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ABSTRACT: In many surveys, different quantities of information are obtained from different units. Common examples are
multiple phase samples, partially overlapping samples, and partial response. Estimators of the regression type are exhibited for
such situations, with particular application to longitudinal surveys. An example applied to the National Resources Inventory is
described.

1. Introduction

The study of the dynamics of populations is currently receiving considerable attention. Such study
requires observations made at multiple time points on units in the population. Surveys designed
specifically for such study include the Survey of Income and Program Participation (SIPP) conducted
by the U.S. Census Bureau and the National Resources Inventory (NRI) conducted by the Natural
Resources Conservation Service of the U.S. Department of Agriculture. The NRI is nearly a pure
panel survey of certain land areas. We define a pure panel survey to be a survey in which the same
units are observed at each time point of a survey conducted at more than one time point. A
longitudinal survey is a survey conducted at more than one time point with some units observed at more
than one time point. The term longitudinal survey is generally used for surveys conducted at more than
two points in time with multiple observations on some units planned as part of the survey design.

A rotation survey is one in which a unit is observed for a partial set of time points and is not observed
for the remaining set of time points in the study. There are many ways in which the observation
pattern can be specified. The Canadian Labor Force Survey and the U.S. Current Population Survey
are examples of surveys designed to run continuously in which units rotate into the sample for a fixed
period (or periods) and then permanently rotate out of the observation set.

There exist an array of designs combining individuals observed at some time points and individuals
observed at all time points of the study set of time points. The simplest such design is a two-phase
sample in which the observations at the second of two time points is a subsample of those observed at
time one. The book edited by Kasprzyk et al. [1989] contains an excellent discussion of various
aspects of panel surveys. Duncan and Kalton [1987] and Schreuder, Gregorie, and Wood [1993]
discuss different types of repeated surveys and the objectives of such surveys.

The largest fraction of the survey literature on repeated surveys has been devoted to rotating surveys.
An early study describing the use of least squares to incorporate information from a previous occasion
into the estimate of the current occasion is that of Jessen [1942]; also see Cochran [1942]. Patterson
[1950] investigated estimation for rotating samples. Patterson’s work was followed by a number of
authors, including Eckler [1955], Rao and Graham [1964], Gurney and Daly [1965], Raj [1965], Smith
[1978], Wolter [1979], Jones [1980], Huang and Ernst [1981], Breau and Ernst [1983], and Kumar and
Lee [1983].
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We shall compare some designs for studies directed toward longitudinal dynamics. Because such
studies are multiple purpose, we cannot hope to develop a design that is optimal for all objectives. A
part of our investigation will be to identify the trade-offs.

2. Supplemented Panel Designs

Consider a simple three period survey in which one-fourth of the units are observed over all three
periods and each of three sets of one-fourth of the units is observed over exactly one of the three
periods. Thus, if the total sample size isn, then 0.5 n of the units are observed at each time point. Let
(Y,, Y, Y;,) denote the value of a characteristic observed at times one, two, and three, respectively.
Assume that the correlation between observations at timei and time j on the same element is that of a
first order autoregressive process with parameter p. Assume simple random sampling for the selection
of all samples.

Let (§11, §21, §31) " denote the estimated mean at time one, two and three, of the sample elements that

are observed all three periods. Let (§12, §23, §3 )~ denote the sample means for the three periods for
the sample elements that are observed once. Letp=(u;, p,, uy)  denote the population means for the
three periods. Then we can write

y = Xu-e (1)

where y = (¥,;, Yy1» Y1 Y1 Va3 Yas)» X = (I3, I,) and the covariance matrix of e is
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where o? is the variance of a mean of n/4 observations, p,= p,and p,= p~. It follows that the best

linear unbiased estimator of y using this amount of information is

. Nyl vl T

:Uvg: (X Zee X) ! X Zee y (3)
and

Vig) = (X" Y. %" )

We compare the covariance matrix (4) with the covariance matrix of a pure panel survey in which the
same 0.5 n units are observed on all three periods. The covariance matrix for the pure panel design is

1 p p?
. o°
V{'upanel} =le Lop 7
P> p 1
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Table 1 contains variances for several functions of means for p ranging from 0 to 0.99, relative to the
corresponding variance for the pure panel design. If p =0, the variance of the best linear unbiased
estimator of the three means is the variance of the simple mean at each period. If the total number of
elements is 7, the variance at each time period is 2n 'o®. In the remaining discussion we assume

o’ =1. If observations on the same element are correlated (p #0), the variance of the estimated means
for the supplemented panel design is less than 27!, The limit of the correlation is one. This can occur
for characteristics such as the age of an individual at a fixed point. The lower bound for the variance
of the supplemented panel design at p =1 is n”' because this is the number of different individuals in the
study. Correspondingly, the limit of the relative efficiency for period means of the supplemented
panel, relative to the pure panel, is 2.0. The variances of the estimated means for the supplemented
panel design for the first and last period are the same. The variance of the middle period is somewhat
smaller because the middle observation has one period correlation with the first and third observations
on the same element.

Table 1. Variances of Functions of the Estimators for Three Period Design with
50% New Observations at Each Time Relative to Variances of Pure Panel Design

p y1 yz yl_y2 yl_y3
-0.70 0.838 0.755 0.674 1.253
-0.50 0.929 0.875 0.768 1.143
0.00 1.000 1.000 1.000 1.000
0.50 0.929 0.875 1.304 1.143
0.70 0.838 0.755 1.488 1.253
0.90 0.660 0.595 1.773 1.681
0.99 0.520 0.510 1.973 1.951

If the correlation is positive, the variance of the difference of two means is smaller for the pure panel
survey than for the supplemented panel design. As p approaches one, the variance of the difference of
two means approaches zero for both designs. Thus, for example, the variance of period-to-period
change for the pure panel is only two percent of the variance of the mean if p =0.99. See Table 2.
The pure panel design has an efficiency approaching twice that of the supplemented panel design asp
approaches one.

Table 2. Variances of Functions of Means for Pure Panel Study
P nV{y1} nV{yz} ”V{yl_yz} ”V{yl_y3}
-0.70 2.00 2.00 6.80 2.04
-0.50 2.00 2.00 6.00 3.00
0.00 2.00 2.00 4.00 4.00
0.50 2.00 2.00 2.00 3.00
0.70 2.00 2.00 1.20 2.04
0.90 2.00 2.00 0.40 0.76
0.99 2.00 2.00 0.04 0.08

The roots of the covariance matrices for the two designs and various values of p are given in Table 3.
Except for p =0, the supplemented panel design has a smaller largest root and a larger smallest root.
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If one uses the trace criterion to choose a design, then one would always use the design in which some
new elements are observed at each time period. For example, if p =0.5, the ratio of the trace of the
covariance matrix of the pure panel design to that of the supplemented panel design is 1.10. Ifp =0.7,
the ratio is 1.23.

Table 3. Roots of Covariance Matrix for Three Period Study

Type p r T T Sum
Pure Panel -0.7 4.53 1.02 0.45 6.00
Supplemented 2.77 1.35 0.74 4.86
Pure Panel -0.5 3.69 1.50 0.81 6.00
Supplemented 2.59 1.71 1.16 5.46
Pure Panel 0.0 2.00 2.00 2.00 6.00
Supplemented 2.00 2.00 2.00 6.00
Pure Panel 0.5 3.69 1.50 0.81 6.00
Supplemented 2.59 1.71 1.16 5.46
Pure Panel 0.7 4.53 1.02 0.45 6.00
Supplemented 2.77 1.35 0.74 4.86
Pure Panel 0.9 5.48 0.38 0.14 6.00
Supplemented 2.93 0.64 0.26 3.83
Pure Panel 0.99 5.95 0.04 0.01 6.00
Supplemented 2.99 0.08 0.03 3.34

Table 4 contains the variance of some functions of means for the supplemented panel design relative to
the pure panel design for a five period study. The variances of the first period means are similar to
those of the three period design. However, the variances of the second and third period means are
considerably smaller than the second period mean of the three period design. The limit of the relative
efficiency for the means of the supplemented panel relative to the pure panel as p approaches one is
3.0. On the other hand, the limit of the relative efficiency for the difference of two means is 0.5, as it
was for the three period design.

Table 4. Variances of Estimated Means for Five Period Supplemented Design
Relative to Variances of Pure Panel Design

p Y1 Y, Y3 Y=Y Y=Y Ya= Yy
-0.70 0.833 0.734 0.721 0.661 1.250 0.627
-0.50 0.928 0.871 0.867 0.765 1.108 0.815
0.00 1.000 1.000 1.000 1.000 1.000 1.000
0.50 0.928 0.871 0.867 1.301 1.108 1.007
0.70 0.833 0.734 0.721 1.478 1.250 1.104
0.90 0.615 0.517 0.492 1.750 1.577 1.450
0.99 0.375 0.357 0.351 1.966 1.937 1.914
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The general structure of the roots of the covariance matrix of the five means for the five period design
is similar to that of the three period design. The largest root of the pure panel design is always larger
than the largest root of the supplemented panel design. The supplemented panel design always has a
larger smallest root than the pure panel design. The dominance of the supplemented panel relative to
the pure panel design with respect to the trace criterion is greater for the five period design than for the
three period design. This is a further reflection of the fact that estimates of period means are being
improved more than estimates of differences are being degraded, as the number of periods is increased.
The trace for the five period pure panel is 5.00 and the traces for the supplemented panel design are
3.86, 4.46, 5.00, 4.46, 3.86, 2.76 and 1.82 for p=-0.70, -0.50, 0.00, 0.50, 0.70, 0.90 and 0.99,

respectively.

As a second illustration of the variance of a panel with a supplemented component, consider a 2 X2 X2
table constructed for a binomial variable observed at three points in time. We assume that the
probability of being in state one is 0.5 and the probability of being in statei at time ¢, given state i at
time ¢ -1 is 0.8 for both states zero and one. Let

X; = 1 if state one at timej, forj = 1, 2, 3,
= (0 otherwise;
X, 1 if state one at time 1 and state one at timej, forj = 2, 3,
= (0 otherwise;
X = 1 if state one at time 2 and state one at time 3,
= (0 otherwise; and
X, = 1 if state one at times 1, 2 and 3,
= 0 otherwise.

The covariance matrices for estimators constructed with the pure panel design and the supplemented
panel design are given in Table 5. The entries are for the variance of a sample of sizen at each time
period multiplied by n. The supplemented panel design has smaller variances for the three time period
marginals and for the marginals of the adjacent 2 x 2 tables (period 1 and 2, and period 2 and 3). The
pure panel design has smaller variances for the one-three second order interaction ;) and the third
order interaction (X;). For those estimators in the supplemented panel design with smaller variances,
the covariances are also smaller than those of the pure panel design. As a result, for example, the
estimated change from period one to period two is smaller for the pure panel design than for the
supplemented panel design.

233



Table 5. Covariance Matrices for Alternative Designs for 2 X2 X2 Table

Covariance Matrix of Pure Panel Design

0.2500 0.1500 0.0900 0.2000 0.1700 0.1200 0.1600
0.2500 0.1500 0.2000 0.1500 0.2000 0.1600
0.2500 0.1200 0.1700 0.2000 0.1600
0.2400 0.1840 0.1600 0.1920
0.2244 0.1840 0.2112
0.2400 0.1920
0.2177
Covariance Matrix of Supplemented Panel Design
0.2226 0.0750 0.0274 0.1488 0.1250 0.0512 0.1120
0.2050 0.0750 0.1400 0.0750 0.1400 0.0928
0.2226 0.0512 0.1250 0.1488 0.1120
0.2244 0.1480 0.0956 0.1664
0.2338 0.1480 0.2144
0.2244 0.1664
0.2324

The characteristic roots of the covariance matrix for the pure panel design are
(1.249, 0.209, 0.113, 0.056, 0.031, 0.010, 0.003),
and the characteristic roots for the supplemented panel design are

(0.942, 0.265, 0.176, 0.096, 0.059, 0.021, 0.006).

The sum of the roots for the pure panel design is 1.671 and the sum for the supplemented panel design
is 1.565. The orthogonal linear combination with largest variance has a variance about 30 percent
smaller for the supplemented panel design. This linear combination is essentially a sum of the seven
estimates. The remaining six linear combinations have much smaller variances for both designs, and
the variances are smaller for the pure panel design than for the supplemented panel design.

3. Estimation for Additional Characteristics

In the previous section, we outlined an estimation scheme for a vector of time means for a
y-characteristic. While we considered a scalary, there is no conceptual difficulty in extending the
procedure to a vector of y-characteristics.

In the 2 X2 X2 table, the variables for change in classification, X, X; X, X, , are observed only in the
panel portion of the sample. We constructed estimates for these variables using the generalized least
squares approach. This is an inefficient computational procedure if one is dealing with many
characteristics. Also, if the generalized least squares procedure is applied to different sets of variables
with some overlap, then the estimates are not internally consistent. For applications, we suggest the
procedure of Fuller [1990]. In that procedure, a set of variables from each time period is chosen as the
control variables. The generalized least squares procedure is then used to estimate the means (or totals)
for the vector of control variables. Given the estimated control means, a set of regression weights is
constructed for the panel portion of the sample such that

X:ies1 Wi i = By
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where s, is the panel portion of the sample, w; is the regression weight for the ith element in the panel
portion, y; is the vector of control variables for the ith element, and ﬂy is the estimated generalized

least squares estimator of the mean of y. The estimator of the mean of a characteristicz is

B, = Zies, Wi %

This estimator is a type of two-phase estimator. It differs from the classical two phase estimator in that
portions of the control vector are observed in different parts of the large (first phase) sample. The
estimator can also be written

A

B, = Z(1)+ (,l:l,y* y(l)) Bz~y’

where GZ, v is the regression coefficient for the regression ofz on y computed from s, and (2(1)’ 5(1)) is

the vector of estimated means based upon the panel portion of the sample. The variance of the
approximate distribution of 4 is

V{:&z} = V{Ea)} * ZC{E(U’ 'a’y Bz~y} * V{ﬁy BZ'y}’
where

ey = Zuy~ Yoy Bey

and B, y is the population analog of BZ, v If the estimator BZ, v is root n consistent for {3, y and if B, v is
such that
C{ea)’ fhy } =0,

the variance estimation procedure suggested by Fuller (1997) can be applied to estimate the variance of
fr, - If one is unwilling to assume zero covariances, then a replication scheme in which replicates are

drawn from the entire sampling procedure can be used. See Rao and Sitter [1995] and Sitter [1997].
4. The National Resources Inventory

The National Resources Inventory is a survey of the nonfederal land area of the United States
conducted by the Natural Resources Conservation Service of the U.S. Department of Agriculture. It is
a large survey of about 300,000 primary sampling units. A primary sampling unit is a segment of land.
In the Midwest, the segment is 160 acres, but the primary sampling units vary across the country. In
the western part of the U.S., there are some that are as big as 640 acres, and, in the east, some
segments are on the order of 100 acres. Within the primary sampling unit, points are designated for
observations. There are either two or three points per primary sampling unit. The basic survey has
been conducted in each of the years 1982, 1987, 1992, and is currently underway for 1997.

In 1995, a sample of 3,000 segments was selected from the 300,000 for a study that was called the
Erosion Update Study. This study was a subsample of the large sample, but the primary sampling units
were different. In 26 states, counties were sampling units and for 22 of the states, states were primary
sampling units. The 1992 basic NRI sample of 300,000 segments and the 1995 subsample of 3,000
segments form a classical two-phase sample. In the first-phase sample of 300,000 sampling units,
vector X is observed. In the subsample of 3,000 units, an extended vector X, Y) is observed.

A second special study was conducted in 1996. The original 1995 sample of 3,000 was augmented by
another 1,000 segments to obtain a total of 4,000 segments. A special study is underway in 1997 in
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which the 1996 sample has been augmented by another 2,000 segments. Thus, we can divide the
original 300,000 segments into four subgroups: 292,000 are observed only in 1992; 3,000 are observed
in 1992, 1995, 1996, and 1997; 1,000 are observed in 1992, 1996, and 1997; and 2,000 are observed
in 1992 and 1997.

The regression model for a characteristic y for these data is

592,292 e
_ ' 1 92,202
Vons 1000 o
; 1000 ’
95, e
i 0100 95,3
Yo6.3 0010 [ 223%) €963
y97,3 0001 Hos e97,3
= +
Yor.1 10060 Kos €9 1
§96’1 0010 | Ho7 | €96,1
3 000 1
€97.1
Yor.1 1000 ’
_ e
Yor2 i 0001 | 522
- €97, |
| Yo72

where i i is the mean for the characteristic at time ¢ on a group of j(000) segments, and p, is the mean

of y at time #. If we assume that the four subgroups are independent and that the correlation is of the
autoregressive form with p =0.9, the efficiency of the generalized least squares estimator relative to
the simple mean is 1.00, 2.94, 2.27 and 1.52 for pg,, pgs, tes and p,,, respectively.

The estimation method used in the actual study was closely related to the generalized least squares
procedure with a selected subset of control variables as outlined in Section 3.
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