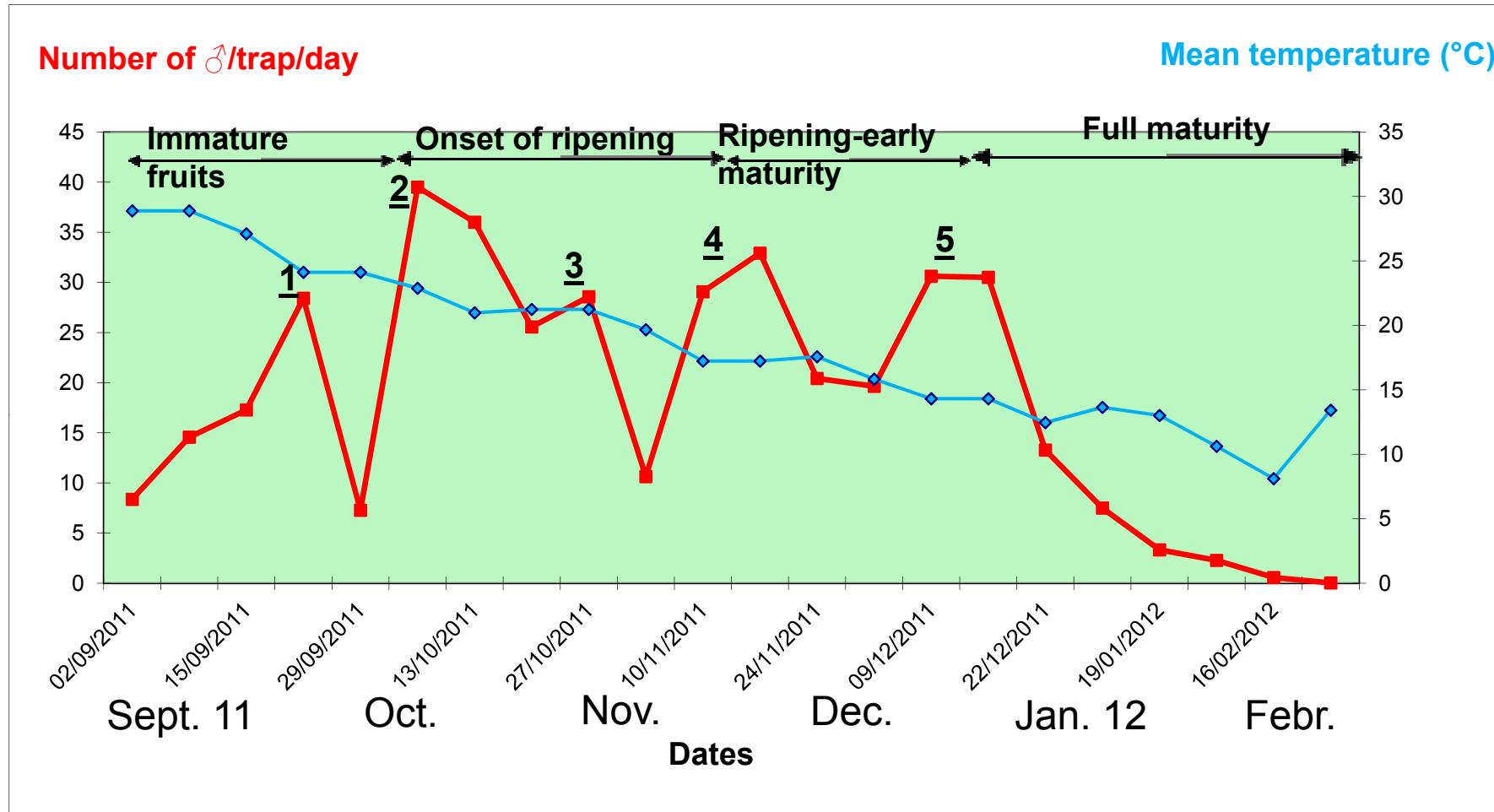


The IPM based on mass-trapping : is it an efficient method to control the Medfly *Ceratitis capitata* (Diptera, Tephritidae)?

S. Boulahia Kheder, I. Trabelsi,
M. Tlemsani, N. Aouadi and F. Jrad


National Institute of Agronomy of Tunis -
43, Av. Charles Nicolle, 1082, Tunis, Tunisia.

The Medfly: a major *Citrus* pest in Tunisia

- High polyphagy
- Polyvoltinism

Evolution of *C. capitata* population level on oranges Thomson at Mornag

- 5 generations / 6 months on Citrus fruits
- Highest densities of Medfly in the ripening period

The Medfly: a major *Citrus* pest in Tunisia

- **High polyphagy**
- **Polyvoltinism**
- **High economic losses (quality and quantity)**

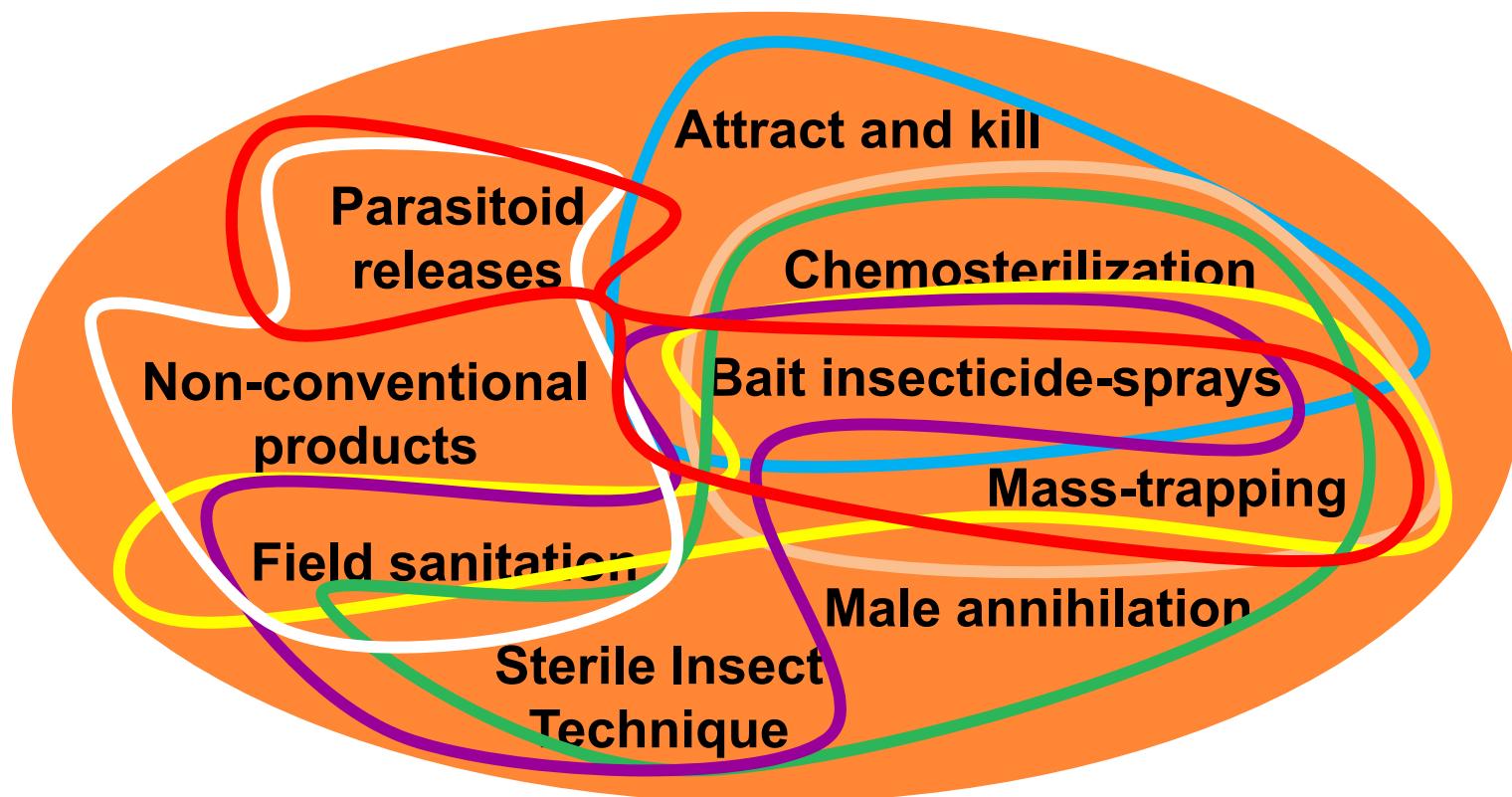
The Medfly: a major *Citrus* pest in Tunisia

- **High polyphagy**
- **Polyvoltinism**
- **High economic losses (quality and quantity)**
- **Frequent chemical treatments required**

Control of medfly in Tunisia : current situation

✓ Until now control based mainly on chemicals:
Malathion, Dimethoate,
Deltamethrine

✓ Rationalized methods,
(localized treatments,
biopesticides/ spinosad),
alternatives methods little used


Several disadvantages....

Why should we reduce the use of pesticides?

- High risk for human health (farmers and consumers)
- Toxicity toward biodiversity, useful insects
- Environmental pollution
- Increasing development of resistance
- Chemical control not completely effective / very expensive
- Malathion: removed from the European market (decision 2007/389/CE)

It's necessary to develop alternative methods
to control the medfly

Which to choose? How to use ? To combine ?

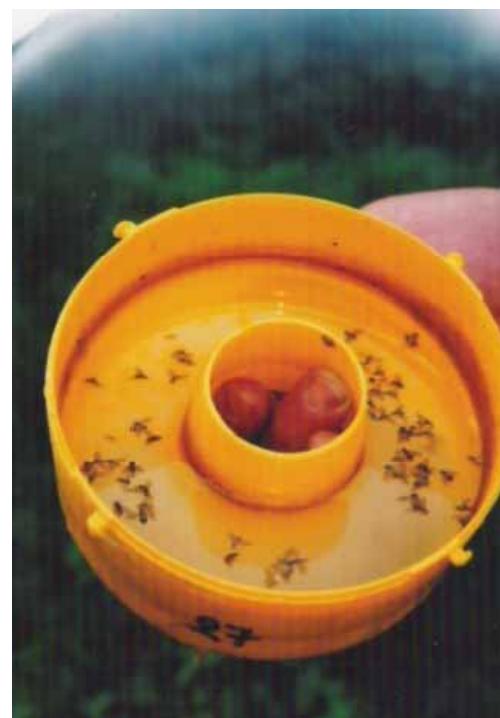
The mass-trapping technique

Objective

To capture the maximum of ♀ of Medfly in an area

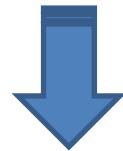
How ?

- By placing a high density ($\approx 50 / \text{ha}$) of food-baited traps (type Mac Phail)
- Start mass-trapping early at low populations of Medfly and before the ripening of fruits


First step (2006 – 2007): using only the mass-trapping

- On summer fruits then oranges Thomson
- Traps manufactured in Tunisia then Mc Phail at 40 traps/Ha
- Bait: Diammonium Phosphate

Traps



Bait : DAP solution

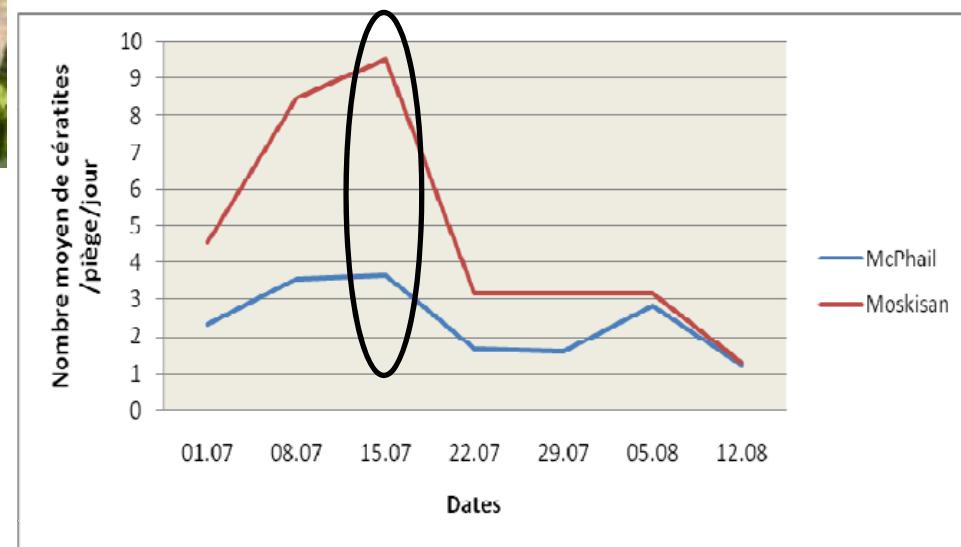
Results of first step (2006 – 2007): using only the mass-trapping

- Insufficient protection of fruits: 20-34% of punctured fruits
- Short action (7 days) of DAP and non-selective to non-target insects

The MT must be combined with other measures / sanitation in IPM programs and the attractants should have longer duration and be more selective

Next step (2008 – 2012): IPM programs based on mass-trapping

- On oranges Thomson
- Mc Phail® / Moskisan® traps at 40 traps/Ha
- Biolure® Tripack (AA, TMA, P)


Mac Phail

Moskisan

Traps		
	McPhail	Moskisan
Nbre medfly/trap/day	2,41 b	4,74 a

Best performances of captures with Moskisan® traps / Mc Phail ®

Next step (2008 – 2012): IPM programs based on mass-trapping

Which methods ?

Program 1

- Mass-trapping (MT)
- Sanitation
- Rationalized treatments (RT)

Program 2

- MT
- Sanitation
- Chemosterilization
- RT

Program 3

- MT
- Sanitation
- GA₃ applications
- RT

When ?

On immature oranges Thomson
before ripening and when the
population is still low (mid-
august)

Where ?

Cap-bon region

- Main *Citrus* production area
- 22 000 Ha
- 350 000 T in 2011/12

How ?

- **Mass-trapping**

40 Moskisan® traps/Ha baited by Biolure®, south-east, 2m

Mass-trapping using
Moskisan® traps

How ?

- **Mass-trapping**

40 Moskisan® traps/Ha baited by Biolure®, s-e, 2m

- **Sanitation**

Collecting of dropped fruits 2 times/week

Field sanitation by eliminating dropped fruits

How ?

- **Mass-trapping**

40 Moskisan® traps/Ha baited by Biolure®, s-e, 2m

- **Sanitation**

Collecting of dropped fruits 2 times/week

- **Chemosterilization**

20 chemosterilants traps/ha baited by Trimedlure, Biolure and Lufenuron gel

Chemosterilants traps
Address®

How ?

- **Mass-trapping**

40 Moskisan® traps/Ha baited by Biolure®, s-e, 2m

- **Sanitation**

Collecting of dropped fruits 2 times/week

- **Chemosterilization**

20 chemosterilants traps/ha baited by Trimedlure, Biolure and Lufenuron gel

- **GA₃ applications**

1g of Gibbelex/hl at early july and august (6 cm Ø fruits)

Oranges without GA₃

Oranges with GA₃

**2 applications of GA₃ on oranges Thomson
→ ripening delay of 3 weeks → escaping to
Medfly attack**

How ?

- **Mass-trapping**

40 Moskisan® traps/Ha baited by Biolure®, s-e, 2m

- **Sanitation**

Collecting of dropped fruits 2 times/week

- **Chemosterilization**

20 chemosterilants traps/ha baited by Trimedlure, Biolure and Lufenuron gel

- **GA₃ applications**

1g of Gibbelex/hl at early july and august (6 cm Ø fruits)

- **Rationalized treatments**

Monitoring of the population level by traps and treatments made if threshold reached (0,5-3 MPTD with spinosad or OP)

Rationalization of treatments

**Monitoring the
Medfly level**

**When the threshold is
reached**

Treatment is carried

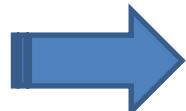
IPM programs based on mass-trapping

Assessment of efficiency

- **On the medfly population level**

By monitoring the population weekly (delta or Moskisan) in treated plots and control

- **On the fruit damage**


By assessing the punctured fruits (%) on marked ones from the ripening until the harvest (400 fruits in average checked weekly)

IPM programs based on mass-trapping

Results

Results of IPM programs based on mass-trapping against *C. capitata*

IPM programs	Punctured fruits (%)	
	with IPM	Control
1 [Sanitation + MT + RT]	10	30
2 [Sanitation + MT + Chemost. + RT]	16	51
3 [Sanitation + MT + GA ₃ + RT]	12	37

IPM programs based on mass-trapping and other measures protected fairly well oranges Thomson lowering Medfly damage at the harvest to 10-16%

Next step (2010 – 2011):

Large-scale expansion of IPM based on mass-trapping

- Application of IPM on an area of 300 Ha (Takelsa) from mid-august
- IPM:
 - **Mass-trapping** with Moskisan® traps at 40/Ha
 - **Field sanitation**
 - **4 aerial sprays** with spinosad when threshold reached
- Assessment of the efficiency of the IPM by monitoring the Medfly level and the punctured fruits (%) weekly from ripening until the harvest

Large-scale expansion of IPM based on mass-trapping Results

Results of IPM programs based on mass-trapping against *C. capitata*

IPM program	Punctured fruits (%)	
	with IPM	Control
[Sanitation + MT + RT*]	5	30

* Rationalized treatments were aerial mainly or by ground

**IPM programs based on mass-trapping,
spinosad aerial sprays protected well
oranges Thomson lowering damage at
the harvest to 2-8%**

Final step (2011 – 2012):

Testing IPM based on mass-trapping in organic orchard

IPM
program

- **Mass-trapping** with Moskisan®, Flycap® at 40/Ha and Ceratrap® at 100/Ha

**Mass-trapping using
Ceratrap system®**

**Mass-trapping using
Flycap system®**

Final step (2011 – 2012):

Testing IPM based on mass-trapping in organic orchard

IPM program

- **Mass-trapping** with Moskisan®, Flycap® traps at 40/Ha and Ceratrap® at 100/Ha
- **Field sanitation**
- **Ground sprays** only with spinosad when threshold reached

Spinosad treatment

- **Localized in the center of canopy**
- **1 row/3**
- **1 L/Ha**

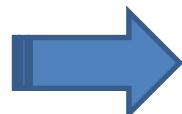
Final step (2011 – 2012):

Testing IPM based on mass-trapping in organic orchard

IPM program

- **Mass-trapping** with Moskisan®, Flycap® traps at 40/Ha and Ceratrap® at 100/Ha
- **Field sanitation**
- **Ground sprays** with spinosad when threshold reached

Assessment
of IPM
efficiency


- by monitoring the Medfly level
- and the punctured fruits (%) weekly from ripening until the harvest

Testing IPM based on mass-trapping in organic orchard

Results

Results of IPM program based on mass-trapping against *C. capitata*

IPM program	Punctured fruits (%)	
	with IPM	Control
[Sanitation + MT + RT]	1-2	20

- IPM program based on mass-trapping, 6 spinosad sprays protected very well oranges Thomson in an organic orchard with only 1-2% damage at the harvest
- No significant difference between the 3 systems tested

Conclusions

- IPM based on mass-trapping, field sanitation and rationalized treatments is efficient to control the Medfly on *Citrus*
→ the areas treated by chemicals could be reduced
- Several trapping systems are available in Tunisia and can be used in such programs,
- However the success of IPM is closely linked to the cooperation and support of the farmers who need to be trained.

Acknowledgements

- Professor A. Jerraya
- The Ministry of Agriculture (DG/PCQPA) with Mr F. Loussaïef
- The CTA
- The companies Bioprotection, El Moussem Agricole, I nova and Bioiberica
- The students W. Salleh, I. Trabelsi, L. Ben Amor, N. Aouadi, A. Ben Hmidène, M. Debbabi, and M. Tlemsani.
- Mrs F. Jrad et M. Fezzani (entomology- ecology Lab , INAT)
- The OTD Mraïssa (Mrs Chaabane and El Abed) and the INPFCA Sidi-Thabet
- The farmers Mrs Gabtni, Ben Mna, Belhaj , Omrane, Fourati and Mr Souissi

Thanks for your attention