.03²         3         96±8.2         133           6         1116         116         116           9         17/a         100           Cucumber         11.4         -9         87±12.6         76-96           Grapes         0.37²         3         96±8.2         n/a           89         -         89         87           12         87         87         12         87           Grape juice         14         94-100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Cucumber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Cucumber         11.4         ~9         87±12.6         76-96           Grapes         0.37a         3         96±8.2         n/a           6         89         87           12         87         87           Grape juice         14         94-100         100           Dry pomace         14         98-99         93-98           Hydrated raisins         1-11         80-112         77-94           Raisin waste         1-11         80-112         77-94           Wet pomace         5-12         95-104         89-90           Pear         1.2a         3         96±8.2         99           6         77         9         78         99           Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-104         88,4-104           Non-bell peppers         10         0         88-104         88,4-104           Olive fruit         2         7         78-89         78,88,8           Olive oil         2         7         83-90         85,96,9           Orange         0.25a         3         96±8.2         93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Grapes     0.37°     3     96±8.2     n/a       89     89       12     87       Grape juice     14     94-100     100       Dry pomace     14     98-99     93-98       Hydrated raisins     1-11     80-112     77-94       Raisin waste     1-11     80-112     77-94       Wet pomace     5-12     95-104     89-90       Pear     1.2°     3     96±8.2     99       Pear     1.2°     3     96±8.2     99       Raisin waste     12     89       Pear     1.2°     3     96±8.2     99       Pear     1.2°     3     96±8.2     99       Raisin waste     12     89       Melons     0.1     6     89-96     74       Non-bell peppers     10     0     88-104     88.4-104       Non-bell peppers     10     0     88-104     88.4-104       Sepus fruit     2     7     78-89     78.88,8     89.96       Orange     0.25°     3     96±8.2     93       Orange     0.25°     3     96±8.2     93       Orange oil     0.965     11     81-100     130       Oran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| Grape juice 112 87 Grape juice 144 94-100 100 Dry pomace 144 98-99 93-98 Hydrated raisins 1-11 92-113 77-106 Raisin waste 1-11 80-112 77-94 Wet pomace 5-12 95-104 89-90 Pear 1.2a 3 96±8.2 99 Pear 1.2a 3 96±8.2 99  Melons 0.1 6 89-96 74 Non-bell peppers 10 0 88-104 88-4104 Non-bell peppers 10 0 88-104 88-4104 Solive oil 2 7 78-89 78, 88, 8 Olive oil 2 7 78-89 78, 88, 8 Orange 0.25a 3 96±8.2 93  Grange 0.25a 3 96±8.2 93  Orange oil 0.965 11 81-100 130 Orange dry peel 0.12 11 96-100 91.5 Raspberry 2 7 74-110 86-88 Strawberry 0.83-0.84a 0 98.3±8.2  Strawberry 1 0.83-0.84a 0 98.3±8.2  Franct 11 7 92-9-94.6 74.2 Squash 1 7 92-9-94.6 74.2 Tomato 15 100-102 92 Tomato juice 0.1 5 100-102 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Grape juice         14         94-100         100           Dry pomace         14         98-99         93-98           Hydrated raisins         1-11         92-113         77-106           Raisin waste         1-11         80-112         77-94           Wet pomace         5-12         95-104         89-90           Pear         1.2a         3         96±8.2         99           Pear         1.2a         3         96±8.2         99           Melons         0.1         6         77         78           Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-104         88.4-104           Solive fruit         2         7         78-89         78, 88, 8         88.4-104           Olive fruit         2         7         78-89         78, 88, 8         99.9         85, 96, 9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9         99.9 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Dry pomace         14         98-99         93-98           Hydrated raisins         1-11         92-113         77-106           Raisin waste         1-11         80-112         77-94           Wet pomace         5-12         95-104         89-90           Pear         1.2a         3         96±8.2         99           6         77         89         78         89           Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-104         88.4-104           Non-bell peppers         10         0         88-104         88.4-104           Non-bell peppers         10         0         88-104         88.4-104           Olive fruit         2         7         78-89         78.88,8         78.88,8           Olive oil         2         7         83-90         85,96,9         9           Orange         0.25a         3         96±8.2         93           0         9         n/a         85.96,9         9           0         1         2         7         83-90         85,96,9         9           0         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Hydrated raisins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| Raisin waste         1-11         80-112         77-94           Wet pomace         5-12         95-104         89-90           Pear         1.2a         3         96±8.2         99           6         77           9         78         89           Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-104         88.4-104           11         91-95         91-95         91-95           Olive fruit         2         7         78-89         78, 88, 8           Olive oil         2         7         83-90         85, 96, 9           Orange         0.25a         3         96±8.2         93           Orange         0.25a         3         96±8.2         93           12         88         8         8         8           Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         96-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Wet pomace         5-12         95-104         89-90           Pear         1.2a         3         96±8.2         99           6         77         78         78         89           Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-104         88.4-104           Sel-seppers         2         7         78-89         78,88,8         88.8           Olive fuit         2         7         83-90         85,95,9         99         n/a           Nonage         0         0.25a         3 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Pear         1.2a         3         96±8.2         99           6         77           9         78           Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-104         88.4-104           Non-bell peppers         10         0         88-104         88.4-104           Non-bell peppers         11         91-95         78-89         78,88,8         78,88,8         89-96         74         78-89         78,88,8         89-96         74         78-89         78,88,8         78,88,8         89-96         74         78-89         78,88,8         89-96         74         78-89         78,88,8         89-96         74         78-89         78,88,8         89-96         79         85-96,9         99         85,96,9         99         85,96,9         99         85,96,9         99         86-82         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93         93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| Corange oil   Corange dry peel   Corange   Coran |             |
| 9   78   89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Melons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| Melons         0.1         6         89-96         74           Non-bell peppers         10         0         88-104         88.4-104           0 live fruit         2         7         78-89         78, 88, 8           Olive oil         2         7         83-90         85, 96, 9           Orange         0.25a         3         96±8.2         93           Orange         0.25a         3         96±8.2         93           0         9         n/a         120           9         n/a         88           Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         96-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2         91-101           3         3         93-98           6         87-96         74.2           Squash         1         7         92.9-94.6         74.2           11         7         82.4-92.7         91.8           Tomato         6         83-130         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Non-bell peppers         10         0         88-104         88.4-104           Olive fruit         2         7         78-89         78, 88, 8           Olive oil         2         7         83-90         85, 96, 9           Orange         0.25a         3         96±8.2         93           6         120         9         n/a           9         n/a         88           Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         9ö-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2         91-101           3         93-98           6         87-96           Squash         1         7         92.9-94.6         74.2           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| 11   91-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| Olive fruit         2         7         78-89         78, 88, 8           Olive oil         2         7         83-90         85, 9ö, 9           Orange         0.25a         3         96±8.2         93           120         9         n/a           2         9         n/a           3         88           Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         9ö-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry¹         0.83-0.84a         0         98.3±8.2         91-101           3         93-98         93-98           6         87-96         87-96           Squash         1         7         92.9-94.6         74.2           11         7         82.4-92.7         91.8           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4           |
| Olive oil         2         7         83-90         85, 9ö, 9           Orange         0.25a         3         96±8.2         93           120         9         n/a           12         88           Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         9ö-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2           1         91-101         91-101           3         93-98           6         87-96           Squash         1         7         92.9-94.6         74.2           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20          |
| Orange         0.25a         3         96±8.2         93           6         120           9         n/a           88         12         88           Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         9ö-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2           1         91-101         91-101           3         93-98           6         87-96           Squash         1         7         92.9-94.6         74.2           11         7         82.4-92.7         91.8           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39          |
| Communication   Communicatio | 13          |
| 9         n/a           12         88           Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         9ö-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>T</sup> 0.83-0.84a         0         98.3±8.2           1         91-101         91-101           3         93-98           6         87-96           Squash         1         7         92.9-94.6         74.2           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         9ö-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2           1         91-101           3         93-98           6         87-96           Squash         1         7         92.9-94.6         74.2           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Orange oil         0.965         11         81-100         130           Orange dry peel         0.12         11         9ö-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2           1         91-101         91-101           3         93-98           6         87-96           Squash         1         7         92.9-94.6         74.2           1         7         82.4-92.7         91.8           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| Orange dry peel         0.12         11         96-100         91.5           Raspberry         2         7         74-110         86-88           Strawberry <sup>1</sup> 0.83-0.84a         0         98.3±8.2           1         91-101           3         93-98           Squash         1         7         92.9-94.6         74.2           11         7         82.4-92.7         91.8           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Raspberry       2       7       74-110       86-88         Strawberry¹       0.83-0.84a       0       98.3±8.2         1       91-101         3       93-98         Squash       1       7       92.9-94.6       74.2         11       7       82.4-92.7       91.8         Tomato       6       83-130       100         Tomato paste       0.1       5       100-102       92         Tomato juice       0.1       5       75-118       92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Strawberry¹         0.83-0.84³         0         98.3±8.2           1         91-101           3         93-98           6         87-96           Squash         1         7         92.9-94.6         74.2           11         7         82.4-92.7         91.8           Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 1     91-101       3     93-98       6     87-96       Squash     1     7     92.9-94.6     74.2       11     7     82.4-92.7     91.8       Tomato     6     83-130     100       Tomato paste     0.1     5     100-102     92       Tomato juice     0.1     5     75-118     92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| 3     93-98       6     87-96       Squash     1     7     92.9-94.6     74.2       11     7     82.4-92.7     91.8       Tomato     6     83-130     100       Tomato paste     0.1     5     100-102     92       Tomato juice     0.1     5     75-118     92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| Squash     1     7     92.9-94.6     74.2       11     7     82.4-92.7     91.8       Tomato     6     83-130     100       Tomato paste     0.1     5     100-102     92       Tomato juice     0.1     5     75-118     92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Squash     1     7     92.9-94.6     74.2       11     7     82.4-92.7     91.8       Tomato     6     83-130     100       Tomato paste     0.1     5     100-102     92       Tomato juice     0.1     5     75-118     92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| 11     7     82.4-92.7     91.8       Tomato     6     83-130     100       Tomato paste     0.1     5     100-102     92       Tomato juice     0.1     5     75-118     92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Tomato         6         83-130         100           Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| Tomato paste         0.1         5         100-102         92           Tomato juice         0.1         5         75-118         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |
| Tomato juice 0.1 5 75-118 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| J .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Tomato wet pomace 0.1 5 100-105 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
| Tomato dry pomace 0.1 5 100-105 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| Milk 0.1 2.5 96±9.4 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| Kidney 0.155 <sup>a</sup> 2.2 88±6.8 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| Eggs 0.1 5 96±3.6 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |

 $<sup>^{\</sup>rm a}$ : Level of initial residue in retained test portion; n/a = not analysed

# **USE PATTERN**

Fenpropathrin is registered for use on a large number of crops in many countries, but only the registered use patterns for the crops for which supervised trials were provided are summarised in Table 35.

Table 35 Registered uses of fenpropathrin

| Crop                                                                                                       | Country | Formulation          |      | Application                                       |                  |                                                  |                                                    | PHI    |
|------------------------------------------------------------------------------------------------------------|---------|----------------------|------|---------------------------------------------------|------------------|--------------------------------------------------|----------------------------------------------------|--------|
| -                                                                                                          |         | g ai/L or g<br>ai/kg | type | Method                                            | Rate<br>kg ai/ha | Water<br>L/ha                                    | No or/<br>Season<br>max kg<br>ai/ ha               | (days) |
| Cane fruit                                                                                                 | USA     | 300 g/L              | EC   | Foliar (by ground or aerial application)          | 0.22- 0.34       | 28-94<br>(aerial);<br>187<br>minimum<br>(ground) | 0.67 kg<br>ai/ha/<br>season<br>14-day<br>intervals | 3      |
| Citrus                                                                                                     | USA     | 300 g/L              | EC   | Foliar (by ground or aerial application)          | 0.22- 0.45       | 187<br>(aerial);<br>468- 4700<br>(ground)        | 0.9 kg<br>ai/ha/<br>season;<br>10-day<br>intervals | 1      |
| Coffee                                                                                                     | Brazil  | 300 g/L              | EC   | Foliar (by ground equipment)                      | 0.06-0.12        |                                                  | 2                                                  | 14     |
| Cotton*                                                                                                    | USA     | 300 g/L              | EC   | Foliar (by ground or aerial application)          | 0.22- 0.45       | 28-94<br>(aerial);<br>94- 468<br>(ground)        | 0.9 kg<br>ai/ha/<br>season                         | 21     |
| Grapes                                                                                                     | USA     | 300 g/L              | EC   | Foliar (by ground or aerial application)          | 0.22- 0.45       | 230-1870<br>(air or<br>ground)                   | 0.9 kg<br>ai/ha/<br>season; 7-<br>day<br>intervals | 21     |
| Fruiting vegetables, Cucurbits, including cucumber, muskmelon, honeydew melon, pumpkin, squash, watermelon | USA     | 300 g/L              | EC   | Foliar (by<br>ground or<br>aerial<br>application) | 0.22- 0.34       | 28-94<br>(aerial);<br>187- 935<br>(ground)       | 0.9 kg<br>ai/ha/<br>season; 7-<br>day<br>intervals | 7      |
| Fruiting vegetables other than cucurbits, including tomato, eggplant, peppers                              | USA     | 300 g/L              | EC   | Foliar (by<br>ground or<br>aerial<br>application) | 0.22             | 47- 94<br>(aerial);<br>234- 1122<br>(ground)     | 0.9 kg<br>ai/ha/<br>season; 7-<br>days<br>interval | 3      |
| Olive                                                                                                      | USA     | 300 g/L              | EC   | Foliar (by ground equipment)                      | 0.22- 0.34       | 935                                              | 0.9 kg<br>ai/ha/<br>season;<br>14-day<br>intervals | 7      |
| Pome fruit                                                                                                 | USA     | 300 g/L              | EC   | Foliar                                            | 0.22- 0.45       | 700- 3740                                        | 0.9 kg<br>ai/ha/<br>season;<br>10-days<br>interval | 14     |

| Crop        | Country | Formulation          |      | Application                        |                                                     |               |                                                    | PHI    |
|-------------|---------|----------------------|------|------------------------------------|-----------------------------------------------------|---------------|----------------------------------------------------|--------|
|             | ·       | g ai/L or g<br>ai/kg | type | Method                             | Rate<br>kg ai/ha                                    | Water<br>L/ha | No or/<br>Season<br>max kg<br>ai/ ha               | (days) |
| Soya beans  | Brazil  | 300 g/L              | EC   | Foliar (by ground equipment)       | 0.045                                               |               | 1                                                  | 30     |
| Stone fruit | USA     | 300 g/L              | EC   | Foliar (by airblast equipment)     | 0.22- 0.45                                          | 935- 3740     | 0.9 kg<br>ai/ha/<br>season;<br>10-days<br>interval | 3      |
| Strawberry  | USA     | 300 g/L              | EC   | Foliar (by ground equipment)       | 0.22- 0.45                                          | 935- 2800     | 0.9 kg<br>ai/ha/<br>season<br>≥30-day<br>intervals | 2      |
| Tea         | India   | 300 g/L              | EC   | Foliar (by<br>knapsack<br>sprayer) | 0.05- 0.06<br>kg ai/ha<br>(0.01- 0.015<br>kg ai/hL) | 400- 500      |                                                    | 7      |
| Tree nuts   | USA     | 300 g/L              | EC   | Foliar (by airblast equipment)     | 0.22- 0.45                                          | 468- 3740     | 0.9 kg<br>ai/ha/<br>season;<br>10-days<br>interval | 3      |

Note: GAPs in the USA specify total seasonal rates in addition to individual application rates, therefore the seasonal maximum dose rate is considered primarily in evaluation of supervised trials.

## RESIDUES RESULTING FROM SUPERVISED TRIALS

Supervised trials have been conducted to support MRLs for the following crops citrus fruits, peach, plum, strawberries, olives, cucumber, melon, squash, tomato, peppers, soya beans, tree nuts, coffee beans and tea. The results of these supervised trials are summarized in the following tables:

| Crop Group                                | Commodity                 | Table No. |
|-------------------------------------------|---------------------------|-----------|
| Citrus fruit                              | Orange, lemon, grapefruit | 36        |
| Pome fruit                                | Apple, pear               | 37        |
| Stone fruit                               | Peach, plum, cherry       | 38        |
| Berries and other small fruits            | Strawberry                | 39        |
|                                           | Raspberry                 | 40        |
|                                           | Grape                     | 41        |
| Tropical/Subtropical fruits – edible peel | Olives                    | 42        |
| Fruiting vegetables, cucurbits            | Cucumber                  | 43        |
|                                           | Melon                     | 44        |
|                                           | Squash                    | 45        |
| Fruiting vegetables other than cucurbits  | Tomato                    | 46        |
|                                           | Pepper                    | 47        |
| Pulses                                    | Soya beans                | 48        |
| Oilseeds                                  | Cottonseed                | 49        |

<sup>\*</sup> Do not feed gin trash or treated forage to livestock or allow animals to graze treated fields

|                                | Cottonseed hulls  | 53 |
|--------------------------------|-------------------|----|
| Tree nuts                      | Almonds, pecans   | 50 |
|                                | Almond hulls      | 54 |
| Seeds for beverages and sweets | Coffee beans      | 51 |
| Teas                           | Tea, green, black | 52 |

In addition to the description and details of the field trials and analytical methods, each report includes a summary of the procedural recoveries, and in many cases, concurrent recoveries in stored frozen samples.

In the trials, where multiple samples were taken from a single plot, the average value is reported. Where results from separate plots with distinguishing characteristics such as different formulations, different crop varieties or different treatment schedules were reported, results are listed for each plot.

Results have not been corrected for concurrent method recoveries. Residues and application rates have generally been rounded to two significant figures or, for residues near the LOQ, to one significant figure. Residue values from the trials conducted according to the maximum GAP have been used for the estimation of maximum residue levels. Those results included in the tables are underlined.

#### Citrus fruits

A total of 31 supervised trials were conducted in the United States on citrus fruits (18 on oranges, 6 on lemons and 7 on grapefruit). The trials on oranges were carried out from 1984 to 1987 and consisted of one to four applications of an EC formulation containing 300 g/L fenpropathrin, applied at rates ranging from 0.11 to 0.45 kg ai/ha for a total seasonal rate ranging from 0.11 to 1.8 kg ai/ha (Fujie, 1990; Reference FR-01-0307). Duplicate samples of mature oranges, consisting of a minimum of 10 fruits, were collected at various PHIs (0 day to 35 days). In some trials, fenpropathrin was applied pre-planting and sampled at normal harvest, 180 days after application.

The seven supervised trials on grapefruit in 1991 were all according to the US GAP for citrus fruits. The composite samples consisted of 16 fruits.

Upon harvest, all samples were frozen and maintained frozen at -20 °C until analysis. Samples from the field trials were analysed within this demonstrated period of stability (9 months for oranges, one month for lemons, and two months for grapefruit). All samples were analysed using analytical method RM-22-4 with a limit of detection of 0.01 mg/kg.

Table 36 Residues of fenpropathrin in citrus fruits resulting from supervised trials in the USA

| CITRUS                     | Application          |               |              |                       | DAT  | Commodity   | Residue              | Reference                   |
|----------------------------|----------------------|---------------|--------------|-----------------------|------|-------------|----------------------|-----------------------------|
| Trial<br>year (Variety)    | Formulation (g ai/L) | kg ai/ha      | Water (L/ha) | No./Total<br>kg ai/ha | days |             | mg/kg                |                             |
| GAP, USA for citrus fruit  | 300 EC               | 0.22-<br>0.45 | 468-<br>4700 | 2/0.9                 | 1    |             |                      |                             |
| ORANGE                     |                      |               |              |                       |      |             |                      |                             |
| M335 T-6083<br>Fresno, CA, | 300 g/L              | 0.113         | 935          | 1                     | 3    | Whole fruit | 0.04, 0.04<br>(0.04) | Fujie, 1990<br>(FR-01-0307) |
| 1984<br>(Navel)            |                      | 0.22          | 935          | 1                     | 3    | Whole fruit | 0.07, 0.13<br>(0.10) |                             |
|                            |                      | 0.45          | 935          | 1                     | 0    | Whole fruit | 0.24, 0.40<br>(0.32) |                             |
|                            |                      |               |              |                       | 1    |             | 0.25, 0.17<br>(0.21) |                             |
|                            |                      |               |              |                       | 3    |             | 0.23, 0.17<br>(0.20) |                             |
|                            |                      |               |              |                       | 7    |             | 0.10, 0.20<br>(0.15) |                             |
|                            |                      |               |              |                       | 14   |             | 0.04, 0.09<br>(0.07) |                             |
|                            |                      |               |              |                       | 21   |             | 0.06, 0.09<br>(0.08) |                             |
|                            |                      |               |              |                       | 28   |             | 0.05, 0.12<br>(0.09) |                             |
|                            |                      |               |              |                       | 35   |             | 0.21, 0.05<br>(0.13) |                             |
|                            |                      | 0.67          | 935          | 1                     | 3    |             | 0.20, 0.32<br>(0.26) |                             |
|                            |                      | 0.11          | 935          | 2/<br>0.22            | 3    |             | 0.13, 0.08<br>(0.11) |                             |
|                            |                      | 0.22          | 935          | 2/<br>0.44            | 3    |             | 0.02, 0.13<br>(0.08) |                             |
|                            |                      | 0.45          | 935          | 2/<br>0.90            | 0    |             | 0.37, 0.33<br>(0.35) |                             |
|                            |                      |               |              |                       | 1    |             | 0.28, 0.22<br>(0.25) |                             |
|                            |                      |               |              |                       | 3    |             | 0.16, 0.27<br>(0.22) |                             |
|                            |                      |               |              |                       | 7    |             | 0.11, 0.42<br>(0.27) |                             |
|                            |                      |               |              |                       | 14   |             | 0.27, 0.15<br>(0.21) |                             |
|                            |                      |               |              |                       | 21   |             | 0.15, 0.19<br>(0.17) |                             |
|                            |                      |               |              |                       | 28   |             | 0.22, 0.24<br>(0.23) |                             |
|                            |                      |               |              |                       | 35   |             | 0.08, 0.25<br>(0.17) |                             |
|                            |                      | 0.67          | 935          | 2/<br>1.34            | 0    |             | 0.51, 0.21<br>(0.36) |                             |
|                            |                      |               |              |                       | 1    |             | 0.41, 0.32<br>(0.37) |                             |
|                            |                      |               |              |                       | 3    |             | 0.57, 0.62<br>(0.60) |                             |
|                            |                      |               |              |                       | 7    |             | 0.40, 0.34           |                             |

| CITRUS                                  | Application          |          |              |                       | DAT  | Commodity   | Residue                       | Reference                   |
|-----------------------------------------|----------------------|----------|--------------|-----------------------|------|-------------|-------------------------------|-----------------------------|
| Trial<br>year (Variety)                 | Formulation (g ai/L) | kg ai/ha | Water (L/ha) | No./Total<br>kg ai/ha | days |             | mg/kg                         |                             |
|                                         |                      |          |              |                       |      |             | (0.37)                        |                             |
|                                         |                      |          |              |                       | 14   |             | 0.29, 0.43<br>(0.36)          |                             |
|                                         |                      |          |              |                       | 21   |             | 0.21, 0.09<br>(0.15)          |                             |
|                                         |                      |          |              |                       | 28   |             | 0.15, 0.17<br>(0.16)          |                             |
|                                         |                      |          |              |                       | 35   |             | 0.15, 0.42<br>(0.29)          |                             |
|                                         |                      |          |              |                       | 180  |             | < 0.01,<br>< 0.01<br>(< 0.01) |                             |
| M335 T-6085<br>Delano, CA,              | 300 g/L              | 0.22     | 5612         | 2/<br>0.44            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     | Fujie, 1990<br>(FR-01-0307) |
| 1984<br>(Navel)                         |                      | 0.45     | 5612         | 2/<br>0.90            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     |                             |
|                                         |                      |          |              |                       |      |             |                               |                             |
| M335 T-6085<br>Porterville, CA,<br>1984 | 300 g/L              | 0.22     | 5612         | 2/<br>0.44            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     | (FR-01-0307)                |
| (Navel)                                 |                      | 0.45     | 5612         | 2/<br>0.90            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     |                             |
| M335 T-6087<br>Madera, CA,              | 300 g/L              | 0.22     | 5612         | 2/<br>0.44            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     | (FR-01-0307)                |
| USA, 1984<br>(Navel)                    |                      | 0.45     | 5612         | 2/<br>0.90            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     |                             |
| M335 T-6088<br>Madera, CA,<br>1984      | 300 g/L              | 0.45     | 5612         | 1                     | 0    | Whole fruit | 0.25, 0.26<br>(0.26)          | Fujie, 1990<br>(FR-01-0307) |
| 1984                                    |                      |          |              |                       | 1    |             | 0.20, 0.23<br>(0.22)          |                             |
|                                         |                      |          |              |                       | 3    |             | 0.08, 0.09<br>(0.09)          |                             |
|                                         |                      |          |              |                       | 7    |             | 0.21, 0.20<br>(0.21)          |                             |
|                                         |                      |          |              |                       | 28   |             | 0.26, 0.13<br>(0.20)          |                             |
|                                         |                      |          |              |                       | 35   |             | 0.19, 0.13<br>(0.16)          |                             |
|                                         |                      | 0.45     | 5612         | 2/<br>0.90            | 1    | Whole fruit | 0.35, 0.30<br>( <u>0.33</u> ) | Fujie, 1990<br>(FR-01-0307) |
|                                         |                      |          |              |                       | 3    |             | 0.25, 0.26 (0.26)             |                             |
|                                         |                      |          |              |                       | 7    |             | 0.18. 0.21<br>(0.20)          | _                           |
|                                         |                      |          |              |                       | 14   |             | 0.32, 0.24 (0.28)             |                             |
|                                         |                      |          |              |                       | 21   |             | 0.23, 0.18<br>(0.21)          |                             |
| M335 T-6157<br>Lindsay, CA,             | 300 g/L              | 0.22     | 2338         | 2/<br>0.22            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     | (FR-01-0307)                |
| 1984<br>(Navel)                         |                      | 0.45     | 2338         | 2/<br>0.90            | 180  | Whole fruit | < 0.01,< 0.01<br>(< 0.01)     |                             |
| R195 T-6389<br>Fresno, CA,              | 300 g/L              | 0.45     | 3049         | 2/<br>0.90            | 1    | Whole fruit | 0.30, 0.21<br>( <u>0.26</u> ) | Fujie, 1990<br>(FR-01-0307) |
| 1985                                    |                      |          |              |                       | 7    |             | 0.17, 0.17                    |                             |

| CITRUS                                               | Application          |          |              |                       | DAT      | Commodity   | Residue                                               | Reference                   |
|------------------------------------------------------|----------------------|----------|--------------|-----------------------|----------|-------------|-------------------------------------------------------|-----------------------------|
| Trial<br>year (Variety)                              | Formulation (g ai/L) | kg ai/ha | Water (L/ha) | No./Total<br>kg ai/ha | days     |             | mg/kg                                                 |                             |
| (Valencia)                                           |                      |          |              |                       | 14<br>21 |             | (0.17)<br>0.21, 0.15<br>(0.18)<br>0.05,0.03<br>(0.04) |                             |
| R195 T-6389<br>Fresno, CA,                           | 300 g/L              | 0.45     | 3002         | 2/<br>0.90            | 1        | Whole fruit | 0.14, 0.10<br>( <u>0.12)</u>                          | Fujie, 1990<br>(FR-01-0307) |
| USA, 1985<br>(Navel)                                 |                      | 0.45     | 3002         | 3/                    | 1        | Whole fruit | 0.08, 0.17<br>(0.13)                                  |                             |
|                                                      |                      | 0.45     | 3002         | 4/1.8                 | 1        | Whole fruit | 0.43, 0.51<br>(0.47)                                  |                             |
| R195 T-6391<br>Tempe, AZ,                            | 300 g/L              | 0.11     | 2104         | 2/<br>0.22            | 1        | Whole fruit | 0.05, 0.03<br>(0.04)                                  | Fujie, 1990<br>(FR-01-0307) |
| 1985<br>(Valencia)                                   |                      | 0.22     | 2104         | 2/<br>0.44            | 1        | Whole fruit | 0.30, 0.17<br>(0.24)                                  |                             |
|                                                      |                      | 0.45     | 2104         | 2/<br>0.90            | 1        | Whole fruit | 1.1, 0.81<br>( <u>0.96</u> )                          |                             |
|                                                      |                      | 0.90     | 2104         | 2/                    | 1        | Whole fruit | 0.86, 1.3<br>(1.1)                                    |                             |
| R195 T 6392<br>Donna, TX,<br>1985                    | 300 g/L              | 0.45     | 6547         | 2/<br>0.90            | 1        | Whole fruit | 0.42, 0.63<br>( <u>0.53</u> )                         | Fujie, 1990<br>(FR-01-0307) |
| (Valencia)                                           |                      |          |              |                       | 7<br>14  |             | 0.45, 0.35<br>(0.40)<br>0.36, 0.43                    |                             |
|                                                      |                      |          |              |                       | 21       |             | (0.39)<br>(0.34, 0.36                                 |                             |
| R195 T-6393                                          | 300 g/L              | 0.45     | 5855         | 2/                    | 1        | Whole fruit | (0.35)<br>(0.35)                                      | Fujie, 1990                 |
| Frostproof, FL,<br>1985                              | 300 g/L              | 0.43     | 3633         | 0.90                  | 7        | Whole Hult  | (0.21)<br>0.30, 0.19                                  | (FR-01-0307)                |
| (Valencia)                                           |                      |          |              |                       | 14       |             | (0.25)<br>0.27, 0.17                                  |                             |
|                                                      |                      |          |              |                       | 21       |             | (0.22)<br>0.19, 0.17                                  |                             |
| R195 T-6582                                          | 300 g/L              | 0.45     | 1871         | 2/                    | 1        | Whole fruit | (0.18)                                                | Fujie, 1990                 |
| Weslaco, TX<br>1986<br>(Valencia)                    |                      |          |              | 0.90                  | 8        | 3           | ( <u>1.2</u> )<br>0.85, 1.4                           | (FR-01-0307)                |
| (Valencia)                                           |                      |          |              |                       | 15       |             | (1.1)                                                 |                             |
|                                                      |                      |          |              |                       | 22       |             | (0.78)<br>0.64, 0.81                                  |                             |
| R195 T-6583<br>Frostproof, FL,<br>1985<br>(Valencia  | 300 g/L              | 0.45     | 2245         | 2/<br>0.90            | 1        | Whole fruit | (0.73)<br>0.26, 0.56,<br>0.32;<br>( <u>0.33</u> )     | Fujie, 1990<br>(FR-01-0307) |
| R195 T-6604<br>Fresno, CA,<br>1985<br>(Valencia)     | 300 g/L              | 0.45     | 3582         | 2/ 0.90               | 7        | Whole fruit | 0.22, 0.11 (0.17)                                     | Fujie, 1990<br>(FR-01-0307) |
| R195 T-6723<br>Felda, FL, USA,<br>1986<br>(Valencia) | 300 g/L              | 0.45     | 3255         | 2/<br>0.90            | 1        | Whole fruit | 0.44, 0.48<br>( <u>0.46</u> )                         | Fujie, 1990<br>(FR-01-0307) |

| CITRUS                                                | Application          |          |                |                       | DAT      | Commodity   | Residue                                              | Reference                   |
|-------------------------------------------------------|----------------------|----------|----------------|-----------------------|----------|-------------|------------------------------------------------------|-----------------------------|
| Trial<br>year (Variety)                               | Formulation (g ai/L) | kg ai/ha | Water (L/ha)   | No./Total<br>kg ai/ha | days     |             | mg/kg                                                |                             |
| R195 T-6730,<br>Fresno, CA,<br>1986<br>(Navel)        | 300 g/L              | 0.45     | 935            | 2/<br>0.90            | 1        | Whole fruit | 0.18, 0.18<br>(0.18)                                 | Fujie, 1990<br>(FR-01-0307) |
| R195 T-6965<br>Fresno, CA,<br>1987<br>(Navel)         | 300 g/L              | 0.45     | 47<br>(aerial) | 2/<br>0.90            | 1        | Whole fruit | 0.07, 0.07<br>( <u>0.07</u> )                        | Fujie, 1990<br>(FR-01-0307) |
| R195 T-6966<br>Santa Paula, CA,<br>1987<br>(Valencia) | 300 g/L              | 0.45     | 54<br>(aerial) | 2/<br>0.90            | 1        | Whole fruit | 0.04, 0.05<br>( <u>0.05</u> )                        | Fujie, 1990<br>(FR-01-0307) |
| LEMON                                                 |                      |          | •              | <u>'</u>              | <u>'</u> |             | •                                                    |                             |
| T-7550<br>Yuma, AZ, 1990                              | 300 g/L              | 0.34     | 281            | 2/<br>0.78            | 14       | Whole fruit | 0.14, 0.11<br>(0.13)                                 | Lai, 1992<br>(FR-21-0342)   |
| (Unknown)                                             |                      | 0.45     | 281            | 2/<br>0.9             | 14       | Whole fruit | 0.09, 0.10<br>(0.10)                                 |                             |
| T-7551<br>Yuma, AZ, 1990                              | 300 g/L              | 0.34     | 271            | 2/<br>0.78            | 14       | Whole fruit | 0.20, 0.22<br>(0.21)                                 | Lai, 1992<br>(FR-21-0342)   |
| (Unknown)                                             |                      | 0.45     | 271            | 2/<br>0.9             | 14       | Whole fruit | 0.34, 0.44<br>(0.39)                                 |                             |
| T-7552<br>Yuma, AZ, 1990                              | 300 g/L              | 0.34     | 281            | 2/<br>0.78            | 14       | Whole fruit | 0.16, 0.12<br>(0.14)                                 | Lai, 1992<br>(FR-21-0342)   |
| (Rough)                                               |                      | 0.45     | 281            | 2/<br>0.9             | 14       | Whole fruit | 0.26, 0.22<br>(0.24)                                 |                             |
| V-1004A<br>Porterville, CA,<br>1991<br>(Lisbon)       | 300 g/L              | 0.45     | 281            | 2/<br>0.90            | 1        | Whole fruit | 0.21, 0.41<br>(0.31)<br>0.62, 0.50<br>( <u>0.56)</u> | Lai, 1992<br>(FR-21-0342)   |
|                                                       |                      |          |                |                       | 7        |             | 0.32, 0.38<br>(0.35)                                 |                             |
|                                                       |                      |          |                |                       | 14       |             | 0.27, 0.28<br>(0.28)                                 |                             |
| V-1004B<br>Fallbrook, CA,<br>1991                     | 300 g/L              | 0.45     | 935            | 2/<br>0.90            | 0        | Whole fruit | 0.54, 0.51<br>(0.53)                                 | Lai, 1992<br>(FR-21-0342)   |
| (Eureka)                                              |                      |          |                |                       | 1        |             | 0.54, 0.46<br>(0.50)                                 |                             |
|                                                       |                      |          |                |                       | 7        |             | 0.50, 0.48<br>(0.49)                                 |                             |
|                                                       |                      |          |                |                       | 14       |             | 0.45, 0.57<br>( <u>0.51</u> )                        |                             |
| V-1004C<br>Yuma, AZ, 1991                             | 300 g/L              | 0.45     | 935            | 2/<br>0.90            | 0        | Whole fruit | 0.73, 0.71<br>(0.72)                                 | Lai, 1992<br>(FR-21-0342)   |
| (Rough)                                               |                      |          |                |                       | 1        |             | 0.49, 0.49<br>(0.49)                                 |                             |
|                                                       |                      |          |                |                       | 7        |             | 1.5, 0.85<br>( <u>1.2</u> )                          |                             |
|                                                       |                      |          |                |                       | 14       |             | 0.72, 0.80<br>(0.76)                                 |                             |
| GRAPEFRUIT                                            | 200 %                | 10.15    | 100-           |                       |          |             |                                                      |                             |
| V-1003A<br>Mecca, CA,<br>1991                         | 300 g/L              | 0.45     | 935            | 2/<br>0.90            | 0        | Whole fruit | 0.04, 0.06 (0.05)                                    | Lai, 1992<br>(FR-21-0343)   |
| (Marsh Ruby)                                          |                      |          |                |                       | 1        |             | 0.13, 0.11<br>( <u>0.12</u> )                        |                             |

| CITRUS                                          | Application          |          |              |                       | DAT  | Commodity   | Residue                            | Reference                 |
|-------------------------------------------------|----------------------|----------|--------------|-----------------------|------|-------------|------------------------------------|---------------------------|
| Trial<br>year (Variety)                         | Formulation (g ai/L) | kg ai/ha | Water (L/ha) | No./Total<br>kg ai/ha | days |             | mg/kg                              |                           |
|                                                 |                      |          |              |                       | 7    |             | 0.05, 0.06<br>(0.06)               |                           |
|                                                 |                      |          |              |                       | 14   |             | 0.09, 0.11<br>(0.10)               |                           |
| V-1003B<br>Bonsall, CA,<br>1991<br>(Ruby Red)   | 300 g/L              | 0.45     | 935          | 2/<br>0.90            | 1    | Whole fruit | 0.23, 0.16<br>( <u>0.20</u> )      | Lai, 1992<br>(FR-21-0343) |
| V-1003C<br>Fillmore, CA,<br>1991<br>(Ruby Red)  | 300 g/L              | 0.45     | 935          | 2/<br>0.90            | 1    | Whole fruit | 0.18, 0.18<br>( <u>0.18</u> )      | Lai, 1992<br>(FR-21-0343) |
| V-1003D<br>Myakka City,<br>FL, 1991             | 300 g/L              | 0.45     | 1758         | 2/<br>0.90            | 0    | Whole fruit | 0.42, 0.51<br>(0.47)<br>0.57, 0.36 | Lai, 1992<br>(FR-21-0343) |
| (Thompson; Pink<br>Marsh)                       |                      |          |              |                       | 7    |             | (0.47)<br>0.34, 0.32<br>(0.33)     |                           |
|                                                 |                      |          |              |                       | 14   |             | 0.32, 0.23 (0.28)                  |                           |
| V-1003E<br>Myakka City,<br>FL, 1991<br>(Duncan) | 300 g/L              | 0.45     | 1758         | 2/<br>0.90            | 1    | Whole fruit | 0.36, 0.38<br>( <u>0.37</u> )      | Lai, 1992<br>(FR-21-0343) |
| V-1003G<br>Yuma, AZ, 1991<br>(Ruby Red)         | 300 g/L              | 0.45     | 935          | 2/<br>0.90            | 1    | Whole fruit | 0.40, 0.27<br>( <u>0.34</u> )      | Lai, 1992<br>(FR-21-0343) |
| V-1003I<br>Vero Beach,<br>FL,1991<br>(Red Ruby) | 300 g/L              | 0.45     | 1871         | 2/<br>0.90            | 1    | Whole fruit | 0.32, 0.36<br>( <u>0.34</u> )      | Lai, 1992<br>(FR-21-0343) |

<sup>\*</sup> Report showed this value for "control samples". Trial samples residues were reported as < 0.01 mg/kg. The report indicated mislabelling.

# Pome fruits

### Apple, pear

Forty-seven supervised trials on pome fruit (27 in apples and 20 in pears) were conducted in the USA in 1984–1987, using a higher number of applications compared to the GAP in the USA (up to 0.9 kg ai/ha and a PHI of 14 days) (Fujie, 1990, Fujie and Leary, 1986; Reference: FR-81-0305, FR-01-0370, FR-81-0304, FR-01-0369). The EC formulation of fenpropathrin containing 300 g/L active ingredient, was applied to treated plots at the rates of 0.9–7.2 kg ai/ha from 7 to 42 days prior to harvest.

Samples were analysed within 1 year of harvest using the methods described in section of Methods of residue analysis, which were validated to an LOQ of 0.01 mg/kg. Concurrent recoveries

from control samples fortified with fenpropathrin at levels of 0.1 and 0.2 mg/kg were within the acceptable range of 70-120%, with RSD below 20%. Results of the trials are summarized in Table 37.

Table 37 Residues of fenpropathrin in pome fruits resulting from supervised trials in the USA

| Pome fruits                                                                  | Application               |               |              |                                   | DAT  | Commodity   | Residue<br>mg/kg                                    | Reference  |
|------------------------------------------------------------------------------|---------------------------|---------------|--------------|-----------------------------------|------|-------------|-----------------------------------------------------|------------|
| Trial<br>year (Variety)                                                      | Formulation (g ai/L)      | kg<br>ai/ha   | Water (L/ha) | No./Total<br>(kg ai/ha/<br>season | days |             |                                                     |            |
| GAP, USA for pome fruit                                                      | 300 EC<br>(2.4 lb ai/gal) | 0.22-<br>0.45 | 700-3740     | 2/<br>0.9                         | 14   |             |                                                     |            |
| APPLE                                                                        |                           |               |              |                                   |      |             |                                                     |            |
| R185 T-6719<br>Fletcher, NC,<br>USA, 1986<br>(Red Delicious)                 | 300 g/L                   | 0.448         | 3741         | 8/3.584                           | 14   | Whole fruit | 0.14, 0.14 (0.14)                                   | FR-81-0305 |
| R185 T-6720<br>Phelps, NY,<br>USA, 1986<br>(Golden<br>Delicious)             | 300 g/L                   | 0.448         | 2806         | 8/3.584                           | 14   | Whole fruit | 3.0; 4.1 (3.6)                                      | FR-81-0305 |
| R185 T-6721<br>Fenville, MI,<br>USA, 1986<br>(Red Delicious)                 | 300 g/L                   | 0.448         | 1272         | 8/3.584                           | 14   | Whole fruit | 1.4; 1.5 (1.5)                                      | FR-81-0305 |
| R185 T-6722                                                                  | 300 g/L                   | 0.448         | 3741         | 8/3.584                           | 14   | Whole fruit | 3.8; 3.6 (3.7)                                      | FR-81-0305 |
| Wenatchee,                                                                   |                           |               |              |                                   | 42   | Whole fruit | 3.0; 2.5                                            |            |
| WA, USA,<br>1986                                                             |                           |               |              |                                   | 42   | Juice       | 0.37; 0.37                                          |            |
| (Red Bisbee)                                                                 |                           |               |              |                                   | 42   | Wet pomace  | 5.6; 8.7                                            |            |
|                                                                              |                           |               |              |                                   | 42   | Dry pomace  | 20; 31                                              |            |
| R185 T-6729<br>Watsonville,<br>CA, USA, 1986<br>(Red Delicious)              |                           | 0.448         | 1871         | 8/3.584                           | 14   | Whole fruit | 2.7; 2.1 (2.4)<br>2.5 *<br>(* cooked<br>20 minutes) | FR-81-0305 |
| R185 T-6880<br>Wenatchee,<br>WA, USA,<br>1987<br>(Red Delicious)             | 300 g/L                   | 0.448         | 3741         | 8/3.584                           | 14   | Whole fruit | 2.4; 2.1 (2.3)                                      | FR-81-0305 |
| R185 T-6969<br>Wenatchee,<br>WA, USA,<br>1987<br>(Aerial)<br>(Red Delicious) | 300 g/L                   | 0.448         | 65           | 8/3.584                           | 14   | Whole fruit | 0.39; 0.40<br>(0.40)                                | FR-81-0305 |
| R185 T-6971<br>Waterlief,<br>MI, USA,,1987<br>(Aerial)<br>(Jonathan)         | 300 g/L                   | 0.448         | 47           | 8/3.808                           | 14   | Whole fruit | 0.30; 0.14<br>(0.22)                                | FR-81-0305 |
| R185 T-6971<br>Sodus,<br>NY, USA, 1987<br>(Aerial)<br>(Cortland)             | 300 g/L                   | 0.448         | 47           | 8/3.584                           | 14   | Whole fruit | 0.78; 0.97<br>(0.88)                                | FR-81-0305 |
| R185 T-6055<br>Hood River                                                    | 300 g/L                   | 0.336         | 3741         | 9/3.024                           | 14   | Whole fruit | 3.1; 3.4<br>(3.3)                                   | FR-0370    |

| Pome fruits                                               | Application          |             |              |                                   | DAT  | Commodity   | Residue<br>mg/kg            | Reference |
|-----------------------------------------------------------|----------------------|-------------|--------------|-----------------------------------|------|-------------|-----------------------------|-----------|
| Trial<br>year (Variety)                                   | Formulation (g ai/L) | kg<br>ai/ha | Water (L/ha) | No./Total<br>(kg ai/ha/<br>season | days |             |                             |           |
| County, OR,                                               |                      | 0.448       | 3741         | 9/4.032                           | 14   | Whole fruit | 4.1; 3.6 (3.8)              |           |
| USA,1984                                                  |                      |             |              |                                   | 14   | Wet pomace  | 13                          |           |
| (Top Red<br>Delicious)                                    |                      |             |              |                                   | 14   | Dry pomace  | 34                          |           |
| 2 cherous)                                                |                      |             |              |                                   | 14   | Juice       | 0.10                        |           |
| R185 T-6056<br>Highland,                                  | 300 g/L              | 0.336       | 3741         | 6/2.016                           | 14   | Whole fruit | 1.1; 0.82<br>(0.96)         | FR-0370   |
| NY, USA, 1984<br>(McIntosh)                               |                      | 0.448       | 3741         | 6/2.688                           | 14   | Whole fruit | 1.2; 1.2 (1.2)              |           |
| R185 T-6058<br>Winchester,                                | 300 g/L              | 0.336       | 3741         | 8/2.688                           | 14   | Whole fruit | 1.3; 1.4<br>(1.4)           | FR-0370   |
| VA, USA, 1984<br>(Red Delicious)                          |                      | 0.448       | 3741         | 8/3.584                           | 14   | Whole fruit | 1.1; 0.96<br>(1.0)          |           |
| R185 T-6059                                               | 300 g/L              | 0.336       | 3741         | 8/2.688                           | 14   | Whole fruit | 0.38                        | FR-0370   |
| Clemson, SC,<br>USA, 1984<br>(Red Chief Red<br>Delicious) |                      | 0.448       | 3741         | 8/3.584                           | 14   | Whole fruit | 0.57                        |           |
| R185 T-6060<br>Fennville, MI,                             | 300 g/L              | 0.336       | 1300         | 8/2.688                           | 14   | Whole fruit | 1.4; 1.8<br>(1.6)           | FR-0370   |
| USA, 1984<br>(Jonathan)                                   |                      | 0.448       | 1300         | 8/3.584                           | 14   | Whole fruit | 2.6; 2.0<br>(2.3)           |           |
| R185 T-6061<br>Hulst Farms,                               | 300 g/L              | 0.448       | 1871         | 2/0.896                           | 14   | Whole fruit | 0.36; 1.4<br>(0.88)         | FR-0370   |
| CA, USA, 1984<br>(Pippen)                                 |                      | 0.448       | 1871         | 4/1.792                           | 14   | Whole fruit | 2.7; 2.4 (2.6)              |           |
| (1 ippen)                                                 |                      | 0.448       | 1871         | 6/2.688                           | 14   | Whole fruit | 2.7; 2.3 (2.5)              |           |
|                                                           |                      | 0.448       | 1871         | 8/3.584                           | 14   | Whole fruit | 1.7; 1.6 (1.7)              |           |
| R185 T-6150<br>Biglerville,                               | 300 g/L              | 0.336       | 2806         | 8/2.688                           | 10   | Whole fruit | 1.2; 3.0<br>(2.1)           | FR-0370   |
| PA, USA, 1984<br>(York Imperial)                          |                      | 0.448       | 2806         | 8/3.584                           | 10   | Whole fruit | 3.7; 3.6<br>(3.7)           |           |
| R185 T-6151<br>Phelps, NY,                                | 300 g/L              | 0.448       | 2806         | 2/0.896                           | 14   | Whole fruit | 0.95; 1.3<br>( <u>1.1</u> ) | FR-0370   |
| USA, 1984                                                 |                      | 0.448       | 2806         | 4/1.792                           | 14   | Whole fruit | 2.1; 2.7 (2.4)              |           |
|                                                           |                      | 0.448       | 2806         | 5/2.688                           | 14   | Whole fruit | 2.7; 3.2 (3.0)              |           |
|                                                           |                      | 0.448       | 2806         | 8/3.584                           | 14   | Whole fruit | 2.6; 2.5 (2.6)              |           |
| R185 T-6152                                               | 300 g/L              | 0.448       | 2806         | 8/3.584                           | 7    | Whole fruit | 3.2; 3.2                    | FR-0370   |
| Phelps, NY,<br>USA, 1984                                  |                      | 0.448       | 2806         | 8/3.584                           | 14   | Whole fruit | 2.7; 2.3 (2.5)              |           |
| (Golden                                                   |                      |             |              |                                   | 14   | Wet pomace  | 13; 11                      |           |
| Delicious)                                                |                      |             |              |                                   | 14   | Dry pomace  | 44; 45                      |           |
|                                                           |                      |             |              |                                   | 14   | Juice       | < 0.01;<br>< 0.01           |           |
|                                                           |                      | 0.448       | 2806         | 8/3.584                           | 21   | Whole fruit | 2.1; 2.5 (2.3)              |           |
|                                                           |                      | 0.448       | 2806         | 8/3.584                           | 28   | Whole fruit | 3.4; 2.9 (3.2)              |           |
| R185 T-6154                                               | 300 g/L              | 0.336       | 3741         | 8/2.688                           | 14   | Whole fruit | 1.5; 2.4 (2.0)              |           |
| Wenatchee,<br>WA, USA,                                    |                      | 0.448       | 3741         | 8/3.584                           | 7    | Whole fruit | 2.3; 2.0 (2.2)              |           |
| 1984                                                      |                      | 0.448       | 3741         | 8/3.584                           |      | Pulp        | 0.77; 0.20                  |           |
| (Golden                                                   |                      | 0.448       | 3741         | 8/3.584                           |      | Peel        | 12; 11                      |           |
| Delicious)                                                |                      | 0.448       | 3741         | 8/3.584                           | 14   | Whole fruit | 2.2; 2.6 (2.4)              |           |
|                                                           |                      | 0.448       | 3741         | 8/3.584                           | 21   | Whole fruit | 2.1; 2.1 (2.1)              |           |
|                                                           |                      | 0.448       | 3741         | 8/3.584                           | 28   | Whole fruit | 2.2; 2.1 (2.2)              |           |

| Pome fruits                                            | Application          |             |              |                                   | DAT  | Commodity   | Residue<br>mg/kg                          | Reference                                                                |
|--------------------------------------------------------|----------------------|-------------|--------------|-----------------------------------|------|-------------|-------------------------------------------|--------------------------------------------------------------------------|
| Trial<br>year (Variety)                                | Formulation (g ai/L) | kg<br>ai/ha | Water (L/ha) | No./Total<br>(kg ai/ha/<br>season | days |             |                                           |                                                                          |
| R185 T-6400)                                           | 300 g/L              | 0.112       | 3741         | 8/0.896                           | 14   | Whole fruit | 1.3; 1.7 (1.5)                            | FR-0370                                                                  |
| Wenatchee,                                             |                      | 0.224       | 3741         | 8/1.792                           | 14   | Whole fruit | 2.4; 3.2 (2.8)                            |                                                                          |
| WA, USA,<br>1985                                       |                      | 0.448       | 3741         | 8/3.584                           | 14   | Whole fruit | 5.1; 7.3 (6.2)                            |                                                                          |
| (Golden<br>Delicious)                                  |                      | 0.896       | 3741         | 8/7.168                           | 14   | Whole fruit | 7.6; 8.2 (7.9)                            |                                                                          |
| R185 T-6401,                                           | 300 g/L              | 0.448       | 3741         | 8/3.584                           | 14   | Whole fruit | 5.2; 4.2 (4.7)                            | FR-0370                                                                  |
| Wenatchee<br>WA, USA,                                  |                      |             |              |                                   | 14   | Wet pomace  | 12; 12                                    |                                                                          |
| 1985                                                   |                      |             |              |                                   | 14   | Dry pomace  | 47; 38                                    |                                                                          |
| (Golden                                                |                      |             |              |                                   | 14   | Juice       | 0.11, 0.12                                |                                                                          |
| Delicious)                                             |                      |             |              |                                   |      |             | 0.15, 0.16                                |                                                                          |
| R185 T-6402<br>Hood River,                             | 300 g/L              | 0.448       | 3741         | 2/0.896                           | 14   | Whole fruit | 0.51; 0.65<br>( <u>0.58</u> )             | FR-0370                                                                  |
| OR, USA, 1985<br>(Red Delicious)                       |                      | 0.448       | 3741         | 4/1.792                           | 14   | Whole fruit | 1.3; 1.5 (1.4)                            |                                                                          |
| (Red Delicious)                                        |                      | 0.448       | 3741         | 6/2.688                           | 14   | Whole fruit | 1.6; 2.0 (1.8)                            |                                                                          |
|                                                        |                      | 0.448       | 3741         | 8/3.584                           | 14   | Whole fruit | 1.4; 1.1 (1.3)                            |                                                                          |
|                                                        |                      | 0.448       | 3741         | 8/3.584                           | 14   | Whole fruit | 1.4; 1.4                                  |                                                                          |
|                                                        |                      |             |              |                                   | 14   | Pulp        | 0.07; 0.15                                |                                                                          |
|                                                        |                      |             |              |                                   | 14   | Peel        | 4.0; 5.5                                  |                                                                          |
| R185 T-6403<br>Haslet, MI,                             | 300 g/L              | 0.448       | 1010         | 2/0.896                           | 14   | Whole fruit | 0.40; 0.56<br>( <u>0.48</u> )             | FR-0370                                                                  |
| USA, 1985<br>(Red Delicious)                           |                      | 0.448       | 1010         | 4/1.792                           | 14   | Whole fruit | 1.6; 2.1<br>(1.9)                         |                                                                          |
|                                                        |                      | 0.448       | 1010         | 6/2.688                           | 14   | Whole fruit | 2.8; 2.3 (2.6)                            |                                                                          |
|                                                        |                      | 0.448       | 1010         | 8/3.584                           | 14   | Whole fruit | 3.3; 4.0 (3.8)                            |                                                                          |
| R185 T-6404                                            | 300 g/L              | 0.112       | 1132         | 8/0.896                           | 14   | Whole fruit | 0.02 *                                    | FR-0370                                                                  |
| Fennville, MI,<br>USA, 1985                            |                      | 0.224       | 1132         | 8/1.792                           | 14   | Whole fruit | 2.6 *                                     | * Duplicate sample                                                       |
| (Red Delicious)                                        |                      | 0.448       | 1132         | 8/3.584                           | 14   | Whole fruit | 3.8; 5.2 (4.5)                            | broken in                                                                |
| ĺ                                                      |                      | 0.896       | 1132         | 8/7.168                           | 14   | Whole fruit | 7.8; 8.8                                  | shipment.                                                                |
| R185 T-6405<br>Wooster, OH,<br>USA, 1985<br>(Cortland) | 300 g/L              | 0.448       | 2806         | 8/3.584                           | 14   | Whole fruit | 1.5; 1.5; 1.7;<br>5.7*; 1.8; 2.1<br>(1.7) | FR-0370<br>* Outlier, based<br>on<br>Dixon's Q test                      |
| R185 T-6406                                            | 300 g/L              | 0.448       | 2806         | 8/3.584                           | 14   | Whole fruit | 1.6; 1.6 (1.6)                            | FR-0370                                                                  |
| Phelps, NY,<br>USA, 1985                               |                      |             |              |                                   | 14   | Whole fruit | 1.4; 1.1 (1.3)                            |                                                                          |
| (Rhode                                                 |                      |             |              |                                   | 21   | We pomace   | 3.8; 5.1                                  |                                                                          |
| Island                                                 |                      |             |              |                                   | 21   | Dry pomace  | 12; 8.4                                   |                                                                          |
| Greening)                                              |                      |             |              |                                   | 21   | Juice       | 0.01; 0.01                                |                                                                          |
| PEAR                                                   | 200 /7               | 0.440       | 102.5        | (/2 (00                           | 1 4  | XVI. 1 C :  | 1.2.000                                   | ED 01 0204                                                               |
| R186 T-6709<br>River Bottom,<br>CA<br>(Bartlett)       | 300 g/L              | 0.448       | 935          | 6/2.688                           | 14   | Whole fruit | 1.3; 0.96<br>(1.1)<br>0.94*               | FR-81-0304<br>* Washed under<br>tap<br>water with gentle<br>hand rubbing |
| R186 T-6711<br>Medford, OR,<br>USA, 1986<br>(Bartlett) | 300 g/L              | 0.448       | 3741         | 6/2.688                           | 14   | Whole fruit | 3.0; 2.8 (2.9)                            | FR-81-0304                                                               |
| R186 T-6712<br>Fenville, MI,<br>USA, 1968              | 300 g/L              | 0.488       | 1300         | 6/2.688                           | 14   | Whole fruit | 2.0; 1.6 (1.8)                            | FR-81-0304                                                               |

| Pome fruits                                                         | Application          |             |                 |                                   | DAT            | Commodity      | Residue<br>mg/kg        | Reference                     |  |
|---------------------------------------------------------------------|----------------------|-------------|-----------------|-----------------------------------|----------------|----------------|-------------------------|-------------------------------|--|
| Trial<br>year (Variety)                                             | Formulation (g ai/L) | kg<br>ai/ha | Water<br>(L/ha) | No./Total<br>(kg ai/ha/<br>season | days           |                |                         |                               |  |
| (Bartlett)                                                          |                      |             |                 |                                   |                |                |                         |                               |  |
| R186 T-6713<br>Phelps, NY,<br>USA, 1986<br>(Bartlett)               | 300 g/L              | 0.448       | 2806            | 6/2.688                           | 14             | Whole fruit    | 2.5; 2.3 (2.4)          |                               |  |
| R186 T-6886<br>Lagrange, CA,<br>USA, 1987<br>(Bartlett)             | 300 g/L              | 0.448       | 935             | 6/2.688                           | 14             | Whole fruit    | 1.9; 1.6 (1.8)          | FR-81-0304                    |  |
| R186 T-6972<br>Live Oak, CA<br>(Aerial), USA,<br>1987<br>(Bartlett) | 300 g/L              | 0.448       | 1878            | 6/2.688                           | 14             | Whole fruit    | 0.26; 0.32<br>(0.29)    | FR-81-0304                    |  |
| R186 T-6973<br>Sodus, NY<br>(Aerial), USA,<br>1987<br>(Bartlett)    | 300 g/L              | 0.448       | 47              | 6/2.688                           | 14             | Whole fruit    | 0.76; 0.96<br>(0.86)    | FR-81-0304                    |  |
| R186 T-6062<br>Life Oak, CA,                                        | 300 g/L              | 0.336       | 3741            | 6/2.016                           | 14             | Whole fruit    | 0.84; 0.34<br>(0.59)    | FR-0369                       |  |
| USA, 1984                                                           |                      | 0.448       | 3741            | 6/2.688                           | 7              | Whole fruit    | 0.52; 0.84              |                               |  |
| (Bartlett)                                                          |                      |             |                 |                                   | 14             |                | 0.77; 0.46<br>(0.62)    |                               |  |
|                                                                     |                      |             |                 |                                   | 21             |                | 0.59; 0.52              |                               |  |
|                                                                     |                      |             |                 |                                   | 28             |                | 0.56; 0.42              |                               |  |
| R186 T-6063<br>Live Oak, CA,                                        | 300 g/L              | 0.336       | 3741            | 6/2.016                           | 14             | Whole fruit    | 0.42, 0.36<br>(0.39)    | FR-0369                       |  |
| USA, 1984<br>(Bartlett)                                             |                      |             | 0.448           | 3741                              | 2/0.892        | 14             | Whole fruit             | 0.27; 0.27<br>( <u>0.27</u> ) |  |
|                                                                     |                      | 0.448       | 3741            | 3/1.344                           | 14             | Whole fruit    | 0.55; 0.34<br>(0.45)    |                               |  |
|                                                                     |                      | 0.448       | 3741            | 5/2.24                            | 14             | Whole fruit    | 0.41; 0.42<br>(0.42)    |                               |  |
|                                                                     |                      | 0.448       | 3741            | 6/2.688                           | 14             | Whole fruit    | 0.65; 0.50<br>(0.53)    |                               |  |
| R186 T-6064<br>Medford, OR,<br>USA, 1984<br>(Bartlett)              | 300 g/L              | 0.448       | 3741            | 6/2.688                           | 14             | Whole fruit    | 0.96; 1.4 (1.2)         | FR-0369                       |  |
| R186 T-6065<br>Wenatchee,                                           | 300 g/L              | 0.336       | 3741            | 6/2.196                           | 14             | Whole fruit    | 0.87; 1.0<br>(0.94)     | FR-0369                       |  |
| WA, USA,<br>1984<br>(Bartlett)                                      |                      | 0.448       | 3741            | 6/2.688                           | 14             | Whole fruit    | 1.5; 1.1 (1.3)          |                               |  |
| R186 T-6066<br>Fenville, MI,<br>USA, 1984<br>(Bartlett)             | 300 g/L              | 0.336       | 1422            | 6/2.016                           | 14             | Whole fruit    | 1.3                     | FR-0369                       |  |
| R186 T-6067                                                         | 300 g/L              | 0.448       | 2806            | 2/0.896                           | 14             | Whole fruit    | 1.2; 1.1 ( <u>1.2</u> ) | FR-0369                       |  |
| Phelps, NY,<br>USA, 1984                                            |                      | 0.448       | 2806            | 4/1.792                           | 14             | Whole fruit    | 1.5; 1.4 (1.5)          | ]                             |  |
| (Bartlett)                                                          |                      | 0.448       | 2806            | 5/2.24                            | 14             | Whole fruit    | 1.4; 1.4 (1.4)          | ]                             |  |
| *                                                                   |                      | 0.448       | 0.448           |                                   | 1.7; 1.7 (1.7) | ]              |                         |                               |  |
|                                                                     |                      |             |                 |                                   | 14             | Pear halves in | < 0.01;                 |                               |  |

| Pome fruits                                                 | Application             |             |                 |                                   | DAT         | Commodity                   | Residue<br>mg/kg                   | Reference           |
|-------------------------------------------------------------|-------------------------|-------------|-----------------|-----------------------------------|-------------|-----------------------------|------------------------------------|---------------------|
| Trial<br>year (Variety)                                     | Formulation<br>(g ai/L) | kg<br>ai/ha | Water<br>(L/ha) | No./Total<br>(kg ai/ha/<br>season | days        |                             |                                    |                     |
|                                                             |                         |             |                 |                                   |             | syrup                       | < 0.01                             |                     |
|                                                             |                         |             |                 |                                   | 14          | Puree                       | < 0.01;<br>< 0.01                  |                     |
| R186 T-6153                                                 | 300 g/L                 | 0.448       | 2806            | 6/2.688                           | 7           | Whole fruit                 | 2.7; 1.8 (2.3)                     | FR-0369             |
| Phelps, NY,<br>USA, 1984                                    |                         | 0.448       | 2806            | 6/2.688                           | 14          | Whole fruit                 | 2.2; 1.6 (1.9)                     |                     |
| (Bartlett)                                                  |                         | 0.448       | 2806            | 6/2.688                           | 21          | Whole fruit                 | 2.0; 1.9 (2.0)                     |                     |
|                                                             |                         | 0.448       | 2806            | 6/2.688                           | 28          | Whole fruit                 | 1.0; 0.89<br>(0.95)                |                     |
| R186 T-6394<br>Wenatchee,<br>WA, USA,<br>1985<br>(Bartlett) | 300 g/L                 | 0.112       | 3741            | 6/0.672                           | 14          | Whole fruit                 | 0.82; 0.57<br>(0.70)               | FR-0369             |
|                                                             |                         | 0.224       | 3741            | 6/1.344                           | 14          | Whole fruit                 | 1.2; 0.72<br>(0.96)                |                     |
|                                                             |                         | 0.448       | 3741            | 6/2.688                           | 14          | Whole fruit                 | 1.7; 0.31<br>(1.0)                 |                     |
|                                                             |                         | 0.896       | 3741            | 6/5.376                           | 14          | Whole fruit                 | 3.8; 2.6 (3.2)                     |                     |
| R186 T-6395<br>Hood River,                                  | 300 g/L                 | 0.448       | 3741            | 2/0.896                           | 14          | Whole fruit                 | 0.31; 0.29<br>( <u>0.30</u> )      | FR-0369<br>* Washed |
| OR, USA, 1985<br>(Bartlett)                                 |                         | 0.448       | 3741            | 4/1.792                           | 14          | Whole fruit                 | 0.47; 0.78<br>(0.63)               |                     |
|                                                             |                         | 0.448       | 3741            | 6/2.688                           | 14          | Whole fruit                 | 0.62; 0.85<br>(0.74)               |                     |
|                                                             |                         | 0.448       | 3741            | 8/3.584                           | 14          | Whole fruit                 | 1.0; 0.89<br>(0.95)                |                     |
|                                                             |                         | 0.448       | 3741            | 8/3.584                           | 21          | Whole fruit                 | 0.91; 0.86                         |                     |
|                                                             |                         |             |                 |                                   | 21          |                             | 0.72*                              |                     |
|                                                             |                         |             |                 |                                   | 21          | Peel                        | 5.9                                |                     |
|                                                             |                         |             |                 |                                   | 21          | Pulp                        | 0.01                               |                     |
| R186 T-6396<br>Ukiah, CA,<br>USA, 1985<br>(Bartlett)        | 300 g/L                 | 0.448       | 3741            | 6/2.688                           | 1<br>1<br>1 | Whole fruit<br>Pulp<br>Peel | 1.6; 1.4<br>0.01; < 0.01<br>12; 13 | FR-0369             |
|                                                             |                         | 0.448       | 3741            | 6/2.688                           | 7           | Whole fruit                 | 2.0; 2.3 (2.2)                     |                     |
|                                                             |                         | 0.448       | 3741            | 6/2.688                           | 14          | Whole fruit                 | 1.5; 1.6 (1.6)                     |                     |
|                                                             |                         | 0.448       | 3741            | 6/2.688                           | 21          | Whole fruit                 | 1.4; 1.1 (1.3)                     |                     |
|                                                             |                         | 0.448       | 3741            | 6/2.688                           | 28          | Whole fruit                 | 0.78; 0.91<br>(0.85)               |                     |
|                                                             |                         | 0.448       | 3741            | 6/2.688                           | 35          | Whole fruit                 | 0.79; 1.1<br>(0.95)                |                     |
| R186 T-6397                                                 | 300 g/L                 | 0.448       | 1085            | 2/0.896                           | 14          | Whole fruit                 | 1.6; 2.0 ( <u>1.8</u> )            | FR-0369             |
| Fennville, MI,<br>USA.1985                                  |                         | 0.448       | 1085            | 4/1.792                           | 14          | Whole fruit                 | 2.4; 2.8 (2.6)                     | ]                   |
| (Bartlett)                                                  |                         | 0.448       | 1085            | 6/2.688                           | 14          | Whole fruit                 | 2.9; 4.5 (3.7)                     |                     |
|                                                             |                         | 0.448       | 1085            | 8/3.584                           | 14          | Whole fruit                 | 4.8; 3.9 (4.4)                     |                     |
| R186 T-6398<br>Phelps, NY,                                  | 300 g/L                 | 0.112       | 2806            | 6/0.672                           | 14          | Whole fruit                 | 0.48; 0.54<br>(0.51)               | FR-0369             |
| USA, 1985<br>(Bartlett)                                     |                         | 0.224       | 2806            | 6/1.344                           | 14          | Whole fruit                 | 1.2; 1.0 (1.1)                     |                     |
| (במווכוו)                                                   |                         | 0.448       | 2806            | 6/2.688                           | 14          | Whole fruit                 | 2.2; 2.1 (2.2)                     | ]                   |
|                                                             |                         | 0.896       | 2806            | 6/5.376                           | 14          | Whole fruit                 | 3.3; 3.2 (3.3)                     |                     |

## Stone fruit

## Peach, plum, cherry

Supervised trials were conducted on stone fruits in the USA during 2003. Ten of the trials were on peaches (Green, 2004; Reference FR-0384), six on cherries (Green, 2004; Reference FR-0381), and seven on plums (Green, 2004; FR-0385). All trials were according to the US GAP on stone fruit, which includes applications of fenpropathrin 300 g/L EC formulation at the rate of 0.45 kg ai/ha for a maximum seasonal application of 0.9 kg ai/ha. Duplicate samples of mature fruits were collected 3 days after the last application. Sample size for peach ranged from 2.6 to 8.5 kg, ≥ 24 fruit. Upon collection, all samples were frozen at -20 °C until extraction and analysis. All of the samples were analysed within the documented storage stability interval analysed using analytical method RM-22-4 (LOQ 0.01 mg/kg). Concurrent recoveries were within the acceptable range of 70 to 120%.

Table 38 Residues of fenpropathrin in stone fruit resulting from supervised trials in the United States

| STONE FRUIT                                                  | Application          |               |                 |                       | DAT  | Commodity   | Residue                       | Reference |
|--------------------------------------------------------------|----------------------|---------------|-----------------|-----------------------|------|-------------|-------------------------------|-----------|
| Trial<br>year (Variety)                                      | Formulation (g ai/L) | kg ai/ha      | Water<br>(L/ha) | No/Total<br>kg ai/ha/ | days |             | mg/kg                         |           |
| GAP, USA                                                     | 300 g/L EC           | 0.22-<br>0.45 | 935- 3740       | 0.9                   | 3    |             |                               |           |
| PEACHES                                                      |                      | •             |                 | '                     | •    | •           |                               | •         |
| V-25419-A<br>Berks County, PA,<br>USA, 2003<br>(John Boy)    | 300 EC               | 0.45<br>0.46  | 1122<br>1141    | 2/0.91                | 3    | Whole fruit | 0.66, 0.66<br>( <u>0.66</u> ) | FR-0384   |
| V-25419-B<br>Saluda County,                                  | 300 EC               | 0.45<br>0.49  | 1207<br>1178    | 2/0.94                | 3    | Whole fruit | 0.76, 0.63<br>( <u>0.70</u> ) | FR-0384   |
| SC, USA, 2003<br>(Sureprince)                                |                      | 0.90<br>0.89  | 1216<br>1169    | 2/1.79                | 3    | Whole fruit | 1.3, 0.90<br>(1.1)            | -         |
| V-25419-C<br>Aieken, County,<br>SC, USA, 2003<br>(Contender) | 300 EC               | 0.44<br>0.44  | 1066<br>1057    | 2/0.88                | 3    | Whole fruit | 0.56, 0.73<br>( <u>0.65</u> ) | FR-0384   |
| V-25419-D<br>Houston County,<br>AL, USA, 2003<br>(Harvester) | 300 EC               | 0.45<br>0.45  | 1094<br>1104    | 2/0.90                | 3    | Whole fruit | 0.91, 1.1<br>( <u>1.0</u> )   | FR-0384   |
| V-25419-E<br>Clarke County,<br>GA, USA, 2003<br>(Contender)  | 300 EC               | 0.44<br>0.45  | 1141<br>1225    | 2/0.89                | 3    | Whole fruit | 1.0, 1.0<br>( <u>1.0)</u>     | FR-0384   |
| V-25419-F<br>Ottawa County,<br>MI, USA, 2003<br>(Red Haven)  | 300 EC               | 0.44<br>0.44  | 1132<br>1132    | 2/0.88                | 3    | Whole fruit | 0.69, 0.72<br>( <u>0.71</u> ) | FR-0384   |
| V-25419-G<br>Freestone County,                               | 300 EC               | 0.46<br>0.44  | 945<br>1085     | 2/0.90                | 3    | Whole fruit | 0.79, 0.67<br>( <u>0.73</u> ) | FR-0384   |
| TX, USA, 2003<br>(Fairtime)                                  |                      | 0.92<br>0.89  | 945<br>1085     | 2/1.8                 | 3    | Whole fruit | 1.1, 0.66<br>(0.88)           |           |
| V-25419-H<br>Sutter County, CA,<br>USA, 2003<br>(Loadel)     | 300 EC               | 0.45<br>0.45  | 1066<br>1066    | 2/0.90                | 3    | Whole fruit | 0.61, 0.54<br>( <u>0.58</u> ) | FR-0384   |

| STONE FRUIT                                                            | Application          |              |              |                       | DAT  | Commodity   | Residue                       | Reference |
|------------------------------------------------------------------------|----------------------|--------------|--------------|-----------------------|------|-------------|-------------------------------|-----------|
| Trial<br>year (Variety)                                                | Formulation (g ai/L) | kg ai/ha     | Water (L/ha) | No/Total<br>kg ai/ha/ | days |             | mg/kg                         |           |
| V-25419-I<br>Stanislaus, County                                        | 300 EC               | 0.45<br>0.44 | 1291<br>1272 | 2/0.89                | 1    | Whole fruit | 0.50, 0.45<br>(0.48)          | FR-0384   |
| CA, USA, 2003<br>(Summerset)                                           |                      |              |              |                       | 4    | Whole fruit | 0.49, 0.39<br>( <u>0.44</u> ) |           |
|                                                                        |                      |              |              |                       | 7    | Whole fruit | 0.35, 0.24<br>(0.30)          |           |
|                                                                        |                      |              |              |                       | 10   | Whole fruit | 0.34, 0.34<br>(0.34)          |           |
| V-25419-J<br>Fresno County,<br>CA, USA, 2003<br>(Fayette)              | 300 EC               | 0.43 0.44    | 1178<br>1197 | 2/0.87                | 3    | Whole fruit | 1.0, 0.84<br>( <u>0.92</u> )  | FR-0384   |
| CHERRIES                                                               |                      |              | 1            |                       |      |             | 1                             |           |
| V-25380-A<br>Wayne County,                                             | 300 EC               | 0.46<br>0.47 | 973<br>982   | 2/0.93                | 3    | Whole fruit | 1.83, 1.97<br>( <u>1.9)</u>   | FR-0381   |
| NY, USA, 2003<br>(Montmorency/<br>tart)                                |                      | 0.92<br>0.94 | 963<br>982   | 2/1.86                | 3    | Whole fruit | 5.16, 4.21<br>(4.7)           |           |
| V-25380-B<br>Ottawa County,                                            | 300 EC               | 0.45<br>0.45 | 1104 1094    | 2/0.90                | 1    | Whole fruit | 1.76, 1.62<br>(1.7)           | FR-0381   |
| MI, USA, 2003<br>(Napoleon/ sweet)                                     |                      |              |              |                       | 3    |             | 2.02, 1.6<br>( <u>1.8</u> )   |           |
|                                                                        |                      |              |              |                       | 7    |             | 1.43, 1.4<br>(1.4)            |           |
|                                                                        |                      |              |              |                       | 10   |             | 1.38, 1.16<br>(1.3)           |           |
| V-25380-C<br>Delta County, CO,<br>USA, 2003<br>(Montmorency/<br>tart)  | 300 EC               | 0.45<br>0.45 | 954<br>945   | 2/0.90                | 3    | Whole fruit | 1.44, 1.43                    | FR-0381   |
| V-25380-D<br>Lehigh County,<br>PA, USA, 2003<br>(Montmorency/<br>tart) | 300 EC               | 0.45<br>0.45 | 991<br>1001  | 2/0.90                | 3    | Whole fruit | 3.18, 3.33<br>( <u>3.3</u> )  | FR-0381   |
| V-25380-E<br>Santa Clara,<br>CA, USA, 2003                             | 300 EC               | 0.44<br>0.43 | 1001<br>982  | 2/0.87                | 3    | Whole fruit | 1.59, 1.43<br>( <u>1.5</u> )  | FR-0381   |
| (Bing/sweet)                                                           |                      | 0.88<br>0.86 | 1010<br>982  | 2/1.74                | 3    | Whole fruit | 2.26, 1.90<br>(2.1)           |           |
| V-25380-F<br>Grant County,                                             | 300 EC               | 0.45<br>0.45 | 945<br>935   | 2/0.90                | 1    | Whole fruit | 2.74, 2.98<br>(2.9)           | FR-0381   |
| WA, USA, 2003<br>(Van/ sweet)                                          |                      |              |              |                       | 3    | Whole fruit | 3.53, 3.23<br>(3.4)           |           |
|                                                                        |                      |              |              |                       | 7    | Whole fruit | 3.06, 2.76<br>(2.9)           |           |
|                                                                        |                      |              |              |                       | 10   | Whole fruit | 2.41, 2.3 (2.4)               |           |
| PLUMS                                                                  | 200 FG               |              | 1055         | 2/0.00                | 14   | XXII 1 0 1: | 0.57.0.52                     | ED 0205   |
| V-25427-A<br>Ottawa County,<br>MI, USA, 2003                           | 300 EC               | 0.44<br>0.45 | 1057<br>1094 | 2/0.89                | 1    | Whole fruit | 0.57, 0.62 (0.60)             | FR-0385   |
| , ,                                                                    |                      |              |              | <u> </u>              | 3    | Whole fruit | 0.51, 0.58                    |           |

| STONE FRUIT                                                    | Application          |              |              |                       | DAT  | Commodity   | Reference                                   |         |
|----------------------------------------------------------------|----------------------|--------------|--------------|-----------------------|------|-------------|---------------------------------------------|---------|
| Trial<br>year (Variety)                                        | Formulation (g ai/L) | kg ai/ha     | Water (L/ha) | No/Total<br>kg ai/ha/ | days |             | mg/kg                                       |         |
| (Stanley)                                                      |                      |              |              |                       |      |             | (0.55)                                      |         |
|                                                                |                      |              |              |                       | 7    | Whole fruit | 0.71 <mark>,</mark> 0.63<br>( <u>0.67</u> ) |         |
|                                                                |                      |              |              |                       | 10   | Whole fruit | 0.44, 0.46<br>(0.45)                        |         |
| V-25427-B<br>Tulare County,<br>CA, USA, 2003<br>(Angelona's)   | 300 EC               | 0.45<br>0.46 | 1029<br>1048 | 2/0.91                | 3    | Whole fruit | 0.23, 0.23<br>( <u>0.23</u> )               | FR-0385 |
| V-25427-C<br>Sutter County, CA,<br>USA, 2003<br>(French Prune) | 300 EC               | 0.45<br>0.45 | 1038<br>1029 | 2/0.90                | 3    | Whole fruit | 0.29, 0.21<br>( <u>0.25</u> )               | FR-0385 |
| V-25427-D<br>Tehama County,<br>CA, 2003<br>(French Prune)      | 300 EC               | 0.45<br>0.45 | 1029<br>1029 | 2/0.90                | 3    | Whole fruit | 0.37, 0.27<br>( <u>0.32</u> )               | FR-0385 |
| V-25427-E<br>Polk County,<br>OR, 2003 (Moyer)                  | 300 EC               | 0.44<br>0.45 | 1085<br>1104 | 2/0.89                | 4    | Whole fruit | 0.24, 0.20<br>( <u>0.22)</u>                | FR-0385 |
| V-25427-F<br>Fresno County,                                    | 300 EC               | 0.44<br>0.44 | 1150<br>1169 | 2/0.88                | 4    | Whole fruit | 0.17, 0.18<br>(0.18)                        | FR-0385 |
| CA, USA, 2003<br>(French Prune)                                |                      | 0.89<br>0.90 | 1160<br>1178 | 2/1.8                 | 4    | Whole fruit | 0.61, 0.54<br>(0.58)                        |         |
| V-27220-A<br>Fresno County,<br>CA, USA, 2004<br>(French Prune) | 300 EC               | 0.44<br>0.45 | 1169<br>1188 | 2/0.89                | 3    | Whole fruit | 0.29, 0.34<br>0.27, 0.50<br>( <u>0.35</u> ) | FR-0559 |

### Berries and other small fruit

### Strawberry

Ten supervised trials on strawberries were conducted in the US in 1987 and 1989 (Mitten, 1991; Reference FR-11-0345). Two additional trials were carried out in 1991 (Lai, 1992; Reference FR-21-0346). Eleven of the trials matched the current GAP in the US for strawberries (applications at 0.22 to 0.45 kg ai/ha for a total of 0.9 kg ai/ha per season and a PHI of 2 days). At several sites, replicate trials were carried out to study the effect of application rate and PHI on the residues in harvested samples. Mature samples were collected two days after the last application and immediately stored frozen at -20 °C until analysis. Samples from the trials were analysed within this storage stability period with method RM-22-4. Concurrent recoveries from fortified samples analysed together with field samples ranged from 81-115%, mean = 98.3%, with RSD of 8.2% (n=27).

Table 39 Residues of fenpropathrin in strawberries resulting from supervised trials in the United States

| Strawberry                                             | Application          |               |              |                       | DAT  | Commodity | Residue                                      | Reference |
|--------------------------------------------------------|----------------------|---------------|--------------|-----------------------|------|-----------|----------------------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                    | Formulation (g ai/L) | kg ai/ha      | Water (L/ha) | No/Total/<br>kg ai/ha | days |           | mg/kg                                        |           |
| GAP, USA                                               | 300 EC               | 0.22-<br>0.45 | 935-<br>2800 | 2/0.9                 | 2    |           |                                              |           |
| M391 T-7125<br>Watsonville, CA,<br>USA, 1987<br>(Muir) | 300 g/L              | 0.34          | 2245         | 0.34                  | 3    | Berries   | 1.2, 1.2<br>(1.2)<br>1.1, 1.2<br>(1.2)       | FR-0345   |
| M201 T 712(                                            |                      | 0.34          | 2245         | 2/0.68                | 3    | Berries   | 1.3, 1.2<br>(1.3)<br>1.1, 1.1<br>(1.1)       |           |
| M391 T-7126<br>Watsonville, CA<br>USA, 1987<br>(Selva) | 300 g/L              | 0.34          | 2245         | 0.34                  | 3    | Berries   | 0.77, 0.87<br>(0.82)<br>0.69, 0.65<br>(0.67) | FR-0345   |
|                                                        |                      | 0.34          | 2245         | 2/0.68                | 3    | Berries   | 0.68, 0.58<br>(0.63)<br>0.56, 0.62<br>(0.59) |           |
| 1714-89-7279<br>Watsonville, CA,                       | 300 g/L              | 0.11          | 1403         | 0.11                  | 2    | Berries   | 0.43, 0.40<br>(0.42)                         | FR-0345   |
| USA, 1989<br>(Selva)                                   |                      | 0.11          | 1403         | 2/0.22                | 2    | Berries   | 0.10, 0.12<br>(0.11)                         |           |
|                                                        |                      | 0.11          | 1403         | 3/0.34                | 2    | Berries   | 0.08, 0.06<br>(0.07)                         |           |
|                                                        |                      | 0.11          | 1403         | 4/0.44                | 2    | Berries   | 0.11, 0.09<br>(0.10)                         |           |
|                                                        |                      | 0.22          | 1403         | 0.22                  | 2    | Berries   | 0.78, 0.76<br>(0.77)                         |           |
|                                                        |                      | 0.22          | 1403         | 2/0.44                | 2    | Berries   | 0.35, 0.27<br>(0.31)                         |           |
|                                                        |                      | 0.22          | 1403         | 3/0.66                | 2    | Berries   | 0.22, 0.17<br>(0.20)                         |           |
|                                                        |                      | 0.22          | 1403         | 4/0.89                | 2    | Berries   | 0.12, 0.26<br>(0.19)                         |           |
|                                                        |                      | 0.45          | 1403         | 0.45                  | 2    | Berries   | 1.2, 1.1<br>(1.2)                            |           |
|                                                        |                      | 0.45          | 1403         | 2/0.90                | 2    | Berries   | 0.72, 0.54<br>( <u>0.63</u> )                |           |
|                                                        |                      | 0.45          | 1403         | 3/1.35                | 2    | Berries   | 0.35, 0.35<br>(0.35)                         | FR-0345   |
|                                                        |                      | 0.45          | 1403         | 4/1.8                 | 2    | Berries   | 0.43, 0.53<br>(0.48)                         |           |
|                                                        |                      | 0.90          | 1403         | 0.90                  | 2    | Berries   | 2.6, 2.8<br>(2.7)                            |           |
|                                                        |                      | 0.90          | 1403         | 2/1.8                 | 2    | Berries   | 0.90, 1.3<br>(1.1)                           |           |
|                                                        |                      | 0.90          | 1403         | 3/2.7                 | 2    | Berries   | 0.84, 0.87<br>(0.86)                         |           |
|                                                        |                      | 0.90          | 1403         | 4/3.6                 | 2    | Berries   | 1.1, 0.74                                    |           |

| Strawberry                                             | Application          |          |              |                       | DAT    | Commodity | Residue                       | Reference |   |
|--------------------------------------------------------|----------------------|----------|--------------|-----------------------|--------|-----------|-------------------------------|-----------|---|
| Trial<br>Country, year<br>(Variety)                    | Formulation (g ai/L) | kg ai/ha | Water (L/ha) | No/Total/<br>kg ai/ha | days   |           | mg/kg                         |           |   |
|                                                        |                      |          |              |                       |        |           | (0.92)                        |           |   |
| 1714-89-7281<br>Rosa, LA                               | 300 g/L              | 0.45     | 1440         | 0.45                  | 2      | Berries   | 0.83, 0.86<br>(0.85)          | FR-0345   |   |
| USA, 1989<br>(Chandler)                                |                      | 0.45     | 1440         | 2/0.89                | 2      | Berries   | 0.46, 0.50<br>( <u>0.48</u> ) |           |   |
| 1714-89-7282<br>Bonsall, CA, USA,                      | 300 g/L              | 0.45     | 2806         | 0.45                  | 2      | Berries   | 0.68, 1.0<br>(0.84)           | FR-0345   |   |
| (Chandler)                                             |                      | 0.45     | 2806         | 2/0.90                | 2      | Berries   | 0.59, 0.71<br>( <u>0.65</u> ) |           |   |
|                                                        |                      | 0.45     | 2806         | 3/1.3                 | 2      | Berries   | 0.43, 0.39 (0.41)             |           |   |
|                                                        |                      |          |              |                       | 29     |           | 0.05, 0.05<br>(0.05)          |           |   |
|                                                        |                      | 0.45     | 2806         | 4/1.8                 | 0      | Berries   | 0.55, 0.56<br>(0.56)          |           |   |
|                                                        |                      |          |              |                       | 1      |           | 0.55, 0.44<br>(0.50)          |           |   |
|                                                        |                      |          |              |                       | 2      |           | 0.52, 0.55<br>(0.54)          |           |   |
|                                                        |                      |          |              |                       | 3      |           | 0.45, 0.40<br>(0.43)          |           |   |
|                                                        |                      |          |              |                       | 4      |           | 0.60, 0.57<br>(0.59)          | _         |   |
|                                                        |                      |          |              |                       | 7      |           | 0.41. 0.38<br>(0.40)          |           |   |
|                                                        |                      |          |              |                       | 14     |           | 0.14, 0.13<br>(0.14)          |           |   |
|                                                        |                      |          |              |                       | 21     |           | 0.09, 0.10<br>(0.10)          |           |   |
|                                                        |                      |          |              |                       |        |           | 0.03, 0.04<br>(0.04)          |           |   |
| 1741-89-7283<br>Fresno, CA, USA,<br>1989<br>(Chandler) | 300 g/L              | 0.45     | 1403         | 2/0.90                | 2      | Berries   | 0.63, 0.74<br>( <u>0.69</u> ) | FR-0345   |   |
| 1741-89-7285<br>Santa Maria, CA,                       | 300 g/L              | 0.45     | 2806         | 0.45                  | 2      | Berries   | 1.5, 1.4<br>(1.5)             | FR-0345   |   |
| USA, 1989<br>(Muir)                                    |                      | 0.45     | 2806         | 2/0.90                | 2      | Berries   | 1.2, 1.2<br>(1.2)             |           |   |
| · /                                                    |                      | 0.45     | 2806         | 3/1.3                 | 2      | Berries   | 0.72, 0.76<br>(0.74)          |           |   |
|                                                        |                      | 0.45     | 2806         | 4/1.8                 | 2      | Berries   | 0.56, 0.66<br>(0.61)          |           |   |
| 1741-89-7287                                           | 300 g/L              | 0.11     | 1225         | 1/0.11                | 2      | Berries   | 0.07                          | FR-0345   |   |
| Grand Rapids, MI,<br>USA, 1989                         |                      | 0.22     | 1225         | 2/0.22                | 2      | Berries   | 0.16                          | 1         |   |
| (Not reported)                                         |                      | 89       | 0.45         | 1225                  | 1/0.45 | 2         | Berries                       | 0.28      | 1 |
| vot reported)                                          |                      | 0.90     | 1225         | 2/0.90                | 2      | Berries   | 0.63                          |           |   |

| Strawberry                          | Application          |          |              |                       | DAT  | Commodity | Residue                       | Reference  |
|-------------------------------------|----------------------|----------|--------------|-----------------------|------|-----------|-------------------------------|------------|
| Trial<br>Country, year<br>(Variety) | Formulation (g ai/L) | kg ai/ha | Water (L/ha) | No/Total/<br>kg ai/ha | days |           | mg/kg                         |            |
|                                     |                      | 0.11     | 1225         | 2/0.22                | 2    | Berries   | 0.09                          |            |
|                                     |                      | 0.22     | 1225         | 2/0.44                | 2    | Berries   | 0.23                          | 1          |
|                                     |                      | 0.45     | 1225         | 2/0.90                | 2    | Berries   | 0.48                          | -          |
|                                     |                      | 0.90     | 1225         | 2/1.8                 | 2    | Berries   | 1.1                           | 1          |
| 1714-89-7427<br>Vancouver, WA,      | 300 g/L              | 0.45     | 1403         | 0.45                  | 2    | Berries   | 0.21, 0.20<br>(0.21)          | FR-0345    |
| USA, 1989<br>(S. Huxson)            |                      | 0.45     | 1403         | 2/0.90                | 2    | Berries   | 0.29, 0.49<br>( <u>0.39)</u>  |            |
| 1714-89-7428<br>Gales Creek, OR,    | 300 g/L              | 0.45     | 1403         | 0.45                  | 29   | Berries   | 0.04, 0.03<br>(0.04)          | FR-0345    |
| USA, 1989<br>(Benton)               |                      | 0.45     | 1403         | 2/0.90                | 0    | Berries   | 0.38, 0.44<br>(0.41)          |            |
|                                     |                      |          |              |                       | 1    |           | 0.36, 0.47<br>(0.42)          |            |
|                                     |                      |          |              |                       | 2    |           | 0.36, 0.34<br>(0.35)          |            |
|                                     |                      |          |              |                       | 3    |           | 0.38, 0.37<br>(0.38)          |            |
|                                     |                      |          |              |                       | 4    |           | 0.28, 0.35<br>(0.32)          |            |
|                                     |                      |          |              |                       | 7    |           | 0.29, 0.32<br>(0.31)          |            |
|                                     |                      |          |              |                       | 14   |           | 0.19, 0.17<br>(0.18)          |            |
|                                     |                      |          |              |                       | 21   |           | 0.12, 0.11<br>(0.12)          |            |
|                                     |                      |          |              |                       | 28   |           | 0.23, 0.14<br>(0.19)          |            |
| V-1020A<br>Wilson, NC, USA,         | 300 g/L              | 0.45     | 963          | 0.45                  | 2    | Berries   | 0.16, 0.18<br>(0.17)          | FR-21-0346 |
| 1991<br>(Chandler)                  |                      | 0.45     | 963          | 2/0.90                | 2    | Berries   | 0.29, 0.22<br>( <u>0.26</u> ) |            |
| ` ′                                 | 300 g/L              | 0.45     | 935          | 0.45                  | 2    | Berries   | 0.29, 0.37<br>(0.33)          | FR-21-0346 |
|                                     |                      | 0.45     | 935          | 2/0.90                | 2    | Berries   | 0.59, 0.51<br>(0.55)          |            |

### Raspberry

Seven supervised trials on raspberries were conducted in the USA in 2005 (Samoil, 2007; Reference FR-0560) with higher rate and shorter PHI than the current GAP (applications at 0.22 to 0.34 kg ai/ha for a total of 0.67 kg ai/ha per season and a PHI of 3 days). Mature samples were collected 2–3 days after the last application and immediately stored frozen at -20 °C until analysis. Samples from the trials were analysed within this storage stability period 216 days with method RM-22-4. Concurrent recoveries ranged from 74–110%, mean = 98.3%, with SD of 8.2% (n=10).

Table 40 Residues of fenpropathrin in raspberries resulting from supervised trials in the United States

| Raspberry                                         | Application                            |               |                 |                      | DAT  | Commodity | Residue        | Reference |
|---------------------------------------------------|----------------------------------------|---------------|-----------------|----------------------|------|-----------|----------------|-----------|
| Trial<br>Country, year<br>(Variety)               | Formulation (g ai/L)                   | kg ai/ha      | Water<br>(L/ha) | No/Total<br>kg ai/ha | days |           | mg/kg          |           |
| GAP, USA                                          | 2.4 EC<br>(300g ai/l;<br>2.4lb ai/gal) | 0.22-<br>0.34 | 935-<br>2800    | 0.67                 | 3    |           |                |           |
| CA*62<br>Corralitos, CA,<br>USA, 2005<br>(Isabel) | 300 g/L                                | 0.45          | 505             | 2/0.9                | 2    | Berries   | 1.0, 1.2 (1.1) | FR-0560   |
| MI06<br>Holt, MI<br>USA, 2005<br>(Heritage)       | 300 g/L                                | 0.46<br>0.47  | 206             | 2/0.93               | 2    | Berries   | 5.5, 6.1 (5.8) | FR-0560   |
| NC12<br>Bridgetown, NJ<br>USA, 2005<br>(Mandarin) | 300 g/L                                | 0.44 0.45     | 271             | 2/0.89               | 2    | Berries   | 4.1, 7.1 (5.6) | FR-0560   |
| NC14<br>Fletcher, NC<br>USA, 2005<br>(Canby)      | 300 g/L                                | 0.48          | 290             | 2/0.96               | 3    | Berries   | 1.4, 1.9 (1.7) | FR-0560   |
| OR07<br>Aurora, OR<br>USA, 2005<br>(Marion)       | 300 g/L                                | 0.49 0.46     | 411 383         | 2/0.95               | 2    | Berries   | 4.7, 3.3 (4.0) | FR-0560   |
| OR08<br>Aurora, OR<br>USA, 2005<br>(Willamette)   | 300 g/L                                | 0.47 0.49     | 393<br>402      | 2/0.96               | 2    | Berries   | 1.8, 1.7 (1.8) | FR-0560   |
| OR09<br>Aurora, OR<br>USA, 2005<br>(Willamette)   | 300 g/L                                | 0.47          | 393             | 2/0.94               | 2    | Berries   | 2.3, 1.8 (2.1) | FR-0560   |

### Grapes

Twenty five supervised trials were conducted on grapes in the USA during 1983-2001. (Fujie, 1990; Fujie, 1992, Green, 2002; FR-01-0308, FR-01-0335, FR-01-0374). All trials were within the US GAP on grapes. Duplicate samples of mature fruits were collected 21 days after the last application.

All samples were analysed using analytical method RM-22-4 with an LOQ of 0.01 mg/kg within the storage stability period. Concurrent recoveries were within the acceptable range of 70 to 120%.

Table 41 Residues of fenpropathrin in grapes resulting from supervised trials in the United States

| GRAPES                                                                  | Application           |               |              |                           | DAT  | Commodity                                                      | Residue                                                                    | Reference                                                             |
|-------------------------------------------------------------------------|-----------------------|---------------|--------------|---------------------------|------|----------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Trial<br>Country, year<br>(Variety)                                     | Formulation (g ai/l)  | kg ai/ha      | Water (l/ha) | No./<br>Total<br>kg ai/ha | days |                                                                | mg/kg                                                                      |                                                                       |
| GAP, USA for grapes                                                     | 300 EC<br>(300g ai/l) | 0.11-<br>0.45 | 234-<br>1870 | 2/<br>0.9                 | 21   |                                                                |                                                                            |                                                                       |
| GRAPE                                                                   | 200 - /I              | 0.112         | 1010         | 2/0.227                   | 125  | D1                                                             | 0.15.0.12                                                                  | ED 01 0200                                                            |
| M335 T-5952<br>Fresno, CA,                                              | 300 g/L               | 0.112         | 1019         | 2/0.336                   | 25   | Bunches                                                        | 0.15, 0.13                                                                 | FR-01-0308                                                            |
| USA, 1983                                                               |                       | 0.224         | 1019<br>1019 | 2/0.224                   | 25   | Dunahas                                                        | 0.07, 0.12                                                                 | -                                                                     |
| (Thompson<br>Seedless)                                                  |                       |               |              | 2/0.224                   | 23   | Bunches                                                        | 0.07, 0.12                                                                 |                                                                       |
| ĺ                                                                       |                       | 0.112         | 1019         |                           |      |                                                                |                                                                            |                                                                       |
| R187 T-6077,<br>Fresno, CA,<br>USA, 1984<br>(Thompson<br>Seedless)      | 300 g/L               | 0.224         | 1001         | 4/0.896                   | 21   | Raisins* Wet pomace Dry pomace Juice Raisin waste              | 0.31; 0.43<br>(0.37)<br>0.45<br>0.49<br>2.45<br>0.02; 0.03<br>0.03, 0.02** | FR-01-0308<br>* dried 15 days<br>in<br>field<br>** repeat<br>analysis |
| R187 T-6078,<br>Madera, CA,<br>USA, 1984<br>(Thompson<br>Seedless)      | 300 g/L               | 0.224         | 1403         | 4/0.896                   | 21   | Bunches  Raisins*  Wet pomace  Dry pomace  Juice  Raisin waste | 0.60; 0.90<br>(0.75)<br>1.52<br>0.90<br>4.90<br>0.09; 0.09<br>0.13, 0.13** | FR-01-0308<br>* dried 15 days<br>in<br>field<br>** repeat<br>analysis |
| R187 T-6079,<br>Delano, CA,<br>USA, 1984<br>(Centennial)                | 300 g/L               | 0.224         | 2338         | 2/0.448                   | 14   | Bunches                                                        | 0.49, 0.64                                                                 | FR-01-0308                                                            |
| R187 T-6081,<br>Santa Rosa, CA,<br>USA, 1984<br>(Cabernet<br>Sauvignon) | 300 g/L               | 0.224         | 935          | 0.224                     | 95   | Fruit                                                          | 0.27, 0.16                                                                 | FR-01-0308                                                            |
| R187 T-6409,<br>Fresno, CA,                                             | 300 g/L               | 0.224         | 1019         | 4/0.896                   | 1    | Fruit                                                          | 0.49, 0.35<br>0.43*                                                        | FR-01-0308<br>* washed                                                |
| USA, 1985<br>(Thompson                                                  |                       | 0.224         | 1019         | 4/0.896                   | 7    | Fruit                                                          | 0.72; 0.57                                                                 | under<br>tap water                                                    |
| Seedless)                                                               |                       | 0.224         | 1019         | 4/0.896                   | 14   | Fruit                                                          | 0.48; 0.40                                                                 | tup water                                                             |
|                                                                         |                       | 0.224         | 1019         | 4/0.896                   | 21   | Fruit                                                          | 0.42; 0.62<br>(0.52)                                                       |                                                                       |
|                                                                         |                       | 0.224         | 1019         | 4/0.896                   | 28   | Fruit                                                          | 0.44, 0.58<br>(0.51)                                                       |                                                                       |
|                                                                         |                       | 0.224         | 1019         | 4/0.896                   | 35   | Fruit                                                          | 1.1; 0.56<br>(0.83)                                                        |                                                                       |
| R187 T-6410,                                                            | 300 g/L               | 0.056         | 1871         | 4/0.224                   | 21   | Bunches                                                        | 0.05; 0.16                                                                 | FR-01-0308                                                            |
| CA, USA, 1985<br>(Thompson                                              |                       | 0.112         | 1871         | 4/0.448                   | 21   | Bunches                                                        | 0.15; 0.10                                                                 |                                                                       |
| Seedless)                                                               |                       | 0.224         | 1871         | 4/0.896                   | 21   | Bunches                                                        | 0.45; 0.44<br>(0.45)                                                       |                                                                       |
|                                                                         |                       | 0.448         | 1871         | 4/1.792                   | 21   | Bunches                                                        | 0.81; 1.5<br>(1.2)                                                         |                                                                       |
| R187 T-6411,                                                            | 300 g/L               | 0.224         | 1871         | 0.224                     | 21   | Bunches                                                        | 0.34, 0.21                                                                 | FR-01-0308                                                            |
| Santa Maria, CA,<br>USA, 1985<br>(Chardonnay)                           | - V B/ L              | 0.224         | 1871         | 2/0.448                   | 21   | Bunches                                                        | 0.19; 0.96<br>(0.58)                                                       |                                                                       |
| (Simiaoining)                                                           |                       | 0.224         | 1871         | 3/0.672                   | 21   | Bunches                                                        | 1.0; 0.77<br>(0.89)                                                        |                                                                       |

| GRAPES                                                             | Application          |          |              |                           | DAT  | Commodity                                                                           | Residue                                                                        | Reference                                                                                        |
|--------------------------------------------------------------------|----------------------|----------|--------------|---------------------------|------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Trial<br>Country, year<br>(Variety)                                | Formulation (g ai/l) | kg ai/ha | Water (l/ha) | No./<br>Total<br>kg ai/ha | days |                                                                                     | mg/kg                                                                          |                                                                                                  |
|                                                                    |                      | 0.224    | 1871         | 4/0.896                   | 21   | Bunches                                                                             | 1.6; 1.3 <u>(</u> 1.5)                                                         |                                                                                                  |
| R187 T-6412,<br>Fresno, CA,<br>USA, 1985<br>(Thompson<br>Seedless) | 300 g/L              | 0.224    | 1019         | 4/0.896                   | 21   | Bunches Raisins* Wet pomace Dry pomace Juice Raisins – off grade* Raisin waste Wine | 1.0; 0.48<br>(0.74)<br>0.52<br>0.85<br>1.2<br>< 0.01<br>0.81<br>3.23<br>< 0.01 | FR-01-0308<br>* dried 33 days<br>in<br>field                                                     |
| R187 T-6413,<br>Ukiah, CA, USA,<br>1985<br>(Caignane)              | 300 g/L              | 0.224    | 1403         | 4/0.896                   | 21   | Bunches Juice Wine                                                                  | 3.3; 2.9 (3.1)<br>< 0.01; 0.01<br>< 0.01;<br>< 0.01                            | FR-01-0308                                                                                       |
| R187 T-6414,                                                       | 300 g/L              | 0.224    | 935          | 0.224                     | 1    | Bunches                                                                             | 1.8; 2.8                                                                       | FR-01-0308                                                                                       |
| Prosser, WA,<br>USA, 1985                                          |                      | 0.224    | 935          | 0.224                     | 7    | Bunches                                                                             | 2.0; 1.9                                                                       |                                                                                                  |
| (Chardonnay)                                                       |                      | 0.224    | 935          | 0.224                     | 14   | Bunches                                                                             | 1.8; 1.6                                                                       |                                                                                                  |
|                                                                    |                      | 0.224    | 935          | 0.224                     | 21   | Bunches                                                                             | 1.5; 1.3                                                                       |                                                                                                  |
|                                                                    |                      | 0.224    | 935          | 0.224                     | 28   | Bunches                                                                             | 1.0; < 0.01                                                                    |                                                                                                  |
|                                                                    |                      | 0.224    | 935          | 0.224                     | 35   | Bunches                                                                             | 0.94; 0.10                                                                     |                                                                                                  |
| R187 T-6415,                                                       | 300 g/L              | 0.224    | 935          | 4/0.896                   | 1    | Bunches                                                                             | 1.3; 0;82                                                                      | FR-01-0308                                                                                       |
| Fredonia, NY,<br>USA, 1985                                         |                      |          |              |                           | 7    |                                                                                     | 0.90; 0.92                                                                     | * dried 33 days in field  FR-01-0308  FR-01-0308  FR-01-0308  FR-01-0308  FR-01-0308  FR-01-0308 |
| (Concord)                                                          |                      |          |              |                           | 14   |                                                                                     | 0.47; 0.87                                                                     |                                                                                                  |
|                                                                    |                      |          |              |                           | 21   |                                                                                     | 0.81; 1.4<br>(1.1)                                                             |                                                                                                  |
|                                                                    |                      |          |              |                           | 28   |                                                                                     | 0.80; 0.66                                                                     |                                                                                                  |
|                                                                    |                      |          |              |                           | 35   |                                                                                     | 0.89; 0.91                                                                     |                                                                                                  |
| R187 T-6416,<br>Wooster, OH,                                       | 300 g/L              | 0.056    | 935          | 4/0.224                   | 21   | Bunches                                                                             | 0.08; 0.22                                                                     | FR-01-0308                                                                                       |
| USA, 1985                                                          |                      | 0.112    | 935          | 4/0.448                   | 21   | Bunches                                                                             | 0.16; 0.38                                                                     |                                                                                                  |
| (Concord)                                                          |                      | 0.224    | 935          | 4/0.896                   | 21   | Bunches                                                                             | 1.4; 0.72<br>(1.1)                                                             |                                                                                                  |
|                                                                    |                      | 0.448    | 935          | 4/1.792                   | 21   | Bunches Wet pomace Dry pomace Juice                                                 | 2.4; 2.8 (2.6)<br>3.8; 1.8<br>11; 10<br>0.01; < 0.01                           |                                                                                                  |
| R187 T-6417,<br>Fennville, MI,                                     | 300 g/L              | 0.224    | 926          | 0.224                     | 21   | Bunches                                                                             | 0.26; 0.16                                                                     | FR-01-0308                                                                                       |
| USA, 1985                                                          |                      | 0.224    | 926          | 2/0.448                   | 21   | Bunches                                                                             | 1.5; 1.0 (1.3)                                                                 | * washed,<br>frozen                                                                              |
| (Concord)                                                          |                      | 0.224    | 926          | 3/0.672                   | 21   | Bunches                                                                             | 1.2; 1.8 (1.5)                                                                 |                                                                                                  |
|                                                                    |                      | 0.224    | 926          | 4/0.896                   | 21   | Bunches                                                                             | 1.5; 1.5 <u>(1.5)</u><br>1.0*                                                  |                                                                                                  |
| R187 T-6725,<br>Phelps, NY,<br>USA, 1986<br>(Catawba)              | 300 g/L              | 0.224    | 935          | 4/0.896                   | 19   | Bunches                                                                             | 1.4; 0.81<br>(1.1)                                                             | FR-01-0308                                                                                       |
| R187 T-6726,<br>Fennville, MI,<br>USA, 1986<br>(Concord)           | 300 g/L              | 0.224    | 926          | 4/0.896                   | 14   | Bunches                                                                             | 1.6, 1.2                                                                       | FR-01-0308                                                                                       |
| R187 T-6728,<br>Fresno, CA,<br>USA, 1986                           | 300 g/L              | 0.224    | 1001         | 4/0.896                   | 21   | Bunches                                                                             | 0.93; 1.1<br>(1.0)<br>0.87*                                                    | FR-01-0308<br>* washed<br>under                                                                  |

| GRAPES                                                                | Application          |          |              |                           | DAT  | Commodity                                                                              | Residue                                                                                                 | Reference                                 |
|-----------------------------------------------------------------------|----------------------|----------|--------------|---------------------------|------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Trial<br>Country, year<br>(Variety)                                   | Formulation (g ai/l) | kg ai/ha | Water (l/ha) | No./<br>Total<br>kg ai/ha | days |                                                                                        | mg/kg                                                                                                   |                                           |
| (Thompson<br>Seedless)                                                |                      |          |              |                           |      |                                                                                        |                                                                                                         | tap water                                 |
| R187 T-6731,<br>Hughson, CA,<br>USA, 1986<br>(Chenin Blanc)           | 300 g/L              | 0.224    | 935          | 4/0.896                   | 21   | Bunches Wine Juice Wet pomace Dry pomace Stems                                         | 1.3; 1.5_(1.4)<br>< 0.01<br>< 0.01<br>0.99<br>2.6<br>1.2                                                | FR-01-0308                                |
| R187 T-6829,                                                          | 300 g/L              | 0.224    | 935          | 4/0.896                   | 21   | Bunches                                                                                | 5.7; 5.4 (5.6)                                                                                          | FR-01-0308                                |
| Soledad, CA,<br>USA, 1986<br>(Cabernet<br>Sauvignon)                  |                      | 0.224    | 935          | 4/0.896                   | 21   | Wet pomace<br>Dry pomace<br>Juice<br>Wine                                              | 4.1<br>9.4<br>0.06<br>< 0.01                                                                            |                                           |
| R187 T-6835,                                                          | 300 g/L              | 0.414    | 1796         | 4/1.656                   | 1    | Bunches                                                                                | 1.0; 0.98                                                                                               | FR-01-0308                                |
| Prosser, WA,                                                          | 300 g/L              | 0.414    | 1796         | 4/1.656                   | 7    | Bunches                                                                                | 3.2; 1.9                                                                                                | *duplicate                                |
| USA, 1986                                                             |                      | 0.414    | 1796         | 4/1.656                   | 14   | Bunches                                                                                | 1.6; 1.8                                                                                                | analysis                                  |
| (Chardonnay)                                                          |                      | 0.414    | 1796         | 4/1.656                   | 21   | Bunches Juice                                                                          | 1.2; 1.3 (1.3)<br>0.04; 0.05;<br>0.04                                                                   |                                           |
|                                                                       |                      |          |              |                           |      | Wine                                                                                   | < 0.01;<br>< 0.01;<br>< 0.01;<br>< 0.01                                                                 |                                           |
|                                                                       |                      |          |              |                           |      | Dry pomace                                                                             | 4.2, 4.0*                                                                                               |                                           |
|                                                                       |                      | 0.414    | 1796         | 4/1.656                   | 28   | Bunches                                                                                | 0.72; 1.6                                                                                               |                                           |
|                                                                       |                      | 0.414    | 1796         | 4/1.656                   | 35   | Bunches                                                                                | 1.7; 2.3                                                                                                |                                           |
| 1714/90/GRA<br>T-7544,<br>Hughson, CA,<br>USA, 1990<br>(Chenin Blanc) | 300 g/L              | 0.224    | 224          | 4/0.896                   | 21   | Bunches                                                                                | 0.70: 0.92<br>(0.81)                                                                                    | FR-01-0335                                |
| 1714/90/GRA<br>T-7545, Fresno,                                        | 300 g/L              | 0.224    | 234          | 4/0.896                   | 21   | Bunches                                                                                | 0.53; 0.53<br>(0.53)                                                                                    | FR-01-0335<br>* sampled in                |
| CA, USA, 1990<br>(Thompson<br>Seedless)                               |                      | 0.448    | 234          | 4/1.792                   | 21   | Bunches*                                                                               | 0.75; 0.93<br>(0.84)                                                                                    | field or<br>processing<br>plant           |
|                                                                       |                      | 0.448    | 234          | 4/1.792                   | 21   | Raisins*  Bunches * Raisins * Hydrated Raisin Raisin Waste Juice Wet pomace Dry pomace | 3.3; 3.1<br>0.53<br>3.3, 3.1**<br>2.4, 2.3**<br>6.0, 6.0 **<br>0.13, 0.12**<br>1.1, 1.1**<br>2.0, 2.1** | ** duplicate<br>analysis<br>of one sample |
| V-22939-A                                                             | 300 g/L              | 0.465    | 935          | 2/0.964                   | 21   | Fruit                                                                                  | 1.7; 1.6 (1.7)                                                                                          | FR-0374                                   |
| 22939/FR-0374,<br>Madera, CA,<br>USA, 2001<br>(Thompson<br>Seedless)  |                      | 0.499    | 1010         |                           |      |                                                                                        |                                                                                                         |                                           |
| V-22939-B<br>22939/FR-0374,<br>Fresno, CA,<br>USA, 2001<br>(Thompson  | 300 g/L              | 0.460    | 926<br>935   | 2/0.927                   | 21   | Fruit                                                                                  | 1.7; 1.5 (1.6)                                                                                          | FR-0374                                   |

| GRAPES                                                               | Application          |          |              |                           |      | Commodity | Residue  | Reference |
|----------------------------------------------------------------------|----------------------|----------|--------------|---------------------------|------|-----------|----------|-----------|
| Trial<br>Country, year<br>(Variety)                                  | Formulation (g ai/l) | kg ai/ha | Water (l/ha) | No./<br>Total<br>kg ai/ha | days |           | mg/kg    |           |
| Seedless)                                                            |                      |          |              |                           |      |           |          |           |
| V-22939-B                                                            | 300 g/L              | 0.924    | 926          | 2/1.863                   | 21   | Fruit     | 2.9; 2.7 | FR-0374   |
| 22939/FR-0374,<br>Fresno, CA,<br>USA, 2001<br>(Thompson<br>Seedless) |                      | 0.939    | 945          | c .                       |      |           |          |           |

Assorted Tropical and Subtropical Fruits – Edible Peel

#### Olives

Three supervised trials were conducted on olives in the USA during 2005 (Samoil, 200; Reference FR-0561). Each trial consisted of one treated and one untreated plot, except CA64, which had two treated plots. At each trial, two applications of fenpropathrin 2.4 EC were made 7 days apart to treated plots at the rate of 0.45 to 0.48 kg ai/ha for a total of 0.9 kg ai/ha. In one plot for trial CA64, two applications at 5× rate (2.3 kg ai/ha for a total of 4.64 kg ai/ha) were made, to provide samples for processing into olive oil.

Samples of mature olive fruits were taken 7–8 and 14–15 days after the last treatment. Pits were removed from the olives. Samples were immediately frozen at -20 °C until analysis in 200 days. The samples were analysed for residues of fenpropathrin using the method "Determination of fenpropathrin in olive, Revision 0", a method based on method RM-22-4. The method was validated with an LOQ of 0.02 mg/kg for olives. Concurrent recoveries obtained during sample analysis ranged from 69 to 103% for olive fruit without pits. Note that apparent residues at levels of 0.01–0.03 mg/kg were seen in all control samples of olives without pits. The report explained that this should have no adverse effect on the data for treated olives since the residue levels obtained were at least 40× the magnitude of those from the controls.

Table 42 Residues of fenpropathrin in olives resulting from supervised trials in the United States

| OLIVES                              | Application               |               |              |                           | DAT  | Commodity              | Residue                    | Reference |
|-------------------------------------|---------------------------|---------------|--------------|---------------------------|------|------------------------|----------------------------|-----------|
| Trial<br>Country, year<br>(Variety) | Formulation (g ai/L)      | kg ai/ha      | Water (L/ha) | No./<br>Total<br>kg ai/ha | days |                        | mg/kg                      |           |
| GAP, USA                            | 300 EC<br>(2.4 lb ai/gal) | 0.22-<br>0.34 | 935          | 2/0.9                     | 7    |                        |                            |           |
| CA63<br>Davis, CA, USA,             | 300 EC                    | 0.45<br>0.45  | 776<br>786   | 2/0.9                     | 7    | Olive fruit,<br>pitted | 2.1, 2.3<br>( <u>2.2</u> ) | FR-0561   |
| 2005<br>(Manzanillo)                |                           |               |              |                           | 14   | Olive fruit,<br>pitted | 1.8, 1.6<br>(1.7)          |           |
| CA64<br>Orange Cove, CA,            | 300 EC                    | 0.46<br>0.46  | 963<br>945   | 2/0.92                    | 7    | Olive fruit, pitted    | 1.8, 2.0<br>( <u>1.9</u> ) | FR-0561   |
| USA, 2005                           |                           |               |              |                           | 14   | Olive fruit,           | 1.5, 2.3                   |           |

| OLIVES                              | Application          |              |                 |                           | DAT  | Commodity              | Residue                    | Reference |
|-------------------------------------|----------------------|--------------|-----------------|---------------------------|------|------------------------|----------------------------|-----------|
| Trial<br>Country, year<br>(Variety) | Formulation (g ai/L) | kg ai/ha     | Water<br>(L/ha) | No./<br>Total<br>kg ai/ha | days |                        | mg/kg                      |           |
| (Manzanillo)                        |                      |              |                 |                           |      | pitted                 | (1.9)                      |           |
| CA65<br>Healdsburg, CA,             | 300 EC               | 0.48<br>0.47 | 505<br>496      | 2/0.95                    | 8    | Olive fruit,<br>pitted | 3.7, 3.4<br>( <u>3.6</u> ) | FR-0561   |
| USA, 2005<br>(Leccino)              |                      |              |                 |                           | 15   | Olive fruit,<br>pitted | 1.2, 2.3<br>(1.8)          |           |

## Fruiting Vegetables, Cucurbits

#### Cucumber

Six supervised trials on cucumber were conducted in the USA in 1994 and 1996 (Samoil, 1999; Reference FR-0556). The EC formulation of fenpropathrin containing 300 g/L active ingredient, was applied 3 to 5 times to treated plots at the rate of 0.21 to 0.24 kg ai/ha for a total application of 0.7 to 1.1 kg ai/ha per plot. Applications were made at weekly intervals. At maturity, 6 to 8 days after the last application, samples were harvested and immediately frozen at -20 °C. Samples were analysed within the storage stability period with RM-22-2 (LOQ of 0.01 mg/kg). Concurrent recoveries from fortified samples analysed together with the field samples ranged from 66–115% (mean = 89%, RSD= 13.8%, n=15).

Table 43 Residues of fenpropathrin in cucumber resulting from supervised trials in the United States

| CUCUMBER                                                 | Application          |                      |                   |                       | DAT  | Commodity   | Residue                       | Reference |
|----------------------------------------------------------|----------------------|----------------------|-------------------|-----------------------|------|-------------|-------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                      | Formulation (g ai/L) | kg ai/ha             | Water<br>(L/ha)   | No/Total/<br>kg ai/ha | days |             | mg/kg                         |           |
| GAP, USA                                                 | 300 EC               | 0.22-<br>0.34        | 187- 935          | 0.9                   | 7    |             |                               |           |
| 94-FL50<br>Gainesville, FL,<br>USA, 1994<br>(Comet II)   | 300 EC               | 0.22<br>0.24<br>0.24 | 289<br>283<br>292 | 3/0.7                 | 7    | Whole fruit | 0.05, 0.06,<br>0.04<br>(0.05) | FR-0556   |
| 94-OH*14<br>Fremont, OH<br>USA, 1994<br>(Carolina)       | 300 EC               | 0.22<br>0.22<br>0.22 | 631<br>631<br>636 | 3/0.7                 | 8    | Whole fruit | < 0.01,<br>< 0.01<br>(< 0.01) | FR-0556   |
| 96-TX*37<br>Weslaco, TX,<br>USA, 1996<br>(Napoleon)      | 300 EC               | 0.22                 | 281               | 4/0.9                 | 7    | Whole fruit | < 0.01, 0.01<br>(0.01)        | FR-0556   |
| 96-GA*26<br>Tifton, GA,<br>USA, 1996<br>(Straight Eight) | 300 EC               | 0.22                 | 281               | 4/0.9                 | 7    | Whole fruit | 0.01, < 0.01<br>(0.01)        | FR-0556   |
| 96-SC*16<br>Charleston, SC<br>USA, 1996<br>(Regal)       | 300 EC               | 0.22                 | 222               | 4/0.9                 | 7    | Whole fruit | < 0.01,<br>< 0.01<br>(< 0.01) | FR-0556   |
| 96-OH*28                                                 | 300 EC               | 0.22                 | 742 (3x)          | 5/1.1                 | 7    | Whole fruit | < 0.01,                       | FR-0556   |

| CUCUMBER                                           | Application          |              |                          |                       | DAT  | Commodity   | Residue                       | Reference |
|----------------------------------------------------|----------------------|--------------|--------------------------|-----------------------|------|-------------|-------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                | Formulation (g ai/L) | kg ai/ha     | Water (L/ha)             | No/Total/<br>kg ai/ha | days |             | mg/kg                         |           |
| Fremont, OH<br>USA, 1996<br>(Score)                |                      |              | 757<br>461               |                       |      |             | < 0.01<br>(< 0.01)            |           |
| 96-MD02<br>Salisbury, MD<br>USA, 1996<br>(Thunder) | 300 EC               | 0.22<br>0.21 | 215<br>220<br>212<br>213 | 4/0.86                | 7    | Whole fruit | 0.03, 0.02<br>(0.03)          | FR-0556   |
| 96-IN02<br>Lafayette, IN<br>USA, 1996<br>(SMR 58)  | 300 EC               | 0.21<br>0.22 | 315<br>306<br>314<br>314 | 4/0.87                | 7    | Whole fruit | < 0.01,<br>< 0.01<br>(< 0.01) | FR-0556   |

#### Melon

Ten supervised trials on melons (cantaloupe) were conducted in the USA in 1994 (Green, 1995; Reference FR-0375). The EC formulation of fenpropathrin containing 300 g/L active ingredient, was applied 4 times to treated plots at the rate of 0.22 kg ai/ha for a total application of 0.9 kg ai/ha per plot. Applications were made at weekly intervals using tractor mounted boom sprayers or CO<sub>2</sub>-powered backpack sprayers. At maturity, 7 days after the last application, samples were harvested and immediately frozen at -20 °C. In two trials, samples were also collected 1, 3, and 14 days, and on days 3 and 7 after application. In two trials samples of treated melons were sectioned, separating the rind from the flesh. The samples were stored up to 107 days before analysis. Samples were analysed by method RM-22-4, which was validated to an LOQ of 0.01 mg/kg. Concurrent recoveries from fortified samples analysed together with the field samples ranged from 82–98% (mean = 90%, RSD= 4.3%, n=16).

Table 44 Residues of fenpropathrin in melon resulting from supervised trials in the United States

| MELON                                           | Application          |            |              |                      | DAT         | Commodity | Residue                                                              | Reference |
|-------------------------------------------------|----------------------|------------|--------------|----------------------|-------------|-----------|----------------------------------------------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)             | Formulation (g ai/L) | kg ai/ha   | Water (L/ha) | No/Total<br>kg ai/ha | days        |           | (mg/kg)                                                              |           |
| GAP, USA                                        | 300 EC               | 0.22- 0.34 | 187-<br>935  | 0.9                  | 7           |           |                                                                      |           |
| V-10868-B<br>Ripon, CA<br>USA, 1994<br>(Magnum) | 300 EC               | 0.22       | 281-<br>290  | 2/0.88               | 7           | Melon     | 0.2, 0.23<br>(0.22)<br>0.51, 0.64<br>(0.58)                          | FR-0375   |
| V-10868-C<br>Ripon, CA<br>USA, 1994<br>(Magnum) | 300 EC               | 0.22       | 281          | 4/0.88               | 1<br>3<br>7 | Melon     | 0.24, 0.40<br>(0.32)<br>0.45, 0.35<br>(0.40)<br>0.31, 0.23<br>(0.27) | FR-0375   |
|                                                 |                      |            |              |                      | 14          |           | 0.23, 0.25                                                           |           |

| MELON                                                        | Application          |          |              |                      | DAT    | Commodity                     | Residue                                                                                  | Reference |
|--------------------------------------------------------------|----------------------|----------|--------------|----------------------|--------|-------------------------------|------------------------------------------------------------------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                          | Formulation (g ai/L) | kg ai/ha | Water (L/ha) | No/Total<br>kg ai/ha | days   |                               | (mg/kg)                                                                                  |           |
|                                                              |                      |          |              |                      |        |                               | (0.24)                                                                                   |           |
| V-10868-D<br>Uvalde, TX<br>USA, 1994<br>(Explorer)           | 300 EC               | 0.22     | 281          | 4/0.88               | 7      | Melon                         | 0.10, 0.14<br>(0.12)                                                                     | FR-0375   |
| V-10868-E<br>Uvalde, TX<br>USA, 1994<br>(Explorer)           | 300 EC               | 0.22     | 271<br>281   | 4/0.88               | 7      | Melon                         | 0.14, 0.15<br>(0.15)<br>0.24, 0.21<br>(0.23)                                             | FR-0375   |
| V-10868-F<br>Somerton, AZ<br>USA, 1994<br>(Top Mark)         | 300 EC               | 0.22     | 281          | 4/0.88               | 7      | Melon                         | 0.12, 0.12<br>(0.12)                                                                     | FR-0375   |
| V-10868-G<br>Fishers, Indiana<br>USA, 1994<br>(Iroqouis)     | 300 EC               | 0.22     | 131<br>140   | 4/0.88               | 7      | Melon                         | 0.26, 0.28<br>(0.27)<br>0.46, 0.34<br>(0.40)                                             | FR-0375   |
| V-10868-H<br>Cory, Colorado<br>USA, 1994<br>(Mission Hybrid) | 300 EC               | 0.22     | 281          | 4/0.88               | 7      | Melon                         | 0.08, 0.10<br>(0.09)                                                                     | FR-0375   |
| V-10868-I<br>Hawkinsville, GA,<br>USA, 1994<br>(Schoons)     | 300 EC               | 0.22     | 187          | 4/0.88               | 3<br>7 | Melon                         | 0.16, 0.07<br>(0.12)<br>0.06, 0.08<br>(0.07)                                             | FR-0375   |
| V-10868-J<br>Germansville, PA<br>USA, 1994<br>(Ball 1776)    | 300 EC               | 0.25     | 187<br>215   | 4/1.0                | 7      | Whole melon Rind Centre Melon | 0.17, 0.23<br>(0.20)<br>0.39, 0.36<br>(0.38)<br>< 0.01, < 0.01<br>(< 0.01)<br>0.30, 0.21 | FR-0375   |
| V-10868-L<br>Dos Palos, CA<br>USA, 1994<br>(Iron Horse)      | 300 EC               | 0.22     | 187          | 4/0.88               | 7      | Melon<br>Rind<br>Centre       | 0.20, 0.29<br>(0.25)<br>0.28, 0.35<br>(0.32)<br>< 0.01, < 0.01<br>(< 0.01)               | FR-0375   |

# Squash

Seven supervised trials on summer squash were conducted in the US in 1994 and 1996 (Samoil, 1999; Reference FR-0557). The EC formulation of fenpropathrin containing 300 g/L active ingredient, was applied 4 times to treated plots at the rate of 0.2 to 0.25 kg ai/ha for a total application of 0.85 to 0.98 kg ai/ha per plot. Applications were made at weekly intervals. Samples were analysed with

method RM-22-2 (LOQ of 0.01 mg/kg). Concurrent recoveries from fortified samples analysed together with the field samples ranged from 80-116% (mean = 97%, RSD= 11.8%, n=11).

Table 45 Residues of fenpropathrin in squash resulting from supervised trials in the United States

| SQUASH                                                               | Application               |                              |                          |                           | DAT  | Commodity        | Residue                    | Reference |
|----------------------------------------------------------------------|---------------------------|------------------------------|--------------------------|---------------------------|------|------------------|----------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                                  | Formulation (g ai/L)      | kg ai/ha                     | Water (L/ha)             | No./<br>Total<br>kg ai/ha | days |                  | mg/kg                      |           |
| GAP, USA                                                             | 300 EC<br>(2.4 lb ai/gal) | 0.22- 0.34                   | 187-<br>935              | 2/0.9                     | 7    |                  |                            |           |
| 94-NJ33<br>Bridgeton, NJ,<br>USA, 1994<br>(Lemon Drop)               | 300 EC                    | 0.22                         | 496 -<br>533             | 4/0.89                    | 7    | Summer<br>squash | 0.01, 0.02 (0.02)          | FR-0557   |
| 94-FL75<br>Gainesville, FL,<br>USA, 1994<br>(Dixier Hybrid)          | 300 EC                    | 0.25<br>0.25<br>0.25<br>0.23 | 309                      | 4/0.98                    | 7    | Summer<br>squash | 0.03, 0.04 (0.04)          | FR-0557   |
| 94-WA*61<br>Moxee, WA, USA,<br>1994<br>(Early<br>Straightneck)       | 300 EC                    | 0.22                         | 369                      | 4/0.89                    | 8    | Summer<br>squash | < 0.01, < 0.01<br>(< 0.01) | FR-0557   |
| 96-OH*10<br>Fremont, OH,<br>USA, 1996<br>(Zucchini Select<br>Hybrid) | 300 EC                    | 0.21<br>0.22<br>0.22<br>0.20 | 730<br>739<br>739<br>917 | 4/0.85                    | 7    | Summer<br>squash | < 0.01, < 0.01<br>(< 0.01) | FR-0557   |
| 96-CA26<br>Fremont, CA,<br>USA, 1996<br>(Chefini)                    | 300 EC                    | 0.21<br>0.20<br>0.23<br>0.25 | 243<br>243<br>290<br>243 | 4/0.89                    | 6    | Summer<br>squash | 0.01, 0.03<br>(0.02)       | FR-0557   |
| 96-MD01<br>Salisbury, MD,<br>USA, 1996<br>(Tigress)                  | 300 EC                    | 0.21<br>0.21<br>0.22<br>0.21 | 421<br>421<br>430<br>421 | 4/0.85                    | 7    | Summer<br>squash | 0.04, 0.02 (0.03)          | FR-0557   |
| 96-IN01<br>Lafayette, IN,<br>USA, 1996<br>(Black Beauty)             | 300 EC                    | 0.22<br>0.21<br>0.22<br>0.21 | 318<br>309<br>318<br>309 | 4/0.86                    | 7    | Summer<br>squash | < 0.01, < 0.01<br>(< 0.01) | FR-0557   |

### Fruiting Vegetables other than Cucurbits

# Tomato

Nine supervised trials conducted on tomatoes in the USA in 1993 (Green, 1994; Reference FR-41-0360). Treated plots received 4 applications of an EC formulation containing 300 g/L fenpropathrin, at the rate of 0.22 kg ai/ha, for a total application of 0.88 kg ai/ha. Mature tomato samples were

collected 3 days after the last application and for decline trials, samples were also collected 1, 14, and 21 days after the last application. Upon collection, samples were stored at -20 °C until analysis. All samples from this study were analysed within this validated storage interval. Residues of fenpropathrin were determined by method RM-22-4 with modifications. Concurrent recoveries from fortified samples analysed together with the field samples were within the acceptable range of 70 to 120%.

Table 46 Residues of fenpropathrin in tomato resulting from supervised trials in the United States

| TOMATO                                                            | Application               |                                              |                                        |                      | DAT  | Commodity    | Residue                       | Reference  |
|-------------------------------------------------------------------|---------------------------|----------------------------------------------|----------------------------------------|----------------------|------|--------------|-------------------------------|------------|
| Trial<br>Country, year<br>(Variety)                               | Formulation (g ai/L)      | kg ai/ha                                     | Water (L/ha)                           | No/Total<br>kg ai/ha | days |              | mg/kg                         |            |
| GAP, USA                                                          | 300 EC<br>(2.4 lb ai/gal) | 0.17-<br>0.22                                | 234 -<br>1122                          | 0.9                  | 3    |              |                               |            |
| V-1032-A<br>Stanislaus County,<br>CA, USA, 1992<br>(UC-82)        | 300 EC                    | 0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22 | 327<br>327<br>532<br>529<br>527<br>532 | 6/1.34               | 3    | Whole fruit  | 0.34, 0.61 (0.48)             | FR-41-0360 |
|                                                                   |                           | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0       | 327<br>327<br>532<br>529<br>527<br>532 | 6/6.0                | 3    | Whole fruit  | 2.9, 2.5<br>(2.7)             |            |
| V-10633-A<br>San Joaquin<br>County, CA, USA,<br>1993<br>(Roma VF) | 300 EC                    | 0.22                                         | 701                                    | 4/0.88               | 3    | Whole fruit  | 0.24, 0.18<br>( <u>0.21)</u>  | FR-41-0360 |
| V-10633-B<br>San Joaquin                                          | 300 EC                    | 0.22                                         | 468                                    | 4/0.88               | 3    | Whole fruit  | 0.22, 0.32<br>( <u>0.27)</u>  | FR-41-0360 |
| County, CA, USA,<br>1993<br>(UC-82B)                              |                           | 0.45                                         | 468                                    | 4/1.8                | 3    | Whole fruit  | 0.49, 0.49<br>(0.49)          | FR-41-0360 |
| V-10633-C<br>Merced County,                                       | 300 EC                    | 0.22                                         | 468                                    | 4/0.88               | 1    | Whole fruit  | 0.38, 0.46<br>(0.42)          | FR-41-0360 |
| CA, USA, 1993<br>(Apex 1000)                                      |                           |                                              |                                        |                      | 3    |              | 0.30, 0.29<br>( <u>0.30</u> ) |            |
|                                                                   |                           |                                              |                                        |                      | 7    |              | 0.28, 0.27<br>(0.28)          |            |
|                                                                   |                           |                                              |                                        |                      | 14   |              | 0.19, 0.24<br>(0.22)          |            |
| V-10633-D<br>Fayette County,<br>OH, USA, 1993<br>(Heinz 9035))    | 300 EC                    | 0.22                                         | 281                                    | 4/0.88               | 3    | Whole fruit  | 0.64, 0.46<br>( <u>0.55</u> ) | FR-41-0360 |
| V-10633-E<br>Ottawa County,<br>MI, USA, 1993<br>(Rio Grande)      | 300 EC                    | 0.22<br>0.22<br>0.22<br>0.22                 | 302<br>286<br>320<br>296               | 4/0.88               | 3    | .Whole fruit | 0.04, 0.06<br>( <u>0.05</u> ) | FR-41-0360 |
|                                                                   |                           | 0.45<br>0.45<br>0.45<br>0.45                 | 295<br>293<br>314<br>290               | 4/1.8                | 3    | Whole fruit  | 0.21, 0.13<br>(0.17)          | FR-41-0360 |
| V-10633-F                                                         | 300 EC                    | 0.22                                         | 217                                    | 4/0.88               | 3    | Whole fruit  | 0.12, 0.10                    | FR-41-0360 |

| TOMATO                                                             | Application          |                              |                                 |                      | DAT          | Commodity   | Residue                                                                                                                 | Reference  |
|--------------------------------------------------------------------|----------------------|------------------------------|---------------------------------|----------------------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------|------------|
| Trial<br>Country, year<br>(Variety)                                | Formulation (g ai/L) | kg ai/ha                     | Water (L/ha)                    | No/Total<br>kg ai/ha | days         |             | mg/kg                                                                                                                   |            |
| Hamilton County,<br>IN, USA, 1993<br>(Beefmaster)                  |                      | 0.22<br>0.22<br>0.22         | 211<br>238<br>238               |                      |              |             | (0.11)                                                                                                                  |            |
| V-10633-G<br>Hunterdon<br>County, NJ, USA,<br>1993<br>(Better Boy) | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 311<br>306<br>306<br>306<br>306 | 4/0.88               | 3<br>7<br>14 | Whole fruit | 0.21, 0.21<br>(0.21)<br>0.18, 0.20<br>( <u>0.19</u> )<br>0.14, 0.13<br>( <u>0.14</u> )<br>0.09, 0.08<br>( <u>0.09</u> ) | FR-41-0360 |
| V-10633-H<br>Barnwell County,<br>SC, USA, 1993<br>(Celebrity)      | 300 EC               | 0.22                         | 281                             | 4/0.88               | 3            | Whole fruit | 0.08, 0.07<br>( <u>0.08)</u>                                                                                            | FR-41-0360 |
| V-10633-I<br>Hidalgo County,<br>TX, USA, 1993<br>(Florade)         | 300 EC               | 0.22                         | 281                             | 4/0.88               | 3            | Whole fruit | 0.15, 0.21<br>( <u>0.18)</u>                                                                                            | FR-41-0360 |

#### Peppers

A total of ten supervised trials on peppers (six on bell and four on non-bell) were conducted in the US in 1996 and 1998 (Samoil, 2001; Reference FR-0558). The application rates corresponded to US GAP (0.22 kg ai/ha with a total application of 0.9 kg ai/ha per season, but samples were taken at 2 and 4 days instead of the 3 day PHI. Samples of mature peppers were immediately frozen at -25 °C to -15 °C until analysis. Samples were analysed for residues of fenpropathrin using a modification of method RM-22-4. All recoveries were conducted concurrently with the analyses of treated samples and storage stability samples. Non-bell peppers fortified with fenpropathrin at 0.02, 0.10, 0.50, and 10 mg/kg showed respective recoveries of 100-130%, 95%, 92%, and 88-104%. Bell peppers were fortified with fenpropathrin at 0.02, 0.10, 0.40, 0.50 and 1.0 mg/kg and recoveries were 100-107%, 97-101%, 94-106% and 98%, respectively.

Table 47 Residues of fenpropathrin in peppers resulting from supervised trials in the United States

| PEPPER                                                                  | Application               |                              |                          |                      | DAT  | Commodity   | Residue                       | Reference |
|-------------------------------------------------------------------------|---------------------------|------------------------------|--------------------------|----------------------|------|-------------|-------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                                     | Formulation (g ai/L)      | kg ai/ha                     | Water<br>(L/ha)          | No/Total<br>kg ai/ha | days |             | mg/kg                         |           |
| GAP, USA                                                                | 300 EC<br>(2.4 lb ai/gal) | 0.17-<br>0.22                | 234 - 1122               | 0.9                  | 3    |             |                               |           |
| BELL PEPPER                                                             |                           |                              |                          |                      | •    |             |                               |           |
| 96-CA*09<br>Spence County,<br>Salinas, CA, USA,<br>1996<br>(Cal Wonder) | 300 EC                    | 0.22<br>0.22<br>0.22<br>0.22 | 430<br>440<br>440<br>430 | 4/0.88               | 2    | Whole fruit | 0.37, 0.36<br>( <u>0.37</u> ) | FR-0558   |

| PEPPER                                                                                      | Application          |                              |                          |                      | DAT  | Commodity   | Residue                       | Reference |
|---------------------------------------------------------------------------------------------|----------------------|------------------------------|--------------------------|----------------------|------|-------------|-------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                                                         | Formulation (g ai/L) | kg ai/ha                     | (L/ha)                   | No/Total<br>kg ai/ha | days |             | mg/kg                         |           |
| 96-CA*10<br>East Alisal,<br>Salinas, CA, USA,<br>1996<br>(Cal Wonder)                       | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 440<br>430<br>440<br>439 | 4/0.88               | 2    | Whole fruit | 0.31, 0.36<br>( <u>0.34</u> ) | FR-0558   |
| 96-FL12<br>NW71st St,<br>Gainesville, FL,<br>USA, 1996<br>(Capistrano)                      | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 290<br>290<br>281<br>281 | 4/0.88               | 2    | Whole fruit | 0.64, 0.70<br>( <u>0.67</u> ) | FR-0558   |
| 98-GA*10<br>Goat Rd., Tifton,<br>GA, USA, 1998<br>(Camelot)                                 | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 290<br>281<br>281<br>281 | 4/0.88               | 2    | Whole fruit | 0.40, 0.33<br>( <u>0.37</u> ) | FR-0558   |
| 98-MD02<br>Nanticoke Rd,<br>Salisbury, MD,<br>USA, 1998<br>(King Arthur)                    | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 496<br>505<br>505<br>505 | 4/0.88               | 3    | Whole fruit | 0.48, 0.51<br>( <u>0.50</u> ) | FR-0558   |
| 98-SC*12<br>Savannah Hwy,<br>Charleston, SC,<br>USA, 1998<br>(Keystone<br>Resistance Giant) | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 374<br>374<br>374<br>393 | 4/0.88               | 4    | Whole fruit | 0.08, 0.11<br>( <u>0.10</u> ) | FR-0558   |
| NON-BELL PEPPE                                                                              | ER                   |                              | 1                        |                      |      |             | ·                             | 1         |
| 96-CA*09<br>Spence County,<br>Salinas, CA, USA,<br>1996<br>(Jalapeno)                       | 300 EC               | 0.23<br>0.22<br>0.22<br>0.22 | 430<br>440<br>440<br>430 | 4/0.89               | 2    | Whole fruit | 0.24, 0.23<br>( <u>0.24</u> ) | FR-0558   |
| 96-CA*10<br>East Alisal,<br>Salinas, CA, USA,<br>1996<br>(Jalapeno))                        | 300 EC               | 0.23<br>0.22<br>0.22<br>0.22 | 440<br>430<br>440<br>439 | 4/0.89               | 2    | Whole fruit | 0.36, 0.43<br>( <u>0.40</u> ) | FR-0558   |
| 96-GA*05<br>Goat Rd., Tifton,<br>GA, USA, 1996<br>(Mesilla)                                 | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 281<br>281<br>281<br>281 | 4/0.88               | 2    | Whole fruit | 0.32, 0.29<br>( <u>0.31</u> ) | FR-0558   |
| 96-TX*04<br>Weslaco, TX,<br>USA, 1996<br>(Sonora Anaheim)                                   | 300 EC               | 0.22<br>0.22<br>0.22<br>0.22 | 281<br>281<br>281<br>281 | 4/0.88               | 2    | Whole fruit | 0.33, 0.43<br>( <u>0.38</u> ) | FR-0558   |

# Pulses

# Soya beans

Eight supervised trials on soya beans were conducted in Brazil in 2010 and 2013 (Tomaz, 2010; Reference: FR-0570 and Lopez, 2013; Reference: FR-0571). The EC formulation of fenpropathrin containing 300 g/L active ingredient, was applied to treated plots at the rate of 0.045 kg ai/ha from 15

to 45 days prior to harvest. At maturity, 15, 30 and 45 days after the last application, samples were harvested, threshed manually, cleaned, sieved, air-dried and stored frozen at -20 °C. Samples were analysed within 30 days of harvest by GC-ECD (2010 trials) and LC-MS/MS (2013 trials) (LOQ of 0.01 mg/kg). Concurrent recoveries were within the acceptable range of 70–120%, with RSD below 20%.

Table 48 Residues of fenpropathrin in soya beans resulting from supervised trials in Brazil

| SOYA BEAN                                                      | Application          |          |     | DLA            | Sample | Residue<br>mg/kg           | Reference |
|----------------------------------------------------------------|----------------------|----------|-----|----------------|--------|----------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                            | Formulation (g ai/L) | kg ai/ha | No. | days           |        |                            |           |
| GAP, Brazil                                                    | 300 g/L EC           | 0.045    | 1   | 30             |        |                            |           |
| Pereiras/SP<br>Brazil, 2010<br>(BRS 232)                       | 300 EC               | 0.045    | 1   | 15<br>30<br>45 | Seeds  | < 0.01<br>< 0.01<br>< 0.01 | FR-0570   |
| Iracemápolis/SP<br>Brazil, 2010<br>(BRS 245)                   | 300 EC               | 0.045    | 1   | 15<br>30<br>45 | Seeds  | < 0.01<br>< 0.01<br>< 0.01 | FR-0570   |
| Cambará/PR<br>Brazil, 2010<br>(BRS 245)                        | 300 EC               | 0.045    | 1   | 15<br>30<br>45 | Seeds  | < 0.01<br>< 0.01<br>< 0.01 | FR-0570   |
| Santa Mariana/PR<br>Brazil, 2010<br>(BRS 245)                  | 300 EC               | 0.045    | 1   | 15<br>30<br>45 | Seeds  | < 0.01<br>< 0.01<br>< 0.01 | FR-0570   |
| Trial C01<br>Ibiporã/PR<br>Brazil, 2012-2013<br>(Potência)     | 300 EC               | 0.045    | 1   | 15<br>30<br>45 | Seeds  | < 0.01<br>< 0.01<br>< 0.01 | FR-0571   |
| Trial C53<br>Câdido Mota/SP<br>Brazil, 2012-2013<br>(Potência) | 300 EC               | 0.045    | 1   | 30             | Seeds  | < 0.01                     | FR-0571   |
| Trial C56<br>Jataizinho/PR<br>Brazil, 2012-2013<br>(Força)     | 300 EC               | 0.045    | 1   | 15<br>30<br>45 | Seeds  | < 0.01<br>< 0.01<br>< 0.01 | FR-0571   |
| Trial C109<br>Dourados/MS<br>Brazil, 2012-2013<br>(Potência)   | 300 EC               | 0.045    | 1   | 30             | Seeds  | < 0.01                     | FR-0571   |

#### Oilseeds

#### Cotton

Thirty-two supervised trials on cotton were conducted in the USA in 1983-1989, using a higher number of applications compared to the GAP in the USA (up to 0.9 kg ai/ha and a PHI of 21 days) (Fujie, 1990Reference: FR-01-0306). The EC formulation of fenpropathrin containing 300 g/L active ingredient, was applied to treated plots at the rates of 0.112-0.448 kg ai/ha from 18 to 35 days prior to harvest. Samples were analysed within 12–18 months of harvest. Concurrent recoveries from control

samples fortified with fenpropathrin at levels of 0.1 and 0.2 mg/kg were within the acceptable range of 70-120%, with RSD below 20%.

Table 49 Residues of fenpropathrin in cotton fuzzy seed resulting from supervised trials in the USA

| COTTON                                                                     | Application          |               |              |                      | DAT  | Commodity  | Residue mg/kg              | Reference  |
|----------------------------------------------------------------------------|----------------------|---------------|--------------|----------------------|------|------------|----------------------------|------------|
| Trial<br>Country, year<br>(Variety)                                        | Formulation (g ai/l) | kg ai/ha      | Water (l/ha) | No/Total<br>kg ai/ha | days |            |                            |            |
| GAP, USA                                                                   | 300 EC               | 0.22-<br>0.45 |              | 0.9                  | 21   |            |                            |            |
| R194<br>M335-6023<br>Bard, California,<br>USA, 1983<br>(DPL-61)            | 300 EC               | 0.224         | 281          | 7/1.79               | 35   | Fuzzy seed | < 0.01                     | FR-01-0306 |
| R194<br>M335-6023<br>Bard, California,<br>USA, 1983<br>(DPL-61)            | 300 EC               | 0.448         | 281          | 8/3.58               | 35   | Fuzzy seed | < 0.01                     | FR-01-0306 |
| R194<br>M335-6024<br>Arizona,<br>USA, 1983<br>(Delta Pine 70)              | 300 EC               | 0.112         | 117          | 8/0.896              | 33   | Fuzzy seed | < 0.01, < 0.01<br>(< 0.01) | FR-01-0306 |
| R194<br>M335-6069*<br>Yuma, Arizona,<br>USA, 1984<br>(DPL-90)              | 300 EC               | 0.224         | 47           | 10/2.24              | 18   | Fuzzy seed | 0.01, < 0.01<br>(< 0.01)   | FR-01-0306 |
| R194<br>M335-6070<br>Donna, Texas,<br>USA, 1984<br>(McNair 220)            | 300 EC               | 0.224         | 94           | 10/2.02              | 21   | Fuzzy seed | 0.02, 0.02<br>(0.02)       | FR-01-0306 |
| R194<br>M335-6071<br>Kingsville, Texas,<br>USA, 1984<br>(GP-3774)          | 300 EC               | 0.224         | 23-94        | 10/2.24              | 18   | Fuzzy seed | 0.03, 0.03 (0.03)          | FR-01-0306 |
| R194<br>M335-6072A<br>Bard, California,<br>USA, 1984<br>(DPL-90)           | 300 EC               | 0.224         | 94           | 10/2.24              | 21   | Fuzzy seed | < 0.01, < 0.01<br>(< 0.01) | FR-01-0306 |
| R194<br>M335-6073<br>Fresno, California,<br>USA, 1984<br>(Acala-SJ-5)      | 300 EC               | 0.224         | 430-702      | 10/2.24              | 21   | Fuzzy seed | 0.01, < 0.01<br>(0.01)     | FR-01-0306 |
| R194<br>M335-6074<br>Holtville California,<br>USA, 1984<br>(Delta Pine 61) | 300 EC               | 0.224         | 234          | 10/2.46              | 34   | Fuzzy seed | 0.33, 0.18<br>(0.26)       | FR-01-0306 |
| R194<br>M335-6075<br>Tifton, Georgia,<br>USA, 1984                         | 300 EC               | 0.224         | 99           | 10/2.24              | 21   | Fuzzy seed | < 0.01, < 0.01<br>(< 0.01) | FR-01-0306 |

| COTTON                                                                            | Application          |          |              |                      | DAT  | Commodity  | Residue mg/kg                  | Reference  |
|-----------------------------------------------------------------------------------|----------------------|----------|--------------|----------------------|------|------------|--------------------------------|------------|
| Trial Country, year (Variety)                                                     | Formulation (g ai/l) | kg ai/ha | Water (1/ha) | No/Total<br>kg ai/ha | days |            |                                |            |
| (McNair 220)                                                                      |                      |          |              |                      |      |            |                                |            |
| R194<br>M335-6076<br>Greenville,<br>Mississippi, USA,<br>1984<br>(Stoneville 825) | 300 EC               | 0.224    | 94           | 10/2.24              | 20   | Fuzzy seed | (0.29)                         | FR-01-0306 |
| R194                                                                              | 300 EC               | 0.224    | 281          | 10/2.24              | 3    | Fuzzy seed |                                | FR-01-0306 |
| R194-6418<br>Fresno, California,<br>USA, 1985                                     |                      |          |              |                      | 10   | _          | (0.13)<br>0.08, 0.21<br>(0.15) |            |
| (SJ-5)                                                                            |                      |          |              |                      | 14   |            | 0.03, 0.02<br>(0.03)           |            |
|                                                                                   |                      |          |              |                      | 21   |            | 0.11, 0.13<br>(0.12)           |            |
|                                                                                   |                      |          |              |                      | 28   |            | < 0.01, < 0.01<br>(< 0.01)     |            |
|                                                                                   |                      |          |              |                      | 35   |            | < 0.01, < 0.01<br>(< 0.01)     |            |
| R194<br>R194-6419<br>Blythe, California,<br>USA, 1985<br>(SJ-5)                   | 300 EC               | 0.112    | 281          | 10/1.12              | 21   | Fuzzy seed | < 0.01, 0.03<br>(0.02)         | FR-01-0306 |
| R194<br>R194-6419<br>Blythe, California,<br>USA, 1985<br>(DPL-90)                 | 300 EC               | 0.224    | 281          | 10/2.24              | 21   | Fuzzy seed | 0.01, < 0.01<br>(0.01)         | FR-01-0306 |
| R194-6419<br>Blythe, California,<br>USA, 1985<br>(DPL-90)                         | 300 EC               | 0.448    | 281          | 10/4.48              | 21   | Fuzzy seed | < 0.01, 0.06<br>(0.04)         | FR-01-0306 |
| R194<br>R194-6420*<br>Maricopa, Arizona,<br>USA, 1985<br>(Pima S-2)               | 300 EC               | 0.224    | 94           | 10/2.24              | 21   | Fuzzy seed | 0.02, 0.02<br>(0.02)           | FR-01-0306 |
| R194<br>R194-6421*<br>Yuma, Arizona,<br>USA, 1985<br>(DPL-90)                     | 300 EC               | 0.224    | 47           | 10/2.24              | 21   | Fuzzy seed | < 0.01, < 0.01<br>(< 0.01)     | FR-01-0306 |
| R194<br>R194-6422<br>College station,<br>Texas USA, 1985<br>(DPL-41)              | 300 EC               | 0.224    | 42           | 10/2.24              | 21   | Fuzzy seed | 0.09, 0.07 (0.08)              | FR-01-0306 |
| R194<br>R194-6423                                                                 | 300 EC               | 0.224    | 47           | 10/2.24              | 3    | Fuzzy seed | (3.3)                          | FR-01-0306 |
| Kingsville, Texas,<br>USA, 1985<br>(SP-37)                                        |                      |          |              |                      | 7    |            | 0.95, 0.56<br>(0.76)           |            |
| (01 01)                                                                           |                      |          |              |                      | 14   |            | 0.19, 0.21<br>(0.20)           |            |

| COTTON                                                                      | Application          |          |              |                      | DAT           | Commodity  | Residue mg/kg                                          | Reference  |
|-----------------------------------------------------------------------------|----------------------|----------|--------------|----------------------|---------------|------------|--------------------------------------------------------|------------|
| Trial<br>Country, year<br>(Variety)                                         | Formulation (g ai/l) | kg ai/ha | Water (l/ha) | No/Total<br>kg ai/ha | days          |            |                                                        |            |
|                                                                             |                      |          |              |                      | 21            |            | 0.02, 0.02<br>(0.02)                                   |            |
|                                                                             |                      |          |              |                      | 35            |            | < 0.01, 0.02<br>(0.02)<br>< 0.01, < 0.01               |            |
|                                                                             |                      |          |              |                      |               |            | (< 0.01)                                               |            |
| R194<br>R194-6424<br>Donna, Texas USA,<br>1985<br>(McNair 220)              | 300 EC               | 0.224    | 94           | 10/2.24              | 21            | Fuzzy seed | < 0.01, < 0.01<br>(< 0.01)                             | FR-01-0306 |
| R194<br>R194-6425<br>Tifton Georgia<br>USA, 1985<br>(Coker 304)             | 300 EC               | 0.224    | 94           | 10/2.24              | 22            | Fuzzy seed | < 0.01, < 0.01<br>(< 0.01)                             | FR-01-0306 |
| R194<br>R194-6426<br>ArkansasUSA, 1985<br>(Stoneville 825)                  | 300 EC               | 0.224    | 47           | 10/2.24              | 30            | Fuzzy seed | 0.02, < 0.01<br>(0.02)                                 | FR-01-0306 |
| R194<br>R194-6427<br>Greenville<br>Mississippi<br>USA, 1985<br>(DPL-41)     | 300 EC               | 0.112    | 94           | 10/1.12              | 21            | Fuzzy seed | 0.08, 0.09 (0.09)                                      | FR-01-0306 |
| R194<br>R194-6427<br>Greenville<br>Mississippi<br>USA, 1985<br>(DPL-41)     | 300 EC               | 0.224    | 94           | 10/2.24              | 3<br>14<br>21 | Fuzzy seed | (0.52)<br>0.47, 0.46<br>(0.47)<br>0.32, 0.40<br>(0.36) | FR-01-0306 |
|                                                                             |                      |          |              |                      | 36            |            | 0.30, 0.31<br>(0.31)                                   |            |
| R194<br>R194-6427<br>Greenville<br>Mississippi<br>USA, 1985<br>(DPL-41)     | 300 EC               | 0.448    | 94           | 10/4.48              | 7             | Fuzzy seed | 1.2                                                    | FR-01-0306 |
| R194<br>R194-6715<br>Greenville<br>Mississippi<br>USA, 1986<br>(Acala SJ-5) | 300 EC               | 0.224    | 281          | 8/1.792              | 21            | Fuzzy seed | 1.3, 1.1, 0.95,<br>0.77 (1.03)                         | FR-01-0306 |
| R194<br>R194-6716<br>Case Grande,<br>Arizona<br>USA, 1986<br>(DPL-41)       | 300 EC               | 0.224    | 281          | 8/1.792              | 20            | Fuzzy seed | 0.59, 0.62,<br>0.47, 0.43<br>(0.53)                    | FR-01-0306 |
| R194<br>R194-6717<br>Greenville,<br>Mississippi                             | 300 EC               | 0.224    | 94           | 8/1.792              | 21            | Fuzzy seed | 0.08, 0.05<br>(0.07)                                   | FR-01-0306 |

| COTTON                                                                    | Application          |          |              |                      | DAT  | Commodity  | Residue mg/kg              | Reference  |
|---------------------------------------------------------------------------|----------------------|----------|--------------|----------------------|------|------------|----------------------------|------------|
| Trial<br>Country, year<br>(Variety)                                       | Formulation (g ai/l) | kg ai/ha | Water (l/ha) | No/Total<br>kg ai/ha | days |            |                            |            |
| USA, 1986<br>(Delta Pine 90)                                              |                      |          |              |                      |      |            |                            |            |
| R194<br>R194-6718<br>Kleberg County,<br>Texas<br>USA, 1986<br>(GP 3774)   | 300 EC               | 0.224    | 47           | 8/1.792              | 21   | Fuzzy seed | 0.08, 0.06 (0.07)          | FR-01-0306 |
| R194<br>R194-6967Fresno,<br>California<br>USA, 1987<br>(GC 510)           | 300 EC               | 0.224    | 19           | 8/1.792              | 21   | Fuzzy seed | 0.22, 0.32<br>(0.27)       | FR-01-0306 |
| R194<br>R194-6968<br>Glen Alan,<br>Mississippi<br>USA, 1987<br>(DPL-50)   | 300 EC               | 0.224    | 19           | 8/1.792              | 21   | Fuzzy seed | < 0.01, < 0.01<br>(< 0.01) | FR-01-0306 |
| R194<br>R194-7376<br>Greenville,<br>Mississippi<br>USA, 1989<br>(DPL-41)  | 300 EC               | 0.336    | 47           | 5/1.68               | 21   | Fuzzy seed | 0.02, 0.02<br>(0.02)       | FR-01-0306 |
| R194<br>R194-7377<br>Grangerburg,<br>Alabama<br>USA, 1989<br>(McNair 220) | 300 EC               | 0.336    | 468          | 5/1.68               | 21   | Fuzzy seed | 0.01, 0.01 (0.01)          | FR-01-0306 |
| R194<br>R194-7378<br>Rosa, Louisiana<br>USA, 1989<br>(DPL-41)             | 300 EC               | 0.336    | 468          | 5/1.68               | 20   | Fuzzy seed | 0.29, 0.27<br>(0.28)       | FR-01-0306 |
| R194<br>R194-7379<br>Proctor, Arkansas<br>USA, 1989<br>(DPL-41)           | 300 EC               | 0.336    | 468          | 5/1.68               | 21   | Fuzzy seed | 0.04, 0.07<br>(0.06)       | FR-01-0306 |
| R194<br>R194-7380<br>Fresno, California<br>USA, 1989<br>(GC 510)          | 300 EC               | 0.336    | 47           | 5/1.68               | 21   | Fuzzy seed | 0.07, 0.05<br>(0.06)       | FR-01-0306 |
| R194<br>R194-7381*<br>Greenville,<br>Mississippi<br>USA, 1989<br>(DPL-41) | 300 EC               | 0.336    | 9            | 5/1.68               | 21   | Fuzzy seed | 0.03, 0.02 (0.03)          | FR-01-0306 |
| R194<br>Eakly, Oklahoma<br>USA, 1989<br>(Paymater 145)                    | 300 EC               | 0.336    | 9            | 5/1.68               | 21   | Fuzzy seed | 0.03, 0.04<br>(0.04)       | FR-01-0306 |

### Tree Nuts

# Almonds and pecans

A total of ten supervised trials on tree nuts, five on almonds and five on pecans have been conducted in the US in 2003, following the GAP for tree nuts (Green, 2004; References FR-0382 and FR-0383). Two applications of fenpropathrin 2.4 EC were made to each treated plot at the rate of 0.45 ( $1\times$ ) or 0.90 kg ai/ha ( $2\times$ ). Applications were made at 7-day intervals. Samples of almond hulls as well as almond and pecan nutmeats were collected 3 days after the last application. At one site, samples were also collected at 1, 7, and 14 days after the last application.

All samples were immediately frozen and stored at -20 °C until analysis. Residues of fenpropathrin in nutmeats were analysed using method RM-22-4. The method was modified for analysis of a 10 gram (instead of a 20 gram) sample. The LOQ remained 0.01 mg/kg. Recoveries obtained for the fortified almond and pecan nutmeat samples were between 83.5 and 119%, and 70.9 and 89.6%, respectively.

Table 50 Residues of fenpropathrin in tree nuts resulting from supervised trials in the United States

| TREE NUTS                                                    | Application               |               |                 |                      | DAT  | Commodity | Residue                        | Reference |
|--------------------------------------------------------------|---------------------------|---------------|-----------------|----------------------|------|-----------|--------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                          | Formulation (g ai/L)      | kg ai/ha      | Water<br>(L/ha) | No/Total<br>kg ai/ha | days |           | mg/kg                          |           |
| GAP, USA                                                     | 300 EC<br>(2.4 lb ai/gal) | 0.22-<br>0.45 | 468 -<br>3740   | 0.9                  | 3    |           |                                |           |
| ALMONDS                                                      |                           |               |                 |                      |      |           |                                |           |
| V-25398-A<br>Glen County, CA,<br>USA, 2003                   | 300 EC                    | 0.45<br>0.45  | 935<br>1038     | 2/0.9                | 3    | Nutmeat   | < 0.0.1,<br>< 0.01<br>(< 0.01) | FR-0382   |
| (Non-Pareil)                                                 | 300 EC                    | 0.89<br>0.90  | 935<br>1029     | 2/1.8                | 3    | Nutmeat   | 0.02, 0.02<br>(0.02)           |           |
| V-25398-B<br>Stanislaus County,<br>CA, USA, 2003<br>(Carmel) | 300 EC                    | 0.45<br>0.45  | 1160<br>1132    | 2/0.9                | 3    | Nutmeat   | < 0.01,<br>< 0.01<br>(< 0.01)  | FR-0382   |
| V-25398-C<br>Kern County, CA,<br>USA, 2003<br>(Sornora)      | 300 EC                    | 0.45<br>0.46  | 945<br>963      | 2/0.91               | 3    | Nutmeat   | 0.02, 0.03<br>( <u>0.03</u> )  | FR-0382   |
| V-25398-D<br>Fresno County,                                  | 300 EC 0.46<br>0.45       | 0.46<br>0.45  | 945<br>935      | 2/0.91               | 1    | Nutmeat   | 0.0.1, < 0.01<br>(< 0.01)      | FR-0382   |
| CA, USA, 2003<br>(Non-Pareil)                                |                           |               |                 |                      | 3    | Nutmeat   | 0.0.1, < 0.01<br>(< 0.01)      |           |
|                                                              |                           |               |                 |                      | 7    | Nutmeat   | < 0.01,<br>< 0.01<br>(< 0.01)  |           |
|                                                              |                           |               |                 |                      | 14   | Nutmeat   | < 0.01,<br>< 0.01<br>(< 0.01)  |           |
| V-25398-E<br>Tulare County,<br>CA, USA, 2003<br>(Carmel)     | 300 EC                    | 0.45<br>0.45  | 945<br>945      | 2/0.9                | 3    | Nutmeat   | < 0.01,<br>< 0.01<br>(< 0.01)  | FR-0382   |
| PECANS                                                       | 1                         | 1             | 1               | 1                    |      |           | 1                              | 1         |
| V-25401-A                                                    | 300 EC                    | 0.44          | 1160            | 2/0.87               | 3    | Nutmeat   | < 0.01,                        | FR-0383   |

| TREE NUTS                                                         | Application          |              |              |                      | DAT  | Commodity | Residue                       | Reference |
|-------------------------------------------------------------------|----------------------|--------------|--------------|----------------------|------|-----------|-------------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                               | Formulation (g ai/L) | kg ai/ha     | Water (L/ha) | No/Total<br>kg ai/ha | days |           | mg/kg                         |           |
| Saluda County.<br>SC, USA, 2003                                   |                      | 0.43         | 1132         |                      |      |           | < 0.01<br>(< 0.01)            |           |
| (Cape Fear)                                                       |                      | 0.90<br>0.90 | 1169<br>1160 | 2/1.8                | 3    | Nutmeat   | < 0.01,<br>< 0.01<br>(< 0.01) |           |
| V-25401-B<br>Tift, GA, USA,<br>2003<br>(Summer)                   | 300 EC               | 0.45<br>0.45 | 1188<br>1197 | 2/0.9                | 3    | Nutmeat   | 0.01, < 0.01<br>(0.01)        | FR-0383   |
| V-25401-C<br>Drew County, AR,<br>USA, 2003<br>(Stewart)           | 300 EC               | 0.46<br>0.46 | 1169<br>1188 | 2/0.92               | 3    | Nutmeat   | 0.02, 0.02<br>( <u>0.02</u> ) | FR-0383   |
| V-25401-D<br>Burleson County,                                     | 300 EC               | 0.43<br>0.44 | 1394<br>1394 | 2/0.87               | 1    | Nutmeat   | 0.02, 0.05<br>(0.04)          | FR-0383   |
| TX, USA, 2003<br>(Cheyenne)                                       |                      |              |              |                      | 3    | Nutmeat   | 0.02, 0.02<br>(0.02)          |           |
|                                                                   |                      |              |              |                      | 7    | Nutmeat   | 0.02, 0.10<br>( <u>0.06</u> ) |           |
|                                                                   |                      |              |              |                      | 14   | Nutmeat   | < 0.01,<br>< 0.01<br>(< 0.01) |           |
| V-25401-E<br>Hockley County,<br>TX, USA, 2003<br>(Western Schley) | 300 EC               | 0.46<br>0.45 | 1197<br>1188 | 2/0.91               | 3    | Nutmeat   | 0.04, 0.05<br>( <u>0.05</u> ) | FR-0383   |

# Coffee Beans

Six supervised trials on coffee were conducted in Brazil in 2013 (Gravena, 2013. Reference FR-0572). Two applications of fenpropathrin EC containing 300 g ai/L were made to each treated plot at the rate of 0.12 kg ai/ha (1×). Applications were made at 14-day intervals. Samples of coffee berries were collected 14 days after the last application. In two trials, samples were also collected at 7 and 21 days after the last application. All samples were collected manually and packed in polyethylene bags for further processing. The berries were immediately sent to the experimental station and maintained at room temperature until completion of drying. Samples were dried by opening the bags throughout the day and night, except during rainy days when the packages were sealed. After drying, the coffee beans were placed in a manual peeler and at least 1 kg of coffee beans were packed, labelled, and stored frozen at -20 °C until analysis.

All samples were analysed LC-with LC-MS/MS (LOQ of 0.01 mg/kg) within 30 days following harvest. Average recovery from control samples fortified with fenpropathrin at levels of 0.01 and 0.5 mg/kg ranged from 79–116% (n=13; mean=98%; and RSD = 15.3%).

Table 51 Residues of fenpropathrin in coffee beans resulting from supervised trials in Brazil

| COFFEE | Application | DAT | Sample | Residue | Reference |
|--------|-------------|-----|--------|---------|-----------|
|        |             |     |        |         |           |

| Trial<br>Country, year<br>(Variety)                                   | Formulation (g ai/L) | kg ai/ha | Water (L/ha) | No. | days          |                 | mg/kg                           |         |
|-----------------------------------------------------------------------|----------------------|----------|--------------|-----|---------------|-----------------|---------------------------------|---------|
| GAP, Brazil                                                           | 300 g/L EC           | 0.12     |              | 2   | 14            |                 |                                 |         |
| Trial 01<br>Iraí de Minas/MG<br>Brazil, 2012<br>(IAPAR 59)            | 300 g/L EC           | 0.12     | 301<br>303   | 2   | 7<br>14<br>21 | Coffee<br>beans | < 0.01<br><u>0.01</u><br>< 0.01 | FR-0572 |
| Trial 02<br>Indianópolis, MG<br>Brazil, 2012<br>(Catuai Amarelo)      | 300 g/L EC           | 0.12     | 308<br>294   | 2   | 14            | Coffee<br>beans | < 0.01                          | FR-0572 |
| Trial 03<br>Rolândia/PR<br>Brazil, 2012<br>(Novo Mundo)               | 300 g/L EC           | 0.12     | 285<br>297   | 2   | 7<br>14<br>21 | Coffee<br>beans | < 0.01<br>< 0.01<br>< 0.01      | FR-0572 |
| Trial 04<br>Bebedouro/SP<br>Brazil, 2012<br>(Novo Mundo)              | 300 g/L EC           | 0.12     | 298<br>304   | 2   | 14            | Coffee<br>beans | < 0.01                          | FR-0572 |
| Trial 05<br>Monte Azul<br>Paulista/SP<br>Brazil, 2012<br>(Novo Mundo) | 300 g/L EC           | 0.12     | 293<br>308   | 2   | 14            | Coffee<br>beans | < 0.01                          | FR-0572 |
| Trial 06<br>Araguari/MG<br>Brazil, 2012<br>(Novo Mundo)               | 300 g/L EC           | 0.12     | 302<br>303   | 2   | 14            | Coffee<br>beans | 0.02                            | FR-0572 |

#### Tea

All supervised trials on tea were conducted in India during 2002-2004 (Lavakumar, 2003 and 2006; References 1424604-2974-2002; 1424604-4190-2004). All trials were according to the GAP for tea in India, which consists of one application of fenpropathrin at the rate of 0.06 kg ai/ha and a PHI of 7 days.

In ten trials, the collected tea leaves were processed into black tea. In six trials this was achieved through withering, crush/tear/curl process, oxidation and drying while in other trials by machine drying.

In two additional trials, the collected tea leaves were air-dried to prepare green tea. Since growing conditions and application rate/method for black tea and green tea are equivalent with the only difference being in processing methods, results from both sets of trials can be combined to support an MRL and STMR for tea, green and black.

Residues of fenpropathrin were analysed by a method based on RM-22-4 with an LOQ of 0.05 mg/kg.

Table 52 Fenpropathrin residues in black and green tea from supervised trials in India

| Country,<br>month/year,           | Form        | kg ai/ha    | Water 1/ha | No. | days    | mg/kg                 |                  |
|-----------------------------------|-------------|-------------|------------|-----|---------|-----------------------|------------------|
| season<br>(variety)               |             |             |            |     |         |                       |                  |
| GAP in India                      | 300 g/L EC  | 0.05 - 0.06 | 200 – 400  | 1   | 7       | 1                     |                  |
| BLACK TEA                         | 300 g L LC  | 0.03 0.00   | 200 100    | 1   |         |                       |                  |
| Valparai, India                   | 300 g/L EC  | 0.06        | 400        | 1   | 0       | 2.74                  | 04-2974-2002     |
| January 2002                      |             |             |            |     | 1       | 1.75                  |                  |
| Season I                          |             |             |            |     | 3       | 1.17                  |                  |
| (UPASI-9)                         |             |             |            |     | 5       | 0.61                  |                  |
|                                   |             |             |            |     | 7<br>10 | $\frac{0.17}{< 0.05}$ |                  |
|                                   |             |             |            |     | 14      | < 0.05                |                  |
| Valparai, India                   | 300 g/L EC  | 0.06        | 400        | 1   | 0       | 2.69                  | 04-2974-2002     |
| September 2002                    |             |             |            |     | 1       | 1.69                  |                  |
| Season II<br>(UPASI-9)            |             |             |            |     | 3 5     | 1.10<br>0.61          |                  |
| (UPASI-9)                         |             |             |            |     | 7       | 0.01                  |                  |
|                                   |             |             |            |     | 10      | $\frac{0.10}{< 0.05}$ |                  |
|                                   |             |             |            |     | 14      | < 0.05                |                  |
| Valparai, India                   | 300 g/L EC  | 0.06        | 400        | 1   | 0       | 2.22                  | 04-2974-2002     |
| May 2003<br>Season III            |             |             |            |     | 3       | 1.45<br>0.91          |                  |
| (UPASI-9)                         |             |             |            |     | 5       | 0.49                  |                  |
| (017151-7)                        |             |             |            |     | 7       | 0.14                  |                  |
|                                   |             |             |            |     | 10      | < 0.05                |                  |
|                                   |             |             |            |     | 14      | < 0.05                |                  |
| Valparai, India                   | 300 g/L EC  | 0.12        | 400        | 1   | 0       | 5.47                  | 04-2974-2002     |
| January 2002<br>Season I          |             |             |            |     | 3       | 3.13<br>2.24          |                  |
| (UPASI-9)                         |             |             |            |     | 5       | 1.04                  |                  |
| (0171517)                         |             |             |            |     | 7       | 0.37*                 |                  |
|                                   |             |             |            |     | 10      | < 0.05                |                  |
|                                   | 200 7 70    | 10.10       | 100        |     | 14      | < 0.05                | 0.4.00.7.4.00.00 |
| Valparai, India<br>September 2002 | 300 g/L EC  | 0.12        | 400        | 1   | 0       | 5.24<br>3.02          | 04-2974-2002     |
| Season II                         |             |             |            |     | 3       | 2.22                  |                  |
| (UPASI-9)                         |             |             |            |     | 5       | 1.08                  |                  |
|                                   |             |             |            |     | 7       | 0.36*                 |                  |
|                                   |             |             |            |     | 10      | < 0.05                |                  |
| Valparai, India                   | 300 g/L EC  | 0.12        | 400        | 1   | 14      | < 0.05<br>4.40        | 04-2974-2002     |
| May 2003                          | 300 g L L C | 0.12        |            | 1   | 1       | 2.57                  | 0.2,7.2002       |
| Season III                        |             |             |            |     | 3       | 1.89                  |                  |
| (UPASI-9)                         |             |             |            |     | 5       | 0.86                  |                  |
|                                   |             |             |            |     | 7<br>10 | 0.30*<br>< 0.05       |                  |
|                                   |             |             |            |     | 14      | < 0.05                |                  |
| Valparai, India                   | 300 g/L EC  | 0.06        | 400        | 1   | 0       | 0.85                  | 04-2974-2002     |
| January 2004                      | 3 = 5       |             |            |     | 1       | 0.50                  |                  |
| Fourth Season                     |             |             |            |     | 3       | 0.17                  |                  |
| (UPASI-9)                         |             |             |            |     | 5       | < 0.05                |                  |
|                                   |             |             |            |     | 7<br>10 | < 0.05<br>< 0.05      |                  |
|                                   |             |             |            |     | 14      | < 0.05                |                  |
| Valparai, India                   | 300 EC      | 0.12        | 400        | 1   | 0       | 1.62                  | 04-2974-2002     |
| January 2004                      |             |             |            |     | 1       | 0.93                  |                  |
| Fourth Season                     |             |             |            |     | 3       | 0.30                  |                  |
| (UPASI-9)                         |             |             |            |     | 5<br>7  | < 0.05 < 0.05 < 0.05  |                  |
|                                   |             |             |            |     | 10      | < 0.05                |                  |
|                                   |             |             |            |     | 14      | 0.00                  |                  |
| Gudalur, India                    | 300 EC      | 0.06        | 450        | 1   | 0       | 2.22                  | Submission by    |
| June 2004                         |             |             |            |     | 7       | 0.14                  | Government of    |
| (Mixed clones)                    |             |             |            |     | 10      | < 0.05                | India to JMPR    |
|                                   |             |             |            |     | 14      | < 0.05                | 1993             |

| TEA                                                           | Application |          |            |     | DAT                               | Residues1                                                       | Reference                                               |
|---------------------------------------------------------------|-------------|----------|------------|-----|-----------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|
| Country,<br>month/year,<br>season<br>(variety)                | Form        | kg ai/ha | Water 1/ha | No. | days                              | mg/kg                                                           |                                                         |
| Tocklai, India<br>November 2005<br>(Mixed clones)             | 300 EC      | 0.06     | 400        | 1   | 0<br>7<br>10                      | 12.0<br>1.38<br>0.12                                            | Submission by<br>Government of<br>India to JMPR<br>1993 |
| GREEN TEA                                                     |             |          |            |     |                                   |                                                                 | •                                                       |
| Valparai, India<br>January 2004<br>Fourth Season<br>(UPASI-9) | 300 g/L EC  | 0.06     | 400        | 1   | 0<br>1<br>3<br>5<br>7<br>10<br>14 | 1.96<br>1.32<br>0.83<br>0.45<br><u>0.13</u><br>< 0.05<br>< 0.05 | 04-4190-2004                                            |
| Valparai, India<br>January 2004<br>Fourth Season<br>(UPASI-9) | 300 g/L EC  | 0.12     | 400        | 1   | 0<br>1<br>3<br>5<br>7<br>10<br>14 | 4.20<br>2.43<br>1.55<br>0.90<br>0.29*<br>< 0.05<br>< 0.05       | 04-4190-2004                                            |

# Animal feeds

The trial conditions are described under the corresponding food commodities.

# Cottonseed hull

Samples were analysed within 12–18 months of harvest. Concurrent recoveries from control samples fortified with fenpropathrin at levels of 0.1 and 0.2 mg/kg were within the acceptable range of 70–120%, with RSD below 20%.

Table 53 Residues of fenpropathrin in cottonseed hulls resulting from supervised trials in the USA

| COTTON                                                            | Application          |               |              |                      | DAT  | Commodity | Residue              | Reference  |
|-------------------------------------------------------------------|----------------------|---------------|--------------|----------------------|------|-----------|----------------------|------------|
| Trial<br>Country, year<br>(Variety)                               | Formulation (g ai/L) | kg<br>ai/ha   | Water (1/ha) | No/Total<br>kg ai/ha | days |           | mg/kg                |            |
| GAP, USA                                                          | 300 EC               | 0.22-<br>0.45 |              | 0.9                  | 21   |           |                      |            |
| R194<br>M335-6070<br>Donna, Texas,<br>USA, 1984<br>(McNair 220)   | 300 EC               | 0.224         | 94           | 9/2.02               | 21   | Hulls     | 0.02, 0.02<br>(0.02) | FR-01-0306 |
| R194<br>M335-6071<br>Kingsville, Texas,<br>USA, 1984<br>(GP-3774) | 300 EC               | 0.224         | 94           | 10/2.24              | 18   | Hulls     | 0.03, 0.02<br>(0.03) | FR-01-0306 |
| R194<br>R194-6427<br>Greenville<br>Mississippi<br>USA, 1985       | 300 EC               | 0.448         | 94           | 110/4.48             | 7    | Hulls     | 1.0                  | FR-01-0306 |

| COTTON                              | Application          |   |                      | DAT  | Commodity | Residue | Reference |
|-------------------------------------|----------------------|---|----------------------|------|-----------|---------|-----------|
| Trial<br>Country, year<br>(Variety) | Formulation (g ai/L) | _ | No/Total<br>kg ai/ha | days |           | mg/kg   |           |
| (DPL-41)                            |                      |   |                      |      |           |         |           |

### Almond hulls

All samples were immediately frozen and stored at -20 °C until analysis. Residues of fenpropathrin in hulls were analysed using method RM-22-4. The method was modified for analysis of a 10 gram (instead of a 20 gram) sample. The LOQ remained 0.01 mg/kg. Recoveries obtained for the fortified almond hull samples were between 90.3 and 115%, with an average recovery of 103%.

Table 54 Residues of fenpropathrin in almond hulls resulting from supervised trials in the USA

| TREE NUTS                                                    | Application               |               |               |                      | DAT  | Commodity | Residue                    | Reference |
|--------------------------------------------------------------|---------------------------|---------------|---------------|----------------------|------|-----------|----------------------------|-----------|
| Trial<br>Country, year<br>(Variety)                          | Formulation (g ai/L)      | kg ai/ha      | Water (L/ha)  | No/Total<br>kg ai/ha | days |           | mg/kg                      |           |
| GAP, USA                                                     | 300 EC<br>(2.4 lb ai/gal) | 0.22-<br>0.45 | 468 -<br>3740 | 3/0.9                | 3    |           |                            |           |
| V-25398-A<br>Glen County, CA,                                | 300 EC                    | 0.45<br>0.45  | 935<br>1038   | 2/0.9                | 3    | Hulls     | 2.4, 2.9<br>(2.7)          | FR-0382   |
| USA, 2003<br>(Non-Pareil)                                    | 300 EC                    | 0.89<br>0.90  | 935<br>1029   | 2/1.8                | 3    | Hulls     | 7.2, 7.3<br>(7.3)          |           |
| V-25398-B<br>Stanislaus County,<br>CA, USA, 2003<br>(Carmel) | 300 EC                    | 0.45<br>0.45  | 1160<br>1132  | 2/0.9                | 3    | Hulls     | 2.7, 3.1<br>( <u>2.9</u> ) | FR-0382   |
| V-25398-C<br>Kern County, CA,<br>USA, 2003<br>(Sornora)      | 300 EC                    | 0.45<br>0.46  | 945<br>963    | 2/0.91               | 3    | Hulls     | 3.2, 2.9<br>(3.1)          | FR-0382   |
| V-25398-D<br>Fresno County,                                  |                           | 0.46<br>0.45  | 945<br>935    | 2/0.91               | 1    | Hulls     | 4.7, 3.2<br>(3.9)          | FR-0382   |
| CA, USA, 2003<br>(Non-Pareil)                                |                           |               |               |                      | 3    | Hulls     | 3.5, 3.4<br>( <u>3.5</u> ) |           |
|                                                              |                           |               |               |                      | 7    | Hulls     | 4.3, 2.7<br>(3.5)          |           |
|                                                              |                           |               |               |                      | 14   | Hulls     | 2.1, 4.5 (3.3)             |           |
| V-25398-E<br>Tulare County,<br>CA, USA, 2003<br>(Carmel)     | 300 EC                    | 0.45<br>0.45  | 945<br>945    | 2/0.9                | 3    | Hulls     | 4.3, 2.9<br>(3.6)          | FR-0382   |

### FATE OF RESIDUES IN STORAGE AND IN PROCESS

Processing studies on plums, tomato, olives, oranges, cottonseed and tea were conducted and are summarized in this section.

Processing orange into juice, oil, and other fractions

Orange samples from the following supervised trials treated at 1× or 2× the GAP application rate were sent for processing after harvest: Trials T-6389, T-6390, T-6640, T-6730, and T-6966 (Reference FR-01-0307). The study determined the magnitude of residues in raw unwashed and washed orange samples, peel, pulp, wet and dried peel, molasses, oil and juice.

Duplicate samples were harvested 1–7 days after the last application, and sent to the processor. Samples were stored frozen for up to 9 months before analysis by GC-ECD (method RM-22-4. Orange oil samples were extracted into hexane, partitioned with acetonitrile and extracts purified through alumina oxide (method RM-22-2).

Samples were variously washed by hand, separated into pulp and peel, and processed into wet and dried peel, molasses, oil and juice. Fruit was washed in an in-line foam washer with soap and rinsed with water. Juice was extracted using an automated FMC in-line extractor and the sample passed through a juice finisher with 200 mesh, the juice being collected in a holding tank.

The resulting oil, water, peel, frit emulsion from the FMC extractor was passed through an inline FMC finisher with 200 mesh screen and collected in a holding tank. This emulsion was heated to 49°C and appropriate enzymes added. The emulsion was then centrifuged to separate out the oil. The peel, rag, frit and seeds (together called as peel) from the juice and oil finishers were deposited in a peel hopper. This was further processed by being shredded and combined with 0.3% dehydrated lime slurry.

The slurry was then pressed (4.82 bar) and molasses collected from the press. The remaining pulp from the press was dried to approximately 8% moisture content and passed through a cyclone separator and cooler and collected. Dry fines were collected from the bottom of the cyclone separator. Procedural recoveries were 77-115% (mean 95%  $\pm$  7% RSD, n=57) at fortification levels of 0.1–2.0 mg/kg.

| TC 11 6 C D '1    | CC        | .1         |                 | 1 C          |
|-------------------|-----------|------------|-----------------|--------------|
| Table 55 Residues | of tennro | mathrin in | Orange processe | ed tractions |
| Table 33 Residues | or rempro | յքակայալ ա | orange processe | a machons    |

| Processed           | Residues       | Average | Processing factor | Reference   |
|---------------------|----------------|---------|-------------------|-------------|
| Fractions           | (mg/kg)        | (mg/kg) |                   | (Trial No.) |
| Orange RAC          | 0.43, 0.51     | 0.47    |                   | R195 T-6390 |
| Juice               |                | < 0.01  | < 0.02            |             |
| Oil                 |                | 37      | 79                |             |
| Molasses            |                | < 0.01  | < 0.02            |             |
| Wet peel            |                | 0.27    | 0.57              |             |
| Dried peel          |                | 0.74    | 1.6               |             |
| Dried fines of peel |                | 0.66    | 1.4               |             |
| Orange (RAC)        | 0.04, 0.05     | 0.045   |                   | R195 T-6966 |
| Washed fruit        | 0.02, 0.03     | 0.025   | 0.6               |             |
| Juice               | < 0.01, < 0.01 | < 0.01  | < 0.2             |             |
| Oil                 | 0.99, 0.94     | 0.97    | 22                |             |
| Molasses            | 0.01, 0.01     | 0.01    | 0.2               |             |
| Wet peel            | 0.04, 0.03     | 0.035   | 0.8               |             |
| Dried peel          | 0.13, 0.11     | 0.12    | 2.7               |             |
| Dried fines of peel | 0.16, 0.16     | 0.16    | 3.6               |             |
| Orange (RAC)        | 0.22,0.11      | 0.17    |                   | R195 T-6604 |

| Processed    | Residues   | Average | Processing factor | Reference   |
|--------------|------------|---------|-------------------|-------------|
| Fractions    | (mg/kg)    | (mg/kg) |                   | (Trial No.) |
| Pulp         |            | < 0.01  | < 0.06            |             |
| Peel         |            | 0.47    | 2.8               |             |
| Orange (RAC  | 0.18, 0.18 | 0.18    |                   | R195 T-6730 |
| Washed fruit |            | 0.13    | 0.72              |             |
| Orange (RAC) | 0.09, 0.19 | 0.14    |                   | R195 T-6389 |
| Pulp         |            | < 0.01  | < 0.07            |             |
| Peel         |            | 0.40    | 2.9               |             |

### Processing plums to dried plums/prunes

Plums from trial V-25427-F [treated twice with 1.8 kg ai/ha (2x) per application] were processed to dried plums (Reference FR-0385) by drying in a dehydrator at 187°C for approximately 18 hours. After drying, samples were frozen and analysed within 176 days of harvest of fresh plums.

In another study, fresh plum samples from Trial V-27220-A treated at the GAP rate of 0.9 kg ai/ha were dried in a drying tunnel at about 185 °C (Reference FR-0559) for approximately 18 hours. The dried prunes were pitted by hand, bagged and frozen at -20 °C until analysis within 195 days from harvest of fresh samples. The period of storage was within the demonstrated stability of plums under frozen conditions.

All samples were analysed for fenpropathrin using a modification of method RM-22-4 which is described under analytical methods. Concurrent recoveries of fortified samples ranged from 70–120%.

Table 56 Residues of fenpropathrin in fresh and dried plums

| Matrix                           | Residues (mg/kg) | Average (mg/kg) | Processing factor | Reference<br>(Trial No.) |
|----------------------------------|------------------|-----------------|-------------------|--------------------------|
| Plum (RAC)                       | 0.61, 0.54       | 0.58            |                   | FR-0385                  |
| Dried plum                       | 0.59, 0.59       | 0.59            | 1.0               |                          |
| Plum (RAC) – prior to processing | 0.22, 0.23       | 0.23            |                   | FR-0559                  |
| Dried plum                       | 0.58, 0.57       | 0.58            | 2.6               |                          |
| Average                          |                  |                 | 1.8               |                          |

## Processing tomatoes to pomace, juice, paste and other fractions

The magnitude of residues in raw unwashed and washed tomatoes, canned and pre-canned tomatoes, wet and dry pomace and juice was determined following applications of a 2.4 EC at 1.5× GAP rate (Reference FR-21-0344). Duplicate samples of mature green fruit were sent to the processor. Certain samples were gas-ripened or vine ripened before being sampled for analysis. Samples were stored at -20 °C for up to 5 months before analysis by GC-ECD (method RM-22-4), as described above in section 3. Gas ripened fruit was held in an atmosphere of 0.008–0.015%v/v ethylene at 20 °C for 3–6 days before being sampled. Samples were variously washed in chlorine solution, waxed and/or processed into pre-canned and canned tomatoes, wet and dry pomace, juice and paste. The canning process involved washing in chlorine solution followed by a water rinse, peeling by placing in 20%

sodium hydroxide (lye) solution at 79 °C, rinsing in water, dipping in 1% citric acid solution and further rinsing. Once tomatoes were placed in the can hot (100°C) tomato juice was added and the can was sealed and heated for 55 minutes at 100 °C. Procedural recoveries were 83–112% (with the exception of one sample of green fruit at 130%) at fortification levels of 0.01–0.2 mg/kg.

In another study, the magnitude of residues in raw tomatoes, wet and dry pomace, juice and paste were determined following applications of a 2.4 EC at 7.5× GAP rates to commercial crops (Reference FR-41-0360). Duplicate samples of mature green fruit were harvested 3 days after the last application and sent to the processor. Samples were stored at -20 °C and were analysed within 5 months by GC-ECD (method RM-22-4). Samples were hand sorted and defective fruit were discarded as cannery waste. The tomatoes were then soaked in a 0.5% lye solution for 3 minutes at 54 °C and rinsed using a high pressure spray for 30 seconds. Samples were then batch steam peeled at 5.6–7 bar pressure and processed through a pulp finisher machine where the pulp/pomace was separated from juice. The wet pomace was dried to produce dry pomace and the juice concentrated in a batch vacuum concentrator to approximately 30–32% solids. 1% salt was added to the resulting paste and the temperature was raised to 90 °C before the paste was sealed in cans. The cans were subject to heating at 100 °C for 20 minutes in a water batch before being cooled under running tap water. Juice was reconstituted from the paste with water, salt and ascorbic acid, heated to 90 °C, canned, and the cans treated as for canned paste.

Procedural recoveries were 94-105% (with the exception of two samples of dry pomace at 78 and 118%) at fortification levels of 0.1 mg/kg.

Table 57 Residues of fenpropathrin in tomato processed fractions

| Processed             | Residues   | Average | Processing factor | Reference   |
|-----------------------|------------|---------|-------------------|-------------|
| Fractions             | (mg/kg)    | (mg/kg) |                   | (Trial No.) |
| Tomato gas ripe       | 0.07, 0.07 | 0.07    |                   | FR-21-0344  |
| Washed fruit          | 0.03, 0.04 | 0.035   | 0.5               |             |
| Unwashed, pre-canned  |            | 0.13    |                   |             |
| (RAC)                 |            |         |                   |             |
| Washed, pre-canned    |            | 0.07    | 0.54              |             |
| Pre-canning           |            | < 0.01  | < 0.08            |             |
| Canned                |            | < 0.01  | < 0.08            |             |
| Canning waste         | 0.95, 1.1  | 1.0     | 7.7               |             |
| Tomato gas ripe       | 0.12, 0.06 | 0.09    |                   | FR-21-0344  |
| Washed fruit          | 0.07, 0.11 | 0.09    | 1                 |             |
| Raw tomato (RAC)      |            | 0.14    |                   |             |
| Washed, pre-canned    |            | 0.12    | 0.86              |             |
| Processed, pre-canned |            | 0.01    | 0.07              |             |
| Canned                |            | < 0.01  | < 0.07            |             |
| Canning waste         | 0.83, 0.81 | 0.82    | 5.9               |             |
| Tomato gas ripe       | 0.05, 0.13 | 0.09    |                   | FR-21-0344  |
| Washed gas ripe       | 0.04, 0.08 | 0.06    | 0.7               |             |
| Raw tomato (RAC)      |            | 0.13    |                   |             |
| Washed fruit          |            | 0.14    | 1.1               |             |
| Processed pre-canned  |            | 0.02    | 0.15              |             |
| Canned                |            | < 0.01  | < 0.08            |             |
| Canning waste         | 1.2, 1.3   | 1.25    | 9.6               |             |
| Tomato gas ripe (RAC) | 0.13, 0.03 | 0.08    |                   | FR-21-0344  |
| Washed and waxed      | 0.05, 0.06 | 0.055   | 0.69              |             |

| Processed<br>Fractions | Residues<br>(mg/kg) | Average (mg/kg) | Processing factor | Reference<br>(Trial No.) |
|------------------------|---------------------|-----------------|-------------------|--------------------------|
| Tomato gas ripe (RAC)  | 0.20, 0.10          | 0.15            |                   | FR-21-0344               |
| Washed and waxed       | 0.08, 0.18          | 0.13            | 0.87              |                          |
| Ripe fruit (RAC)       | 2.5, 2.9            | 2.7             |                   | FR-41-0360               |
| Fruit from processor   | 1, 1.1              | 1.05            | 0.4               |                          |
| Wet pomace             | 9.7, 11             | 10.4            | 3.9               |                          |
| Dry pomace             | 51, 45              | 48              | 18                |                          |
| Tomato paste           | 0.83, 0.81          | 0.82            | 0.3               |                          |
| Tomato juice           | 0.12, 0.13          | 0.125           | 0.05              |                          |
| OVERALL AVERAGE P      | ROCESSING FA        | ACTORS          |                   |                          |
| Tomato gas ripe (RAC)  |                     |                 |                   |                          |
| Washed and waxed       |                     |                 | 0.78              |                          |
| Washed gas ripe        |                     |                 | 0.73              |                          |
| Washed, pre-canned     |                     |                 | 0.83              |                          |
| Pre-canned             |                     |                 | 0.1               |                          |
| Canned                 |                     |                 | 0.08              |                          |
| Canning waste          |                     |                 | 12                |                          |
| Tomato (RAC)           | +                   |                 |                   |                          |
| Wet pomace             |                     |                 | 3.9               |                          |
| Dry pomace             |                     |                 | 18                |                          |
| Tomato paste           |                     |                 | 0.3               |                          |
| Tomato juice           |                     |                 | 0.05              |                          |
| Tomato, canned         |                     |                 | 0.08              |                          |

# Processing olive fruit to oil

Samples for processing to olive oil were obtained from trial CA64 where olive plants were treated with fenpropathrin at approximately 5× the GAP application rate (Samoil, 2007; Reference FR-0561). After harvest, the fruits were pitted and delivered at ambient temperature to the processing facility, where the olives were processed into oil. The samples were cleaned of extraneous materials and then subjected to cold water wash and crushed. After crushing, the olives were pressed by hydraulic press to produce olive oil, which was then subjected to bleaching. Processed olive oil was stored at -20 °C until analysis. The storage period was recorded as 167 days. Storage stability samples fortified with 0.2 mg/kg fenpropathrin were stored under the same conditions as the field samples and were analysed after 202 days. Recoveries ranged from 85–93% for olive oil.

Residues of fenpropathrin were determined by a method based on RM-22-4. The method was validated using store-bought oil. Recoveries ranged from 94–103%. The LOQ for olive oil was determined to be 0.02 mg/kg.

Table 58 Residues of fenpropathrin in olive oil

| Processed<br>Fractions | Residues (mg/kg) | Processing factor | Reference<br>(Trial No.) |
|------------------------|------------------|-------------------|--------------------------|
| Olive fruit (RAC)      | 14.63            |                   | Trial CA64               |
| Olive oil              | 15.60            | 1.07              | (FR-0561)                |

Processing cottonseed to oil, meal and soapstock

Samples for processing to cottonseed oil into meal, oil and soapstock were obtained from trials M335-6070, M355-6071 and R194-6427 where cotton plants were treated with fenpropathrin using a range of application rates and timings (Fujie, 1990; Reference FR-01-0360). A Carver impact huller was used to obtain the fractions (kernels and hulls). The kernels were flaked in a Ferrell-Ross "flake-n-roll" to 0.02 mm thickness. The flakes were washed three times with hexane at a temperature of approximately 145 °C. This extraction process took 3 hours. The oil was recovered with a precision laboratory evaporator. During this process the oil reached a maximum temperature of 75 °C. Warm air was forced through the extractor to dissolve the cotton seed flakes. The oil was refined by the following steps:

- 1. NaOH was added to the oil while it was stirred at 250 rpm at a temperature of 20–24 °C for 15 minutes.
- 2. The oil was heated to 63–67 °C for 12 minutes and the stirring reduced to 70 RPM.
- 3. The oil was then allowed to settle for 60 minutes at a temperature of 60–65 °C.
- 4. The oil was refrigerated overnight or at least for 12 hours.
- 5. After refrigeration the oil was filtered to obtain the refined oil and soapstock fractions.

The processed samples were stored at -20 °C until analysis. Recoveries ranged from 78–99% for processed products.

Fenpropathrin residues were determined by gas chromatography using an electron capture detector (Fujie, 1990; Reference FR-01-0306). Recoveries ranged from 94–103%. The LOQ for the method was 0.01 mg/kg. Table 59 summarizes the results of the cottonseed processing study.

Table 59 Residues of fenpropathrin in cottonseed products

| Processed        | Residu | ues (mg | y/kg) | /kg) Processing factors |           |     |     |      | Mean | Reference |            |             |
|------------------|--------|---------|-------|-------------------------|-----------|-----|-----|------|------|-----------|------------|-------------|
| Fractions        | M335   | -6070   | M335  | -6071                   | R194-6427 |     |     |      |      |           | processing | (Trial No.) |
|                  |        |         |       |                         |           |     |     |      |      |           | factor     |             |
| Cottonseed (RAC) | 0.02   | 0.02    | 0.03  | 0.03                    | 1.2       |     |     |      |      |           |            | (FR-01-     |
|                  |        |         |       |                         |           |     |     |      |      |           |            | 0306)       |
| Meal             | 0.01   | 0.01    | 0.01  | 0.03                    | 0.09      | 0.5 | 0.5 | 0.33 | 1.0  | 0.08      | 0.5        |             |
| Crude oil        | 0.06   | 0.06    | 0.07  | 0.06                    | 2.3       | 3.0 | 3.0 | 2.3  | 2.0  | 1.9       | 2.4        |             |
| Refined oil      | 0.06   | 0.06    | 0.10  | 0.07                    | 2.6       | 3.0 | 3.0 | 3.3  | 2.3  | 2.2       | 2.8        |             |
| Soapstock        | 0.01   | 0.01    | 0.04  | 0.05                    | 1.6       | 0.5 | 0.5 | 1.3  | 1.7  | 1.3       | 1.1        |             |

The processing factors are summarised in table 60.

Table 60 Summary of results of processing

| RAC/processed | Residues |                                   |  |  |  |        | Fenpropathrin      |  |  |  |                   |
|---------------|----------|-----------------------------------|--|--|--|--------|--------------------|--|--|--|-------------------|
| fraction      |          |                                   |  |  |  |        | Processing factors |  |  |  | PF, best estimate |
| RAC:Whole     | 0.47     | 0.47   0.045   0.17   0.18   0.14 |  |  |  |        | -                  |  |  |  |                   |
| orange        |          |                                   |  |  |  |        |                    |  |  |  |                   |
| Juice         | < 0.01   | < 0.01                            |  |  |  | < 0.02 | < 0.22             |  |  |  | < 0.02            |
| Oil           | 37       | 0.97                              |  |  |  | 78.7   | 21.56              |  |  |  | 50.1              |

| RAC/processed       | Residue | es     |        |       |        | Fenpro  | pathrin   |       |      |       |                   |
|---------------------|---------|--------|--------|-------|--------|---------|-----------|-------|------|-------|-------------------|
| fraction            |         |        |        |       |        | Process | sing fact | ors   |      |       | PF, best estimate |
| Wet peal            | 0.27    | 0.035  | 0.47   |       | 0.4    | 0.6     | 0.78      | 2.76  |      | 2.86  | 2.82              |
| Dried peel          | 0.74    | 0.12   |        |       |        | 1.6     | 2.67      |       |      |       | 2.1               |
| Dried fines of peel | 0.66    | 0.16   |        |       |        | 1.4     | 3.56      |       |      |       | 2.5               |
| Pulp                |         |        | < 0.01 |       | < 0.01 |         |           | 0.06  |      | 0.07  | 0.065             |
| RAC: Plum           | 0.58    | 0.23   |        |       |        |         |           |       |      |       |                   |
| Dried plum          | 0.59    | 0.28   |        |       |        | 1.0     | 1.2       |       |      |       | 2.6               |
| RAC: Tomato         | 0.07    | 0.09   | 0.09   | 1.05  | 0.4    |         |           |       |      |       |                   |
| Washed fruit        | 0.035   | 0.09   | 0.06   |       |        | 0.50    | 1.0       | 0.67  | 0.00 |       | 0.67              |
| Pre-canned RAC      | 0.13    | 0.14   | 0.13   |       |        |         |           |       |      |       |                   |
| Washed pre-canned   | 0.07    | 0.12   | 0.14   |       |        | 0.54    | 0.86      | 1.08  |      |       | 0.86              |
| Canned              | < 0.01  | < 0.01 | < 0.01 |       |        | 0.077   | 0.071     | 0.077 |      |       | < 0.075           |
| Canning waste       | 1.0     | 0.82   | 1.25   |       |        | 8       | 6         | 10    |      |       | 8                 |
| Wet pomace          |         |        |        | 10.4  | 3.9    |         |           |       | 9.9  | 9.8   | 9.8               |
| Dry pomace          |         |        |        | 48    | 18     |         |           |       | 46   | 45.0  | 45                |
| Tomato paste        |         |        |        | 0.82  | 0.3    |         |           |       | 0.78 | 0.75  | 0.77              |
| Tomato juice        |         |        |        | 0.125 | 0.05   |         |           |       | 0.12 | 0.1   | 0.12              |
| RAC: Tomato         | 0.08    | 0.15   |        |       |        |         |           |       |      |       |                   |
| Washed and waxed    | 0.055   | 0.13   |        |       |        |         |           |       |      |       | 0.78              |
| RAC: olives         | 14.63   |        |        |       |        |         |           |       |      |       |                   |
| Olive oil, bleached | 15.6    |        |        |       |        | 1.1     |           |       |      |       | 1.1               |
| RAC: Cottonseed     | 0.02    | 0.02   | 0.03   | 0.03  | 1.2    |         |           |       |      |       |                   |
| Meal                | 0.01    | 0.01   | 0.01   | 0.03  | 0.09   | 0.5     | 0.5       | 0.33  | 1    | 0.075 | 0.5               |
| Crude oil           | 0.06    | 0.06   | 0.07   | 0.06  | 2.3    | 3       | 3         | 2.3   | 2    | 1.9   | 2.3               |
| Refined oil         | 0.06    | 0.06   | 0.10   | 0.07  | 2.6    | 3       | 3         | 3.3   | 2.3  | 2.2   | 3                 |
| Soapstock           | 0.01    | 0.01   | 0.04   | 0.05  | 1.6    | 0.5     | 0.5       | 1.3   | 1.7  | 1.3   | 1.3               |

#### **RESIDUES IN ANIMAL COMMODITIES**

Livestock Feeding Studies

### Lactating dairy cattle

Lactating Holstein cows were orally administered technical grade fenpropathrin (purity 92.5%) via gelatin capsules for 28 consecutive days (Fujie, 1986; Reference FR-61-0174). Treatment levels were equivalent to 0, 25, 75 and 250 ppm fenpropathrin based upon the daily average food consumption of 18.54 kg/cow. Each dose was administered in two equal portions at the morning and evening milkings. Each treatment group consisted of four animals, except the control group which consisted of 2 animals. Controls animals were administered empty gelatin capsules only.

Milk samples were collected from individual animals in two portions corresponding to the morning and evening milkings on the days -1, 0, 3, 5, 8, 12, 16, 20, 24 and 28. Milk from days 26 and 27 (250 ppm and control groups) were pooled and processed to obtain pasteurized milk, milk fat solids (cream), milk sugars and protein concentrate. At day 28, three animals from each treatment group were sacrificed and samples of liver, kidney, fat and muscle were collected and frozen for analysis. Administration of fenpropathrin then ceased and the animals received untreated diet. At day 31, the remaining animal from each dose group and one of the control animals were sacrificed and tissues sampled accordingly.

Samples of control milk were fortified with fenpropathrin, stored and analysed to confirm the stability of fenpropathrin over the sample storage period (78 days). An average recovery of 105% indicated stability of fenpropathrin in milk samples. Milk samples in the study were stored from 37 to 73 days at -20 °C prior to analysis.

All samples were analysed for fenpropathrin using method RM-22A-1 within the test period of storage stability. Residues of fenpropathrin in the milk reached a plateau after three days. Average residues in the whole milk of the four cows of each group on Day 3 were 0.04, 0.17, and 0.33 mg/kg for the three dose levels.

Fenpropathrin residues in milk and tissues from animals sacrificed at days 28 and 31 are summarized in Tables 61–63. Residue levels were found to be dose related.

Table 61. Residues of fenpropathrin in milk (mg/L) following administration of fenpropathrin to dairy cows for periods of up to 28 days followed by a 3 day depuration phase

| Dose    | Day/resi | due (mg/ | kg)  |      |      |      |      |      |      |      |      |      |      |        |                   |
|---------|----------|----------|------|------|------|------|------|------|------|------|------|------|------|--------|-------------------|
| Level   | -1       | 0        | 1    | 3    | 5    | 8    | 12   | 16   | 20   | 24   | 26   | 27   | 28   | 31     | Mean              |
| (mg/kg) |          |          |      |      |      |      |      |      |      |      |      |      |      |        |                   |
| 25      | < 0.01   | < 0.01   | 0.02 | 0.05 | 0.05 | 0.04 | 0.06 | 0.04 | 0.04 | 0.05 | na   | na   | 0.05 | -      |                   |
|         | < 0.01   | < 0.01   | 0.02 | 0.03 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.04 | na   | na   | 0.03 | < 0.01 |                   |
|         | < 0.01   | < 0.01   | 0.02 | 0.04 | 0.03 | 0.04 | 0.03 | 0.03 | 0.04 | 0.03 | na   | na   | 0.05 | -      |                   |
|         | < 0.01   | < 0.01   | 0.02 | 0.04 | 0.04 | 0.05 | 0.06 | 0.04 | 0.04 | 0.05 | na   | na   | 0.04 | -      |                   |
| Mean    | < 0.01   | < 0.01   | 0.02 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.04 | 0.04 | na   | na   | 0.04 |        | $0.04^{a}$        |
| 75      | < 0.01   | < 0.01   | 0.03 | 0.09 | 0.09 | 0.08 | 0.07 | 0.08 | 0.08 | 0.09 | na   | na   | 0.12 | -      |                   |
|         | < 0.01   | < 0.01   | 0.07 | 0.16 | 0.11 | 0.13 | 0.18 | 0.17 | 0.22 | 0.18 | na   | na   | 0.16 | 0.02   |                   |
|         | < 0.01   | < 0.01   | 0.06 | 0.14 | 0.10 | 0.12 | 0.10 | 0.07 | 0.10 | 0.09 | na   | na   | 0.06 | -      |                   |
|         | < 0.01   | < 0.01   | 0.13 | 0.28 | 0.19 | 0.18 | 0.35 | 0.18 | 0.17 | 0.21 | na   | na   | 0.16 | -      |                   |
| Mean    | < 0.01   | < 0.01   | 0.07 | 0.17 | 0.12 | 0.13 | 0.18 | 0.13 | 0.14 | 0.14 | na   | na   | 0.13 | 0.02   | 0.13 <sup>a</sup> |
| 250     | < 0.01   | < 0.01   | 0.16 | 0.33 | 0.30 | 0.29 | 0.34 | 0.22 | 0.42 | 0.26 | 0.30 | 0.32 | 0.31 | -      |                   |
|         | < 0.01   | < 0.01   | 0.15 | 0.30 | 0.28 | 0.36 | 0.35 | 0.32 | 0.23 | 0.21 | 0.28 | 0.28 | 0.24 | 0.04   |                   |
|         | < 0.01   | < 0.01   | 0.17 | 0.34 | 0.38 | 0.31 | 0.37 | 0.33 | 0.36 | 0.34 | 0.41 | 0.39 | 0.37 | -      |                   |
|         | < 0.01   | < 0.01   | 0.14 | 0.36 | 0.37 | 0.40 | 0.44 | 0.45 | 0.34 | 0.46 | 0.45 | 0.34 | 0.35 | -      |                   |
| Mean    | < 0.01   | < 0.01   | 0.16 | 0.33 | 0.33 | 0.34 | 0.38 | 0.33 | 0.34 | 0.32 | 0.36 | 0.33 | 0.32 | 0.04   | $0.32^{a}$        |

na –not sampled for analysis; <sup>a</sup> Mean 1 – 28 days

Table 62 Maximum residues of fenpropathrin in tissue samples following administration of fenpropathrin to dairy cows for periods of up to 28 days

| Dose level | Tissue residue (mg/kg) |                         |        |      |  |  |  |  |  |  |
|------------|------------------------|-------------------------|--------|------|--|--|--|--|--|--|
| (mg/kg)    | Muscle                 | Muscle Kidney Liver Fat |        |      |  |  |  |  |  |  |
| 25         | 0.04                   | 0.05                    | < 0.01 | 0.44 |  |  |  |  |  |  |
| 75         | 0.12                   | 0.06                    | < 0.01 | 1.7  |  |  |  |  |  |  |
| 250        | 0.33                   | 0.20                    | 0.01   | 4.1  |  |  |  |  |  |  |

Table 63 Mean residues of fenpropathrin in tissue samples following administration of fenpropathrin to dairy cows for periods of up to 28 days followed by a 3 day depuration phase

| Dose    | Tissue res | idue (mg/kg) |          |            |        |            |       |                  |
|---------|------------|--------------|----------|------------|--------|------------|-------|------------------|
| level   | Muscle     |              | Kidney   |            | Liver  |            | Fat   |                  |
| (mg/kg) | After 28   | 3 day        | After 28 | 3 day      | After  | 3 day      | After | 3 day depuration |
|         | days       | depuration   | days     | depuration | 28     | depuration | 28    |                  |
|         |            |              |          |            | days   |            | days  |                  |
| 25      | 0.02       | 0.01         | 0.03     | 0.01       | < 0.01 | < 0.01     | 0.33  | 0.31             |
| 75      | 0.06       | 0.10         | 0.04     | 0.06       | < 0.01 | < 0.01     | 1.0   | 0.83             |
| 250     | 0.20       | 0.12         | 0.16     | 0.14       | 0.01   | < 0.01     | 3.8   | 2.6              |

Milk from sampling days 26 and 27 of the highest dose group were pooled and processed to obtain pasteurized milk, milk fat solids (cream), milk sugars and protein concentrate. The results show that pasteurization does not significantly reduce fenpropathrin residues in milk. Fenpropathrin concentrates in milk fat by a factor of about 10× (from mean of 0.34 mg/kg in whole milk to 3.7 mg/kg in milk fat). There is no concentration of fenpropathrin in milk sugars and protein concentrate (Table 64).

Table 64 Residues of fenpropathrin in milk fractions

| Fraction             | Residue    |
|----------------------|------------|
|                      | (mg/kg)    |
| Whole Milk           | $0.34^{a}$ |
| Pasteurized milk     | 0.25       |
| Milk fat             | 3.7        |
| Non-fat milk portion | < 0.01     |
| Milk sugar           | < 0.01     |
| Protein concentrate  | 0.02       |

<sup>&</sup>lt;sup>a</sup> Mean residue in combined days 26 and 27 milk samples from highest dose.

#### Laying Hens

Groups of 20 White Leghorn laying hens were fed a diet containing technical grade fenpropathrin (purity 94.5%) at a nominal concentration of 0, 2.5, 7.5 and 25 ppm (measured concentrations: 2.45, 7.10 and 23.6 ppm) for a period of 28 days (Fujie, 1986; Reference FR-61-0175). The number and weight measurements of body weight and feed consumption were taken at regular intervals during the study.

At study termination, all birds were examined macroscopically. Composite samples of liver, gizzard, fat and muscle were prepared for analysis. Eggs from days 1, 2, 4, 7, 21 and 28 were analysed as whole eggs minus shell. Stability samples of treated diet were taken for analysis during the study. To determine the stability of fenpropathrin in stored eggs, control samples were fortified with fenpropathrin, stored and analysed at a time interval greater than the storage interval for eggs from the feeding study. An average recovery of 92% of fenpropathrin was obtained after 156 days of storage at -20 °C. All samples were analysed within 30 days of collection and storage.

Eggs and tissues were analysed for fenpropathrin. The method involved extraction with hexane/acetone, acetonitrile/hexane partitioning, silica gel chromatography and analysis by GC-ECD. Residues were found in the eggs only at the highest feeding level. A level of 0.02 mg/kg was reached on the seventh day and remained essentially constant until the end of the study. Average levels of fenpropathrin in the fat reached 0.02, 0.05 and 0.14 mg/kg for the three feeding levels. Residues in all tissues except fat were below the lower limit of determination, 0.01 mg/kg, at the end of the study. Metabolites could only be detected in liver after dosing with 25 ppm were TMPA (0.05 mg/kg) and PBA-glycin (0.03 mg/kg). The distribution of residues between white and yolk was not studied.

Fenpropathrin residues in eggs and poultry tissues from hens sacrificed at day 28 are summarized in Tables 65 and 66. Residue levels were found to be dose related.

Table 65 Residues of fenpropathrin in eggs (mg/kg) following administration of fenpropathrin to laying hens for a period of 28 days

| Dose          | Day/Residue (mg/kg) |        |        |        |        |        |        |  |
|---------------|---------------------|--------|--------|--------|--------|--------|--------|--|
| Level (mg/kg) | -1                  | 1      | 4      | 7      | 14     | 21     | 28     |  |
| 2.5           | < 0.01              | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |  |
|               | < 0.01              | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |  |
| Mean          | < 0.01              | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |  |
| 7.5           | < 0.01              | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |  |
|               | < 0.01              | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |  |
| Mean          | < 0.01              | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 | < 0.01 |  |
| 25            | < 0.01              | < 0.01 | < 0.01 | 0.02   | 0.02   | 0.01   | 0.02   |  |
|               | < 0.01              | < 0.01 | < 0.01 | 0.02   | 0.01   | 0.02   | 0.02   |  |
| Mean          | < 0.01              | < 0.01 | < 0.01 | 0.02   | 0.02   | 0.02   | 0.02   |  |

Table 66 Residues of fenpropathrin in tissue samples following administration of fenpropathrin to laying hens for 28 days

| Dose  | Tissue residue (n | ng/kg)  |        |      |
|-------|-------------------|---------|--------|------|
| level | Muscle            | Gizzard | Liver  | Fat  |
| 2.5   | < 0.01            | < 0.01  | < 0.01 | 0.02 |
|       | < 0.01            | < 0.01  | < 0.01 | 0.02 |
|       | < 0.01            |         |        | 0.02 |
| Mean  | < 0.01            | < 0.01  | < 0.01 | 0.02 |
| 7.5   | < 0.01            | < 0.01  | < 0.01 | 0.06 |
|       | < 0.01            | < 0.01  | < 0.01 | 0.05 |
|       | < 0.01            |         |        | 0.05 |
| Mean  | < 0.01            | < 0.01  | < 0.01 | 0.05 |
| 25    | < 0.01            | < 0.01  | < 0.01 | 0.16 |
|       | < 0.01            | < 0.01  | < 0.01 | 0.14 |
|       | < 0.01            |         |        | 0.12 |
| Mean  | < 0.01            | < 0.01  | < 0.01 | 0.14 |

#### **APPRAISAL**

Fenpropathrin is a type II pyrethroid insecticide and acaricide used for the control of a variety of arthropods including aphids, worms, moths, beetles, mites, spiders, thrips, flies, fleas and other pests in agriculture.

Fenpropathrin was first evaluated by JMPR in 1993 when an ADI of 0–0.03 mg/kg bw was established and a number of MRLs recommended. In 2006 MRL for tea was recommended. The compound was re-evaluated for toxicology within the periodic review programme in 2012 when the Meeting reaffirmed the ADI of 0–0.03 mg/kg bw and established an ARfD of 0.03 mg/kg bw.

The Forty-fifth Session of the CCPR scheduled fenpropathrin for periodic re-evaluation of residues by the 2014 JMPR. Data to support proposed Codex MRLs on a number of commodities and on animal products were submitted for review.

The structural formulae and IUPAC name of fenpropathrin are:

(RS)-α-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate.

# METABOLISM AND ENVIRONMENTAL FATE

The metabolism of fenpropathrin has been investigated in apple, tomato, beans, cotton, cabbage, lactating goat and laying hens. The crops selected represent those for which supervised trials have been provided.

The fate and behaviour of fenpropathrin in plants, animals and soil were investigated using either [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin, [benzyl-<sup>14</sup>C]-fenpropathrin or [cyano-<sup>14</sup>C]-fenpropathrin (all with radiochemical purity >98%).

[cyclopropyl-1-14C]-fenpropathrin

[phenoxyphenyl-14C]-fenpropathrin

[cyano-<sup>14</sup>C]-fenpropathrin

[benzyl-14C]-fenpropathrin

The chemical and code names and structure of the major degradation compounds, referred to hereunder, are:

| Compound Name                                                                  | Structure   | Found in:      |
|--------------------------------------------------------------------------------|-------------|----------------|
| 2'-or 4'-OH-Fenpropathrin                                                      | ОН          | Plant, animal, |
| [α-cyano-3-(2'- or 4'-                                                         |             | soil           |
| hydroxyphenoxy)benzyl 2,2,3,3-                                                 | CN CN       |                |
| tetramethylcyclopropanecarboxylate]                                            | Ö ÖN        |                |
| 2'- or 4'-OH-Fenpropathrin-CH <sub>2</sub> OH                                  | ОН          | Plant, animal  |
| [α-cyano-3-(2'- or 4'-hydroxyphenoxy)                                          |             |                |
| benzyl-2-hydroxymethyl-2,3,3-                                                  | CN          |                |
| trimethylcyclopropanecarboxylate]                                              | 0 01        |                |
| CONH <sub>2</sub> -Fenpropathrin                                               |             | Soil, water    |
| [α-carbamoyl-3-phenoxybenzyl 2,2,3,3-                                          |             | plant          |
| tetramethylcyclopropanecarboxylate]                                            | C           |                |
|                                                                                | Ö CONH₂     |                |
| COOH-Fenpropathrin                                                             |             | Soil, plant    |
| [α-carboxy-3-phenoxybenzyl 2,2,3,3-                                            |             |                |
| tetramethylcyclopropanecarboxylate]                                            |             |                |
|                                                                                | , çоон      |                |
| Desphenyl-Fenpropathrin                                                        |             | Animal, soil,  |
| [α-cyano-3-hydroxybenzyl 2,2,3,3-                                              |             | plant          |
| tetramethylcyclopropanecarboxylate]                                            | C OH        |                |
| 5 11 : 611 611                                                                 | Ö CN        | DI             |
| Fenpropathrin-CH <sub>2</sub> OH                                               |             | Plant, animal  |
| [α-cyano-3-phenoxybenzyl 2-                                                    |             |                |
| hydroxymethyl-2,3,3-                                                           | O CN        |                |
| trimethylcyclopropanecarboxylate]                                              | Ö ČN        | Austrea I      |
| Fenpropathrin-COOH                                                             |             | Animal         |
| [α-cyano-3-phenoxybenzyl 2-carboxy-<br>2,3,3-trimethylcyclopropanecarboxylate] |             |                |
| 2,3,3-trimethylcyclopropanecarboxylatej                                        | U CN        |                |
| Fenpropathrin-(CH <sub>2</sub> OH) <sub>2</sub>                                | HO—OH       | Plant          |
| [α-cyano-3-phenoxybenzyl 2,2-                                                  |             | T Tarre        |
| dihydroxymethyl-3,3-                                                           |             |                |
| dimethylcyclopropanecarboxylate]                                               |             |                |
| 2'- or 4'-OH-Fenpropathrin-(CH <sub>2</sub> OH) <sub>2</sub>                   | НО—ОН       | Plant          |
| [α-cyano-3-(2'- or 4'-                                                         | ОН          |                |
| hydroxyphenoxy)benzyl 2,2-                                                     |             |                |
| dihydroxymethyl-3,3-                                                           | U I<br>O CN |                |
| dimethylcyclopropanecarboxylate]                                               |             |                |
| PB aldehyde (PBald)                                                            |             | Plant, animal, |
| [3-phenoxybenzaldehyde]                                                        |             | soil           |
| , , , , ,                                                                      | СНО         |                |
| PB alcohol (PBalc)                                                             |             | Plant, soil    |
| [3-phenoxybenzyl alcohol]                                                      |             |                |
| PBacid                                                                         | O CH₂OH     | Plant, animal, |
| [3-phenoxybenzoic acid]                                                        |             | soil, water    |
| [5-prierioxyberizoic aciu]                                                     | Соон        | Joii, Water    |
|                                                                                | <u> </u>    | 1              |

| Compound Name                                                                                 | Structure             | Found in:                     |
|-----------------------------------------------------------------------------------------------|-----------------------|-------------------------------|
| 2'- or 4'-OH-PBalc<br>[3-(2'- or 4'-hydroxyphenoxy)benzyl<br>alcohol]                         | HO CH <sub>2</sub> OH | Plant                         |
| 2'- or 4'-OH-PBacid [3-(2'- or 4'-hydroxyphenoxy)benzoic acid]                                | но Соон               | Plant, animal,<br>soil        |
| 3-OH-Bacid<br>[3-hydroxy-benzoic acid]                                                        | но соон               | Animal, soil                  |
| TMPA [2,2,3,3-tetramethylcyclopropane- carboxylic acid]                                       | соон                  | Plant, animal,<br>soil, water |
| TMPA-CH₂OH<br>[2-hydroxymethyl-2,3,3-<br>trimethylcyclopropanecarboxylic acid]                | СООН                  | Plant, animal                 |
| TMPA-lactone<br>[5,6,6-trimethyl-3-oxabicyclohexan-2-<br>one]                                 |                       | Plant                         |
| TMPA-CH <sub>2</sub> OH lactone<br>[5-hydroxymethyl-6,6-dimethyl-3-<br>oxabicyclohexan-2-one] | HOOO                  | Plant, animal                 |
| TMPA carboxamide [2,2,3,3-tetramethylcyclopropane- carboxamide]                               | NH <sub>2</sub>       | Water                         |
| TMPA-COOH [2-carboxy-2,3,3- trimethylcyclopropanecarboxylic acid]                             | ноос                  | Plant, animal                 |

### Animal metabolism

### Laboratory animals

The toxicological evaluation fenpropathrin was carried out by the 2012 JMPR. Absorption by rats was rapid and excretion was almost complete (97%) within 48 hours. About 56% of the administered dose was found in urine and 40% in faeces after 48 hours. The amount of radioactivity excreted via expired air was 0.005%. The low residues found in blood, liver, kidney, fat, muscle and brain 24 hours after dosing depleted rapidly over the following 7 days to barely detectable levels, and less than 1.5% of the administered dose remained in the body 8 days after treatment. The highest residue was found in the fat. About 29–53% of the parent compound was detected in the faeces and no parent compound was detected in the urine. The predominant urinary metabolites derived from the acid moiety were identified as TMPA–glucuronide and TMPA-CH<sub>2</sub>OH (*trans*). Other metabolites identified were

TMPA-COOH (*trans*) and TMPA-CH<sub>2</sub>OH-lactone in free form or as the glucuronide. The major urinary metabolites derived from the alcohol moiety were PBacid in free form and as the glycine conjugate, 4'-OH-PBacid–sulfate and 2'-OH-PBacid–sulfate. The urinary metabolites from the alcohol moiety were similar to those from other pyrethroids. The major faecal metabolite was identified as CH<sub>2</sub>OH *trans*-fenpropathrin, followed by COOH *trans*-fenpropathrin, 4'-OH-fenpropathrin and 4'-OH,CH<sub>2</sub>OH *trans*-fenpropathrin. Fenpropathrin and TMPA were the major components of <sup>14</sup>C in tissues. No sex-related differences in tissue distribution were observed.

# Lactating goats

Two lactating goats per group were dosed for five consecutive days via capsules with either [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin or [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin at a rate equivalent to 50 ppm. Milk samples were collected at the morning and afternoon and urine and faeces once a day.

The mean average total radioactivity recovered following dosing with both labelled compounds was about 65.8% with 40% recovered in the urine and 25% in the faeces.

Excretion via milk was a minor route with radioactivity accounting for approximately 0.15% of the applied phenoxyphenyl labelled and approximately 0.087% for the cyclopropyl labelled compound. Total radioactive residues in the milk reached a steady state by the evening milking on the third day.

Following the <u>treatments with 50 ppm [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin</u>, the maximum total residue in milk was 0.25 mg/L. The major residue components were the parent fenpropathrin 78% TRR, (0.02 mg/kg). At around the plateau, the average concentration of the parent compound was 0.05 mg/kg (29%TRR) and PBacid-glycine 0.076 mg/kg (46%TRR). The other metabolites were < 10% TRR.

At sacrifice, the average residues were: in fat: fenpropathrin (0.50 mg/kg, 78%TRR), all metabolites were present at lower than 5%TRR; in muscle: fenpropathrin (0.011 mg/kg, 45%TRR), PBacid-glycine (22.4% TRR), PBacid (10.9% TRR) the other metabolites were below 3%; in liver: fenpropathrin (0.014 mg/kg, 3.2% TRR), PBacid-glycine (20%TRR), PBacid (14% TRR), 4'-OH-PBacid (11%TRR), the other metabolites were below 10% TRR; in kidney: fenpropathrin (0.01 mg/kg, 1.24%TRR), PBacid-glycine (39%TRR), PBacid (38%TRR) and the other metabolites were below 10%.

After the goats were <u>administered with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin</u>, the average total residue in milk was 0.11 mg/L. The parent compound in milk amounted to maximum 70% TRR (0.086 mg/kg). All metabolites amounted to maximum 4% TRR.

At sacrifice, the average residues were: in fat: fenpropathrin (0.55 mg/kg, 81% TRR), all metabolites were present at lower than 3%TRR; in muscle: fenpropathrin (0.005 mg/kg, 11.3% TRR), TMPA-CH<sub>2</sub>OH-lactone (19.4% TRR) andTMPA-CH<sub>2</sub>OH (11%TRR); in liver: fenpropathrin

0.011 mg/kg (2.45% TRR), TMPA (18.2%TRR), TMPA-CH<sub>2</sub>OH (15.8%TRR) and TMPA-CH<sub>2</sub>OH lactone (12.5% TRR); in kidney: fenpropathrin 0.0076 mg/kg (1.48% TRR), TMPA-CH<sub>2</sub>OH-lactone (40.8% TRR) and TMPA-CH<sub>2</sub>OH (14.5% TRR).

The other metabolites in muscle, liver and kidney were below 5%TRR.

## Laying hens

Fenpropathrin, labelled in either the cyclopropyl or the phenoxyphenyl ring was administered in capsules to laying hens daily for 10 days at a nominal rate of either 0.5 or 5 mg/kg body weight.

The recovery of total radioactivity from excreta, eggs and tissues was between 75 and 84% of the total applied dose. Between 98.9 and 99.6% of the recovered activity was found in the faeces irrespective of the label.

Approximately 0.05% of the applied phenoxyphenyl- and 0.2% of the cyclopropyl-labelled compound was found in the eggs. At about the 6th or 7th day of the study residue levels in the eggs reached a plateau of about 0.05 and 0.2 mg/kg fenpropathrin equivalent for the two doses of the phenoxyphenyl-labelled and about 0.2 and 0.5 mg/kg for those of the cyclopropyl-labelled compounds.

In case of high dose group treated with phenoxyphenyl-labelled compound, the average concentration of parent fenpropathrin amounted to 31% of TRR (0.043 mg/kg) in eggs and all identified metabolites were present at less than 10%TRR. In breast and tight muscle, the average proportions of residues (%TRR) were: parent compound 19% (0.02 mg/kg), PBacid (22%), 3-OH-BAcid (13%). In liver and kidney the average percentage distributions of TRR were, respectively: parent (0.98%, 2.11%; 0.014 mg/kg, 0.096 mg/kg), 3-OH-BAcid (29%, 35%), 4-OH-PBacid (16%, 26%) and PBacid (14.7%, 8.7%). The other metabolites were <10% TRR in all tissues.

In case of cyclopropyl label the average concentration of parent fenpropathrin amounted to 9.8% TRR (0.038 mg/kg) in eggs, and one major metabolite, TMPA-CH<sub>2</sub>OH, was present at 11.7%n TRR. All other metabolites amounted to <10% TRR and their concentrations were < 0.03 mg/kg. In muscle, the average proportions of residues (%TRR) were: parent compound 6% (0.033 mg/kg), TMPA-CH<sub>2</sub>OH (16%), TMPA (15.7%), TMPA-CH<sub>2</sub>-OH-lactone (12.3%. All other metabolites amounted to <10% TRR and their concentrations were < 0.03 mg/kg. In liver and kidney the average percentage distributions of TRR were, respectively: parent (1.2%, 0.04 mg/kg; 5.1%; 0.24 mg/kg), TMPA (26.4%, 47.5%), TMPA-CH<sub>2</sub>OH (14.7%, 7.7%), TMPA-CH<sub>2</sub>-OH-lactone (14.8%, 5.3%), TMPA-COOH (11.4%, 15.3%). The other metabolites were present at < 1.8%TRR.

The metabolic pattern in fat was similar in case of both labels. The fat contained maximum 0.90 mg/kg total residue of which the parent compound amounted to 64%TRR (0.58 mg/kg). The most prominent metabolite was TMPA (14%nTRR), the other metabolites occurred at < 6% TRR.

In summary, the major biotransformation reactions of fenpropathrin in animals consisted of oxidation at the methyl groups of the acid moiety and at the 2'- or 4'-positions of the alcohol moiety, cleavage of the ester and ether linkages and conjugation of the resultant carboxylic acids and alcohols.

The parent compound was detected in milk, eggs and tissues, and it was the main residue in fat about 80%TRR. The major metabolites >10% TRR following the treatment with phenoxyphenyllabelled fenpropathrin were PBacid-glycine, PBacid and 3-OH-BAcid, and after dosing with cyclopropyl-labelled compound the major metabolites were TMPA-CH<sub>2</sub>OH, TMPA, TMPA-CH<sub>2</sub>OH-lactone and TMPA-COOH.

#### Plant metabolism

### Apples

One apple tree was treated 3 times with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin and [benzyl-<sup>14</sup>C]-fenpropathrin at a rate equivalent to 0.45 kg ai/ha. Samples were collected 14 days after the final application. Un-extractable residues ranged from 3% (both labels in fruit) to 8% (benzyl label in leaves).

Practically, the entire residue found in the fruit (92-94% TRR) was present as the parent compound. The parent compound was also the major component in the rest of the plant (61-66% TRR). All metabolites were < 5% TRR.

#### **Tomatoes**

Greenhouse-grown tomato plants were treated four times, 7–8 days apart, with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin and [benzyl-<sup>14</sup>C]-fenpropathrin at rates equivalent to 0.224 kg ai/ha. Fruit and leaves were extracted at harvest 19 DALT).

The total radioactive residues were 0.1 mg/kg and 0.4 mg/kg in fruits after treatments with benzyl and cyclopropyl labelled compound and consisted of the parent compound in about 66% of the benzyl label and 28% of conjugated metabolites. Their proportion was about the opposite for cyclopropyl label. The non-extractable residues were between 5.5% and 6.7%. Because of their low level, the radioactivity could not be fully characterised.

In tomato plants, the parent compound was present in 36-39% of TRR (0.1-0.04 mg/kg). Of the identified metabolites only fenpropathrin-(CH<sub>2</sub>OH)<sub>2</sub> was present in free form (2.7-3.1% TRR). Numerous other metabolites were in conjugated forms. Non-extractable residues amounted to 7.4-9.3%.

In another study where tomato plants were treated in greenhouse four times with [cyclopropyl1-<sup>14</sup>C]-fenpropathrin and[ <u>phenoxyphenyl-<sup>14</sup>C]-fenpropathrin</u> at a rate equivalent to 0.224 kg ai/ha. Fruits and plant materials, sampled 3 days after last application, contained the parent

compound in 96–98% of TRR. Polar metabolites amounted to 1.3% of TRR. The surface rinses contained 98–99% of the parent compound determined in the fruits.

#### Beans

Pinto bean plants grown in greenhouse were treated three times with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin and [benzyl-<sup>14</sup>C]-fenpropathrin at a rate equivalent to 0.224 kg ai/ha. Samples were collected 15 days after the final application. Leaves and plant parts contained 98.8%, bean pods and seeds contained 1.1% and 0.1% of the residue. In beans treated with benzyl- and cyclopropyl-labelled compound, the residue in seed was composed of the parent compound (4.1% and 0.1% of TRR), conjugated metabolites (61–51% TRR) free metabolites (17–4%TRR) and un-extractable residues 18.2%–45% TRR. The bean leaves contained 46.7% parent compound and conjugates of PBald (19.5%TRR) after treatment with benzyl labelled compound. After treatment with cyclopropyllabelled compound the residue composed of 46.4% parent fenpropathrin and conjugates of TMPA-CH<sub>2</sub>OH (16.7%TRR). The other metabolites were present at < 10% TRR.

#### Cotton

Two studies were conducted treating cotton plants with [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin and [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin.

In the first study the plants were treated in greenhouse four times with syringe applying a total of ca. 4.7–4.8 mg <sup>14</sup>C-fenpropathrin. In the leaves at harvest 66 and 111 days after treatments with phenoxyphenyl- or cyclopropyl labelled compound the total remaining radio activity included 70% TRR and 55% TRR parent compound, respectively Most of the remaining radio activity was tentatively accounted for PBacid (2.% TRR) and trans-TMPA-COOH (11%TRR) mainly in conjugated forms. All other metabolites were below 2%TRR.

Plants grown on soils treated with 0.5 kg/ha of fenpropathrin contained <sup>14</sup>C residues in very low concentration (0.002 mg/kg in leaves and 0.01 mg/kg in bolls), demonstrating limited tendency for translocation.

In the second study outdoor cotton plants were treated four times at a rate equivalent to 0.336 kg ai/ha. Seeds collected 21 day after last treatment contained total radioactivity 1.14 mg/kg and 1.59 mg/kg, while the foliage contained 78.6 mg/kg and 67.7 mg/kg fenpropathrin equivalent after treatment with phenoxyphenyl- and cyclopropyl-labelled fenpropathrin, respectively. The seed, lint and foliage contained the parent fenpropathrin in 93.8%, 96.2% and 69.2% TRR, respectively, after treatment with phenoxyphenyl -labelled compound. The seed contained 12 metabolites each at < 0.005 mg/kg concentration. Following the application of cyclopropyl-labelled fenpropathrin the parent compound amounted to 85.6%, 100% and 67.4% TRR in seed, lint and foliage, respectively. A small number of metabolites were also detected, but not identified.

## Cabbage

Cabbage plants were treated on the 3rd-4th leaves with [cyano- $^{14}$ C]-fenpropathrin), [cyclopropyl- $^{14}$ C]-fenpropathrin and [phenoxyphenyl- $^{14}$ C]-fenpropathrin at a rate equivalent to about 0.09 kg ai/ha. The cabbages were sampled immediately after application and at 3, 7, 14, 21, 28, 35 and 42 days after application. The proportions of parent fenpropathrin in 28-day samples after treatment with cyano-, cyclopropyl- and phenoxphenyl-fenpropathrin were 16.9%, 15.8% and 12.9% of the applied dose, respectively, and it was present at somewhat lower proportion in 48-day samples. The major part of the residue (23-26% AD) composed of the conjugates of 2'-OH-fenpropathrin-CH<sub>2</sub>OH, 4'-OH-fenpropathrin-CH<sub>2</sub>OH, 2'-OH-fenpropathrin-(CH<sub>2</sub>OH)<sub>2</sub> and 4'-OH-fenpropathrin-(CH<sub>2</sub>OH)<sub>2</sub> and TMPA-CH<sub>2</sub>OH-lactone-conjugate (11%). The other metabolites were present at  $\leq$  10% TRR after treatments with cyclopropyl- and phenoxyphenyl-labelled compounds.

Most of the recovered radiocarbon was in the treated leaves and less than 1.2% of the applied radiocarbon was found in the untreated shoots indicating that fenpropathrin and its metabolites hardly translocate from the application site to other parts of the plant.

# Fate of hydrogen cyanide (HCN) and TMPA in abscised leaves

The fate of HCN and TMPA in abscised leaves of apple, kidney bean, cabbage, mandarin orange, tomato and vine was studied. Two abscised leaves from each plant were placed in 100 mL distilled water containing <sup>14</sup>C-TMPA at a concentration of 1.0 ppm. After cultivation for five days the leaves were extracted with methanol:chloroform:water (4:2:1).

TMPA was readily converted in plants to more polar products. The metabolic pathways for TMPA varied dependent upon species of plant. The glucose ester was a main product in apple and vine leaves. In orange, cabbages and bean leaves, the malonylglucoside was mainly formed.

Further on, two abscised cabbage leaves were treated for four hours with distilled water containing K<sup>14</sup>CN and then transferred to K<sup>14</sup>CN-free distilled water. The study demonstrated that if hydrogen cyanide were liberated during the hydrolysis of fenpropathrin, it would be rapidly converted to natural products.

# Summary of plant metabolism

Metabolism of fenpropathrin has been studied in apples, tomatoes, beans, cotton and cabbage.

The general pattern of degradation in all the plant studies include break of the ester linkage to produce 3-phenoxybenzoic acid (PBacid) and the corresponding alcohol (PBalc) and aldehyde (PBald). From the acid side of the molecule, the main metabolite is TMPA which can give rise to TMPA-CH<sub>2</sub>OH and TMPA-CH<sub>2</sub>OH lactone. PBacid can be hydroxylated at various positions on the phenoxy ring to produce, 2'-or 4'-OH-PBacid.

The majority of radioactivity was found in leaf samples. Low levels of radioactivity were found in fruit/beans. The parent fenpropathrin amounted to the major part of the residue. Fenpropathrin and its metabolites hardly translocate from the application site to other parts of the plant.

## Environmental fate

#### In soil

Studies on the metabolism of fenpropathrin in aerobic soil carried out with [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin demonstrated that fenpropathrin is degraded in the soil by a combination of photochemical and microbial processes. After 365 days, 18.4% of the dose remained as parent with accumulated volatiles accounting for 59.9% (99.8% of which was CO<sub>2</sub>) and un-extractable residues for 17.8%. Metabolism proceeds via cleavage of the ester bonds, hydroxylation, and hydrolysis of the cyano group to CONH<sub>2</sub> and COOH groups. Metabolites included desphenyl-fenpropathrin, 4'-OH-fenpropathrin, phenoxybenzoic acid, and CONH<sub>2</sub>-fenpropathrin, which was further degraded to COOH-fenpropathrin. The estimated half-life was about 4 weeks in moist soil (70–75% field capacity) and 16 weeks in a dryer soil with 16% water content.

Photodegradation studies were carried out with fenpropathrin labelled with <sup>14</sup>C in the cyano group, the phenoxyphenyl ring or C-1 position of the cyclopropyl ring. Irradiation greatly enhanced degradation of the fenpropathrin. The main degradation product under irradiation with all three labels was CONH<sub>2</sub>-fenpropathrin which reached a maximum in the three soils after 5–7 days during the 14-day exposition.

Fenpropathrin is moderately stable in soil under aerobic condition. The photolysis increased the degradation of the surface residues.

# Hydrolytic degradation

Fenpropathrin is stable to hydrolysis in water at pH 5 and pH 7 but it is hydrolysed at a moderate rate at pH 9.

## Rotational crops

No study was submitted on rotational crops.

# Methods of analysis

Analytical methods have been developed for determination of residues of fenpropathrin in plant and animal matrices. In general, the methods involve solvent extraction, clean-up by either silica gel or Florisil column, GLC using electron capture detection. Additional purification using gel permeation chromatography (GPC) was performed for oily matrices. The main variations depending on the substrates are on extraction and clean-up procedures. Fruits and vegetables may be homogenized with

water, shaken with acetone, and extracted with dichloromethane, using NaCl to minimize emulsification. After drying with anhydrous sodium sulphate and clean-up by silica gel column chromatography, the solvent is evaporated at <40 °C and the residue dissolved in acetone before determination by gas chromatography with electron capture detection. Other extraction procedures involve direct extraction of the homogenized material suspension in water or homogenization with methanol instead of water. The methods were generally validated at 0.01 mg/kg LOQ level. The RSD of recoveries was <20%

A multi residue method (DFG S19) was validated for the determination of fenpropathrin in plant materials of high water content and acidic plant matrices applying GC-MS detection (m/z 181 and 265 for quantification and 125, 152, 209 and 349 for confirmation).

In a supervised trial on soya bean, the residues were determined with LC-MS/MS utilising the transition of m/z  $350\rightarrow125$ . The LOQ was 0.01mg/kg.

# Stability of residues in stored analytical samples

The stability of fenpropathrin residues in commodities under frozen conditions has been investigated in apples, orange, cotton, pears, grapes, tomato and its processed products as well as in products of animal origin.

Fenpropathrin was shown to be stable at least for the indicated periods (month) in: apple, orange, cotton, pears and grapes (12); cucumber (8); grape juice, dry pomace (14) wet pomace (12), hydrated raisins and raisin waste (11); melons (6); non-bell peppers (10); olives, olive oil (~7); orange oil and orange dried peel (11); raspberries (7); squash (7.5); strawberries (6); tomato (6), tomato paste (5), tomato juice (5) and wet and dry tomato pomace (5) tomato waste (5).

The residues were stable in eggs for 5 months, and milk and kidney at least for 2.5 months.

# Definition of the residue

Livestock animal metabolism studies were conducted on lactating goats (50 ppm in feed) and laying hens (0.5 and 5 mg/kg body weight) applying [phenoxyphenyl-<sup>14</sup>C]- and [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin.

In milk, at around the plateau at 3–5 days, the parent compound amounted to the major part of residues 28% TRR, (0.02 mg/kg) and 66% TRR, (0.086 mg/kg), respectively. The major metabolites were PBacid-glycine (46% TRR) from phenoxy label and all other metabolites were below 3%TRR from cyclohexyl label.

Following the treatments with 50 ppm [phenoxyphenyl-<sup>14</sup>C]-fenpropathrin the average residues of the parent fenpropathrin amounted to 0.50 mg/kg (78%TRR) in fat, 0.011 mg/kg (45% TRR) in muscle, 0.14 mg/kg (3.2% TRR) in liver and 0.01 mg/kg (1.2% TRR) in kidney. The major

metabolites in these tissues were PBacid-glycine (20–39% TRR), PBacid (11–38% TRR) and 4'-OH-PBacid (11% TRR). The other metabolites were present at lower than 10% TRR.

After the goats were administered with [cyclopropyl-1-<sup>14</sup>C]-fenpropathrin, the average residues comprised of the parent compound 0.55 mg/kg (81% TRR) in fat, 0.005 mg/kg (11% TRR) in muscle, 0.11 mg/kg (2.5% TRR) in liver and 0.0076 mg/kg (1.5% TRR) in kidney. The major metabolites in these tissues were TMPA-CH<sub>2</sub>OH-lactone (19–41% TRR), TMPA (18%TRR), TMPA-CH<sub>2</sub>OH (11–16%TRR). The other metabolites were below 5%TRR.

In hens, the parent fenpropathrin was a major residue 0.043 mg/kg (31%TRR) and 0.038 mg/kg (9.7%TRR) in eggs following treatments with benzyl- and cyclopropyl-labelled compounds. The only metabolite exceeding 10% TRR was TMPA-CH<sub>2</sub>-OH from cyclopropyl label. Following dosing with benzyl label, the average concentration of parent compound was 0.43 mg/kg (29%TRR) in fat, 0.029 mg/kg (1.6% TRR) in muscle, 0.096mg/kg (7%TRR) in kidneys and 0.014 mg/kg (1% TRR) in liver. After dosing with cyclopropyl label, the average concentration of parent compound was 0.033 mg/kg, (1.55%TRR) in muscle, 0.21 mg/kg (10% TRR) in kidneys, 0.036 mg/kg (2% TRR) in liver. The main metabolites from hens dosed with the benzyl-labelled compound were 3-OH-Bacid (4–29%TRR) or 4'-OH-PBacid (4–16% TRR and PBacid 3.2–24% TRR). While from the cyclopropyl-labelled group the TMPA (6–26% TRR) and its CH<sub>2</sub>-OH, COOH, CH<sub>2</sub>-OH-lactone derivatives (9–41%TRR) were the major metabolites. Several of these metabolites are also formed from other pyrethroid insecticides.

The parent fenpropathrin was the major residue in milk, meat and eggs and it was detected at low concentrations in liver and kidney. The polar metabolites listed above and the minor ones identified are of no toxicological significance.

The Meeting concluded that the parent fenpropathrin is a suitable marker for animal commodities for both enforcement and dietary risk assessment.

As the fenpropathrin residue concentrates in the fat, based on the distribution of residues in various tissues, supported by the  $logP_{ow}$  of 6.0 for fenpropathrin, the Meeting concluded that the fenpropathrin residue is fat soluble.

The fate of fenpropathrin residues was studied in apples, beans, cabbages, cotton and tomatoes. The parent fenpropathrin is the major residue in apple fruits (92–94% TRR), tomato fruits (30–66% TRR), in bean leaves (46% TRR), bean seeds (up to 4.1% TRR), in cabbage leaf extract (up to 16% TRR) and cotton seed (up to 94% TRR). The major metabolites were the conjugates of 2'-OH-fenpropathrin-( $CH_2OH_2$ ) and of 4'-OH-fenpropathrin-( $CH_2OH_2$ ) (max 19–22% TRR in cabbage), all other metabolites (1.3–9.8%TRR) were < 10% TRR in case of all labelled compounds.

The nature of metabolites is similar to that goats and hens. The polar metabolites listed above are of no toxicological significance.

The Meeting concluded that the parent fenpropathrin is suitable marker for plant commodities for both enforcement and dietary risk assessment.

Validated analytical methods, suitable for enforcement, are available for detecting fenpropathrin in various matrices.

The Meeting agreed in the following residue definition:

<u>Definition of residue</u> for compliance with MRL and for estimation of dietary intake for animal and plant commodities is the parent fenpropathrin.

The residue is fat soluble.

## Results of supervised residue trials on crops

The Meeting received supervised trial data on citrus fruits, pome fruits, stone fruits, berries and small fruits, fruiting vegetable, cucurbits, olives, soya beans, cotton, tree nuts, coffee beans and tea.

The HR values were estimated based on the residues measured in single samples.

### Citrus fruits

A total of 31 supervised trials were conducted in the United States on citrus fruits (18 on oranges, 6 on lemons and 7 on grapefruit). The current maximum GAP for citrus in the USA consists of two applications at 0.45 kg ai/ha with a total seasonal rate of 0.90 kg ai/ha and a PHI of 1 day.

The average residues in duplicate composite samples derived from treatments corresponding to US GAP were: in oranges: 0.05, 0.07, 0.12, 0.18, 0.25, 0.26, 0.27, 0.33, 0.33, 0.46, 0.53, 0.96, 1.2 mg/kg; in lemons: 0.51, 0.56, 1.2 mg/kg; in grapefruits: 0.12, 0.18, 0.2, 0.34, 0.34, 0.37, 0.47 mg/kg.

The Meeting noted that the GAP in USA is for citrus fruits, that the residue populations were not significantly different (Kruskal-Wallis H-test) and the median residues were within the 5 times range. Furthermore, the Meeting concluded that the residue date sets for lemons, oranges and grapefruits are suitable for estimation of residue levels for the citrus group. The meeting agreed to combine the datasets which in rank order were: 0.05, 0.07, 0.12, 0.12, 0.18, 0.18, 0.2, 0.25, 0.26, 0.27, 0.33, 0.34, 0.34, 0.37, 0.46, 0.47, 0.51, 0.53, 0.56, 0.96, 1.2, 1.2 mg/kg.

The Meeting estimated a maximum residue value of 2mg/kg and, based on the processing factor of 0.065, HR of 0.098 mg/kg and STMR values 0.02 mg/kg for citrus fruit group.

#### Pome fruits

Forty-seven supervised trials on pome fruit (27 in apples and 20 in pears) were conducted in the USA in 1984-1987, using a higher number of applications and total seasonal rates compared to the GAP in the USA (up to 0.9 kg ai/ha and a PHI of 14 days).

Four trials in apple and pear complied with current US GAP. The residues were: in apple: 0,48, 0.58, 0.88 and 1.1 mg/kg; and in pear:0.27, 0.3, 1.2 and 1.8 mg/kg.

The Meeting noted that the GAP in USA is for pome fruit, that the residue populations were not significantly different and that the median residues were within the 5 times range.

The Meeting concluded that the residues in apples and pears could be combined: 0.27,0.3, 0,48, 0.58, 0.88, 1.1, 1.2 and 1.8 mg/kg.

The Meeting noted that in one of the pear samples the residue was 2 mg/kg, and estimated a maximum residue level of 3 mg/kg, HR of 2 mg/kg and STMR of 0.73 mg/kg

The Meeting withdraws its previous recommendation for maximum residue levels of 5 mg/kg

The meeting noted that the short-term intakes of apples and pears for children are 390% and 280% of ARfD, respectively.

There is no alternative GAP available to be considered.

## Stone fruits

Supervised trials were carried out in USA on peaches (10), cherries (6) and plums (7) according to US GAP ( $2 \times 0.45 \text{ kg ai/ha}$ , 3 days PHI).

The average residues in duplicate composite samples derived from treatments corresponding to US GAP were: in peach: 0.44, 0.58, 0.65, 0.66, 0.70, 0.71, 0.73, 0.92, 1.0, 1.0 mg/kg; in plums; 0.18, 0.22, 0.23, 0.25, 0.32, 0.35, 0.67 mg/kg; and in cherries: 1.4, 1.5, 1.8, 1.9, 3.3, 3.4 mg/kg.

Since the residue populations are not similar, residue levels were estimated separately for each commodity.

The meeting estimated maximum residue, HR and STMR values for subgroups of: peaches 3 mg/kg, 1.1 mg/kg and 0.71 mg/kg; plums 1 mg/kg, 0.71 mg/kg and 0.25 mg/kg; and cherries 7 mg/kg, 3.53, and 1.85 mg/kg, respectively.

The meeting noted that the short-term intakes of peaches and cherries are 190% and 140% of ARfD for children, respectively.

There is no alternative GAP to be considered.

#### Berries and other small fruits

### Strawberry

Eleven out of 12 trials conducted on strawberry in USA matched the US GAP (applications at up to 0.45 kg ai/ha for a total of 0.9 kg ai/ha per season and a PHI of 2 days).

The average residues in duplicate composite samples derived from treatments corresponding to US GAP were: 0.26, 0.38, 0.39, 0.48, 0.48, 0.55, 0.63, 0.65, 0.69, and 1.2 mg/kg.

The Meeting estimated maximum residue level, HR and STMR values of 2 mg/kg, 1.2 mg/kg and 0.515 mg/kg, respectively.

Raspberry

Seven supervised trials on raspberries were conducted in the USA in 2005 with higher rate and shorter PHI (total 0.9 kg/ha with 2 days PHI) than the current GAP for caneberries (applications at up to 0.34 kg ai/ha for a total of 0.67 kg ai/ha per season and a PHI of 3 days).

As no trial matched the GAP, recommendation cannot be made.

Grape

Twenty five supervised trials were conducted on grapes in the USA during 1983–2001 ( $2 \times \text{maximum}$  rate of 0.45 kg ai/ha, the maximum seasonal rate of 0.9 kg/ha with 21 days PHI).

The trial data did not match the critical GAP of the USA. As a result no recommendations could be made.

The Meeting withdraws its previous recommendation of 5 mg/kg.

Assorted tropical and subtropical fruits – Edible peel

Olives

Three supervised trials were conducted on olives in the USA during 2005 matching US GAP ( $3 \times 0.34 \text{ kg}$  ai/ha with total seasonal application rates of about 0.9 kg ai/ha and 7 days PHI).

The average residues in pitted olives from two composite samples derived from treatments corresponding to maximum application rates were in rank order: 1.9, 2.2, and 3.6 mg/kg.

Three residue values were not considered sufficient for the estimation of maximum residue levels in olives.

Fruiting Vegetables, Cucurbits

Cucumber

Six supervised trials on cucumber were conducted in the USA in 1994 and 1996, following the GAP in the USA for cucurbit vegetables (applications at the rate of up to 0.34 kg ai/ha at 7 days intervals for a total of 0.9 kg ai/ha/season; PHI is 7 days).

The Meeting noted that the trials were not conducted at maximum GAP. For multiple treatments proportionality could be applied. As a result no recommendations could be made.

#### Melon

Ten supervised trials on cantaloupe were conducted in the USA in 1994 following the GAP in the USA for cucurbits (applications at the rate of up to 0.34 kg ai/ha for a total of 0.9 kg ai/ha/season; PHI is 7 days).

The Meeting noted that the trials were not conducted at maximum GAP. As the number of applications and or the applied dosage rate differed from maximum GAP, the proportionality could not be applied. As a result no recommendation could be made.

### Summer squash

Seven supervised trials on summer squash were conducted in the US in 1994 and 1996, following the GAP in the US for cucurbits (applications at the rate of up to 0.34 kg ai/ha for a total of 0.9 kg ai/ha/season; PHI is 7 days)

The Meeting noted that the trials were not conducted at maximum GAP. As the number of applications and or the applied dosage rate differed from maximum GAP, the proportionality could not be applied. As a result, no recommendation could be made.

Fruiting vegetables other than Cucurbits

#### **Tomato**

Nine supervised trials conducted on tomatoes in the USA in 1993 matching the US GAP for fruiting vegetables other than cucurbits (applications at the rate of 0.22-kg ai/ha at 7 days intervals but not more often than 7 days, PHI is 3 days) were received.

The average residues in two composite samples derived from treatments corresponding to maximum application rates, in ranked order, were: 0.05, 0.08, 0.11, 0.18, <u>0.19</u>, 0.21, 0.27, 0.30, and 0.55 mg/kg.

## Peppers

Ten supervised trials on peppers (6 on bell and 4 on non-bell) were conducted in the USA in 1996 and 1998. The application rates corresponded to US GAP (0.22 kg ai/ha up to 0.9 kg ai/ha, 3 days PHI), but samples were taken at 2 and 4 days instead of the 3 day PHI.

The average residues in two composite samples were: in Bell pepper: 0.10, 0.34, 0.37, 0.37, 0.50, 0.67 mg/kg; and Chili pepper: 0.24, 0.31, 0.38, 0.40 mg/kg

The Meeting noted that the residues obtained 2–4 days after last application were in a relatively narrow residue range (2×median) leading to lower maximum residue estimate than would be generally expected. Therefore the residue values obtained at day 2 (-33% of PHI) were considered acceptable. (Only one residue data (0.50 mg/kg) was obtained at day 3 and one at day 4 (0.10 mg/kg).

The Mann-Whitney U-test confirmed that the above data could be combined for the estimation of the maximum residue level and STMR. The ranked order of residues from supervised trials on peppers were: 0.10, 0.24, 0.31, 0.34, 0.37, 0.37, 0.38, 0.40, 0.50, and 0.67 mg/kg.

The Meeting noted that the GAP in USA is for fruiting vegetables, other than cucurbits and the residue populations were not significantly different (Kruskal-Wallis H-test) and the median residues were within 5 times range. However, the short-term intake for eggplants would exceed the ARfD by 110% for adults. Consequently, a recommendation for the fruiting vegetables crop group could not be made.

No alternative GAP was available for fruiting vegetables other than cucurbits.

The Meeting therefore agreed to estimate residue levels for individual commodities:

Tomato: maximum residue level of 1 mg/kg, HR of 0.64 mg/kg, STMR of 0.19 mg/kg.

Peppers including chili pepper: maximum residue level of 1 mg/kg, HR of 0.70 mg/kg, STMR of 0.37 mg/kg.

Chili peppers, dried (based on concentration factor of 7): maximum residue level of 7 mg/kg, HR of 4.9 mg/kg, STMR of 2.59 mg/kg.

The meeting confirms its previous recommendation for maximum residue level of 1 mg/kg for tomatoes.

#### Pulses

## Soya beans

Eight supervised trials on soya beans were conducted in Brazil in 2010 and 2013, following the GAP in Brazil (one applications at the rate of 0.045 kg ai/ha and a PHI of 30 days). Residues in all samples were below the limit of quantification (< 0.01 mg/kg).

The Meeting estimated a maximum residue and STMR values of 0.01 mg/kg.

#### Cotton

Thirty-two supervised trials on cotton were conducted in the USA in 1983–1989 with application rates up to 0.9 kg ai/ha and a PHI of 21 days. The current US GAP is up to 0.45 kg ai/ha with a seasonal maximum rate of 0.9 kg/ha and a PHI of 21 days.

As 5–10 applications were made with low dose rates, which do not represent the critical GAP, no recommendations could be made.

The Meeting withdraws its previous recommendation of 1 mg/kg.

#### Tree nuts

A total of ten supervised trials on tree nuts, 5 on almonds and 5 on pecans have been conducted in the US in 2003, with application rates of 0.45 and 0.9 kg ai/ha at 7 days intervals instead of the minimum 10 days specified on the label.

The following average residue levels in two composite samples were obtained from the trials on almonds and pecans:

Almond nutmeat: < 0.01(4), 0.03 mg/kg; and in pecans: < 0.01, 0.01, 0.02, 0.05, 0.06 mg/kg.

The Meeting noted that the GAP in USA is for tree nuts and the residue populations were not significantly different (Mann-Whitney U-test) and the median residues were within 5 times range. The Meeting agreed to combine the datasets for almonds and pecans which, in ranked order, were: < 0.01(4), < 0.01, 0.01, 0.02, 0.03, 0.05, and 0.06 mg/kg.

As the highest residue in an individual samples was 0.1 mg/kg, the Meeting estimated a maximum residue level of 0.15 mg/kg, HR of 0.1 mg/kg and STMR value of 0.01 mg/kg.

# Coffee Beans

Six supervised trials on coffee were conducted in Brazil in 2013 following the current GAP there (two applications at a maximum rate of up to 0.12 kg ai/ha and a PHI of 14 days).

Residues in composite samples, in ranked order, were: < 0.01(4), 0.01, and 0.02 mg/kg.

The Meeting estimated a maximum residue level of 0.03~mg/kg and STMR value of 0.01~mg/kg.

# Tea

All supervised trials on tea were conducted in India during 2002-2004. The compound was applied according to the GAP in India (0.05-0.06 kg ai./ha with a PHI of 7 days) and with double rate.

Six trials on black tea and in one trial green tea leaves (0.13 mg/kg) were analysed

The residues in composite samples following application at the GAP rate were: < 0.05, 0.13, 0.14(2), 0.17, 0.18, and 1.38 mg/kg.

The Meeting estimated a maximum residue level for green and black tea of 3 mg/kg and STMR value of 0.14 mg/kg.

The Meeting withdrew its previous recommendation of 2 mg/kg for maximum residue level for tea.

# Animal feeds

#### Almond hulls

The US GAP specifies application rates of up to 0.45 kg ai/ha with a seasonal maximum of 0.9 kg ai/ha at 10 days intervals, and a PHI of 3 days.

In almond hulls, the ranked order of residue concentrations was 2.7, 2.9, <u>3.1</u>, 3.5, and 3.6 mg/kg. The Meeting estimated a maximum residue level of 10 mg/kg, the highest residue is 3.6 mg/kg and the median residue is 3.1 mg/kg.

## Cottonseed hull

The trial conditions did not match US GAP ( $2 \times 0.45$ , max seasonal rate 0.9 mg/kg, PHI 21 days), no recommendations could be made.

## Fate of residues during processing

Processing studies were carried out on plums, tomato, olives, oranges, cottonseed and tea.

The processing factors calculated and STMR-P values estimated are summarized below.

Summary of selected processing factors and STMR-P values for fenpropathrin

| RAC/processed | Processing | g factors |       | PF estimated | STMR-P |         |         |
|---------------|------------|-----------|-------|--------------|--------|---------|---------|
| fraction      |            |           |       |              |        |         | (mg/kg) |
| RAC: Whole    | -          |           |       |              |        |         |         |
| orange        |            |           |       |              |        |         |         |
| Juice         | < 0.02     | < 0.22    |       |              |        | < 0.02  | 0.007   |
| Oil           | 78.7       | 21.56     |       |              |        | 50.1    | 16.5    |
| Wet peel      | 0.6        | 0.78      | 2.76  |              | 2.86   | 2.82    | 0.93    |
| Dried peel    | 1.6        | 2.67      |       |              |        | 2.1     | 0.70    |
| Pulp          |            |           | 0.06  |              | 0.07   | 0.065   | 0.021   |
| RAC: Plum     |            |           |       |              |        |         |         |
| Dried plum    | 2.56       |           |       |              |        | 2.56    | 0.639   |
| RAC: Tomato   |            |           |       |              |        |         |         |
| Canned        | 0.077      | 0.071     | 0.077 |              |        | < 0.075 | 0.021   |
| Wet pomace    |            |           |       | 9.9          | 9.8    | 9.8     | 1.867   |
| Dry pomace    |            |           |       | 46           | 45.0   | 45      | 8.618   |
| Tomato paste  |            |           |       | 0.78         | 0.75   | 0.77    | 0.145   |
| Tomato juice  |            |           |       | 0.12         | 0.1    | 0.12    | 0.023   |

Note: The residues measured in RAC samples taken at the processing plants are considered as they better reflect the residues in unprocessed commodities than these measured in field samples

There is no concentration of residues in juice and molasses. Residues concentrate in oil (Pf=50.1), and dried peel (Pf=2.1).

The Meeting estimated a maximum residue level of 100 mg/kg and STMR-P of 16.5 mg/kg for citrus oil,

Drying concentrates the residues of fenpropathrin in plums by a factor of 2.6×; The Meeting estimated a maximum residue level of 3 mg/kg, HR-P of 1.85 mg/kg and STMR-P of 0.65 mg/kg for dried plums (or prunes).

As no MRL could be estimated, the <u>Meeting withdrew</u> its previous recommendation of 3 mg/kg for cottonseed oil.

#### Residues in animal commodities

# Estimation of dietary burden

The maximum and mean dietary burdens were calculated using the highest residues or median residues of fenpropathrin estimated at the current Meeting on a basis of the OECD Animal Feeding Table. Only almond hull, citrus pulp and tomato wet pomace can be used as animal feed based on recommended uses. The calculated maximum and mean animal burdens are summarised below

Summary of livestock dietary burdens (ppm of dry matter diet)

|              | US-Cana | US-Canada |       | EU A  |                   | Australia         |     | Japan |  |
|--------------|---------|-----------|-------|-------|-------------------|-------------------|-----|-------|--|
|              | max     | mean      | max   | Mean  | max               | mean              | Max | mean  |  |
| Beef cattle  | 0.09    | 0.09      | 0.045 | 0.045 | 1.46 <sup>a</sup> | 1.46 <sup>b</sup> | 0   | 0     |  |
| Dairy cattle | 0.43    | 0.04      | 0.18  | 0.18  | 1.46              | 1.46              | 0   | 0     |  |
| Broilers     | 0       | 0         | 0     | 0     | 0                 | 0                 | 0   | 0     |  |
| Layers       | 0       | 0         | 0     | 0     | 0                 | 0                 | 0   | 0     |  |

<sup>&</sup>lt;sup>a</sup> Suitable for estimating maximum residue levels for milk, meat, fat and edible offal of cattle.

# Farm animal feeding studies

Lactating Holstein cows were orally administered technical grade fenpropathrin (purity 92.5%) via gelatin capsules for 28 consecutive days in two equal portions at the morning and evening milkings. The treatment levels were 0, 25, 75 and 250 ppm fenpropathrin based upon the daily average food consumption.

Residues of fenpropathrin in the milk reached a plateau after three days. Average residues in the whole milk of the four cows of each group on Day 3 were 0.04, 0.17 and 0.33 mg/kg for the three dose levels. On Day 28, these levels were 0.04, 0.13 and 0.32 mg/kg. At the end of the three-day depuration period, residues had fallen to < 0.01, 0.02 and 0.04 mg/kg for the three levels. Pasteurization did not significantly reduce fenpropathrin residues in milk. The residues concentrated in milk fat by a factor of about 10 (from mean of 0.32 mg/kg in whole milk to 3.7 mg/kg in milk fat)

After 28 days of dosing, maximum and (average) residues, expressed in mg/kg, in muscle, kidney, liver and fat were 0.33 (0.2), 0.2 (0.16), 0.01 (0.01), and 4.1 (3.8) mg/kg, respectively, at the maximum 250 ppm dose level. The residues determined after feeding with 25 ppm fenpropathrin in

<sup>&</sup>lt;sup>b</sup> Suitable for estimating STMRs for meat, fat and edible offal of cattle.

feed, and the corresponding residues in tissues and milk resulted from the calculated mean and max dietary burden (1.46 ppm) are summarised below.

| Dietary  | Fat   |       | Meat  |       | Liver    |          | Kidney |       | Milk  |
|----------|-------|-------|-------|-------|----------|----------|--------|-------|-------|
| burden   | Max   | Mean  | Max   | Mean  | Max      | Mean     | Max    | Mean  | Mean  |
| 25 ppm   | 0.44  | 0.33  | 0.04  | 0.02  | < 0.01   | < 0.01   | 0.05   | 0.03  | 0.04  |
| 1.46 ppm | 0.026 | 0.018 | 0.002 | 0.001 | < 0.0006 | < 0.0006 | 0.003  | 0.002 | 0.002 |

Based on the data available the Meeting estimated maximum residue levels of 0.03 mg/kg, HR value of 0.026 mg/kg and STMR value of 0.018 mg/kg for mammalian fat except milk fat.

The Meeting estimated, at the LOQ of 0.01 mg/kg, maximum residue level of 0.01 mg/kg for mammalian meat and edible offal and 0.01 mg/kg for milk. The HR values for meat and edible offal are 0.002 mg/kg and 0.003 mg/kg, respectively

The Meeting estimated STMR values of 0.001 mg/kg for mammalian meat, 0.002 mg/kg for mammalian, edible offal of, and 0.002 mg/kg for milk.

The Meeting withdraws its previous recommendations for cattle meat, edible offal and milk.

## Laying hens

Laying hens were dosed at nominal concentrations of 0, 2.5, 7.5 and 25 ppm levels for a period of 28 days. The fenpropathrin residues were below 0.01 mg/kg in case of dose groups 2.5 and 7.5 ppm over the study period. Eggs derived from 25 ppm dose contained 0.02 mg/kg fenpropathrin from day 7. Residues in muscle, gizzard and liver samples were below the LOQ of 0.01 mg/kg in all dose groups. The fenpropathrin residue in fat was 0.02, 0.05 and 0.14 mg/kg for dose groups of 2.5, 7.5 and 25 ppm. Metabolites could only be detected in liver after dosing with 25 ppm were TMPA (0.05 mg/kg) and PBA-glycin (0.03 mg/kg). The distribution of residues between white and yolk was not studied.

Taking into account that poultry feed is not treated with fenpropathrin according to the uses evaluated by the present Meeting, the Meeting estimated maximum residues levels in poultry meat , fat, edible offal and eggs of 0.01 mg/kg\*.

The Meeting estimated STMR values of 0 for poultry products

The Meeting withdraws its previous recommendations for poultry products.

# RECOMMENDATIONS

On the basis of the data from supervised trials, the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits and for IEDI assessment.

<u>Definition of residue</u> for compliance with MRL and for estimation of dietary intake for animal and plant commodities is fenpropathrin.

The residue in fat soluble.

|         | Commodity                                      | Recommende     | ed MRL, mg/kg | STMR/STMR-P          | HR/HR-P |  |
|---------|------------------------------------------------|----------------|---------------|----------------------|---------|--|
| CCN     | Name                                           | New            | Previous      | mg/kg                | mg/kg   |  |
| AM 0660 | Almond hulls                                   | 10             |               | 3.1                  | 3.6     |  |
| MM 0812 | Cattle meat                                    | W              | 0.5 (fat)     |                      |         |  |
| ML 0812 | Cattle milk                                    | W              | 0.1F          |                      |         |  |
| MO 0812 | Cattle, edible offal of                        | W              | 0.05          |                      |         |  |
| FS 0013 | Cherries                                       | 7 <sup>a</sup> |               | 1.85                 | 3.53    |  |
| HS 0444 | Peppers Chili, dried                           | 10             |               | 2.59                 | 4.9     |  |
| FC 0001 | Citrus fruits                                  | 2              |               | 0.02                 | 0.098   |  |
| OR 0001 | Citrus oil, edible                             | 100            |               | 16.5                 |         |  |
| SB 0716 | Coffee beans                                   | 0.03           |               | 0.01                 |         |  |
| SO 0691 | Cotton seed                                    | W              | 1             |                      |         |  |
| OC 0691 | Cotton seed oil, crude                         | W              | 3             |                      |         |  |
| MO 0105 | Edible offal (mammalian)                       | 0.01           |               | 0.002                | 0.003   |  |
| VO 0440 | Egg plant                                      | W              | 0.2           |                      |         |  |
| PE 0112 | Eggs                                           | 0.01*          | 0.01*         | 0                    |         |  |
| VC 0425 | Gherkin                                        | W              |               |                      |         |  |
| FB 0269 | Grapes                                         | W              | 5             |                      |         |  |
| MF 0100 | Mammalian fats (except milk fats)              | 0.03           |               | 0.018                | 0.026   |  |
| MM 0095 | Meat (from mammals other than marine mammals)  | 0.01           |               | 0.001<br>0.018 (fat) | 0.002   |  |
| ML 0106 | Milks                                          | 0.01           |               | 0.002                |         |  |
| FS 2001 | Peaches (including Nectarine and Apricots)     | 3 <sup>a</sup> |               | 0.71                 | 1.1     |  |
| VO 0051 | Peppers                                        | 1              |               | 0.37                 | 0.70    |  |
| FS 0014 | Plums (including prunes)                       | 1              |               | 0.25                 | 0.71    |  |
| FP 0009 | Pome fruits                                    | 3 <sup>a</sup> |               | 0.73                 | 2       |  |
| PF 0111 | Poultry fats                                   | 0.01*          |               | 0                    | 0       |  |
| PM 0111 | Poultry meat                                   | 0.01* (fat)    |               | 0                    | 0       |  |
| PO 0111 | Poultry, Edible offal of                       | 0.01*          | 0.01*         | 0                    | 0       |  |
| DF 0014 | Prunes                                         | 3              |               | 0.65                 | 1.85    |  |
| VD 0541 | Soya bean (dry)                                | 0.01           |               | 0.01                 |         |  |
| FB 0275 | Strawberry                                     | 2              |               | 0.515                | 1.2     |  |
| DT 1114 | Tea, Green, Black (black, fermented and dried) | 3              | 2             | 0.14                 |         |  |
| VO 0448 | Tomato                                         | 1              |               | 0.19                 | 0.64    |  |
| TN 0085 | Tree nuts                                      | 0.15           |               | 0.01                 | 0.1     |  |
|         |                                                |                |               |                      |         |  |
| JF 0001 | Citrus juice                                   |                |               | 0.007                |         |  |
| JF 0048 | Tomato juice                                   |                |               | 0.023                |         |  |
|         | Tomato canned                                  |                |               | 0.021                |         |  |
| VW 0448 | Tomato paste                                   |                | 1             | 0.145                |         |  |

# DIETARY RISK ASSESSMENT

# Long-term intake

The evaluation of fenpropathrin resulted in recommendations for MRLs and STMR values for 24 raw and processed commodities. Where data on consumption were available for the listed food commodities, dietary intakes were calculated for the 17 GEMS/Food Consumption Cluster Diets. The results are shown in Annex 3 to the 2014 Report.

The IEDIs in the seventeen Cluster Diets, based on the estimated STMRs were 1-10% of the maximum ADI (0.03 mg/kg bw). The Meeting concluded that the long-term intake of residues of fenpropathrin from uses that have been considered by the JMPR is unlikely to present a public health concern.

#### Short-term intake

The International Estimated Short-term Intake (IESTI) for fenpropathrin was calculated for 24 raw and processed commodities for which maximum residue levels and STMR values were estimated. The results are shown in Annex 4 to the 2014 Report.

For cherries, peaches, and pome fruits the IESTI represented 140%, 180% and 390% of the ARfD of 0.03 mg/kg bw, respectively. No alternative GAP was available. On the basis of information provided to the JMPR it was not possible to conclude that the estimate of short-term intake of fenpropathrin, from the consumption of cherries, peaches and pome fruits, was less than the ARfD.

The other commodities considered by the JMPR were within 0–80% of ARfD. The Meeting concluded that the short-term intake of fenpropathrin when used in ways that have been considered by the MPR is unlikely to present public health concern.

#### **REFERENCES**

| Code       | Author(s)                          | Year | Study Title                                                                                                                                                                                                                                                                                |
|------------|------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JMPR 1993  | Anonymous                          | 1993 | Fenpropathrin: JMPR Report and Evaluation, JMPR Meeting, 1993. Geneva, Switzerland, September, 1993.                                                                                                                                                                                       |
| JMPR 2006  | Anonymous                          | 2005 | Submission of the Government of India: Data information required for CCPR/JMPR evaluations for fixation of MRL of fenpropathrin in tea (Group 24 – TEAS, Codex Classification Group 066: Teas) March, 2005. Reference: JMPR Evaluation, 2006.                                              |
| FM-51-0070 | Baker, F. C., Toia,<br>R. F. et al | 1995 | A Metabolism Study with [Cyclopropyl-1- <sup>14</sup> C]-and [Phenyl-U- <sup>14</sup> C]-Fenpropathrin on Tomato. PTRL Project 486W Sumitomo reference: FM-51-0070, GLP, Unpublished, 9 May 1995.                                                                                          |
| FM-41-0031 | Chen, Y. S.                        | 1985 | The metabolism of fenpropathrin in plants. Chevron Chemical Company, CA, USA, Sumitomo reference:FM-41-0031, Non-GLP, Unpublished 12 April 1985.                                                                                                                                           |
| FM-51-0022 | Chen, Y. S.                        | 1986 | The metabolism of fenpropathrin in apple plants. Chevron Chemical Company, CA, USA, Sumitomo reference: FM-51-0022 Non-GLP, Unpublished, 20 February 1986.                                                                                                                                 |
| FM-51-0023 | Chen, Y. S.                        | 1986 | The metabolism of fenpropathrin in tomato plants. Chevron Chemical Company, CA, USA, Sumitomo reference: FM-51-0023 Non-GLP, Unpublished, 20 February 1986.                                                                                                                                |
| FM-51-0024 | Chen, Y. S.                        | 1986 | The metabolism of fenpropathrin in pinto bean plants.<br>Chevron Chemical Company, CA, USA,<br>Sumitomo reference FM-51-0024, Non-GLP, Unpublished, 1986.                                                                                                                                  |
| FA-0093    | Class, T.                          | 2003 | Fenpropathrin: Assessment and validation of the Multi-Residue enforcement method DFG S19 (extended revision, §35LMBG) for the determination of fenpropathrin in water containing and acidic plant material. Sumitomo Chemical Company Sumitomo reference: FA-0093, GLP, Unpublished, 2003. |
| FA-0094    | Class, T.                          | 2003 | Fenpropathrin: Assessment and validation of the multi-residue enforcement method DFG S19 (extended revision, §35LMBG) for the determination of fenpropathrin in foodstuffs of animal origin. Sumitomo Chemical Company, Sumitomo reference: FA-0094 GLP, Unpublished, 2003.                |

| Code        | Author(s)         | Year  | Study Title                                                                                                                      |
|-------------|-------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| FM-21-0060  | Concha, M., et.al | 1992  | Hydrolysis of [ <sup>14</sup> C-acid] and [ <sup>14</sup> C-alcohol]- fenpropathrin at pH 5, 7 and 9. Sumitomo Chemical Company, |
|             |                   |       | Sumitomo reference: FM-21-0060, GLP, Unpublished, 1992.                                                                          |
| FR-91-0039  | Cranor, W.        | 1989  | Aerobic Soil Metabolism of [Benzyl- <sup>14</sup> C]-Fenpropathrin.                                                              |
|             |                   |       | Chevron Chemical Company, Report MEF 0057                                                                                        |
| TD (4.0400  | n a               | 1006  | Sumitomo reference: FR-91-0039, GLP, Unpublished, 1989.                                                                          |
| FR-61-0190  | Fujie, G. H.      | 1986  | To determine the stability of field-incurred fenpropathrin residues                                                              |
|             |                   |       | in/on crops when stored at – 20 °C. Chevron Chemical Company                                                                     |
|             |                   |       | File No. 721.21/Danitol, Sumitomo reference: FR-61-0190 Non-GLP, Unpublished, 19 June 1986.                                      |
| FR-01-0304  | Fujie, G. H.      | 1990  | Addendum to Magnitude of the residues and residue reduction of                                                                   |
| 1 K-01-0304 | 1 ujic, 0. 11.    | 1770  | fenpropathrin and metabolites in pears.                                                                                          |
|             |                   |       | Chevron Chemical Company, Project ID: R186/PEARSA                                                                                |
|             |                   |       | Sumitomo reference FR-01-0304, GLP, Unpublished, 1990.                                                                           |
| FR-01-0305  | Fujie, G. H.      | 1990  | Addendum to Magnitude of the residues and residue reduction of                                                                   |
|             |                   |       | fenpropathrin and metabolites in apples. Valent USA Corporation                                                                  |
|             |                   |       | Project ID: R185/APPLE, Sumitomo reference FR-01-0305                                                                            |
|             |                   |       | GLP, Unpublished, 10 September 1990.                                                                                             |
| FR-01-0308  | Fujie, G. H.      | 1990  | Magnitude of the residues and residue reduction of fenpropathrin and                                                             |
|             |                   |       | metabolites in grapes and grape processing products.                                                                             |
|             |                   |       | Chevron Chemical Company, Project ID: R187/GRAPE<br>Sumitomo reference FR-01-0308, GLP, Unpublished, 1990.                       |
| FR-01-0335  | Fujie, G. H.      | 1992  | Addendum to Magnitude of the residues and residue reduction of                                                                   |
| 110 01 0555 | 1 ujie, G. 11.    | 1//2  | fenpropathrin and metabolites in grapes and grape processing products.                                                           |
|             |                   |       | Chevron Chemical Company, Project ID: 1714/90/GRA                                                                                |
|             |                   |       | Sumitomo reference FR-01-0335, GLP, Unpublished, 1992.                                                                           |
| FR-01-0307  | Fujie, G. H.      | 1990  | Magnitude of the residues and residue reduction of fenpropathrin and                                                             |
|             |                   |       | metabolites in oranges and orange processing products.                                                                           |
|             |                   |       | Chevron Chemical Company, Project ID: R195/ORANGE2                                                                               |
| ED (1.0175  | F C H             | 1006  | Sumitomo reference FR-01-0307, GLP, Unpublished, 1990.                                                                           |
| FR-61-0175  | Fujie, G. H.      | 1986  | Poultry and egg residue feeding study with fenpropathrin technical                                                               |
|             |                   |       | (SX-1713) in laying hens Hazleton Laboratories Project 6183-103<br>Sumitomo reference: R-61-0175, GLP, Unpublished. 1986.        |
| FR-01369    | Fujie, G. H. and  | 1990  | Magnitude of the residues and residue reduction of fenpropathrin and                                                             |
| 110 0150)   | Leary, J.B.       | 1,,,0 | metabolites in pears. Chevron Chemical Company                                                                                   |
|             | · · · J, · · ·    |       | Sumitomo reference FR-0369, GLP, Unpublished, 1990.                                                                              |
| FR-0370     | Fujie, G. H. and  | 1986  | Magnitude of the residues and residue reduction of fenpropathrin and                                                             |
|             | Leary, J.B.       |       | metabolites in apples. Chevron Chemical Company                                                                                  |
|             |                   |       | Project ID: 8614906, Sumitomo reference FR-01-0370                                                                               |
| ED 01 0206  | F O.H             | 1000  | GLP, Unpublished, 6 August 1986.                                                                                                 |
| FR-01-0306  | Fujie, G.H.       | 1990  | Magnitude of the Residue of fenpropathrin in Fuzzy cotton Seed and                                                               |
|             |                   |       | Cotton Seed Processing Fractions, Chevron Chemical Company<br>Study No. R194, Sumitomo reference: FR-01-306                      |
|             |                   |       | GLP, Unpublished, 12 September 1990.                                                                                             |
| FR-61-0174  | Fujie, G.H.       | 1986  | Meat and milk residue feeding study with fenpropathrin technical (SX-                                                            |
|             | ., .,             |       | 1713) in dairy cattle. Bio-Life Associates, Ltd. Project No. 86 MM 3,                                                            |
|             |                   |       | Sumitomo reference: FR-61-0174, GLP, Unpublished, 1986.                                                                          |
| FR-0572     | Gravena, R.       | 2013  | Residue of fenpropathrin in coffee beans after foliar application of                                                             |
|             |                   |       | commercial product Danimen 300 EC.                                                                                               |
|             |                   |       | Sumitomo Chemical Do Brasil Representações Ltda.,                                                                                |
|             |                   |       | Study No. 1201010.001, Sumitomo reference: FR-0572                                                                               |
| ED 41 0264  | Green, C. A.      | 1994  | GLP, Unpublished, 18 April 2013.                                                                                                 |
| FR-41-0364  | Olcen, C. A.      | 1 774 | Magnitude of the residues of fenpropathrin in/on tomatoes and processed tomato products. Sumitomo Chemical Company               |
|             |                   |       | Sumitomo reference: FR-41-0360, GLP, Unpublished, 1994.                                                                          |
| FR-0375     | Green, C. A.      | 1995  | Magnitude of the residues of fenpropathrin in/on melons (cantaloupe).                                                            |
|             | ,                 |       | Valent USA Corporation, Project No. V-94-10868                                                                                   |
|             |                   |       | Sumitomo reference: FR-0375, GLP, Unpublished, 1995.                                                                             |
| FR-0382     | Green, C. A.      | 2004  | Magnitude of the residues of fenpropathrin on almonds.                                                                           |
|             |                   |       | Valent USA Corporation, Project No. 25398                                                                                        |
| ED 0202     | 0 0 :             | •••   | Sumitomo reference: FR-0382, GLP, Unpublished, 22 April 2004.                                                                    |
| FR-0383     | Green, C. A.      | 2004  | Magnitude of the residues of fenpropathrin on pecans.                                                                            |
|             |                   |       | Valent USA Corporation, Project No. 25401, Sumitomo reference: FR-                                                               |
|             |                   |       | 0383, GLP, Unpublished, 22 April 2004.                                                                                           |

| Code                  | Author(s)                          | Year | Study Title                                                                                                                                                                                                                                                                          |
|-----------------------|------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FR-0384               | Green, C. A.                       | 2004 | Magnitude of the residues of fenpropathrin on peaches.<br>Valent USA Corporation, Project No. 25419, Sumitomo reference: FR-0384, GLP, Unpublished, 14 April 2004.                                                                                                                   |
| FR-0385               | Green, C. A.                       | 2004 | Magnitude of the residues of fenpropathrin on plums and plum processing fractions, Valent USA Corporation, Project No. 25427                                                                                                                                                         |
| FR-0559               | Green, C. A.                       | 2005 | Sumitomo reference: FR-0385, GLP, Unpublished, 14 April 2004. Magnitude of the residues of fenpropathrin on plums and plum processing fractions, Valent USA Corporation Project No. 27220                                                                                            |
| FR-0374               | Green, C.A.                        | 2002 | Sumitomo reference: FR-0559, GLP, Unpublished, 28 June 2005. Magnitude of the residues of fenpropathrin and metabolites in grapes and grape juice. Valent USA Corporation Project ID: 22939 Sumitomo reference FR-01-030, GLP, Unpublished, 22 May 2002.                             |
| FR-41-0360            | Green, C.A.                        | 1994 | Magnitude of the residues of fenpropathrin in/on tomatoes and processed tomato products. Valent USA Corporation Project No. V-1032/10633, Sumitomo reference: FR-41-0360 GLP, Unpublished, 5 May 1994.                                                                               |
| FR-61-0174            | Hamada, A.L.<br>Fujie, G.H.        | 1986 | Determination of fenpropathrin in milk, eggs, tissues and fat: Method RM-22A-1, Chevron Chemical Company File No. 740/01 Danitol, Appendix IV to Sumitomo reference FR-61-0174, GLP, Unpublished, 7 March 1986.                                                                      |
| FM-81-0005            | Hitchings, E. J.<br>Roberts, T. R. | 1977 | The metabolism of the insecticide WL 41706, Fenpropathrin, in cotton. Shell Research Report BLGR 0045 77 Sumitomo reference: FM-81-0005, Non-GLP, Unpublished, April,                                                                                                                |
| FM-01-0042            | Ku, H. S. and Doran,<br>T. J.      | 1990 | 1977. A study to determine the nature of the residue in poultry and eggs from chickens dosed with <sup>14</sup> C fenpropathrin. Ricerca Inc. Report Project 89 0084. Sumitomo reference: FM-01-0042                                                                                 |
| FM-01-0041            | Ku, H.S. and Doran,<br>T. J.       | 1990 | GLP, Unpublished, 31 August 1990.  A study to determine the nature of the residue in milk, meat and tissue from lactating goats dosed with <sup>14</sup> C fenpropathrin.  Ricerca Inc. Report Project 89 0109. Sumitomo reference: FM-01-0041                                       |
| FR-21-0344            | Lai, J. C.                         | 1990 | GLP, Unpublished, 31 August 1990.  Magnitude of the residue and residue reduction of fenpropathrin in fresh market and canned tomatoes. Sumitomo Chemical Company, Sumitomo reference: FR-21-0344, GLP, Unpublished, 1990.                                                           |
| FR-21-0342            | Lai, J. C.                         | 1992 | Magnitude of the residues of fenpropathrin in/on lemons. Valent USA Corporation, Project ID: V1004, Sumitomo reference:                                                                                                                                                              |
| FR-21-0343            | Lai, J. C.                         | 1992 | FR-21-0342. GLP, Unpublished, 13 October 1992.  Magnitude of the residues of fenpropathrin in/on grapefruit.  Valent USA Corporation, Project ID: V1003, Sumitomo reference:                                                                                                         |
| FR-21-0344            | Lai, J. C.                         | 1990 | FR-21-0343, GLP, Unpublished, 13 October 1992.  Magnitude of the residue and residue reduction of fenpropathrin in fresh market and canned tomatoes. Chevron Chemical Company Project ID: TSR5680DAN, Sumitomo reference: FR-21-0344                                                 |
| FR-21-0346            | Lai, J. C.                         | 1992 | GLP, Unpublished, 8 October 1990.  Addendum to Magnitude of the residues of fenpropathrin in strawberries. Valent Dublin Laboratory, CA, USA, Project ID: 1714/89/STBA, Sumitomo reference: FR-21-0346                                                                               |
| FA-41-0040            | Lai, J.C.,<br>Fujie, G.H.          | 1984 | GLP, Unpublished, 19 March 1992.  Determination of fenpropathrin in crops: Method RM-22-4 Chevron Chemical Company, File No. 740/01 Danitol GLP, Unpublished, 10 October 1984.                                                                                                       |
| 1424604-2974-<br>2002 | Lavakumar, S., et al.              | 2003 | Studies on the three season residues of Fenpropathrin 30% w/w EC in black tea and soil, International Institute of Biotechnology and Toxicology (IIBAT), Tamil Nadu, India, Study No. 04-2974-2002, Report No. 11861, Sumitomo reference: 1424604-2974-2002, GLP, Unpublished, 2003. |
| 1424604-4190-<br>2004 | Lavakumar, S., et al.              | 2004 | Studies on the residues of Fenpropathrin 30% w/w EC in tea and soil (fourth season). International Institute of Biotechnology and Toxicology (IIBAT), Tamil Nadu, India, Study No. 04-4190-2004; Sumitomo reference: 1424604-4190-2004, GLP, Unpublished, 2004.                      |

| Code                  | Author(s)                                              | Year  | Study Title                                                                                                                                                                                                                                                                                     |  |  |
|-----------------------|--------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1424604-2974-<br>2002 | Lavakumar, S., et al.                                  | 2003  | Studies on the three season residues of Fenpropathrin 30% w/w EC in black tea and soil, International Institute of Biotechnology and Toxicology (IIBAT), Tamil Nadu, India Study No. 04-2974-2002, Report No. 11861, GLP, Unpublished, Sumitomo reference: 1424604-                             |  |  |
| 1424604-4190-<br>2004 | Lavakumar, S., et al.                                  | 2004  | 2974-2002, 2003. Studies on the residues of Fenpropathrin 30% w/w EC in tea and soil (fourth season). International Institute of Biotechnology and Toxicology (IIBAT), Tamil Nadu, India Study No. 04-4190-2004;                                                                                |  |  |
| FR-0571               | Lopez, N.M.R.                                          | 2013  | Sumitomo reference: 1424604-4190-2004, GLP, Unpublished, 2004. Magnitude of residues of fenpropathrin after application of commercia product Danimen 300 EC in soya bean grains. Bioagri Laboratórios Ltda. Study No. 0035.034.137.12                                                           |  |  |
| FM-50-0044            | Mikami, N. et al                                       | 1985  | Sumitomo reference: FR-0571, GLP, Unpublished, 29 April 2013. Metabolism of the Synthetic Pyrethroid Fenpropathrin in Plants. J. Agric. Food Chem., 33: 980-987. Sumitomo reference: FM-50-0044 Non-GLP, Published, 1985.                                                                       |  |  |
| FM-3-0008             | Mikami, N., Sakata, S., Yamada, Y. and                 | 1983  | Degradation of fenpropathrin in soil.<br>Sumitomo Chemical Company, Sumitomo reference: FM-30-0008.                                                                                                                                                                                             |  |  |
| FR-11-0345            | Miyamoto, J.<br>Mitten, M. E.                          | 1991  | GLP. Unpublished. 1983.  Magnitude of the residues of fenpropathrin in strawberries.  Chevron Chemical Company, Project ID 1714/89/STB                                                                                                                                                          |  |  |
| FR-61-0013            | Noble, S.R.                                            | 1976  | Sumitomo reference: FR-11-0345, GLP, Unpublished, 1991. Soil percolation and aqueous die-away studies with WL 41706. Shell Research Report WKGR 0127 76,                                                                                                                                        |  |  |
| FR-61-0014            | Roberts, T.R.<br>Standen, M.E                          | 1976  | Sumitomo reference: FR-61-0013, Non-GLP, Unpublished, 1976. The degradation of the insecticide WL 41706 in soil under laboratory conditions. Shell Research Report WKGR 0061 76                                                                                                                 |  |  |
| FR-0556               | Samoil, K. S.                                          | 1999  | Sumitomo reference: FR-61-0014, Non-GLP, Unpublished.1976. Fenpropathrin: Magnitude of the residue on cucumber. IR-4 Project, USA, Study No. 02502, Sumitomo reference: FR-0556                                                                                                                 |  |  |
| FR-0557               | Samoil, K. S.                                          | 1999  | GLP, Unpublished, 16 July 1999. Fenpropathrin: Magnitude of the residue on squash (summer). IR-4 Project, Study No. 02507, Sumitomo reference: FR-0557                                                                                                                                          |  |  |
| FR-0558               | Samoil, K. S.                                          | 2001  | GLP, Unpublished, 16 July 1999. Fenpropathrin: Magnitude of the residue on pepper. IR-4 Project, USA, Project ID: IR-4 Study No. 02503                                                                                                                                                          |  |  |
| FR-0560               | Samoil, K. S.                                          | 2007a | IR-4 Project, USA, Report No. IR-4 PR No. 08735                                                                                                                                                                                                                                                 |  |  |
| FR-0561               | Samoil, K. S.                                          | 2007b | IR-4 Project, USA, Report No. IR-4 PR No. 09374                                                                                                                                                                                                                                                 |  |  |
| FM-30-0010            | Takahashi, N.,<br>Mikami, N.                           | 1983  | Sumitomo reference: FR-0561, GLP, Unpublished, 2007. Hydrolysis of fenpropathrin in aqueous media. Sumitomo Chemical Company, Sumitomo reference: FM-30-0010                                                                                                                                    |  |  |
| FM-50-0053            | Takahashi, N., et. al                                  | 1985  | Non-GLP, Unpublished, 24 June 1983. Hydrolysis of the pyrethroid insecticide fenpropathrin in aqueous media, J. Pestic. Sci. 16: 113-18, Sumitomo reference: FM-50-0053                                                                                                                         |  |  |
| FM-30-0011            | Takahashi, N.,<br>Mikami, N.,<br>Yamada, H. and        | 1983  | Non-GLP, Published.1985. Photodegradation of fenpropathrin in water and on soil and plant foliage. Sumitomo Chemical Company, Sumitomo reference FM-30-0011.GLP, Unpublished. 1983.                                                                                                             |  |  |
| FM-50-0055            | Miyamoto, J. Takahashi, N., Mikami, N., Yamada, H. and | 1985  | Photodegradation of the pyrethroid insecticide fenpropathrin in water, on soils and on plant foliage. J. Pestic. Sci. 16: 119-31 Sumitomo reference: FM-50-0055.Non-GLP, Published. 1985.                                                                                                       |  |  |
| FM-41-0067            | Miyamoto, J.<br>Toia, R.F., Kimmel,<br>E. C. et al     | 1994  | A Metabolism Study with [Cyclopropyl-1- <sup>14</sup> C]-and [Phenyl-U- <sup>14</sup> C]-Fenpropathrin on Cotton. PTRL West Project 378,W Sumitomo                                                                                                                                              |  |  |
| FR-0570               | Tomaz, M. L.                                           | 2010  | reference: FM-41-0067,GLP, Unpublished, 3 October 1984. Determination of residues of fenpropathrin in soya bean after application of Danimen 300 EC. Sumitomo Chemical Do Brasil Representações Ltda., Study No. 009 009 09 B, Sumitomo reference: FR-0570, GLP, Unpublished, 15 December 2010. |  |  |