ABAMECTIN (177)

EXPLANATION

Abamectin was evaluated in 1992 and 1994 and MRLs were recommended for a number of crops and animal commodities.

The 28th (1996) Session of the CCPR was informed that the LOD of 0.01 mg/kg for abamectin might need to be increased to 0.02 mg/kg (ALINORM 97/24, para 77). The 29th 1997 Session (ALINORM 97/24A, para 105) agreed, on the advice of the *ad hoc* Working Group on Methods of Analysis, to maintain MRLs for abamectin set at or about the LOD at 0.01 mg/kg.

The 29th Session also noted (ALINORM 97/24A, para 89) that the CCRVDF had proposed MRLs for abamectin in animal products and encouraged comment on these proposals.

The Meeting received information on the current registered or approved uses of abamectin on food crops. The Netherlands provided a copy of the official method of analysis for abamectin residues.

The Meeting received information on methods of analysis and residue data from supervised trials on the additional crops apples, potatoes and hops as well as on pears, cucurbits, lettuce and tomatoes. Processing data were available for apples, pears, potatoes and hops.

The predominant residues from the use of abamectin on cropos are avermectin B_{1a} , avermectin B_{1b} and the photoesomers 8,9-Z-avermectin B_1 (B_{1a} and B_{1b}).

METHODS OF RESIDUE ANALYSIS

Analytical methods

Abamectin is a mixture of avermectin B_{1a} (80%) and avermectin B_{1b} (20%). In sunlight the photoisomer 8,9-Z-avermectin is produced and becomes part of the residue. It is also described as the D-8,9 isomer. Avermectin B_{1a} and 8,9-Z avermectin B_{1a} produce the same fluorescent compound in the derivatization step of the analytical methods and hence a single peak on an HPLC chromatogram. Avermectin B_{1b} and its photoisomer 8,9-Z-avermectin B_{1b} behave in the same way and appear together in a second peak in the chromatogram.

Analytical methods that measure the components of the residue involve the HPLC separation and fluorescence detection of derivatives formed by converting the cyclohexene ring to an aromatic ring. Analytical methods for abamectin residues in crops, soil, animal tissues, milk and water were reviewed by the 1992 JMPR.

The newer analytical methods rely on a rapid derivatization. The avermectin compounds dissolved in an acetonitrile/triethylamine mixture in the presence of 1-methylimidazole react rapidly with trifluoroacetic anhydride at room temperature to produce the fluorescent derivative. Approximately 3 minutes are required for the reaction as compared with 1 hour in previous methods. Some clean-up steps have also been streamlined.

Cobin (1989), in Method 8920, extracted abamectin residues from cucumbers with methanol. The aqueous methanol extract was washed with iso-octane and passed through a C-8 column that captured the abamectin residues. The C-8 column was connected to 2 small aminopropyl

columns in series and the abamectin rinsed through with methanol. A portion of the extract was evaporated and the abamectin was derivatized and determined by HPLC with fluorescence detection. Recoveries were satisfactory, but recoveries of 8,9-Z-avermectin were mostly near 70%, which was lower than those of avermectin B_{1a} and B_{1b} .

Trainor (1991) drew attention to the losses of 8,9-Z-avermectin B_{1a} which may occur in emulsions during solvent partition steps. Shaking must be done gently to keep the emulsion layer to a minimum.

Hicks (1992a,b) described Method 8000 for abamectin residues in apples and pears. Samples were first treated with pectinase to hydrolyse the pectin. Abamectin residues were extracted from the apple or pear homogenate with acetonitrile/water, and the extract further diluted with water and loaded onto a small C-8 column. Abamectin was eluted from the column with acetonitrile, which was diluted with water and the abamectin partitioned into hexane. The hexane solution was further cleaned up on an aminopropyl column to produce an extract ready for derivatization and HPLC determination. The LOD for each component of the residue in both apples and pears was 0.002 mg/kg. Good recoveries from spiked samples of apples and pears were obtained for avermectin B_{1a} at 0.0019-0.079 mg/kg, avermectin B_{1b} at 0.0038-0.0059 mg/kg and 8,9-Z-avermectin B_{1a} at 0.0046-0.070 mg/kg.

Cobin (1995) described the method (M-007.1) used for analysing apple samples from the supervised residue trials in Europe. Partially thawed whole apples were chopped in a Hobart food processor with dry ice added to achieve better chopping and to keep samples partially frozen. A portion of the chopped homogenate was then blended with acetonitrile, water and hexane. Abamectin residues were extracted into the hexane phase, which after drying with sodium sulfate was introduced into 2 small aminopropyl columns in series. The columns were washed with hexane, toluene and then dichloromethane. The abamectin residues were eluted from the column with acetone/dichloromethane, derivatized and determined by HPLC as described in other methods.

Macdonald *et al.* (1994) validated Method M-007 for apples. Good recoveries of avermectin B_{1a} were obtained from apples fortified at 0.002, 0.010 and 0.030 mg/kg.

The method (91-1) used for the determination of abamectin in tomatoes was very similar to the later method M-007.1 used for apples (Prabhu, 1991c). Maudsley and Clements (1994) validated method 91-1 for residues in lettuce. Good recoveries were obtained from lettuce fortified with avermectin B_{1a} at 0.002, 0.010, 0.030 and 2.00 mg/kg and with avermectin B_{1b} at 0.002, 0.010 and 0.10 mg/kg.

Method 936-92-4 used for the determination of abamectin residues in potatoes was described by Wehner (1992). Residues were extracted with methanol and the extract, after the addition of water, was passed through a small C-8 column which retained the abamectin residue. Further cleanup was achieved by washing the residue from the C-8 column directly through an aminopropyl column with a small volume of methanol. Part of the methanol solution was concentrated to dryness and the fluorescent derivatives were formed by reaction with a mixture of trifluoroacetic anhydride and 1-methylimidazole in acetonitrile. The LOD for each component of the residue was 0.005 mg/kg. Kvaternick (1993g) validated the method for fortified raw potatoes and achieved good recoveries for avermectin B_{1a} at 0.005-0.100 mg/kg, avermectin B_{1b} at 0.0049 mg/kg and 8,9-Zavermectin B_{1a} at 0.005-0.050 mg/kg.

Morneweck (1992) described Method 92-1 for residues of abamectin in apple pomace, apple juice and apple sauce. Abamectin residues were extracted from wet or dry apple pomace with a hexane/water/acetonitrile mixture. Apple juice and apple sauce were extracted with acetonitrile/water and the extracts passed through a C-8 column, which was washed with acetonitrile to recover the abamectin residues. The extracts of all the commodities were then cleaned up on an aminopropyl column. The procedure then followed that of Method 8000 described above.

Recoveries of 8,9-Z-avermectin B_{1a} were consistently near 70% from the various commodities, but those of avermectin B_{1a} and B_{1b} were generally higher.

Johnson (1994a) described Method M-036 for abamectin in dried hops. The hops were rehydrated and extracted with a methanol-water mixture. Clean-up was effected by extraction into hexane and passage of the hexane extract through an aminopropyl solid phase extraction column. The abamectin in the cleaned up extract was derivatized with trifluoroacetic anhydride and determined by HPLC in the normal way. The LODs for avermectin B_{1a} , B_{1b} and 8,9-Z-avermectin B_{1a} in spiked dried hops were all 0.005 mg/kg. Method M-044 for abamectin residues in fresh hops is essentially the same as M-036 (Johnson, 1994b).

Duchene *et al.* (1997) validated analytical methods M-036.2 and M-044 for abamectin residues in dried hops, fresh hops and immature hops. Good recoveries from spiked samples were obtained for avermectin B_{1a} (0.0025-0.100 mg/kg), avermectin B_{1b} (0.005 mg/kg) and 8,9-*Z*-avermectin B_{1a} (0.005-0.100 mg/kg). The validated LOD for the 3 components in dried, fresh and immature hops was 0.005 mg/kg.

Many recovery experiments were carried out in the course of method validation and during supervised trials and processing studies. The median and mean recoveries were respectively 87% and 88% for avermectin B_{1a} (n=523), 90% and 89% for avermectin B_{1b} (n=100), and 84% and 83% for 8,9-*Z*-avermectin B_{1a} (n=166).

Some of the analytical methods developed to determine abamectin residues in various substrates which were originally in the form of unpublished reports have now been published in the scientific literature. Prabhu *et al.* (1992) described a rapid method which was used for the analysis of tomatoes in field trials. Samples can be prepared for HPLC analysis in batches of 12 in about 4-6 hours.

Cobin and Johnson (1995) have published a modified version of the method described above for abamectin in apples, and have published the residue method for hops (Cobin and Johnson, 1996).

In the official method in The Netherlands (Netherlands, 1996) abamectin residues are extracted with ethyl acetate from a portion of the chopped sample. The residue, after evaporation of the ethyl acetate, is taken up in hexane and loaded on to a small aminopropyl column for clean-up. The column is washed with hexane, toluene and dichloromethane and the washings discarded. Abamectin residues are then eluted with dichloromethane/acetone. After the solvent has been evaporated the residue is taken up in methanol for HPLC analysis with UV detection at 245 nm. Good recoveries were obtained for avermectin B_{1a} in fortified cucumber samples at 0.0135 and 0.0675 mg/kg. The limit of determination was 0.003 mg/kg. The recovery of 8,9-Z-avermectin B_{1a} was not determined.

Stability of pesticide residues in stored analytical samples

Information on the stability of abamectin residues in dried hops during frozen storage was provided to the Meeting. Studies on the frozen storage stability of abamectin in numerous crops were reviewed by the 1992 JMPR.

Arenas (1997a) tested the stability of avermectin B_{1a} and 8,9-Z-avermectin B_{1a} in spiked dried hops stored below -10°C for 6 months. Dried hop cones without detectable abamectin residues were pulverised, weighed in 5 g lots into small bottles, and spiked at 0.020 mg/kg with the avermectin test materials (Table 1). The freezer temperature was always below -10°C and the average was about -20°C. Samples were analysed by method M-036.

The compounds were stable for the 6 months, with perhaps a slow loss estimated at about 3% per month.

Arenas (1997b) used the same method to test the stability of abamectin in fresh hops during frozen storage between -20° C and -5° C for 5 months (Table 1). Abamectin was again quite stable.

Table 1. Freezer storage stability of avermectin B_{1a} and 8,9-Z-avermectin B_{1a} added to dried hops and fresh hop cones (Arenas, 1997a,b). Duplicate samples were analysed on each occasion.

Storage interval, days	Avermectin B _{1a} , mg/kg	Storage interval, days	8,9-Z-avermectin B _{1a} , mg/kg
	DRIED HOPS		
0	0.023 0.021	0	0.019 0.017
34	0.018 0.021	36	0.016 0.014
60	0.023 0.018	61	0.015 0.017
96	0.019 0.017	97	0.014 0.015
190	0.018 0.018	189	0.014 0.014
FRI	ESH HOP CONES		
0	0.018 0.018	0	0.016 0.015
130	0.016 0.014	131	0.015 0.015
153	0.016 0.016	154	0.015 0.015

Definition of the residue

The abamectin residue is currently defined by the JMPR as the sum of avermectin B_{1a} , avermectin B_{1b} and D-8,9 isomer of avermectin B_{1a} .

The Meeting noted that the definition proposed by JECFA (1997) for residues in the liver, kidney and fat from animals subject to veterinary treatments with abamectin does not include the 8,9-Z isomer (D-8,9 isomer), because it is not present in animal tissues when abamectin is used directly on the animal. The JECFA efinition also does not include avermectin B_{1b} , because avermectin B_{1a} was considered the appropriate marker residue.

The Meeting agreed that the wider definition (to include the 8,9-Z isomer) was the appropriate one for a laboratory carrying out enforcement or monitoring analyses because the analyst would not know whether the residue in the animal originated from veterinary uses, animal feed, or both. In practice, the wider definition accommodates both sources.

The inclusion or exclusion of avermectin B_{1b} from the residue definition is a matter of judgement. In many crop situations B_{1b} is commonly present at approximately 10% of the total residue, so its inclusion or exclusion has little effect on the measured residue. The analytical methods measure B_{1a} and B_{1b} by the same procedure; they appear as two peaks on the same chromatogram, so the analytical data for both components are always available from an analysis and may as well be used. The avermectin B_{1b} residue can be calculated from the avermectin B_{1a} standard curve because the reaction yields and response factors for derivatized B_{1a} and B_{1b} are the same.

Avermectin B_{1b} forms a photoisomer 8,9-Z-avermectin B_{1b} in the same way as avermectin B_{1a} . The studies reviewed by the JMPR in 1992 were with avermectin B_{1a} so the possibility of 8,9-Z-avermectin B_{1b} being produced was not taken into account. In practice the contribution of 8,9-Z-avermectin B_{1b} to the residue will be small but for the sake of accuracy it should be recognised that

the HPLC measurement of avermectin B_{1b} residues includes any 8,9-Z-avermectin B_{1b} . The Meeting agreed to adjust the residue definition accordingly.

The recommended definition of the residue for compliance with MRLs and estimation of STMRs is

"sum of avermectin B_{1a} , avermectin B_{1b} , 8,9-Z-avermectin B_{1a} and 8,9-Z-avermectin B_{1b} "

USE PATTERN

Table 2. Registered or approved uses of abamectin on food crops. All EC formulations.

Crop	Country		Appli	cation		PHI,
_		Method	Rate, kg ai/ha	Spray conc.,kg ai/hl	ai/hl No.	
Almond	USA		0.014	0.00019-0.00038	2	21
			0.028			
Apple	Australia	foliar ¹	0.014	0.0014	1	14^{23}
Apple	Brazil	foliar ²	0.0095-0.032	0.0014-0.0018		14
Apple	Canada	foliar ³	0.014-0.027	0.00036-0.00072	1 or 2^4	28
Apple	France*	foliar ¹	0.014-0.027	0.0014	2	21
Apple	Israel	foliar ⁵		0.0018	6	7
Apple	South Africa	foliar ⁶ HV	0.014-0.027	0.00063	$2 \text{ or } 4^7$	14
Apple	USA	foliar ⁸	0.013-0.026	0.00035-0.00070	$2 \text{ or } 4^7$	28
Celery	Argentina		0.011-0.022	0.0014	4	7
Celery	Cyprus	foliar	0.011-0.022	0.0011	4	7
Celery	France	foliar	0.009		4	7 or 14
Celery	Israel	foliar	0.0054-0.011	0.0009-0.0018	6	7
Celery	Mexico	foliar	0.0054-0.022	0.0011	10	7
Celery	Spain	foliar	0.0054-0.022	0.0011	3	10
Celery	USA	foliar	0.011-0.021	0.0011	3 or 6 ⁹	7
Chicory	France	foliar	0.009		4	7 or 14
Citrus	Argentina	foliar HV ¹⁰	0.011-0.027	0.00027-0.00036	2-5	7 7
Citrus	Brazil	foliar ²	0.0054-0.011	0.00036-0.00054	2-5	7
Citrus	Cyprus	foliar	0.009-0.018	0.00036	6	7
Citrus	Israel	foliar ⁵	0.018-0.025	0.00030	6	7
Citrus	Mexico	foliar ¹¹	0.0072-0.023	0.00026	3	7
Citrus	South Africa	foliar ⁶	0.0072-0.027	0.00036 0.00018	3	7
		foliar ³	0.014.0.027		3	10
Citrus	Spain USA	foliar ⁸	0.014-0.027	0.00072	2-8 ¹²	10
Citrus		foliar g & a ¹³	0.0066-0.026	0.0007.0.011		7 20 ¹⁴
Cotton	Argentina		0.0054-0.011	0.0027-0.011	5-10 2	20 20 ¹⁵
Cotton	Australia	foliar g & a	0.0054	0.027 max	Z	
Cotton	Brazil	foliar foliar ⁵	0.0054-0.011	0.00054	6	21
Cotton	Israel		0.0054-0.011	0.00054	6	7 20 ¹⁴
Cotton	Mexico	foliar	0.009-0.022	0.0054	4	
Cotton	South Africa	foliar g & a	0.0054-0.011	0.0054	3	21^{16}
Cotton	Spain	foliar	0.0054-0.018	0.0018-0.0036	-	20
Cotton	USA	foliar g & a	0.011-0.021	note ¹⁷	2	20^{14}
Cotton	USA	foliar g & a	0.0053-0.0079	note ¹⁸		2
Cucumber	Brazil	foliar ²	0.0045-0.009	0.0009-0.0018		3
Cucumber	Cyprus	foliar	0.009-0.018	0.0009	4	3
Cucumber	France	foliar	0.022	0.0009	6	3
Cucumber	Germany	greenhouse ¹⁹	0.023		5	3
Cucumber	Israel	foliar	0.0054-0.011	0.0009-0.0018	6	7
Cucumber	Netherlands	foliar gl ²⁰	0.023	0.00045-0.0009	5	3
Cucumber	Spain	foliar	0.0054-0.022	0.0011	3	3
Cucumber	Switzerland	foliar	0.009-	0.00045-0.0009	4	3 gl
			0.036			
Cucumber	USA	foliar	0.011-0.021		3 or 6 ⁹	7
Cucurbits	Argentina		0.011-0.022	0.0014	4	3

Crop	Country		Appl	lication		PHI,
crop	country	Method	Rate, kg ai/ha	Spray conc.,kg ai/hl	No.	days
Egg plant	France	foliar	0.022		6	3
Egg plant	Germany		0.023-0.009			
Egg plant	Germany	greenhouse ¹⁹	0.023		5	3
Egg plant	Israel	foliar	0.0054-0.011	0.0009-0.0018	6	7
Egg plant	Netherlands	foliar gl ²⁰	0.023	0.00045-0.0009	4	3 ²¹
Egg plant	Switzerland	foliar	0.009- 0.036	0.00045-0.0009	4	3 gl
Endive	France	foliar f ²²	0.009		4	28
Endive	Netherlands		0.014	0.0009	4	14 ²¹
Gherkin	Netherlands	foliar gl ²⁰	0.023	0.00045-0.0009	5	3
Hops	Czech Republic	foliar	0.022	0.0007	2	28
Hops	Germany	foliar	0.022	0.0011	2	28
Hops	USA	Tontar	0.022	0.0011	2	28
Lamb's lettuce	France	foliar f ²²	0.009		4	28
Lettuce	Cyprus	foliar	0.009-0.018	0.0009	4	7
Lettuce	France	foliar f ²²	0.009	0.0007	4	28
Lettuce	France	foliar	0.009		4	7 or 14
Lettuce	Spain	foliar	0.009	0.0009-0.0018	3	14
Lettuce, Head	Netherlands		0.011-0.022	0.0009-0.0018	4	14 14 ²¹
Lettuce, Head	USA	foliar	0.011-0.021	0.0007	4 3 or 6 ⁹	7
Lettuce, Head	Netherlands		0.011-0.021	0.0009	4	14 ²¹
Iceberg	rechemands		0.014	0.0007	-	14
Melon	Cyprus	foliar	0.009-0.018	0.0009	4	3
Melon	France	foliar	0.022	0.0009	6	3
Melon	Germany	greenhouse ¹⁹	0.022	0.0007	5	3
Melon	Israel	foliar	0.0054-0.011	0.0009-0.0018	6	7
Melon	Spain	foliar	0.022	0.0011	3	3
Melon	USA	foliar	0.011-0.021	0.0011	3 or 6 ⁹	7
Nectarine	Israel	foliar	0.014	0.009	5 01 0	,
Peach	Israel	foliar	0.014	0.007		
Peanuts	Israel	foliar		0.00054		
Pear	Argentina	foliar HV ¹⁰	0.014-0.027	0.00072-0.0014	2-4	14
Pear	Australia	foliar ¹	0.014-0.027	0.0014	1	14 ²³
Pear	Canada	foliar ³	0.014-0.027	0.00036-0.00072	1 or 2 ⁴	28
Pear	Cyprus	foliar ²⁴	0.011-0.027	0.00054-0.00072	6	7
Pear	France	foliar ¹⁰	0.011-0.022	0.0014	2	15
Pear	France	foliar	0.023	0.0014	4	15
Pear	Greece	101141	0.014-0.036	0.0014-0.0018	+	10
Pear	Israel	foliar ⁵	0.014-0.030	0.0014-0.0018	6	7
Pear	Italy	foliar ²⁵	0.014-0.027	0.0014	2	14
Pear	South Africa	foliar ⁶ HV	0.014-0.027	0.00063	$\frac{2}{2 \text{ or } 4^7}$	7
Pear	Spain	foliar ³	0.014-0.027	0.0014	2 01 4	10
Pear	Switzerland	foliar	0.023-0.027	0.0014	4	21
Pear	USA	foliar ⁸	0.013-0.027	0.00035-0.00070	$\frac{4}{2 \text{ or } 4^7}$	28
Peppers	Argentina	foliar HV	0.0.009-0.020	0.0009-0.0013	4	3
Peppers	Brazil	foliar ²	0.009-0.018	0.0009-0.0013		3
Peppers	Cyprus	foliar ²⁴	0.009-0.018	0.0009-0.0018	4	3
Peppers	France	foliar	0.009-0.018	0.0007	6	3
Peppers	Israel	foliar	0.022	0.0009-0.0018	6	7
Peppers Peppers	Spain	foliar	0.0054-0.011	0.0011	3	3
Peppers (bell)	USA	foliar	0.0034-0.022	0.0011	3 or 6 ⁹	7
Peppers (bell) Peppers, sweet	Germany	greenhouse ¹⁹	0.023		5 01 0	3
	Netherlands	foliar gl ²⁰	0.023	0.00045-0.0009	4	3^{21}
	Switzerland	foliar	0.025	0.00045-0.0009	4	
Peppers, Sweet Pome fruit		foliar foliar ¹¹ HV	0.009-0.036	0.00045-0.0009	4	3 gl 14
	New Zealand				1	
Potato	Brazil	foliar ²	0.009-0.018	0.0011-0.0023	6	14
Potato	Israel	foliar	0.011	0.0018	6	7
Potato Rediab	USA Natharlanda	foliar foliar al ²⁰	0.011-0.021	0.0000	$3 \text{ or } 6^9$	14
Radish	Netherlands	foliar gl ²⁰	0.014	0.0009	1	14
Squash	Cyprus	foliar	0.009-0.018	0.0009	4	3

Crop	Country		Appli	cation		PHI,
_		Method	Rate, kg ai/ha	Spray conc.,kg ai/hl	No.	days
Squash	USA	foliar	0.011-0.021		3 or 6 ⁹	7
Strawberry	Argentina	foliar HV	0.011-0.022	0.0014-0.0018	4	3
Strawberry	Australia	foliar	0.011-0.022	0.0018	2	326
Strawberry	Brazil	foliar ²	0.009-0.017	0.009-0.0014		3
Strawberry	Cyprus	foliar	0.018	0.0009	4	3
Strawberry	France	foliar	0.023		4	3
Strawberry	Israel	foliar ⁵	0.009	0.0009	6	7
Strawberry	Mexico	foliar	0.009-0.022	0.0018	4	3
Strawberry	New Zealand	foliar HV	0.011	0.0018	3	3
Strawberry	South Africa	foliar HV	0.022		4	3
Strawberry	Spain	foliar	0.011-0.022	0.0014-0.0018	4	3
Strawberry	Switzerland	foliar	0.009-0.014	0.00045	4	
Strawberry	USA	foliar	0.021		4	3
Tomato	Argentina	foliar	0.009-0.022	0.0009-0.0013	4-9	3
Tomato	Australia	foliar HV	0.0054-0.0081	0.0011-0.0016	2	3 ²⁶
Tomato	Brazil	foliar ²	0.0068-0.022	0.0014-0.0018		3
Tomato	Cyprus	foliar	0.011-0.022	0.0011	4	3
Tomato	France	foliar	0.022	0.0009	6	3
Tomato	Germany		0.009-0.023			
Tomato	Germany	greenhouse ¹⁹	0.023		5	3
Tomato	Greece			0.011-0.0018		3,7
Tomato	Israel	foliar	0.0054-0.011	0.0009-0.0018	6	3
Tomato	Italy	foliar	0.0054-0.022	0.0011	2	7
Tomato	Mexico	foliar	0.0054-0.022	0.0011-0.0018	3	3
Tomato	Netherlands	foliar gl ²⁰	0.023	0.00045-0.0009	4	321
Tomato	New Zealand	foliar HV gl ²⁰	0.0081	0.0011-0.0016	3	3
Tomato	South Africa	foliar HV	0.0054-0.022	0.0011	5	3
Tomato	Spain	foliar	0.0054-0.022	0.0011		3
	-					7 gl
Tomato	Switzerland	foliar	0.009-0.018	0.00045-0.0009	4	3 gl
Tomato	USA	foliar	0.011-0.021		3 or 6 ⁹	7
Walnut	USA		0.014-0.028	0.00019-0.00038	2	21
Watermelon	Brazil	foliar ²	0.0045-0.009	0.0009-0.0018		7
Watermelon	Cyprus	foliar	0.009-0.018	0.0009	4	3
Watermelon	Israel	foliar	0.0054-0.011	0.0009-0.0018	6	7
Watermelon	Spain	foliar	0.0054-0.022	0.0011		3
Zucchini	France	foliar		0.0009	6	3
Zucchini	Germany		0.009-0.023			
Zucchini	Germany	greenhouse ¹⁹	0.023		5	3
Zucchini	Netherlands	foliar gl ²⁰	0.023	0.00045-0.0009	5	3

*Proposed registration

¹ Plus summer oil
 ² Plus mineral or vegetable oil.
 ³ Plus paraffinic oil.

⁴ At the higher rate, 1 application is permitted; at the lower rate, 2.

⁵ Plus ultrafine oil.

⁶ Plus ultratine oil.
⁶ Plus light mineral spray oil.
⁷ At the higher rate, 2 applications are permitted; at the lower rate, 4.
⁸ Plus horticultural spray oil.
⁹ At the higher rate, 3 applications are permitted; at the lower rate, 6.
¹⁰ Plus summer mineral oil.

¹¹ Plus summer mineral oil.
¹¹ Plus agricultural spray oil.
¹² At the highest rate, 2 applications are permitted; at the lowest rate, 8.
¹³ g & a - ground and aerial application
¹⁴ Do not graze or feed cotton foliage.
¹⁵ Do not graze or cut for stockfood for 20 days after application.
¹⁶ Do not allow animals to feed on treated foliage.
¹⁷ Late accord

¹⁷ Late season

¹⁸ Early season.

¹⁹ Do not use during the months of November till February.

²⁰ gl: glasshouse.

- ²¹ Only from 1 March to 1 November.
- ²² Outdoor use only.
- ²³ Do not feed treated produce to livestock for 14 days after application.
- ²⁴ Plus narrow range oil.
- ²⁵ Plus agricultural spray mineral oil.
- ²⁶ Do not feed treated produce to livestock for 3 days after application.

RESIDUES RESULTING FROM SUPERVISED TRIALS

Residue data from supervised trials on fruits, vegetables and hops are summarized in Tables 3-10. Detailed comparisons of national GAP with the conditions in the trials which were considered to be valid for the estiamtion of maximum residue levels and STMRs are shown in the "interpretation" Tables 11-17.

Table 3. Apples. Australia, France, Germany, Italy, New Zealand, Spain, UK, USA
Table 4. Pears. USA
Table 5. Cucurbits. Brazil, France, Mexico, Spain
Table 6. Cucurbits USA
Table 7. Tomatoes. Netherlands
Table 8. Lettuce. France, Netherlands, Spain
Table 9. Potatoes. Brazil, USA
Table 10. Hops. Germany, USA

Limits of detection and determination are generally reported as 0.002 and 0.005 mg/kg respectively. Where these limits apply, residues in the residue tables reported as NQ are detected but <0.005 mg/kg, while residues reported as ND are <0.002 mg/kg. Residues, application rates and spray concentrations have generally been rounded to 2 significant figures or, for residues near the LOD, to 1 significant figure. The listed B_{1a} residue includes avermectin B_{1a} and its photoisomer 8,9-Z-avermectin B_{1a} , and the B_{1b} residue includes avermectin B_{1b} and 8,9-Z-avermectin B_{1b} .

Although all trials included control plots, no control data are recorded in the tables except where residues were detected in the controls. Residues are not corrected for recovery.

The trials were fully reported as well as summarized..

Abamectin was applied to apple orchards in supervised trials in 3 States in Australia in 1995 using handgun sprayers or airblast back-pack misters. The trials were with 2 treated replicates of 1 or 8 trees.

Apple trees were treated with abamectin in a large programme of supervised trials in France, Germany, Italy, Spain and the UK from 1991 to 1994 (Table 4). Spray equipment and plot sizes varied but the size of each field sample was consistently 12 apples.

Plot sizes in the French apple trials were 3 or 4 trees or a 3-4 m row. Trees were sprayed with a motorised knapsack sprayer, a plot sprayer or by tractor with an airblast sprayer. Apple trees in the German trials of 1991 were sprayed with a pressurised back-pack sprayer. Sub-plot sizes were 1 or 6 trees. In the Italian trials plots of 3-4 trees were sprayed with a handgun motor-driven pump sprayer.

The analytical report for apple trial 115-94-0004R from New Zealand was unclear as to whether the treatment had included a spraying oil. Also some results were reported as total residues instead of as the separate B_{1a} and B_{1b} components.

In Spain apple orchards were sprayed using a tractor-mounted orchard sprayer in 1993. Plots were 3-5 trees. In 1994 the trees were sprayed by motorised knapsack or handgun motor pump. In the UK trials of 1991 the trees were sprayed with a back-pack airblast sprayer. Plots were 1 or 2 trees. The oil used as a spray additive in trial 074-91-0004R was rape seed oil.

In a programme of supervised trials on apples in the USA abamectin was used on common varieties in seven apple-growing states from 1990 to 1992 (Table 3). Abamectin in association with a horticultural spraying oil (9.4 l/ha) was applied by handgun sprayers or tractor driven airblast sprayers. Treated plots consisted of 16-18 trees with sampling of the 4 inner trees. In the 1990 trials the four trees were sampled as 4 replicate subplots, but in 1991 and 1992 they were sampled as 2 replicate subplots each of 2 trees. The field sample was 12 apples. In trial 001-91-1024R 9 mm of rain fell on the final day of treatment so samples were taken 1 day later instead of on the day of treatment.

Abamectin was applied to pear trees in 4 supervised trials in California, the USA, by commercial airblast orchard sprayer (Table 4). The plot size was 16 trees and samples for analysis were taken from the 4 central trees. There was little rainfall during the trials and irrigation was by furrow in two of the trials and by sprinkler in the other two, but the sprinklers were beneath the trees and irrigation water would not have contacted the fruit. Field samples were of 12 pears and 11-12 kg were taken for processing.

Trials on cucurbits in Brazil, France, Mexico and Spain are summarized in Table 5. In each trial in Mexico a field sample from each of 4 replicate plots was analysed. Abamectin was applied by knapsack in all trials except one on cucumbers (002-90-0016R) where a manual sprinkling pump was used. Spray concentrations were progressively decreased through the number of applications in each trial to maintain the required application rate because larger volumes of spray were required for good coverage as the plants approached maturity. Plot sizes were 8-563 m² for cucumbers, 23-563 m² for pickling cucumbers, 11-763 m² for cantaloupe and 46-648 m² for honey-dew melons. Field samples were 5-10 fruit for cucumbers, 0.5 kg for pickling cucumbers, and 4 mature fruit for cantaloupes and honey-dew melons.

In melon trials in Brazil abamectin was applied by knapsack to plot sizes of 30-90 m². A field sample of 6 melons (4.2-9 kg) was taken from each plot for analysis. The edible pulp was analysed rather than whole melons. Abamectin was applied by knapsack to melons in 60 m^2 plots in supervised trials in France. Field samples consisted of 4-5 fruit. In Spain abamectin was applied by CO₂ pressurized back-pack sprayer to 6 m² plots of melons in glasshouses with each plot comprising 4 subplots. Samples of 4-5 fruit were taken from the subplots for analysis.

Glasshouse tomatoes growing on a rockwool substrate were treated with abamectin using a motor driven high-pressure sprayer equipped with a hand-held wand in 2 trials in The Netherlands in March-April 1993. Plot sizes were 19 m². In 4 glasshouse tomato trials in The Netherlands in September -October 1993 abamectin was applied 4 times at weekly intervals to plots of 30 m². The final applications were in the first week (2 trials) or third week (2 trials) of October.

Trials on lettuce are summarized in Table 8. Head lettuce were sprayed by knapsack or compressed air experimental sprayer in field trials in France in 1992. There were 4 replicates of 5-10 m^2 in the trial design. The field sample comprised 6 lettuce. The design and procedures were very similar in Spanish trials on head and leaf lettuce also in 1992. Old leaves were discarded from the harvested lettuce in the field.

Abamectin was applied by hand-held sprayer to head lettuce in a series of glasshouse trials in The Netherlands in 1993 and 1994. Four applications were made in each trial at intervals of approximately 5-7 days. The plots were 22.5 m². The number of heads in a field sample varied because of growth during the sampling period, but the sample weight was about 2.5 kg. The trials

coincided with the change of season because Netherlands GAP specifies that the use on glasshouse lettuce should be between 1 March and 1 November.

Trials on potatoes were carried out in Brazil and the USA (Table 9). In a series of trials in Brazil in 1994 abamectin was applied to the potato foliage by knapsack sprayer with 2 replicates of 20 m^2 plots in each trial. Field samples were 2 kg of tubers.

In 4 trials in the USA in 1992 abamectin was applied 6 times at an exaggerated rate at 6-9 day intervals by CO_2 pressurised sprayers (some treatments included a paraffin crop oil at 9.4 l/ha). Plot sizes ranged from 50 to 100 m². One field sample (2-3 kg tubers) was taken from each of 2 subplots or split plots within each plot. The tubers were commercially acceptable for harvest and during field sampling adhering soil was removed as far as possible with a clean dry brush; the tubers were not washed. Similar practices were followed in the US trials in 1993 except that abamectin was applied at the US recommended label rate.

The US trial 001-94-1022 was designed to produce potatoes for processing. Abamectin was applied 6 times, with intervening intervals of 7 days, at an exaggerated rate (0.11 kg ai/ha). Diquat was applied 2 days after the final abamectin application to kill the potato vines and promote tuber bulking. Maturity for the variety Russet Nugget is determined by frost or vine-kill.

Trials on hops were conducted in Germany and the USA (Table 10). Abamectin was applied by tractor-driven airblast sprayers in 8 supervised trials in Germany in 1994 and 1996. The 2 applications in each trial were approximately 21 days apart. Plot sizes ranged from 288 m² to 504 m². Field samples were taken from the middle rows of the plots. In 1994 fresh hops were dried for 6 hours at 62°C to produce dry hops. In 1996 the mature cones were dried in a commercial hop kiln for approximately 3 hours to produce the dry hops, the final samples of which were at least 500 g.

In 4 supervised trials in the USA in 1994 abamectin was applied twice to hops by tractordriven airblast sprayers. The plots consisted of 5-7 rows approximately 9 m long. Field samples of 1-2 kg of cones were taken from the middle rows and dried at 38-60°C for 12 hours to produce the dry hops which were analysed. The dry weight was approximately 30% of the fresh weight and the moisture content of the dry hops was close to 9%.

Table 3. Abamectin residues in apples resulting from foliar applications in supervised trials in Australia, France, Germany, Italy, New Zealand, Spain, the UK and the USA. Double-underlined residues are from treatments according to GAP and are valid for estimating maximum residue levels and STMRs. All EC formulations.

Country, year	Application			PHI, days	, , , ,		
(variety)	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
Australia (NSW), 1995	0.014	0.0008	1	0	0.015 0.015	ND ND	114-95-
(Granny Smith)	+ oil			14	<u>0.003</u> 0.002	ND ND	0001R
				21	NQ NQ	ND ND	
Australia (Tas), 1995	0.014	0.0007	1	0	0.013 0.012	NQ NQ	114-95-
(Red Delicious)	+ oil			14	<u>0.005</u> 0.002	ND ND	0003R
				21	0.002 0.004	ND ND	
Australia (Vic), 1995	0.014	0.0007	1	0	0.009 0.007	ND ND	114-95-
(Fuji)	+ oil			14	ND <u>NQ</u>	ND ND	0002R
				21	ND ND	ND ND	
France, 1991 (Golden	0.027	0.0015-	2	0	0.006 0.015 0.003 0.004	ND 0.002 ND ND	066-91-
Delicious)	+ oil	0.0019		28	0.004 NQ NQ NQ	ND (4)	0017R
France, 1991 (Golden	0.054	0.0031	2	0	0.016 0.015 0.010 0.008	0.002 0.002 ND ND	066-91-
Delicious)	+ oil	-0.0037		28	0.003 ND 0.003	ND (3)	0017R

Country, year	A	pplication	l	PHI, days	Residues,	Ref	
(variety)	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
France, 1991 (Jonagold)		0.002	2	0	0.008 0.011 0.013 0.007	ND ND NQ ND	066-91-
, , , , , , , , , , , , , , , , , , ,				7	NQ 0.004 0.003 0.008	ND (4)	0016R
				14	NQ 0.004 0.003 NQ	ND (4)	
				18	0.002 0.003 0.004 NQ	ND (4)	
				26	NQ NQ ND ND	ND (4)	
France, 1991 (Jonagold)	0.027	0.002	2	0	0.025 0.018 0.018 0.013	0.003 NQ NQ NQ	066-91-
	+ oil			7	0.007 0.011 0.008	ND (3)	0016R
				14	0.009 0.004 0.005 0.009	ND (4)	001011
				18	0.006 NQ 0.012 0.008	ND ND NQ ND	
				26	0.006 0.002 0.004 0.003	ND (4)	
France, 1991 (Jonagold)	0.054	0.004	2	0	0.020 0.027 0.038 0.021	NQ 0.003 0.004	066-91-
Tance, 1991 (Jonagold)	0.054	0.004	2	7	0.005 0.012 0.003 0.008	0.002	0016R
				, 14	0.004 0.009 NQ 0.005	ND NQ ND ND	00101
				18	0.003 0.008 ND 0.005	ND (4)	
				26	0.002 0.002 ND 0.002	ND (4)	
				20	0.002 0.002 ND 0.002	ND (4)	
France 1001 (Israes14)	0.054	0.004	2	0	0.029 0.043 0.033 0.037	0.003 0.005 0.004	066-91-
France, 1991 (Jonagold)		0.004	2	0 7	ND 0.023 0.021 0.024	0.003 0.005 0.004 0.004	066-91- 0016R
	+ oil			/ 14	ND 0.023 0.021 0.024 0.008 0.015 0.011 0.014	0.004 ND 0.002 0.002	JUTOK
						0.002	
				18	0.008 0.016 0.025 0.020	0.002 ND NQ ND NQ	
				26	0.007 0.005 0.005 0.007		
						ND NQ 0.002 0.002	
F 4000 (G 11	0.01.1	0.0010	-			ND (4)	0.66.00
France, 1993 (Golden	0.014	0.0012	2	0	0.006 0.010	NQ NQ	066-93-
Delicious)	+ oil			28	ND ND	ND ND	0016R
France, 1993 (Golden	0.014	0.0012	2	0	NQ NQ	ND ND	066-93-
Delicious)				28	ND ND	ND ND	0016R
France, 1993 (Golden	0.014	0.0012	2	0	0.005 0.007	ND ND	066-93-
Delicious)	+ oil			28	ND ND	ND ND	0016R
France, 1993 (Golden	0.027	0.0025	2	0	0.030 0.029	0.004 0.004	066-93-
Delicious)				28	0.003 0.005	ND ND	0016R
France, 1993 (Golden	0.014	0.0008	2	0	0.002 NQ	ND ND	066-93-
Delicious)	+ adj	-0.0009		28	ND ND	ND ND	0017R
France, 1993 (Golden	0.014	0.0008	2	0	0.003 0.002	ND ND	066-93-
Delicious)		-0.0009		28	ND ND	ND ND	0017R
France, 1993 (Golden	0.014	0.0008	2	0	0.004 NQ	ND ND	066-93-
Delicious)	+ adj	-0.0009		28	ND ND	ND ND	0017R
France, 1993 (Golden	0.027	0.0015	2	0	0.010 0.014	NQ NQ	066-93-
Delicious)	+ adj	-0.0018		28	ND NQ	ND ND	0017R
France, 1993 (Idared	0.014	0.0014	1	21	ND ND	ND ND	066-93-
106)	+ oil	5.0014	2	0^{21}	0.017 0.013	NQ NQ	0015R
)			–	7	NQ ND	ND ND	501010
				, 14	NQ ND	ND ND	
				21	ND NQ	ND ND	
				28	ND ND	ND ND	
France, 1993 (Idared	0.014	0.0014	1	20	ND ND	ND ND	066-93-
106)	0.014	0.0014	2	0^{21}	0.016 0.016	ND ND NQ 0.002	000-93- 0015R
100)			~	7	ND ND	NQ 0.002 ND ND	00151
				/ 14	ND ND ND ND	ND ND ND ND	
				21	NQ NQ	ND ND	
E 1002 (11 1	0.01.1	0.0014	1	28	ND ND	ND ND	0.66.00
France, 1993 (Idared	0.014	0.0014	1	21	ND ND	ND ND	066-93-
106)	+ oil		2	0	0.012 0.003	NQ ND	0015R
				7	NQ ND	ND ND	
				14	ND NQ	ND ND	
				21	NQ NQ	ND ND	
				28	ND ND	ND ND	

Country, year	А	pplication	L	PHI, days	Residues,	Residues, mg/kg ¹	
(variety)	kg ai/ha	kg ai/hl	No.	Ľ	$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
France, 1993 (Red	0.014	0.0014	1	21	ND ND	ND ND	066-93-
Chief)	+ adj ² /		2	0	0.003 0.009	ND NQ	0014R
				7	NQ ND	ND ND	
				14	ND ND	ND ND	
				21	ND ND	ND ND	
				28	ND ND	ND ND	
France, 1993 (Red	0.014	0.014	1	21	ND ND	ND ND	066-93-
Chief)			2	0	0.009 0.013	NQ NQ	0014R
				7	ND ND	ND ND	
				14	ND ND	ND ND	
				21	ND ND	ND ND	
				28	ND ND	ND ND	
France, 1993 (Red	0.014	0.014	1	21	ND ND	ND ND	066-93-
Chief)	+ adj		2	0	0.003 0.014	ND 0.002	0014R
				7	0.004 NQ	ND ND	
				14	ND NQ	ND ND	
				21	ND ND	ND ND	
				28	ND ND	ND ND	+
France, 1994 (Golden	0.014	0.0014	1	21	ND ND	ND ND	066-94-
Delicious)			2	0	0.005 0.008	ND NQ	0003R
				7	ND ND	ND ND	
				14	ND ND	ND ND	
				21	ND ND	ND ND	
				25	ND ND	ND ND	_
France, 1994 (Golden	0.014	0.0014	1	21	ND NQ	ND ND	066-94-
Delicious)	+ oil		2	0	0.014 0.011	0.002 0.002	0003R
				7	0.002 0.003	ND ND	
				14	NQ NQ	ND ND	
				21	NQ NQ	ND ND	
			-	25	ND ND	ND ND	
France, 1994 (Golden	0.014	0.0014	2	0	0.003 0.002	ND ND	066-94-
Delicious)				26	ND ND	ND ND	0004R
France, 1994 (Golden	0.014	0.0014	2	0	0.007 0.008	NQ NQ	066-94-
Delicious)	+ oil		-	26	ND NQ	ND ND	0004R
<u> </u>	0.027	0.0027	2	0	0.019 0.014 0.013 0.017	NQ (4)	072-91-
Delicious Smoothee				7	ND (3)	ND (3)	0005R
M9)				14	ND (4)	ND (4)	
				21	ND (4)	ND (4)	
				28	ND (4)	ND (4)	
Germany, 1991 (Golden		0.0027	2	0	0.026 0.022 0.022 0.020	0.003 0.002 0.003	072-91-
Delicious Smoothee	+ oil			7	0.008 0.006 0.005 0.009	0.002	0005R
M9)				14	0.007 0.007 0.003 0.007	ND (4)	
				21	0.007 0.006 0.004 0.006	ND (4)	
				28	0.005 0.004 0.004 0.004	ND (4)	
a	0.05-	0.0015		-		ND (4)	0.50
Germany, 1991 (Golden		0.0019	2	0	0.030 0.023 0.021 0.014	0.003 0.002 0.002	072-91-
Delicious)	+ oil	-0.0022		28	0.008 0.007 0.007 0.005	NQ	0004R
	0.05-	0.0070		-		ND (4)	0.50
a	0.027	0.0020	2	0	0.022 0.018 0.009 0.004	0.002 NQ ND ND	072-91-
Germany, 1991 (Golden		-0.0025		7	0.003 0.002 0.002 ND	ND (4)	0006R
Delicious)				14	0.003 NQ ND NQ	ND (4)	1
				21	NQ ND ND	ND (3)	1
	l			28	NQ ND ND ND	ND (4)	
Germany, 1991 (Golden		0.0020	2	0	0.026 0.031 0.031 0.027	0.002 0.003 0.003	072-91-
Delicious)	+ oil	-0.0025		7	0.009 0.018 0.013 0.014	0.002	0006R
				14	0.013 0.010 0.007 0.013	ND NQ NQ NQ	
				21	0.013 0.008 0.009	NQ NQ ND NQ	
				28	0.010 0.006 0.006	NQ ND NQ	
	1		1	1		NQ ND ND	1

Country, year	A	pplication	l	PHI, days	Resid	Residues, mg/kg ¹	
(variety)	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
Italy, 1993 (Golden	0.014	0.014	1	21	ND ND	ND ND	067-93-
Delicious)	+ adj		2	0	0.006 0.005	ND ND	0005R
,	5			7	NQ ND	ND ND	
				14	ND ND	ND ND	
				21	ND ND	ND ND	
				28	ND ND	ND ND	
Italy, 1993 (Golden	0.014	0.014	1	21	ND ND	ND ND	067-93-
Delicious)			2	0	0.002 NQ	ND ND	0005R
2 • • • • • • • • • • • •			-	7	ND ND	ND ND	000011
				14	ND ND	ND ND	
				21	ND ND	ND ND	
				28	ND ND	ND ND	
Italy, 1993 (Golden	0.014	0.014	1	21	ND ND	ND ND	067-93-
Delicious)	+ adj	0.011	2	0	0.005 0.007	ND NQ	0005R
Denerous)	, adj		Ĩ	7	ND ND	ND ND	000510
				, 14	ND ND	ND ND	
				21	ND ND	ND ND	
				28	ND ND	ND ND	
Italy, 1993 (Red Chief)	0.014	0.0010	2	0	0.005 0.002	ND ND	067-93-
italy, 1995 (Red Chief)	+ adj	0.0010	2	28	ND ND	ND ND	007-93- 0007R
Italy, 1993 (Red Chief)	0.014	0.0010	2	0	0.003 0.003	ND ND	067-93-
italy, 1995 (Red Chief)	0.014	0.0010	2	28	ND ND	ND ND ND ND	007-93- 0007R
Italy, 1993 (Red Chief)	0.014	0.0010	2	0	0.003 0.003	ND ND	
italy, 1995 (Red Chief)		0.0010	2	-			067-93-
L 1 1002 (D 1 Cl 1 C	+ adj	0.0000	-	28	ND ND	ND ND	0007R
Italy, 1993 (Red Chief)	0.027	0.0022	2	$\frac{0}{28}$	0.006 0.007	ND ND	067-93-
	0.011	0.0010	-	28	ND ND	ND ND	0007R
Italy, 1993 (Red Chief)	0.014	0.0010	2	0	0.005 0.004	ND ND	067-93-
	+ oil		_	28	ND ND	ND ND	0006R
Italy, 1993 (Red Chief)	0.014	0.0010	2	0	0.003 0.003	ND ND	067-93-
				28	ND ND	ND ND	0006R
Italy, 1993 (Red Chief)	0.014	0.0010	2	0	0.004 0.003	ND ND	067-93-
	+ oil			28	ND ND	ND ND	0006R
Italy, 1993 (Red Chief)	0.027	0.0020	2	0	0.015 0.008	ND ND	067-93-
	+ oil			28	ND ND	ND ND	0006R
Italy, 1993 (Staymann	0.014	0.001	1	21	ND ND	ND ND	067-93-
Red)	+ oil		2	0	0.003 0.006	ND ND	0004R
				7	ND ND	ND ND	
				14	ND ND	ND ND	
				22	ND ND	ND ND	
				28	ND ND	ND ND	
Italy, 1993 (Staymann	0.014	0.001	1	21	ND ND	ND ND	067-93-
Red)			2	0	0.004 NQ	ND ND	0004R
				7	ND ND	ND ND	
				14	ND ND	ND ND	
				22	ND ND	ND ND	
				28	ND ND	ND ND	
Italy, 1993 (Staymann	0.014	0.001	1	21	ND ND	ND ND	067-93-
Red)	+ oil		2	0	0.004 0.005	ND ND	0004R
,				7	ND ND	ND ND	
				14	ND ND	ND ND	
				22	ND ND	ND ND	
				28	ND ND	ND ND	
Italy, 1994	0.014	0.0014	1	21	ND ND	ND ND	067-94-
(Starkcrimson)	0.017	5.5017	2	0^{21}	0.011 0.014	NQ 0.002	0005R
(Smillerinioon)			-	7	ND ND	ND ND	000010
				14	ND ND	ND ND	
				21	ND ND ND ND	ND ND ND ND	
				21 28	ND ND	ND ND	
	1			∠0	עודעוד	עיז עיז	

Country, year	A	pplication	1	PHI, days	Residues,	mg/kg ¹	Ref
(variety)	kg ai/ha	u kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
Italy, 1994	0.014	0.0014	1	21	NQ ND	ND ND	067-94-
(Starkcrimson)	+oil		2	0	0.015 0.019	0.003 0.003	0005R
(, , , , , , , , , , , , , , , , , , ,				7	NQ ND	ND ND	
				21	ND ND	ND ND	
				28	ND ND	ND ND	
New Zealand, 1994	0.027	0.0014	2	0	0.014 0.018	ND NQ	115-94-
(Braeburn)	+oil			7	0.012 0.005	ND ND	0005R
()				14	0.003 <u>0.004</u>	ND ND	
				21	0.002 ND	ND ND	
				28	0.003 ND	ND ND	
				35	NQ 0.002	ND ND	
New Zealand, 1994	0.027	0.0014	2	0	0.018 0.019	0.002 0.002	115-94-
(Gala)	+oil?			7	0.006 0.006	ND ND	0004R
()				14	0.007 0.003	ND ND	
				21	0.003 ND c 0.005	ND ND c ND	
				28	0.003 0.004	ND ND	
				35	NQ 0.003	ND ND	
Spain, 1991 (Golden	0.027	0.0021	2	0	0.011 0.012 0.019 0.013	NQ ND NQ NQ	065-91-
Delicious)				28	0.004 NQ NQ NQ	ND (4)	0008R
Spain, 1991 (Red	0.027	0.0022	2	0	0.013 0.014 0.014 0.012	NQ NQ 0.002 NQ	065-91-
Delicious, Red Chief)	0.027	0.0022	٦	28	ND NQ ND ND	ND (4)	000 ⁻ /1 ⁻
Spain, 1991 (Red	0.027	0.0022	2	0	0.005 0.010 0.004	ND ND ND	065-91-
Delicious, Red Chief)	0.027	-0.0022	2	7	ND 0.003 0.006	ND ND ND	0009R
Denelous, Red Chief)		-0.0020		, 14	ND ND ND	ND ND ND	00071
				21	ND ND ND	ND ND ND	
				28	ND ND ND	ND ND ND	
Spain, 1991 (Red	0.027	0.0022	2	0	0.009 0.016 0.014 0.011	ND NQ NQ NQ	065-91-
Delicious, Red Chief)	+ oil	-0.0022	2	0 7	0.009 0.010 0.014 0.011 0.002 0.005 NQ 0.003	ND NQ NQ NQ ND (4)	003-91- 0009R
Dencious, Red Chief)	+ 0II	-0.0020		/ 14	NQ 0.004 0.003 0.003	ND (4)	0009K
				21	ND NQ 0.003 NQ	ND (4)	
				28	NQ 0.004 0.003 NQ	ND (4)	
Spain, 1993 (Golden	0.014	0.0011	2	0	0.005 0.005	ND ND	065-93-
Delicious)	+ oil	0.0011	2	28	ND ND	ND ND ND ND	0005-95- 0006R
Spain, 1993 (Golden	0.014	0.0011	2	0		ND ND	
Delicious)	0.014	0.0011	2	0 28	0.005 0.007 ND ND		065-93-
Spain, 1993 (Golden	0.014	0.0011	2	0	0.003 0.004	ND ND ND ND	0006R 065-93-
Delicious)	0.014 + oil	0.0011	2	28	ND ND	ND ND ND ND	003-93- 0006R
		0.0022	2	0			
Spain, 1993 (Golden	0.027	0.0023	2	-	0.018 0.012	NQ NQ	065-93-
Delicious)	+ oil	0.0012	2	28	ND ND	ND ND	0006R
Spain, 1993 (Golden	0.014	0.0012	2	0	NQ NQ	ND ND	065-93-
Delicious)	$+ adj^2$	0.0012	2	28	ND ND	ND ND	0007R
Spain, 1993 (Golden	0.014	0.0012	2	0	0.005 0.011	ND NQ	065-93-
Delicious)	0.014	0.0012	2	28	ND ND	ND ND	0007R
Spain, 1993 (Golden	0.014	0.0012	2	0	0.009 ND	NQ ND	065-93-
Delicious)	+ adj	0.0007	-	28	ND ND	ND ND	0007R
Spain, 1993 (Golden	0.027	0.0025	2	0	0.017 0.014	0.002 NQ	065-93-
Delicious)	+ adj	0.0011	-	28	ND NQ	ND ND	0007R
Spain, 1993 (Well Spur)	0.014	0.0014	1	21	ND ND	ND ND	065-93-
			2	0	0.006 0.007	ND ND	0005R
				7	ND ND	ND ND	
				14	ND ND	ND ND	
				21	ND ND	ND ND	
a 1 1000 mm = = =	0.01 :	0.0011	-	28	ND ND	ND ND	0.67.67
Spain, 1993 (Well Spur)		0.0014	1	21	ND 0.003	ND ND	065-93-
	+ adj		2	0	0.007 0.009	ND NQ	0005R
				7	NQ NQ	ND ND	
				14	ND NQ	ND ND	
				21	NQ NQ	ND ND	
	1	1		28	NQ ND	ND ND	

Country, year	А	pplication		PHI, days	Residues,	Ref	
(variety)	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
Spain, 1993 (Well Spur)		0.0014	1	21	ND NQ	ND ND	065-93-
~p,	+ adj		2	0	0.003 0.004	ND ND	0005R
	. uoj		-	7	ND NQ	ND ND	000011
				, 14	NQ ND	ND ND	
				21	ND NQ	ND ND	
				28	ND ND	ND ND	
Spain 1004 (Caldan	0.014	0.014	2	0	0.004 0.004	ND ND	065-94-
Spain, 1994 (Golden	0.014	0.014	2				
Delicious)	0.014	0.01.4	2	30	ND ND	ND ND	0009R
Spain, 1994 (Golden	0.014	0.014	2	0	0.004 0.005	ND ND	065-94-
Delicious)	+ oil	0.0000	-	30	ND ND	ND ND	0009R
UK, 1991 (Cox's	0.027	0.0020	2	0	0.026 0.019 0.027 0.020	0.003 0.002 0.003	074-91-
Orange Pippin)	+ oil			28	0.005 0.005 0.010 0.007	0.002	0003R
						ND (4)	
UK, 1991 (Cox's	0.054	0.0038	2	0	0.044 0.013 0.039 0.028	0.006 NQ 0.004	074-91-
Orange Pippin)	+ oil	-0.0041		28	0.016 0.008 0.010 0.010	0.003	0003R
						NQ ND ND ND	
UK, 1991 (Cox's	0.027	0.0013	2	0	0.026 0.034 0.018 0.021	0.002 0.003 NQ NQ	074-91-
Orange Pippin)		-0.0016		7	NQ 0.002 NQ NQ	ND (4)	0004R
				14	ND ND ND NQ	ND (4)	
				21	NQ ND ND ND	ND (4)	
				28	ND (4)	ND (4)	
UK, 1991 (Cox's	0.027	0.0013	2	0	0.035 0.033 0.044 0.043	0.003 0.003 0.004	074-91-
Orange Pippin)	+ oil	-0.0015	2	7	0.009 0.010 0.011 0.009	0.003 0.003 0.004	0004R
Orange Fippin)	+ 011	-0.0010		/ 14	0.009 0.010 0.011 0.009	ND NQ NQ ND	0004K
				21 28	0.006 0.004 0.009 0.006	ND (4)	
				28	0.005 0.005 0.006 0.005	ND (4)	
THE 1001 (G . 1	0.054	2	_			ND (4)	0
UK, 1991 (Cox's	0.054	?	2	0	0.056 0.061 0.069 0.051	0.006 0.007 0.008	074-91-
Orange Pippin)				7	0.006 0.007 0.012 0.018	0.007	0004R
				14	0.007 0.004 0.005 0.008	ND ND NQ NQ	
				21	0.003 0.003 0.004 0.005	ND (4)	
				28	0.004 0.002 0.003 0.003	ND (4)	
						ND (4)	
UK, 1991 (Cox's	0.054	0.0025	2	0	0.068 0.069 0.072 0.067	$0.007 \ 0.008 \ 0.008$	074-91-
Orange Pippin)	+ oil	-0.0031		7	0.030 0.025 0.032 0.029	0.008	0004R
				14	0.013 0.016 0.021 0.029	0.003 0.002 0.003	
				21	0.013 0.020 0.019 0.015	0.003	
				28	0.012 0.012 0.008 0.015	NQ NQ NQ 0.003	
						NQ (4)	
						ND ND ND NQ	
USA (CA), 1991	0.027	0.0038	2	0	0.019 0.020	0.003 0.003	001-91-
(Golden Delicious)	+oil	-		28	0.010 0.008	NQ ND	6016R
· · · · · · · · · · · · · · · · · · ·							618-936-
							AP
USA (CA), 1991	0.027	0.0010	2	0	0.009 0.010	ND NQ	001-91-
(Granny Smith)	+oil	0.0010	۲	28	<u>ND</u> ND	ND ND	6024R
(Craining Simur)	1011						618-936-
							AP
USA (GA), 1992 (Red	0.027	0.0072	2	0	0.047 0.045	0.006 0.005	
		0.0072	2				001-92- 0027R
Delicious)	+oil			28	ND <u>NQ</u>	ND ND	
							618-936-
	0.020	0.0010	-	0	0.011.0.010.0.00 - 0.00		AP
USA (MI), 1990	0.028	0.0010	2	0	0.011 0.042 0.026 0.091	ND 0.005 0.004 ND	001-90-
(Golden Delicious)	+oil			3	0.010 0.010 0.008 0.006	NQ (4)	5018R
				7	0.009 0.010 0.010 0.006	NQ NQ NQ ND	618-936-
				14	0.005 0.005 0.010 0.005	ND ND NQ NQ	AP
				28	0.004 <u>0.006</u> 0.003 0.003	ND ND NQ ND	
				45	0.004 0.006 0.006 0.005	ND (4)	

Country, year	А	pplication	l	PHI, days	Residues,	Residues, mg/kg ¹	
(variety)	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
USA (MI), 1990 (Golden Delicious)	0.056 +oil	0.0020	2	0 3 7 14 28 45	0.049 0.031 0.040 0.033 0.020 0.011 0.018 0.012 0.011 0.009 0.021 0.016 0.013 0.006 0.008 0.006 0.005 0.009 0.004 0.004 0.004 0.004 0.004 0.004	0.008 0.006 0.006 0.007 0.003 NQ 0.003 NQ NQ NQ 0.003 NQ NQ ND ND ND ND (4) ND (4)	001-90- 5018R 618-936- AP
USA (MI), 1991 (Jonathan)	0.027 +oil	0.0036	2	1 7 14 28	0.008 0.008 0.002 0.003 NQ NQ NQ <u>0.002</u>	ND ND ND ND ND ND ND ND ND ND	001-91- 1024R 618-936- AP
USA (NC), 1992 (Red Delicious)	0.026 +oil	0.0071	2	0 28	0.031 0.027 <u>0.003</u> NQ	0.003 0.003 ND ND	001-92- 0026R 618-936- AP
USA (NY), 1990 (Twenty Ounce)	0.028 +oil	0.0007	2	0 3 7 14 28	0.011 0.012 0.030 0.018 NQ 0.004 0.011 0.012 0.002 0.003 0.004 0.005 0.002 NQ 0.003 0.002 ND NQ <u>0.003</u> NQ	0.002 0.002 0.004 0.003 ND ND NQ NQ ND (4) ND (4) ND (4)	001-90- 5016R 618-936- AP
USA (NY), 1990 (Twenty Ounce)	0.056 +oil	0.0015	2	0 3 7 14 28	0.033 0.028 0.028 0.035 0.062 0.011 0.016 0.009 0.015 0.007 0.003 0.008 0.003 0.002 0.003 0.004 0.002 NQ 0.003 0.003	0.004 0.004 0.004 0.005 0.009 NQ NQ NQ 0.003 NQ ND NQ ND (4) ND (4)	001-90- 5016R 618-936- AP
USA (NY), 1991 (Red Delicious)	0.027 +oil	0.0038	2	0 7 14 28	0.040 0.037 0.008 0.008 0.011 0.011 <u>0.007</u> 0.007	0.004 0.004 ND NQ NQ NQ ND ND	001-91- 3000R 618-936- AP
USA (NY), 1992 (Rome Beauty)	0.027 +oil	0.0072	2	0 28	0.020 0.020 NQ <u>0.004</u>	0.002 0.003 ND ND	001-92- 3020R 618-936- AP
USA (OR), 1992 (Golden Delicious)	0.027 +oil	0.0008	2	0 28	0.022 0.017 <u>0.003</u> ND	0.003 NQ ND ND	001-92- 6012R 618-936- AP
USA (OR), 1992 (Red Delicious)	0.027 +oil	0.0081	2	0 28	0.009 0.016 <u>ND</u> ND	ND NQ ND ND	001-92- 1014R 618-936- AP
USA (WA), 1991 (Red Delicious)	0.027 +oil	0.0011	2	0 28	0.012 0.010 ND <u>NO</u>	NQ NQ ND ND	001-91- 1021R 618-936- AP
USA (WA), 1991 (Red Delicious)	0.026 +oil	0.0037	2	0 7 14 28	0.021 0.027 0.008 0.005 0.007 0.004 0.002 <u>0.003</u>	NQ 0.003 ND ND ND ND ND ND ND ND	001-91- 1023R 618-936- AP
USA (WA), 1992 (Red Delicious)	0.027 +oil	0.0072	2	0 28	0.018 0.019 <u>NO</u> ND	0.002 NQ ND ND	001-92- 1018R 618-936- AP

1 NQ: not quantified; detected but <0.002 mg/kg. ND: not detected, <0.001 mg/kg. 2 adj: adjuvant - silicone polyether copolymer surfactant.

	11		PHI,	Residue	Residues, mg/kg ¹		
Form	kg ai/ha	kg ai/hl	No.	days	$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
EC + oil	0.027		2	0 21	0.020 0.004	0.002 ND	001-92-6016R
EC + oil	0.027		2	0 21	0.014 (0.015 0.012) 0.006 (0.005 0.006)	<0.002 (NQ NQ) <0.001 (ND ND)	001-92-6017R
EC + oil	0.027		2	0 21	0.023 (0.030 0.016) 0.007 (0.006 0.009)	0.002 (0.003 NQ) <0.002 (ND NQ)	001-92-6018R
EC + oil	0.027		2	0 21	0.021 (0.021 0.020) 0.009 (0.011 0.008)	0.002 (0.002 0.002) <0.002 (NQ NQ)	001-92-6019R

Table 4. Abamectin residues in Bartlett pears resulting from foliar applications in supervised trials in California, USA, 1992.

1 NQ: not quantified; detected but <0.002 mg/kg. ND: not detected, <0.001 mg/kg.

Table 5. Abamectin residues in cucurbits resulting from foliar applications in supervised trials in Brazil, France, Mexico and Spain. Double-underlined residues are from treatments according to GAP and are valid for estimating maximum residue levels and STMRs.

Country, year		Applic	ation		PHI,		Residues, mg/kg ¹		
(variety)	Form	kg ai/ha	kg ai/hl	No.	days	B1a + 8,9-Z-B1a	B1b + 8,9-Z-B1b		
CUCUMBER									
Mexico, 1990	EC	0.023	0.009-	10	0	0.014 0.007 0.012 0.007	ND (4)	002-90-	
			0.017		3	NQ 0.009 0.007 0.011	ND (4)	0011R	
					7	0.007 0.006 0.006 0.006	ND (4)		
Mexico, 1990	EC	0.045	0.018-	10	0	0.015 0.015 0.026 0.013	ND NQ (3)	002-90-	
(Poinset 76 &			0.034		3	0.009 0.009 0.008 0.018	ND (4)	0011R	
1810)					7	0.016 0.009 0.006 0.006	ND (4)		
Mexico, 1990	EC	0.023	0.009-	9	0	0.024 0.013 0.015 0.012	NQ NQ ND ND	002-90-	
(Jet Set)			0.017		3	0.014 0.014 0.009 0.011	ND (4)	0012R	
					7	0.007 0.006 0.005 NQ	ND (4)		
Mexico, 1990	EC	0.045	0.018-	9	0	0.010 0.026 0.010 0.010	ND NQ ND ND	002-90-	
(Jet Set)			0.034		3	0.013 0.024 0.026 0.014	ND NQ NQ ND	0012R	
					7	0.006 0.006 0.006 NQ	ND (4)		
Mexico, 1990	EC	0.023	0.005-	9	0	ND (4)	ND (4)	002-90-	
(Dasher II)			0.017		3	ND (4)	ND (4)	0016R	
					7	ND (4)	ND (4)		
Mexico, 1990	EC	0.045	0.010-	9	0	NQ NQ ND NQ	ND (4)	002-90-	
(Dasher II)			0.034		3	ND (4)	ND (4)	0016R	
					7	ND (4)	ND (4)		
PICKLING CU	CUMBE	ER							
Mexico, 1989	EC	0.023	0.009-	7	0	0.005 0.009 0.006 0.011	ND (4)	002-90-	
(Carolina)			0.017		3	ND NQ ND ND	ND (4)	0013R	
					7	ND (4)	ND (4)		
Mexico, 1989	EC	0.045	0.018-	7	0	0.038 0.023 0.013 0.009	NQ ND ND ND	002-90-	
(Carolina)			0.034		3	NQ 0.007 NQ NQ	ND (4)	0013R	
					7	ND ND ND NQ	ND (4)		
Mexico, 1990	EC	0.023	0.009-	8	0	0.006 0.008 0.006 NQ	ND (4)	002-90-	
(Carolina)			0.017		3	NQ ND 0.008 NQ	ND (4)	0014R	
					7	ND (4)	ND (4)		
Mexico, 1990	EC	0.045	0.019-	8	0	0.012 0.025 0.007 0.015	ND (4)	002-90-	
(Carolina)			0.034		3	ND 0.020 NQ NQ	ND (4)	0014R	
					7	ND (4)	ND (4)		

Country, year		Appli	cation		PHI,	Residues, mg/	κg ¹	Ref
(variety)	Form		a kg ai/hl	No.	,	B1a + 8,9-Z-B1a	B1b + 8,9-Z-B1b	1
Mexico, 1990	Contro		0		0	0.011 NQ 0.005 NQ	ND (4)	002-90-
(Carolina)					3	0.22 0.036 0.066 ND	0.017 NQ NQ ND	0014R
					7	ND (4)	ND (4)	
Mexico, 1990	EC	0.023	0.003-	6	0	NQ (4)	ND (4)	002-90-
(Flury)			0.007		3	ND ND ND NQ	ND (4)	0015R
					7	ND (4)	ND (4)	
Mexico, 1990	EC	0.045	0.006-	6	0	0.008 0.008 0.007 0.008	ND (4)	002-90-
(Flury)			0.014		3	NQ 0.008 0.008 NQ	ND (4)	0015R
					7	ND (4)	ND (4)	
MELON, CAN	TALOU	JPE						
Brazil, 1993	EC	0.014	0.0018	4	0	pu ND ND	pu ND ND	015-93-
(Amarelo					3	pu ND ND	pu ND ND	0034R
CAC)					7	pu ND ND	pu ND ND	
Brazil, 1993	EC	0.029	0.0036	4	0	pu ND ND	pu ND ND	015-93-
(Amarelo					3	pu ND ND	pu ND ND	0034R
CAC)					7	pu ND ND	pu ND ND	
Brazil, 1994	EC	0.014	0.0018	4	0	pu ND ND	pu ND ND	015-93-
(Bonus II)					3	pu ND ND	pu ND ND	0035R
					7	pu ND ND	pu ND ND	
Brazil, 199	EC	0.029	0.0036	4	0	pu ND ND	pu ND ND	015-93-
(Bonus II)					3	pu ND ND	pu ND ND	0035R
					7	pu ND ND	pu ND ND	
Brazil, 1994	EC	0.014	0.0018	4	0	pu ND ND	pu ND ND	015-93-
(Amarelo					3	pu ND ND	pu ND ND	0036R
CAC)					7	pu ND ND	pu ND ND	
Brazil, 1994	EC	0.029	0.0036	4	0	pu ND ND	pu ND ND	015-93-
(Amarelo					3	pu ND ND	pu ND ND	0036R
CAC)					7	pu ND ND	pu ND ND	
France, 1991	EC	0.023	0.0028	4	0	NQ ND NQ NQ	ND (4)	066-91-
(Pancha)					3 7	ND (4)	ND (4)	0003R
E 1001	FG	0.045	0.0056			ND (4)	ND (4)	0.66.01
France, 1991	EC	0.045	0.0056	4	0	0.008 0.010 0.008 0.013	ND ND ND NQ	066-91-
(Pancha)					3 7	NQ NQ ND NQ	ND (4)	0003R
France, 1991	EC	0.023	0.0032	4	0	ND NQ ND ND	ND (4)	066-91-
(Pancha)	EC	0.025	0.0052	4	3	NQ NQ 0.009 0.008 <u>NO</u> ND ND ND	ND (4) ND (4)	000-91- 0004R
(1 alicita)					3 7	ND (4)	ND (4)	0004K
France, 1991	EC	0.045	0.0064	4	0	NQ 0.013 NQ 0.013	ND (4)	066-91-
(Pancha)	EC	0.045	0.0004	4	3	NQ (4)	ND (4)	000-91- 0004R
(1 anena)					7	ND (4)	ND (4)	00041
France, 1991	EC	0.023	0.0030	4	0	NQ 0.020 NQ 0.014	ND NQ ND ND	066-91-
(Panchito)	LC	0.025	0.0050	-	3	<u>NQ</u> NQ ND ND	ND (4)	0005R
(runeinto)					7	ND (4)	ND (4)	000510
France, 1991	EC	0.045	0.0060	4	0	0.013 0.010 0.012 0.007	ND (4)	066-91-
(Panchito)				Ľ	3	NQ (4)	ND (4)	0005R
()					7	ND (4)	ND (4)	
Mexico, 1990	EC	0.023	0.010-	12	0	0.012 0.007 0.006 0.010	ND (4)	002-90-
(Durango)			0.026	_	3	NQ (4)	ND (4)	0035R
					7	ND (4)	ND (4)	
Mexico, 1990	EC	0.045	0.021-	12	0	0.046 0.024 0.027 0.041	0.005 NQ NQ NQ	002-90-
(Durango)			0.052		3	NQ NQ 0.007 0.006	ND ND NQ ND	0035R
					7	NQ (4)	ND (4)	
Mexico, 1990	EC	0.023	0.009-	14	0	0.012 0.012 0.015 0.018	ND ND ND NQ	002-90-
(Durango)			0.052	1	3	ND NQ NQ NQ	ND (4)	0036R
				1	7	NQ ND ND ND	ND (4)	
Mexico, 1990	EC	0.045	0.019-	14	0	0.034 0.026 0.023 0.040	NQ (4)	002-90-
(Durango)			0.11		3	0.010 NQ 0.013 0.007	ND (4)	0036R
				1	7	NQ NQ 0.005 0.005	ND (4)	
Mexico, 1990	EC	0.023	0.005-	7	0	ND ND ND NQ	ND (4)	002-90-
(Easy Rider)			0.016		3	ND (4)	ND (4)	0037R
· · ·				1	7	ND (4)	ND (4)	

Country, year		Applic	ation		PHI,	Residues, m	g/kg ¹	Ref
(variety)	Form	kg ai/ha	kg ai/hl	No.	days	B1a + 8,9-Z-B1a	B1b + 8,9-Z-B1b	
Mexico, 1990	EC	0.045	0.011-	7	0	NQ NQ ND NQ	ND (4)	002-90-
(Easy Rider)			0.032		3	ND (4)	ND (4)	0037R
-					7	ND (4)	ND (4)	
Spain, 1991	EC	0.022	0.0022	4	0	0.005 (NQ ND NQ 0.007)	ND (ND (4))	065-91-
(Rochet-Solo)				gl	3	<u>ND</u> (ND (4))	ND (ND (4))	0003R
				-	7	ND (ND (4))	ND (ND (4))	
Spain, 1991	EC	0.043	0.0043	4	0	0.008	ND (ND (4))	065-91-
(Rochet-Solo)				gl		(0.011 0.008 0.007 0.006)		0003R
					3	NQ (NQ NQ ND NQ)	ND (ND (4))	
					7	ND (ND (4))	ND (ND (4))	
Spain, 1991	EC	0.022	0.0022	4	0	NQ (NQ ND NQ NQ)	ND (ND (4))	065-91-
(Rochet-Solo)				gl	3	<u>ND</u> (ND (4))	ND (ND (4))	0004R
					7	ND (ND (4))	ND (ND (4))	
Spain, 1991	EC	0.043	0.0043	4	0	0.008	ND (ND (4))	065-91-
(Rochet-Solo)				gl		(NQ 0.010 0.011 0.006)		0004R
					3	NQ (NQ (4))	ND (ND (4))	
					7	NQ (NQ ND NQ ND)	ND (ND (4))	
MELON , HON	VEY DE	W						
Mexico, 1990	EC	0.023	0.009-	14	0	0.009 0.008 0.006 0.006	ND (4)	002-90-
(Hy-mark)			0.049		3	NQ 0.005 NQ NQ	ND (4)	0038R
					7	NQ (4)	ND (4)	
Mexico, 1990	EC	0.045	0.018-	14	0	0.011 0.014 0.012 0.013	ND (4)	002-90-
(Hy-mark)			0.098		3	NQ NQ 0.009 0.007	ND (4)	0038R
					7	0.011 0.013 NQ 0.011	ND (4)	
Mexico, 1990	control	plot			0	ND 0.011 ND ND	ND (4)	002-90-
(Hy-mark)					3	ND (4)	ND (4)	0038R
			1		7	ND (4)	ND (4)	
Mexico, 1990	EC	0.023	0.003-	9	0	0.007 NQ NQ NQ	ND (4)	002-90-
(Green Flesh)			0.007		3	NQ (4)	ND (4)	0039R
					7	NQ NQ ND ND	ND (4)	
Mexico, 1990	EC	0.045	0.006-	9	0	0.009 0.010 0.007 0.008	ND (4)	002-90-
(Green Flesh)			0.014		3	0.007 NQ NQ ND	ND (4)	0039R
					7	NQ NQ NQ ND	ND (4)	
Mexico, 1990	EC	0.023	0.011	8	0	ND (4)	ND (4)	002-90-
(Honey Dew)					3	ND (4)	ND (4)	0040R
					7	ND (4)	ND (4)	
Mexico, 1990	EC	0.045	0.023	8	0	ND (4)	ND (4)	002-90-
(Honey Dew)					3	ND (4)	ND (4)	0040R
		<u> </u>			7	ND (4)	ND (4)	<u> </u>
Mexico, 1990	EC	0.023	0.004-	7	0	0.006 NQ NQ NQ	ND (4)	002-90-
(Green Flesh)			0.006		3	ND ND NQ ND	ND (4)	0042R
					7	ND (4)	ND (4)	
Mexico, 1990	EC	0.045	0.007-	7	0	0.008 NQ NQ 0.007	ND (4)	002-90-
(Green Flesh)			0.012		3	NQ NQ ND ND	ND (4)	0042R
					7	ND (4)	ND (4)	

¹ NQ: not quantified; detected but <0.005 mg/kg. ND: not detected, <0.002 mg/kg.
 ² pu: residues in edible pulp
 ³ gl: glasshouse trial.

Table 6. Abamectin residues in cucurbits resulting from foliar applications in supervised trials in the USA. Double-underlined residues are from treatments according to GAP and are valid for estimating maximum residue levels and STMRs.

CUCURBITS,		Appl	ication		PHI,	Residues, mg	Ref	
Country, year					days			
(variety)	Form	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	B _{1b} + 8,9-Z-B _{1b}	
WATERMELON								
TX, 1992 (Royal Sweet)	EC	0.021	0.011	4	0 7	ND ND <u>ND</u> ND	ND ND ND ND	001-91-1025R 618-936-93127
CA,1991 (Calsweet)	EC	0.021	0.011	4	0 7	NQ NQ <u>ND</u> ND	ND ND ND ND	001-91-6010R 618-936-93127
CANTALOUPE								
TX, 1992 (Caravelle)	EC	0.021	0.023	4	0 7	NQ 0.005 <u>ND</u> ND	ND ND ND ND	001-91-1026R 618-936-93127
AZ, 1992 (Top Mark)	EC	0.021	0.011	4	0 7	0.010 0.006 <u>ND</u> ND	ND ND ND ND	001-91-1027R 618-936-93127
CA, 1992 (Top Mark)	EC	0.021	0.023	4	0 7	0.008 NQ <u>ND</u> ND	ND ND ND ND	001-91-6011R 618-936-93127
FL, 1992 (Planters Jumbo)	EC	0.021	0.011	4	0 7	0.008 0.005 <u>ND</u> ND	ND ND ND ND	001-92-0019R 618-936-93127
GA, 1992 (Planters Jumbo)	EC	0.021	0.011	4	0 7	0.012 0.015 <u>ND</u> ND	ND NQ ND ND	001-92-0020R 618-936-93127
SC, 1992 (Edisto)	EC	0.021	0.010	4	0 7	NQ NQ <u>ND</u> ND	ND ND ND ND	001-92-0021R 618-936-93127
MI, 1992 (Super-star)	EC	0.021	0.010	4	0 7	0.011 0.013 <u>ND</u> ND	ND ND ND ND	001-92-1001R 618-936-93127
PA, 1992 (Ball 1776)	EC	0.022	0.011	4	0 7	NQ NQ <u>ND</u> ND	ND ND ND ND	001-92-3014R 618-936-93127
CA, 1992 (Top Mark)	EC	0.022	0.011	5	0 7	0.006 0.006 <u>ND</u> ND	ND ND ND ND	001-92-6013R 618-936-93127
SUMMER SQUASH, Z	UCCHI	NI						
FL, 1992 (Dixie Hybrid VGB 960)	EC	0.021	0.011	4	0 3 7	0.007 0.007 ND ND <u>ND</u> ND	ND ND ND ND ND ND	001-92-0029R 618-936-93127
TX, 1992 (Onyx)	EC	0.021	0.015	4	0 3 7	0.005, NQ ND ND <u>ND</u> ND	ND ND ND ND ND ND	001-92-1020R 618-936-93127
NY, 1992 (Yellow Crookneck)	EC	0.021	0.011	4	0 3 7	NQ NQ ND ND <u>ND</u> ND	ND ND ND ND ND ND	001-92-3019R 618-936-93127
CA, 1992 (Crookneck)	EC	0.025	0.011	4	0 3 7	0.012 0.011 0.009 NQ <u>ND</u> ND	ND ND ND ND ND ND	001-92-6014R 618-936-93127
CUCUMBER								
SC, 1992 (Ashley)	EC	0.021	0.010	4	0 3 7	0.015 0.012 ND ND <u>ND</u> ND	ND ND ND ND ND ND	001-92-0030R 618-936-93127

CUCURBITS, Country, year		Appli	cation		PHI, days	Residues, mg/	kg ¹	Ref
(variety)	Form	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	B _{1b} + 8,9-Z-B _{1b}	
MI, 1992 (Calypso Hybrid)	EC	0.022	0.012	4	0 3 7	NQ ND ND ND <u>ND</u> ND	ND ND ND ND ND ND	001-92-1019R 618-936-93127
PA, 1992 (Market-more 76)	EC	0.022	0.012	4	0 3 7	NQ NQ ND ND <u>ND</u> ND	ND ND ND ND ND ND	001-92-3018R 618-936-93127
CA, 1992 (Dasher II)	EC	0.021	0.011	4	0 3 7	0.013 0.010 NQ NQ <u>NQ</u> ND	ND ND ND ND ND ND	001-92-6015R 618-936-93127

¹NQ: not quantified; detected but <0.005 mg/kg. ND: not detected, <0.002 mg/kg.

Table 7. Abamectin residues in tomatoes resulting from foliar applications in supervised trials in The Netherlands, 1993. Double-underlined residues are from treatments according to GAP and are valid for estimating maximum residue levels and STMRs. All glasshouse trials.

Variety		Appl	ication		PHI,	Residue	s, mg/kg ¹	Ref
	Form	kg ai/ha	kg ai/hl	No.	days	B1a + 8,9-Z-B1a	B1b + 8,9-Z-B1b	
Cesar	EC	0.023	0.0011	4	0	0.019 0.024	ND NQ	070-93-0005R
					3 7	0.010 <u>0.017</u> 0.007 <u>0.012</u>	ND ND ND ND	
Pronto	EC	0.023	0.0011	4	0	0.018 0.017	ND ND	070-93-0006R
					3 7	0.011 <u>0.012</u> 0.008 <u>0.010</u>	ND ND ND ND	
Pronto	EC	0.023	0.0011	4	0	0.015 0.015	ND ND	070-93-0003R
					3 7	0.007 0.011 0.009 <u>0.012</u>	ND ND ND ND	
Pronto	EC	0.023	0.0011	4	0 3 7	NQ 0.011 NQ <u>0.007</u> NQ 0.006	ND ND ND ND ND ND	070-93-0002R
Pronto	EC	0.045	0.0023	4	0 3 7	0.022 0.011 0.022 0.025 0.013 0.020	ND ND NQ NQ ND NQ	070-93-0002R
Pronto	EC	0.023	0.0011	4	0 3 7	0.005 0.009 NQ <u>0.009</u> NQ 0.007	ND ND ND ND ND ND	070-93-0001R
Pronto	EC	0.045	0.0023	4	0 3 7	0.012 0.017 0.010 0.016 0.011 0.048	ND ND ND ND ND NQ	070-93-0001R
Trust	EC	0.023	0.0011	4	0 3 7	NQ 0.006 NQ 0.006 NQ <u>0.007</u>	ND ND ND ND ND ND	070-93-0004R

¹NQ: not quantified; detected but <0.005 mg/kg. ND: not detected, <0.002 mg/kg.

Country, year		Applie	cation		PHI, days	Residue	es, mg/kg ¹	Ref
(variety)	Form	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
HEAD LETTUC	E							
France, 1992 (Balisto)	EC	0.0113	0.0020 -0.0028	4	0 6 13	0.22 0.27 0.15 0.14 <u>ND</u> (4) ND (4)	0.025 0.030 0.017 0.017 ND (4) ND (4)	066-92- 0001R
France, 1992 (Balisto)	EC	0.025	0.0039 -0.0056	4	0 6 13	0.23 0.36 0.34 0.36 NQ NQ 0.002 NQ <u>ND</u> (4)	0.026 0.041 0.037 0.042 ND (4) ND (4)	066-92- 0001R
France, 1992 (Divina)	EC	0.0113	0.0019 -0.0023	4	0 7 14	0.18 0.20 0.26 0.28 0.003 0.002 <u>0.004</u> 0.003 NQ NQ NQ 0.002	0.020 0.022 0.028 0.029 ND (4) ND (4)	066-92- 0003R
France, 1992 (Divina)	EC	0.0225	0.0038 -0.0045	4	0 7 14	0.28 0.30 0.36 0.45 0.004 0.004 0.007 0.005 NQ NQ NQ <u>0.005</u>	0.029 0.032 0.037 0.046 ND (4) ND (4)	066-92- 0003R
France, 1992 (Scarole Maral)	EC	0.0113	0.0019	4	0 7 14	0.086 0.18 0.15 0.16 0.010 0.012 0 010 <u>0.021</u> 0.002 0.003 0.005 0.005	0.007 0.019 0.015 0.016 ND NQ ND NQ ND (4)	066-92- 0002R
France, 1992 (Scarole Maral)	EC	0.0225	0.0038	4	0 7 14	0.23 0.30 0.31 0.29 0.029 0.041 0.028 0.025 0.010 0.011 0.009 <u>0.013</u>	0.024 0.032 0.032 0.030 0.003 0.004 0.003 NQ ND (4)	066-92- 0002R
Netherlands, 1993 (Kirsten)	EC	0.014	0.0014	gl	0 7 14	0.26 0.26 (Oct) ² 0.016 0.020 0.017 <u>0.020</u>	0.017 0.019 NQ NQ 0.004 0.005	070-93- 0007R
Netherlands, 1993 (Kirsten)	EC	0.027	0.0027	4 gl	0 7 14	0.23 0.25 (Oct) 0.13 0.091 0.096 0.084	0.020 0.022 0.006 0.004 0.009 0.006	070-93- 0007R
Netherlands, 1993 (Kirsten)	EC	0.014	0.0014	4 gl	0 7 14	0.25 0.28 (Oct) 0.071 0.074 0.026 <u>0.027</u>	0.024 0.028 0.006 0.007 0.002 0.002	070-93- 0008R
Netherlands, 1993 (Kirsten)	EC	0.027	0.0027	4 gl	0 7 14	0.53 0.51 (Oct) 0.10 0.15 0.059 0.097	0.051 0.043 0.008 0.011 0.005 0.009	070-93- 0008R
Netherlands, 1994 (Rex)	EC	0.014	0.0014	4 gl	0 7 14	0.32 0.37 (Mar) 0.052 0.069 0.020 <u>0.026</u>	0.025 0.0032 0.004 0.006 0.002 0.003	070-94- 0002R
Netherlands, 1994 (Vivaldi)	EC	0.014	0.0014	4 gl	0 7 14	0.33 0.25 (Mar) 0.038 0.027 0.012 <u>0.014</u>	0.025 0.021 0.004 0.003 NQ NQ	070-94- 0001R
Spain, 1992 (Trocadero)	EC	0.022	0.0022 -0.0044	4	0 7 14	0.96 0.87 0.94 0.79 0.051 0.076 0.067 0.054 0.024 0.020 <u>0.026</u> 0.025	0.10 0.091 0.095 0.083 0.006 0.009 0.009 0.007 0.003 NQ 0.002 0.002	065-92- 0001R
Spain, 1992 (Trocadero)	EC	0.043	0.0043 -0.0086	4	0 7 14	1.5 1.7 1.6 1.5 0.15 0.25 0.20 0.14 0.067 0.091 0.072 0.080	0.15 0.18 0.16 0.16 0.016 0.025 0.020 0.015 0.005 0.008 0.006 0.009	065-92- 0001R
Spain, 1992 (Trocadero)	EC	0.022	0.0022 -0.0044	4	0 7 14	1.6 1.7 1.9 1.1 0.14 0.10 0.17 0.18 <u>0.037</u> 0.033 0.027 0.027	0.17 0.18 0.20 0.12 0.014 0.011 0.016 0.018 0.003 0.004 0.003 0.002	065-92- 0002R
Spain, 1992 (Trocadero)	EC	0.043	0.0043 -0.0086	4	0 7 14	0.86 1.9 1.8 1.1 0.12 0.15 0.093 0.14 0.023 0.022 0.031 0.020	0.089 0.19 0.18 0.11 0.010 0.015 0.009 0.014 0.002 NQ 0.002 NQ	065-92- 0002R

Table 8. Abamectin residues in lettuce resulting from foliar applications in supervised trials in France, The Netherlands and Spain. Double-underlined residues are from treatments according to GAP and are valid for estimating maximum residue levels and STMRs.

Country, year		Applic	cation		PHI, days	Residue	Ref	
(variety)	Form	kg ai/ha	kg ai/hl	No.		$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
LEAF LETTUCE								
Spain, 1992 (Summer Blond)	EC	0.022	0.0022 -0.0044	4	0 7 14	0.20 0.16 0.17 0.19 0.007 0.008 0.009 0.004 <u>NQ</u> ND ND NQ	0.021 0.018 0.018 0.021 ND (4) ND (4)	065-92- 0003R
Spain, 1992 (Summer Blond)	EC	0.043	0.0043 -0.0086	4	0 7 14	0.36 0.44 0.30 0.46 0.025 0.025 0.028 0.024 0.004 0.005 0.002 0.003	0.041 0.045 0.030 0.053 0.002 ND 0.002 NQ ND (4)	065-92- 0003R
Spain, 1992 (Romaine, Inverna)	EC	0.022	0.0022 -0.0044	4	0 7 14	0.21 0.17 0.18 0.24 0.005 0.004 0.003 0.004 <u>0.002</u> NQ ND ND	0.025 0.019 0.021 0.028 ND (4) ND (4)	065-92- 0004R
Spain, 1992 (Romaine, Inverna)	EC	0.043	0.0043 -0.0086	4	0 7 14	0.40 0.22 0.54 0.42 0.006 0.005 0.005 0.005 0.003 0.002 NQ 0.002	0.047 0.025 0.061 0.048 ND (4) ND (4)	065-92- 0004R

 NQ: not quantified; detected but <0.002 mg/kg ND: not detected, <0.001 mg/kg
 ²Because of the seasonal restriction on use specified in Netherlands GAP the month of the final application is reported. gl: glasshouse

Table 9.	Abamectin	residues	in p	potatoes	resulting	from	foliar	applications	in	supervised	trials	in
Brazil and	d the USA.											

Country, year		Appl	ication		PHI,	Residues	, mg/kg ¹	Ref
(variety)	Form	kg ai/ha	Kg ai/hl	No.	days	$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
Brazil (SP), 1994	EC	0.018	0.0023	4	0	< 0.005 < 0.005		015-94-9050R
(Achat)					3	< 0.005 < 0.005		
					7	< 0.005 < 0.005		
Brazil (SP), 1994	EC	0.036	0.0045	4	0	< 0.005 < 0.005		015-94-9050R
(Achat)					3	< 0.005 < 0.005		
					7	< 0.005 < 0.005		
Brazil (SP), 1994	EC	0.018	0.0023	4	0	< 0.005 < 0.005		015-94-9052R
(Achat)					3	< 0.005 < 0.005		
					7	< 0.005 < 0.005		
Brazil (SP), 1994	EC	0.036	0.0045	4	0	< 0.005 < 0.005		015-94-9052R
(Achat)					3	< 0.005 < 0.005		
					7	< 0.005 < 0.005		
Brazil (SP), 1994	EC	0.018	0.0023	4	0	< 0.005 < 0.005		015-94-9051R
(Bintje)					3	< 0.005 < 0.005		
-					7	< 0.005 < 0.005		
Brazil (SP), 1994	EC	0.036	0.0045	4	0	< 0.005 < 0.005		015-94-9051R
(Bintje)					3	< 0.005 < 0.005		
					7	< 0.005 < 0.005		
USA (FL), 1992	EC	0.112	0.025	6	0	ND ND	ND ND	001-92-0038R
(Atlantic)					3	ND ND	ND ND	
					7	ND ND	ND ND	
USA (FL), 1992	EC	0.112	0.025	6	0	ND ND	ND ND	001-92-0038R
(Atlantic)		+ oil			3	ND ND	ND ND	
					7	ND ND	ND ND	
USA (NY), 1992	EC	0.11	0.040	6	0	ND ND	ND ND	618-936-3671
(Katahdin)					3	ND ND	ND ND	001-92-5017R
					7	ND ND	ND ND	
USA (NY), 1992	EC	0.11	0.040	6	0	ND ND	ND ND	618-936-3671
(Katahdin)		+ oil			3	ND ND	ND ND	001-92-5017R
					7	ND ND	ND ND	
USA (OR), 1992	EC	0.11	0.040	6	0	ND ND	ND ND	618-936-3671
(Russet)					3	ND ND	ND ND	001-92-5019R
. ,					7	ND ND	ND ND	

Country, year		Appli	ication		PHI,	Residues,	mg/kg ¹	Ref
(variety)	Form	kg ai/ha	Kg ai/hl	No.	days	$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
USA (OR), 1992	EC	0.11	0.040	6	0	ND ND	ND ND	618-936-3671
(Russet)		+ oil			3	ND ND	ND ND	001-92-5019R
					7	ND ND	ND ND	
USA (PA), 1992	EC	0.11	0.040	6	0	ND ND	ND ND	618-936-3671
(Katahdin)					3	ND ND	ND ND	001-92-5018R
					7	ND ND	ND ND	
USA (PA), 1992	EC	0.11	0.040	6	0	ND ND	ND ND	618-936-3671
(Katahdin)		+ oil			3	ND ND	ND ND	001-92-5018R
					7	ND ND	ND ND	
USA (CA), 1993	EC	0.021	0.0056	6	0	ND ND	ND ND	001-93-5006R
(Norkotah)		+ oil			14	ND ND	ND ND	
USA (CA), 1993	EC	0.021	0.0059	6	0	ND ND	ND ND	001-93-5005R
(Red LaSoda)		+ oil			14	ND ND	ND ND	
USA (FL), 1993 (Red	EC	0.021	0.0045	6	0	ND ND	ND ND	618-936-3671
La Soda)		+ oil			14	ND ND	ND ND	001-93-0002R
USA (ID), 1993	EC	0.020	0.045	6	0	ND ND	ND ND	001-93-1004R
(Russet Burbank)		+ oil			14	ND ND	ND ND	
USA (ID), 1993	EC	0.021	0.011	6	0	ND ND	ND ND	001-93-1005R
(Russet Burbank)		+ oil			14	ND ND	ND ND	
USA (MD), 1993	EC	0.021	0.0076	6	0	ND ND	ND ND	001-93-7000R
(Superior)		+ oil			14	ND ND	ND ND	
USA (MI), 1993	EC	0.021	0.011	6	0	ND ND	ND ND	001-93-1007R
(Snowden)		+ oil			14	ND ND	ND ND	
USA (NY), 1993	EC	0.021	0.014	6	0	ND ND	ND ND	001-93-7001R
(Katahdin)		+ oil			14	ND ND	ND ND	
USA (WA), 1993	EC	0.021	0.0044	6	0	ND ND	ND ND	001-93-5004R
(Russet Burbank)		+ oil			14	ND ND	ND ND	
USA (CO), 1994	EC	0.11	0.030	6	0	ND ND	ND ND	001-94-1022R
(Russet Nugget)					14	ND ND	ND ND	
USA (ND), 1994	EC	0.021	0.014	6	0	ND ND	ND ND	001-94-1017R
(Norchip)		+ oil			14	ND ND	ND ND	
· · · · · · · · · · · · · · · · · · ·	EC	0.021	0.011	6	0	ND ND	ND ND	001-93-7002R
1625)		+ oil			14	ND ND	ND ND	

¹ND: not detected, <0.002 mg/kg

Table 10. Abamectin residues in hops resulting from foliar applications in supervised trials in Germany and the USA. Double-underlined residues are from treatments according to GAP and are valid for estimating maximum residue levels and STMRs.

Country,		Appl	ication		PHI,	Residues,	mg/kg ^{1,2}	Ref
year (variety)	Form	kg ai/ha	kg ai/hl	No.	days		$B_{1b} + 8,9-Z-B_{1b}$	
Germany, 1994 (Hallertau Mittelfruw)	-	0.023	0.0022 +0.0011	2	0 14 21 28 21 28	fh 0.11 0.12 fh 0.003 0.003 fh ND NQ fh NQ NQ dh 0.004 0.005 dh <u>ND</u> ND	fh 0.010 0.012 fh ND ND fh ND ND fh ND ND dh ND ND dh ND ND	072-94-0008R
Germany, 1994 (Hallertau Mittelfruw)	-	0.023 + adj	0.0022 +0.0011	2	0 14 21 28 21 28	fh 0.24 0.31 fh 0.003 0.004 fh 0.002 0.003 fh 0.002 ND dh 0.004 0.007 dh <u>ND</u> ND	fh 0.025 0.030 fh ND ND fh ND ND fh ND ND dh ND ND dh ND ND	072-94-0008R

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Country,		App	lication		PHI,	Residues,	mg/kg ^{1,2}	Ref
Germany, 1994 (Hallertauer Tradition) EC (Hallertauer Tradition) 0.022 (0.021) 0.0031 (0.0015) 2 (0.0015) 0.01 (0.0015) 1 (0.0015) fb 0.021 (0.003) (0.006) fb 0.026 (0.022) (0.008 (0.006) 0.026 (0.022) (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.001 (0.008 (0.006) 0.002 (0.003) 0.002 (0.003) 0.002 (0.0016) 0.002 (0.0016) 0.002 (0.0016) 0.002 (0.0016) 0.002 (0.0016) 0.002 (0.0016) 0.001 (0.008 (0.006) 0.002 (0.0016) 0.002 (0.0016) 0.004 (0.028 (0.002 (0.002)) 0.002 (0.0016) 0.002 (0.0016) 0.002 (0.0016) 0.001 (0.0016) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.007) 0.021-94-000 0.002 (0.003) 0.022 (0.002) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.006) 0.001 (0.001 (0.006) 0.001 (~	Form		kg ai/hl	No.	days			
(Hallertauer Tradition) Image: space s		EC		0.0021	2	0	9.022.021	G. 0.026.0.022	072 04 00050
Tradition) Image: Probability of the second se		EC	0.022		2				072-94-0005R
Germany, 1994 (Hallertauer Tradition) EC EC 0.022 0.022 + adj + adj 0.0031 + 0.0015 2 2 0.0031 + 0.0015 0 2 1 2 0 2 0.0031 + 0.0015 0 2 1 4 0 0.022 0.022 0 0.04 ND ND 0.022 0.016 10.049 0.087 fh 0.022 0.016 fh ND ND fh ND ND fh ND ND fh ND ND 0 072-94-000 fh ND ND Germany, 1994 (Perle) EC 0.023 0.023 0.0031 +0.0015 2 0 0 14 0.005 0.006 fh 0.026 0.031 fh 0.025 0.029 0 10.026 0.031 fh 0.026 0.031 0 072-94-000 fh ND ND Germany, 1994 (Perle) EC 0.023 0.023 0.0031 0.0031 +0.0015 2 0 14 0.0015 0 14 0.005 0.006 fh ND ND 10.024 fh 0.015 0.011 fh 0.005 0.006 fh ND ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·			+0.0015					
Germany, 1994 (Hallertauer Tradition) EC Hallertauer 0.022 + adj 0.0031 + 0.0015 2 2 (Hallertauer Pradition) ft 0.044 0.82 (h 0.002 ND) ft 0.010 0.012 (h ND ND) ft 0.049 0.087 (h 0.002 ND) ft 0.0010 0.012 (h ND ND) 072-94-000 (h ND ND) Germany, 1994 (Perle) EC Prele 0.023 (Perle) 0.0031 (Perle) 2 (Perle) 0 ft 0.049 0.087 (h 0.022 0.012 (h ND ND) 072-94-000 (h ND ND) Germany, 1994 (Perle) EC Perle 0.023 (Perle) 0.0031 (Perle) 2 (Perle) 0 ft 0.25 0.29 (h 0.025 0.020) (h ND ND) ft 0.026 0.031 (h 0.015 0.011 (h 0.005 0.006) (h ND ND) 072-94-000 (h ND ND) Germany, 1994 (Perle) EC Perle 0.023 (Perle) 0.0031 (Perle) 2 (Perle) 0 ft 0.20 0.35 (h 0.016 0.009) (h ND ND) ft 0.021 0.037 (h 0.016 0.006) (h ND ND) 072-94-000 (h ND ND) Germany, 1994 (Perle) EC Perle 0.023 (Perle) 0.0031 (Perle) 2 (Perle) 0 ft 0.023 0.035 (h 0.003 0.005) ft 0.024 0.031 (h ND ND) 072-94-000 (h ND ND) Germany, 1994 (Perle) EC Perle 0.023 (Perle) 0.0031 (Perle) 2 (Perle) ft 0.032 0.025 (Perle) ft 0.032 0.025 (Perle) ft 0.036 0.027 (Perle) ft 0.036 0.027 (Perle) ft	Truchtion)								
Germany, 1994 (Hallertauer Tradition) EC Hallertauer 0.022 + adj (Hallertauer Tradition) 0.022 + adj (Hallertauer Tradition) 0.022 + adj (Hallertauer Tradition) 0.022 + adj (Hallertauer Tradition) 0.022 (Hallertauer (Hallertauer) Tradition) 0.022 + adj (Hallertauer) (Hallertauer) ft 0.049 0.087 (Hallertauer) (Hallertauer) 0.022 ND (Hallertauer) (Hallertauer) 0.022 ND (Hallertauer) 0.002 ND (Hallertauer) 0.001 (Hallertauer) 0.002 ND (Hallertauer) 0.002 ND (Hallertauer) 0.002 ND (Hallertauer) 0.002 ND (Hallertauer) 0.002 (ND (Hallertauer) 0.02 (ND						21	dh 0.029 0.031	dh ND NO	
								-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		EC			2				072-94-0005R
Image: Second system Image: Second system			+ adj	+0.0015					
Germany, 1994 (Perle) EC 0.023 bit output 0.0031 bit output 28 bit output dh 0.022 fh 0.015 output dh ND ND fh 0.25 0.29 fh 0.015 0.011 fh ND ND fh ND ND 072-94-000 fh ND ND fh ND ND fh ND ND Germany, 1994 (Perle) EC 0.023 bit output 0.0031 bit output 2 bit output 0 fh 0.034 0.029 bit <u>0.025</u> 0.020 dh NQ ND dh ND ND 072-94-000 fh ND ND Germany, 1994 (Perle) EC 0.023 bit output 0.0031 bit output 2 bit output 0 fh 0.016 0.009 bit output fh 0.021 0.037 fh ND ND 072-94-000 fh ND ND Germany, 1994 (Perle) EC 0.023 bit output 0.0031 bit output 2 bit output 0 bit output	Tradition)								
Germany, 1994 (Perle)EC 0.023 0.0031 $+0.0015$ 0.0031 $+0.0015$ 2 0 14 10 $fh 0.25 0.21$ $fh 0.015 0.011$ $fh 0.006 0.005$ $fh 0.026 0.031$ $fh ND NDfh ND NDfh ND ND072-94-000072-94-000Germany, 1994(Perle)EC0.023+ oil0.0031+ oil2014100.025 0.020141416 0.016 0.00916 0.010 0.0060.021 0.03714 0.010 0.00916 ND ND072-94-000072-94-000Germany, 1994(Perle)EC0.023-0.0230.0031+ oil2014-0.00150.035 0.036141416 0.016 0.00916 0.000616 ND ND16 ND ND072-94-00014 0.011 0.03716 0.010 0.00616 ND NDGermany, 1994(Perle)EC0.023-0.0230.0031-0.001520141416 0.014 0.01816 0.003 0.0030.024 0.03116 0.024 0.03116 0.024 0.03116 0.0024 0.03116 0.0015072-94-0001416 0.015 0.0161416 0.016 0.01816 0.003 0.003072-94-00016 0.0024 0.03116 0.003 0.003Germany, 1994(Perle)EC0.023+ oil0.0031+ 0.01520141416 0.014 0.0111816 0.004 0.02816 0.003 0.003072-94-00016 0.003 0.003Germany, 1994(Perle)EC0.023+ oil0.0031+ 0.01520141416 0.014 0.01116 0.014 0.01116 0.016 0.0030.036 0.02716 0.036 0.02716 0.016 0.01316 ND ND$									
	<u> </u>	EC	0.022	0.0021	2				072 04 0007D
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		EC	0.023		2				072-94-0007K
Image: second	(i cite)			10.0015					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						21	dh 0.034 0.029	dh NO ND	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						28	dh <u>0.025</u> 0.020	dh ND ND	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Germany, 1994	EC	0.023	0.0031	2	0	fh 0.20 0.35	fh 0.021 0.037	072-94-0007R
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			+ oil	+0.0015		14	fh 0.016 0.009		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						28	fh 0.005 0.006	fh ND ND	
Germany, 1994 (Perle) EC 0.023 0.0031 +0.0015 2 0 $fh 0.23 0.31fh 0.011 0.018$ $fh 0.024 0.031fh ND ND$ $072-94-000$ $(Perle)$ EC 0.023 $0.0031+0.0015$ 2 0 $fh 0.23 0.31fh 0.011 0.018$ $fh ND NDfh ND ND$ $072-94-000$ 21 $h 0.008 0.10fh 0.003 0.003$ $fh ND ND$ $h ND ND$ $h ND ND$ 21 $dh 0.043 0.041dh 0.017 0.022$ $dh NQ NQdh ND ND$ $dh ND ND$ $h ND ND$ Germany, 1994 EC $0.023+ oil$ $0.0031+ 0.0015$ 2 0 $fh 0.40 0.28fh 0.014 0.011$ $fh 0.036 0.027fh ND ND$ $072-94-000fh ND ND$ Germany, 1994 EC $0.023+ oil$ $0.0031+ 0.0015$ 2 0 $fh 0.40 0.28fh 0.014 0.011$ $fh ND ND$ 28 $fh 0.010 0.013fh ND ND$ $fh ND ND$ $fh ND ND$ $fh ND ND$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						28	dh <u>0.030</u> 0.025	dh ND ND	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		EC	0.023		2	-			072-94-0006R
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Perle)			+0.0015					
Germany, 1994 (Perle)EC 0.023 + oil 0.0031 + 0.01520 2fh $0.40 \ 0.28$ fh $0.014 \ 0.011$ fh ND ND fh ND ND fh ND ND fh ND ND fh ND ND fh ND ND072-94-000 (72-94-000 fh ND ND fh ND ND fh ND ND									
Germany, 1994 (Perle)EC 0.023 + oil 0.0031 + 0.01520 2fh 0.40 0.28 fh 0.014 0.011 fh ND ND 14 21 fh 0.010 0.013 fh ND NDfh 0.036 0.027 fh ND ND fh ND ND fh ND ND fh ND ND072-94-000 (Perle)						21	dh 0 043 0 041	dh NO NO	
(Perle) $+ \text{ oil } + 0.0015$ 14 fh 0.014 0.011 fh ND ND 21 fh 0.010 0.013 fh ND ND 28 fh 0.006 0.005 fh ND ND									
21 fh 0.010 0.013 fh ND ND 28 fh 0.006 0.005 fh ND ND		EC			2				072-94-0006R
28 fh 0.006 0.005 fh ND ND	(Perle)		+ oil	+0.0015					
I I I I I I I I I I I I I I I I I I I						21	dh 0.046 0.044	dh NQ NQ	
28 dh <u>0.017</u> 0.012 dh ND ND						28			
		EC	0.023	0.0011	2				072-96-0011R
(Hallertauer Frühreifer) 29 fh ND NQ fh ND ND 96092						29	IN ND NQ	IN ND ND	96092
29 dh 0.011 <u>0.012</u> dh ND ND						29	dh 0.011 <u>0.012</u>	dh ND ND	
		EC	0.023	0.0011	2	-			072-96-0012R
(Hersbrucker) 30 fh ND ND fh ND ND 96092	(Hersbrucker)					30	fh ND ND	fh ND ND	96092
30 dh <u>ND</u> ND dh ND ND						30	dh <u>ND</u> ND	dh ND ND	
		EC	0.023	0.0009	2	0		ih 0.008 0.007	072-96-0014R
(Northern Brewer) 28 fh ND NQ fh ND ND 96092	(Northern Brewer)					28		fh ND ND	96092
28 dh ND <u>NQ</u> dh ND ND						28	dh ND <u>NQ</u>	dh ND ND	

Country,		Appl	ication		PHI,	Residues,	mg/kg ^{1,2}	Ref
year	Form	kg	kg ai/hl	No.	days	$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
(variety)		ai/ha						
Germany, 1996	EC	0.023		2	0	ih 0.23 0.22	ih 0.015 0.015	072-96-0013R
(Perle)					30	fh NQ 0.008	fh ND ND	96092
					30	dh 0.009 <u>0.011</u>	dh ND ND	
USA (ID), 1994	EC	0.021	0.0045	2	0	dh 0.67 0.59	dh 0.072 0.064	001-94-1007R
(Galena)	20	0.021	0.000.0	Ē	28	dh 0.055 <u>0.057</u>	dh NQ NQ	618-936-94035
USA (OR), 1994	EC	0.022	0.0045	2	0	dh 0.97 0.81	dh 0.096 0.081	001-94-1008R
(Nugget)					28	dh 0.009 <u>0.015</u>	dh ND ND	618-936-94035
USA (WA), 1994	EC	0.021	0.0045	2	0	dh 0.16 0.15	dh 0.015 0.015	001-94-1006R
(Cluster)					28	dh 0.017 <u>0.023</u>	dh ND ND	618-936-94035
USA (WA), 1994	EC	0.021	0.0045	2	0	dh 0.59 0.73	dh 0.059 0.073	001-94-1005R
(Galena)					27	dh 0.044 <u>0.078</u>	dh NQ <u>0.008</u>	618-936-94035

¹NQ: not quantified; detected but <0.005 mg/kg. ND: not detected, <0.0025 mg/kg.

²ih: immature hops, fh: fresh hops, dh: dry hops.

adj: adjuvant - a non-ionic surfactant containing lecithin derived from soya bean oil.

Table 11. Interpretation Table for abamectin residues in apples from trials in Table 3. GAP and trial conditions are compared for treatments considered valid for estimating maximum residue levels and STMRs.

		Use patte	rn		Trial	Residues,
	kg ai/ha	kg ai/hl	No of	,		mg/kg,
			appl	days		abamectin
Australian GAP	0.014	0.0014	1	14		
Australian trial	0.014	0.0007	1	14	114-95-0003R	0.005
Australian trial	0.014	0.0007	1	14	114-95-0002R	< 0.002
Australian trial	0.014	0.0008	1	14	114-95-0001R	0.003
NZ GAP	0.027	0.00068	1	14		
NZ trial	0.027	0.0014	2	14	115-94-0005R	0.004
NZ trial	0.027	0.0014	2	14	115-94-0004R	0.007
US GAP	0.026	0.0007	2	28		
US trial	0.028	0.0007	2	28	001-90-5016R	0.003
US trial	0.027	0.0008	2	28	001-92-6012R	0.003
US trial	0.027	0.0010	2	28	001-91-6024R	< 0.001
US trial	0.028	0.0010	2	28	001-90-5018R	0.006
US trial	0.027	0.0011	2	28	001-91-1021R	< 0.002
US trial	0.027	0.0036	2	28	001-91-1024R	0.002
US trial	0.027	0.0037	2	28	001-91-1023R	0.003
US trial	0.027	0.0038	2	28	001-91-6016R	0.012
US trial	0.027	0.0038	2	28	001-91-3000R	0.007
US trial	0.026	0.0071	2	28	001-92-0026R	0.003
US trial	0.027	0.0072	2	28	001-92-0027R	< 0.002
US trial	0.027	0.0072	2	28	001-92-3020R	0.004
US trial	0.027	0.0072	2	28	001-92-1018R	< 0.002
US trial	0.027	0.0081	2	28	001-92-1014R	< 0.001

		Use pa	attern		Trial	Residues,
	kg ai/ha	kg ai/hl	No of appl	PHI, days		mg/kg, abamectin
Argentinian GAP	0.027	0.0014	4	14		
Argentinian trial	0.027	0.00063	3	14	1992 ref 58	< 0.005
French GAP	0.023	0.0014	4	15		
French trial	0.027	0.0014	3	14	1992 ref 196	< 0.002
Italian GAP	0.027	0.0014	2	14		
Italian trial	0.027	0.0014	3	14	1992 ref 139	< 0.005
Italian trial	0.027	0.0014	3	14	1992 ref 139	< 0.002
Italian trial	0.027	0.0014	3	14	1992 ref 140	< 0.005
Italian trial	0.027	0.0014	3	14	1992 ref 198	< 0.005
US GAP	0.026		2	28		
US trial	0.027		2	21	001-92-6016R	0.004
US trial	0.027		2	21	001-92-6017R	0.006
US trial	0.027		2	21	001-92-6018R	0.009
US trial	0.027		2	21	001-92-6019R	0.011

Table 12. Interpretation table for abamectin residues in pears from trials in Table 4 and the 1992 Evaluations. GAP and trial conditions are compared for treatments considered valid for estimating maximum residue levels and STMRs.

Table 13. Interpretation table for abamectin residues in melons from trials in Tables 5 and 6. GAP and trial conditions are compared for treatments considered valid for estimating maximum residue levels and STMRs.

		Use pat	tern		Trials	Residues, mg/kg
	kg ai/ha	kg ai/hl	No of	PHI,		abamectin
			appl	days		
Spanish GAP	0.022	0.0011	3	3		
Spanish trial	0.022	0.0022	4 gl	3	065-91-0003R	< 0.002
Spanish trial	0.022	0.0022	4 gl	3	065-91-0004R	< 0.002
French trial	0.023	0.0028	4	3	066-91-0003R	< 0.002
French trial	0.023	0.0032	4	3	066-91-0004R	< 0.005
French trial	0.023	0.0030	4	3	066-91-0005R	< 0.005
US GAP	0.021		3	7		
US trial	0.021	0.023	4	7	001-91-1026R	< 0.002
US trial	0.021	0.011	4	7	001-91-1027R	< 0.002
US trial	0.021	0.023	4	7	001-91-6011R	< 0.002
US trial	0.021	0.011	4	7	001-92-0019R	< 0.002
US trial	0.021	0.011	4	7	001-92-0020R	< 0.002
US trial	0.021	0.010	4	7	001-92-0021R	< 0.002
US trial	0.021	0.010	4	7	001-92-1001R	< 0.002
US trial	0.022	0.011	4	7	001-92-3014R	< 0.002
US trial	0.022	0.011	5	7	001-92-6013R	< 0.002

gl: glasshouse

		Use pa	attern	Trials	Residues, mg/kg	
	kg ai/ha	kg ai/hl	No of appl	PHI, days		abamectin
CUCUMBER						
US GAP	0.021		3	7		
US trial	0.021	0.010	4	7	001-92-0030R	< 0.002
US trial	0.022	0.012	4	7	001-92-1019R	< 0.002
US trial	0.022	0.012	4	7	001-92-3018R	< 0.002
US trial	0.021	0.011	4	7	001-92-6015R	< 0.005
German GAP	0.023		5 gl	3		
French trial	0.023	0.0011	4 gl	3	1992 ref 17	< 0.002
French trial	0.023	0.0011	4 gl	3	1992 ref 17	< 0.005
Spanish GAP	0.022	0.0011	3	3		
Spanish trial	0.023	0.004	5 gl	3	1992 ref 13	0.006
Spanish trial	0.023	0.007	5 gl	3	1992 ref 13	0.008
Italian trial	0.023	0.0023	5	3	1992 ref 169	< 0.005
Italian trial	0.023	0.0023	4 gl	3	1992 ref 16	< 0.005
Italian trial	0.023	0.0023	4	3	1992 ref 16	< 0.002
Netherlands GAP	0.023	0.0009	5 gl	3		
Netherlands trial	0.023	0.0011	4 gl	3	1992 ref 161	0.008
Netherlands trial	0.023	0.0011	5 gl	3	1992 ref 161	0.007
GHERKIN						
Netherlands GAP	0.023	0.0009	5 gl	3		
Netherlands trial	0.023	0.0011	5 gl	3	1992 ref 165	< 0.002
Netherlands trial	0.023	0.0011	5 gl	3	1992 ref 165	< 0.002

Table 14. Interpretation table for abamectin residues in cucumbers and gherkins from trials in Table 6 and the 1992 Evaluations. GAP and trial conditions are compared for treatments considered valid for estimating maximum residue levels and STMRs.

gl: glasshouse

Table 15. Interpretation table for abamectin residues in tomatoes from trials in Table 7 and the 1992 Evaluations. GAP and trial conditions are compared for treatments considered valid for estimating maximum residue levels and STMRs.

		Use patt	ern		Trials	Residues, mg/kg
	kg ai/ha	kg ai/hl	No of appl	PHI, days		abamectin
Argentinian GAP	0.022	0.0013	9	3		
Argentinian trial	0.020	0.0009	7	3	1992 ref 60	< 0.005
Argentinian trial	0.027	0.0009	5	3	1992 ref 61	< 0.002
Argentinian trial	0.028	0.0018	9	3	1992 ref 62	< 0.002
Brazil GAP	0.022	0.0018		3		
Brazil trial	0.027	0.0018	10	7^{1}	1992 ref 125	0.017
Brazil trial	0.023	0.0018	10	3	1992 ref 126	< 0.005
Brazil trial	0.028	0.0036	6	3	1992 ref 126	< 0.005
German GAP	0.023		5 gl	3		
French trial	0.024	0.0005	5 gl	3	1992 ref 123	< 0.005
French trial	0.023	0.0005	5 gl	3	1992 ref 127	< 0.002
French trial	0.020	0.0007	10 gl	3	1992 ref 128	< 0.002
Italian GAP	0.022		2	7		
Italian trial	0.022	0.0011	10	7	1992 ref 209	< 0.002
Italian trial	0.022	0.0011	10	7	1992 ref 210	< 0.002
Netherlands GAP	0.023	0.0009	4 gl	3		
Netherlands trial	0.023	0.0011	4 gl	3	070-93-0001R	0.009
Netherlands trial	0.023	0.0011	4 gl	3	070-93-0002R	0.007
Netherlands trial	0.023	0.0011	4 gl	7^{1}	070-93-0004R	0.007
Netherlands trial	0.023	0.0011	4 gl	3	070-93-0005R	0.017

		Use pa	attern		Trials	Residues, mg/kg
	kg ai/ha	kg ai/hl	No of appl	PHI, days		abamectin
Netherlands trial	0.023	0.0011	4 gl	3	070-93-0006R	0.012
Netherlands trial	0.023	0.0011	4 gl	3	070-93-0003R	0.012
Netherlands trial	0.023	0.0011	5 gl	3	1992 ref 217	0.008
Netherlands trial	0.023	0.0011	5 gl	3	1992 ref 218	0.005
Spanish GAP	0.022	0.0011		3		
Spanish trial	0.019	0.0011	10 gl	3 (f)	1992 ref 130	<0.005 (<0.005)
Spanish trial	0.019	0.0005	10 gl	3 (f)	1992 ref 131	0.009 (<0.005)
Spanish trial	0.027	0.0011	10	3	1992 ref 132	< 0.005
Spanish trial ²	0.015	0.0011	10	3	1992 ref 129	< 0.005
US GAP	0.021		3	7		
US trial	0.022	0.024	10	7	1992 ref 124	< 0.002
US trial	0.022	0.0036	10	3	1992 ref 124	< 0.002
US trial	0.022	0.012	10	3	1992 ref 124	< 0.002
US trial	0.022	0.0047	10	3	1992 ref 124	< 0.002
US trial	0.022	0.017	10	3	1992 ref 124	< 0.002
US trial	0.022	0.0078	10	3	1992 ref 124	< 0.002
US trial	0.022	0.0044	10	3	1992 ref 124	< 0.002
US trial	0.022	0.0043	10	7	1992 ref 124	< 0.002
US trial	0.022	0.012	10	3	1992 ref 124	< 0.005
US trial	0.022	0.0024	10	7	1992 ref 124	< 0.005
US trial	0.022	0.0053	12	7	1992 ref 183	< 0.002
US trial	0.022	0.0068	10	5	1992 ref 184	< 0.002
US trial	0.022	0.0043	10	7	1992 ref 185	< 0.005
US trial	0.022	0.0059	10	7	1992 ref 186	< 0.002
US trial	0.022	0.0023	10	7	1992 ref 187	< 0.005
US trial	0.022	0.0047	8	3	1992 ref 188	< 0.002
US trial	0.022	0.0047	10	7	1992 ref 191	0.005
US trial	0.022	0.024	10	5	1992 ref 193	< 0.002

gl: glasshouse ¹Residue on day 7 higher than on day 3

²The companion trial at 0.030 kg ai/ha resulted in residues of 0.007 mg/kg on day 3

Table 16. Interpretation table for abamectin residues in lettuce from trials in Table 8 and the 1992 Evaluations. GAP and trial conditions are compared for treatments considered valid for estimating maximum residue levels and STMRs.

		Use p	oattern		Trials	Residues,
	kg ai/ha	kg ai/hl	No of appl	PHI, days		mg/kg abamectin
Head Lettuce						
Netherlands GAP	0.014	0.0009	4	14		
Netherlands trial	0.014	0.0014	4 gl	14	070-93-0007R	0.025
Netherlands trial	0.014	0.0014	4 gl	14	070-93-0008R	0.029
Netherlands trial	0.014	0.0014	4 gl	14	070-94-0002R	0.029
Netherlands trial	0.014	0.0014	4 gl	14	070-94-0001R	0.016
French GAP	0.009		4	7 or 14		
French trial	0.0113	0.0028	4	6	066-92-0001R	< 0.001
French trial	0.0113	0.0023	4	7	066-92-0003R	0.004
French trial	0.0113	0.0019	4	7	066-92-0002R	0.023
Spanish GAP	0.022	0.0018	3	14		
Spanish trial	0.022	0.0044	4	14	065-92-0001R	0.028
Spanish trial	0.022	0.0044	4	14	065-92-0002R	0.040
French trial	0.025	0.0056	4	13	066-92-0001R	< 0.002
French trial	0.0225	0.0045	4	14	066-92-0003R	0.005
French trial	0.0225	0.0038	4	14	066-92-0002R	0.013
US GAP	0.021		3	7		

		Use I	oattern		Trials	Residues,
	kg ai/ha	kg ai/hl	No of appl	PHI, days		mg/kg abamectin
US trial	0.022	0.0047	7	7	1992 ref 154	0.005
US trial	0.022	0.0047	7	7	1992 ref 154	0.007
US trial	0.022	0.023	8	7	1992 ref 151	< 0.002
US trial	0.022	0.023	8	7	1992 ref 151	< 0.002
US trial	0.022	0.0047	8	7	1992 ref 155	< 0.002
US trial	0.022	0.0047	8	7	1992 ref 155	< 0.002
US trial	0.022	0.049	8	7	1992 ref 159	< 0.002
US trial	0.022	0.0064	9	7	1992 ref 159	0.030
US trial	0.022	0.0064	9	7	1992 ref 159	0.026
US trial	0.022	0.0059	8	7	1992 ref 159	< 0.002
US trial	0.022	0.0059	8	7	1992 ref 159	< 0.002
US trial	0.022	0.0078	8	7	1992 ref 159	< 0.002
US trial	0.022	0.0078	8	7	1992 ref 159	< 0.002
US trial	0.022	0.024	8	7	1992 ref 162	< 0.002
US trial	0.022	0.024	8	7	1992 ref 162	< 0.002
US trial	0.022	0.036	9	7	1992 ref 162	0.006
US trial	0.022	0.036	9	7	1992 ref 162	0.027
US trial	0.022	0.071	6	7	1992 ref 162	< 0.002
US trial	0.022	0.071	6	7	1992 ref 162	< 0.002
Leaf lettuce						
Spanish GAP	0.022	0.0018	3	14		
Spanish trial	0.022	0.0044	4	14	065-92-0003R	< 0.002
Spanish trial	0.022	0.0044	4	14	065-92-0004R	0.002

gl: glasshouse

Table 17. Interpretation table for abamectin residues in dry hops from trials in Table 10. GAP and trial conditions are compared for treatments considered valid for estimating maximum residue levels and STMRs.

		Use patt	ern		Trials	Residues, mg/kg
	kg ai/ha	kg ai/hl	No of	PHI,		abamectin
	-		appl	days		
German GAP	0.023	0.0009	2	28		
German trial	0.023	0.0022	2	28	072-94-0008R	< 0.003
German trial	0.023	0.0022	2	28	072-94-0008R	< 0.003
German trial	0.022	0.0031	2	28	072-94-0005R	< 0.003
German trial	0.022	0.0031	2	28	072-94-0005R	0.022
German trial	0.023	0.0031	2	28	072-94-0007R	0.025
German trial	0.023	0.0031	2	28	072-94-0007R	0.030
German trial	0.023	0.0031	2	28	072-94-0006R	0.022
German trial	0.023	0.0031	2	28	072-94-0006R	0.017
German trial	0.023	0.0011	2	29	072-96-0011R	0.012
German trial	0.023	0.0011	2	30	072-96-0012R	< 0.003
German trial	0.023	0.0009	2	28	072-96-0014R	< 0.005
German trial	0.023		2	30	072-96-0013R	0.011
US GAP	0.022		2	28		
US trial	0.021	0.0045	2	28	001-94-1007R	0.062
US trial	0.022	0.0045	2	28	001-94-1008R	0.015
US trial	0.021	0.0045	2	28	001-94-1006R	0.023
US trial	0.021	0.0045	2	27	001-94-1005R	0.086

FATE OF RESIDUES IN STORAGE AND PROCESSING

The Meeting received information on the fate of abamectin during the processing of apples, pears, potatoes and hops.

A processing study on <u>apples</u> by Morneweck (1992) was reviewed by the 1992 JMPR and the residue data are summarized in the 1992 Residue Evaluations. Processing factors are recorded in Table 18 and were calculated from the B_{1a} rather than the $B_{1a} + B_{1b}$ residues because B_{1b} was undetectable in the initial apples and its inclusion in the calculation would have added an extra error to the processing factor. Avermectin B_{1b} constitutes about 10% of the total residue and probably behaves in the same way as B_{1a} in processing. In cases where no residue was detectable in the processed commodity the processing factor is reported as 0 with a "less than" factor in parentheses calculated from the LOD.

The results suggest that abamectin residues are on the peel only and are reasonably stable during hot drying of the pomace. In products such as juice and apple sauce, which contain no peel, residues are not detectable.

Table 18. Processing factors for apple products (Morneweck, 1992), calculated as the residue levels of B_{1a} in the processed commodities divided by its level in the initial unwashed apples. B_{1a} includes avermectin B_{1a} and its photoisomer 8,9-*Z*-avermectin B_{1a} .

Commodity	Processing factor
Apples, whole unwashed	
Apples, peeled and cored	0 (<0.12)
Apple juice, raw	0 (<0.062)
Apple juice, clarified	0 (<0.062)
Pomace, wet	4.9
Pomace, dry	17.3
Pomace, rehydrated	14.8
Apple sauce	0 (<0.12)

Abamectin was applied twice at 0.027 kg ai/ha with an interval of 14 days to Bartlett <u>pears</u> which were harvested 1-2 hours after the second application for processing (Johnson 1993). The fruit were processed in 11-12 kg lots into canned pear halves and pear purée (Figure 1). Residue levels in the various commodities and calculated processing factors are shown in Table 9.

The processing factors were again calculated from the B_{1a} rather than the $B_{1a}+B_{1b}$ residues because the initial B_{1b} levels were only slightly above the LOD. The processing factors are essentially zero because no residues were detected in any of the final processed commodities or even their immediate precursors. It is likely that vigorous washing and peeling would effectively remove a surface residue such as abamectin.

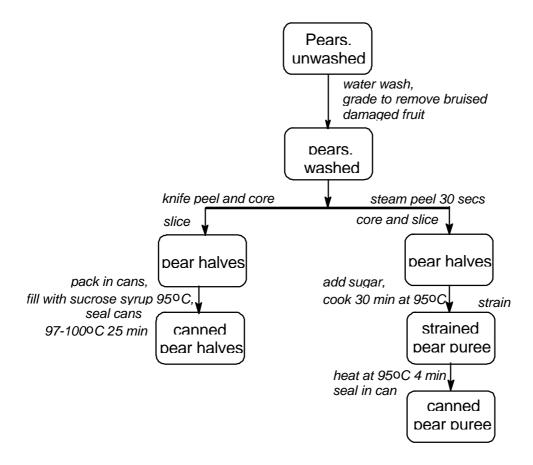
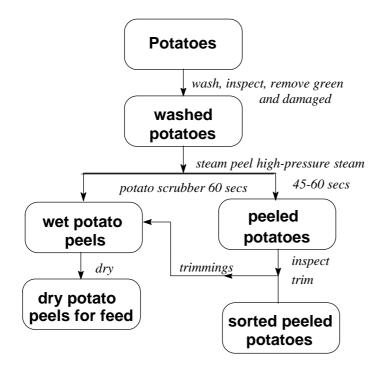


Figure 1. Processing of pears (Johnson, 1993).

Table 19. Abamectin residues in canned pears and purée produced from Bartlett pears treated twice with abamectin (+ oil) at 0.027 kg ai/ha and harvested 1-2 hours after the second application in the USA (Johnson, 1993). Processing factors were calculated as the residue level of B_{1a} in the processed commodities divided by its level of B_{1a} in the initial unwashed pears.

Commodity	Residues, mg/kg		Processing factor
	$B_{1a} + 8,9-Z-B_{1a}$	$B_{1b} + 8,9-Z-B_{1b}$	
Unwashed pears	0.0216	0.0025	
Pear halves (knife peeled and cored)	<0.001	<0.001	
Canned pear halves	< 0.001	< 0.001	0 (<0.046)
Unwashed pears	0.0208	0.0025	
Pear halves (steam peeled and cored)	<0.001	<0.001	
Pear purée, strained	< 0.001	< 0.001	0 (<0.048)
Pear purée, canned	< 0.001	< 0.001	0 (<0.048)


Abamectin was applied at 0.11 kg ai/ha (5 times the label rate) on 6 occasions to the foliage of <u>potatoes</u> in a processing trial in the USA (Colorado) (001-94-1022). Potatoes (135 kg) were harvested 14 days after the final application and processed to peeled potatoes and potato peels (Englar, 1994b). The variety, Russet Nugget, is especially grown for processing.

The process (Figure 2) was designed to simulate commercial practice. The first stage was tub washing for 5-10 minutes to simulate flume washing. The next stage was inspection and sorting to remove cull potatoes. The potatoes were then treated with high-pressure steam followed by a

scrubber to remove the skin loosened by the steam. The final stage was inspection and trimming of damaged or unsuitable tissue with the trimmings added to the peel. The peel was hydraulically pressed, dried to less than 10% moisture and then hammer milled. In a commercial operation, it would be used to feed cattle.

Kvaternick *et al.* (1995) reported that no abamectin residues were detected (<0.002 mg/kg each of B_{1a} and B_{1b}) in the unwashed and washed potatoes and the wet potato peels. Because no residues were detected in these commodities the dry peels and peeled potatoes were not analysed.

Figure 2. Processing of potatoes (Englar, 1994b).

Englar (1994a) described the commercial processing of <u>hops</u> and its laboratory simulation. In the commercial operation freshly harvested hop cones are dried to approximately 7-10% moisture and then ground to release the bitter principles from the lupulin glands. The ground hops are extracted repeatedly with hexane and the extracted (spent) hops are pressed, dried and pelletized. In the laboratory simulation the dried and ground hops (1.3 kg) were placed in a glass column (135 \times 10.2 cm) and extracted with hexane, circulated at 0.5 l/min, for approximately 3.5 hours. The hops were finally extracted with fresh hexane and dried overnight at ambient temperature to produce the spent hops. The extract contains flavour components and is used in the brewing industry while the spent hops become a minor feed commodity.

Hops harvested 27 days after the final treatment in trial 001-94-1005R (Table 10) were processed. The abamectin residues decreased by 19 and 40% (Table 11).

Abamectin residues, mg/kg			Processing factor	
Dried hops		Spent hops		
B _{1a}	B _{1b}	B _{1a}	B _{1b}	
0.086	0.0075	0.069	0.0063	0.81
0.082	0.0073	0.049	< 0.005	0.60

Table 20. Abamectin residues depletion in dry and spent hops (Englar 1994a). See Table 10 for deatails of treatment and harvesting of the hops in trial 001-94-1005R used for processing.

Johnson (1995b) measured the abamectin residues in fresh and dry hops from supervised residue trials in Germany (Table 10). The hops were dried for 6 hours at 62°C in kilns; the weight of the dried product was approximately 20% of the fresh weight. Processing (drying) factors were calculated for avermectin B_{1a} for 13 cases where the residues were above the LOQ in both the fresh and dried hops. Avermectin B_{1b} was not included in the calculation because it was not detected. The processing factors (in rank order) were 2.22, 2.53, 2.55, 2.64, 3.48, 3.97, 4.22, 4.43, 4.56, 4.60, 5.15, 5.79 and 6.98. The mean was 4.09, so on average about 80% of the abamectin survived the drying process.

Residues in the edible portion of food commodities

Abamectin residues were not detected in the pulp of melons from supervised trials in Brazil where treatment was at 0.014 and 0.029 kg ai/ha. The melons were harvested 0, 3 and 7 days after the final treatment.

Abamectin residues were not detected (<0.001 mg/kg) in peeled and cored apples, raw juice, clarified juice or apple sauce produced from treated apples, or in pear halves or purée from treated pears.

NATIONAL MAXIMUM RESIDUE LIMITS

The Meeting was aware that the following MRLs had been established for abamectin.

Country	MRL, mg/kg	Commodity	
Argentina	0.01	Cotton seed, citrus fruit, cucumber, melon, pear, pepper, tomato,	
-		watermelon	
	0.02	Strawberry	
	0.05	Celery	
Australia	0.005	Cattle meat, milk	
	0.01	Apple, cotton seed, pear, tomato	
	0.02	Strawberry	
	0.1	Cattle edible offal, cattle fat	
Brazil	0.001	Milk	
	0.005	Citrus fruit, cotton seed, potato	
	0.01	Apple, bell pepper, cucumber, meat, tomato, watermelon	
	0.02	Strawberry	
Canada	0.02	Apple, pear	
France	0.01	Apple, pear	
	0.02	Courgette, cucumber, egg plant, endive, lambs' lettuce, lettuce,	
		melon, pepper, strawberry, tomato	
Germany	0.02	Cucumber, egg plant, sweet pepper, strawberry, tomato, zucchini	
	0.05	Hops	

Country	MRL, mg/kg	Commodity		
Israel	0.005	Cotton seed, milk		
	0.01	Apple, celery, citrus fruit, cucurbits, egg plant, pear, potato,		
		strawberry, tomato		
	0.02	Pepper		
Italy	0.01	Pear, tomato		
Mexico	0.005	Cotton seed		
	0.01	Tomato		
	0.02	Citrus, strawberry		
	0.05	Celery		
Netherlands	0.01	Cucumber, gherkin, zucchini		
	0.02	Egg plant, pepper, tomato		
	0.05	Endive, iceberg lettuce, lettuce		
New Zealand	note ¹	Apple, pear, strawberry, tomato		
South Africa	0.01	Apple, pear		
	0.02	Strawberry		
	0.05	Cotton seed, tomato		
Spain	0.01	Celery, citrus fruit, cotton seed, cucurbits, lettuce, pear, pepper, strawberry, tomato		
Switzerland	0.01	Cucumber, egg plant, pear, strawberry, sweet pepper, tomato		
USA	0.005	Almond nutmeat, cotton seed, cucurbits (cucumbers, squashes,		
		melons), milk, potato, walnuts		
	0.01	Bell pepper, tomato		
	0.015	Cattle, fat		
	0.02	Apple, cattle meat, cattle meat byproducts, citrus whole fruit, pear,		
		strawberry		
	0.05	Celery, head lettuce		
	0.07	Tomato pomace		
	0.1	Apple wet pomace, almond hulls, citrus dried pulp, citrus oil,		
	0.2	Hops dried		

¹Not required as residue levels are <0.01 mg/kg when product is used according to label instructions

APPRAISAL

Abamectin was first evaluated at the 1992 JMPR and subsequently in 1994. MRLs have been recommended for a number of crops and animal commodities.

The Meeting received information on current registered uses, methods of analysis and data on residues in supervised trials on the additional crops apples, potatoes and hops as well as new trials on pears, cucurbits, lettuce and tomatoes. Processing data were available for apples, pears, potatoes and hops.

The predominant residues from the use of abamectin on crops are avermectin B_{1a} , avermectin B_{1b} and the photoisomers 8,9-Z-avermectin B_1 (B_{1a} and B_{1b}) produced during exposure to sunlight. Analytical methods that measure the components of the residue rely on HPLC separation and fluorescence detection of derivatives formed by converting the cyclohexene ring to an aromatic ring. The abamectin residue appears as two peaks on the chromatogram (B_{1a} and its photoisomer in one peak and B_{1b} and its photoisomer in the other). The LOD for each peak is in the range 0.002-0.005 mg/kg.

Abamectin residues were shown to be stable in samples of fresh and dried hops during freezer storage for the periods tested (150-190 days).

The Meeting noted that the definition proposed by JECFA (1997) for residues in the liver, kidney and fat of animals subject to veterinary treatment with abamectin does not include the 8,9-Z-isomer ()-8,9- isomer), because it is not present in animal tissues when abamectin is used directly on

the animal. However, residues in animal tissues arising from residues in animal feed would include the 8,9-Z- isomer. The Meeting agreed that the wider definition (including the 8,9-Z- isomer) was appropriate for a laboratory carrying out enforcement or monitoring analyses because the analyst would not know whether the residue in the animal originated only from veterinary treatment or also from the feed. The wider definition accommodates both situations.

Inclusion or exclusion of avermectin B_{1b} from the definition of the residue is a matter of judgement. In many crop situations B_{1b} is present at approximately 10% of the total residue and the analytical methods measure B_{1a} and B_{1b} by the same procedure so B_{1b} results are always available and may as well be used.

Avermectin B_{1b} forms a photoisomer 8,9-Z-avermectin B_{1b} in sunlight in the same way as avermectin B_{1a} does. The studies of photolysis were with avermectin B_{1a} , so when the JMPR reviewed the studies in 1992 the possibility of 8,9-Z-avermectin B_{1b} being produced was not taken into account. In practice the contribution of 8,9-Z-avermectin B_{1b} to the residue will be small but it should be recognized that the HPLC measurement of avermectin B_{1b} residues includes any 8,9-Zavermectin B_{1b} . The Meeting agreed to revise the definition of the residue accordingly, and recommended the following definition for compliance with MRLs and for the estimation of dietary intake.

Sum of avermectin B_{1a}, avermectin B_{1b}, 8,9-Z-avermectin B_{1a} and 8,9-Z-avermectin B_{1b}.

The Meeting received data from supervised residue trials on apples, pears, cucumbers, melons, summer squash, tomatoes, lettuce, potatoes and hops.

The B_{1b} component, when its residues were measurable, was consistently about 10% or less of the total residue. For the purposes of evaluation, when B_{1a} was positively detected and B_{1b} was not detectable the total residue was calculated by taking the undetectable residue to be zero.

When both components in a trial were not detectable (ND) the total residue was taken as below the limit of detection. A residue reported as NQ (not quantifiable, detected but below the limit of determination LOD) is treated as equal to the LOD when it is to be added to a measurable residue.

The method of calculating the total residue for various situations is illustrated by the examples below.

B _{1a}	B _{1b}	Total residue
0.013	NQ (>0.001 but <0.002)	0.015
0.006	ND (<0.001)	0.006
NQ	ND	< 0.002
ND	ND	< 0.001

Abamectin is registered for single applications on <u>apples</u> in Australia at 0.014 kg ai/ha with harvest after an interval of 14 days. In three trials corresponding to this use pattern the abamectin residues were <0.002, 0.003 and 0.005 mg/kg.

Abamectin is permitted for use on pome fruit in New Zealand with one application at 0.027 kg ai/ha and a PHI of 14 days. Abamectin residues in apples were 0.004 and 0.007 mg/kg in two New Zealand trials where GAP was followed except that two applications were made instead of one.

Abamectin is registered in the USA for two applications on apples at a rate of 0.026 kg ai/ha with harvest 28 days after the final application. In 14 US trials according to these conditions

abamectin residues in rank order (median underlined) were <0.001 (2), <0.002 (3), 0.002, <u>0.003</u> (4), 0.004, 0.006, 0.007 and 0.012 mg/kg.

The residue data from Australia, New Zealand and the USA appear to be from one population and can therefore be combined. The residues of abamectin in apples in rank order in the 19 trials (median underlined) were <0.001 (2), <0.002 (4), 0.002, 0.003 (5), 0.004 (2), 0.005, 0.006, 0.007 (2) and 0.012 mg/kg.

The Meeting estimated a maximum residue level of 0.02 mg/kg and an STMR level of 0.003 mg/kg for abamectin in apples.

In the USA abamectin is registered for use on <u>pears</u> at 0.013-0.026 kg ai/ha with two applications permitted at the higher rate and a 28-day PHI. Data from four US trials were provided. The results of supervised trials on pears had previously been reported to the 1992 JMPR. A number of residue decline trials on pears in the USA had shown that the typical half-life was approximately 18 days. At such a rate residues at harvest 21 and 37 days after the final treatment would be $\pm 30\%$ of those at 28 days. The range of pre-harvest intervals for acceptance of the residues was therefore taken as 21-37 days. Abamectin residues in pears from the four trials according to US GAP were 0.004, 0.006, 0.009 and 0.011 mg/kg.

The 1992 monograph recorded one pear trial according to Argentinian GAP, (abamectin <0.005 mg/kg), one according to French GAP (<0.002 mg/kg) and four according to Italian GAP (<0.002 and <0.005 (3) mg/kg).

The residues in the trials in different countries appear to be of the same order, giving residues in rank order (median underlined) of <0.002 (2), 0.004, <0.005 (4), 0.006, 0.009 and 0.011 mg/kg.

The Meeting estimated a maximum residue level for abamectin in pears of 0.02 mg/kg, to replace the previous estimate of 0.01^* mg/kg, and an STMR level of 0.005 mg/kg.

In the USA <u>melons</u> may be treated with abamectin at 0.011-0.021 kg ai/ha on three occasions at the higher rate and harvested 7 days after the final treatment. Abamectin residues were not detectable (<0.002 mg/kg) in 9 trials in the USA on cantaloupes according to US GAP, except that there were 4 or 5 applications instead of 3, or in two trials on watermelons under the same conditions. Because the use patterns are the same, watermelons and melons can be evaluated together.

Melons may be treated with abamectin three times at rates up to 0.022 kg ai/ha and harvested three days after the final application according to the registered use in Spain. Abamectin residues were not detected (<0.002 mg/kg) in cantaloupes treated according to Spanish GAP, except that there were four applications, in two glasshouse trials in Spain. Three trials on cantaloupe in France with the same treatment yielded residues of <0.002, <0.005 and <0.005 mg/kg.

Trials on cantaloupes in Brazil and Mexico and on honey-dew melons in Mexico could not be evaluated because there was no information on corresponding GAP. In the Brazilian trials the edible pulp was analysed for abamectin and no residues were detected in any samples in any trial, suggesting that abamectin residues are probably absent from the edible parts of melons.

In summary abamectin residues in melons from trials according to GAP were <0.002, <0.005 and <0.005 mg/kg in France, <0.002 mg/kg (2)) in Spain, <0.002 (9) mg/kg in the USA and <0.002 mg/kg (2) in watermelons in the USA. The residues in melons and watermelons in rank order were <0.002 (14) and <0.005 (2) mg/kg.

The Meeting estimated maximum residue levels of 0.01* mg/kg as being a practical limit of determination, and an STMR level of 0.002 mg/kg, for abamectin in melons and watermelons.

Abamectin is registered for use in the USA on <u>cucumbers</u> and <u>squash</u> at 0.011-0.021 kg ai/ha with three applications at the higher or six at the lower rate, and harvest 7 days after the final treatment. In four US trials on cucumbers at 0.021 or 0.022 kg ai/ha, but with four applications instead of three, residues were undetectable in three trials (<0.002 mg/kg) and below the LOD in the other (<0.005 mg/kg). In four US trials on zucchini (summer squash) under the same conditions no abamectin residues were detectable (<0.002 mg/kg).

Mexican trials on cucumbers and pickling cucumbers could not be evaluated because no information on relevant GAP was available.

The registered use of abamectin on glasshouse cucumbers in Germany permits 5 applications of 0.023 kg ai/ha with harvest three days after the final application. Treatment is not permitted between November and February. Two French trials according to this use pattern were recorded in the 1992 monograph. The resultant abamectin residues were <0.002 and <0.005 mg/kg. A third trial with applications during October and November produced a residue of 0.034 mg/kg, but the conditions were no longer according to GAP.

GAP for abamectin on cucumbers in Spain permits three applications at 0.022 kg ai/ha with harvest three days after the last. Two glasshouse trials in Spain and three trials in Italy (one glasshouse) according to this use pattern but with 4 or 5 applications were recorded in the 1992 monograph. The residues were <0.002, <0.005 (2), 0.006 and 0.008 mg/kg.

GAP for glasshouse cucumbers in The Netherlands allows 5 applications of 0.023 kg ai/ha and harvest three days after the final application. In two trials on cucumbers under these conditions the residues were 0.007 and 0.008 mg/kg, as recorded in the 1992 monograph.

In summary, the residues in cucumbers from trials according to GAP were <0.002 (3) and <0.005 mg/kg in the USA, <0.002 and <0.005 mg/kg in France, <0.002, <0.005 (2), 0.006 and 0.008 mg/kg in Spain and Italy, and 0.007 and 0.008 mg/kg in The Netherlands. The residues in rank order (median underlined) were <0.002 (5), <0.005 (4), 0.006, 0.007 and 0.008 (2) mg/kg.

The Meeting estimated a maximum residue level for abamectin in cucumbers of 0.01 mg/kg, to replace the previous estimate of 0.05 mg/kg, and an STMR of 0.005 mg/kg.

The four trials on summer squash in the USA were evaluated with the support of the four on cucumbers. Abamectin residues from the 8 trials were <0.002 (7) and <0.005 mg/kg.

The Meeting estimated a maximum residue level for abamectin on summer squash of 0.01* mg/kg as being a practical limit of determination, and an STMR of 0.002 mg/kg.

Abamectin is registered for four applications to glasshouse <u>tomatoes</u> in The Netherlands at 0.023 kg ai/ha with a PHI of three days. Abamectin residues in tomatoes from trials which complied with GAP were 0.007 (2), 0.009, 0.012 (2) and 0.017 mg/kg. Two of the tomato trials in The Netherlands reported in the 1992 monograph (refs 211 and 212) were not according to current GAP because applications were made during the months of November and December. Current GAP restricts the treatment of glasshouse tomatoes to the months of March to October when photodegradation of abamectin residues is sufficient. Two other trials (refs 217 and 218) were according to current GAP because abamectin was applied in May and June. The residues from these two trials were 0.008 and 0.005 mg/kg.

abamectin

GAP in Argentina permits 9 applications of abamectin at 0.022 kg ai/ha to tomatoes with a 3-day PHI. In the three trials with conditions close to GAP (0.020-0.028 kg ai/ha and 5-9 applications) recorded in the 1992 monograph the residues were <0.002 (2) and <0.005 mg/kg.

In Brazil abamectin may be applied to tomatoes at 0.022 kg ai/ha with harvest three days after the final application. Three Brazilian trials recorded in the 1992 monograph were close to these conditions, with residues of <0.005 (2) and 0.017 mg/kg.

Three French trials recorded in 1992 were evaluated according to German GAP (5 applications of 0.023 kg ai/ha applied to glasshouse tomatoes with harvest three days after the final application). Tomatoes were treated 10 times in one trial, but it was evaluated because residues apparently disappeared quickly and the number of applications would not influence the final residue. The residues were <0.002 (2), and <0.005 mg/kg.

Two Italian trials recorded in 1992 complied with the Italian application rate (0.022 kg ai/ha) and PHI (7 days), but there were ten applications instead of two. The results were again considered acceptable because the residues were disappearing quickly. The residues in both trials were <0.002 mg/kg.

In Spain abamectin may be used on tomatoes at 0.022 kg ai/ha with a PHI of three days. The residues in tomatoes from four trials recorded in the 1992 monograph with application rates in the range 0.015-0.027 kg ai/ha were <0.005 (3) and 0.009 mg/kg.

GAP in the USA specifies three applications of 0.021 kg ai/ha and harvest 7 days after the final application. Eighteen US trials are recorded in the 1992 monograph at this application rate and a PHI of 7 days or less, but with 8-12 applications. The residues had usually disappeared within a few days so it is unlikely that early applications had any influence on the final residues. The residues were <0.002 (13), <0.005 (4) and 0.005 mg/kg.

In summary, the residues in tomatoes from trials according to GAP were 0.005, 0.007 (2), 0.008, 0.009, 0.012 (2) and 0.017 mg/kg in The Netherlands, <0.002 (2) and <0.005 mg/kg in Argentina, <0.005 (2) and 0.017 mg/kg in Brazil, <0.002 (2) and <0.005 mg/kg in France, <0.002 (2) mg/kg in Italy, <0.005 (3) and 0.009 mg/kg in Spain and <0.002 (13), <0.005 (4) and 0.005 mg/kg in the USA. The residues in rank order (median underlined and Netherlands results in bold) were <0.002 (19), <0.005 (11), 0.005, 0.005, 0.007 (2), 0.008, 0.009, 0.009, 0.012 (2), 0.017 and 0.017 mg/kg.

The residues in The Netherlands appear to belong to a different population from the others, with a median of 0.0085 mg/kg.

The Meeting estimated a maximum residue level for abamectin in tomatoes of 0.02 mg/kg, the same as the previous estimate, and an STMR of 0.0085 mg/kg.

GAP in The Netherlands permits four applications of abamectin to <u>lettuce</u> at 0.014 kg ai/ha with harvest 14 days after the final application, but only from 1 March to 1 November. In four glasshouse trials in The Netherlands according to GAP the residues in head lettuce were 0.016, 0.025, 0.029 and 0.029 mg/kg.

Abamectin may be used four times on lettuce in France at 0.009 kg ai/ha with harvest 7 days after the final application. In three French trials where the application rate was approximately 25% higher than this, but within the acceptable range for evaluation, the residues were <0.001, 0.004 and 0.023 mg/kg.

In Spain abamectin may be applied three times to lettuce at 0.022 kg ai/ha with harvest 14 days after the final application. In two Spanish and three French trials at this rate and PHI, but with

abamectin

four applications instead of three, the abamectin residues were <0.002, 0.005, 0.013, 0.028 and 0.040 mg/kg.

Trials on lettuce in the USA recorded in the 1992 monograph could not be evaluated because the number of applications, 6-10, was excessive for a sometimes persistent residue compared with the three applications permitted.

In summary, the residues in head lettuce from trials according to GAP were 0.016, 0.025, 0.029 and 0.029 mg/kg in The Netherlands, <0.001, 0.004 and 0.023 mg/kg in France and <0.002, 0.005, 0.013, 0.028 and 0.040 mg/kg in Spain. The residues reported in 1992 in rank order (median underlined) were 0.016, 0.016, 0.033, 0.047, 0.059 and 0.077 mg/kg.

The Meeting estimated a maximum residue level for abamectin in almonds of 0.01* mg/kg as being a practical limit of determination and, because no residues were detected in the trials at normal and double rates, an STMR of 0 mg/kg. The Meeting also estimated maximum residue and STMR levels for abamectin on almond hulls of 0.1 mg/kg and 0.040 mg/kg respectively.

GAP in the USA for <u>walnuts</u> is the same as for almonds. Abamectin residues were not detected (<0.002 mg/kg) in walnuts from six US trials recorded in 1992 according to the maximum US application rate but harvested after 14 days, or in those from four other trials at a double rate.

The Meeting estimated a maximum residue level for abamectin in walnuts of 0.01^* mg/kg as being a practical limit of determination, and an STMR of 0 mg/kg.

Abamectin is registered for use on <u>hops</u> in Germany and the USA with two applications of 0.023 and 0.022 kg ai/ha respectively and a PHI of 28 days. The residues in dry hops from 12 German and 4 US trials according to GAP in rank order (median underlined) were <0.003 (4), <0.005, 0.011, 0.012, 0.015, 0.017, 0.022 (2), 0.023, 0.025, 0.030, 0.062 and 0.086 mg/kg.

The Meeting estimated maximum residue and STMR levels of 0.1 mg/kg and 0.016 mg/kg respectively.

A feeding study on dairy cows recorded in the 1992 monograph showed that residues in the milk, liver, muscle, fat and kidney did not exceed 0.004, 0.020, 0.002, 0.014 and 0.005 mg/kg respectively at a feeding level of 0.1 ppm. The residues in animal commodities arising from the consumption of abamectin-treated almond hulls should not exceed current draft MRLs.

Information on the fate of abamectin residues during the processing of apples, pears, potatoes and hops was provided.

Abamectin residues were not detectable in the juice or sauce produced from treated apples, but were concentrated in pomace, a result expected from the nature of abamectin as a surface residue. The calculated processing factors were <0.062 for juice, <0.12 for apple sauce and 17.3 for dry pomace. The "<" signs indicate derivation from the LOD for abamectin in the processed commodities.

The supervised trials median residues for the processed commodities (STMR-Ps) calculated from the processing factors and the STMR level for apples (0.003 mg/kg) are apple juice 0.00019 mg/kg, apple sauce 0.00036 mg/kg and dry apple pomace 0.052 mg/kg.

Abamectin residues were not detectable in pear halves or pear purée produced from treated pears. The calculated processing factors were canned pear halves <0.046 and pear purée <0.048.

The STMR-Ps for the processed commodities calculated from the processing factors and the STMR for pears (0.005 mg/kg) were canned pear halves 0.00023 mg/kg and pear purée 0.00024 mg/kg.

The processing study on potatoes could not be completed because no abamectin residues were detectable in the treated potatoes.

Abamectin-treated hops were processed by exhaustive hexane extraction of dry hops to produce a solvent extract and spent hops. The extract contains flavour components and is used in the brewing industry while the spent hops become a minor feed commodity. Most of the abamectin residues remained in the spent hops. The mean processing factor from dry hops to spent hops was 0.71.

The mean processing factor for abamectin residues during the conversion of fresh hops to dry hops was 4.09, suggesting that approximately 80% of the abamectin survived the drying process.

The 1992 JMPR recommended MRLs for cattle meat and offal of 0.01* and 0.05 mg/kg respectively on the basis of possible abamectin residues in animal feed commodities.

On the basis of veterinary uses the 1996 JECFA recommended MRLs for residues defined as avermectin B_{1a} of 100 µg/kg for cattle fat and liver, and 50 µg/kg for kidney.

The Meeting agreed that MRLs should accommodate both agricultural and veterinary uses where the necessary information is available, and agreed to replace the recommendation for edible offal with recommendations for MRLs in fat, liver and kidney in line with the levels recommended by JECFA.

It is not clear whether the current recommendation for cattle meat (0.01 mg/kg) would accommodate veterinary uses. The Meeting recommended that JECFA be requested to suggest an appropriate maximum residue level in cattle meat, and to consider accepting the broader definition of the residue to accommodate the residues which occur as a result of agricultural as well as veterinary uses.

RECOMMENDATIONS

On the basis of the data from supervised trials the Meeting concluded that the residue levels listed below are suitable for establishing maximum residue limits.

Definition of the residue (for compliance with MRL and for estimation of dietary intake): Sum of avermectin B_{1a} , avermectin B_{1b} , 8,9-Z-avermectin B_{1a} and 8,9-Z-avermectin B_{1b} .

Commodity		Recomi MRL, n		Based on PHI, days	STMR, mg/kg	STMR-P, mg/kg
CCN	Name	new	current			
TN 0660	Almond	0.01*		21	0	
	Almond hulls	0.1		21	0.040	
FP 0226	Apple	0.02	-	14-28	0.003	
MF 0812	Cattle fat	0.1 V	-			
MO 1289	Cattle kidney	0.05 V	Note ¹			
MO 1281	Cattle liver	0.1 V	Note ¹			
MO 0812	Cattle, Edible offal of	W	0.05			
VC 0424	Cucumber	0.01	0.05	3-7	0.005	
DH 1100	Hops, dry	0.1	-	28	0.016	
VL 0482	Lettuce, Head	0.05	-	7-14	0.020	
VC 0046	Melons, except Watermelon	0.01*	-	3-7	0.002	

abamectin

Commodity		Recom MRL, 1	mended ng/kg	Based on PHI, days	STMR, mg/kg	STMR-P, mg/kg
CCN	Name	new	current			
FP 0230	Pear	0.02	0.01*	14-21	0.005	
VR 0589	Potato	0.01*	-	0-14	0	
VC 0431	Squash, Summer	0.01*	-	7	0.002	
VO 0448	Tomato	0.02	0.02	3	0.0085	
TN 0678	Walnut	0.01*		14	0	
VC 0432	Watermelon	0.01*	-	7	0.002	
	Apple juice					0.00019
	Apple sauce					0.00036
	Canned pears					0.00023
	Pear purée					0.00024

* MRL at or about limit of determination.

W: previous recommendation withdrawn.

V: includes residues which may arise from veterinary uses.

¹The current recommendation for Cattle edible offal is to be replaced by recommendations for Cattle kidney and Cattle liver to accommodate JECFA recommendations arising from veterinary uses with abamectin.

REFERENCES

Akira, P.T. and da Silva, R.A. 1995. The effect of 4 weekly applications of 1.8% EC abamectin on the subsequent residue of abamectin on potato. Report 015-94-9052R. Intituto Biológico, São Paulo, Brazil. Unpublished.

Arenas, R.V. 1997a. The effect of freezer storage on the magnitude of the residues of avermectin B1 and 8,9-Z avermectin B1 in dried hops. Protocol No. 4166. Merck & Co. Inc., USA. Unpublished.

Arenas, R.V. 1997b. The effect of freezer storage on the magnitude of the residues of avermectin B1 and 8,9-Z avermectin B1 in fresh hops. Protocol No. 4167. Merck & Co. Inc., USA. Unpublished.

Balluff, M. 1995. Generation of field samples for the determination of residues of abamectin in hops under field conditions at four locations in Germany. Study 94086-FPHO. Trials 072-94-0005R, 072-94-0006R, 072-94-0007R, 072-94-0008R. GAB Biotechnologie GmbH & IFU Umweltanalytik GmbH, Germany. Unpublished.

Blaschke, U. 1992a. Uptake and decline study with LX1225-01 (Vertimec 1.8 EC) applied to apples in Germany. MSD study 072-91-0005R. Protocol D-1714-91-225-01-02B-09. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992b. Uptake and decline study with LX1225-01 (Vertimec 1.8 EC) applied to apples in Germany. MSD study 072-91-0006R. Protocol D-1714-91-225-01-02B-10. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992c. Raw agricultural commodity study with LX1225-01 (Dynamec 1.8 EC) applied to apples in the United Kingdom. MSD study 074-91-0003R.

Protocol GB-1714-91-225-01-02B-19. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992d. Uptake and decline study with LX1225-01 (Dynamec 1.8 EC) applied to apples in the United Kingdom. MSD study 074-91-0004R. Protocol GB-1714-91-225-01-02B-20. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992e. Raw agricultural commodity study with LX1225-01 (Vertimec 1.8 EC) applied to apples in Spain. MSD study 065-91-0007R. Protocol S-1714-91-225-01-02B-14. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992f. Uptake and decline study with LX1225-01 (Vertimec 1.8 EC) applied to apples in Spain. MSD study 065-91-0009R. Protocol S-1714-91-225-01-02B-16. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992g. Uptake and decline study with LX1225-01 (Vertimec 1.8 EC) applied to apples in France. MSD study 066-91-0016R. Protocol F-1714-91-225-01-02B-01. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992h. Raw agricultural commodity study with LX1225-01 (Vertimec 1.8 EC) applied to apples in France. MSD study 066-91-0017R. Protocol F-1714-91-225-01-02B-02. Landis Europe S.A., Luxembourg. Unpublished.

Blaschke, U. 1992i. Raw agricultural commodity study with LX1225-01 (Vertimec 1.8 EC) applied to apples in Germany. MSD study 072-91-0004R. Protocol D-1714-91-225-01-02B-08. Landis Europe S.A., Luxembourg. Unpublished.

Brown, R.D. 1995. Determination of the magnitude of residues of avermectin B1 and 8,9-Z avermectin B1 in/on the raw agricultural commodity, dried hops, and in spent hops from abamectin 0.15 EC applied by ground equipment. Study 618-936-94035. Trials 001-94-1005R, 001-94-1006R, 001-94-1007R, 001-94-1008R. Merck & Co., USA. Unpublished.

Calkin, J.D. 1992. Determination of the magnitude of the residues of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Report 001-92-6012R. HRFS project 92321. Hulst Research Farm Services, USA. Unpublished.

Celino, L. 1992a. High-performance liquid chromatography-fluorescence determination for avermectin B1 and its 8,9 isomer in cucumbers from Mexico. Trials 002-90-0011R, 002-90-0012R, 002-90-0016R. Report HWI 6012-363. Hazelton Wisconsin, USA. Unpublished.

Celino, L. 1992b. High-performance liquid chromatography fluorescence determination for avermectin B1 and its delta 8,9 isomer in melons from France. Trials 066-91-0003R, 066-91-0004R, 066-91-0005R. Report HWI 6012-376. Hazelton Wisconsin, USA. Unpublished.

Celino, L. 1992c. High-performance liquid chromatography fluorescence determination for avermectin B1 and its 8,9 isomer in melons. Trials 065-91-0003R, 065-91-0004R. Report HWI 6012-373. Hazelton Wisconsin, USA. Unpublished.

Celino, L. 1993a. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on melons from abamectin 0.15EC applications made with ground equipment. Part of 618-936-93127. Trial 001-91-6010R. Project 6012-377. Hazelton Wisconsin, USA. Unpublished.

Celino, L. 1993b. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on melons from abamectin 0.15EC applications made with ground equipment. Part of 618-936-93127. Trial 001-91-6011R. Project 6012-375. Hazelton Wisconsin, USA. Unpublished.

Cenjor, R.L. 1992a. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity field-grown head lettuce, from abamectin 1.8 EC applications by ground equipment in Spain. Cooperator report 065-92-0001R. Unpublished.

Cenjor, R.L. 1992b. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity field-grown head lettuce, from abamectin 1.8 EC applications by ground equipment in Spain. Cooperator report 065-92-0002R. Unpublished.

Cenjor, R.L. 1992c. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity field-grown leafy lettuce, from abamectin 1.8 EC applications by ground

equipment in Spain. Cooperator report 065-92-0003R. Unpublished.

Cenjor, R.L. 1992d. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity field-grown leafy lettuce, from abamectin 1.8 EC applications by ground equipment in Spain. Cooperator report 065-92-0004R. Unpublished.

Clements, B. 1995. Avermectin B1: the determination of the residue in lettuce. Report 453/8-1012. Includes 070-94-0001R, 070-94-0002R, 070-93-0007R, 070-93-0008R. Hazleton Europe. Unpublished.

Cobin, J. 1995. A rapid HPLC residue method for the quantitation of avermectin B1 and 8,9-Z avermectin B1 in apples using fluorescence detection. Method M-007.1. Merck Research Laboratories, USA. Unpublished.

Cobin, J.A. 1989. HPLC-fluorescence determination for avermectin B_1 and its 8,9 isomer in cucumbers Method 8920. Merck & Co. Inc., USA. Unpublished.

Cobin, J.A. and Johnson, N.A. 1995. Liquid chromatographic method for rapid determination of total avermectin B_1 and 8,9-Z-avermectin B_1 residues in apples. *Journal of AOAC International*, <u>78</u>, 419-423.

Cobin, J.A. and Johnson, N.A. 1996. Liquid chromatographic method for determination of total avermectin B_1 and 8,9-Z-avermectin B_1 residues in hops. *Journal of AOAC International*, <u>79</u>, 503-507.

Collett, M.G., Mitchell, L.W. and Hall, A. 1996. Collection of fruit samples for residue analysis following one application of Vertimec to apples. Three trials, New South Wales, Victoria and Tasmania, 1996. Report MERCK/967. Includes 114-95-0001R, 114-95-0002R, 114-95-0003R. Agrisearch Services Pty Ltd., Australia. Unpublished.

De Foliart, L. 1994. Determination of the magnitude of residues of avermectin B_1 and 8,9-Z avermectin B_1 in/on the raw agricultural commodity, potatoes, from abamectin 0.15EC applied with paraffinic oil by ground equipment. Field residue trial notebook. Trial 001-94-1022R. Study 93671. Research Designed for Agriculture, USA. Unpublished.

Duchene, P. and Goller, G. 1997. Assay of total avermectin B1 and 8,9-Z avermectin B1 observed in hops (immature, fresh and dried). Study code MER/AVE/96092. E-96-MK-936-HOP. ADME Bioanalyses, France. Unpublished.

Duchene, P., Communal, P.Y., and Goller, G. 1997. Validation of the method for residue analysis of avermectin observed in hops (dried, fresh and immature). Study code MER/AVE/96091. E-96-MK-936-HOP. ADME Bioanalyses, France. Unpublished.

Egan, R.S. 1993. Determination of the magnitude of the residues of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers and apple processed fractions.

Summary of the residue data in support of registration for the use of abamectin on apples. Relates to 618-936-AP. Trials 001-90-5016R, 001-90-5018R, 001-91-1021R, 001-91-1023R, 001-91-1024R, 001-91-3000R, 001-91-6106R, 001-91-6024R, 001-92-0026R, 001-92-0027R, 001-92-1014R, 001-92-1018R, 001-92-3020R, 001-92-6012R. Merck & Co, Inc., USA. Unpublished.

Egan, R.S. 1994. Determination of the magnitude of the residues of avermectin B1 and 8,9-Z-avermectin B1 in/on cucurbits from abamectin 0.15 EC applications made with ground equipment. Summary of the residue data in support of registration for the use of abamectin on cucurbits. Relates to 618-936-93127. Trials 001-91-1025R, 001-91-1026R, 001-91-1027R, 001-91-6010R, 001-92-0020R, 001-92-0021R, 001-92-0029R, 001-92-0030R, 001-92-1001R, 001-92-1019R, 001-92-1020R, 001-92-3014R, 001-92-3019R, 001-92-6013R, 001-92-6015R. Merck & Co, Inc., USA. Unpublished.

Englar, W.J. 1994a. Determination of the magnitude of residues of avermectin B1 and 8,9-Z avermectin B1 in/on the raw agricultural commodity, dried hops, and in spent hops from abamectin 0.15 EC applied by ground equipment. Protocol 4035. Trial 001-94-1005R. Wm J. Englar & Associates, Inc., USA. Unpublished.

Englar, W.J. 1994b. Determination of the magnitude of residues of avermectin B_1 and 8,9-Z avermectin B_1 in/on the raw agricultural commodity, potatoes, from abamectin 0.15 EC applied with paraffinic oil by ground equipment. Protocol 3671. Trial 001-94-1022R. Wm J. Englar & Associates, Inc., USA. Unpublished.

Garozi, J. and Piffer, R. 1995a. Analise de residuos de abamectin em batata (*Solanum tuberosum*) apos aplicação de Vertimec 18 CE. Trial 015-94-9050R. Universidade Federal do Espirito Santo, Brazil. Unpublished.

Garozi, J. and Piffer, R. 1995b. Analise de residuos de abamectin em batata (*Solanum tuberosum*) apos aplicação de Vertimec 18 CE. Trial 015-94-9051R. Universidade Federal do Espirito Santo, Brazil. Unpublished.

Garozi, J. and Piffer, R. 1995c. Analise de residuos de abamectin em batata (*Solanum tuberosum*) apos aplicação de Vertimec 18 CE. Trial 015-94-9052R. Universidade Federal do Espirito Santo, Brazil. Unpublished.

Geuijen, I.G. 1993a. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity tomato, from abamectin 1.8 EC applications by ground equipment in The Netherlands (field phase). Report 070-93-0001R (F-93-23-NL-00). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1993b. Determination of the magnitude of residues in/on the raw agricultural commodity tomato, from abamectin 1.8 EC applications in The Netherlands (field phase). Report 070-93-0002R (F-93-23-NL-00). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1994a. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse tomato, from abamectin 1.8 EC applications by ground equipment in The Netherlands (field phase). Report 070-93-0003R (F-93-23-NL-01). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1994b. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse tomato, from abamectin 1.8 EC applications by ground equipment in The Netherlands (field phase). Report 070-93-0004R (F-93-23-NL-01). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1994c Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse tomato, from abamectin 1.8 EC applications by ground equipment in The Netherlands (field phase). Report 070-93-0005R (F-93-23-NL-01). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1994d Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse tomato, from abamectin 1.8 EC applications by ground equipment in The Netherlands (field phase). Report 070-93-0006R (F-93-23-NL-01). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1995a. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse grown lettuce from abamectin 1.8 EC applications by ground equipment in The Netherlands. Report 070-93-0007R (F-93-23-NL-02). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1995b. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse grown lettuce from abamectin 1.8 EC applications by ground equipment in The Netherlands. Report 070-93-0008R (F-93-23-NL-02). Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1995c. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse grown lettuce from abamectin 1.8 EC applications by ground equipment in The Netherlands. Report 070-94-0001R. Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished.

Geuijen, I.G. 1995d. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity greenhouse grown lettuce from abamectin 1.8 EC applications by ground equipment in The Netherlands. Report 070-94-0002R. Research Company for Plant Protection "De Bredelaar" B.V., Netherlands. Unpublished. Giannone, R.G. 1992. Pear residue trial with concentrate applications of abamectin 0.15 EC made by commercial airblast orchard sprayer to determine residue dissipation on whole pears and residue in pear processing fractions. HRFS project 92056. Hulst Research Farm Services Inc., USA. Relates to 001-92-6016R. Part of 618-936-3057. Unpublished.

Hicks, M.B. 1992a. HPLC-fluorescence determination for avermectin B_1 and its delta-8,9 isomer in pears and apples. Method no. 8000, rev. 3. Merck & Co. Inc., USA. Unpublished.

Hicks, M.B. 1992b. HPLC-fluorescence determination for avermectin B_1 and 8,9-Z-avermectin B_1 in pears and apples. Method no. 8000, rev. 4. Merck & Co. Inc., USA. Unpublished.

Hulst, D.C. 1991. Determination of the magnitude of the residues of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Report 001-91-6024R. HRFS project 91063. Hulst Research Farm Services, USA. Unpublished.

Hutton-Okpalaeke, M. 1992a. High-performance liquid chromatography-fluorescence determination for avermectin B1 and its 8,9 isomer in cantaloupe (Durango) from Mexico Trials 002-90-0035R, 002-90-0036R, 002-90-0037R. Report HWI 6012-359. Hazelton Wisconsin, USA. Unpublished.

Hutton-Okpalaeke, M. 1993a. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on melons from abamectin 0.15EC applications made with ground equipment. Part of 618-936-93127. Trial 001-91-1025R. Project HWI 6012-388. Hazelton Wisconsin, USA. Unpublished.

Hutton-Okpalaeke, M. 1993b. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on cucurbits from abamectin 0.15 EC applications made with ground equipment. Part of 618-936-93127. Trial 001-92-0019R, 001-92-0020R, 001-92-0021R.. Project 6012-383. Hazelton Wisconsin, USA. Unpublished.

Hutton-Okpalaeke, M. 1993c. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on cucurbits from abamectin 0.15 EC applications made with ground equipment. Part of 618-936-93127. Trial 001-92-0029R. Project 6411-105. Hazelton Wisconsin, USA. Unpublished.

Hutton-Okpalaeke, M. 1993d. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on cucurbits from abamectin 0.15EC applications made with ground equipment. Part of 618-936-93127. Trial 001-92-0030R, 001-92-6015R, and 001-92-3018R. Project 6012-386, 6012-389, 6012-390. Hazelton Wisconsin, USA. Unpublished.

Hutton-Okpalaeke, M. 1993e. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on cucurbits from abamectin 0.15EC application made with ground equipment. Part of 618936-93127. Trial 001-92-1019R. Project 6012-395. Hazelton Wisconsin, USA. Unpublished.

Hutton-Okpalaeke, M. 1993f. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on cucurbits from abamectin 0.15EC applications made with ground equipment. Part of 618-936-93127. Trial 001-92-1020R, 001-92-6014R, 001-92-3019R. Project 6012-384, 6012-392. Hazelton Wisconsin, USA. Unpublished.

Hutton-Okpalaeke, M. 1993g. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on cucurbits from abamectin 0.15EC application made with ground equipment. Part of 618-936-93127. Trial 001-92-3014R, 001-92-1001R, 001-92-6013R. Project 6012-391, 6012-393, 6012-394. Hazelton Wisconsin, USA. Unpublished.

JECFA. 1997. Residues of some veterinary drugs in animals and foods. Monographs prepared by the Fortyseventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives. Rome, 4-13 June 1996. FAO Food and Nutrition Paper, <u>41/9</u>. Food and Agriculture Organization of the United Nations, Rome.

Johnson, N.A. 1993. Magnitude of the residue of abamectin and its 8,9 isomer in/on the raw agricultural commodity pear and pear processing fractions. Trials 001-92-6016R, 001-92-6017R, 001-92-6018R, 001-92-6019R. Project #1342. Analytical Development Corporation, USA. Part of 618-936-3057. Unpublished.

Johnson, N.A. 1994a. Method of analysis M-036: Liquid chromatographic method for the quantitation of total avermectin B1 and 8,9-Z avermectin B1 in dried hops using fluorescence detection. Merck & Co. Inc., USA. Unpublished.

Johnson, N.A. 1994b. Method of analysis M-044: Liquid chromatographic method for the quantitation of total avermectin B1 and 8,9-Z avermectin B1 in fresh (green) hops using fluorescence detection. Merck & Co. Inc., USA. Unpublished.

Johnson, N.A. 1995a. Determination of the magnitude of residues of avermectin B_1 and 8,9-Z avermectin B1 in/on the raw agricultural commodity, dried hops and in spent hops, from abamectin 0.15 EC applied by ground equipment. Protocol 4035. Trials 001-94-1005R, 001-94-1006R, 001-94-1007R, 001-94-1008R. Merck & Co., USA. Unpublished.

Johnson, N.A. 1995b. Determination of the magnitude of residues for abamectin and its delta 8,9-isomer in/on hops resulting from abamectin applications by ground equipment in Germany. Protocol E-94-MK-936-HOP. Trials 072-94-0005R, 072-94-0006R, 072-94-0007R, 072-94-0008R. Merck & Co., USA. Unpublished.

Kopish, R.M. 1992. High-performance liquid chromatography-fluorescence determination for avermectin B1 and its 8,9 isomer in pickles from Mexico. Trials 002-90-0013R, 002-90-0014R, 002-90-0015R. Report HWI 6012-368. Hazelton Wisconsin, USA. Unpublished Kopish, R.M. 1993. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on melons from abamectin 0.15EC applications made with ground equipment. Part of 618-936-93127. Trial 001-91-1027R. Project HWI 6012-379. Hazelton Wisconsin, USA. Unpublished.

Kvaternick, V. 1992a. HPLC analysis of avermectin B1 and its \ddot{A} 8,9 isomer in apples. Relates to 618-936-AP. Trial 001-91-1021R. Report 1281-1. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1992b. HPLC analysis of avermectin B1 and its \ddot{A} 8,9 isomer in apples. Relates to 618-936-AP. Trial 001-91-1023R. Report 1281-3. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1992c. HPLC analysis of avermectin B1 and its \ddot{A} 8,9 isomer in apples. Relates to 618-936-AP. Trial 001-91-1024R. Report 1281-4. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1992d. HPLC analysis of avermectin B1 and its **Ä** 8,9 isomer in apples. Relates to 618-936-AP. Trial 001-91-6016R. Report 1281-5. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1992e. HPLC analysis of avermectin B1 and its \ddot{A} 8,9 isomer in apples. Relates to 618-936-AP. Trial 001-91-6024R. Report 1281-2. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993a. Determination of the magnitude of the residue of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Trial 001-92-0026R. Report 1281-9. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993b. Determination of the magnitude of the residue of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Trial 001-92-0027R. Report 1281-10. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993c. Determination of the magnitude of the residues of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Trial 001-92-1014R. Report 1281-6. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993d. Determination of the magnitude of the residue of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Trial 001-92-1018R. Report 1281-7. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993e. Determination of the magnitude of the residue of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Trial 001-92-3020R. Report 1281-11. Analytical Development Corporation, USA. Unpublished. Kvaternick, V. 1993f. Determination of the magnitude of the residues of abamectin and its delta 8,9-isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayers. Relates to 618-936-AP. Trial 001-92-6012R. Report 1281-8. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993g Method validation for avermectin B1 and its delta 8,9 Isomer in raw whole potatoes. Report 1313S-1. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993h. Determination of the magnitude of the residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity field-grown head lettuce, from abamectin 1.8 EC applications by ground equipment in Spain. Trial 065-92-0001R. Report 1274-2. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993i. Determination of the magnitude of the residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity field-grown head lettuce, from abamectin 1.8 EC applications by ground equipment in Spain. Trial 065-92-0002R. Report 1274-3. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993j. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity greenhouse tomato from abamectin 1.8 EC applications by ground equipment in The Netherlands. Trials 070-93-0003R, 070-93-0004R, 070-93-0005R, 070-93-0006R. Report 1259B-3. Project #1259B. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993k. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on potatoes from abamectin 0.15 EC applications made with ground equipment. Part of 618-936-3671. Trial 001-92-5017R. Report 1313-2. Project #1313. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993l. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on potatoes from abamectin 0.15 EC applications made with ground equipment. Part of 618-936-3671. Trial 001-92-5018R. Report 1313-3. Project #1313. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993m. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on potatoes from abamectin 0.15 EC applications made with ground equipment. Part of 618-936-3671. Trial 001-92-5019R. Report 1313-1. Project #1313. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993n. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity, potatoes from abamectin 0.15 EC applied with paraffinic crop oil by ground equipment. Part of 618-936-3671. Trial 001-930002R. Report 1313-4. Project #1313. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993o. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity field-grown head lettuce, from abamectin 1.8 EC applications by ground equipment in France. Trial 066-92-0001R. Report 1274-6. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993p. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity field-grown head lettuce, from abamectin 1.8 EC applications by ground equipment in France. Trial 066-92-0002R. Report 1274-7. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993q. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity field-grown head lettuce, from abamectin 1.8 EC applications by ground equipment in France. Trial 066-92-0003R. Report 1274-8. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993r. Determination of the magnitude of the residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity field-grown leafy lettuce, from abamectin 1.8 EC applications by ground equipment in Spain. Trial 065-92-0003R. Report 1274-4. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1993s. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity field-grown leafy lettuce, from abamectin 1.8 EC applications by ground equipment in Spain. Trial 065-92-0004R. Report 1274-5. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1994a. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity tomato, from abamectin 1.8 EC applications by ground equipment in The Netherlands. Trial 070-93-0001R. Report 1259B-1. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1994b. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity tomato, from abamectin 1.8 EC applications by ground equipment in The Netherlands. Trial 070-93-0002R. Report 1259B-2. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1994c. Determination of the magnitude of residues of avermectin B1 and 8,9-Z avermectin B1 in/on the raw agricultural commodity, potatoes, from abamectin 1.5 EC applied with paraffinic crop oil by ground equipment. Trials 001-92-0038R, 001-93-1004R, 001-93-1005R, 001-93-1007R, 001-93-5004R, 001-93-5005R, 001-93-5006R, 001-93-7000R, 001-93-

7001R, 001-93-7002R. Report 1313-5. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V. 1995. Determination of the magnitude of residues of avermectin B1 and 8,9-Z avermectin B1 in/on the raw agricultural commodity, potatoes, from abamectin 1.5 EC applied with paraffinic crop oil by ground equipment. Trials 001-94-1017R, 001-94-1022R. Report #1461-1. Analytical Development Corporation, USA. Unpublished.

Kvaternick, V., Wertz, P.G. and Wilkes, L.C. 1993. Magnitude of the residue of abamectin and its 8,9 isomer in/on the raw agricultural commodity pear and pear processing fractions. Report 1342-1. Project #1342. Analytical Development Corporation, USA. Part of 618-936-3057. Unpublished.

Kvaternick, V.J., Bentley, S.E. and Bache, B.K. 1995. Determination of the magnitude of residues of avermectin B1 and 8,9-Z avermectin B1 in/on the raw agricultural commodity, potatoes, from abamectin 0.15 EC applied with paraffinic crop oil by ground equipment. Trials 001-94-1017R and 001-94-1022R. ADC report #1461-1. Analytical Development Corporation, USA. Unpublished

Macarez, R. 1994a. Determination of the magnitude of residues and estimation of the degradation profile for abamectin and its delta 8,9 isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in Spain. Trial 065-93-0005R. M.B.G , France. Unpublished.

Macarez, R. 1994b. Determination of the magnitude of residues of abamectin and its delta 8,9-isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in Spain. Trial 065-93-0006R. M.B.G , France. Unpublished.

Macarez, R. 1994c. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in Spain. Trial 065-93-0007R. M.B.G , France. Unpublished.

Macarez, R. 1994d. Determination of the magnitude of residues and estimation of the degradation profile for abamectin and its delta 8,9 isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in France. Trial 066-93-0014R. M.B.G , France. Unpublished.

Macarez, R. 1994e. Determination of the magnitude of residues and estimation of the degradation profile for abamectin and its delta 8,9 isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in France. Trial 066-93-0015R. M.B.G, France. Unpublished.

Macarez, R. 1994f. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in France. Trial 066-93-0016R. M.B.G , France. Unpublished.

Macarez, R. 1994g. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in France. Trial 066-93-0017R. M.B.G , France. Unpublished.

Macdonald, I.A., Gillis, N.A. and Flatt. 1994. Avermectin B1. Validation of a method for the determination of residual concentrations in apples. Report MSD 328/92104. Huntington Research Centre, England. Unpublished.

Macdonald, I.A., Gillis, N.A., Flatt, S.G. and Henning, S.M. 1994. Avermectin B1. Determination of total residual concentrations of avermectin B1 and its delta 8,9 isomer in apples treated with abamectin during field trials conducted in Europe in 1993. Includes trials 065-93-0005R, 065-93-0006R, 065-93-0007R, 066-93-0014R, 066-93-0015R, 066-93-0016R, 066-93-0017R, 067-93-0004R, 067-93-0005R, 067-93-0006R, 067-93-0007R. Report MSD 329/942555. Huntington Research Centre, England. Unpublished.

Macdonald, I.A., Gillis, N.A., Howie, D. and Sutcliffe, S.J. 1995. Abamectin and its delta 8,9-isomer. Determination of the magnitude of residues and estimation of the degradation profile for abamectin and its delta 8,9 isomer in/on the raw agricultural commodity apples resulting from abamectin applications by ground equipment in Europe. Includes trials 066-94-0003R, 066-94-0004R, 067-94-0005R, 065-94-0009R. Report MSD 345/950415. Huntington Research Centre, England. Unpublished.

Maudsley, J.S. and Clements, B. 1994. Avermectin B1: the validation of the analytical method for the determination of residues in lettuce. Report 453/7-1012. Hazelton Europe, England. Unpublished.

Morneweck, L.A. 1992. HPLC-fluorescence determination of avermectin B_1 and its delta-8,9 isomer in apple processed fractions. Method no. 92-1. Merck & Co. Inc., USA. Unpublished.

Morneweck, L.A. 1993. HPLC-fluorescence determination of avermectin B1 and its delta-8,9 isomer in/on apples and apple processed fractions. Part of 618-936-AP. Trial 001-91-3000R. Study 93128. Merck Research Laboratories, USA. Unpublished.

Nakagawa, M.C. 1992. Pear residue trial with concentrate applications of abamectin 0.15 EC made by commercial airblast orchard sprayer to determine residue dissipation on whole pears and residue in pear processing fractions. Test 92.256. Plant Sciences Inc., USA. Relates to 001-92-6017R. Part of 618-936-3057. Unpublished.

Nakano, O. and da Silva, R.A. 1994. The effect of 4 weekly applications of 1.8% EC abamectin on the subsequent residue of abamectin on potato. Report 015-94-9050R. University São Paulo, Brazil. Unpublished.

Netherlands. 1996. Special Methods, part II. Pesticides amenable to liquid chromatography, "Analytical Methods for Pesticide Residues in Foodstuffs", 6th edition. Ministry of Health, Welfare and Sport, Rijswijk, The Netherlands.

Norton, J.A. 1993a. Magnitude of the residue of abamectin and its 8,9 isomer in/on the raw agricultural commodity pear and pear processing fractions. Study 618-936-3057. Trials 001-92-6016R, 001-92-6017R, 001-92-6018R, 001-92-6019R. Hulst Research Farms Services, Inc. Wm J. Englar & Associates, Inc. Plant Sciences, Inc. Analytical Development Corporation. Agricultural Chemicals Development Services, Inc. Merck Research Laboratories. Unpublished.

Norton, J.A. 1993b. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on apples treated with abamectin 0.15 EC by airblast orchard sprayer. Project 618-936-AP. Trials 001-90-5016R, 001-90-5018R, 001-91-1021R, 001-91-1023R, 001-91-1024R, 001-91-3000R, 001-91-6106R, 001-91-6024R, 001-92-0026R, 001-92-0027R, 001-92-1014R, 001-92-1018R, 001-92-3020R, 001-92-6012R. Merck & Co, Inc., USA. Unpublished.

Norton, J.A. 1993c. Determination of the magnitude of residues of abamectin and its delta 8,9 isomer in/on the raw agricultural commodity potatoes from abamectin 0.15 EC applied with paraffinic crop oil by ground equipment. Project 618-936-3671. Trials 001-92-5017R, 001-92-5018R, 001-92-5019R, 001-93-0002R. Merck & Co, Inc., USA. Unpublished.

Norton, J.A. 1994. Determination of the magnitude of residues of avermectin B1 and 8,9-Z avermectin B1 in/on cucurbits from abamectin 0.15 EC applications made with ground equipment. Project 618-936-93127. Trials 001-91-1025R, 001-91-1026R, 001-91-1027R, 001-91-6010R, 001-91-6011R, 001-92-0019R, 001-92-0020R, 001-92-0020R, 001-92-0020R, 001-92-0020R, 001-92-0030R, 001-92-1001R, 001-92-1020R, 001-92-3014R, 001-92-3018R, 001-92-3019R, 001-92-6013R, 001-92-6014R, 001-92-6015R. Merck & Co, Inc., USA. Unpublished.

Norton, J.A. 1995. Determination of the magnitude of residues of avermectin B1 and 8,9-Z avermectin B1 in/on the raw agricultural commodity, potatoes, from abamectin 0.15EC applied with paraffinic crop oil by ground equipment. Study 618-936-93671. Merck & Co, Inc., USA. Unpublished

Oberwalder, C. 1997a. Determination of the magnitude of residues for abamectin and its delta 8,9-isomer in/on hops, resulting from abamectin applications by ground equipment in Germany, 1996. Study 96166/G1-FPHO. Trial G96014R. Sponsor protocol E-96-MK-936-HOP. Sponsor trial 072-96-0012R. Arbeitsgemeinschaft GAB Biotechnologie GmbH & IFU Umweltanalytik, Germany. Unpublished.

Oberwalder, C. 1997b. Determination of the magnitude of residues for abamectin and its delta 8,9-isomer in/on hops, resulting from abamectin applications by ground equipment in Germany, 1996. Study 96166/G1-FPHO. Trial G96013R. Sponsor protocol E-96-MK-936-HOP. Sponsor trial 072-96-0011R. Arbeitsgemeinschaft GAB Biotechnologie GmbH & IFU Umweltanalytik, Germany. Unpublished. Oberwalder, C. 1997c. Determination of the magnitude of residues for abamectin and its delta 8,9-isomer in/on hops, resulting from abamectin applications by ground equipment in Germany, 1996. Study 96166/G1-FPHO. Trial G96015R. Sponsor protocol E-96-MK-936-HOP. Sponsor trial 072-96-0013R. Arbeitsgemeinschaft GAB Biotechnologie GmbH & IFU Umweltanalytik, Germany. Unpublished.

Oberwalder, C. 1997d. Determination of the magnitude of residues for abamectin and its delta 8,9-isomer in/on hops, resulting from abamectin applications by ground equipment in Germany, 1996. Study 96166/G1-FPHO. Trial G96016R. Sponsor protocol E-96-MK-936-HOP. Sponsor trial 072-96-0014R. Arbeitsgemeinschaft GAB Biotechnologie GmbH & IFU Umweltanalytik, Germany. Unpublished.

Palmer, W.H. 1990. Apple residue trial with dilute applications of abamectin 0.15EC made by handgun spray equipment. Relates to 618-936-AP. Trial 001-90-5016R. ACDS trial 90144. Ag. Chem. Dev. Services, Inc. Unpublished.

Papa, G. and da Silva, R.A. 1994. The effect of 4 weekly applications of 1.8% EC abamectin on the subsequent residue of abamectin on potato. Report 015-94-9051R. UNESP, São Paulo, Brazil. Unpublished.

Partington, K. 1996a. Determination of the magnitude of residues for abamectin and its delta 8,9-isomer in/on the raw agricultural commodity apples, resulting from abamectin applications by ground equipment in Spain. Trial 065-94-0009R. Project AP/2561/MS. Agrisearch UK Ltd. Unpublished.

Partington, K. 1996b. Determination of the magnitude of residues and estimation of the degradation profile for abamectin and its delta 8,9-isomer in/on the raw agricultural commodity apples, resulting from abamectin applications by ground equipment in France. Trial 066-94-0003R. Project AP/2555/MS. Agrisearch UK Ltd. Unpublished.

Partington, K. 1996c. Determination of the magnitude of residues for abamectin and its delta 8,9-isomer in/on the raw agricultural commodity apples, resulting from abamectin applications by ground equipment in France. Trial 066-94-0004R. Project AP/2556/MS. Agrisearch UK Ltd. Unpublished.

Piffer, R. 1997a. Determination of the magnitude of the residues of avermectin B1 and 8,9-Z-avermectin B1 in/on melon from abamectin 1.8% EC applications made with ground equipment. Merck trial 015-93-0034R. Quimiplan, Brazil. Unpublished.

Piffer, R. 1997b. Determination of the magnitude of the residues of avermectin B1 and 8,9-Z-avermectin B1 in/on melon from abamectin 1.8% EC applications made with ground equipment. Merck trial 015-93-0035R. Quimiplan, Brazil. Unpublished.

Piffer, R. 1997c. Determination of the magnitude of the residues of avermectin B1 and 8,9-Z-avermectin B1 in/on melon from abamectin 1.8% EC applications made

with ground equipment. Merck trial 015-93-0036R. Quimiplan, Brazil. Unpublished.

Prabhu, S.V. 1991a. Residue data in support of registration for the use of abamectin on apples. Relates to 618-936-AP. Trial 001-90-5016R. Merck, Sharp & Dohme Research Laboratories, USA. Unpublished.

Prabhu, S.V. 1991b. Residue data in support of registration for the use of abamectin on apples. Relates to 618-936-AP. Trial 001-90-5018R. Merck, Sharp & Dohme Research Laboratories, USA. Unpublished.

Prabhu, S.V. 1991c. A rapid HPLC-fluorescence determination of abamectin and its delta-8,9 isomer in tomato. Method No. 91-1. Merck & Co. Inc., USA. Unpublished.

Prabhu, S.V., Varsolona, R.J., Wehner, T.A., Egan, R.S. and Tway, P.C. 1992. Rapid and sensitive high-performance liquid chromatographic method for the quantitation of abamectin and its delta 8,9-isomer. *J. Agric. Food Chem.*, <u>40</u>, 622-625.

Rickard, S.F. and Starner, V.R. 1992a. Abamectin melon residue trials, France (1991). Summary of 066-91-0003R, 066-91-0004R, 066-91-0005R. Merck Sharp & Dohme Research Laboratories, USA. Unpublished.

Rickard, S.F. and Starner, V.R. 1992b. Abamectin melon residue trials, Spain (1991). Summary of 065-91-0003R, 065-91-0004R. Merck Sharp & Dohme Research Laboratories, USA. Unpublished.

Rickard, S.F. and Starner, V.R. 1993a. Abamectin lettuce residue trials, France (1992). Summary of 066-92-0001R, 066-92-0002R, 066-92-0003R. Merck Research Laboratories, USA. Unpublished

Rickard, S.F. and Starner, V.R. 1993b. Abamectin lettuce residue trials, Spain (1992). Summary of 065-92-0001R, 065-92-0002R, 065-92-0003R, 065-92-0004R. Merck Research Laboratories, USA. Unpublished

Rickard, S.F. and Starner, V.R. 1994. Abamectin cucurbit residue trials, Mexico (1989-1990). Summary of 002-90-0011R, 002-90-0012R, 002-90-0013R, 002-90-0014R, 002-90-0015R, 002-90-0016R, 002-90-0035R, 002-90-0036R, 002-90-0037R, 002-90-0038R, 002-90-0039R, 002-90-0040R, 002-90-0042R. Merck Research Laboratories, USA. Unpublished.

Shields, R., Mai, L. 1996a. Residues of abamectin in apples. Trial 114-95-0001R. Report 96/3464. Analchem Bioassay, Australia. Unpublished.

Shields, R., Mai, L. 1996b. Residues of abamectin in apples. Trial 114-95-0002R. Report 96/3461. Analchem Bioassay, Australia. Unpublished.

Shields, R., Mai, L. 1996c. Residues of abamectin in apples. Trial 114-95-0003R. Report 96/3462. Analchem Bioassay, Australia. Unpublished.

Starner, V.R., White, S., Punja, N. and Rickard, S.F. 1995. Abamectin apple residue trials. Europe 1991, 1993 and 1994. Includes 065-91-0007R, 065-91-0008R,

065-91-0009R, 066-91-0016R, 066-91-0017R, 072-91-0004R, 072-91-0005R, 072-91-0006R, 074-91-0003R, 074-91-0004R, 065-93-0005R, 065-93-0006R, 065-93-0007R, 066-93-0014R, 066-93-0015R, 066-93-0016R, 066-93-0017R, 067-93-0004R, 067-93-0005R, 067-93-0006R, 067-93-0007R, 065-94-0009R, 065-94-0003R, 065-94-0004R, 067-94-0005R. Merck Research Laboratories, USA. Unpublished.

Timm, G.H. 1992a. Pear residue trial with concentrate applications of abamectin 0.15 EC made by commercial airblast orchard sprayer to determine residue dissipation on whole pears and residue in pear processing fractions. HRFS project 92217. Hulst Research Farm Services Inc., USA. Relates to 001-92-6018R. Part of 618-936-3057. Unpublished.

Timm, G.H. 1992b. Pear residue trial with concentrate applications of abamectin 0.15 EC made by commercial airblast orchard sprayer to determine residue dissipation on whole pears and residue in pear processing fractions. HRFS project 92214. Hulst Research Farm Services Inc., USA. Relates to 001-92-6019R. Part of 618-936-3057. Unpublished.

Trainor, T. 1991. validation of: high-performance liquid chromatography fluorescence determination for avermectin B1 and its 8,9 isomer in cucumbers and melons. Study HLA 6012-320. Hazelton Laboratories America, Inc. USA. Unpublished.

Valli, F. and Bucchi, R. 1994a. Determination of the magnitude of residues and estimation of the degradation

profile for abamectin and its delta 8,9-isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in Italy. Trial 067-93-0004R. Study E-93-MK-936-AA. Document E/AA/S/93. Agri 2000, Italy. Unpublished.

Valli, F. and Bucchi, R. 1994b. Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in Italy. Trial 067-93-0006R. Study E-93-MK-936-AA. Document E/AB/S/93. Agri 2000, Italy. Unpublished.

Valli, F. and Bucchi, R. 1994c Determination of the magnitude of residues of abamectin and its delta 8,9isomer in/on the raw agricultural commodity apples, from abamectin applications by ground equipment in Italy. Trial 067-93-0007R. Study E-93-MK-936-AA. Document E/AC/S/93. Agri 2000, Italy. Unpublished.

Valli, F. and Bucchi, R. 1994d. Determination of the magnitude of residues and estimation of the degradation profile for abamectin and its delta 8,9-isomer in/on the raw agricultural commodity apples, resulting from abamectin applications by ground equipment in Italy. Trial 067-94-0005R. Study E-94-MK-936-GV. Document E/232/s/94. Agri 2000, Italy. Unpublished.

Wehner, T.A. 1992. HPLC-fluorescence determination for avermectin B1 and its delta 8,9 isomer in raw whole potatoes. Method No. 936-92-4. Merck & Co. Inc., USA. Unpublished.

<u>Cross-index of report numbers, study numbers and references</u> Reports and studies are listed in alphanumerical order, and each is linked to a reference

#1259B Kvaternick 1993j #1313 Kvaternick 1993k #1313 Kvaternick 19931 #1313 Kvaternick 1993m #1313 Kvaternick 1993n #1342 Johnson 1993 #1342 Kvaternick et al 1993 #1461-1 Kvaternick 1995 #1461-1 Kvaternick et al 1995 001-90-5016R Egan 1993 001-90-5016R Norton 1993b 001-90-5016R Palmer 1990 001-90-5016R Prabhu 1991a 001-90-5018R Egan 1993 001-90-5018R Norton 1993b 001-90-5018R Prabhu 1991b 001-91-1021R Egan 1993 001-91-1021R Kvaternick 1992a 001-91-1021R Norton 1993b 001-91-1023R Egan 1993 001-91-1023R Kvaternick 1992b 001-91-1023R Norton 1993b 001-91-1024R Egan 1993 001-91-1024R Kvaternick 1992c 001-91-1024R Norton 1993b 001-91-1025R Egan 1994 001-91-1025R Hutton-Okpalaeke 1993a 001-91-1025R Norton 1994

001-91-1026R Egan 1994 001-91-1026R Norton 1994 001-91-1027R Egan 1994 001-91-1027R Kopish 1993 001-91-1027R Norton 1994 001-91-3000R Egan 1993 001-91-3000R Morneweck 1993 001-91-3000R Norton 1993b 001-91-6010R Celino 1993a 001-91-6010R Egan 1994 001-91-6010R Norton 1994 001-91-6011R Celino 1993b 001-91-6011R Norton 1994 001-91-6016R Kvaternick 1992d 001-91-6024R Egan 1993 001-91-6024R Hulst 1991 001-91-6024R Kvaternick 1992e 001-91-6024R Norton 1993b 001-91-6106R Egan 1993 001-91-6106R Norton 1993b 001-92-0019R Hutton-Okpalaeke 1993b 001-92-0019R Norton 1994 001-92-0020R Egan 1994 001-92-0020R Hutton-Okpalaeke 1993b 001-92-0020R Norton 1994 001-92-0021R Egan 1994 001-92-0021R Hutton-Okpalaeke 1993b 001-92-0021R Norton 1994

001-92-0026R Egan 1993 001-92-0026R Kvaternick 1993a 001-92-0026R Norton 1993b 001-92-0027R Egan 1993 001-92-0027R Kvaternick 1993b 001-92-0027R Norton 1993b 001-92-0029R Egan 1994 001-92-0029R Hutton-Okpalaeke 1993c 001-92-0029R Norton 1994 001-92-0030R Egan 1994 001-92-0030R Hutton-Okpalaeke 1993d 001-92-0030R Norton 1994 001-92-0038R Kvaternick 1994c 001-92-1001R Egan 1994 001-92-1001R Hutton-Okpalaeke 1993g 001-92-1001R Norton 1994 001-92-1014R Egan 1993 001-92-1014R Kvaternick 1993c 001-92-1014R Norton 1993b 001-92-1018R Egan 1993 001-92-1018R Kvaternick 1993d 001-92-1018R Norton 1993b 001-92-1019R Egan 1994 001-92-1019R Hutton-Okpalaeke 1993e 001-92-1019R Norton 1994 001-92-1020R Hutton-Okpalaeke 1993f 001-92-1020R Norton 1994 001-92-3014R Hutton-Okpalaeke 1993g 001-92-3014R Norton 1994 001-92-3018R Hutton-Okpalaeke 1993d 001-92-3018R Norton 1994 001-92-3019R Hutton-Okpalaeke 1993f 001-92-3019R Norton 1994 001-92-3020R Egan 1993 001-92-3020R Kvaternick 1993e 001-92-3020R Norton 1993b 001-92-5017R Kvaternick 1993k 001-92-5017R Norton 1993c 001-92-5018R Kvaternick 19931 001-92-5018R Norton 1993c 001-92-5019R Kvaternick 1993m 001-92-5019R Norton 1993c 001-92-6012R Calkin 1992 001-92-6012R Egan 1993 001-92-6012R Kvaternick 1993f 001-92-6012R Norton 1993b 001-92-6013R Hutton-Okpalaeke 1993g 001-92-6013R Norton 1994 001-92-6014R Hutton-Okpalaeke 1993f 001-92-6014R Norton 1994 001-92-6015R Hutton-Okpalaeke 1993d 001-92-6015R Norton 1994 001-92-6016R Giannone 1992 001-92-6016R Johnson 1993 001-92-6016R Norton 1993a 001-92-6017R Johnson 1993 001-92-6017R Nakagawa 1992 001-92-6017R Norton 1993a 001-92-6018R Johnson 1993 001-92-6018R Norton 1993a 001-92-6018R Timm 1992a 001-92-6019R Johnson 1993 001-92-6019R Norton 1993a 001-92-6019R Timm 1992b 001-93-0002R Kvaternick 1993n 001-93-0002R Norton 1993c 001-93-1004R Kvaternick 1994c

001-93-1005R Kvaternick 1994c 001-93-1007R Kvaternick 1994c 001-93-5004R Kvaternick 1994c 001-93-5005R Kvaternick 1994c 001-93-5006R Kvaternick 1994c 001-93-7000R Kvaternick 1994c 001-93-7001R Kvaternick 1994c 001-93-7002R Kvaternick 1994c 001-94-1005R Brown 1995 001-94-1005R Englar 1994a 001-94-1005R Johnson 1995a 001-94-1006R Brown 1995 001-94-1006R Johnson 1995a 001-94-1007R Brown 1995 001-94-1007R Johnson 1995a 001-94-1008R Brown 1995 001-94-1008R Johnson 1995a 001-94-1017R Kvaternick 1995 001-94-1017R Kvaternick et al 1995 001-94-1022R De Foliart 1994 001-94-1022R Englar 1994b 001-94-1022R Kvaternick 1995 001-94-1022R Kvaternick et al 1995 002-90-0011R Celino 1992a 002-90-0011R Rickard and Starner 1994 002-90-0012R Celino 1992a 002-90-0012R Rickard and Starner 1994 002-90-0013R Kopish 1992 002-90-0013R Rickard and Starner 1994 002-90-0014R Kopish 1992 002-90-0014R Rickard and Starner 1994 002-90-0015R Kopish 1992 002-90-0015R Rickard and Starner 1994 002-90-0016R Celino 1992a 002-90-0016R Rickard and Starner 1994 002-90-0035R Hutton-Okpalaeke 1992a 002-90-0035R Rickard and Starner 1994 002-90-0036R Hutton-Okpalaeke 1992a 002-90-0036R Rickard and Starner 1994 002-90-0037R Hutton-Okpalaeke 1992a 002-90-0037R Rickard and Starner 1994 002-90-0038R Rickard and Starner 1994 002-90-0039R Rickard and Starner 1994 002-90-0040R Rickard and Starner 1994 002-90-0042R Rickard and Starner 1994 015-93-0034R Piffer 1997a 015-93-0035R Piffer 1997b 015-93-0036R Piffer 1997c 015-94-9050R Garozi and Piffer 1995a 015-94-9050R Nakano and da Silva 1994 015-94-9051R Garozi and Piffer 1995b 015-94-9051R Papa and da Silva 1994 015-94-9052R Akira and da Silva 1995 015-94-9052R Garozi and Piffer 1995c 065-91-0003R Celino 1992c 065-91-0003R Rickard and Starner 1992b 065-91-0004R Celino 1992c 065-91-0004R Rickard and Starner 1992b 065-91-0007R Blaschke 1992e 065-91-0007R Starner et al 1995 065-91-0008R Starner et al 1995 065-91-0009R Blaschke 1992f 065-91-0009R Starner et al 1995 065-92-0001R Cenjor 1992a 065-92-0001R Kvaternick 1993h 065-92-0001R Rickard and Starner 1993b 065-92-0002R Cenjor 1992b

065-92-0002R Kvaternick 1993i 065-92-0002R Rickard and Starner 1993b 065-92-0003R Cenjor 1992c 065-92-0003R Kvaternick 1993r 065-92-0003R Rickard and Starner 1993b 065-92-0004R Cenjor 1992d 065-92-0004R Kvaternick 1993s 065-92-0004R Rickard and Starner 1993b 065-93-0005R Macarez 1994a 065-93-0005R Macdonald et al 1994 065-93-0005R Starner et al 1995 065-93-0006R Macarez 1994b 065-93-0006R Macdonald et al 1994 065-93-0006R Starner et al 1995 065-93-0007R Macarez 1994c 065-93-0007R Macdonald et al 1994 065-93-0007R Starner et al 1995 065-94-0003R Starner et al 1995 065-94-0004R Starner et al 1995 065-94-0009R Macdonald et al 1995 065-94-0009R Partington 1996a 065-94-0009R Starner et al 1995 066-91-0003R Celino 1992b 066-91-0003R Rickard and Starner 1992a 066-91-0004R Celino 1992b 066-91-0004R Rickard and Starner 1992a 066-91-0005R Celino 1992b 066-91-0005R Rickard and Starner 1992a 066-91-0016R Blaschke 1992g 066-91-0016R Starner et al 1995 066-91-0017R Blaschke 1992h 066-91-0017R Starner et al 1995 066-92-0001R Kvaternick 1993o 066-92-0001R Rickard and Starner 1993a 066-92-0002R Kvaternick 1993p 066-92-0002R Rickard and Starner 1993a 066-92-0003R Kvaternick 1993q 066-92-0003R Rickard and Starner 1993a 066-93-0014R Macarez 1994d 066-93-0014R Macdonald et al 1994 066-93-0014R Starner et al 1995 066-93-0015R Macarez 1994e 066-93-0015R Macdonald et al 1994 066-93-0015R Starner et al 1995 066-93-0016R Macarez 1994f 066-93-0016R Macdonald et al 1994 066-93-0016R Starner et al 1995 066-93-0017R Macarez 1994g 066-93-0017R Macdonald et al 1994 066-93-0017R Starner et al 1995 066-94-0003R Macdonald et al 1995 066-94-0003R Partington 1996b 066-94-0004R Macdonald et al 1995 066-94-0004R Partington 1996c 067-93-0004R Macdonald et al 1994 067-93-0004R Starner et al 1995 067-93-0004R Valli and Bucchi 1994a 067-93-0005R Macdonald et al 1994 067-93-0005R Starner et al 1995 067-93-0006R Macdonald et al 1994 067-93-0006R Starner et al 1995 067-93-0006R Valli and Bucchi 1994b 067-93-0007R Macdonald et al 1994 067-93-0007R Starner et al 1995 067-93-0007R Valli and Bucchi 1994c 067-94-0005R Macdonald et al 1995 067-94-0005R Starner et al 1995

067-94-0005R Valli and Bucchi 1994d 070-93-0001R Geuijen 1993a 070-93-0001R Kvaternick 1994a 070-93-0002R Geuijen 1993b 070-93-0002R Kvaternick 1994b 070-93-0003R Geuijen 1994a 070-93-0003R Kvaternick 1993i 070-93-0004R Geuijen 1994b 070-93-0004R Kvaternick 1993j 070-93-0005R Geuijen 1994c 070-93-0005R Kvaternick 1993j 070-93-0006R Geuijen 1994d 070-93-0006R Kvaternick 1993j 070-93-0007R Clements 1995 070-93-0007R Geuijen 1995a 070-93-0008R Clements 1995 070-93-0008R Geuijen 1995b 070-94-0001R Clements 1995 070-94-0001R Geuijen 1995c 070-94-0002R Clements 1995 070-94-0002R Geuijen 1995d 072-91-0004R Blaschke 1992i 072-91-0004R Starner et al 1995 072-91-0005R Blaschke 1992a 072-91-0005R Starner et al 1995 072-91-0006R Blaschke 1992b 072-91-0006R Starner et al 1995 072-94-0005R Balluff 1995 072-94-0005R Johnson 1995b 072-94-0006R Balluff 1995 072-94-0006R Johnson 1995b 072-94-0007R Balluff 1995 072-94-0007R Johnson 1995b 072-94-0008R Balluff 1995 072-94-0008R Johnson 1995b 072-96-0011R Oberwalder 1997b 072-96-0012R Oberwalder 1997a 072-96-0013R Oberwalder 1997c 072-96-0014R Oberwalder 1997d 074-91-0003R Blaschke 1992c 074-91-0003R Starner et al 1995 074-91-0004R Blaschke 1992d 074-91-0004R Starner et al 1995 114-95-0001R Collett et al 1996 114-95-0001R Shields and Mai 1996a 114-95-0002R Collett et al 1996 114-95-0002R Shields and Mai 1996b 114-95-0003R Collett et al 1996 114-95-0003R Shields and Mai 1996c 1259B-1 Kvaternick 1994a 1259B-2 Kvaternick 1994b 1259B-3 Kvaternick 1993j 1274-2 Kvaternick 1993h 1274-3 Kvaternick 1993i 1274-4 Kvaternick 1993r 1274-5 Kvaternick 1993s 1274-6 Kvaternick 1993o 1274-7 Kvaternick 1993p 1274-8 Kvaternick 1993q 1281-1 Kvaternick 1992a 1281-10 Kvaternick 1993b 1281-11 Kvaternick 1993e 1281-2 Kvaternick 1992e 1281-3 Kvaternick 1992b 1281-4 Kvaternick 1992c 1281-5 Kvaternick 1992d 1281-6 Kvaternick 1993c

1281-7 Kvaternick 1993d 1281-8 Kvaternick 1993f 1281-9 Kvaternick 1993a 1313-1 Kvaternick 1993m 1313-2 Kvaternick 1993k 1313-3 Kvaternick 19931 1313-4 Kvaternick 1993n 1313-5 Kvaternick 1994c 1313S-1 Kvaternick 1993g 1342-1 Kvaternick et al 1993 328/92104 Macdonald et al 1994 329/942555 Macdonald et al 1994 345/950415 Macdonald et al 1995 3671 Englar 1994b 4035 Englar 1994a 4035 Johnson 1995a 4166 Arenas 1997a 4167 Arenas 1997b 453/7-1012 Maudsley and Clements 1994 453/8-1012 Clements 1995 6012-383 Hutton-Okpalaeke 1993b 6012-384 Hutton-Okpalaeke 1993f 6012-386 Hutton-Okpalaeke 1993d 6012-389 Hutton-Okpalaeke 1993d 6012-390 Hutton-Okpalaeke 1993d 6012-391 Hutton-Okpalaeke 1993g 6012-392 Hutton-Okpalaeke 1993f 6012-393 Hutton-Okpalaeke 1993g 6012-394 Hutton-Okpalaeke 1993g 6012-395 Hutton-Okpalaeke 1993e 618-936-3057 Giannone 1992 618-936-3057 Johnson 1993 618-936-3057 Kvaternick et al 1993 618-936-3057 Nakagawa 1992 618-936-3057 Norton 1993a 618-936-3057 Timm 1992a 618-936-3057 Timm 1992b 618-936-3671 Kvaternick 1993k 618-936-3671 Kvaternick 19931 618-936-3671 Kvaternick 1993m 618-936-3671 Kvaternick 1993n 618-936-3671 Norton 1993c 618-936-93127 Celino 1993a 618-936-93127 Celino 1993b 618-936-93127 Egan 1994 618-936-93127 Hutton-Okpalaeke 1993a 618-936-93127 Hutton-Okpalaeke 1993b 618-936-93127 Hutton-Okpalaeke 1993c 618-936-93127 Hutton-Okpalaeke 1993d 618-936-93127 Hutton-Okpalaeke 1993e 618-936-93127 Hutton-Okpalaeke 1993f 618-936-93127 Hutton-Okpalaeke 1993g 618-936-93127 Kopish 1993 618-936-93127 Norton 1994 618-936-93671 Norton 1995 618-936-94035 Brown 1995 618-936-AP Calkin 1992 618-936-AP Egan 1993 618-936-AP Hulst 1991 618-936-AP Kvaternick 1992a 618-936-AP Kvaternick 1992b 618-936-AP Kvaternick 1992c 618-936-AP Kvaternick 1992d 618-936-AP Kvaternick 1992e 618-936-AP Kvaternick 1993a 618-936-AP Kvaternick 1993b 618-936-AP Kvaternick 1993c

618-936-AP Kvaternick 1993d 618-936-AP Kvaternick 1993e 618-936-AP Kvaternick 1993f 618-936-AP Morneweck 1993 618-936-AP Norton 1993b 618-936-AP Palmer 1990 618-936-AP Prabhu 1991a 618-936-AP Prabhu 1991b 6411-105 Hutton-Okpalaeke 1993c 8000 rev 3 Hicks 1992a 8000 rev 4 Hicks 1992b 8920 Cobin 1989 90144 Palmer 1990 91063 Hulst 1991 91-1 Prabhu 1991c 92056 Giannone 1992 92-1 Morneweck 1992 92214 Timm 1992b 92217 Timm 1992a 92256 Nakagawa 1992 92321 Calkin 1992 93128 Morneweck 1993 93671 De Foliart 1994 936-92-4 Wehner 1992 94086-FPHO Balluff 1995 96/3461 Shields and Mai 1996b 96/3462 Shields and Mai 1996c 96/3464 Shields and Mai 1996a 96166/G1-FPHO Oberwalder 1997a 96166/G1-FPHO Oberwalder 1997b 96166/G1-FPHO Oberwalder 1997c 96166/G1-FPHO Oberwalder 1997d AP/2555/MS Partington 1996b AP/2556/MS Partington 1996c AP/2561/MS Partington 1996a D-1714-91-225-01-02B-08 Blaschke 1992i D-1714-91-225-01-02B-09 Blaschke 1992a D-1714-91-225-01-02B-10 Blaschke 1992b E/232/s/94 Valli and Bucchi 1994d E/AA/S/93 Valli and Bucchi 1994a E/AB/S/93 Valli and Bucchi 1994b E/AC/S/93 Valli and Bucchi 1994c E-93-MK-936-AA Valli and Bucchi 1994a E-93-MK-936-AA Valli and Bucchi 1994b E-93-MK-936-AA Valli and Bucchi 1994c E-94-MK-936-GV Valli and Bucchi 1994d E-94-MK-936-HOP Johnson 1995b E-96-MK-936-HOP Duchene and Goller 1997 E-96-MK-936-HOP Duchene et al 1997 E-96-MK-936-HOP Oberwalder 1997a E-96-MK-936-HOP Oberwalder 1997b E-96-MK-936-HOP Oberwalder 1997c E-96-MK-936-HOP Oberwalder 1997d F-1714-91-225-01-02B-01 Blaschke 1992g F-1714-91-225-01-02B-02 Blaschke 1992h F-93-23-NL-00 Geuijen 1993a F-93-23-NL-00 Geuijen 1993b F-93-23-NL-01 Geuijen 1994a F-93-23-NL-01 Geuijen 1994b F-93-23-NL-01 Geuijen 1994c F-93-23-NL-01 Geuijen 1994d F-93-23-NL-02 Geuijen 1995a F-93-23-NL-02 Geuijen 1995b G96013R Oberwalder 1997b G96014R Oberwalder 1997a G96015R Oberwalder 1997c G96016R Oberwalder 1997d

- GB-1714-91-225-01-02B-19 Blaschke 1992c GB-1714-91-225-01-02B-20 Blaschke 1992d HLA 6012-320 Trainor 1991 HWI 6012-359 Hutton-Okpalaeke 1992a HWI 6012-363 Celino 1992a HWI 6012-368 Kopish 1992 HWI 6012-373 Celino 1992c HWI 6012-375 Celino 1993b HWI 6012-376 Celino 1992b HWI 6012-377 Celino 1993a
- HWI 6012-379 Kopish 1993 HWI 6012-388 Hutton-Okpalaeke 1993a M-0071 Cobin 1995 M-036 Johnson 1994a M-044 Johnson 1994b MER/AVE/96091 Duchene et al 1997 MER/AVE/96092 Duchene and Goller 1997 MERCK/967 Collett et al 1996 S-1714-91-225-01-02B-14 Blaschke 1992e S-1714-91-225-01-02B-16 Blaschke 1992f